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 Chapter 1

The History and Previous Investigations of Palladium-Catalyzed
Decarboxylative Asymmetric Allylic Alkylation of Ketone Enolates

Using the PHOX Ligand Architecture

1.1 Introduction and Background

1.1.1  General Background

The asymmetric catalytic synthesis of all-carbon quaternary stereocenters remains

an important challenge in chemical synthesis.1  Continuous advancement in palladium-

catalyzed asymmetric allylic alkylation chemistry has caused it to emerge as a

particularly versatile solution among the few general classes of methodologies capable of

rising to this challenge (Scheme 1.1 on page 2).2  Initially, however, stereocontrol over

carbon-carbon bond formation at highly substituted carbon centers in palladium-

catalyzed asymmetric allylic alkylation was limited to the allyl fragment, and achiral

nucleophiles were necessary in most implementations.3,4
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Scheme 1.1. Asymmetric Allylic Alkylation Used for the Synthesis of Chiral Quaternary Carbons5
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These early methodologies were generally limited to the formation of tertiary

carbon stereocenters.6  This is because palladium-catalyzed allylic alkylation has a strong

preference for alkylating with the least-hindered terminus of a differentially substituted

allyl electrophile (Scheme 1.2 on page 3 and Scheme 1.3 on page 3).6 The preference of

palladium for generating these linear instead of branched allylic alkylation products

means that the formation of allylic quaternary centers is inherently disfavored whenever

there is a less-substituted allyl terminus where alkylation can occur (Scheme 1.2, middle

and right situations).

1 2
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Scheme 1.2. Branched Versus Linear Allylic Alkylation Products Are Favored By Palladium Impeding
the Generation of Allylic Quaternary Carbon Stereocenters.
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Scheme 1.3. Select Examples of Palladium Catalyzed Allylic Alkylation Product Distributions7
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Subsequent developments in palladium-catalyzed asymmetric allylic alkylation by

a number of groups allowed for the stereoselective generation of all-carbon quaternary

stereocenters on the nucleophile for prochiral nucleophiles.8,9  These systems benefit from

the fact that the linear over branched alkylation product preference of palladium, does not

effect or limit the formation of quaternary stereocenters on prochiral nucleophiles

(Scheme 1.4 on page 4).  Thus by using nucleophiles that possess only a single reactive
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site, the formation of chiral all-carbon quaternary stereocenters can reliably be made by

these methodologies.

Scheme 1.4. The Linear Product Preference Found for Palladium-Catalyzed Asymmetric Allylic
Alkylation Does Not Limit the Formation of Chiral Quaternary Carbon Stereocenters from Prochiral
Nucleophiles.
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While this development represents a key advancement in the synthesis of chiral

all-carbon quaternary stereocenters, its early incarnations have some limitations.  Most of

these methodologies generate their carbon nucleophiles via stoichiometric

deprotonation.8,9  For many carbon nucleophiles, such as ketone enolates, this requires the

stoichiometric addition of strong base, such as LDA, to the reaction (Scheme 1.5 on page

5).9  Such harsh conditions can limit the functional group tolerance of these reactions.

Successful substrates tend to be absent of functional groups that are sensitive to base,

strong nucleophiles, or modest electrophiles.  Also, because allylic alkylation occurs at

any sufficiently nucleophilic site, it becomes necessary under such conditions to find

means to prevent both ambiguous and multiple deprotonation events, as this would form

alternate carbon nucleophiles prone to alkylation.1b  As a result, the scope of the

nucleophiles used in these earlier methodologies is generally limited by the need for the
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intended site of allylic alkylation to be the most acidic by a number of pKa units (Scheme

1.5).1b

Scheme 1.5. Trost’s Initial Allylic Alkylation Methodologies for Prochiral Ketone Nucleophiles9
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1.1.2 Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation

More recently, our group,10 and independently others,11 reported a series of mild

base-free palladium-catalyzed decarboxylative allylic alkylation conditions for ketone

enolate nucleophiles (Scheme 1.6 on page 6).  These methodologies are effective for

generating chiral tetrasubstituted carbons, including all-carbon quaternary stereocenters,

in high yield and good ee.  The decarboxylative conditions employed by these

methodologies are regiospecific even for substrates possessing multiple sites of similar

acidity to the one intended for alkylation.  The success of these procedures relies on a few

key enolate precursors as substrates: silyl enol ethers (4 and 5), allyl enol carbonates (6

and 7), and allyl β-ketoesters (8), which all function as masked ketone enolates and yield

2 3

2,

3,

2,
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the same allylic alkylation products (9 and 10) (Scheme 1.7 on page 6).10,11,12  The use of

these masked enolate substrates in palladium catalyzed allylic alkylation was pioneered

by Tsuji et al., who demonstrated the strict regioselectivity for alkylation at the enolate

geometry implied in the corresponding masked enolate.12

Scheme 1.6. Base-Free Palladium-Catalyzed Decarboxylative Allylic Alkylation of Ketone Enolates
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Scheme 1.7. Regioselective Preference in Tsuji’s Allylic Alkylation Substrate Classes
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Since its initial synthesis, the phophinooxazoline (PHOX) ligand architecture has

proven highly effective for various palladium-catalyzed asymmetric allylic alkylation

methodologies involving soft nucleophiles (Scheme 1.8, top reaction, on page 7).13  Our

4
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initial system optimizations revealed that (S)-t-BuPHOX 1 was also an optimal ligand for

effecting an asymmetric variant of the Tsuji alkylation while maintaining the mild

conditions and regiospecificity found in Tsuji’s original methodologies (Scheme 1.8,

bottom reaction).10b Subsequent to our initial reports, (S)-t-BuPHOX 1 has also found use

in a few highly related decarboxylative asymmetric allylic alkylation systems.11a,f,14

Scheme 1.8.  Palladium-Catalyzed Allylic Alkylation and the PHOX Ligand Architecture
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1.2 A Question of Mechanism

The mechanism of palladium-catalyzed asymmetric allylic alkylation of soft

nucleophiles, defined as nucleophiles with a pKa < 20,4,15 has been the subject of

significant investigation, and is now well understood.4,15,16  The consensus of these studies

is that bond forming occurs when soft nucleophiles attack directly at a π-allyl ligand of a

palladium complex (Scheme 1.9 on page 8).  This SN2-like reaction is generally referred

to as an outer-sphere allylic alkylation mechanism.  Helmchen conducted some of the

most pivotal of these seminal mechanistic studies on the PHOX ligand framework.  It is

thus accepted that outer-sphere allylic alkylation with soft nucleophiles is the standard

allylic alkylation mechanism found for PHOX-ligand-based palladium catalysts.17

11

1
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Scheme 1.9. General Outer-Sphere Mechanism for Palladium-Catalyzed Allylic Alkylation of Soft
Nucleophiles
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For the allylic alkylation of unstabilized ketone enolates, an outer-sphere

mechanism would imply the formation of a free enolate species at least transiently during

the course of the reaction (Scheme 1.10 on page 8).  Mindful of the literature precedent

concluding that palladium-catalyzed allylic alkylation functions by an outer-sphere

mechanism, both in general and on the PHOX ligand framework, the initial supposition

was that a free enolate was active in our allylic alkylation system.  Subsequent to our

initial publication, however, an increasingly large range of reaction conditions and

substrate functional group diversity was explored.10a,18,19  In doing so it has become

apparent that our methodology is surprisingly robust in light of a putative free enolate

intermediate.

Scheme 1.10. An Outer-Sphere Allylic Alkylation of Ketone Enolates Implies a Free Enolate.
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Substrates have been synthesized that present functionality with additional acidic

sites or that serve as electrophiles potentially sensitive to free unstabilized ketone

enolates, including: enones (11 and 12), nitriles (13), esters (11 and 14), and even

unprotected aldehydes (15) (Scheme 1.11 on page 9).10b,19 Notably, all these substrates

readily undergo palladium-catalyzed decarboxylative asymmetric allylic alkylation with

9
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no more then the occasional trace of side products under our conditions.  Even the

addition of up to 33.3 equivalents of water to the reaction failed to quench the putative

enolate intermediate and only modestly reduced the yield of allylic alkylation product

(Table 1.1 on page 9).18  While some of the more challenging asymmetric allylic

alkylation substrates we attempted produced alkylation products in modest or low ee,

extremely few substrates were found to produce any side products or to significantly

perturb allylic alkylation.  Together these results raised serious questions about the

possibility of a free enolate intermediate and thus the nature of the mechanism itself.

Scheme 1.11. The Success of Potentially Enolate Sensitive Substrates10b,19
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Table 1.1. The Effects of Water on Decarboxylative Asymmetric Allylic Alkylation
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1.3 Initial Mechanistic Investigation

We began our mechanistic investigation by determining the molecularity of the

active catalyst in the reaction as starting point from which to direct the design of

subsequent experiments.  The enantioinduction imparted by our catalyst system was high

enough to make it a good candidate for performing a nonlinear effect study to determine

active catalyst molecularity as pioneered by Kagan.20  By plotting the ee of the alkylation

product formed versus the ee of the source of enantioinduction used in the reaction, the

linearity of the dependence between the two can be determined.  A positive or negative

nonlinear dependency requires that the source of enantioinduction must aggregate under

reaction conditions while a linear correlation implies a reaction mechanism that is likely

devoid of such aggregation.

To this end, the dependency of the ee of ketone 16, produced via the palladium-

catalyzed decarboxylative allylic alkylation of racemic allyl β-ketoester 17, was plotted

against the ee of isopropyl PHOX ligand used in the reaction (Figure 1.1 on page 11).21

The resulting linear dependency is strongly suggestive of no PHOX ligand aggregation

under reaction conditions. This implies the exclusion of a number of mechanistic

possibilities.  First, it is likely that only one PHOX ligand binds to palladium under the

reaction conditions as opposed to bis-PHOX-ligated palladium species, which have been

reported.22  Second, the linear dependence suggests that there are no PHOX ligated

palladium-catalyst aggregates in solution either as catalytically active species or as

unproductive catalyst resting states.  Third, the linear dependence suggests that the step
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or steps related to enantioinduction and bond forming in the mechanism involve only a

single palladium species.

Figure 1.1. Nonlinear Effect Study of Palladium-Catalyzed Decarboxylative Allylic Alkylation
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The ee of the i-PrPHOX ligand (X-axis) was varied by mixing freshly prepared stock
solutions of enantiopure (S) and (R) i-PrPHOX ligand prior to each experiment and the
mixture ratio confirmed by chiral HPLC.  The product of each reaction was isolated and
purified before obtaining ee (Y-axis) via HPLC.

The nonlinear effects studies were supported with traditional reaction kinetics

studies.  Kinetics studies of the decarboxylative allylic alkylation of allyl enol carbonate

XX and allyl β-ketoester XX to form tetralone 23 determined that both the allyl enol

carbonate and β-ketoester reactions were first order in catalyst and zero order in substrate

(Figure 1.2 on page 13).23  Notably all three substrate classes give allylic alkylation

products in similar yields and practically identical ee (Table 1.2 on page 12).10  This is

1617
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strongly suggestive of a single underlying mechanism that must converge at or before the

formation of the ketone enolate intermediate (Scheme 1.12 on page 14).  Together these

results favor a universal mechanism involving a single monomeric PHOX palladium

species for each step of both the productive catalytic cycle as well as any unproductive

catalyst resting states that might exist.

Table 1.2. Consistent Results Across All Three Substrate Classes10
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Figure 1.2. Kinetics Studies Show Zero-Order Dependence on Substrate
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With this knowledge in hand we turned to DFT to simulate the reaction of free

enolate 24 with a single PHOX palladium π-allyl species 25.23,24  Via DFT a traditional

outer-sphere allylic alkylation path was identified favoring nucleophilic attack at the π-

allyl terminus trans to phosphorous.  This is in perfect accordance with previous

mechanistic studies for palladium-catalyzed asymmetric allylic alkylation using the

PHOX ligand architecture (Figure 1.3 on page 15).17  However, DFT simulation also

predicted that this outer-sphere attack has practically no energy difference between the

two facial approaches of the enolate nucleophile.  If so, such an outer-sphere mechanism

should result in near racemic allylic alkylation product.24  The inconsistency of this

simulated mechanism versus the experimentally observed results was highly

unsatisfactory.

Scheme 1.12. Consistent Product Yield and Enantioinduction Implies a Common Mechanism.
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Figure 1.3. Results of DFT Simulation for Outer-Sphere Allylic Alkylation Starting with 24 and 25
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Literature precedent for the palladium-catalyzed allylic alkylation of hard

nucleophiles suggests that they can proceed via an inner-sphere mechanism, whereby

nucleophilic attack occurs at the metal center and subsequent bond forming occurs by a

reductive elimination process (Scheme 1.13 on page 16). 4,15  Noting this, we sought to

use DFT to investigate an alternate inner-sphere alkylation pathway.  DFT placed the

energy of the ion-paired free enolate 24 and palladium π-allyl cation 25 as roughly

isoenergetic to palladium π-allyl complex 26 with the enolate apically bound (Figure 1.4

on page 17).  From complex 26 It was determined that an internal rearrangement

involving the isomerization of the allyl ligand from an η-3 to an η-1 binding mode in

conjunction with the collapse of the apical enolate ligand into the square plane could

form palladium allyl enolate 27.  This internal rearrangement was computed to have a

kinetic barrier 1.9 kcal/mole smaller then the outer-sphere allylic alkylation process

24

25

9
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making the internal rearrangement the more kinetically favorable of the two

processes.24,25

Scheme 1.13. Generalized Inner-Sphere Mechanism for Palladium-Catalyzed Allylic Alkylation
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O- to C-bond rearrangement of the enolate ligand from palladium allyl enolate 27

followed by a traditional 3-centered reductive elimination was calculated to have a

prohibitively high kinetic barrier.23,24,26  However, a 7-centered doubly vinylogous

reductive elimination directly from palladium allyl enolate 27 was determined to have a

small kinetic barrier and thus be a viable mechanism for the production of ketone 9.

Previous calculation work27 and subsequent experimentation28 by others has demonstrated

the feasibility and facile nature of highly related all-carbon 7-centered doubly vinylogous

reductive eliminations from palladium to form carbon-carbon bonds.  One particularly

relevant example, the palladium-catalyzed allyl-allyl coupling of allylic carbonates and

allylic boronic esters, has been achieved asymmetrically yielding products in high ee.28a

Subsequent calculations of orbital contribution and symmetry with all-carbon doubly

vinylogous reductive eliminations from palladium have concluded that these are true

pericyclic concerted reactions remarkably similar to the homo-Cope rearrangement but

with a significantly smaller kinetic barrier.29
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Figure 1.4 Results of DFT Simulation for Inner-Sphere Allylic Alkylation Starting with 24 and 25
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Notably DFT simulations found that the internal rearrangement from π-allyl

palladium complex 26 to palladium allyl enolate 27 is enantioselective.  The pro-S

rearrangement that eventually gives rise to the experimentally observed enantiomer of

product was calculated to be lower in energy then the pro-R rearrangement by 1.0

kcal/mol using the B3LYP basis set.24  It was determined that most of the energy

difference between the pro-S and pro-R rearrangements is due to the effects of chiral

steric clashes manifested via intermolecular van der Waals interactions.  To this effect,

calculations on these internal rearrangements were also performed with the mPW1PW91

functional, a hybrid DFT method considered better suited for accurately computing van

der Waals interactions.  The energy difference between the kinetic barriers for the pro-S

and pro-R  internal rearrangements arrived at by mPW1PW91 was 1.6 kcal/mol,

predicting product formation in roughly 88% ee at room temperature in excellent

agreement with the experimentally observed results.

In search of experimental confirmation for an inner-sphere allylic alkylation

mechanism we looked to a series of crossover experiments.  Two different deuterium-

24

25
9

26

27
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labeled forms of allyl enol carbonate 6 were synthesized, one with deuteration on the

latent enolate fragment (28) and the other with deuteration on the allyl portion of the

molecule (29) (Scheme 1.14 on page 18).10a  Performing a series of reactions with a one-

to-one mixture of allyl enol carbonates 28 and 29 produced a statistical mixture of all six

possible products, including those formed from allyl termini scrambling.10a  These results

are a clear indication of complete crossover, seemingly indicating an outer-sphere

mechanism.

Scheme 1.14. Original Crossover Experiment
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Together these early mechanistic investigations painted a perplexing picture.  The

crossover experiments and literature precedence suggested an outer-sphere mechanism.

However, DFT simulation, and the remarkable water and functional group tolerance of

the reaction suggested an inner-sphere mechanism.  A thorough follow-up study became

necessary to reconcile these seemingly contradictory findings and to construct a complete

and unifying mechanistic theory.
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