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Abstract

Defects, though present in relatively minute concentrations, play a significant role in determin-

ing macroscopic properties. Even vacancies, the simplest and most common type of defect, are

fundamental to phenomena like creep, spall and radiation ageing. This necessitates an accurate

characterization of defects at physically relevant concentrations, which is typically in parts per

million. This represents a unique challenge since both the electronic structure of the defect core

as well as the long range elastic field need to be resolved simultaneously. Unfortunately, accurate

ab-initio electronic structure calculations are limited to a few hundred atoms, which is orders of

magnitude smaller than that necessary for a complete description. Thus, defects represent a truly

challenging multiscale problem.

Density functional theory developed by Hohenberg, Kohn and Sham (DFT) is a widely ac-

cepted, reliable ab-initio method for computing a wide range of material properties. We present a

real-space, non-periodic, finite-element and max-ent formulation for DFT. We transform the origi-

nal variational problem into a local saddle-point problem, and show its well-posedness by proving

the existence of minimizers. Further, we prove the convergence of finite-element approximations

including numerical quadratures. Based on domain decomposition, we develop parallel finite-

element and max-ent implementations of this formulation capable of performing both all-electron
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and pseudopotential calculations. We assess the accuracy of the formulation through selected test

cases and demonstrate good agreement with the literature.

Traditional implementations of DFT solve for the wavefunctions, a procedure which has cubic-

scaling with respect to the number of atoms. This places serious limitations on the size of the sys-

tem which can be studied. Further, they are not amenable to coarse-graining since the wavefunc-

tions need to be orthonormal, a global constraint. To overcome this, we develop a linear-scaling

method for DFT where the key idea is to directly evaluate the electron density without solving for

the individual wavefunctions. Based on this linear-scaling method, we develop a numerical scheme

to coarse-grain DFT derived solely based on approximation theory, without the introduction of any

new equations and resultant spurious physics. This allows us to study defects at a fraction of the

original computational cost, without any significant loss of accuracy. We demonstrate the effi-

ciency and efficacy of the proposed methods through examples. This work enables the study of

defects like vacancies, dislocations, interfaces and crack tips using DFT to be computationally

viable.
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Chapter 1

Introduction

The Schrödinger equation is fundamental for describing the quantum mechanical electronic struc-

ture of matter, since it does not require any empirical input. However, the solution of the Schrödinger

equation is exceedingly expensive, and this limits the size of systems that can be directly evaluated

to tens of electrons (Kohn (1999)). Numerous approaches have been proposed to reduce the com-

putational cost of the solution of the Schrödinger equation. These approaches include the widely

used DFT of Hohenberg and Kohn (1964). In their seminal work, Hohenberg and Kohn (1964)

proved the existence of a one-to-one correspondence between the ground state electron density

and the ground state wavefunction of a many-particle system. By this correspondence, the elec-

tron density replaces the many-body electronic wavefunction as the fundamental unknown field,

thereby greatly reducing the dimensionality and computational complexity of the problem.

The most common present-day implementation of DFT is through the Kohn-Sham method

(Kohn and Sham (1965)), in which the intractable many-body problem of interacting electrons

is reduced to a tractable problem of non-interacting electrons moving in an effective potential.

Hidden in this formulation is the unknown exchange and correlation functional for which various

models including the local spin-density approximation (LSDA) (Kohn and Sham (1965)) and the
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generalized gradient approximation (GGA) (Langreth and Mehl (1983); Perdew et al. (1992)) are

used.

The plane-wave basis is one of the most-frequently used basis for solving the Kohn-Sham

problem (Kresse and Furthmüller (1996); Segall et al. (2002); Gonze et al. (2002); Ismail-Beigi

and Arias (2000)) because of a number of attractive features. It forms a complete and orthonormal

set that is independent of the atomic positions and is efficient for evaluating convolutions through

the fast Fourier transform (FFT). However, the plane-wave basis also suffers from a few notable

disadvantages. Firstly, the plane-wave basis is best suited to periodic systems. Therefore, the

study of non-periodic and localized systems such as defects, clusters and surfaces requires the

introduction of artificial supercell periodicity, which can lead to spurious results. Secondly, the

plane-wave basis functions are non-local in real space, resulting in dense matrices which are ill-

suited to iterative solution schemes. In addition, non-locality limits the usefulness of a plane-wave

basis in multiscale approaches formulated in real space. Over the past decade, numerous efforts

have been directed towards the development of real-space DFT implementations that overcome

these difficulties (e.g., Hehre et al. (1969); Wills and Cooper (1987); Soler et al. (2002); Skylaris

et al. (2005); Bowler et al. (2006); Chelikowsky et al. (1994); Castro et al. (2006)). Though some of

these studies use the finite-element basis (Pask et al. (1999); Tsuchida (2004)), they do not utilize

the unstructured nature of the the finite-element method and the convergence of the finite-element

approximation with numerical quadratures has not been rigorously justified.

The computational complexity of DFT poses a significant hurdle in the solution of large sys-

tems of interest—irrespective of the basis set. Various approaches have been proposed to overcome

this limitation. A few examples include the integration of DFT with molecular dynamics (Car and
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Parrinello (1985)), linear and sub-linear scaling algorithms (García-Cervera et al. (2007); Garcia-

Cervera et al. (2009); Goedecker (1999); Galli and Parrinello (1992); Mauri et al. (1993); Skylaris

et al. (2005)) and adaptive-coordinate systems (Gygi and Galli (1995); Zumbach et al. (1996); Mo-

dine et al. (1997)) which improve the efficiency of the real space calculations by selectively having

some regions of space with higher resolution than others.

Inspite of these advances, the study of crystal defects at realistic concentrations remains in-

tractable. Defects present a unique challenge since both the electronic structure of the core as well

as the long range elastic field need to be simultaneously resolved. Multiscale approaches which

coarse-grain DFT or embed it into simpler, less accurate models like tight-binding (TB) or empiri-

cal potentials have also been developed recently (Choly et al. (2005); Lu et al. (2006); Govind et al.

(1999); Bernstein et al. (2009)). Though these multiscale methods provide valuable insight, they

suffer from a few notable drawbacks. In some cases, there is no seamless transition from DFT to

TB or empirical potentials, while in others, uncontrolled approximations made by the use of linear

response theory or Cauchy Born hypothesis render them unreliable. Also, there is no systematic

convergence of the solution of these models to the full DFT solution.

In this work, we first present a non-periodic, real-space, finite-element and max-ent formula-

tion of DFT. We show the well-posedness of this formulation for both the all-electron problem as

well as the pseudopotential approximation. In particular, we prove the existence of solutions, and,

in addition, the convergence of finite-element approximations, including numerical quadratures,

using Γ-convergence methods. Further, we develop a parallel implementation of this formula-

tion capable of performing both all-electron and pseudopotential calculations. Next, we present

a formulation to seamlessly coarse-grain DFT solely based on approximation theory, without the
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introduction of any new equations or physics. This allows us to study defects at a fraction of the

original computational cost, without any significant loss of accuracy. Additionally, we can obtain

systematic convergence to the fully resolved solution. In formulating the method, we first develop

a linear-scaling method where we circumvent the calculation of the wavefunctions and directly

evaluate the electron density. This is necessary since wavefunctions are global quantities which

are not amenable to coarse-graining. Next, we introduce coarse-graining approximations, whereby

we have high resolution in the vicinity of the defect and progressively coarsen as we move away

from the defect. Therefore, we are able to perform the calculations both accurately and efficiently.

The remainder of the thesis is organized as follows. In Chapter 2, we develop a non-periodic,

finite-element formulation of DFT. In Chapter 3, we present a mesh-free convex approximation

scheme for DFT. We present the proposed linear-scaling method for DFT in Chapter 4. Subse-

quently, we present the proposed formulation for coarse-graining DFT in Chapter 5. Finally, we

conclude in Chapter 6 with a short discussion and scope for future work.
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Chapter 2

Non-periodic finite-element formulation of

Kohn-Sham density functional theory

The plane-wave basis is one of the most-frequently used basis for solving the Kohn-Sham problem

(Kresse and Furthmüller (1996); Segall et al. (2002); Gonze et al. (2002); Ismail-Beigi and Arias

(2000)) because of a number of attractive features. It forms a complete and orthonormal set that

is independent of the atomic positions and is efficient for evaluating convolutions through the fast

Fourier transform (FFT). However, the plane-wave basis also suffers from a few notable disad-

vantages. Firstly, the plane-wave basis is best suited to periodic systems. Therefore, the study of

non-periodic and localized systems such as defects, clusters and surfaces requires the introduction

of artificial supercell periodicity, which can lead to spurious results. Secondly, the plane-wave ba-

sis functions are non-local in real space, resulting in dense matrices which are ill-suited to iterative

solution schemes. In addition, non-locality limits the usefulness of a plane-wave basis in multiscale

approaches formulated in real space. Over the past decade, numerous efforts have been directed

towards the development of real-space DFT implementations that overcome these difficulties (e. g.,

Hehre et al. (1969); Wills and Cooper (1987); Soler et al. (2002); Skylaris et al. (2005); Bowler

et al. (2006); Chelikowsky et al. (1994); Castro et al. (2006)). Though some of these studies use
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the finite-element basis (Pask et al. (1999); Tsuchida (2004)), they do not utilize the unstructured

nature of the the finite-element method and the convergence of the finite-element approximation

with numerical quadratures has not been rigorously justified. This is one of the motivations of the

current work along with the desire to coarse-grain DFT.

In this chapter, we present a non-periodic, real-space, finite-element formulation and imple-

mentation of DFT. For definiteness, we develop the formulation for the LSDA exchange-correlation

functional. However, the formulation is not restricted to a particular type of exchange-correlation

functional and can be adapted to other commonly used functionals such as GGA. The approaches

adopted for solving the Kohn-Sham problem can be broadly classified as ones that use the self-

consistent field (SCF) method and others in which some form of constrained direct minimization

is performed (Payne et al. (1992)). However, these two approaches are equivalent (Parr and Yang

(1989)) and largely a matter of convenience, as shown in Section 2.2.1. Our method of solution

utilizes both SCF and variational schemes to ensure convergence and achieve the fastest possible

convergence rate. One of the most time-consuming parts of conventional real-space implementa-

tions is the evaluation of the non-local electrostatic interactions, which we overcome by computing

the electrostatic potential directly. This direct computation of the electrostatic field has the effect

of turning the original minimization problem into a saddle-point problem (Ismail-Beigi and Arias

(2000)). The Lagrangian functional thus defined is subsequently discretized by means of finite-

elements and numerical quadrature. We show in Section 2.2.2 that the saddle-point problem is

mathematically well-posed by proving existence of solutions, and we prove the Γ-convergence of

finite-element approximations with numerical quadratures thereof, in Sections 2.2.3 and 2.2.4. We

also present a similar analysis for the pseudopotential approximation in Section 2.2.5.
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For completeness, we discuss in some detail relevant aspects of the finite-element implementa-

tion that are specific to the present application, including matters of optimal-mesh design, solution

procedures (Section 2.3) and the computation of forces (Appendix A). In Section 2.4, we verify

the formulation and numerical implementation by means of selected examples ranging from single

atoms to small clusters. The core electrons are eliminated through the use of the Evanescent-Core

(Fiolhais et al. (1995)) and Troullier-Martins (Troullier and Martins (1991)) pseudopotentials. To

test the accuracy of the method, we also perform all-electron calculations for selected atoms and

molecules. We also assess matters of numerical performance of the implementation, including

convergence rates, scaling with problem size and parallel scalability.

2.1 Formulation

The theoretical framework of DFT has its origins in the Hohenberg-Kohn theorems

(Hohenberg and Kohn (1964)). The first theorem is related to uniqueness and states that the ground

state expectation value of any observable is a unique functional of the ground state electron density.

The second theorem sheds light on the variational structure of the problem and shows that the

electron density that minimizes the total energy is the exact ground state density. The problem of

finding the ground state energy and electron density is equivalent to the problem of minimizing

the energy of a system of non-interacting electrons in a mean-field. The corresponding energy

functional E : X × R
SM → R, where X is a suitable space of solutions for the orthogonal
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wavefunctions, is given by (Parr and Yang (1989); Finnis (2003))

E(Ψ,R) = Ts(ρα, ρβ) + Exc(ρα, ρβ) + EH(ρα + ρβ) + Eext(ρα + ρβ,R) + Ezz(R) , (2.1)

where

ρα(x) =
Nα
∑

i=1

ψ∗
iα(x)ψiα(x) =

Nα
∑

i=1

|ψiα(x)|2 , (2.2)

ρβ(x) =

Nβ
∑

i=1

ψ∗
iβ(x)ψiβ(x) =

Nβ
∑

i=1

|ψiβ(x)|2 (2.3)

represent the electron densities with the spin component ‘up’ and ‘down’ respectively and ρ(x) =

ρα(x) + ρβ(x) is the total electron density. By Ψ = {ψ1α, ψ2α, . . ., ψNαα, ψ1β , ψ2β , . . ., ψNββ},

we denote the vector of wavefunctions and R ∈ R
SM is the collection of all the nuclear positions

R = {R1,R2, . . . ,RM}, S = 3 denotes the space dimension and M ∈ N is the number of nuclei.

The wavefunctions are orthonormal, thereby satisfying the relation

∫

ψ∗
iσ(x)ψjσ(x) dx = δij , σ ∈ {α, β} , i, j = 1, 2, . . . , Nσ , (2.4)

and

Nα =

∫

ρα(x) dx , Nβ =

∫

ρβ(x) dx (2.5)
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represent the number of electrons with spin ‘up’ and ‘down’ respectively. Note that if the domain

of integration is not specified, it refers to all of space R
S . The first term

Ts(ρα, ρβ) = −
1

2

∑

σ

Nσ
∑

i=1

∫

ψ∗
iσ(x)∇2ψiσ(x) dx (2.6)

in Eqn. (2.1) is the kinetic energy of the non-interacting electrons. The terms

EH(ρ) =
1

2

∫ ∫

ρ(x)ρ(x′)

|x − x′|
dx dx′ , (2.7)

Eext(ρ,R) =

∫

ρ(x)Vext(x,R) dx , (2.8)

Ezz(R) =
1

2

M
∑

I=1

M
∑

J=1
J 6=I

ZIZJ
|RI − RJ |

(2.9)

are electrostatic terms withEH known as the Hartree energy, representing the classical electrostatic

interaction energy of the electron density, Eext is the interaction energy with the external potential

Vext induced by the nuclear charges, and Ezz denotes the repulsive energy between the nuclei.

The term Exc(ρα, ρβ) in Eqn. (2.1) denotes the exchange-correlation energy. For definiteness, we

specifically adopt the so-called LSDA in which the exchange-correlation energy is taken to be that

of a uniform electron gas having the same local density (Kohn and Sham (1965)). The exchange-

correlation energy can in turn be separated into individual contributions from the exchange and

correlation parts, namely,

Exc(ρα, ρβ) = Ex(ρα, ρβ) + Ec(ρα, ρβ). (2.10)
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The expression for the exact exchange energy Ex(ρα, ρβ) of an uniform electron gas is

Ex(ρα, ρβ) = −
3

4

(

6

π

)1/3 ∫

(ρ4/3
α (x) + ρ

4/3
β (x)) dx . (2.11)

In addition, the correlation energy Ec(ρα, ρβ) can be written as

Ec(ρα, ρβ) =

∫

εc(ρα(x), ρβ(x))ρ(x) dx. (2.12)

Specifically, in applications we use the parametrization of Perdew and Wang (1992) fitted to accu-

rate Monte Carlo simulations carried out by Ceperley and Alder (1980).

As expressed in Eqns. (2.7) and (2.9), the electrostatic interaction energy and the repulsive

energy of the nuclei are non-local in nature and, thus are not amenable to a local discretization.

In order to overcome this difficulty, we employ the following strategy. We begin by representing

the nuclear charge of magnitude ZI at a site RI ∈ R
S by means of a regularized bounded charge

distribution −ZIδRI
(x) with a compact support in a neighborhood of a small ball around RI (it is

conventional in electronic-structure calculations to associate a negative charge with nuclei and a

positive charge with electrons) and such that
∫

RS δRI
(x) dx = 1 for 1 ≤ I ≤ M . We note that the

electrostatic potential due to these regularized charge distributions is pointwise bounded. Defining

as

b(x,R) = −
M
∑

I=1

ZIδRI
(x) (2.13)

the sum of all such regularized charge distributions of the M nuclei present in the system, the
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nuclear repulsive energy can be rewritten as

Ezz(R) =
1

2

∫ ∫

b(x,R)b(x′,R)

|x − x′|
dx dx′. (2.14)

Notice that this differs from Eqn. (2.9) by the self-energy of the nuclei, but this is an inconsequen-

tial constant depending only on the nuclear charges. In addition, the electrostatic potential due to

the nuclei and electron charge distribution can be computed as a solution to the Poisson equation

−1

4π
∇2φ(x,R) = ρ(x) + b(x,R). (2.15)

This equation has the unique solution

φ(x,R) =

∫

ρ(x′)

|x − x′|
dx′ +

∫

b(x′,R)

|x − x′|
dx′ = VH(x) + Vext(x,R). (2.16)

Consequently, we have the variational problem

1

2

∫ ∫

ρ(x)ρ(x′)

|x − x′|
dx dx′ +

∫

ρ(x)Vext(x) dx +
1

2

∫ ∫

b(x)b(x′)

|x − x′|
dx dx′

= − inf
φ∈H1

0
(RS)

{

1

8π

∫

|∇φ(x,R)|2dx −

∫

(ρ(x) + b(x,R))φ(x,R) dx

}

. (2.17)

Using this property, we can write Eqn. (2.1) as

E(Ψ,R) = sup
φ∈H1

0
(RS)

L(Ψ,R, φ) , (2.18)
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where

L(Ψ,R, φ) = −
1

2

∑

σ

Nσ
∑

i=1

∫

ψ∗
iσ(x)∇2ψiσ(x) dx + Exc(ρα, ρβ)

−
1

8π

∫

|∇φ(x,R)|2dx +

∫

(ρ(x) + b(x,R))φ(x,R) dx. (2.19)

Here and below, we denote by Hm(Ω) the space of m-times weakly differentiable functions in

L2(Ω) and by Hm
0 (Ω) := C∞

0 (Ω)
‖·‖Hm

, the space of Sobolev functions with zero boundary condi-

tions in the trace sense.

The problem of determining the ground state electron density and the equilibrium positions of

the nuclei can now be expressed as the saddle point problem

inf
Ψ∈(H1

0
(RS))N

R∈R
SM

E(Ψ,R) = inf
Ψ∈(H1

0
(RS))N

R∈R
SM

sup
φ∈H1

0
(RS)

L(Ψ,R, φ) (2.20)

subject to the constraints

∫

ψ∗
iσ(x)ψjσ(x) dx = δij , σ ∈ {α, β}, i, j = 1, 2, . . . , Nσ. (2.21)

In addition, Nα, Nβ must be chosen such that the system has the lowest possible energy subject to

the constraint of the total number of the electrons in the system being studied, i.e., Nα +Nβ = N .
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2.2 Properties of the Kohn-Sham variational problem

In the present section, for the sake of clarity and notational simplicity, we will neglect spin polariza-

tion, thereby reducing the LSDA to the Local Density Approximation (LDA). This simplification

is not essential, and the results presented in this section extend trivially to LSDA. Corresponding

to Eqn. (2.1), for LDA we have

E(Ψ,R) = −
1

2

N
∑

i=1

∫

ψ∗
i (x)∇2ψi(x) dx + Exc(ρ) + EH(ρ) + Eext(ρ,R) + Ezz(R) , (2.22)

where ρ(x) =
∑N

i=1 |ψi(x)|2 and Ψ = {ψ1, ψ2, . . . , ψN}. Also, to avoid technical problems, we

restrict our analysis to a bounded set Ω ⊂ R
S . With this simplification we obtain the variational

problem

inf
Ψ∈(H1

0
(Ω))N

R∈R
SM

E(Ψ,R) = inf
Ψ∈(H1

0
(Ω))N

R∈R
SM

sup
φ∈H1

0
(Ω)

L(Ψ,R, φ) (2.23)

subject to the constraints

∫

Ω

ψ∗
i (x)ψj(x)dx = δij , i, j = 1, 2, . . . , N. (2.24)

Note that in this section we do not fix S, the dimension of space.

The remainder of this section has been organized as follows. In Section 2.2.1, we show the equiv-

alence of the Kohn-Sham variational and eigenvalue problems. The existence of a minimum for

the Kohn-Sham variational principle is proved in Section 2.2.2 and in Sections 2.2.3, 2.2.4 we val-
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idate the convergence of the finite-element approximation including numerical quadratures using

the technique of Γ-convergence. Γ-convergence is an ideal and flexible tool for handling nonlin-

ear variational problems like the one described by Eqns. (2.23), (2.24). Since a limitation of this

method is its inability to provide the rates of convergence, we obtain it numerically in Section

2.4.4. The nonlinearity of the problem prevents the application of any of the standard techniques

which provide the rate of convergence (Ciarlet (2002)).

2.2.1 Equivalence of variational and eigenvalue problems

We begin by showing the equivalence of the variational and eigenvalue problems in this section.

The proof is similar in spirit to Roothaan (1951), where the equivalence was proved for the Hartree-

Fock equations, and is provided here for the sake of completeness. Using Lagrange multipliers λij

to enforce the constraints given by Eqn. (2.24), we obtain the functional

Ec(Ψ,R,Λ) = E(Ψ,R) −
N
∑

i=1

N
∑

j=1

λij

(∫

Ω

ψ∗
i (x)ψj(x) dx − δij

)

. (2.25)

Let us first prove that the matrix Λ = (Λij)1≤i,j≤N , whose entries are λij , is Hermitian. Taking

variations of Eqn. (2.25) and setting them to zero we obtain

(

−
1

2
∇2 + Veff(x,R)

)

ψi(x) =
N
∑

j=1

λijψj(x) , (2.26)

(

−
1

2
∇2 + Veff(x,R)

)

ψ∗
i (x) =

N
∑

j=1

λjiψ
∗
j (x) , (2.27)

∫

Ω

ψ∗
i (x)ψj(x) dx = δij , (2.28)
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where

Veff(x,R) = Vext(x,R) + VH(x) +
δExc(ρ)

δρ(x)
. (2.29)

Taking the complex conjugate of Eqn. (2.27), then subtracting it from Eqn. (2.26), we obtain the

relation

N
∑

j=1

(λij − λ∗ji)ψj(x) = 0. (2.30)

Since the ψj are linearly independent it follows that λij = λ∗ji, showing the matrix Λ to be indeed

Hermitian. For notational convenience, we may express Eqn. (2.26) in matrix form as

HΨ = ΨΛ , H = −
1

2
∇2 + Veff(x,R). (2.31)

Now let us subject the wavefunctions to a unitary transformation and the matrix Λ to a similarity

transformation, i. e.,

Ψ̂ = ΨQ, Λ̂ = Q∗ΛQ (2.32)

with QQ∗ = Q∗Q = I, I being the identity matrix. Since unitary transformations are norm-

conserving, the electron density remains invariant:

ρ(x) =
N
∑

i=1

|ψi(x)|2 =
N
∑

i=1

|ψ̂i(x)|2. (2.33)

Using the above relations we get

ĤΨ̂ = Ψ̂Λ̂ (2.34)
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where H = Ĥ. Hence the wavefunctions on unitary transformation satisfy equations of exactly

the same form as the original ones prior to transformation. Since the matrix Λ is Hermitian, there

exists an unitary matrix Q such that Λ̂ is a real diagonal matrix. Therefore, without any loss of

generality we can replace Eqn. (2.31) by the eigenvalue problem

Hψi = ǫiψi , i = 1, 2, . . . N (2.35)

which is said to be in canonical form. Thus, the SCF eigenvalue problem and the direct variational

formulation of the problem are equivalent and the choice of one over other is strictly a matter of

convenience.

2.2.2 Existence of a minimum

In this section, we establish the existence of a minimum for the Kohn-Sham variational principle.

The main result is Theorem 4. A more general proof of the same is given by Anantharaman and

Cances (2008), where they do not make the assumption that Ω is bounded. However, our analysis

differs from theirs and is necessary as it lays the groundwork for proving the convergence of the

finite-element approximation including numerical quadrature in the subsequent sections.

We introduce a suitable space of solutions X corresponding to normalized orthogonal wave-

functions as

X =
{

Ψ̃ ∈ (H1
0 (Ω))N

∣

∣

∣ 〈ψ̃i, ψ̃j〉(L2(Ω),L2(Ω)) = δij, i, j = 1, 2, . . . , N
}

. (2.36)
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We require that Ω be an open, bounded subset of R
S with Lipschitz boundary. We point out that

if we additionally postulate that Ω is a dyadic cube, then all the subsequent results of this analysis

also hold for

X =
{

Ψ̃ ∈ (H1
per(Ω))N

∣

∣

∣
〈ψ̃i, ψ̃j〉(L2(Ω),L2(Ω)) = δij, i, j = 1, 2, . . . , N

}

, (2.37)

which corresponds to a periodic system. By H1
per(Ω) we denote the space of Sobolev functions on

the torus obtained by identifying the opposite sides of Ω.

On integrating by parts, the energy of the system as expressed by Eqn. (2.22) can be rewritten

in a generic form as

E(Ψ,R) =
N
∑

i=1

1

2

∫

Ω

|∇ψi(x)|2dx + J(ρ,R) +G(ρ) , ρ(x) =
N
∑

i=1

|ψi(x)|2, (2.38a)

J(ρ,R) = − min
φ∈H1

0
(Ω)

{

1

CS

∫

Ω

|∇φ(x,R)|2dx −

∫

Ω

(ρ(x) + b(x,R))φ(x,R) dx

}

+ Σ , (2.38b)

G(ρ) =

∫

Ω

g(ρ) dx , (2.38c)

where CS is a constant dependent on the dimension of space S and the term Σ specifies the self

energy of the nuclear charges, which is an inconsequential constant in this analysis and hence will

be dropped later.

We make the following hypothesis on g:

(A1) The density g is continuous in R
+.

(A2) The growth condition |g(t)| ≤ c2|t|
q + c1 holds for positive real constants c2, c1 and the
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exponent satisfies

q ∈



















[

1, S
S−2

)

, if S > 2,

[1,+∞), otherwise.

(A3) The exponent q satisfies the condition 2q < 3.

The need for Assumption (A3) becomes clear in the proof of Lemma 3.

Let the dual exponent p∗ of p be given by 1/p∗ = 1/p− 1/S. We first note:

(a) For ρ ∈ L2(Ω) the functional J(ρ,R) is well defined. This result follows from the Poincaré

inequality and the Lax-Milgram lemma. It is also straightforward to check that ρ ∈ L2(Ω) if

2∗ > 4.

(b) The functional J is continuous in L2(Ω).

(c) The functionalG is continuous in Lq(Ω), which follows from the continuity of g and the growth

condition (A2).

(d) As
∑N

i=1
1
2

∫

Ω
|∇ψi(x)|2dx is continuous in the strong topology of (H1

0 (Ω))N and convex,

it follows that Ψ 7→
∑N

i=1
1
2

∫

Ω
|∇ψi(x)|2dx is lower semi-continuous in the weak topology of

(H1
0 (Ω))N .

Lemma 1 X is closed in the weak topology of (H1
0 (Ω))N .

Proof. Consider an arbitrary sequence (Ψl)l ⊂ X with Ψl ⇀ Ψ in (H1
0 (Ω))N . By the Rellich-

Kondrakov theorem (Rudin (1991)), H1
0 (Ω) has a compact embedding into L2(Ω). Thus (ψi,l)l →

ψi inL2(Ω) for i = 1, 2, . . . , N from which it follows that δij = 〈ψi,l|ψj,l〉(L2(Ω),L2(Ω)) → 〈ψi|ψj〉(L2(Ω),L2(Ω))
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for i, j = 1, 2, . . . , N as l → ∞. Therefore Ψ ∈ X , which implies that X is closed in the weak

topology of (H1
0 (Ω))N .

Lemma 2 Let (A1), (A2) hold and S < 4. Then E is lower semi-continuous in the weak topology

of X .

Proof. Consider any sequence (Ψl)l ⊂ (H1
0 (Ω))N such that Ψl ⇀ Ψ in (H1

0 (Ω))N . As by the

Sobolev theorem the embedding H1
0 (Ω) →֒ L4(Ω) is compact for S < 4, it follows that (ψi,l)l →

ψi in L4(Ω) for i = 1, 2, . . . , N . Hence (ψ2
i,l)l → ψ2

i in L2(Ω) and therefore (ρl)l → ρ in

L2(Ω). From (A2) it follows that the embedding H1
0 (Ω) →֒ L2q(Ω) is compact. Thus ρl → ρ in

Lmax{2,q}(Ω). From (b)–(d) it follows that
∑N

i=1
1
2

∫

Ω
|∇ψi(x)|2dx, J(ρ,R), and G(ρ) are lower

semi-continuous in the weak topology of (H1
0 (Ω))N . Hence, it follows that E is lower semi-

continuous in the weak topology of (H1
0 (Ω))N , and as X ⊂ (H1

0 (Ω))N , the claimed lower semi-

continuity of E in the weak topology of X follows.

Lemma 3 Let (A2), (A3) hold. Then E is coercive in the weak topology of X .

Proof. We first note the following results on the properties of J(ρ,R):

(i) From the linearity of the Euler-Lagrange equations associated with J(ρ,R), the electrostatic

energy of the system can be rewritten as

J(ρ,R) = EH(ρ) +

∫

Ω

Vext(x,R)ρ(x)dx + L(R), (2.39a)

EH(ρ) = − min
φ∈H1

0
(Ω)

{

1

CS

∫

Ω

|∇φ(x)|2dx −

∫

Ω

ρ(x)φ(x) dx

}

, (2.39b)

where L(R) = Ezz(R) + Σ.
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We point out that Vext is pointwise bounded. More precisely, it holds |Vext(·,R)| ≤ C almost

everywhere in Ω for all R ∈ R
SM and some constant C.

(ii) The functional EH is super-linear, that is EH(ρ1 + ρ2) ≥ EH(ρ1) + EH(ρ2) for arbitrary,

almost everywhere positive ρ1, ρ2 ∈ L2(Ω). This follows from the linearity of the corresponding

Euler-Lagrange equations.

From (ii) we can directly derive a lower bound for EH(ρ),

EH(ρ) = EH

(

N
∑

i=1

|ψi|
2
)

≥
N
∑

i=1

EH(|ψi|
2)

≥
N
∑

i=1

[

max
φi∈H1

0
(Ω)

{

∫

Ω

|ψi(x)|2φi(x)dx −
1

CS

∫

Ω

|∇φi(x)|2dx

}]

. (2.40)

We use φi = C0|ψi| as test functions in Eqn. (2.40) for a constant C0 that will be determined

later. Additionally, we also recall the following simple result on the weak derivative of an absolute

function, whose proof is elementary but can for instance be found in Gilbarg and Trudinger (1983).

If ψi ∈ H1(Ω), then |ψi| ∈ H1(Ω) and ‖∇|ψi|‖L2(Ω) ≤ ‖∇ψi‖L2(Ω). Inserting φi(x) = C0|ψi(x)|

in Eqn. (2.40) as trial functions for i = 1, 2, . . . , N , we arrive at the following lower bound for

EH(ρ),

EH(ρ) ≥
N
∑

i=1

[

max
φi∈H1

0
(Ω)

{

∫

Ω

|ψi(x)|2φi(x)dx −
1

CS

∫

Ω

|∇φi(x)|2dx

}]

≥
N
∑

i=1

[

C0

∫

Ω

|ψi(x)|3dx −
C0

CS

∫

Ω

|∇ψi(x)|2dx

]

= C0‖Ψ‖3
L3(Ω) −

C0

CS
‖∇Ψ‖2

L2(Ω). (2.41)
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Using the inequality given by Eqn. (2.41) in Eqn. (2.39a) and ‖Vext‖L∞(Ω) ≤ C we conclude

J(ρ) ≥ C0‖Ψ‖3
L3(Ω) −

C0

CS
‖∇Ψ‖2

L2(Ω) − C‖Ψ‖2
L2(Ω). (2.42)

Finally we require the inequality

G(ρ) ≥ −c0‖Ψ‖2q
L2q(Ω) − c1. (2.43)

This is a consequence of the growth condition (A2) on g which yields

G(ρ) ≥ −c2

∥

∥

∥

N
∑

i=1

|ψi|
2
∥

∥

∥

q

Lq(Ω)
− c1 (2.44)

and a direct estimate of the norm in Eqn. (2.44).

With the help of Eqn. (2.42) and Eqn. (2.43) we end up with

E(Ψ,R) ≥
1

2

(

1 −
2C0

CS

)

‖∇Ψ‖2
L2(Ω) + C0‖Ψ‖3

L3(Ω) − c0‖Ψ‖2q
L2q(Ω) − C‖Ψ‖2

L2(Ω) − c1. (2.45)

Choosing 0 < 2C0 < CS , we find that ‖Ψ‖3
L3(Ω) grows faster than ‖Ψ‖2q

L2q(Ω) as 2q < 3 by (A3),

and ‖Ψ‖2
L2(Ω). This ensures E(Ψ) → +∞ as ‖Ψ‖(H1

0
(Ω))N → +∞. This is the coercivity of E in the

weak topology of (H1
0 (Ω))N . From Lemma 1, as X is closed in the weak topology of (H1

0 (Ω))N ,

it follows that E is coercive in the weak topology of X .

Theorem 4 Let (A1)–(A3) hold and let S < 4. Then E possesses a minimizer in X .

Proof. This is an immediate consequence of Lemma 2 and 3 and the fundamental theorem of the
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calculus of variations, see, e. g., Dal Maso (1993); Struwe (1990).

The exchange and correlation functionals under LDA approximation satisfy the growth condition

(A2) with q = 4/3. Hence, the results of this section apply for the energy functional associated with

DFT. Theorem 4 establishes for S ≤ 3 the existence of a self-consistent solution to the eigenvalue

problem (Eqn. (2.35)), which determines the ground-state properties of a materials system.

2.2.3 Convergence of the finite-element approximation

Next we prove the convergence of finite-element approximation. We do so in two steps, first

establishing the Γ-convergence of the restricted functional (Theorem 6), then its equi-coercivity

(Lemma 7). The main result is Theorem 8. By Pk we denote the ring of polynomials of non-

negative degree less than or equal to k for some fixed k ≥ 1. Let Th be a family of triangulations

of Ω of decreasing mesh size h > 0, and let Xh be the corresponding sequence of subspaces of X

consisting of functions whose restriction to every cell in Th is a polynomial, i. e.,

Xh =
{

Ψ̃ ∈ (H1
0 (Ω))N

∣

∣

∣
〈ψ̃i, ψ̃j〉(L2(Ω),L2(Ω)) = δij, i, j = 1, 2, . . . , N, ψ̃i|T ∈ Pk for T ∈ Th

}

.

Similarly, let

X1h
=
{

φ̃ ∈ H1
0 (Ω)

∣

∣

∣ φ̃|T ∈ Pk for T ∈ Th

}

(2.46)

be the corresponding family of subspaces X1h
for the electrostatic problem. It follows from stan-

dard approximation theory that the sequence of spaces Xh and X1h
become more and more dense
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in X and H1
0 (Ω) as h decreases. We define a sequence of discrete energy functionals

Eh(Ψ,R) =



















1
2
‖∇Ψ‖2

L2(Ω) +G(ρ) + Jh(ρ,R), if Ψ ∈ Xh,

+∞, otherwise;

where

Jh(ρ,R) = − min
φ∈H1

0
(Ω)
Ih(φ, ρ,R),

and

Ih(φ, ρ,R) =



















I(φ, ρ,R) if φ ∈ X1h
, Ψ ∈ Xh,

+∞, otherwise,

where

I(φ, ρ,R) =
1

CS

∫

Ω

|∇φ(x)|2dx −

∫

Ω

(ρ(x) + b(x,R))φ(x,R) dx. (2.47)

The following remark, see Gavini et al. (2007b), is needed before proceeding to the proof of

Γ−convergence of the finite-element approximation.

Remark 5 If (Ψh)h ⊂ (Xh) is a sequence such that ρh → ρ in L2(Ω), then

limh→0 Jh(ρh) = J(ρ)

Theorem 6 Let (A1), (A2) hold and let S < 4. Then Eh → E (in the Γ-sense) in the weak topology

of X .
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Proof. To establish the Γ−convergence of the sequence of energy functionals we must establish

the lim-inf inequality and construct a recovery sequence.

We first show the lim-inf inequality. Consider a sequence (Ψh)h>0 such that Ψh ⇀ Ψ in X as

h ց 0. We only have to discuss the case that there exists a subsequence (Ψhk
)k with Ψhk

∈ Xhk

for every k ∈ N. Otherwise the lim-inf inequality holds trivially,

+ ∞ = lim inf
k→∞

Ehk
(Ψhk

,R) ≥ E(Ψ,R). (2.48)

By (A1), (A2) and since S < 4, it follows as in the proof of Lemma 2 that ρhk
→ ρ in Lmax{2,q}(Ω)

for k → ∞. As Eh(Ψ,R) ≥ 1
2
‖∇Ψ‖2

L2(Ω) +G(ρ) + Jh(ρ,R), we find

lim inf
k→∞

Ehk
(Ψhk

,R) ≥ lim inf
k→∞

{1

2
‖∇ Ψhk

‖2
L2(Ω) +G(ρhk

) + Jhk
(ρhk

,R)
}

. (2.49)

From the compact embeddings of X into L2(Ω) and Lq(Ω), Remark 5 which establishes the con-

tinuity of the discrete electrostatic problem in L2(Ω), the continuity of G in Lq(Ω) from (c), and

the lower semi-continuity of ‖∇Ψh‖
2
L2(Ω) in the weak topology of X from (d), it follows that

lim inf
k→∞

Ehk
(Ψhk

,R) ≥ E(Ψ,R). (2.50)

This establishes the lim-inf inequality.

The construction of a recovery sequence is trivial from the density of the finite-element approx-

imation spaces in H1(Ω): Let (Ψh)h>0 be a sequence constructed from the interpolation functions

of successive triangulations such that Ψh → Ψ in X . From the continuity of individual terms of
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the energy functional, including the discrete electrostatic interaction energy from Remark 5, we

have limh→0 Eh(Ψh,R) = E(Ψ,R). Hence we conclude Eh → E in the weak topology of X .

Lemma 7 Let the assumptions (A2), (A3) hold. Then the family (Eh)h>0 is equi-coercive in the

weak topology of X .

Proof. If Ψ /∈ Xh, then Eh(Ψ,R) = +∞. If Ψ ∈ Xh, then Eh(Ψ,R) = 1
2
‖∇Ψ‖2

L2(Ω) + G(ρ) +

Jh(ρ,R). Also, as the finite-element subspaces Xh and X1h
are constructed from a single trian-

gulation, this allows us to use each component of Ψ ∈ Xh as a trial function in the electrostatic

problem as demonstrated in Lemma 3 and Eqn. (2.42). Consequently, we arrive at the inequality

Jh(ρ) ≥ C0‖Ψ‖3
L3(Ω) −

C0

CS
‖∇Ψ‖2

L2(Ω) − C‖Ψ‖2
L2(Ω) (2.51)

for arbitrary C0 > 0. Using the growth results for G, we have uniformly in h

Eh(Ψ) ≥
1

2

(

1 −
2C0

CS

)

‖∇Ψ‖2
L2(Ω) + C0‖Ψ‖3

L3(Ω) − c0‖Ψ‖2q
L2q(Ω) − C‖Ψ‖2

L2(Ω) − c1. (2.52)

Choosing 0 < 2C0 < CS and since 2q < 3, the expression on the right-hand side is a coercive

function independent of h in the weak topology of X . Thus it follows that Eh is equi-coercive in

the weak topology of X .

Theorem 8 Let the hypotheses (A1)–(A3) hold and let S < 4. Then

lim
h→0

inf
X

Eh = min
X

E .
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Proof. This result follows from Theorem 6, Lemma 7 and Dal Maso (1993, Theorem 7.8).

Remark 9 Theorem 8 establishes rigorously the convergence of the ground state energy of a sys-

tem computed with a finite-element approximation. Additionally, if the ground state is not degen-

erate, the convergence of the ground-state electron density in H1
0 (Ω) follows.

2.2.4 Convergence of the finite-element approximation with numerical quadra-

tures

An efficient implementation of the integrals in the functional requires a further approximation by

numerical quadratures. In this section, we prove the convergence of the finite-element approxima-

tion with numerical quadratures. We do so by combining ideas introduced in the previous section

with well-known estimates of quadrature errors (Ciarlet (2002)).

Let I =
∫

Ω
f(x) dx and if Ĩ denotes a n-th order quadrature of I , the error associated with the

numerical quadrature satisfies a bound of the type

|Ĩ − I| ≤ Cn+1
Ω

∫

Ω

|Dn+1f(x)| dx, (2.53)

where CΩ is a Poincare-type constant related to the size of the domain. Let the degree of the poly-

nomial used in the finite-element interpolation be k and identify h with the maximum element size

in the mesh. We define the energy functional where all integrations are performed with numerical
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quadrature rules (with Q{E} ≡ Ẽ being the quadrature of E) as

Ẽh(Ψ,R) =



















Q{1
2
‖∇Ψ‖2

L2(Ω)} + G̃(ρ) + J̃h(ρ,R), if Ψ ∈ Xh,

+∞, otherwise.

(2.54)

Here

J̃h(ρ,R)=− min
φ∈H1

0
(Ω)
Ĩh(φ, ρ,R),

and

Ĩh(φ, ρ,R) =



















Ĩ(φ, ρ,R) = Q{I(φ, ρ,R)}, if φ ∈ X1h
, Ψ ∈ Xh,

+∞, otherwise.

The error in the energy functional introduced by the numerical quadrature satisfies the estimate

|Ẽh(Ψ,R) − Eh(Ψ,R)| ≤ Chn+1
∑

i

∫

ei

∣

∣

∣
Dn+1

[

N
∑

j=1

|∇ψj(x)|2 + g(ρ)
]∣

∣

∣
dx

+|J̃h(ρ,R) − Jh(ρ,R)|,

where ei denotes the i-th element in the finite-element mesh. For Ψ ∈ Xh, |∇ψj(x)| is a poly-

nomial function of degree 2(k − 1) for j = 1, 2, . . . , N . Thus, if n − 2(k − 1) ≥ 0, then

Dn+1[
∑N

j=1 |∇ψj|
2] = 0. An application of the inverse inequality (Ciarlet (2002)) then gives
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the alternative estimate

|Ẽh(Ψ,R)−Eh(Ψ,R)| ≤ Ch
∑

i

∫

ei

N
∑

j=1

|2g′(ρ)ψj(x)∇ψj(x)| dx + |J̃h(ρ,R)−Jh(ρ,R)|

≤ Ch‖4(g′(ρ))2ρ‖1/2

L1(Ω)‖∇Ψ‖L2(Ω) + |J̃h(ρ,R)−Jh(ρ,R)|. (2.55)

Remark 10 If (Ψh)h ⊂ (Xh) is a sequence such that Ψh ⇀ Ψ in X for hց 0, if n− 2k + 3 > 0

and S < 4, then limh→0 infH1
0
(Ω) Ĩh(·, ρh,R) = minH1

0
(Ω) I(·, ρ,R), i. e., limh→0 J̃h(ρh,R) =

J(ρ,R) (Gavini et al. (2007b)).

We denote by hypothesis (H) the following three assumptions:

(H.i) If (Ψh)h ⊂ (Xh) with Ψh ⇀ Ψ in X , then ‖(g′(ρh))
2ρh‖

1/2

L1(Ω) is bounded independently of

h.

(H.ii) S < 4.

(H.iii) n− 2k + 3 > 0.

Remark 11 If hypotheses (H) hold, then it follows from Eqn. (2.55), Remark 5 and Remark 10

that limh→0{Ẽh(Ψh,R) − Eh(Ψh,R)} = 0.

We now turn to the convergence of finite-element approximations with numerical quadratures.

Theorem 12 Let (A1), (A2) and (H) hold. Then Ẽh Γ-converges to E as h → 0 in the weak

topology of X .

Proof. Let (Ψh)h be a sequence such that Ψh ⇀ Ψ. Without loss of generality we may assume the

existence of a subsequence (Ψhk
)k ⊂ (Ψh)h with Ψhk

∈ Xhk
for every k, as otherwise it trivially
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holds

+ ∞ = lim inf
k→∞

Ẽhk
(Ψhk

,R) ≥ E(Ψ,R). (2.56)

We observe

lim inf
k→∞

Ẽhk
(Ψhk

,R) ≥ lim inf
k→∞

Ehk
(Ψhk

,R) + lim inf
k→∞

(Ẽhk
− Ehk

)(Ψhk
,R). (2.57)

It follows from Remark 10 that limk→∞(Ẽhk
− Ehk

)(Ψhk
,R) = 0. Consequently, from Theorem 6

lim inf
k→∞

Ẽhk
(Ψhk

,R) ≥ lim inf
k→∞

Ehk
(Ψhk

,R) ≥ E(Ψ,R). (2.58)

This establishes the lim-inf inequality.

The construction of a recovery sequence is again trivial from the density of the finite-element

approximation spaces in H1(Ω). Let (Ψh)h>0 be a sequence constructed from the interpolation

functions of successive triangulations such that Ψh → Ψ in X . From Eqn. (2.55) we have

lim
h→0

Ẽh(Ψh,R) = lim
h→0

Eh(Ψh,R) = E(Ψ,R). (2.59)

Hence, we conclude Ẽh → E in the weak topology of X .

Lemma 13 If (A3) and (H) hold, then the energy functional Ẽh obtained by numerical quadrature

is equi-coercive in the weak topology of X .
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Proof. We observe from Eqn. (2.45) that if Ψ ∈ Xh,

Eh(Ψ,R) ≥
1

2

(

1 −
2C0

CS

)

‖∇Ψ‖2
L2(Ω) + C0‖Ψ‖3

L3(Ω) − c0‖Ψ‖2q
L2q(Ω) − C‖Ψ‖2

L2(Ω) − c1.

Since 2q < 3, there exist positive constants C1, C2 and C3 such that

Eh(Ψ,R) ≥ C1‖∇Ψ‖2
L2(Ω) + C2‖Ψ‖2

L2(Ω) − C3. (2.60)

This implies

Ẽh(Ψ,R) ≥ C1‖∇Ψ‖2
L2(Ω) + C2‖Ψ‖2

L2(Ω) − C3 − Ch‖Ψ‖L2(Ω)‖∇Ψ‖L2(Ω).

So there exists a bound h > 0 such that for all h < h

Eh(Ψ,R) ≥ K0‖∇Ψ‖2
L2(Ω) +K1‖Ψ‖2

L2(Ω) −K2, (2.61)

where K0, K1, and K2 are positive constants independent of h. From this inequality it follows that

Ẽh is equi-coercive in the weak topology of X .

Theorem 14 Let (A1)–(A3) and (H) hold. Then limh→0 infX Ẽh = minX E .

Proof. This result follows again from Theorem 12, Lemma 13, and Dal Maso (1993, Theo-

rem 7.8).

For the LDA approximation of exchange-correlation functionals, hypothesis (A1)–(A3) hold
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with q = 4/3. Also if S ≤ 3, it is straightforward to check that (H.i) holds. Choosing appropriate

quadrature rules which satisfy n − 2k + 3 > 0, the convergence of the self-consistent eigenvalue

problem of DFT using a finite-element approximation with numerical quadratures is established.

2.2.5 Pseudopotential approximation

The tightly bound core electrons are chemically inactive and hence have a negligible contribution

towards determining physical properties such as binding energies and bond lengths. The core states

are localized in the vicinity of the nucleus leading to oscillations of the valence wavefunctions in

this region due to the orthogonality requirement. Regardless of the basis set used, a large num-

ber of basis functions is needed to capture these oscillations. This difficulty may be overcome by

recourse to the pseudopotential approximation (Pickett (1989)) in which the all-electron potential

Vext(x,R) in Eqn. (2.29) is replaced by an effective potential V PS
ext (x,R) (or equivalently the en-

ergyEext(ρ,R) in Eqn. (2.22) with an effective energyEPS
ext(ρ,R)) and the core (non-valence) elec-

trons are eliminated. The idea is that these effective potentials describe the effect of the core elec-

trons adequately and represent the valence electrons by means of nodeless pseudo-wavefunctions.

This approximation enables the solution of much larger systems than could otherwise be analyzed.

Based on their spatial dependence, pseudopotentials can be broadly classified as local and non-

local. The non-local pseudopotentials, which include norm conserving (Bachelet et al. (1982);

Rappe et al. (1990); Troullier and Martins (1991)) and ultrasoft pseudopotentials (Vanderbilt (1990)),

are angular momentum dependent and are designed to accurately reproduce the scattering prop-

erties of the all-electron potential, thereby ensuring greater accuracy and transferability. They are
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usually employed in the Kleinman-Bylander form (Kleinman and Bylander (1982)), which is less

computationally expensive than the original semi-local form. In the sequel, we prove the existence

of minimizers and convergence of the finite-element approximation with numerical quadratures for

local as well as for non-local pseudopotential approximations.

2.2.5.1 Local pseudopotential

A local pseudopotential is an explicit function V PS
ext (x,R) with ‖V PS

ext ‖L∞ ≤ C. The local pseu-

dopotential approximation can then be incorporated into our variational formulation by replacing

b(x,R) with bPS(x,R) = − 2
CS

∇2V PS
ext (x,R). Consequently, all the results presented in the pre-

vious sections are applicable and hence existence of a minimum and convergence of the finite-

element approximation with numerical quadratures follow.

2.2.5.2 Non-local pseudopotential

A non-local pseudopotential is an operator on the wavefunction ψ. In the Kleinman-Bylander form

it is expressed for J ∈ {1, 2, . . . ,M} as

V J
ion(x,RJ)ψ(x) = V J

loc(x,RJ)ψ(x) +
∑

lm

CJ
lmu

J
lm(x,RJ)∆V

J
l (x,RJ), (2.62)

where

∆V J
l (x,RJ) = V J

l (x,RJ) − V J
loc(x,RJ) , (2.63)

CJ
lm =

∫

Ω
uJlm(x,RJ)∆V

J
l (x,RJ)ψ(x) dx

∫

Ω
uJlm(x,RJ)∆V J

l (x,RJ)uJlm(x,RJ) dx
. (2.64)
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V J
l (x,RJ) is the ionic pseudopotential component corresponding to the azimuthal quantum num-

ber l, V J
loc(x,RJ) is the local ionic potential and uJlm(x,RJ) represents the pseudo-wavefunction

for the valence states of interest, all for a single atom. The superscript J is for the atom number

and the subscript m denotes the magnetic quantum number. Therefore

V PS
ext (x,R)ψ(x) =

M
∑

J=1

V J
loc(x,RJ)ψ(x) +

M
∑

J=1

∑

lm

CJ
lmu

J
lm(x,RJ)∆V

J
l (x,RJ). (2.65)

Let us redefine Vext(x,R) =
∑M

J=1 V
J
loc(x,RJ), for which we can obtain the corresponding

b(x,R). The energy functional for the pseudopotential can therefore be written as

EPS(Ψ,R) = E(Ψ,R) + K(Ψ,R) , (2.66)

where

K(Ψ,R) =
Nv
∑

i=1

M
∑

J=1

∑

lm

1

GJ
lm

∣

∣

∣

∣

∫

Ω

f(x,RJ)ψi(x) dx

∣

∣

∣

∣

2

, (2.67)

f(x,RJ) = uJlm(x,RJ)∆V
J
l (x,RJ) , (2.68)

GJ
lm =

∫

Ω

uJlm(x,RJ)∆V
J
l (x,RJ)u

J
lm(x,RJ) dx. (2.69)

Nv is the total number of electrons after the pseudopotential approximation, i.e., valence electrons.

We make the assumption that f ∈ H1
0 (Ω) and V J

loc ∈ L∞(Ω). Since V J
loc is in principle arbitrary,

it can be always chosen such that GJ
lm 6= 0. We also note the following properties:

(B1) The functional K is continuous in L2(Ω).
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This property can be directly verified using Hölder’s inequality.

(B2) K ≥ −C1‖Ψ‖2
L2(Ω), where C1 is a constant dependent on f , GJ

lm.

This inequality can immediately be obtained using Hölder’s inequality.

Theorem 15 Let (A1)–(A3) hold and let S < 4. Then EPS(Ψ,R) possesses a minimizer in X .

Proof. The lower semi-continuity of EPS(Ψ,R) in the weak topology of X follows from Lemma

2 and (B1). From Lemma 3 and (B2) it is clear that EPS(Ψ,R) is coercive in the weak topology

of X . Therefore from the fundamental theorem of the calculus of variations, see, e. g., Dal Maso

(1993), EPS(Ψ,R) has a minimizer in X .

Theorem 16 Let the hypotheses (A1)–(A3) hold and let S < 4. Then

lim
h→0

inf
X

EPSh = min
X

EPS.

Proof. Using the procedure outlined in Theorem 6 along with (B1) gives EPSh → EPS (in the Γ-

sense). The equi-coercivity of (EPSh )h>0 follows from Lemma 7 and (B2). Hence limh→0 infX EPSh

= minX EPS (Dal Maso (1993, Theorem 7.8)).

Theorem 17 Let (A1)–(A3) and (H) hold. Then limh→0 infX ẼPSh = minX EPS .

Proof. Consider I =
∫

Ω
f1(x)f2(x) dx for f1, f2 ∈ H1

0 (Ω). The error due to numerical quadrature

is

|I − Ĩ| ≤ C0h
n+1
∑

i

∫

ei

Dn+1(f1f2) dx

≤ Ch
[

‖∇f1‖L2(Ω)‖f2‖L2(Ω) + ‖f1‖L2(Ω)‖∇f2‖L2(Ω)

]

. (2.70)
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The last inequality is obtained by using the inverse inequality (Ciarlet (2002)) and Hölder’s in-

equality. Therefore we have limh→0{I−Ĩ} = 0. Hence it follows from Remark 11 that limh→0{Ẽ
PS
h (Ψh,R)−

EPSh (Ψh,R)} = 0. Adopting the same procedure as in Theorem 12 we obtain ẼPSh → EPS (in the

Γ-sense). Using (B2) in Lemma 13 gives the equi-coercivity of ẼPSh in the weak topology of X .

From Dal Maso (1993, Theorem 7.8) limh→0 infX ẼPSh = minX EPS .

In this entire section, for notational simplicity we have not incorporated spin polarization into

our analysis. Note however that this simplification has no bearing on the analysis/results presented

here. In particular, it is clear that even with spin polarization, the required growth condition given

by (A2) still holds, ensuring that all the results are applicable.

2.3 Numerical implementation

We now turn to the numerical implementation of the variational formulation described in Section

2.1. The variational problem (Eqn. (2.20)) is discretized using the finite-element interpolation

scheme

ψiσ(x) =

Nh
∑

j=1

ψjiσNj(x) , (2.71)

φ(x) =

Nh
∑

j=1

φjNj(x) (2.72)
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to obtain

Nh
∑

j=1

[∫

Ω

(

1

2
∇Nj(x)∇Nk(x) + V σ

h,eff(x,R)Nj(x)Nk(x)

)

dx

]

ψjiσ

=
Nσ
∑

q=1

Nh
∑

j=1

λσiqψ
j
qσ

∫

Ω

Nj(x)Nk(x) dx , (2.73)

Nh
∑

j=1

[

1

4π

∫

Ω

∇Nk(x)∇Nj(x) dx

]

φj =

∫

Ω

(ρh(x) + b(x,R))Nk(x) dx , (2.74)

Nh
∑

s=1

Nh
∑

r=1

[∫

Ω

Nr(x)Ns(x) dx

]

ψrmσψ
s
nσ = δmn , (2.75)

where (Nk)1≤k≤Nh
are the basis functions of Xh, the Lagrange multipliers λσiq are used to enforce

the constraints (Eqn. 2.21), V σ
h,eff , ρh denote the discretized V σ

eff , ρ respectively, σ ∈ {α, β} and

i,m, n = 1, 2, . . . , Nσ. In solving the nonlinear system of Eqns. (2.73), (2.74) and (2.75), the

Newton-Raphson method suggests itself as a means of achieving quadratic convergence in the

vicinity of the solution. However, the Newton-Raphson algorithm is only conditionally convergent

and great care must be exercised to ensure that the initial guess lies within the radius of convergence

of the solution. In addition, the quadratic convergence rate is only asymptotic and the method

may exhibit slow convergence during the early stages of iteration. In view of these limitations

of the Newton-Raphson method, an iterative solution scheme based on the equivalent generalized

nonlinear eigenvalue problem

AσΨ̃σ = ǫMΨ̃σ, σ ∈ {α, β} (2.76)
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may be advantageous early on in the iteration. Here,

Aσ
ij =

1

2

∫

Ω

∇Ni(x)∇Nj(x) dx +

∫

Ω

V σ
h,eff(x,R)Ni(x)Nj(x) dx , (2.77)

Mij =

∫

Ω

Ni(x)Nj(x) dx, (2.78)

and Ψ̃ is a vector of the nodal values of the wavefunction. Evidently, Eqn. (2.76) needs to be solved

self-consistently with Eqn. (2.74). In general, a large numbers of finite-element basis functions per

atom is required for accuracy and convergence (Pask and Sterne (2005)), thus rendering the SCF

method computationally expensive since it now entails the repeated solution of large systems of

linear equations.

Keeping the above discussion in mind, we employ the following methodology. Since we expect

the electron density to decay much more rapidly than the electrostatic potential, the wavefunctions

are solved on a smaller domain ΩΨ ⊂ Ω. We employ zero Dirichlet boundary conditions for both

the wavefunctions and the electrostatic potential on their respective domains. We first construct a

coarse Delaunay triangulation T0 of the domain Ω, with the nodes positioned at a coarsening rate of

r6/5 away from the nuclei, which is optimal for capturing the 1/r decay with linear interpolation.

Such a triangulation has high resolution in Ωψ and coarsens away rapidly in Ω \ Ωψ, see Fig. 2.1

for a single-atom example. In addition, all nuclei are located on nodes of this triangulation.

A solution procedure that combines the best attributes of the Newton-Raphson and the SCF

methods may be devised as follows. We start by solving Eqns. (2.74) and (2.76) using the SCF

method on T0. Specifically, we employ the implicitly restarted Lanczos method (Saad (1992)) for

solving the linear eigenvalue problem and the conjugate gradient algorithm for the linear solver.
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We rewrite Eqn. (2.76) as

(Aσ − ηM)−1MΨ̃σ = ǫ̂Ψ̃σ , (2.79)

where η is the shift parameter and ǫ̂ = 1
ǫ−η

. By choosing an appropriate value for η, we magnify the

part of the eigenvalue spectrum of interest, thereby significantly increasing the rate of convergence

of the eigenvalue solver without incurring any additional cost. Also, since T0 is very coarse, the

computational expense involved for this step is minimal. Next, we apply Freudenthal’s tetrahedron

subdivision algorithm (Bey and Aachen (2000)) to T0 to obtain a finer triangulation T1 (Fig. 2.2)

that is an uniform subdivision of T0. The preliminary solution obtained on T0 is transferred to T1

using the shape functions on T0. This transferred solution serves as a starting guess for the solution

of Eqns. (2.73), (2.74) and (2.75), simultaneously using Newton’s method with Goldstein-Armijo

line-searches (Dennis and Schnabel (1996)). For the associated linear solver we use the general-

ized minimal residual method (GMRES, Saad and Schultz (1986)) while retaining the option of

switching to either the bi-conjugate gradient stable method (Bi-CGSTAB, van der Vorst (1992))

or transpose-free quasi-minimal residual method (TFQMR, Freund (1993)). Since the Hessian in-

formation is required only through its product with a vector, we evaluate it by using directional

derivative quotients. This approach is significantly faster than evaluating the exact Hessian. How-

ever, we also use the exact Hessian when required. The quality of the initial guess obtained by

the procedure just described starts the Newton-Raphson iteration well within the radius of conver-

gence, thereby ensuring convergence within exceedingly tight tolerances at a quadratic rate in no

more than 6 or 7 iterations.

The equilibrium position of the nuclei, defining an equilibrium configuration of the system, are
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Figure 2.1: Mesh of a sliced cubical domain corresponding to the triangulation T0

Figure 2.2: Mesh of a sliced cubical domain corresponding to the triangulation T1
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computed using conjugate gradients with secant line search. The relevant forces to be equilibrated

are derived in Appendix A. As the nuclei move, the triangulations must be updated. We do so

simply by convecting the meshes according to the displacement field defined by the triangulation T0

on which the nuclei are located. The quality of these convected meshes is monitored throughout the

calculations, and a complete remeshing is performed if the mesh quality falls below a prespecified

tolerance. Each force update following a displacement of the nuclei requires the re-evaluation of

the electrostatic potential and wavefunctions within an internal loop. In order to expedite this re-

evaluation, we start from the initial electrostatic potential and wavefunctions that are convected

from the previous configuration.

In order to verify convergence with respect to mesh size, we repeat the calculations on in-

creasingly finer triangulations {Tn} obtained by successive uniform subdivisions. The solution on

the parent triangulation is used as a starting guess on the finer triangulation, which ensures rapid

convergence. This process is repeated until convergence is achieved to within a prespecified tol-

erance. The recursive nature of the calculations is advantageous with respect to solution schemes

that require a complete restart every time the discretization is modified, e.g., plane wave basis cal-

culations in which convergence has to be verified with respect to the energy cut-off and number of

k-points sampled.

Finally, the formulation is implemented in parallel simply by recourse to domain decomposi-

tion. Owing to the local character of the majority of the calculations, domain decomposition may

be expected to scale near-optimally. This expectation is indeed born out by numerical tests, see

Section 2.4.4.
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2.4 Examples and results

2.4.1 ‘All-electron’ calculations

2.4.1.1 Atoms

The first set of examples considered are atoms of helium, lithium, carbon, nitrogen and oxygen.

The triangulation T0 generated for these atoms, which has roughly 300 nodes, is depicted in Fig.

2.1. The convergence of the ground state energy of the helium atom on increasing the subdivision

number (i.e., number of applications of the subdivision algorithm) is shown in Fig 2.3. It is clear

that there is rapid convergence of the energy on decreasing the mesh size. This is representative of

the other examples. Table 2.1 shows that we reproduce the ground state energies obtained by the

highly accurate calculations of Kotochigova et al. (1997). The deviation from experiment reflects

the well-known deficiencies of LSDA.

Table 2.1: Ground state energies of selected atoms (a.u)

Element DFT-FE KS-LSDA Experiments

(Kotochigova et al. (1997)) (Veillard and Clementi (1968))

He -2.833 -2.834 -2.904

Li -7.340 -7.343 -7.478

C -37.460 -37.470 -37.844

N -54.125 -54.136 -54.587

O -74.518 -74.527 -75.063

2.4.1.2 Molecules

The next set of examples are nitrogen (N2) and carbon monoxide (CO) molecules. Tables 2.2 and

2.3 show that the binding energy and bond length that we obtain are in very good agreement with
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Figure 2.3: Energy of the helium atom as a function of the number of uniform subdivisions of

triangulation T0

values in literature computed using plane waves (Engel et al. (2001)). Again, it is well known that

LSDA predicts over-binding, i.e., higher binding energies and smaller bond lengths compared to

experiments. The occupied valence molecular orbitals of CO can be seen in Fig. 2.4.

Table 2.2: Binding energy and bond length of N2

Property DFT-FE KS-LSDA Experiments

(Engel et al. (2001)) (Huber (1972))

Binding energy (eV) -11.6 -11.593 -9.81

Bond length (a.u.) 2.06 2.068 2.07
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Table 2.3: Binding energy and bond length of CO

Property DFT-FE KS-LSDA Experiments

(Engel et al. (2001)) (Huber (1972))

Binding energy (eV) -13.03 -12.967 -11.2

Bond length (a.u.) 2.08 2.128 2.13

Figure 2.4: Occupied valence molecular orbitals of CO
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2.4.2 Pseudopotential approximation (local)

In this section we present the results obtained using the smooth local ‘Evanescent Core’ pseudopo-

tential (Fiolhais et al. (1995)). This pseudopotential has the form

V I
ion(x,RI) = −

Z

Rc

{

1

y
(1 − (1 + βy)e−αy) − Ae−y

}

, (2.80)

where Z is the number of valence electrons and y = |x − RI |/Rc. The core decay length Rc and

α ≥ 0 are element-dependent constants whose values can be obtained from Fiolhais et al. (1995).

The relations used to evaluate β and A are

β =
α3 − 2α

4(α2 − 1)
, A =

1

2
α2 − αβ. (2.81)

The pseudopotential approximation is first used to calculate the pseudo-atom energy of lithium,

sodium and magnesium. From Table 2.4, it is clear that we are able to replicate the results obtained

by Nogueira et al. (1996). These pseudo-atom energies are further utilized to evaluate the binding

energy and bond length of their respective dimers. As is evident from Table 2.5, the results obtained

are in reasonable agreement with previous calculations (Nogueira et al. (1996)).

Table 2.4: Pseudo-atom energy (eV) using the ‘Evanescent Core’ pseudopotential

Metal DFT-FE Nogueira et al. (1996)

Li -5.97 -5.97

Na -5.21 -5.21

Mg -23.05 -23.06

Next, we study the properties of some sodium clusters, in particular 1 × 1 × 1, 2 × 2 × 2 and
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Table 2.5: Properties of selected metal dimers using ‘Evanescent Core’ pseudopotential

Dimer Property DFT-FE Nogueira et al. (1996)

Li2 Binding energy (eV) -0.49 -0.52

Bond length (a.u) 4.86 4.92

Na2 Binding energy (eV) -0.35 -0.46

Bond length (a.u) 5.72 5.77

Mg2 Binding energy (eV) -0.06 -0.04

Bond length (a.u) 7.12 7.18

3×3×3 body centered cubic (BCC) unit cells. A representative triangulation T0 used for 2×2×2

BCC unit cells and its close-up view is shown in Figs. 2.5 and 2.6, respectively. We calculate

the binding energy per atom and lattice constant for these clusters by computing the energy for

various lattice distances and subsequently fitting the data to a cubic polynomial to obtain the point

of minimum. The results so obtained are presented in Table 2.6. Also, the contours of electron

density on the mid-plane and quarter-plane of 2× 2× 2 BCC unit cells are shown in Figs. 2.7 and

2.8, respectively.

Table 2.6: Binding energy per atom and lattice constant of sodium BCC unit cells

Property 1×1×1 2×2×2 3×3×3

Binding energy/atom (eV) -0.54 -0.70 -0.81

Lattice constant (a.u.) 7.20 7.55 7.75

2.4.3 Pseudopotential approximation (non-local)

Norm-conserving pseudopotentials are attractive because of their accuracy, transferability and

availability for all elements in the periodic table. Here, we look at the results obtained using

the Troullier-Martins (TM) pseudopotential (Troullier and Martins (1991)) implemented in the
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Figure 2.5: The triangulation T0 used for 2 × 2 × 2 BCC unit cells

Figure 2.6: Close up of the triangulation T0 used for 2 × 2 × 2 BCC unit cells
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Figure 2.7: Contours of electron density on the mid-plane of a sodium cluster with 2×2×2 BCC

unit cells

Figure 2.8: Contours of electron density on the quarter-plane of a sodium cluster with 2×2×2

BCC unit cells.
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Kleinman-Bylander form.

The radial component of the TM pseudo-wavefunction for an atom located at RI is given by

wl(r) =



















wAEl (r) , r ≥ rc ,

rl exp[p(r)] , r ≤ rc ,

(2.82)

and the angular momentum dependent pseudopotential component has the form

Vl(r) =



















V AE(r) , r ≥ rc ,

ǫl +
l+1
r

p
′
(r)
2

+ p
′′
(r)+(p

′
(r))2

2
, r ≤ rc.

(2.83)

The superscript AE stands for ‘all-electron’ calculation, ǫl represents the valence eigenvalues,

r = |x−RI | and rc is the core radius. The coefficients of the polynomial p(r) = c0 +c2r
2 +c4r

4 +

c6r
6 + c8r

8 + c10r
10 + c12r

12 are determined by norm conservation, continuity of the pseudo-

wavefunction and its first four derivatives and the zero curvature of the pseudopotential at the

origin.

In Tables 2.7, 2.8 we list the binding energy and bond length of B2 and C2 obtained using

the TM pseudopotential and compare them with previous such studies (Engel et al. (2001)). The

agreement is good, thereby validating the accuracy of our finite-element implementation.

Table 2.7: Binding energy and bond length of B2

Property DFT-FE Engel et al. (2001)

Binding energy (eV) -3.74 -3.79

Bond length (a.u.) 3.00 3.02
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Table 2.8: Binding energy and bond length of C2

Property DFT-FE Engel et al. (2001)

Binding energy (eV) -6.86 -6.92

Bond length (a.u.) 2.35 2.35

2.4.4 Performance of the numerical method

This section is devoted to the assessment of the numerical performance of the implementation,

specifically regarding the convergence rate with mesh size, scaling of the execution time with

problem size and parallel scalability. We begin by assessing the rate of convergence of the finite-

element method with decreasing mesh size. From Fig. 2.9, which depicts the normalized energy-

error as a function of mesh size, we obtain |Eh − E0| ∝ h1.9, where E0 is the converged value of

the energy obtained by fitting the data to E = E0 + Chn. This analysis thus shows that the energy

converges quadratically, which is the expected rate of convergence for linear interpolation (Ciarlet

(2002)).

Fig. 2.10 collects execution times as a function of the number of nodes in the triangulation for

two selected examples. As is evident from the figure, the execution time scales linearly, or O(N),

asymptotically with the size N of the problem. This scaling is expected, since the complexity

of the solution procedure is dominated by the complexity of the solution of a banded system of

equations, which is O(N) when the system bandwidth is independent of N . This latter property is

typical of finite-elements, for which the system bandwidth is determined by the number of nearest

neighbors of a typical node. Thus, our formulation achieves linear, or O(N), scaling with respect

to the number of nodes in the triangulation for a fixed number of electrons.

Finally, Fig. 2.11 illustrates the parallel efficiency of the implementation as measured by the
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Figure 2.9: Convergence rate of the finite-element method
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Figure 2.10: Scaling of computational time with number of nodes
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relative speedup with increasing number of processors on a fixed problem of constant size. As

is evident from the figure, the scaling is roughly linear. However, as the number of processors

increases, the parallel efficiency correspondingly decreases owing to the additional communication

required between them. Thus, the relative speedup corresponding to a 16-fold increase in the

number of processors is of the order of 10.25. This speed-up factor translates into an efficiency

of about 0.65, which is in the ballpark expected of domain decomposition applied to medium-size

problems.
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Figure 2.11: Relative speedup as a function of the number of processors
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Chapter 3

Mesh-free convex approximation scheme for

Kohn-Sham density functional theory

In the previous chapter, we provided a non-periodic, finite-element formulation for DFT. How-

ever, the finite-element method requires the generation of a mesh with particular care to nodal

connectivity. Further, a large number of basis functions are required, rendering the method ex-

pensive for solving DFT. In this chapter, we develop a non-periodic, real space, mesh-free convex

approximation scheme for DFT. We use max-ent basis functions which are the Pareto optimum

between maximizing the entropy and the locality of the approximation scheme (Arroyo and Ortiz

(2006)). The finite-element method can be recovered as a special case of the approximation scheme

presented here (Arroyo and Ortiz (2006)). It provides advantages over conventional mesh-based

methods in terms of the flexibility and adaptivity of the spatial discretization. Additionally, it is

known to be significantly more accurate than the corresponding simplicial finite-elements (Arroyo

and Ortiz (2006); Cyron et al. (2009)), also verified by the results obtained in this work. The lim-

itations of the method in comparison to the finite-element method include the larger support-size

of the basis functions and the need for expensive quadrature rules.

The outline of this chapter is as follows. In Section 3.1 we provide a brief introduction to the
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convex approximation scheme. In Section 3.2, we discuss in some detail the numerical implemen-

tation, which we validate through select examples in Section 3.3.

3.1 Convex approximation scheme — max-ent basis functions

In this section, we introduce the convex approximation scheme based on max-ent basis functions

(Arroyo and Ortiz (2006)). Consider a set of distinct nodes Y = {xa, a = 1, . . . , P} ⊂ R
3 whose

convex hull is denoted by Ω. We are looking to create approximations to any function u : Ω → R

of the form

uh(x) =
P
∑

a=1

uapa(x) , (3.1)

where pa : Ω → R are the basis/interpolation functions. We require that the basis functions satisfy

the following constraints ∀x ∈ Ω

P
∑

a=1

pa(x) = 1 , (3.2)

P
∑

a=1

pa(x)xa = x , (3.3)

pa(x) ≥ 0 , a = 1, . . . , P. (3.4)

Eqns. (3.2) and (3.3) ensure that we are able to exactly reproduce affine functions, akin to sim-

plicial linear finite-element basis functions. The approximation scheme is called convex since

it follows from Eqns. (3.2), (3.3) and (3.4), that the basis functions at x ∈ Ω define a convex

combination of nodes which evaluates to x.
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Let us define by

H(x,p) = −
P
∑

a=1

pa(x) log(pa(x)) , (3.5)

U(x,p) =

∫

Ω

P
∑

a=1

pa(x)ha(|x − xa|) dx , (3.6)

the information entropy and the total width of the convex approximation scheme, respectively. The

vector of basis functions is given by p(x) = {p1(x), . . . , pP (x)} and ha(|x − xa|) denotes some

generalized notion of distance between points x, xa. Since Eqn. (3.6) does not involve any basis

function derivatives, we can work with the pointwise width, using the functional

W (x,p) =
P
∑

a=1

pa(x)ha(|x − xa|). (3.7)

Ideally, we would want an approximation scheme that maximizes the entropy and minimizes the

width. However, this is not always possible and therefore we look to find the Pareto optimum: a

convex approximation scheme such that there is none better, by minimizing for fixed x, β ∈ (0,∞)

F (x,p) = −H(x,p) + βW (x,p) (3.8)

subject to the constraints (3.2), (3.3) and (3.4). Thus, we end up with the Lagrangian

L(x,p, λ0,λ) = −H(x,p) + βW (x,p) + λ0

(

P
∑

a=1

pa − 1

)

+ λ.
P
∑

a=1

pa(xa − x) (3.9)
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where λ0 ∈ R and λ ∈ R
3 are Lagrange multipliers used to enforce the constraints given by Eqns.

(3.2) and (3.3) respectively. As in Arroyo and Ortiz (2006), we differentiate between the interior

points x ∈ int(Ω) and points on the boundary x ∈ bd(Ω).

3.1.1 Interior points

Definition 18 The partition function Z : R
3 × R

3 → R associated with the node set Y is

Z(x,λ) ≡
P
∑

a=1

exp(−βha(|x − xa|) + λ.(x − xa)). (3.10)

Proposition 19 Suppose affineY = R
3 and x ∈ int(Ω). Then the solution of minimizing (3.8)

subject to the contraints (3.2), (3.3) and (3.4) is

pa(x) =
1

Z(x,λ∗(x))
exp(−βha(|x − xa|) + λ∗(x).(x − xa)) , a = 1, . . . , P (3.11)

where

λ∗(x) = arg min
λ∈R3

logZ(x,λ). (3.12)

Additionally, the minimizer λ∗(x) is unique.

Proof. It follows from the Karush-Kuhn-Tucker conditions

βha + log(pa) + 1 + λ∗0 + λ∗.(xa − x) = 0 , a = 1, . . . , P. (3.13)
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Therefore

pa = exp(−βha + λ∗.(x − xa) − λ∗0 − 1) ∀x ∈ int(Ω). (3.14)

The optimal Lagrange multipliers λ∗0 and λ∗ are the maximizers of the Lagrange dual function

g(λ0,λ) = inf
p∈R

N
+

L(p, λ0,λ) = −λ0 −
P
∑

a=1

exp(−βha + λ.(x − xa) − λ0 − 1) (3.15)

On maximizing this dual function with respect to λ0, we obtain

Z(x,λ) = exp(λ∗0 + 1). (3.16)

Substituting Eqn. (3.16) into (3.15), we obtain the reduced Lagrange dual function

ĝ(λ) = − logZ(x,λ). (3.17)

from which we can conclude that if x ∈ int(Ω), then the shape functions are given by Eqns. (3.11)

and (3.12). The existence of minimizer of −ĝ(λ) is guaranteed by the Kuhn-Tucker theorem. The

uniqueness follows from the strict convexity of logZ(x,λ), which can easily be verified.

3.1.2 Boundary points

The treatment of boundary points x ∈ bd(Ω) can be reduced to the problem analyzed in the pre-

ceding section by exploiting the reduced face property of convex approximation schemes (Arroyo

and Ortiz (2006)).
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The adaptability of the basis functions stems from the flexibility provided by the choice of

ha(|x − xa|) and β(x). Let us first discuss the effect of the parameter β(x). The support size of

the basis functions, which can also be optimized in a variational approach (Rosolen et al. (2010)),

is determined by β(x). Reducing β increases the support of the basis functions and in general

the accuracy of the calculations (Arroyo and Ortiz (2006)). However, it comes at the cost of

higher order quadrature rules and increased band-width of the equations. Alternatively, increasing

β increases the locality of the basis functions at the price of reduced accuracy. Detailed examples

and illustrations can be found elsewhere (Arroyo and Ortiz (2006)).

Further adaptivity is provided by the choice of ha(x−xa). By choosing ha(|x−xa|) = |x−xa|,

we obtain long range exponential decay and Kato-like cusp condition at short range, similar to

Slater orbitals. As a consequence, these basis functions could be particularly useful for all-electron

calculations, where such a behavior is expected. This is indeed confirmed by results obtained

in Section 3.3. However, in pseudopotential calculations, where the solution is expected to be

smooth, ha(|x − xa|) = |x − xa|
2 is a more appropriate choice. In this case, the resulting basis

functions will have Gaussian type behavior, similar to Gaussian orbitals used in electronic structure

calculations. It is also possible to vary ha(|x − xa|) within the node set, which allows for the

seamless transition between basis functions with different properties and behavior. For example,

it is possible to easily transition between Gaussian-type basis functions and linear finite-elements

within the domain (Arroyo and Ortiz (2006)).

In the previous chapter, we have proved the convergence of the finite-element approximation

using the technique of Γ− convergence. For this to be extended to the approximation scheme
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presented here, the space generated by the basis functions needs to be dense in H1
0 (Ω). However,

this result has so far only been proven for the choice ha(|x − xa|) = |x − xa|
2 (Bompadre and

Ortiz (2010)) and is still open for other choices of ha(|x − xa|). Further, because of the nature

of the basis functions, the convergence with numerical quadratures does not follow from previous

work, and is still an open problem.

3.2 Numerical implementation

We now turn to the numerical implementation of the variational formulation described in Sec-

tion 2.1. The variational problem (Eqn. (2.20)) is discretized using the max-ent basis functions

introduced in Section 3.1

ψiσ(x) =

Ph
∑

j=1

ψjiσpj(x) , (3.18)

φ(x) =

Ph
∑

j=1

φjpj(x) (3.19)
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to obtain

Ph
∑

j=1

[∫

Ω

(

1

2
∇pj(x)∇pk(x) + V σ

h,eff(x,R)pj(x)pk(x)

)

dx

]

ψjiσ

=
Nσ
∑

q=1

Ph
∑

j=1

λqiσψ
j
qσ

∫

Ω

pj(x)pk(x) dx , (3.20)

Ph
∑

j=1

[

1

4π

∫

Ω

∇pk(x)∇pj(x) dx

]

φj =

∫

Ω

(ρh(x) + b(x,R))pk(x) dx , (3.21)

Ph
∑

s=1

Ph
∑

r=1

[∫

Ω

pr(x)ps(x) dx

]

ψrmσψ
s
nσ = δmn (3.22)

where the Lagrange multipliers λσiq are used to enforce the constraints (Eqn. (2.21)). V σ
h,eff , ρh

denote the discretized V σ
eff , ρ respectively and Ph represents the number of nodes in the node set.

The equivalent generalized nonlinear eigenvalue problem corresponding to Eqns. (3.20) and (3.22)

is given by

AσΨ̃σ = ǫMΨ̃σ, σ ∈ {α, β}. (3.23)

Here,

Aσ
ij =

1

2

∫

Ω

∇pi(x)∇pj(x) dx +

∫

Ω

V σ
h,eff(x,R)pi(x)pj(x) dx , (3.24)

Mij =

∫

Ω

pi(x)pj(x) dx, (3.25)

and Ψ̃σ is a vector of the nodal contribution to the wavefunction as given by Eqn. 3.1. The self-

consistent field (SCF) method is commonly used for solving Eqns. (3.21) and (3.23).

The Newton-Raphson method is an attractive option for solving the nonlinear system of Eqns.
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(3.20), (3.21) and (3.22) because of the quadratic rate of convergence achieved in the vicinity of the

solution. However, the convergence rate is asymptotic and convergence is assured only if the initial

guess lies within the radius of convergence of the solution. On the other hand, the SCF method is

an expensive proposition on account of Eqn. (3.23) being a generalized eigenvalue problem.

Keeping the above discussion in mind, we employ the following methodology to solve the

Kohn-Sham problem. We position the nodes at a geometric coarsening rate away from the nuclei

to enhance the efficiency of the calculations. We enforce zero Dirichlet boundary conditions for

both the wavefunctions and electrostatic potential by utilizing the Kronecker-delta property satis-

fied by the basis functions on the boundary of Ω. We incorporate the best attributes of the SCF

and Newton-Raphson methods into our solution procedure along the lines of our previous work

(Suryanarayana et al. (2010)). We rewrite Eqn. (3.23) as

(Aσ − ηM)−1MΨ̃σ = ǫ̂Ψ̃σ (3.26)

where η is the shift parameter and ǫ̂ = 1
ǫ−η

, thereby magnifying the region of interest in the eigen-

value spectrum resulting in significant increase in the rate of convergence without incurring any

additional cost. We use a low resolution node set Y0 to solve Eqns. (3.21) and (3.26) using the SCF

method. Specifically, we employ the implicitly restarted Lanczos method (Saad (1992)) for solving

the linear eigenvalue problem and the conjugate gradient algorithm as the linear solver. Since Y0

has low resolution, the computational expense involved for this step is minimal. Next, we generate

Y1 which is a refinement of the node set Y0. The solutions obtained on Y0 are transferred to Y1 us-

ing the basis functions of Y0. This serves as a starting guess for the solution of Eqns. (3.20), (3.21)
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and (3.22) simultaneously using Newton’s method with Goldstein-Armijo line-searches (Dennis

and Schnabel (1996)). For the associated linear solver we use the generalized minimal residual

method (GMRES, Saad and Schultz (1986)), while retaining the option of switching to either the

bi-conjugate gradient stable method (Bi-CGSTAB, van der Vorst (1992)) or transpose-free quasi-

minimal residual method (TFQMR, Freund (1993)). Since the Hessian information is required

only through its product with a vector, we evaluate it by using directional derivative quotients

(Brown (1987); Brown and Saad (1990)) which is significantly faster than evaluating the exact

Hessian. The quality of the initial guess generated by the procedure just described allows us to ob-

tain convergence within exceedingly tight tolerances in no more than 6 to 7 iterations at a quadratic

rate.

The equilibrium position of the nuclei are computed using Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method. Each force update following a displacement of the nuclei requires the re-evaluation

of the electrostatic potential and wavefunctions within an internal loop. In order to expedite this re-

evaluation, we use the solution from the previous configuration as an initial guess for the Newton-

Raphson method. In order to verify convergence with respect to number of basis functions, we

repeat the calculations on increasingly finer node sets Yn and the solution on the parent node set is

used as starting guess for the Newton-Raphson method on the finer node set, which ensures rapid

convergence. This process is repeated until convergence is achieved to within a prespecified tol-

erance. The recursive nature of the calculations is advantageous with respect to solution schemes

that require a complete restart every time the discretization is modified, e.g., in plane wave basis

calculations, the convergence has to be verified with respect to the energy cut-off and number of

k-points sampled.
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We evaluate all the integrals via Gaussian quadrature (Solin and Dolezel (2004)) on the De-

launay triangulation of Ω generated using the corresponding max-ent node set Yn. The coarsening

nature of the triangulation allows for efficient and accurate evaluation of the integrals. See Fig.

3.1 for examples of triangulations used for a single atom and dimer. At each quadrature point, we

solve the minimization problem (Eqn. (3.12)) using the Newton-Raphson method to obtain values

of the shape functions and calculate their derivatives using the expressions derived in Appendix B.

It should be noted that since an exact quadrature rule for the max-ent basis functions does not exist,

we verify the convergence of the solution with respect to the order of the quadrature used. In order

to reduce the error due to the inexact quadrature rule, we use the same node sets for evaluating

the energy of both the cluster of atoms as well as the individual component atoms. This results in

significant quadrature error cancellation.

(a) Single atom. (b) Dimer.

Figure 3.1: Examples of sliced background triangulations used for numerical integration

Finally, the implementation is parallelized as follows. We decompose the cubical domain Ω into
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cubical subdomains Ωi and correspondingly the node set Y into subsets Y i. In order to satisfy the

conforming patches property (Arroyo and Ortiz (2006)), the node sets Y , Y i should be chosen such

that Ωi is the convex hull of Y i. Each node set Y i and corresponding subdomain Ωi is now handled

independently by a different processor. Since the basis functions for Y i satisfy the Kronecker-

delta property on the boundary of Ωi (Arroyo and Ortiz (2006)), inter-processor communication is

required only for the nodes on the boundary. This is exactly the same situation when performing

parallel computations using finite-elements via domain decomposition. Therefore, efficient parallel

computations can be performed, akin to simplicial finite-elements.

3.3 Examples and results

In this section, we validate our implementation through a number of examples ranging from single

atoms to small clusters of atoms. We do so for both the all-electron case as well as local and

nonlocal pseudopotential approximations. For all-electron calculations, we choose ha(|x−xa|) =

|x − xa|, which results in basis functions with the expected behavior of the solution inherent to

them. For the pseudopotential calculations, we verify the obtained results with both ha(|x−xa|) =

|x−xa| and |x−xa|
2. We vary β = γ/h, γ/h2 for the choice of ha(|x−xa|) = |x−xa|, |x−xa|

2

respectively, where γ is a dimensionless constant and h is the representative spacing between the

nodes.
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3.3.1 All-electron calculations

First we perform all-electron single atom calculations for hydrogen, helium, lithium, beryllium

and carbon. The results obtained have been compared with highly accurate calculations of Ko-

tochigova et al. (1997) in Table 3.1. We obtain very good agreement validating the accuracy of our

implementation.

Table 3.1: Ground state energy of selected atoms (a.u)

Element Max-ent Kotochigova et al.

H -0.445 -0.445

He -2.830 -2.834

Li -7.338 -7.335

Be -14.434 -14.447

C -37.432 -37.425

Figs. 3.2a and 3.2b provide a comparison of the convergence obtained using max-ent basis

functions with simplicial linear finite-elements (Suryanarayana et al. (2010)). Note that the po-

sition of the nodes correspond to the optimal triangulations developed for the simplicial linear

finite-elements (Suryanarayana et al. (2010)). E0 denotes the converged energy and P0 denotes the

number of nodes required for the converged finite-element solution. For the helium, carbon atoms

we have used 1250, 10000 max-ent basis functions to achieve a converged solution. It is clear that

there is a significant reduction in the number of basis functions required to achieve convergence,

resulting in computational times differing by an order of magnitude, inspite of their non-locality

and necessity for higher order quadrature rules. The relatively small number of basis functions

make them a viable choice for performing medium sized all-electron calculations.

The next set of examples considered are the nitrogen (N2) and carbon monoxide (CO) molecules.
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Figure 3.2: Comparison between the convex approximation scheme and simplicial linear finite-

elements for all-electron calculations

A comparison of the obtained binding energy and bond length with previous studies is provided in

Tables 3.2 and 3.3. Again, the agreement is good.

Table 3.2: Binding energy and bond length of N2

Property Max-ent Engel et al. (2001) Suryanarayana et al. (2010)

Binding energy (eV) -11.6 -11.593 -11.6

Bond length (a.u.) 2.06 2.068 2.06

Table 3.3: Binding energy and bond length of CO

Property Max-ent Engel et al. (2001) Suryanarayana et al. (2010)

Binding energy (eV) -13.0 -12.967 -13.03

Bond length (a.u.) 2.10 2.128 2.08

3.3.2 Local pseudopotential approximation

In this section we present the results obtained using the local ‘Evanescent Core’ (EC) pseudopo-

tential (Fiolhais et al. (1995)). First, we provide plots of convergence of the energy for the sodium
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atom using ha(|x−xa|) = |x−xa|, |x−xa|
2 in Figs 3.3a, 3.3b respectively. For this convergence

study, we have used uniformly spaced nodes with P0 = 8000. Next, we consider dimers of lithium

and sodium, the results of which are presented in Table 3.4. The agreement is good and the dif-

ference from Nogueira et al. (1996) arises because of their use of the linear combination of atomic

orbitals (LCAO) theory. Electron density contours on the mid-plane of Na2 has been plotted in

Fig. 3.4a.
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Figure 3.3: Convergence of energy of the sodium atom using the EC pseudopotential for different

choices of ha(|x − xa|)

Next, we study octahedral clusters of lithium and sodium. Note that we do not try to optimize

the geometry with respect to different arrangements of the atoms and we neglect spin polarization

of the cluster to facilitate comparison with previous studies. Table 3.5 lists the binding energy and

bond length so obtained. Again, the difference in results obtained by Nogueira et al. (1996) arises

because of their use of LCAO theory. We plot electron density contours on the mid-plane of Na6

in Fig. 3.4b.
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Table 3.4: Binding energy and bond length for dimers of lithium and sodium using the EC pseu-

dopotential

Dimer Property Max-ent Suryanarayana et al. (2010) Nogueira et al. (1996)

Li2 Binding energy (eV/atom) -0.49 -0.49 -0.52

Bond length (a.u) 4.82 4.86 4.92

Na2 Binding energy (eV/atom) -0.36 -0.35 -0.46

Bond length (a.u) 5.72 5.72 5.77

Table 3.5: Binding energy and bond length for octahedral clusters of lithium and sodium using the

EC pseudopotential

Dimer Property Max-ent Nogueira et al. (1996) Fiolhais et al. (1996)

Li6 Binding energy (eV/atom) -0.5 -0.72 -

Bond length (a.u) 5.66 5.79 -

Na6 Binding energy/atom (eV/atom) -0.42 -0.53 -0.67

Bond length (a.u) 6.78 6.87 6.31
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Figure 3.4: Contours of electron density on the mid-plane of sodium clusters using the EC pseu-

dopotential

Finally, we study a cluster of 3 × 3 × 3 body centered cubic (BCC) unit cells of lithium with
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fixed geometry. The binding energy and lattice constant obtained are listed in Table 3.6. Contours

of electron density on the mid-plane of this cluster of atoms can be seen in Fig. 3.5.

Table 3.6: Binding energy and lattice constant of 3× 3× 3 BCC unit cells of lithium using the EC

pseudopotential

Property Max-ent

Binding energy (eV/atom) -0.97

Lattice constant (a.u.) 6.40

x (a.u.)

y
 (

a
.u

.)
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Figure 3.5: Contours of electron density on the mid-plane of 3 × 3 × 3 BCC unit cells of lithium

obtained using the EC pseudopotential
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Chapter 4

Linear-scaling spectral Gauss quadrature

method

Traditional implementations of DFT solve for the wavefunctions (Chelikowsky et al. (1994); Kresse

and Furthmüller (1996); Pask et al. (1999); Ismail-Beigi and Arias (2000); Segall et al. (2002);

Gonze et al. (2002); Tsuchida (2004); Castro et al. (2006); Suryanarayana et al. (2010, 2011)), a

procedure which has cubic-scaling with respect to the number of atoms. This restricts the size of

the systems which can be studied to a few hundred atoms. To overcome this, there have been sig-

nificant efforts towards developing linear-scaling methods for DFT (García-Cervera et al. (2007);

Garcia-Cervera et al. (2009); Galli and Parrinello (1992); Mauri et al. (1993); Skylaris et al. (2005);

Barrault et al. (2007)). For a more complete survey on the topic, please see Goedecker (1999).

However, these methods are found to be linear-scaling only for insulators and developing a linear-

scaling method for metals is a challenging open problem (Cances et al. (2008)). In this chapter,

we develop a linear-scaling method for DFT which is nominally linear-scaling for both insulating

and metallic systems. Further, this method lays the groundwork for coarse-graining which we later

discuss in Chapter 5.

The outline of the rest of the chapter is as follows. In Section 4.1, we reformulate DFT in terms
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of the electron density and the band structure energy. We provide some mathematical background

on spectral theory and Gauss quadrature in Section 4.2. Next, we describe the proposed method in

Section 4.3 which we validate the formulation through examples in Section 4.4. We also discuss

the connection of the proposed method with the so called recursion method (Haydock (1980)) and

Padé approximation in Appendix C.

4.1 Density Functional Theory - Eigenvalue problem

The Kohn-Sham problem (Kohn and Sham (1965)) can be expressed as a nonlinear eigenvalue

problem (cf. e.g. Parr and Yang (1989))

Hψn = λnψn , n = 1, 2, . . . (4.1)

where

H = −
1

2
∇2 + Vext(x,R) + VH [ρ] + Vxc[ρ]

is a self-adjoint operator with eigenvalues λn and corresponding orthonormal eigenfunctions ψn.

The electron density can in turn be expressed in terms of the eigenfunctions as

ρ(x) = 2
∑

n

g(λn, λf )|ψn(x)|2 (4.2)
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where

g(λ, λf ) =



















1, if λ ≤ λf

0, otherwise

(4.3)

is the orbital occupation function and λf is the Fermi energy. Note that the factor of two arises

because of the two spins the electron can possess. The Fermi energy is evaluated by solving for

the constraint

2
∑

n

g(λn, λf ) = Ne (4.4)

where Ne is the total number of electrons.

The external potential due to the nuclei is given by

Vext(x,R) =
M
∑

J=1

ZJ
|x − RJ |

(4.5)

where R = {R1,R2, . . . RM} are the positions of the nuclei and Z = {Z1, Z2, . . . ZM} are the

corresponding charges of the nuclei. Due to the chemically intert nature of the core electrons and

the large computational expense involved in capturing the oscillations of the valence wavefunctions

in the core region, it is common to replace the singular Coloumb potential in Eqn. (4.5) by an

effective potential

V PS
ext (x,R)ψn(x) = Vnl(x,R)ψn(x) + Vloc(x,R)ψn(x) (4.6)

where Vnl(x,R) and Vloc(x,R) are the nonlocal and local parts of the pseudopotential, respec-

tively. Usually, Vnl(x,R) is non-zero only in a small region around each nucleus and Vloc(x,R)
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replicates the Coloumb potential outside these core regions. In this approximation scheme, the

core electrons are no longer considered as their effect is modeled by V PS
ext (x,R), which also serves

the dual purpose of ensuring nodeless valence pseudo-wavefuntions. This is commonly recognized

as the pseudopotential approximation (cf. e.g. Martin (2004)). Highly successful pseudopotentials

include the norm conserving (Bachelet et al. (1982); Rappe et al. (1990); Troullier and Martins

(1991)) and ultrasoft pseudopotentials (Vanderbilt (1990)).

The electrostatic potential arising from the electron density, also referred to as the Hartree

potential, can be represented as

VH [ρ](x) =

∫

R3

ρ(x′)

|x − x′|
dx′. (4.7)

The exchange-correlation potential is defined to be the first variation of the exchange-correlation

energy Exc[ρ]

Vxc[ρ] =
δExc[ρ]

δρ(x)
. (4.8)

Commonly used models for the exchange-correlation energy include the local density approxima-

tion (LDA) (Kohn and Sham (1965)) and generalized gradient approximation (GGA) (Langreth

and Mehl (1983); Perdew et al. (1992)).

The potential due to the nuclei (Vext(x,R) orVloc(x,R)) and the Hartree potential can be cast

into a local form as the solution to the Poisson equation (Ismail-Beigi and Arias (2000); Surya-

narayana et al. (2010))

−
1

4π
∇2φ(x,R) = ρ(x) + b(x,R) (4.9)
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which has the unique solution

φ(x,R) =

∫

R3

ρ(x′)

|x − x′|
dx′ +

∫

R3

b(x′,R)

|x − x′|
dx′. (4.10)

Here, b(x′,R) =
∑M

J=1 bJ(x
′,RJ) denotes the total charge distribution of the nuclei, with bJ(x

′,RJ)

representing the charge density of the J th nucleus.

Thereafter, for fixed position of the nuclei, the Kohn-Sham problem takes the form

Hψn = λnψn , H = −
1

2
∇2 + Vxc[ρ] + φ(x,R) + Vnl(x,R) (4.11)

−
1

4π
∇2φ(x,R) = ρ(x) + b(x,R) (4.12)

ρ(x) = 2
∑

n

g(λn, λf )|ψn(x)|2 (4.13)

2
∑

n

g(λn, λf ) = Ne (4.14)

which can be self-consistently using the self consistent field (SCF) method (cf. e.g. Martin (2004)).

Note that Vnl(x,R) ≡ 0 for an all-electron calculation and on the choice of a fully local pseudopo-

tential. On solving these equations, we can evaluate the energy of the system for the given position

of the nuclei

E0 = 2
∑

n

g(λn, λf )λn +
1

2

∫

R3

(b(x,R) − ρ(x))φ(x,R) dx + Exc[ρ]

−

∫

R3

Vxc[ρ]ρ(x) dx −
1

2

M
∑

J=1

∫

R3

∫

R3

bJ(x,RJ)bJ(x
′,RJ)

|x − x′|
dxdx′ (4.15)

where the first term represents the band structure energy (Uband) and the last term is the self energy
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of the nuclei. To calculate the ground state energy of the system, we need to further minimize the

energy with respect to the positions of the nuclei which can be accomplished by equilibriating the

force on the nuclei

fJ = −
∂E0

∂RJ

, J = 1, 2 . . .M. (4.16)

For a fixed position of the nuclei, if the energy is stationary with respect to the electron density and

electrostatic potential, it follows that

fJ = −

∫

R3

dbJ(x,RJ)

dRJ

(φ(x,R) − φJ(x,RJ)) dx (4.17)

where φJ(x,RJ) =
∫

R3

bJ (x′,RJ )
|x−x′|

dx′. In the case of all-electron calculations where we have

bJ(x,RJ) = −ZJδ(x − RJ), we obtain

fJ = ZJ∇(φ(x,R) − φJ(x,RJ))

∣

∣

∣

∣

x=RJ

(4.18)

This result is commonly referred to as the Hellmann-Feynman theorem (cf. e.g. Finnis (2003)).

In the above discussion of the Kohn-Sham method, we have inherently assumed a temperature

of absolute zero. It can be extended to finite temperatures (cf. e.g. Parr and Yang (1989)) by

introducing the Helmholtz free energy

F = Eσ − θS (4.19)

where Eσ is the finite temperature counterpart of the ground state energy, θ is the temperature and
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S is the entropy. The orbital occupation function can now take fractional values as defined by the

Fermi-Dirac distribution

g(λ, λf ) =
1

1 + exp(
λ−λf

σ
)

(4.20)

where σ = kBθ, kB being the Boltzmann constant. We also have the following representation for

the entropy

S = −2kB
∑

n

[g(λn, λf ) log g(λn, λf ) + (1 − g(λn, λf ) log(1 − g(λn, λf )))] . (4.21)

The forces on the nuclei

fJ = −
∂F

∂RJ

. (4.22)

reduces to the expression given by Eqn. (4.17) (Weinert and Davenport (1992)). Using the finite

temperature calculation, it is also possible to to get an accurate extrapolation for the ground state

energy at absolute zero (Gillan (1989))

E0 ≈
1

2
(Eσ + F) . (4.23)
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4.2 Mathematical background

4.2.1 Spectral theory

Let B(H) denote the Banach algebra of all self-adjoint linear operators H on a finite-dimensional

Hilbert space H with inner product (., .) and norm ‖.‖. We have for H ∈ B(H)

‖H‖ = sup{‖Hη‖ : η ∈ H, ‖η‖ ≤ 1}. (4.24)

In this work H = L2(Ω), the space of square integrable functions over Ω. From the spectral

theorem (cf. e.g. Rudin (1991)), it follows that we have a unique resolution of the identity E on

the Borel subsets of its spectrum σ(H) = {λ1, λ2, . . . , λNd
} ⊂ R which satisfies

H =

∫

σ(H)

λ dE(λ). (4.25)

Consequently for any bounded Borel function f on σ(H), we have the following representation

f(H) =

∫

σ(H)

f(λ) dE(λ). (4.26)

Let the eigenvalues of H be ordered according to λ1 ≤ λ2 ≤ . . . ≤ λNd
. Further, let ψn denote

the eigenfunction corresponding to the eigenvalue λn. We have the following representation of the
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Borel measure on σ(H)

Eζ,ζ(λ) = (E(λ)ζ, ζ) =







































0, if λ < λ1

∑m
n=1

∑Nd

p=1

∑Nd

q=1 ψn,pψn,qζpζq, if λm ≤ λ < λm+1

∑Nd

n=1

∑Nd

p=1

∑Nd

q=1 ψn,pψn,qζpζq, if λNd
< λ

(4.27)

where ζ =
∑Nd

p=1 ζpηp and ψn =
∑Nd

p=1 ψn,pηp. Here, {ηk}
Nd

k=1 is an orthonormal basis for H . In

the special case of ζ = ηk, it reduces to

Eηk,ηk
(λ) =







































0, if λ < λ1

∑m
n=1 |ψn,k|

2, if λm ≤ λ < λm+1

∑Nd

n=1 |ψn,k|
2, if λNd

< λ.

(4.28)

Therefore ∀ζ ∈ H

(f(H)ζ, ζ) =

∫

σ(H)

f(λ) dEζ,ζ(λ) =

∫ b

a

f(λ) dEζ,ζ(λ) (4.29)

for a = λ1 and b = λNd
.

4.2.2 Gauss quadrature

Let P be the space of real polynomials and Pk be a subspace of P consisting of polynomials of

degree at most k. We define an inner product (relative to the measure Eζ,ζ) of two polynomials
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p, q ∈ P as

〈p, q〉ζ =

∫ b

a

p(λ)q(λ) dEζ,ζ(λ) (4.30)

with norm

‖p‖ζ =

(∫ b

a

p2(λ) dEζ,ζ(λ)

)

1

2

. (4.31)

Here, we are interested in approximating integrals of the form

I[f ] =

∫ b

a

f(λ) dEζ,ζ(λ) (4.32)

using a quadrature rule. To do so, we approximate the function f(λ) with an interpolation polyno-

mial

f(λ) ≈
K
∑

k=1

f(λζk)l
ζ
k(λ) (4.33)

where {λζk}
K
k=1 are the nodes/interpolation points and lζk(λ) is the Lagrange polynomial

lζk(λ) =
∏

j=1,j 6=k

λ− λζj

λζk − λζj
. (4.34)

Thereafter, we obtain the quadrature formula

I[f ] ≈
K
∑

k=1

wζkf(λζk) (4.35)

where

wζk =

∫ b

a

lζk(λ)dEζ,ζ(λ) (4.36)
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are the weights of the quadrature rule. In order to obtain the quadrature rule of highest degree,

we further consider the nodes {λk}
K
k=1 as unknowns. This results in a quadrature rule of degree

2K − 1 i.e. any p ∈ P2K−1 is integrated exactly, and is referred to as Gauss quadrature. To

efficiently evaluate the nodes and weights of the Gauss quadrature rule, we employ the procedure

described below (cf. e.g. Golub and Meurant (2010)).

We can generate a sequence of orthonormal polynomials (with respect to the measure Eζ,ζ)

{p̂k}
K
k=0 through a three term recurrence relationship

bk+1p̂k+1(λ) = (λ− ak+1)p̂k(λ) − bkp̂k−1(λ) , k = 0, 1, . . . , K − 1

p̂−1(λ) = 0 , p̂0(λ) = 1 , b0 = 1 (4.37)

where

ak+1 = 〈λp̂k, p̂k〉ζ , k = 0, 1, . . . , K − 1 (4.38)

and b̂k is computed such that ‖p̂k‖ζ = 1 , k = 0, 1, . . . , K. Corresponding to these orthonormal

polynomials, there is a tridiagonal Jacobi matrix ĴK of dimension K

ĴK =

































a1 b1

b1 a2 b2

. . .
. . .

. . .

bK−2 aK−1 bK−1

bK−1 aK

































. (4.39)
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Let us denote P̂K(λ) = (p̂0(λ), p̂1(λ), . . . , p̂K−1(λ))T . Then the three term recurrence relation

given by Eqn. (4.37) can be written compactly as

λP̂K(λ) = ĴK(λ)P̂K(λ) + bK p̂K(λ)eK (4.40)

where eK is the last column of the identity matrix of dimension K. It can be shown that the eigen-

values of ĴK (which are also the zeros of p̂K(λ)) are the nodes {λj}
K
j=1 of the Gauss quadrature

rule and the weights {wj}
K
j=1 are the squares of the first elements of the normalized eigenvectors.

4.3 Formulation

4.3.1 Integral representations

We rewrite the expressions for the Fermi energy, electron density, band structure energy and en-

tropy as Riemann-Stieltjes integrals over the spectrum of H ∈ B(H). This enables the use of

Gauss quadrature for their evaluation. This is a key ingredient in the formulation of LSSGQ,

further described in Section 4.3.2.

4.3.1.1 Fermi energy

The Fermi energy is calculated by solving for the constraint

2

Nd
∑

n=1

g(λn, λf ) = Ne. (4.41)
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Since ‖ψn‖ =
∑Nd

p=1 |ψn,p|
2 = 1, it follows that

Nd
∑

n=1

g(λn, λf ) =

Nd
∑

p=1

Nd
∑

n=1

g(λn, λf )|ψn,p|
2

=

Nd
∑

p=1

∫ b

a

g(λ, λf )dEηp,ηp
(λ). (4.42)

Therefore, Eqn. (4.41) can be rewritten as

2

Nd
∑

p=1

∫ b

a

g(λ, λf )dEηp,ηp
(λ) = Ne. (4.43)

4.3.1.2 Electron density

The electron density at any point x0

ρ(x0) = 2

Nd
∑

n=1

g(λn, λf )|ψn(x0)|
2

= 2

Nd
∑

n=1

Nd
∑

p=1

Nd
∑

q=1

g(λn, λf )ψn,pψn,qηp(x0)ηq(x0)

= 2

∫ b

a

g(λ, λf ) dEζ,ζ(λ) (4.44)

where ζ =
∑

p ηp(x0)ηp.
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4.3.1.3 Band structure energy

The band structure energy is given by

Uband = 2

Nd
∑

n=1

λng(λn, λf )

= 2

Nd
∑

p=1

Nd
∑

n=1

λng(λn, λf )|ψn,p|
2

= 2

Nd
∑

p=1

∫ b

a

λg(λ, λf ) dEηp,ηp
. (4.45)

4.3.1.4 Entropy

The entropy is given by

S = −2kB

Nd
∑

n=1

(g(λn, λf ) log g(λn, λf ) + (1 − g(λn, λf )) log(1 − g(λn, λf ))

= −2kB

Nd
∑

p=1

Nd
∑

n=1

(g(λn, λf ) log g(λn, λf ) + (1 − g(λn, λf )) log(1 − g(λn, λf ))|ψn,p|
2

= −2kB

Nd
∑

p=1

∫ b

a

g(λ, λf ) log g(λ, λf ) + (1 − g(λ, λf ) log(1 − g(λ, λf ))) dEηp,ηp
. (4.46)

4.3.2 Algorithm

In this section, we describe the proposed LSSGQ method. We solve the nonlinear DFT eigenvalue

problem using the SCF method (cf. e.g. Martin (2004)). In each iteration of the SCF method, the

electron density is evaluated by solving the linear eigenvalue problem

Hψn = λnψn , n = 1, 2, . . . (4.47)
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for the eigenvalues and eigenfunctions. The electron density is subsequently evaluated using Eqn.

(4.2). However, we circumvent the evaluation of the wavefunctions and directly evaluate the elec-

tron density by employing the procedure which we now describe.

We start with the integral representations of the Fermi energy and electron density given in

Sections 4.3.1.1 and 4.3.1.2, respectively. We evaluate these integrals using Gauss quadrature

described in Section 4.2.2. However, only the operator H is known and its resolution of the identity

E(λ) is unknown a priori. To overcome this, we use the spectral theorem to rewrite the recurrence

relation given by Eqn. (4.37) as a Lanczos type iteration

bk+1vk+1 = (H− ak+1)vk − bkvk−1 , k = 0, 1, . . . , K − 1

v−1 = 0 , v0 = η , b0 = 1 (4.48)

where

ak+1 = (Hvk, vk) , k = 0, 1, . . . , K − 1 (4.49)

and bk is computed such that ‖vk‖ = 1 , k = 0, 1, . . . , K − 1. Note that the initial condition

v0 = η is chosen depending on the measure Eη,η(λ) with respect to which integration needs to

be performed. Thereafter, the nodes and corresponding weights of the quadrature rule can be

ascertained following the procedure described in Section 4.2.2. Therefore

Ne = 2

Nd
∑

p=1

∫ b

a

g(λ, λf ) dEηp,ηp
(λ) ≈ 2

Nd
∑

p=1

K
∑

k=1

w
ηp

k g(λ
ηp

k , λf ) (4.50)

ρ(x0) = 2

∫ b

a

g(λ, λf ) dEζ,ζ(λ) ≈ 2
K
∑

k=1

wζkg(λ
ζ
k, λf ) (4.51)
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where ζ =
∑

p ηp(x0)ηp.

Once the self consistent solution of the Kohn-Sham problem for a given position of the nuclei

is calculated, the free energy (Eqn. (4.19)) can be calculated by using Gauss quadrature for the

evaluation of the band structure energy and entropy

Uband = 2

Nd
∑

p=1

∫ b

a

λg(λ, λf ) dEηp,ηp
(λ) ≈ 2

Nd
∑

p=1

K
∑

k=1

w
ηp

k λ
ηp

k g(λ
ηp

k , λf ) , (4.52)

S = −2kB

Nd
∑

p=1

∫ b

a

g(λ, λf ) log g(λ, λf ) + (1 − g(λ, λf ) log(1 − g(λ, λf ))) dEηp,ηp

≈ −2kB

Nd
∑

p=1

K
∑

k=1

w
ηp

k g(λ
ηp

k , λf ) log g(λ
ηp

k , λf ) + (1 − g(λ
ηp

k , λf ) log(1 − g(λ
ηp

k , λf ))).

To calculate the ground state free energy, we need to further minimize the free energy with respect

to the positions of the nuclei. For this, we equilibriate the forces on the nuclei given by Eqn. (4.17),

which is consistent with the energy if the solution is stationary with respect to the electron density

and the electrostatic potential. For clarity, we summarize the LSSGQ method in Algorithm 1.

4.3.3 Scaling and performance

In the proposed method, the quantities of interest, namely the Fermi energy, electron density, band

structure energy and the entropy are evaluated by performing Gaussian quadrature on their respec-

tive integral representations. The cost of evaluating each integral is determined by the calculation

of the matrix ĴK (Eqn. (4.39)) via the recurrence relation (Eqn. (4.48)) and the evaluation of its
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Algorithm 1: LSSGQ method

Generate guess for electron density (ρ)

repeat Relaxation of atoms
Calculate charge density of the nuclei (b)
repeat Self-Consistent loop: SCF

Calculate electrostatic potential (φ) by solving Eqn. (4.9)

Calculate exchange correlation potential (Vxc)
Calculate Fermi-level (λf ) using Eqn. (4.50)

Calculate electron density (ρ) using Eqn. (4.51)

Update the electron density (mixing)

until Convergence of self-consistent iteration;

Calculate the forces on the nuclei using Eqn. (4.17)

until Energy minimized with respect to positions of atoms;

Evaluate free energy F using Eqns. (4.52), (4.53) for the band structure energy, entropy

respectively.

eigenvalues and eigenvectors. If a localized basis of H is used, such that the matrix representation

of H is sparse, it is clear that the evaluation of the nodes and weights for each integral is indepen-

dent of the size of the system. Since the number of integrals which need to be evaluated scales

linearly with the number of atoms, the entire method has an O(M) scaling. This is indeed verified

by the results presented in Section 4.4.

Now, we discuss the performance of the LSSGQ method. Consider any integral of the form

given by Eqn. (4.32). The error incurred by using Gauss quadrature is given by

R[f ] = ‖pK‖
2
ζ

f 2K(c)

(2K)!
(4.53)

for some c ∈ [a, b]. Here, K denotes the number of nodes used for the quadrature. It is clear that

the accuracy of the spectral quadrature improves with increasing the temperature θ. Again, this is

verified by the results presented in Section 4.4.
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4.4 Numerical Examples and Validation

In this section, we validate the LSSGQ method through a number of examples. First, we start with a

one-dimensional model proposed by García-Cervera et al. (2009) which shares the most important

features of a linearized Kohn-Sham problem and therefore can be used to systematically test the

accuracy and performance of the LSSGQ method. Subsequently, we utilize the LSSGQ method

to solve the nonlinear three-dimensional Kohn-Sham problem in a periodic setting to evaluate

the crystal properties. Finally, we show the versatility of the proposed method by studying the

phenomenon of surface relaxation.

4.4.1 One-dimensional model

Consider a one-dimensional chain of atoms positioned with unit spacing at {RJ}
M
J=1. Let the

effective potential due to an atom at RJ be given by (García-Cervera et al. (2009))

VJ(x) = −
α

√

2πβ2
exp−

(

(x−RJ)
2

2β2

)

(4.54)

and therefore the total potential at any point is given by V (x) =
∑M

J=1 VJ(x). Here, α and β

represent the depth and width of the wells respectively. By appropriately tuning these parameters,

the size of the band gap can be varied, resulting in either metallic, semiconducting or insulating

behavior (García-Cervera et al. (2009)). The ground state properties are obtained by solving

Hψn = λnψn , n = 1, 2 . . . (4.55)
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where the Hamiltonian is given by

H = −
1

2

d2

dx2
+ V (x). (4.56)

The Fermi energy, electron density and energy are evaluated using

Ne = 2

Nd
∑

n=1

g(λn, λf ) , (4.57)

ρ(x) = 2

Nd
∑

n=1

g(λn, λf )|ψn(x)|
2 , (4.58)

Eσ = 2

Nd
∑

n=1

g(λn, λf )λn. (4.59)

We solve the problem using the finite-difference approximation with a 12th order accurate

discretization for the Laplacian. Details of the LSSGQ method using the finite-difference approx-

imation scheme can be found in Appendix D. By appropriately chosing the parameters α and β,

we can vary the band gap of the system, thereby choosing between insulating, semiconducting and

metallic systems. Further details can be found in García-Cervera et al. (2009). Here, we consider

two sets of parameters (α, β) = (100, 0.3) and (α, β) = (10, 0.45), which we designate as insulator

and metal, respectively. We also study the effect of temperature on the efficacy of the method, by

considering two extreme cases corresponding to σ = 0.0001 and σ = 1.0. In the results presented

below, the error in energy is defined as the difference between the energies obtained by the LSSGQ

method and diagonalization. Similarly, error in electron density is the L2 norm of the difference in

electron densities obtained on using the LSSGQ method and diagonalization. Note that all errors
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have been normalized with the quantities obtained by diagonalization.

4.4.1.1 Non-periodic calculations

The convergence of the LSSGQ method with respect to the number of spectral quadrature points

for both metals and insulators is presented in Fig. 4.1. It is clear that there is rapid convergence of

the energy with respect to the number of spectral quadrature points for both metals and insulators.

For insulators, the convergence is independent of temperature, a consequence of the presence of

a band gap. On the contrary, convergence for metals is significantly accelerated on increasing the

temperature.
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Figure 4.1: Convergence of the LSSGQ method

Next, we introduce a defect by removing the center atom and evaluate the defect energy as

well as the defect electron density. The defect energy and defect electron density are defined as

the difference in energies and electron densities between the systems with and without the defect.

Accurately predicting these quantities is challenging, as it requires the calculation of relatively
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small differences. The results so obtained have been presented in Fig. 4.2. It is clear that for an

insulator, there is rapid convergence with number of spectral quadrature points and independence

from temperature. However, for the metal we notice that the number of spectral quadrature points

required is dependent on the temperature, with fewer points required on increasing the temperature.
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Figure 4.2: Convergence of the defect energy and defect electron density
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4.4.1.2 Periodic calculations

Consider an infinite chain of atoms with unit spacing. We define a two atom unit cell as the

representative volume ΩRV . Since the potential decays exponentially, we evaluate the potential

inside ΩRV by considering the contribution of atoms which are within a cutoff radius. We then

follow the procedure outlined in Appendix E to evaluate the Fermi energy, electron density and

energy per atom. The results so obtained are presented in Fig. 4.3. As observed in the non-

periodic calculations, convergence in insulators is independent of temperature, whereas for metals

convergence is significantly accelerated with increasing temperature.
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Figure 4.3: Convergence of LSSGQ method for the periodic problem

4.4.1.3 Performance and Scaling

Now, we look at the rate of convergence as well as scaling of the proposed LSSGQ method. From

Fig. 4.4, it is clear that we obtain spectral convergence with respect to the number of spectral

quadrature points. This is to be expected as Gauss quadrature is a spectrally convergent method.
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Finally, we present the computational time as a function of the number of atoms in Fig. 4.5. It

validates the linear scaling nature of the proposed method.
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Figure 4.4: Spectral convergence of LSSGQ method

4.4.2 Kohn-Sham problem

In the previous section, we validated the proposed LSSGQ method by applying it to a linear eigen-

value problem representing a one-dimensional chain of atoms. Here, we use the LSSGQ method to

solve the three-dimensional nonlinear Kohn-Sham problem using the local density approximation

(LDA — Kohn and Sham (1965)) for the exchange correlation energy and the ‘Evanescent Core’

pseudopotential approximation (Fiolhais et al. (1995)). Specifically, we evaluate the bulk proper-

ties of body centered cubic (BCC) crystals of sodium and lithium, and study the phenomenon of

surface relaxation in sodium.

We utilize a 6th-order accurate finite-difference discretization of the Laplacian. We designate

a representative volume (ΩRV ) and utilize the procedure outlined in Appendix E to evaluate the
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Figure 4.5: Linear scaling of the LSSGQ method
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Fermi energy, electron density, band structure energy and entropy. For calculating the Fermi en-

ergy λf , we solve Eqn. (4.50) using a combination of bisection, secant and inverse quadratic

interpolation methods (Forsythe et al. (1973)). We solve the Poisson equation (Eqn. (4.9)) us-

ing the generalized minimal residual method (GMRES — Saad and Schultz (1986)). We evaluate

the charge density of the nuclei (b(x,R)) by considering the contribution of all nuclei within a

prespecified cutoff radius. Such an approximation is extremely accurate owing to the exponential

decay of the charge density of the nucleus. For the SCF method, we use mixing with the gen-

eralized Broyden method (Fang and Saad (2009)) for acceleration. In order to evaluate the free

energy of the system, spatial integrations are performed by assuming that the value of each quan-

tity is constant in a cube of side h around each finite-difference point, where h is the spacing of the

finite-difference nodes. We choose σ = 0.8 eV and extrapolate the finite-temperature calculations

to absolute zero using Eqn. (4.23).

4.4.2.1 Crystal properties

We use the procedure described above to solve for the bulk properties of BCC sodium and lithium.

To do so, we designate the BCC unit cell as the representative volume (ΩRV ) and utilize periodic

boundary conditions. First, we present the convergence in the binding energy per atom with re-

spect to the number of spectral quadrature points (K) in Fig. 4.6. It is clear that we obtain rapid

convergence, highlighting the efficacy of the LSSGQ method. Next, we plot the binding energy

per atom as a function of lattice constant in Fig. 4.7. Using a cubic fit to this data, we calculate

the cohesive energy, equilibrium lattice constant and bulk modulus. The results so obtained are

presented in Tables 4.1 and 4.2 with a comparison to previous results obtained by Fiolhais et al.
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(1995). The agreement is good, thereby validating the formulation and implementation.
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Figure 4.6: Convergence of LSSGQ method
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Figure 4.7: Binding energy as a function of lattice constant

4.4.2.2 Surface relaxation

We now study the (001) surface relaxation of BCC sodium. We choose the representative volume

(ΩRV ) to be a rectangular cuboid of dimensions a×a×h, where ‘a’ is the lattice constant. Further,
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Table 4.1: Crystalline properties of BCC sodium

Property LSSGQ Fiolhais et al. (1995) Experiment (Fiolhais et al. (1995))

Cohesive energy (eV/atom) -1.0334 -1.02 -1.04

Lattice constant (a.u.) 8.01 8.21 8.21

Bulk modulus (GPa) 5.0 7.1 7.3

Table 4.2: Crystalline properties of BCC lithium

Property LSSGQ Fiolhais et al. (1995) Experiment (Fiolhais et al. (1995))

Cohesive energy (eV/atom) -1.21 -1.31 -1.0

Lattice constant (a.u.) 6.87 6.77 6.77

Bulk modulus (GPa) 10.0 14.0 13.0

h = hvac + hcell, where hvac = n1a and hcell = n2a (n1, n2 ∈ Z) are the heights of vaccuum and

material included in ΩRV . We use periodic boundary conditions in the x1, x2 directions. Further,

we use zero Dirichlet boundary conditions on the top face of ΩRV and assume that the perfectly

periodic solution is attained in the bottom most unit cell of ΩRV . We relax the atoms only along the

x3 direction and their minimum configuration is obtained using the BFGS quasi-Newton method

with a cubic line search procedure (cf. e.g. Vogel (2002)). We evaluate the surface energy using

the relation

Esurf =
EΩRV

−NeEcoh
a2

(4.60)

where EΩRV
is the total energy in ΩRV , Ecoh is the cohesive energy for a perfect crystal and Ne is

the number of electrons in ΩRV .

First, we verify the convergence of the calculations with respect to the number of spectral

quadrature points (K) in Fig. 4.8. It is clear that we obtain rapid convergence, highlighting the

efficacy of the method. Next, we present the calculated surface energy and the displacement of the
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atoms in Table 4.3. Note that the forces on the atoms in the third layer and beyond are below the

threshold value used for the calculations. Finally, we plot the electron density contours on the mid

plane and edge plane in Figs. 4.9 and 4.10, respectively.
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Figure 4.8: Convergence of LSSGQ method for the surface problem

Table 4.3: Properties of the (001) surface of BCC sodium

Surface energy 0.2 J/m2

Displacement of atoms

First layer 0.75 a.u.

Second layer -0.19 a.u.
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Figure 4.9: Electron density contours on the mid plane of a surface of (001) BCC sodium

Figure 4.10: Electron density contours on the face plane of a surface of (001) BCC sodium
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Chapter 5

Coarse-grained Kohn-Sham density

functional theory

In spite of the recent advances in DFT, the study of crystal defects at realistic concentrations re-

mains intractable. Defects present a unique challenge since both the electronic structure of the core

as well as the long range elastic field need to be simultaneously resolved. Multiscale approaches

which coarse-grain DFT or embed it into simpler, less accurate models like tight-binding (TB)

or empirical potentials have also been developed recently (Choly et al. (2005); Lu et al. (2006);

Govind et al. (1999); Bernstein et al. (2009)). Though these multiscale methods provide valuable

insight, they suffer from a few notable drawbacks. In some cases, there is no seamless transition

from DFT to TB or empirical potentials, while in others, uncontrolled approximations made by the

use of linear response theory or Cauchy Born hypothesis render them unreliable. Also, there is no

systematic convergence of the solution of these models to the full DFT solution.

In this chapter, we present a formulation to seamlessly coarse-grain DFT (CG-DFT) solely

based on approximation theory, without the introduction of any new equations or physics. This

allows us to study defects at a fraction of the original computational cost, without any appreciable

loss of accuracy. Additionally, we can obtain systematic convergence to the fully resolved solution.

98



Below, we discuss the formulation of CG-DFT in Section 5.1 and validate it throught examples in

Section 5.2. Note that CG-DFT builds on the linear scaling method (LSSGQ) presented in Chapter

4, which should be read first to understand the description provided here.

5.1 Formulation

The central idea of CG-DFT is as follows. When a defect is introduced in an otherwise perfect

lattice, the resultant perturbation is expected to be localized in the vicinity of the defect and decays

to zero as one moves away from the defect. We incorporate this intuition into our numerical

methodology as described below. For simplicity and clarity of the key ideas involved, we discuss

the method in terms of the finite-difference approximation scheme, which is used to validate the

formulation in Section 5.2. It is relatively simple to extend these ideas to other choice of bases.

In electronic structure calculations, the main quantities of interest are electron density, elec-

trostatic potential, the positions of the nuclei and the energy of the system. We introduce coarse-

graining type approximations, which allows the evaluation of these quantities at reduced computa-

tional cost. First, we discuss the evaluation of the electron density, which constitutes the majority

of the computational time. Let us denote the domain of interest by Ω, initially spanned by a per-

fect lattice and discretized using finite-difference nodes, the collection of whom we denote by

N . First, we perform a periodic calculation for the perfect lattice using the LSSGQ method and

map this solution onto N . Next, we introduce the defect and choose a collection of representative

finite-difference nodes, which we denote by R. The nodes in R are chosen such that there is a

high concentration of nodes in the vicinity of the defect and progressively dilutes with increasing
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distance from the defect. For the LSSGQ method with the finite-difference approximation, we

need to evaluate the spectral quadrature nodes and weights for all finite-difference nodes p ∈ N

(See Appendix D). However, in CG-DFT we only calculate the spectral nodes and weights for the

finite-difference nodes p ∈ R. Then, we introduce the following approximation for the electron

density

ρp = ρpper +
∑

q∈R

γpq (ρ
q − ρqper) (5.1)

where ρper is the corresponding periodic solution and γqp are the weights such that γqp = 1 if p = q,

else it is decided by the degree of interpolation/approximation used. The calculation of the Fermi

energy proceeds as before by solving for the constraint

Ne = hD
Nd
∑

p=1

ρp. (5.2)

Additionally, we introduce the following approximations

up = upper +
∑

q∈R

γpq (u
q − uqper) (5.3)

sp = spper +
∑

q∈R

γpq (s
q − sqper) (5.4)

which allow the calculation of the band structure energy and entropy as before

Uband =

Nd
∑

p=1

up (5.5)

S =

Nd
∑

p=1

sp. (5.6)
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The electrostatic potential is evaluated as follows

φ = φper + φd (5.7)

where φper is the periodic solution and φd is calculated by solving the equation

−
1

4π
∇2φd = ρ− ρper. (5.8)

By its very nature, φd is localized near the defect and decays to zero away from it. Therefore, it can

be easily calculated by a discretization adapted to this feature. Finally, for finding the equilibrium

position of the atoms, we select representative atoms and interpolate the displacement for the

remaining atoms as done traditionally in the quasi-continuum method (cf. e.g. Tadmor et al.

(1996); Knap and Ortiz (2001)). Again, the representative atoms are chosen such that there is a

high concentration in the vicinity of the defect which reduces with increasing distance from the

defect.

5.2 Validation

In this section, we validate the proposed CG-DFT method. We study a one-dimensional model

problem in Section 5.2.1 and a Kohn-Sham surface relaxation problem in Section 5.2.2.
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5.2.1 One-dimensional model

We study the efficacy of CG-DFT in the framework of the one-dimensional model presented in

Section 4.4.1. We use a 12th order accuracte finite-difference appeoximation of the Laplacian.

Consider a chain constituting of 101 atoms with unit spacing. First, we introduce a defect by

removing the center atom. Next, we coarse-grain in both directions from the position of the defect

and adopt the procedure described in Section 5.1 to solve the problem. We plot the convergence in

the defect energy and defect electron density as a function of the number of representative nodes

in Fig. 5.1 respectively. The error is measured and normalized with respect to the fully resolved

LSSGQ solution. It is clear that we get rapid convergence in the solution for both metals and

insulators. Convergence in insulators is much more rapid and this is to be expected because of the

localized nature of defects in insulators. Therefore, we conclude that using CG-DFT, we can solve

the defect problem with a small fraction of the original computational cost.
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Figure 5.1: Convergence of the CG-DFT method
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5.2.2 Kohn-Sham problem—surface relaxation

We now study the (001) surface relaxation of BCC sodium using CG-DFT. We employ the proce-

dure described in Section 4.4.2 with the introduction of coarse-graining described in Section 5.1.

We introduce coarse-graining for the atomic positions, electron density and local band structure

energy. Note that we do not introduce coarse-graining for the electrostatic potential since the com-

putational time involved for its calculation is negligible. We compare the results obtained using

CG-DFT with the fully resolved solution obtained using the LSSGQ method. A summary of the

results is presented in Table 5.1. We can see that there are significant computational savings when

using CG-DFT, with no appreciable loss of accuracy. It is worth noting that the surface relaxation

problem is effectively one-dimensional. Therefore, coarse-graining can be performed only in one

direction. As a consequence, the computational savings achieved are not as significant as is possi-

ble in a truly two/three dimensional problem. We expect that when CG-DFT is used to study other

defects like vacancies, dislocations and cracks, we would achieve far more substantial savings.

Table 5.1: Summary of the results for CG-DFT

Number of representative nodes/Total number of nodes 0.25

Number of representative atoms/Total number of atoms 0.3

Normalized error in surface energy 0.12 %

Normalized error in displacement of atoms

First layer 0.11 %

Second layer 0.17 %
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Chapter 6

Conclusions

We have developed a real-space, non-periodic finite-element formulation of DFT. By including

the electrostatic potential among the unknown fields we have reformulated the problem as a local

saddle-point problem. We have shown the well-posedness of this formulation for both the all-

electron problem as well as the pseudopotential approximation. In particular, we have proved

the existence of solutions, and, in addition, the convergence of finite-element approximations,

including numerical quadratures, using Γ-convergence methods. We have also developed a parallel

implementation of this formulation capable of performing both all-electron and pseudopotential

calculations. In this implementation, the advantageous features of both the SCF and Newton’s

methods have been combined to ensure rapid convergence to the solution. The flexibility provided

by the unstructured nature of the finite-element method is exploited by optimally coarsening the

triangulation away from the nuclei and by convecting the triangulation with the atomic positions,

thereby enhancing the efficiency of the calculations without loss of accuracy. The formulation

has been tested through a number of examples and the accuracy of the results is in accord with

the literature. Also, various aspects of the numerical performance of the implementation have

been investigated, including the convergence rate of the finite-element method and its scaling with
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increasing system size and number of processors. We obtain ostensibly ideal convergence rate for

the finite-element method, linear or O(N)-scaling with problem size and good parallel scalability.

A shortcoming of low-order finite-elements in general, is the large number of basis functions

required to obtain convergence compared to other bases such as plane waves. To mitigate this defe-

ciency, we have developed a non-periodic, real-space, mesh-free convex approximation scheme for

Kohn-Sham density functional theory. We have developed a parallel implementation of this formu-

lation capable of performing both all-electron and pseudopotential calculations. The formulation

has been tested through a number of examples and the accuracy of the results is in accord with

the literature. We have shown that the use of max-ent basis functions can result in a significant re-

duction in the required number of basis functions compared to the corresponding simplicial linear

finite-elements. However, this comes at the price of increased non-locality of the basis functions

as well as the need for significantly higher order quadrature, which in some cases could outweigh

the gains from the requirement of fewer basis functions. Also, as in most mesh-free methods, the

necessity of a background mesh for performing numerical integration makes the method not come-

pletely mesh free. Further work in these aspects is required to make the method competitive with

conventional bases used in electronic structure calculations.

We have also developed a real-space, non-periodic formulation for coarse-graining DFT (CG-

DFT). We have achieved this in two stages. First, we have developed a linear-scaling method for

DFT (LSSGQ). We know that the wavefunctions are global quantities. This is a consequence of

their orthonormality constraint. Therefore, they are not amenable to coarse-graining. To overcome

this, we have developed the LSSGQ method where we directly evaluate the electron density with-

out evaluating any of the wavefunctions. Second, we introduce coarse-graining approximations in
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the LSSGQ method, whereby we are able to study defects at a fraction of the original computa-

tional cost. This has been achieved soley via approximation theory, without the introduction of any

equations and spurious physics. By doing so, we have obtained systematic convergence to the fully

resolved solution. We have verified both the LSSGQ and CG-DFT methods through examples, for

which we have developed higher order finite difference implementations of the same.

This work lays the foundation for analyzing samples (using DFT) of sufficient size to yield

meaningful size-independent properties of isolated lattice defects, such as vacancies and dislo-

cations, in concentrations representative of actual material systems. This method would also be

useful for studying other defects like interfaces, stacking faults, domain walls and cracks. The

insight gained from these studies would be particularly useful in understanding the role of defects

on material strength, a question of great scientific and technological importance. We believe that

this thesis is a significant step in this direction.
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Appendix A

Computation of forces in the finite-element

formulation

For completeness, we derive the forces that determine the equilibrium nuclear configuration. To

do so, we assume that for any configuration of the nuclei, the variational problem defined by

inf
Ψ∈(H1

0
(Ω))N

sup
φ∈H1

0
(Ω)

E(Ψ, φ,R) (A.1)

subject to the constraints given by Eqn. (2.21), has been solved. The derivation below closely

follows Thoutireddy (2002) and Gavini et al. (2007a). Using Lagrange multipliers to enforce the

constraints, we have

Ec(Ψ, φ,R,Λ
α,Λβ) =

∫

Ω

f(Ψ,∇Ψ) dx +

∫

Ω

(ρ(x) + b(x,R))φ(x,R) dx

−
1

8π

∫

Ω

|∇φ(x,R)|2 dx −
Nα
∑

i=1

Nα
∑

j=1

λαij

(∫

Ω

ψ∗
iα(x)ψjα(x) dx − δij

)

−

Nβ
∑

i=1

Nβ
∑

j=1

λβij

(∫

Ω

ψ∗
iβ(x)ψjβ(x) dx − δij

)

. (A.2)
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In this situation, consider Ih1 + Ih2 + Ih3 + Ih4 , where

Ih1 =

∫

Ω

f(Ψ,∇Ψ) dx ,

Ih2 =

∫

Ω

(ρ(x) + b(x,R))φ(x,R) dx ,

Ih3 = −
1

8π

∫

Ω

|∇φ(x,R)|2 dx ,

Ih4 = −
Nα
∑

i=1

Nα
∑

j=1

λαij

(∫

Ω

ψ∗
iα(x)ψjα(x) dx − δij

)

−

Nβ
∑

i=1

Nβ
∑

j=1

λβij

(∫

Ω

ψ∗
iβ(x)ψjβ(x) dx − δij

)

.

Note that

Ih1 =

∫

Ω

f(Ψ,∇Ψ) dx =
∑

e∈Th

∫

Ω̂

f(Ψ,∇Ψ) det

(

∂xM
∂x̂N

)

dx̂ ,

where Ω̂ is the reference volume in isoparametric formulation and ∂xM

∂x̂N
is the Jacobian of the

transformation. Taking first variations of I1, we obtain

δIh1 =
∑

e∈T0

∫

Ω̂

{

−
∑

σ

Nσ
∑

i=1

δf(Ψ,∇Ψ)

δψiσ,J

[

Nh
∑

a=1

ψaiσN̂a,A
∂x̂A
∂xK

(

Nh
∑

b=1

δxebKN̂b,B)
∂x̂B
∂xJ

]

+f(Ψ,∇Ψ)(

Nh
∑

b=1

δxebKN̂b,B)
∂x̂B
∂xK

}

det

(

∂xM
∂x̂N

)

dx̂

=
∑

e∈T0

∫

Ωe

{

−
∑

σ

Nσ
∑

i=1

δf(Ψ,∇Ψ)

δψiσ,J

[

Nh
∑

a=1

ψaiσNa,K

]

+ f(Ψ,∇Ψ)δKJ

}(

Nh
∑

b=1

δxebKNb,J

)

dx

=
∑

e∈T0

∫

Ωe

{

−
∑

σ

Nσ
∑

i=1

δf(Ψ,∇Ψ)

δψiσ,J
ψiσ,K(x) + f(Ψ,∇Ψ)δKJ

}(

Nh
∑

b=1

δxebKNb,J

)

dx .
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Similarly, note that

Ih2 =

∫

Ω

(ρ(x) + b(x,R))φ(x,R) dx =
∑

e∈T0

∫

Ω̂

(ρ(x) + b(x,R))φ(x,R) det

(

∂xM
∂x̂N

)

dx̂ .

Taking variations, we find

δIh2 =
∑

e∈T0

∫

Ω̂

(ρ(x) + b(x,R))φ(x,R)

(

Nh
∑

b=1

δxebKN̂b,B

)

∂x̂B
∂xK

det

(

∂xM
∂x̂N

)

dx̂

+
∑

e∈T0

∫

Ω̂

(δb)φ(x,R) det

(

∂xM
∂x̂N

)

dx̂

=
∑

e∈T0

∫

Ωe

(ρ(x) + b(x,R))φ(x,R)δKJ

(

Nh
∑

b=1

δxebKNb,J

)

dx

+
∑

e∈T0

∫

Ωe

b(x,R)

(

Nh
∑

a=1

φaNa,K

)

δxebK dx .

Similarly,

δIh3 = −
1

8π

∑

e∈T0

∫

Ωe

{

|∇φ(x,R)|2δKJ − 2φ,J(x,R)φ,K(x,R)
}

(

Nh
∑

b=1

δxebKNb,J

)

dx ,

δIh4 = −
Nα
∑

i=1

Nα
∑

j=1

λαij
∑

e∈T0

∫

Ωe

ψ∗
iα(x)ψjα(x)δKJ

(

Nh
∑

b=1

δxebKNb,J

)

dx

−

Nβ
∑

i=1

Nβ
∑

j=1

λβij
∑

e∈T0

∫

Ωe

ψ∗
iβ(x)ψjβ(x)δKJ

(

Nh
∑

b=1

δxebKNb,J

)

dx.

Collecting all terms, the force on the bth node along the Kth direction is given by

f bK =
∑

e∈T0

∫

Ωe

Zbbb

(

Nh
∑

a=1

φaNa,K

)

dx +
∑

e∈T0

∫

Ωe

EKJNb,J dx , (A.3)
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where

EKJ =

{

f(Ψ,∇Ψ) + (ρ(x) + b(x,R))φ(x,R) −
1

8π
|∇φ(x,R)|2

}

δKJ

−







Nα
∑

i=1

Nα
∑

j=1

λαijψ
∗
iα(x)ψjα(x) +

Nβ
∑

i=1

Nβ
∑

j=1

λβijψ
∗
iβ(x)ψjβ(x)







δKJ

−
∑

σ

Nσ
∑

i=1

δf(Ψ,∇Ψ)

δψiσ,J
ψiσ,K(x) +

1

4π
φ,J(x,R)φ,K(x,R) . (A.4)

Note that the first term of Eqn. (A.3) corresponds to the Hellmann-Feynman force on the nuclei,

whereas the second term arises because of the finite-element discretization and acts on all the nodes

of the triangulation. The latter arises from the need to minimize the energy with respect to the nodal

configuration for a fixed number of nodes. Hence it can be used effectively for a posteriori mesh

adaption. Note that the discretization force is local.
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Appendix B

Spatial derivatives of the Shape Functions

In this section we derive expressions for the spatial derivatives of the basis functions to be used in

the mesh-free approximation scheme described in Chapter 3. We define the following quantities

from Eqns (3.10) and (3.17):

fa(x,λ, β) = −βha(|x − xa|) + λ.(x − xa) ,

pa(x,λ, β) =
exp(fa(x,λ, β))

∑P
b=1 exp(fb(x,λ, β))

, (B.1)

r(x,λ, β) = −
∂ĝ(λ)

∂λ
=

P
∑

a=1

pa(x,λ, β)(x − xa) ,

J(x,λ, β) = −
∂2ĝ(λ)

∂λ2 =
P
∑

a=1

pa(x,λ, β)(x − xa) ⊗ (x − xa) − r(x,λ, β) ⊗ r(x,λ, β).

Given a function h(x,λ, β), we define h∗ = h(x,λ∗, β), where λ∗ is given by Eqn. (3.12). It

follows that

∇p∗a = p∗a

(

∇f ∗
a −

P
∑

b=1

p∗b∇f
∗
b

)

. (B.2)
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Using the chain rule we have

∇f ∗
a =

(

∂fa
∂x

)∗

+

(

∂fa
∂λ

)∗

Dλ∗ (B.3)

where

(

∂fa
∂x

)∗

= −βh
′

a

(x − xa)

|x − xa|
+ λ∗(x) , (B.4)

(

∂fa
∂λ

)∗

= x − xa. (B.5)

To evaluate Dλ∗, we note

Dr∗ =

(

∂r

∂x

)∗

+

(

∂r

∂λ

)∗

Dλ∗ = 0 (B.6)

where

(

∂r

∂λ

)∗

= J∗ , (B.7)

(

∂r

∂x

)∗

= −β
P
∑

a=1

p∗ah
′

a

(x − xa) ⊗ (x − xa)

|x − xa|
+ Id ≡ K. (B.8)

Id denotes the identity matrix. It follows

∇f ∗
a = −βh

′

a

(x − xa)

|x − xa|
+ λ∗(x) − (x − xa)J

∗−1K (B.9)
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and

∇p∗a = p∗a

[

β
P
∑

b=1

p∗bh
′

b

(x − xb)

|x − xb|
− βh

′

a

(x − xa)

|x − xa|
− (x − xa)J

∗−1K

]

. (B.10)
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Appendix C

Padé approximation and recursion method

The recursion method (Haydock (1980)) has found many applications in the physics literature.

Here, we discuss the close connection between the LSSGQ and recursion methods. In doing so,

we also establish their relationship to the Padé approximation. Details of the notation not described

here can be found in Section 4.

Let RH(z) = (zI −H)−1 represent the resolvent of the operator H for z ∈ ρ(H) = C \ σ(H),

where ρ(H) denotes the resolvent set of H and C is the set of all complex numbers. RT (z) is

holomorphic ∀z ∈ ρ(H). For z ∈ ρ(H), ζ ∈ H it follows

RH(z) =

∫

σ(H)

1

z − λ
dE(λ) , (C.1)

Gζ,ζ(z) = (RH(z)η, η) =

∫

σ(H)

1

z − λ
dEζ,ζ(λ). (C.2)
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Taking the series expansion of Gζ,ζ(z) around the point z = ∞, we obtain

Gζ,ζ(z) =
∞
∑

k=0

1

zk+1

(

Hkη, η
)

=
∞
∑

k=0

1

zk+1

∫ b

a

λk dEζ,ζ(λ) =
∞
∑

k=0

µk
zk+1

(C.3)

which converges for |z| > ‖H‖.

Diagonal Padé approximants for Gζ,ζ(z) are rational functions of the form qK(z)/pK(z) which

satisfy the following property

(

Gζ,ζ(z) −
qK(z)

pK(z)

)

= O

(

1

z2K+1

)

(C.4)

and are locally the best rational approximations for a given power series like Eqn. (C.3) (cf. e.g.

Suetin (2002)). The denominator polynomials pK(z), are a set of orthogonal polynomials with

respect to the measure Eη,η (cf. e.g. Moren and Branquinho (2008))

∫ b

a

λkpK(λ) dEζ,ζ(λ) = 0 , k = 0, 1, . . . , K − 1 (C.5)

and the numerator polynomial qK(z) can be expressed in terms of pK(z) as follows

qK(z) =

∫ b

a

pK(z) − pK(λ)

z − λ
dEζ,ζ(λ). (C.6)

The Padé approximants are constructed using the coefficients of the power series and provide

an efficient analytic continuation of the series beyond the domain of convergence, which in the
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present case is given by |z| > ‖H‖. The convergence of diagonal Padé approximants follows

from Markov’s theorem (cf. e.g. Suetin (2002)), whereby any Markov function like Gζ,ζ(z) can

be recovered in ρ(H) from the coefficients of the Laurent expansion of the function at the point

z = ∞ (i.e. from the moments of the measure Eζ,ζ).

The orthogonal polynomials {pk}
K
k=1 can be generated via the recurrence relation (cf. e.g.

Golub and Meurant (2010))

pk+1(λ) = (λ− ak+1)pk(λ) − b2kpk−1(λ) , k = 0, 1, . . . , K − 1

p−1(λ) = 0 , p0(λ) = 1 (C.7)

where

ak+1 =
〈λpk, pk〉ζ
〈pk, pk〉ζ

, k = 0, 1, . . . , K − 1

b2k =
〈pk, pk〉ζ

〈pk−1, pk−1〉ζ
, k = 1, 2, . . . , K − 1. (C.8)

Using Eqns. C.5 and C.6, we see that {qk}
K
k=1 can be generated with a similar recurrence relation

as that for {pk}
K
k=1 but with different initializing conditions

qk+1(λ) = (λ− ak+1)qk(λ) − b2kqk−1(λ) , k = 0, 1, . . . , K − 1

q−1(λ) = −1, q0(λ) = 0 and b20 = 1. (C.9)
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Corresponding to these recurrence relations we have the tridiagonal matrix

JK =

































a1 1

b21 a2 1

. . .
. . .

. . .

b2K−2 aK−1 1

b2K−1 aK

































. (C.10)

Expanding det(zIk − Jk) with respect to its last row, we obtain the recurrence formula for the

determinant

det(zIk+1 − Jk+1) = (z − ak+1)det(zIk − Jk) − b2kdet(zIk−1 − Jk−1) , k = 0, 1, . . . , K − 1

det(zI−1 − J−1) = 0 , det(zI0 − J0) = 1

which is the same as that satisfied by {pk}
K−1
k=0 as well as {det(zIk − Ĵk)}

K−1
k=0 . Consequently

pK(z) = det(zIK − JK) = det(zIK − ĴK). (C.11)

Similarly

qK(z) = det(zIK−1 − J1
K−1) = det(zIK−1 − Ĵ1

K−1) (C.12)

where the superscript i is used to denote the matrix obtained by deleting the first i rows and
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columns. Therefore

qK(z)

pK(z)
=

det(zIK−1 − Ĵ1
K−1)

det(zIK − ĴK)
= e1(zIK − ĴK)−1e1. (C.13)

Above, the first column of IK is denoted by e1.

Expanding det(zIK − ĴK) about the first row or column we obtain from Eqn. (C.13)

qK(z)

pK(z)
=

1

z − a1 −
det(zIK − 2 − Ĵ2

K−2)

det(zIK − 2 − Ĵ1
K−2)

(C.14)

and continuing similarly we obtained a continued fraction representation for the Padé approximant

qK(z)

pK(z)
=

1

z − a1 −
b21

z − a2 − . . .−
b2K−1

z − aK

(C.15)

In the recursion method, the above expression is used to find the local density of states (Haydock

(1980)) from which all the necessary quantities are evaluated. Since the local density of states

has poles at the zeros of pK(z), a number of techniques to smoothen it have been developed.

These include either using a terminator, the simplest one being {ak}
∞
k=K+1 = a∞, {bk}

∞
k=K =

b∞ or evaluating the Padé approximant slightly away from the real axis. However, all these are

uncontrolled approximations and can lead to serious inaccuracies.
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Finally, we look at the connection between Padé approximation and Gauss quadrature (cf. e.g.

Van Assche (2006)). Multiplying both sides of Eqn. (C.4) by a polynomial of degree at most 2K−1

denoted by π2K−1(z), integrating along a contour Γ encircling the real line and subsequently using

Eqn. (C.2) we obtain
∫ b

a

π2K−1(λ) dEη,η(λ) =
K
∑

j=1

wjπ2K−1(λj) (C.16)

where

wj =
qK(λj)

p
′

K(λj)
(C.17)

is the residue of the Padé approximant at the zeros λj of pK . It is clear that all polynomials

of degree 2K − 1 are integrated exactly, therefore establishing the connection between the Padé

approximation, recursion method and the LSSGQ method.

119



Appendix D

LSSGQ method with the finite-difference

approximation

On using the finite-difference approximation for the Laplacian, we end up with the following

matrix eigenvalue problem

Hψn = λnψn , n = 1, 2, . . . , Nd (D.1)

where ψn = [ψn,1, ψn,2, . . . , ψn,Nd
]T is a vector of wavefunction values at the uniformly spaced

finite-difference nodes {xp}
Nd

p=1. The Lanczos iteration (Eqn. (4.48)) takes the form

bk+1vk+1 = (H − ak+1)vk − bkvk−1 , k = 0, 1, . . . , K − 1

v−1 =

































0

...

0

...

0

































, v0 =

































0

...

1

...

0

































, b0 = 1 (D.2)
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where

ak+1 = vkHvk , k = 0, 1, . . . , K − 1 (D.3)

and bk is computed such that ‖vk‖l2 = 1. For the pth finite-difference node, only the pth component

of the initial vector v0 is nonzero and is set to unity. The calculation of the spectral quadrature

nodes {λpk}
K
k=1 and weights {wpk}

K
k=1 for each node p ∈ [1, Nd] proceeds as described in Section

4.3.2. Subsequently, we can evaluate the Fermi energy by solving for the constraint

Ne = hD
Nd
∑

p=1

ρp (D.4)

where

ρp =
2

hD

K
∑

k=1

wpkg(λ
p
k, λf ) (D.5)

is the electron density at the pth finite-difference node. Further, the band structure energy and

entropy can be evaluated

Uband =

Nd
∑

p=1

up (D.6)

S =

Nd
∑

p=1

sp (D.7)
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where

up = 2
K
∑

k=1

wpkλ
p
kg(λ

p
k, λf ) (D.8)

sp = −2kB

K
∑

k=1

wpkg(λ
p
k, λf ) log g(λpk, λf ) + (1 − g(λpk, λf ) log(1 − g(λpk, λf ))). (D.9)

Above, h denotes the finite-difference nodal spacing and D is the spatial dimension.
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Appendix E

LSSGQ method applied to systems with

periodicity

In this section, we discuss the application of the LSSGQ method in the study of periodic systems.

Typically, this would involve the need for Bloch periodic boundary conditions on the wavefunction.

However, since we directly evaluate the electron density and not the individual wavefunctions, we

can circumvent the need for Bloch periodic boundary conditions using the procedure described

below. For clarity, we discuss the procedure in terms of the finite-difference approximation. How-

ever, the method is not restricted by the choice of basis.

First, we specify a representative volume ΩRV which has the property that the solution for the

entire system can be ascertained through a mapping of the solution obtained in ΩRV . We use a

finite-difference grid of uniform spacing h to discretize ΩRV , which we denote by χRV . Next,

we define an extended volume ΩEV ⊃ ΩRV , which is discretized using a finite-difference grid of

spacing h, denoted by χEV ⊃ χRV . We evaluate the spectral quadrature nodes and weights for χRV

using the procedure outlined in Appendix D. It is important to note that the size of ΩEV is chosen

such that all the vectors in the Lanczos iteration given by Eqn. (D.2) have nonzero components

only for finite-difference nodes inside ΩEV . Since the initial vector v0 always has a single nonzero

123



entry, the required size of ΩEV can be easily calculated using the bandwidth of the discretized H

and the number of spectral quadrature points.
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