Dynamical Simulation and Control of Articulated

Limbs

Thesis by

Marcus Quintana Mitchell

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1997
(Submitted October 2, 1996)

i

© 1997
Marcus Quintana Mitchell
All Rights Reserved

il

Acknowledgements

Many people have given me help, guidance, and inspiration in my years in graduate
school. To all of them I am very grateful.

I wish to thank Tom Annau, Carlos Brody, Sanjoy Mahajan, Erik Winfree, Sam
Roweis, and past members of the Hopfield group for their stimulating conversation
and insights.

I thank the members of my examining committee, Yaser Abu-Mostafa, Alan Barr,
Joel Burdick, and John Hopfield, professors who lead by example.

I particularly thank my advisor, John Hopfield, for providing a fantastic working
environment at Caltech.

I thank Laura Rodriguez for her unwavering support over the last few years.

I thank NASA and NSF for funding over most of my graduate career.

Special thanks go to my parents, who have consistently encouraged me, and to

Courtney Lee, whose love and support has been invaluable.

v

Abstract

Many useful mechanisms can be modelled as articulated systems: collections of rigid
bodies linked together with joints that constrain relative movement. The two parts
of this thesis study the complementary problems of simulation and control for such
systems. In the first part, we describe an implementation and extension of a physically
based modelling framework known as “dynamic constraints” in which forces of con-
straint linking bodies in an articulated system are explicitly calculated. In addition
to identifying some important robustness and stability issues for these calculations,
we extend the framework to systems whose internal degrees of freedom can be di-
rectly parameterized. This permits significant efficiency gains for mechanisms which
model limbs. The second part of the thesis centers on the adaptive control of limb
configuration through simulated actuators. In this problem, the nonlinear structure
and parametric details of a limb are assumed to be unknown. We present and illus-
trate the performance of an adaptive scheme which performs considerably better than
conventional nonadaptive techniques, and which is competitive with adaptive methods

which use more a priori knowledge of limb dynamics.

Contents
Acknowledgements iii
Abstract iv
1 Introduction and Overview 1
1.1 Themes 1
1.1.1 Constraint-based dynamical simulation 4

1.1.2 Mixture models and adaptive configuration control of open-

chainrobots oL 4

1.2 Related work 4
1.3 Preliminaries 5
2 Constraint-based dynamical simulation 13
2.1 Introduction 13
2.2 Point constraints for simple bodies 14
2.2.1 An unconstrained rigid bodyo 14
2.2.2 Point constraints and deviation functions 19
2.2.3 Assembling the constraint equation 22
2.2.4 Multiple bodies, multiple constraints 24

2.3 Examples 25
2.3.1 Standard behavioro 25
2.3.2 Constraints and work oo 28
2.3.3 Penalty methods and control 29
2.3.4 Singularity and pseudoinversion 30

2.4 Articulated bodies 33
2.4.1 Projecting onto the available degrees of freedom 34

2.4.2 Equations of motion in generalized coordinates 37

2.5
2.6
2.7
2.8

2.4.3 Point constraintso Lo 38
Examples 42
Conclusions L 43
Appendix 46
Programming constructso 48
2.8.1 Forward kinematics Lo Lo 50
2.8.2 Force to acceleration 50
2.8.3 Inertial properties Lo 52

A class of mixture models for adaptive

configuration control of open-chain robots 56
3.1 Imtroduction 56
3.2 Preliminarieso 58
3.3 Compensation schemes for dynamic forces 64
3.3.1 Learning rules and dissipative maps 68
3.4 Simulations 71
3.4.1 Desired trajectories and error measures 71
342 Results. 74
3.5 Conclusions 81
3.6 Appendix 81
3.6.1 Lyapunov arguments 81

3.6.2 Simulation details 82

vil

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2

2.3
24

2.5

2.6

2.7

2.8

2.9
2.10

An arm in a cluttered environment L. 2
A progression of articulated limbs 3
Coordinate frameso 6
Representing orientationo 7
Dynamic state variables 0oL 9
Constraining points on rigid bodies 10
Frames and variables associated with a rigid body 15
A point to nail constraint acting on a cylinder a. Constraint force
magnitude b. Kinetic energy of the body. Note that in converging to
the constraint surface, kinetic energy is “injected”. c. Magnitude of
the deviation and its derivative. 26
Residuals for solutions of the constraint equation 26
Point to nail constraint in the presence of gravity a. Constraint force
magnitude b. Kinetic and potential energy. 27
Point to nail constraint in with a spring attached to the cylinder a.
Constraint force magnitude b. Kinetic and potential energy. 27
Behavior of a point constraint with (D, D) = 0 initially, in the pres-
ence of gravity and no damping. a. ||D(t)|| for a 20 second period b.
Trajectory of D(t) in 3-space for the same period asina. 28
Total energy for the simulation of 3.4.2. 29
Hinge joints for articulated limbs 31

A point to nail constraint acting on a three-link arm. See text for details. 42
A point to nail constraint acting on a three-link arm. a. Constraint
force magnitudes, clipped at 150 Newtons. See figure 2.5 for complete

view. b. Kinetic and potential energy c. Deviation and its derivative. 44

2.11

2.12

3.1
3.2

3.3

3.4

3.5

3.6

3.7

viii
a. Complete view of constraint forces, semilog scale b. Acceleration
residuals. a. Singular values of the constraint matrix for the arm in
figure 2.5 . . . L
a. Constraint forces for another example of a constrained arm (not

shown). b. Singular values of the constraint matrix.

Arm-like manipulator models
Desired trajectories for tracking. a) Examples of three different joint
space areas covered by different 64(¢). b) Sinusoidal 64(t), shoulder
and elbow frequency .75 and 27 respectively. ¢) Point-to-point 0,(%),
bell-shaped velocity profile. In b) and c) circles are spaced 20 msec.
apart. ... oL e
Ly error for PD controllers at 3 different gain values for a range of
movement bandwidths of a sinusoidal trajectory 64(t) = (1.33(1 —
cos(2mkt), . 75cos(2rkt)). The bandwidth scale factor k varies from
0 to 1 along the horizontal axis.
Typical low-gain PD performance on a fast sinusoidal trajectory. a)
Joint angle errors asa function of time. b) Desired (solid) and actual
(circles) trajectories superimposed in joint space. Circles are spaced
20 msec. apart. Lo
Normalized L2 errors for the Slotine-Li arm, sinusoidal 04(t). Bars de-
note mean performance, error tics denote 1 standard deviation. Plot
combines results from different trajectory types, movement bandwidths,
and joint space areas.
Mixture-compensator performance on a fast sinusoidal trajectory (com-
pare with figure 4). a) Joint angle errors as a function of time. b)
Desired (solid) and actual (circles) trajectories superimposed in joint
space. Circles are spaced 20 msec. apart.
Normalized L2 errors for the Uno arm for different values of adaptation

gainn. a) n=0.1,b) n=0.05,¢) n=0.01.

44

44

59

72

73

74

75

76

ix
3.8 External forces: gravity. a) Absolute Ly errors with and without grav-
ity; std. deviation bars omitted for clarity. b) Normalized errors with
gravity present. L L. Lo
3.9 External forces: nonlinear viscosity, normalized errors.
3.10 Typical behavior of adapting parameters in a mixture compensator as

a function of time for a sinusoidal trajectory.

List of Tables

Chapter 1 Introduction and Overview

1.1 Themes

This thesis began as a study of a biologically inspired control problem, the control of
the configuration of moving limbs like arms, legs, or fingers. A clear understanding
of configuration control is a first step to designing mechanical systems to carry out
complicated tasks in the presence of other objects, sensor and actuator limitations,
and uncertainty about the environment. But a prerequisite for studying configuration
control is a firm understanding of the behavior of a limb under the influence of the
physical forces produced by actuators such as motors or muscles: the dynamics of
the limb. The calculations needed for the dynamics of limb models are the subject of

the first part of this thesis.

An articulated limb can be modelled as a collection of rigid bodies with constraints
on their relative motion. The joints prevent and allow certain types of motion, while
the actuators are able to induce motion by exerting forces on the links of the limb.
Other components of the environment (e.g. gravity, friction, other objects) produce
forces which induce and prevent movement as well; all these combine to determine
the motion of the limb over time. Of course, the limb segments aren’t perfectly rigid,
joints can break, and actuators can’t exert arbitrary forces, so a detailed account of
all the potentially relevant constraints may be difficult or impossible to find. But the
basic picture in figure 1.1 is a good starting point, and there are a number of interesting
research issues associated with simulating the behavior of collections of constrained

rigid bodies.

Distinct from simulation, control problems presume the availability of a number of

control inputs to a mechanical system. These control inputs can be translated into

actie‘ltors
gravity
rigid Iinks/
fixed
base

Figure 1.1: An arm in a cluttered environment

physical forces through actuator models, and dynamics calculations can be used to
determine the resulting movement. The locations and orientations of the individual
bodies in a limb can be parameterized to describe the configuration of the limb.
Figure 1.1 shows a progression of limb models with the number of configurational
degrees of freedom labelled. The most complicated limb shown is a reasonable model
of the structure of a human arm. Many aspects of the dynamics for this complicated
limb are reflected in the simpler arm models shown. Then the configuration control
problem, defined more carefully in a later chapter, involves choosing control inputs

which make the configuration parameters assume desired time-varying values.

One branch of the control problem is relevant to both purely virtual, simulated systems
as well as to “real world” physical mechanisms. In this branch, control is attempted
without perfect knowledge of the details of a dynamics model. The second part of this

thesis concerns adaptive solutions for control under these circumstances.

Figure 1.2: A progression of articulated limbs

4

1.1.1 Constraint-based dynamical simulation

This chapter describes a set of algorithms for the modelling and simulation of con-
strained rigid bodies. The system on which we build uses ideas from [Barzel and Barr,
1988] and [Barzel, 1992] and allows the simulation of individual rigid bodies moving
under holonomic constraints enforced through the application of forces and torques.
This “dynamic constraints” approach is powerful but can be quite inefficient when
applied to highly constrained systems such as articulated limbs. Equations of motion
for articulated limbs can be efficiently and directly generated, and we give formulas
for incorporating such equations into the dynamic constraints framework. Further, a
simple singular value decomposition-based method is given to enhance the robustness

of the constraint force calculations.

1.1.2 Mixture models and adaptive configuration control of

open-chain robots

A class of nonlinear compensators for the adaptive control of the configuration of
open chain manipulators is presented in this chapter. The compensation scheme is
based only on the linear structure of the equations of motion for rigid body dynamics.
Adaptation rules are developed based on the passivity approach introduced by [Slotine
and Li, 1991]. Through simulation experiments with a model two-link arm, we study
a number of performance issues which are not always apparent in formal stability

proofs.

1.2 Related work

The individual chapters contain references to the vast literature concerned with dif-
ferent aspects of these topics. But there are a few specific bodies of work that have

been particularly useful in framing problems and looking for solutions.

Murray, Li, and Sastry [Murray et al., 1994] give an excellent account of the math-

5

ematical tools for modern robot mechanics. Their presentation clarifies the essential
concepts and coordinate transformations needed to interpret constraints and formu-

late equations of motion.

[Barzel and Barr, 1988| set up a paradigm for constraint-based dynamical simula-
tion that is the starting point for the work described in the second chapter. The
conclusion of [Barzel and Barr, 1988] includes a number of ideas for future research,
and the work described here represents a study of some of those topics. [Pfarner, 1996]
has pursued similar extensions for efficient dynamics calculations for articulated sys-

tems in the dynamic constraints framework.

Slotine and Li Slotine and Li [1991] emphasize model-based adaptive control and
the passivity framework. Chapter 3 is directly inspired by their work, which is the
clearest presentation of the use of energy-based methods for nonlinear adaptive con-

trol in the literature.

The recent thesis research of Robert Sanner Sanner and Slotine [1995] and Brian
Mirtich Mirtich [1996] studies the adaptive control and dynamic simulation problems
respectively. Although there is a lot of overlap between their work and the work
described here, differences in philosophy and motivation make the research comple-

mentary rather than redundant.

1.3 Preliminaries

The chapters are self-contained, but it’s useful to review basics, fix some terminology,
and emphasize the appearance of subtle representational issues from the very begin-
ning. The information in this section can be found in many textbooks covering rigid

body dynamics.

The configuration of a single rigid body is intuitively described by the position

V<
\&

Lab frame Body frame

Figure 1.3: Coordinate frames

a
¢ R=| a
Body frame b a

~_ _» / 3 3 3
>

Lab frame a'b

o

—ac=b'c=
a aa=bb=cc=0

Figure 1.4: Representing orientation

and orientation of a coordinate frame attached to the body (figure 1.3). Position is
represented by a 3-vector z, and orientation by a matrix R whose columns are the
unit-length, right-handed, orthogonal axes of the body coordinate frame. Both x and
R are measured with respect to a laboratory frame, or inertial frame, which is
fixed. As the body translates and rotates in time, its configuration is described by the

resulting trajectories z(t) and R(t).

Note that representing orientation with a rotation matrix (figure 1.3) requires 9 num-
bers for the entries, making the dimension of the configuration nominally 9 + 3 = 12
dimensional. This is misleading, since the entries of R are not independently specifi-
able but are interrelated in a specific way: the columns are orthonormal as depicted
in the figure, so in matrix form, RTR = RRT = 13,3, the 3x3 identity matrix.> So al-

though given an object in some configuration we can find 12 numbers to describe that

'We use this notation for the identity matrix to avoid confusion with the moment of inertia matrix,
described below.

8

configuration, it is not true that any 12 numbers can be unambiguously interpreted
as an object’s configuration. The rotation matrix is a kind of “redundant code” that
makes studying rigid bodies analytically easier. “Valid” orientations are a subset of
R known as SO(3), the special orthogonal group of 3z3 matrices with determinant 1.
SO(3) has manifold structure, i.e. it can be identified with a curved three-dimensional

surface in a 9-dimensional space, where the surface is locally Euclidean.

The pair (z, R) is in turn a representation of SFE(3), the special Euclidean group of
rigid body transformations in 3-space. Elements of SE(3) are denoted by g = (z, R).
Analogous to SO(3), SE(3) can be thought of as a 6-dimensional curved submanifold
of R2. SF(3) describes the configuration space of a rigid body, and the fact that it
is 6-dimensional corresponds to the familiar fact that a rigid object free to translate
and rotate has 6 “degrees of freedom.” The degrees of freedom of a system are simply

the variables in a local parameterization of its configuration space.

The evolution of x and R in time is determined by the influence of forces and torques on

the velocity and angular velocity of the body, respectively (figure 1.3. The Newton-

dp _
dat

Euler equations state that F, and % = T, where p is the linear momentum
maz, and L is the angular momentum Jw. Angular velocity w is interpreted as the
instantaneous right-handed spinning of a body about a unit axis w/||w|| at rate ||w||
radians per second.? I is the 323 matrix whose entries are the moments and products
of inertia about the axes of the body frame R.? As the body orientation R with respect
to the lab frame changes, so does I; it is given by I = RI,R” where Iy is the (constant)
inertia matrix with respect to the body-fixed coordinate frame. Note that I and I,

are always invertible.

So the rigid body is a dynamical system whose state — a collection of quantities sum-

marizing the history of the system — is given by 18 numbers (z, R, p, L), the evolution

2Clearly, no axis is uniquely defined when ||w|| = 0.
3For a rigid body of mass distribution p(x), the inertia matrix is a 3x3 array.

angular velocity 9

force at

a point Dynamic state:

(X’ R’ p’ L)

Figure 1.5: Dynamic state variables

of which are governed by the first-order equations

dx

o7 =

Cil—f = wxR

% 0

fi—f — () (1.1)

where x denotes the cross product, along with the static relations w = I7'L, I =

RI,RT, v = Lp. Note that the only complicated parts concern R and w, reflecting the

m

previously mentioned coupling between the entries of R.

With multiple bodies linked together by joints, the situation becomes a little more
complicated. A joint is a constraint on the relative configurations (and velocities and

accelerations) of the linked bodies. The presence of joints adds more coupling between

10

R p=h B=b =R B¢
. _ etc.
! =
Separate links Ball-and-socket Hinge

Figure 1.6: Constraining points on rigid bodies

the state variables for a collection of otherwise independent bodies.

One way to approach the equations of motion for collection of constrained bodies
is to explicitly solve for the forces of constraint needed to hold the joints together.
For example (figure 1.3), a ball and socket joint (e.g. a shoulder or a hip) requires
that two points, one on each link, occupy the same location in space and have zero
relative acceleration and velocity. Denoting the points on the two links that are to
be joined as p; and ps, it is possible to find the relative accelerations of the points in
terms of the forces acting on the two links. If a constraint force f.; acting on body
1 at point p;, and another f., on body 2 at point p,, it should be possible to find
values for these forces that would hold the points together for all time. Chapter 2
details this kind of calculation; the upshot is that the forces of constraint can be found
as the solution to a linear equation whose terms depend on the state variables of the

constrained links.

11
So given an understanding of the dynamics of individual bodies, the dynamics for
a linked system consist of the individual equations, and a linear constraint force cal-
culation “on the side.” Notice, though, that many more variables are used to describe
the state of the system than should be strictly needed, since the joint constraints
couple the degrees of freedom of the individual links. Direct parameterization of the
available degrees of freedom addresses this issue, and the idea of generalized coordi-

nates is central.

Collar and Simpson ([Collar and Simpson, 1987], p. 248) give an simple descrip-

tion of the idea of generalized coordinates:

“A set of generalized coordinates is a set of variables which describe
uniquely the dynamical configurations of the system, and which may be
varied arbitrarily and independently without violating the constraints of
the system. An infinite number of sets of generalized coordinates exists,
but each set has the same number of members. For a system with holo-
nomic constraints, this number is the number of degrees of freedom of the

system.”

Lagrange’s equations come from the fact that work? is a change in kinetic energy,
and hence does not depend on what coordinates one chooses to use to describe the
system. By equating work done in a constrained coordinate system with work done in

a (hypothesized) generalized coordinate system, the Euler Lagrange equations result:

d OBy OBy _ 1.2
ddt 90 00 | (1.2)

where F} is the kinetic energy, in this case the Lagrangian for the system®. The im-
portance of this set of equations is that if the kinetic energy of a system can be written

in terms of generalized coordinates, the equations of motion can be determined from

4The work done by a force acting at a point is the product of the magnitude of the force and the
displacement of the point in the direction of the force.

5A full Lagrangian incorporates potential energy as well, but this is unnecessary for our purposes
as potential forces can always be incorporated later.

12
(1.2). Kinetic energy is typically a quadratic form in some velocity parameterization,
so that (1.2) results in the second-order dynamics familiar in mechanics, and discussed

in more detail in the chapters to come.

13

Chapter 2 Constraint-based dynamical simulation

2.1 Introduction

The ability to simulate the behavior of mechanical models has a wide range of po-
tential applications, and some of the most interesting concern the creation of virtual
environments in which to study problems in movement control and manipulation of
objects. Rigid bodies are a basic building block for mechanical simulators, and a va-
riety of mechanisms can be modelled as a collection of constrained rigid bodies. This
paper discusses one useful class of constraint — point constraints — and gives details
of a simulation environment for articulated bodies constructed with and acting under

the influence of these constraints.

We build directly on the work of [Barzel and Barr, 1988], who described a frame-
work for the robust implementation of point constraints for individual rigid bodies.
This framework, known as the dynamic constraints approach, provides a flexible
means for constructing articulated bodies, but can be computationally demanding for
highly constrained systems. Fortunately, dynamic constraints can be extended to al-
low the use of more efficient algorithms for determining the unconstrained motion of
certain common types of articulated system. In fact, it is possible to identify a simple
set of vector and matrix quantities required to calculate the forces associated with
dynamic constraints, so that any object model (rigid body, articulated body, mass-
spring lattice) for which these quantities can be computed can also be dynamically
constrained. This extension of the dynamic constraints approach is the main topic of

this paper.

Physically-based modelling is a highly active research area concerned with developing

and implementing mathematical models of physical (typically mechanical) phenomena.

14
Some of the most relevant and pioneering recent work has emerged from projects at
Cornell (Baraff [1992], Cremer [1992], Hopcroft [1986]), Caltech (Barzel [1992], Barzel
and Barr [1988]), and Berkeley (Mirtich [1996], Lin and Canny [1995]), to name only
a few. The work described here and in the companion paper [Mitchell, 1996] is an
attempt to draw together a number of ideas from this literature to allow the simu-
lation of multiple constrained, colliding, and contacting rigid bodies in the presence

of active and passive forces such as gravity, spring forces, friction, and actuator forces.

In section 2.2, we review the important issues for simulating individual rigid bodies
with point constraints. Section 2.3 describes examples and commentary on aspects of
the performance of point constraints, and give a simple method for dealing with under
and overdetermined constraint forces. Section 2.4 gives the extension to articulated
bodies and comment on the general requirements for dynamic constraints. Section 2.5
illustrates the performance of dynamic constraints with a few case studies. Section
2.6 concludes by discussing a number of practical issues associated with building a

robust simulation environment, and gives suggestions for future research.

2.2 Point constraints for simple bodies

2.2.1 An unconstrained rigid body

The equations of motion for a single rigid body acting under the influence of force F'

and torque T are

dt
dR dg 1
art 2 _ 2 2.1
g et ar 291 (2.1)
dp
£z - F
dt
dL
== (2.2)

.15
angular velocity

force at
a point

' linear velocity
)— L=Io p=mv

Figure 2.1: Frames and variables associated with a rigid body

Dynamic state:
(x, R, p, L)

where x is the position of the body’s center of mass; R is an orthogonal matrix de-
scribing a frame attached to the object, originating at the center of mass; ¢ is a unit
quaternion, an alternate description of the body frame R; v is the velocity of the cen-
ter of mass; w is the angular velocity; p is the linear momentum; and L is the angular
momentum. The symbol x denotes the cross product and * denotes quaternion mul-
tiplication.! The configuration of the body is given by (x, R), which parameterizes
SFE(3), the Euclidean group of rigid body transformations which acts as a configu-
ration space for a rigid body. The state or dynamic state of the body is given by
(x, R,p, L) or equivalently (x, R,v,w). The configuration and state of a collection of
bodies is defined in the obvious way. All quantities are measured with respect to a

laboratory frame.

The differential equations (2.2) are a mathematical model of the behavior of a rigid
body, and approximate solutions can be obtained by numerically integrating the equa-
tions. The position, momentum, and angular momentum are described by elements
of R3, and their respective differential equations are extremely simple. However, the

parameterization of orientation is more complicated. A matrix R is a valid represen-

1See appendix for background on the cross products and quaternion multiplication appearing in
(2.1).

16

A rotation matrix RR = R R'= 13)(3 has an
equivalent axis-angle, or quaternion representation
with four components:

q =[cos(¢/2) sin(¢/2)a, sin(¢/2)a, sin(¢/2)a,]
gl =1

Lab frame /-

tation of orientation only if it is orthonormal, and similarly, a 4-tuple ¢ is valid if it is
of unit length. Formally both differential equations have solutions with the property
that if R (resp. ¢) is a valid orientation at time tg, then solutions of 2.1 will be valid
for t > ty. In both cases,? the set of valid orientations is a smooth submanifold of R°
or R*, and the differential equations 2.1 define vector fields tangent to the manifold

surface.

The inevitable presence of small numerical errors due to the discretization of 2.1
will cause the representations R and ¢ to slowly depart from validity, as each non-
infinitesimal step taken by a numerical integrator potentially leads farther and farther
away from the manifold of valid orientations. As a result, maintaining the validity of
the components of R and ¢ in the strictest manner possible is essential to avoid the
possible rapid onset of instability. The quaternion representation is quite convenient
for this purpose since normalizing ¢ achieves the desired projection onto the set of
valid orientations. In contrast, the projection operation for R, involving normalization

and orthogonalization for the rows, is a more complicated prospect, though approaches

2Quaternions have the additional issue that gand —q describe the same orientation, but this is not
a problem for numerical integration.

17
do exist [Barr, 1983]. In the sections below, the rotation matrix R is used for analysis
involving body orientation, but for implementation, the quaternion is used in conjunc-

tion with explicit renormalization.

Forces and torques acting on a body can stem from many sources, such as grav-
ity, springs and dampers, or simulated actuators. Work and energy are important
quantities to keep track of since in addition to forces and torques, integration noise
and numerical errors can inject kinetic energy into a system. The instantaneous work

done by a force and torque at time ¢ is given by
AKE = FTy + T w (2.3)

and the kinetic energy is given by

1 1
KE = §mUTU + §wT[w (2.4)
where m is the mass of the body and [is the orientation dependent inertia tensor

given by I = Note that I = RI,RT where I is a constant inertia tensor expressed

in the body frame.

A more compact notation, motivated by the form of the kinetic energy, will be useful
in one of the sections below. The body linear velocity is defined as v, = RTv; it
is simply the velocity of the center of mass as viewed from a coordinate system coin-
cident with the body frame.? Similarly, the body angular velocity is w, = RTw.

Then the kinetic energy becomes

1 1
KE = §mv,,TRTRv,, + 5w,,TRTIRw,, (2.5)

3This is not the same as “moving with the body frame,”

is always exactly zero.

in which case the center of mass velocity

18
and since R is orthogonal and I = RI,RT,

1 1 1
KE = §mu,,T vy + §w,,T Tywy = 5V,,TM,,V,, (2.6)

w
where V, = °| is the (total) body velocity of the rigid body and M, is the 626
Up

generalized inertia matrix expressed in the body frame and given by*

I 0
My=|" (2.7)
0 mlsys

Just as linear velocity describes an element of the tangent space of R3, the body
velocity describes an element of the tangent space of SE(3), the configuration space
of a rigid body. Such elements are known as twists [Murray et al., 1994]; if gq =
(Zap, Rap) € SE(3) transforms points in frame b to a new frame a, then twists (tangent

vectors) in frame b transform according to

Ry 0
Vo = Vy = Adgp Vi (2.8)
jabRab Rab

where & denotes the antisymmetric dual of a vector x (see appendix); ab = a X b.
The dual and cross product notations are used interchangeably in the sections below.

Ad, . is called the adjoint, an invertible 626 matrix.

9ab
In addition to the body frame and lab frame, a third frame intermediate between
the two is useful. The spatial frame has the same orientation as the lab frame, but is
located at the body frame origin, the center of mass. The g = (0, R) maps from the

body frame to the spatial frame, and g = (z, 13,3) maps from the spatial frame to the

41,2n denotes the n by n identity matrix.

19

lab frame. The spatial velocity is given by

Ruwy w
Vs = Ad,r)Vs = = (2.9)
Ruy v

and the spatial inertia of the body is obtained from the transformation invariance

of the kinetic energy:

1 1, _
KE = §VbTMbe:§(Ad(ofR)Vs)TMb(Ad(OfR)VS) (2.10)
1
= VMY, (2.11)
where
M, = Adge MyAdgs (2.12)
RI,RT 0 I 0
_ _ (2.13)
0 ml3z3 0 mlsgs

2.2.2 Point constraints and deviation functions

The equations above can be used to simulate individual bodies acting under the in-
fluence of known time-varying forces and torques. The next step is to design forces
and torques to implement specific constraints, and this section reviews the methods
in [Barzel and Barr, 1988] used to constraint points on bodies. The terminology in
this section comes from [Barzel, 1992] and [Barzel and Barr, 1988]. The first essential
idea is that of a deviation function: a differentiable function D(¢) of the state of a
collection of bodies such that D = 0 implies satisfaction of some constraint.> For
example, a useful way to constrain a body involves “nailing” a point on the body to
a point in lab coordinates — the point-to-nail constraint. Therefore a natural devia-
tion function is D(t) = p(t) — n, where p is the body point at which the constraint

applies, and n is a nail point, both in lab coordinates. In order to maintain D at

®Deviation functions are typically vector valued, so an equation like D = 0 has the obvious
interpretation.

20
zero through the application of forces, a deviation function should be twice differen-
tiable, and its second derivative D should be a linear function of forces present in
the system. These requirements lead to a tractable solution for the forces® Any twice
differentiable function of the configuration of the system of bodies might serve as a
valid deviation function. In a slight abuse of language, a deviation function can be

considered synonymous with the constraint it embodies.

The dimension of a constraint is the dimension of the associated deviation func-
tion; for example the point-to-nail constraint is 3 dimensional. This paper exclusively
considers 3 dimensional constraints which are functions of the locations of points on
bodies — point constraints — as these are the most important and useful type of equal-
ity constraint. As the name suggests, point constraints can be enforced with forces
acting at points on the constrained bodies. Given a collection of deviation functions
D; for point constraints, the goal is to find constraint forces that will bring D; to
zero for all 4, and maintain D; = 0 thereafter. The dynamic constraints approach

provides a robust way of calculating these forces.

The example of a single rigid body and a single point-to-nail constraint will illus-
trate the method. Let point p be considered rigidly attached to a body, so that its
motion is determined by that of the body. Then p = Rb+x, where b gives the constant
body-frame coordinates of the constrained point; the time variation of p is due solely
to that of (z, R). For a point attached to a box, the point-to-nail deviation function
D = p — n, where n is a point fixed in the lab frame. Let F,. be a constraint force
acting on the box at p, and let F', T" denote any other forces and torques acting about

the center of mass. Then the acceleration of p, and hence D, due to all forces and

6Note that this is slightly different than Barzel and Barr [1988], who look at forces and torques.
For reasons that will become clear later, we consider only forces of constraint acting at points, with
no real loss of generality.

21

torques is

D = j (2.14)
= i+ Rb (2.15)
1 d(w X R)
= —(F.+F)+— 2.16
(et F)+—p (2.16)
= Yma o m)x ™ xR (2.17)
 om € dt '

The angular acceleration ‘fi—‘: will depend on the total torque about the center of mass.
F, will contribute a torque of (Rb) x F,, and a simple calculation shows that ‘2—‘;’ =
I Lo+ I"Y(Rb) x F, + I"'T where, as stated above, T represents any torques on
the body other than those due to F.. Incorporating this into equation (2.17) is not

difficult, giving (see appendix or [Barzel and Barr, 1988] for details)

D = AF,+p (2.18)
where
A=y — (RO (RD) (2.19)
and
8= LF — (BO)I'T — (RO fw +w x w x (RD) (2.20)

m

A fundamental property of accelerations for mechanical systems is the linear depen-
dence on force seen in (2.18), and any deviation function which depends statically on
configuration will have an acceleration which is linear in force. The terms making
up (in (2.20) consist of accelerations due to nonconstraint forces and torques, and

centripetal /Coriolis accelerations arising from the rotational motion of the body.

22

2.2.3 Assembling the constraint equation

Consider an initial state for the body in which (D, D) = (0,0). Then provided a
solution exists and is unique, D = AF, 4+ # = 0 can be solved at any given time for
the unknown constraint force. Applying F, then guarantees D = 0 and the constraint
will be maintained indefinitely. However, solutions to AF, + 3 = 0 will always contain
some numerical error, yielding a small residual AF, + 3 = n. The application of F,
then corresponds to D = 7, with the result that (D, D) will drift away from (0, 0) in
a manner determined by the properties of the disturbance 7(t). More importantly, it
the initial state for the body does not satisfy (D, D) = 0, then solving D =0 is not
adequate to enforce the constraint. The effects of numerical disturbances and nonzero
initial (D, D) can be addressed with stabilizing feedback, the main innovation of the

dynamic constraints approach.

The equations of motion dynamics for the rigid body implicitly define a second order
deviation dynamics, (2.18) above. Then (D, D) = 0 defines a constraint surface,
a possibly time-varying subset of the 6-dimensional “deviation state space.” Conver-
gence to this surface can be achieved by choosing D to yield asymptotically stable
behavior. For example, D 4+ 2\D + A\2D = 0 gives an exponentially stable deviation
dynamics when A > 0. The choice of second order, critically damped dynamics leads
to well behaved relaxation to the constraint surface in the ideal case in which the

constraint equation (2.18) can be solved exactly:
F, =AY (=3 —2\D — X\2D) = A7 (-B). (2.21)

Numerical inaccuracies lead to D + 2\D + X\2D = n(t). If is bounded, it’s easy
to see that (D, D) will converge to a neighborhood of the origin, the size of which is
governed by the bound for 7.

Multiple point-to-nail constraints are easily handled by forming a block-structured

constraint equation whose blocks take the form of the matrix and vector A and B

23
in (2.21). Denote the different constraints by D;, each acts at a point (in body frame
coordinates) b; and has an associated constraint force F;. For N simultaneous con-

T
straints, let D = |DT" DI . D%} be a 3N dimensional concatenated deviation

vector, and similarly let F' = { o fﬂ be a 3N dimensional concatenated

vector of constraint forces. Then
D==AF+B (2.22)

where A is a block-structured matrix with N by N blocks, each of which is 3z3, and B
is a 3N vector. Let A;; be the ijth block of A (not the ijth entry, but a 323 matrix).
Then A;; is relates the force applied at a point b; to the acceleration observed at a
point p;. This relationship requires information about both constraints and the mutual
body which they act upon. Specifically, if constraint 7 acts at b;, and constraint j acts

at b;, then

1 —_— —_—

is the formula for block A;;. The vector B is block structured as well; each of its N
3-dimensional vector blocks is given by (2.20) and the stabilized constraint expression

(2.21), to give

]_ — — N .
B;=f3=—F — (Rb;)] "T — (Rb;)I 'Lw +w x w x (Rb;) +2AD; + \>D; (2.24)

m

for the block corresponding to constraint j.

The constraint force calculation boils down to the solution of a linear equation (2.22),
which can be a computationally intensive task when many constraints are present.
The matrix A may be sparse, in which case fairly efficient solution methods can be
used. But it may also be singular, with both underdetermined and overdetermined
cases as pointed out in [Barzel and Barr, 1988]. This fact is both a weakness and a

strength of the dynamic constraints approach, and a later section will discuss it in the

24

context of articulated systems.

2.2.4 Multiple bodies, multiple constraints

The notation so far is specialized to the case of a single body acted on by a single
type of point constraint, but the multiple-body multiple-constraint-type case follows
directly. The form and dimensionality of (2.22) does not change; the blocks A;; are still
323 but they now depend on the configuration of all the bodies which both constraints
¢ and 7 act upon. Typically point constraints act on one or two bodies; for example a
point-to-point constraint acts on two bodies with a deviation function D = p, — p for
points p, on body a and p, on body b respectively. Since D = p, — pp, the expressions
(2.19) and (2.20) can again be used, with proper indexing and bookkeeping. Other
versions of point constraints are possible; some are given in [Barzel and Barr, 1988]

and others, such as point-to-line, -curve, and -surface,

Constraints on the velocities of points can be resolved with forces in a variant dynamic
constraints approach as well. In this case, because of the first-order relationship be-
tween force and velocity, only D, as opposed to D, is required to expose the linear force
dependence of the deviation dynamics. For example, if D = p — v represents a devia-
tion function for a point velocity constraint where v is constant, then D = p = AF + 3
as in the case of a point to nail constraint. Solving AF, + = —AD where A > 0
then achieves a stabilized first-order deviation dynamics D 4+ AD = 5(t), analogous
to the stabilized dynamics for configuration constraints given above. Extensions to
more general point velocity constraints are immediate: all that is required is that the
deviation function be a differentiable function of the state (velocity and position) of

the system.

From one perspective, the process of computing forces of constraint needed to achieve
a desired acceleration can be thought as a type of acceleration constraint. The dif-

ference with point and velocity constraints, however, is that acceleration is not an

25
integrated quantity in a dynamic simulation. Rather than using constraint force cal-
culations to converge to an acceleration value for which constraints are satisfied, setting
a desired acceleration is simply a matter of solving the linear equation relating forces

and accelerations as accurately as possible.

2.3 Examples

The formal ideas behind dynamic constraints are relatively straightforward to under-
stand, but there are a number of observations that are not always obvious from the
presentations in the computer graphics literature. This section underlines a few key
points and concludes with a simple scheme for enhancing the robustness of dynamic

constraints for articulated figures.

2.3.1 Standard behavior

Dynamic constraints force convergence to a constraint surface by cancelling any forces
which affect the deviation function, and replacing the unconstrained dynamics with
critically damped behavior. In overcoming other forces, dynamic constraints inject
energy into the system: constraint forces do work as the constrained points move.
Figure 3.4.1 illustrates this property for a point to nail constraint acting on the end a
1 k.g. cylinder. Because the constraint does not act through the center of mass, the
resulting rotational movement generates centripetal and Coriolis forces as detailed in
the formulas above. Figure 3.4.1a shows the constraint force magnitude as a function
of time; note that after transients it approaches a constant value. Figure 3.4.1b shows
the kinetic energy of the body, which increases as the deviation is reduced and also
apparently approaches a constant value. Further 3.4.1c shows the magnitude of the
deviation function and its derivative, displaying the expected critically damped stable
behavior. Finally, 3.4.2 shows the residuals of the constraint equation solution — the
disturbance 7n(t) due to numerical error. All the simulations in this paper display the

behavior of figure 3.4.1c and 3.4.2 unless otherwise noted.

Constraint force magnitude (Newtons)

26

o
o
T

4

— DIl
— — lldDrdtll

Energy (joules)
o

o

=

IIDII (meters) and IldD/dtll (meters/sec)
o

— Kinetic (total) energy

2 30 i 2 3 0 T 2
Time (seconds) Time (seconds) Time (seconds)
Figure 2.2: A point to nail constraint acting on a cylinder a. Constraint force magni-
tude b. Kinetic energy of the body. Note that in converging to the constraint surface,
kinetic energy is “injected”. c. Magnitude of the deviation and its derivative.

2

o
= -

0 . .
0 1 2 3
Time (seconds)

Figure 2.3: Residuals for solutions of the constraint equation

Figure 3.4.2 shows the same situation in the presence of gravity. For this case,
the constraint force magnitude oscillates with the exchange of kinetic and gravita-
tional potential energy; figure 3.4.2b shows the total energy approaching a constant.
Finally, 3.4.2a and b show a similar situation when a spring (stiffness 10N/m, damping
3 N/m/s) is attached to the cylinder. In each case, the initial conditions are identical,
and the although the movement of the constrained point on the body is identically
driven to the desired value, the complete motion still depends on the details of any

other forces present.

27

~ = Kinetic energy
Potential energy
3l — Total energy

Energy (joules)

Constraint force magnitude (Newtons)

Time (seconds) Time (seconds)

Figure 2.4: Point to nail constraint in the presence of gravity a. Constraint force
magnitude b. Kinetic and potential energy.

35 T T 14 T T
12
_ 10f
3
2
2
3 7
z o gl
<]
9 3
S S
s 3
£ E 6 — = Kinetic energy
g " Potential energy
o I — Total energy
4r 1
[
! |
!]
/
of ¢ LAY
b [N
| N PN B
| v/ v N N S
10 L L 0 - L L
0 1 2 3 0 1 2 3
Time (seconds) Time (seconds)

Figure 2.5: Point to nail constraint in with a spring attached to the cylinder a. Con-
straint force magnitude b. Kinetic and potential energy.

28

x10°
.

x10”

6F B Point-to-nail deviation D(t)

=
(meters)
o

©
D_3

1IDII (meters)

o

.
UO 2 4 6 8 10 12 14 16 18 20
Time (seconds)

D_2 (meters)

D_1 (meters)

Figure 2.6: Behavior of a point constraint with (D, D) = 0 initially, in the presence
of gravity and no damping. a. ||D(¢)|| for a 20 second period b. Trajectory of D(t)
in 3-space for the same period as in a.

2.3.2 Constraints and work

When a simulation is initialized with (D, D) = 0, in principle the constraint should do
no work on the system at all. But since a point constraint cannot perfectly implement
an abstract “nail” due to numerical errors, some movement of the constrained point
is to be expected. One might expect (or hope) that the small size of the residuals
would imply that the work done by a constraint which is initially satisfied would be
“small” as well. Figure 3.4.2a shows the magnitude of the deviation function for a
constrained cylinder under the influence of gravity with zero damping over a 20 sec-
ond period. The maximum deviation over that time is certainly small, but is many
orders of magnitude larger than the residuals in figure 3.4.2. Figure 3.4.2b shows a
3-D plot of the components of D as they vary in time; the deviation moves about in

a small neighborhood of the origin.

The total energy of the system is shown in figure 3.4.2; there is a steady drift of
energy due the action of the constraint force. Note that the increase in error is not
easily attributable to numerical integration errors. It is true that standard numerical
integration methods (such as the 4th-order Runge-Kutta method used here) are not
guaranteed to conserve energy for mechanical systems. However, simulations involv-

ing rotational motion with no constraints, gravity or damping for the same object used

29

o

o1 o o
w > o

Total energy (joules)
o
o

.
0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

Figure 2.7: Total energy for the simulation of 3.4.2.

in figure 3.4.2 show that energy is in practice perfectly conserved. The energy gains
of figure 3.4.2 represent a macroscopic injection of energy by the dynamic constraint,

despite microscopic acceleration residuals at any given time.

As a result, some care must be taken in the use of a dynamic constraint as a model
of a workless constraint; energy is clearly not conserved in frictionless, undamped
settings. It is important to point out that undamped settings are rare, and that when
there are forces such as friction, air and fluid resistance, etc., the energy contribution

of a dynamic constraint may not be significant.

2.3.3 Penalty methods and control

Penalty methods ([Platt, 1989]) are a conceptually simpler way to model point con-
straints than the approach used here. These methods essentially insert a very stiff,
perhaps nonlinear spring with rest length zero between points on bodies to be con-
strained. Any additional forces on the bodies may disturb the constrained points, and
the spring will resist such disturbances. Adding damping is typically used to suppress
ringing, and the methods are equivalent to high gain proportional-derivative (PD)
“control” common in the robotics literature [Arimoto and Miyazaki, 1983]. Penalty
methods are local, in the sense that the information needed to generate a constraint

force depends only on the points associated directly with the constraint. In contrast,

30
dynamic constraints are global, requiring knowledge of all the forces and all the iner-
tial information about a system. Penalty methods are much simpler to implement than
dynamic constraints, and represent a common alternative; for example, the compre-
hensive simulation package Newton [Cremer, 1992] uses penalty methods to enforce

constraints.

Although penalty methods and PD control are fundamentally useful, care must be
taken when gains are very high to prevent instability. Like dynamic constraints,
penalty methods inject energy into the system inadvertently, but the problem is much
more severe. The discretization imposed by numerical integration makes this a diffi-
cult problem to overcome, especially if nonlinear gains are used. Further, the degree
to which a point constraint is satisfied will vary depending on the additional forces
present, causing potential problems with joint integrity. The dynamical constraints
approach can be seen as addressing these issues by using global knowledge: simplic-
ity is traded for accuracy. The dynamic constraints approach has a close relationship
with control methods in the robotics literature known as feedback linearization [Mur-
ray et al., 1994] or computed torque [Spong and Vidyasagar, 1989], which also use
complete and global knowledge of the structure and parameters of a system to impose
a desired dynamics. Penalty methods and dynamic constraints are complementary
simulation methods and they are dual to the range of control methods seen in the
robotics literature. The next chapter discusses these control issues in more detail,

using many of the concepts presented on the simulation side.

2.3.4 Singularity and pseudoinversion

For the simple examples presented so far, the solution of the linear constraint equation
has been of no difficulty. For many systems with many constraints and linked bodies,
efficient solutions of (2.22) can be found with standard methods, perhaps even exploit-
ing sparsity or special structure of the constraint matrix. However, it is common to

encounter situations where the constraint matrix has less than full rank, leading to

31

Two point constraints
make a hinge

+~— hinge joint

A

Figure 2.8: Hinge joints for articulated limbs

underdetermined or overdetermined constraint forces. One simple example of how this
can occur comes from an application of point constraints to the construction of artic-
ulated limbs. Shoulder and hip joints can be easily modelled with point constraints,
since these joints allow three rotational degrees of freedom and are mechanically sim-
ilar to the idea of a point constraint. Elbow or knee joints, generally referred to as
hinge joints, allow only one degree of freedom between bodies. The obvious way to
implement a hinge joint in the dynamic constraints setting is to use two point con-

straints (figure 2.3.4).

Because a hinge joint removes 5 mechanical degrees of freedom, two point constraints
used in this way will have underdetermined constraint forces. The singular value de-
composition (SVD, [Press et al., 1990]) is a typical method for handling this situation,

4

and is suggested in [Barzel and Barr, 1988] to give “reasonable” performance. By set-
ting “small” singular values of the constraint matrix to zero before inverting to solve
for the constraint forces, the SVD is intended to avoid excessive constraint forces in
underdetermined directions. However, the definition of “small” can be problematic in a

simulation environment where numerical values are intended to have physical meaning.

Defining “zero” as a number close to machine tolerance may prevent problems during

32
the solution of the constraint forces, but the subsequent use of the solution as physical
forces can wreak havoc with numerical integration. We have found the straightfor-
ward use of the SVD to be unacceptable, and instead use an iterative approach that

can be interpreted as a (slightly) more complete model of a constraint between bodies.

Since point constraints are intended to model the actual connection between bod-
ies, the constraint forces required are physical quantities. A more complete model,
therefore, should associate a large but finite force magnitude with each point con-
straint, to represent the maximum force which can be exerted by a constraint. Since
a real joint of an articulated limb has finite strength, so should a simulated joint. If
constraint forces are calculated which exceed some maximum, an iterative procedure
is invoked. The singular values of the constraint matrix are eliminated one by one,
in ascending order, and the constraint force solution obtained at each step. If the
constraints are underdetermined, and the joints are sufficiently strong, then at some
point a feasible solution is obtained, giving small residuals. If the constraints are
overdetermined, and/or the joints are not strong enough to exert force in the required
directions, residuals will be “large.” Each point constraint must also therefore include
a bound on the maximum expected deviation. This bound will depend on the partic-
ular application, but it too has physical meaning and embodies the integrity of the
joint. If a deviation bound is exceeded, then the constraint is considered “broken.”
Such a constraint can be removed from the constraint equation, which can then be
solved again for the remaining constraint forces. Simulations in the next section will

illustrate the usefulness of this simple scheme.

Note that another method for dealing with small singular values has found use in
the robotics literature. The “damped least squares” method [Wampler and Liefer,
1988] simply replaces all inverse singular values 1/u with u/(u? + p?) , where p > 0
is chosen in a task dependent way. The approach is elegant for control, in that solu-
tions are accurate when singular values are “large,” but become smoothly less so near

singularities. The difficulty of clearly interpreting and choosing p, however, led us to

33

prefer a more functional criterion.

2.4 Articulated bodies

Point constraints give a tremendous amount of flexibility in constructing complicated
figures, but they are limited by the relative inefficiency of having to solve a potentially
ill-conditioned matrix each time the accelerations for the bodies in a system are re-
quired. For certain mechanisms, constraints remove most of the degrees of freedom of
the component rigid bodies. For example, the planar arm shown in 2.3.4 can be con-
structed from 3 bodies for a total of 18 configurational degrees of freedom. The joints
are modelled as hinges, each of which can be implemented with two point constraints.
The final system has only 3 degrees of freedom, but its simulation requires integration
of 18 nominal degrees of freedom, combined with solution of an 18 dimensional linear
equation in order to determine constraint forces. Most of the effort for such a system
goes towards the pseudoinversion of the constraint matrix, generating potentially large
constraint forces that nonetheless do very little work. A more direct method for the
simulation of such highly constrained systems would improve efficiency and numerical

conditioning.

A more efficient approach entails the direct parameterization of the available degrees
of freedom. For example, the angles between the links in figure 2.3.4 are a natural
description of the configuration. As is typical in the robotics literature, the equations
of motion for this articulated system can be written directly in terms of the joint angle
parameterization. Rather than calculating the forces needed to keep the configuration
of the system near a constraint surface defined by the hinge joints, this approach inte-
grates directly on the surface. Forces transverse to the constraint surface are projected
away rather than explicitly calculated and cancelled. As a result, no configurations
for which the constraints are violated are ever encountered. The parameterization of
the constraint surface typically defines a set of generalized coordinates in which

unconstrained motion can occur.

34

Note that a generalized coordinates can be complementary with an approach based on
explicit constraint calculations. This is because in certain situation, e.g. self-assembly
of structures, configuration control, or simulations in which constraints can “break,”
movement on and off the constraint surface must be represented. (also, there are con-
straints that cannot be globally parameterized, e.g. self-motion manifolds). Further,
even if more direct methods for calculating the dynamics of an articulated body can
be used, one might like to use the articulated body as a primitive to create still more
structures with the dynamic constraints approach. This section details the calcula-
tions needed for the case of open kinematic chains constructed with hinges (such as

the arm in 2.8), and comments on the extension to other types of nonrigid body.

2.4.1 Projecting onto the available degrees of freedom

To begin with, note that the fundamental tools for the derivation of articulated body
equations of motion are velocity transformations, maps which convert time deriva-
tives in one coordinate system to time derivatives in another. Such transformations
allow alternate expressions for the kinetic energy of a collection of bodies, and most
of the structure of rigid body dynamics comes directly from the properties of kinetic
energy. An example of two bodies connected by a hinge will illustrate all the key

concepts. The notation of [Rodriguez and Kreutz-Delgado, 1992] is used throughout.

The cm spatial velocity of a moving body was given in section 3.2 above as a

w
6-vector consisting of the angular and linear velocities as viewed from a frame
v

located at the center of mass, and oriented with the lab frame. The spatial velocity
about a point p is the transformation of the cm spatial velocity to a frame translated

by b = p — Zepm (figure abl). This transformation is given by

131‘3 0 T
Vo = Ad(b,15,5)Vem = Vem = ¢ (b)Vem (2.25)

~

—b 133

35

L3z
where ¢(b) = 58 is defined as a spatial Jacobian. The spatial Jacobian

0 lsgs
transforms velocities between frames that are translates of one another: Vp; = ¢(p; —

p2)T'V,e. Now suppose the point p represents the location of a hinge between the body
and a fixed base with hinge axis defined by a unit vector hy (figure ab2). Then the

body is constrained to rotate around the hinge and its configuration is parameterized

hil .
by a scalar angle #;. The spatial velocity of the body at point p is given by ' 01
0
1 : : . . h
where 0 is the scalar velocity about the hinge. A hinge Jacobian H] = maps
0

from hinge coordinate velocity to spatial velocity of the constrained body. If the hinge
constrains the relative motion of two bodies (figure ab3), the H,6, gives the spatial
velocity of body 1 relative to body 2. If V5 is the cm spatial velocity of body 2 at a
different point py (figure ab4), then the total velocity of body 1 at p; is found with
both the hinge and spatial Jacobians:

Vi= H19.1 + o(p1 — p2)TV2 (2.26)

The kinetic energy of the combined system is $V.I M Vi + $VE o Mo Vimo, with M;
given by formula (2.12) in section 3.2. The first term can be rewritten to account for

the constraint:

KE, = %(qs(xcml — 1) V)" My ((zem1 — 1) Vi)

1
= §%€(¢(xcm1 - pl)M1¢($cm1 - p1)T)V};1

1, :
= 501H1¢($cm1 - pl)M1¢(Icm1 - pl)THngl

+%‘/p€¢(pl - p2)¢(ajcml - pl)M1¢($cm1 - pl)T¢(p1 - p2)T‘/p2 (227)

(2.28)

and since [Rodriguez and Kreutz-Delgado, 1992] the spatial Jacobian has the prop-
erty ¢(a — b)Td(b —)T = ¢(a — ¢)* (which follows directly from the definition), the

36

total kinetic energy becomes

1. j
KE = 591[H1¢(xcm1 - pl)Mld)(xcml - pl)THlT]Hl

1
+§‘/p121[¢(xcml - p2)Ml¢($cm1 - p2)T + M2]‘/p2 (229)

where we've taken V2 = V2. The first bracketed term gives the inertia associated
with the hinge joint, and is a scalar. The second bracketed term gives the inertia
associated with the degrees of freedom of the second body. This has two parts: one
due to the second body alone (M), and another due to the attachment of the first
body (¢M;¢T). Combining these allows the definition of a generalized inertia matrix

for the two-body system:

- aT

116 H,p M, T HT 0 0
KE _ 2 1 1¢1 1@51 1 1 (2'30)
2 | Vg 0 G2 M85 + My | | Vs
- 1T
110 0
= S| M| (2.31)
21V, Vs

where ¢; = ¢(Tem1 — p1), similar for ¢o. The matrix M is a 727 symmetric positive
definite matrix; with M in hand, equations of motion can be determined by classical
means [Spong and Vidyasagar, 1989]. (Note , not by Euler Lagrange, since these aren’t
unconstrained coords.) Note that the forces of constraint which create the hinges are
entirely implicit, since 6; is used directly to parameterize the single degree of freedom
of the hinge. Note also that the Jacobians (spatial and hinge) feature prominently in
the form of M. The spatial notation introduced by [Rodriguez and Kreutz-Delgado,
1992] can be used to form the generalized inertia matrix for a variety of mechanisms,
which in turn can be used to create equations of motion expressed directly in the
available degrees of freedom. Mechanisms consisting of bodies connected by hinges
to a fixed base give a particularly compact notation, and can be used to illustrate the

extension of the dynamic constraints approach to articulated bodies.

37

2.4.2 Equations of motion in generalized coordinates

Following Rodriguez’ notation, figure ab5 shows a sequence of bodies numbered from
N to 1, attached by hinges with hinge axes hg, and locations py k£ = 1...N. Each link

has an individual cm spatial inertia M, which when expressed at joint location pj

is Mk = ¢(:Ecmk - pk)Mcmk¢(ajcmk - pk)T or

Rily RT — mub? myb
M, = k Lok L1, k0% Ok (2.32)

—myby mlsgs
where by = Temr — pr, and Ry is the lab orientation of link k. Each joint is param-
eterized by an angle 0. Analogous to the example with two bodies, the hinge Jaco-

H
bians are defined as H} = ¢ , and the spatial Jacobians are ¢jr = ¢(pr — pj)-

T
Then if 6§ = [91 0 ,,,GN] , and if HT is the 6N by N block diagonal matrix
HT = diag(HT,...,HY), M is the 6N by 6N block diagonal matrix diag(My, ...My),
and @ is the 6N by 6N matrix defined by

lga6 0 0o .. 0
¢21].ﬁxﬁ 0 0

¢N1 On2 DN . 16x6

then [Rodriguez and Kreutz-Delgado, 1992] the kinetic energy of the system of bodies

is given by
1. I Py
KE = §9H@M@ H" 9 = 50./\/10 (2.34)

Because the joint angles 6 are generalized coordinates allowing unconstrained mo-

tion, equations of motion are obtained with the Euler-Lagrange equations [Spong and

38

Vidyasagar, 1989], giving

M) +C(0,0)0 =HF =7 (2.35)

T
where ' = |FI' F]I' ... FF| 1is a 6N vector of spatial forces which act on the

links, e.g. gravity, simulated actuators, dynamic constraints. The N-vector 7 denotes
generalized forces, the projection of external forces (via H) onto the directions of
allowable motion. C(f,0) is a matrix of Coriolis and centripetal terms stemming from
the time derivative of M. The N by N matrix M is symmetric and positive definite,
from the properties of kinetic energy. The factorization in 2.34 is simply a compact
notation for an iterative algorithm for forming M. Alternate factorizations lead to
efficient inversion techniques yielding the joint accelerations corresponding to a given
state of the manipulator and particular external forces; theory and algorithms for such
factorizations have been developed by Rodriguez and his colleagues [Rodriguez and

Kreutz-Delgado, 1992].

The important point is that equation 2.35 allows the forward simulation of hinged
mechanisms without calculation of constraint forces. The locations and orientations
of the individual bodies are calculated from the hinge angles, hinge axes, and hinge
locations. However, it is useful to be able to further constrain this kind of system
with additional point constraints, so as to allow control and modelling of still more

complicated structures.

2.4.3 Point constraints

The example of a point-to-nail constraint for systems obeying 2.35 will clarify the
calculations needed. First consider the effect of a point force F' applied at a location
x, that is attached to link k. The instantaneous work done by such a force is FT4,
where 1 is the velocity of the point of application. If the system is moving with joint

velocity 6, then the spatial velocity of link k is Vi = SN, ¢7 (i, k) HT§; since the base

39

is fixed. For a compact form, define

B(ZE, k‘) = ¢(x — pk) (236)

as a block structured 6 N by 6 matrix with a single nonzero 626 block in the kth

position. Finally define C' = [() 15,3| and ®, H as above. Then

i = CB(z, k)TOTHT) = J(z, k)0 (2.37)

where J(x,k) = CB(x,k)T®THT is a 3zN point Jacobian. The point Jacobian
maps internal velocities to the linear velocity of a point attached to a link. The idea
of virtual work allows the translation of a point force into an equivalent set of gen-
eralized forces: 770 = FTi = (JTF)T# so that 7 = JTF is the generalized force
that does the same work as the point force F'. This relationship gives the internal
effect of a point force as might arise from a dynamic constraint. For a set of such

constraint forces indexed by j, acting at points x; on links £;, the total generalized

force is 3; J (x5, k;)T F; = ¥ J] Fj for short.

For constraint ¢, the deviation function is given by D; = x; — n;, so that Di = Jié and

D; = Jif + J;f. Substituting the dynamics (2.35) gives

D; = JiM™2(1 | — Co) + FHM =D L7|T.7:| + j)e (2.38)
\

40
where 7, are generalized forces due to nonconstraint sources such as gravity, simulated

actuators, etc. Rearranging,

Dy = Y [JM ®JT]F;+ [M ®(n) —C — G) + F,6)] (2.39)
j —— ~ ~ _
Block ij Bj
(2.40)

which, as the bracketed terms suggest, can be rewritten in block structured form:
Pi = [BM=gZl Mgl . JMgT|Fet b (241)
T
where F, = [Fcirl’ FL .. Fcﬂ , is the concatenated vector of constraint forces.

The notation in (2.41) assumes that all constraints are point-to-nail and act on the
same manipulator. But as with point constraints for individual bodies, a matrix block
t,7 will be zero if constraints ¢ and 7 do not act on a common body. Note also that
the blocks of the deviation equation (2.41) all include the inertia inverse M~*°, which

can be efficiently computed with iterative methods.

The deviation equation (2.41) indicates how a point constraint on an articulated body
contributes a 3 by 3K row of the full constraint matrix for a system with K point
constraints. The notation is specialized for point-to-nail constraints acting on a single
manipulator, but the general case proceeds precisely as with point constraints for in-
dividual bodies. Note that M™%, which is the difficult part of the calculations needed
to form (2.41), is the same for each block and should obviously be found only once for
a given configuration. As mentioned above, Rodriguez gives O(N) methods for deter-
mining this inverse. Because M can be defined for articulated bodies with a floating
base (as in the two-body example of the previous section) or with a tree-structured
topology, the form of (2.41) remains the same for these cases. Additional bookkeeping
is needed however, to properly define the point Jacobians, but this bookkeeping is

straightforward.

41

Comparing 2.41 to the corresponding equation for individual bodies lets us summarize
the operations needed to solve for point constraint forces. This promotes modularity
in the primitives of a dynamic constraints modelling system. If an object can present
the following interface routines to the simulator, then it can be included in the dynamic

constraints framework:

e apply — point — force: Take a force acting at a point and determine its equivalent

in internal forces.

e force — to — accel: Compute a matrix operator mapping from a point force at

one location to the acceleration induced at another location.

e accel — from — force: Compute the vector acceleration at a location due to inter-

nal forces.

e accel — from — velocity: Compute the vector acceleration at a location due to the
velocities of internal coordinates. This is typically important when rotational

motion is present.

By keeping the details of these calculations internal, they can often be made highly
efficient using methods specialized to a particular internal parameterization. The re-
cursive approaches of [Rodriguez and Kreutz-Delgado, 1992], as well as the symbolic
approaches of [Armstrong et al., 1985] offer efficient alternatives with different ad-
vantages and disadvantages. Related work by [Pfarner, 1996] in particular studies

methods applicable to structures with kinematic loops.

To summarize, by moving to more complicated primitives than a single rigid body,
the dynamic constraints approach can take advantage of specialized methods for pro-
ducing equations of motion. By identifying the operations needed to assemble the
constraint equations for a collection of point constraints, and detailing a specific ex-
ample for open-chain mechanisms, the sections above extend the modelling framework

introduced in [Barzel and Barr, 1988].

42

Figure 2.9: A point to nail constraint acting on a three-link arm. See text for details.
2.5 Examples

A simple example illustrates the combination of point constraints with an articulated
limb. Figure2.9 shows a sequence of frames from a simulation of a three-link arm
whose internal coordinates are the hinge angles. The frames are spaced by 1/3 second,
and in addition to gravity the arm is disturbed by a spring attached to the distal link;
the spring is denoted as a straight line joining the arm and the z-axis where the spring
is anchored. A point-to-nail constraint acts at the center of the spherical tip, and the
nail is denoted by the small sphere located on the z-axis. The velocity of the tip, which
is the same as the derivative of the deviation function, is denoted by an arrow scaled
proportionally to the magnitude of the velocity. The individual links of the arm are 1

meter long, 1 kg. cylinders.

43
Figure 2.5 shows the performance of the point constraint. The constraint force magni-
tudes are shown in 2.5a, along with the total kinetic energy and damped, exponentially
stable behavior in 2.5b and c. This example shows an initial condition at a singularity
of the arm; instantaneous motion in the direction demanded by the constraint is not
possible. The constraint forces shown in 2.5a reflect this at the earliest times of the
simulation with constraint forces that vary rapidly and extend far off the range of that
plot. Figure 2.5a shows an expanded view of the earliest steps of the simulation. Note
that the vertical axis of this plot is on a log scale, showing the tremendous increase in

the constraint force magnitude near the singularity at full extension.

Figure 2.5b clarifies what is happening; this figure represents the residuals of the
constraint equation. Initially, the constraint cannot be satisfied, and the singular di-
rection is discarded with the SVD in the constraint force calculation. As the arm
slowly moves away from the singularity, an abrupt transition occurs when the con-
straint can be satisfied with forces below the bounds allowed for this point constraint.
The bounds for this example have been set to high values (200,000 N) for illustra-
tive purposes. Note that naive use of the SVD would lead to constraint forces which
destabilize the numerical integration for this example. Figure 2.11c shows the singular
values for the constraint matrix as a function of time. Note that initially two of the
values are near zero; the only allowable direction of motion at this time is tangential
to the fully extended arm in the first frame of 2.5. Figure 2.5a and b show similar
diagrams for a three-link elbow manipulator as in figure 2.3.4 above. In this case, the
time variation of the manipulator is seen to bring the system into and out of singular-
ity; this is reflected in the constraint force magnitude at left and the singular values

shown at right.

2.6 Conclusions

We have presented a dynamical simulation environment with the ability to simulate

individual rigid bodies, robustly enforce point constraints via explicit calculation of

Constraint force magnitude (Newtons, log scale)

Constraint force magnitude (Newtons)

3,

3

3

3
1)

@
3

44

0 L

Energy (joules)

50

45|

4of]

35

=1
3

— Total energy
Kinetic energy
— — Potential energy

o

=

——lion
— lidD/dtll

IIDII (meters) and IldD/dtll (m/sec)
o

)

0 1
Time (seconds)

Time (seconds)

Time (seconds)

Figure 2.10: A point to nail constraint acting on a three-link arm. a. Constraint force
magnitudes, clipped at 150 Newtons. See figure 2.5 for complete view. b. Kinetic and
potential energy c. Deviation and its derivative.

0.05
Time (seconds)

0.05
Time (seconds)

Singular values of constraint matrix

r

Time (seconds)

Figure 2.11: a. Complete view of constraint forces, semilog scale b. Acceleration
residuals. a. Singular values of the constraint matrix for the arm in figure 2.5

Constraint force magnitude (Newtons, log scale)

0
L L L L

L
0 01 02 03 04 05

L
06

Time (seconds)

Singular values of constraint matrix

mu_1

r

04

05 06 07 08 09 1

» Time (seconds)

Figure 2.12: a. Constraint forces for another example of a constrained arm (not
shown). b. Singular values of the constraint matrix.

45
constraint forces, and include articulated bodies which can be constrained as well.

A number of important lessons have been learned in the course of implementing
the system described in the sections above. A large scale dynamical simulation is
“merely” a model of a small set of physical phenomena. It’s important to remember
that every single concept employed in such a model is an abstraction, starting with
the very idea of the configuration of a rigid body and continuing to the ideas of static
and dynamic friction. Unfortunately, the criteria such abstractions in the context of
simulation are still evolving, and the differences between current research projects
reflect differences of opinion as to what is “essential.” For the approach described

here, we can list two of the priorities that guided decisions:

e Extended simulations and long term robustness. Our ultimate goal for
dynamic simulation is the ability to test active, adaptive sensing and control
strategies. Most dynamic simulations are measured in (simulated) seconds; to
eventually simulate for minutes, hours, or days will require an absolute faith in
the stability of the simulated world over such time scales. Therefore the dynamic

constraints paradigm was the ideal foundation on which to build.

e Efficiency for important special cases. The flexibility of assembling artic-
ulated figures with point constraints is useful, but the method cannot compete
with the speed and efficiency of carefully derived equations of motion which avoid
the process of allowing, then constraining away degrees of freedom. Therefore

we decided that the two methods should be able to easily coexist.

Here are some lessons learned:

e Numerical integration will introduce disturbance terms into any calculation you
attempt. It’s essential to identify calculations which are unstable or marginally

stable, since such calculations can cause a simulation to explode unexpectedly.

e Assume in advance that any matrix has the potential to be singular. Formal
guarantees of nonsingularity can be meaningless in the (inevitable) presence of

noise. The singular value decomposition, for example, is an essential tool. O(n?)

46
calculations are expensive, so gratuitous use of the SVD must be avoided. But

we judge stability to be more important than any other consideration.

e As many parameters should be adaptive as possible. The heterogeneity of a dy-
namic simulation environment means that you cannot always anticipate proper

values for scalings, tolerances, and step sizes.

e Energy is a unifying concept: keep track of all possible energy sources in any
simulation. It’s important to be able to account for all changes in energy that

occur.

2.7 Appendix

This appendix contains some background information needed for the discussion above.

Cross products. The cross product, or vector product is an operation on two vectors
that returns a third. The cross product is typically defined as (hairy definition here).
The operation is linear, and therefore has a matrix representation that is useful for

manipulation. For two vectors a and b, a x b = S(a)b, where S(a) is a 3x3 matrix

given by
0 —a (03]
a1 0 —das (242)
—02 as 0
S(a) is skew-symmetric, i.e. S = —ST. This property implies that the real parts

of the eigenvalues of S are zero, and the imaginary parts come in complex-conjugate
pairs (which share an eigenvector?), so that 7Sz = 0 for any z. Thus the standard
properties of the cross product, e.g. a X b = —b X a can be quickly recalled through

the skew-symmetry property of S. We also write @ as a synonym for S(a).

Quaternion multiplication. A quaternion is represented by 4 numbers, a scalar

47
part, and a (3-dimensional) vector part, so ¢ = (s,v). The product of two quaternions

is given by the multiplication operator
Q1 * @2 = (5153 — v¥vg, 5105 + 5301 — vy X V) (2.43)

For a unit quaternion, the scalar part and vector part are interpretable as a rotation
through an angle # about a unit axis ¢ where s = cos(#/2) and v = sin(#/2)a. The
infinitesimal rotation represented by angular velocity is represented by a quaternion
@ = (0,w). The differential equation for the evolution of ¢(t) for angular velocity w(t)
given in 2.1 is interpreted as

dg _ 1 L[(2.44)

dt 2 2 Sw+w XU

where g = (s,v).

Integrating orientation Euler integration of an object spinning with constant an-
gular velocity is in fact unstable. The discrete iteration corresponds to R(t + A) =
R(t) + Aw x R(t) = R+ ASR = (133 + AS)R = AR where S(w) is a skew-
symmetric matrix, the dual of w, and the matrix A can have maximum eigenvalue
magnitude slightly greater than 1, implying instability. The problem is less severe,

but nonetheless present for quaternions.

Torque dependence of ji. We left off in equation (2.17) at

N 1 d
D:E(FCJFF)—(Rb)xd—C;—wawab (2.45)

48

If b; are the points of application in body coordinates of the constraint forces, then

dw dI—'L

— = 2.46
dt dt (2.46)
dL dI!
= [T = L 2.47
it (247)
_ dR _dR”T
= T 1Tt0ta,+(ﬁlb 'RT + RI, 1%)L 2.48

= I T + (ORI, 'RT + RI, Y (WR)T)L
= I T +OI 'L+ 17'0TL
= [Y + ow + I Lw

= I Yy + 1 ' Lw

where Tiotar = Text + Te = Tewr + >i(Rb;) X F;

Virtual work. The principle of virtual work (Spong and Vidyasagar [1989]) is
an expression of the fact that energy does not depend on the coordinates in which it is
expressed. The work done by a force F acting at x is F'7#; alternately, the work done
by a generalized force is 776. Setting these equal, and noting that @ = J(0)0 gives
(JO)TF = 0T7g, or 0T (JTF) = T 1p. Since 0 is arbitrary, this implies JTF = 7p.

2.8 Programming constructs

This section is an appendix giving some of the specific routines and conventions needed

for programming.

Rigid bodies and articulated bodies share a common component, the link. Rigid bod-
ies have one link, and articulated bodies have more than one. Each link is composed
of a number of segments; these are geometric primitives which define the geometric,
material, and inertial properties of that link. A segment is represented by the class

shape. There is no specific class for links, we use a pointerlist to store the shapes

49

defining each segment in a link. One such list is needed for each link.

Let ¢ = (R,x) be a rigid body configuration (or transformation). Each segment
keeps a configuration gse, with respect to the link it is attached to. This configura-
tion is constant, and for multi-link bodies, is defined with respect to the lab frame
translated to the link origin, the link frame. For single-link bodies, it is with re-
spect to the principle frame located at the center of mass. In addition, each segment
keeps a time-varying configuration giu(#) with respect to the lab. Hence points can
be transformed between the segment frame and the lab frame with this information,
e.g. Ps = Guan(t)bs = Rbs + x. Bodies have a method update_segments(void) which
properly sets the lab configurations g of the segments which make up the body.
This simplifies collision detection and scene drawing, both of which can just consider
a scene as a collection of individual primitives. (This isn’t true of collision response,

though).

For multi-link bodies, for g,,, = (R,z) on the k-th link, and a point j; in segment
coordinates, a point in link coordinates is just pr = Rpr + = and to translate to the
base we have the recursion pg; = e™%p, + L(k + 1,k). Since L(n + 1,n) is the

location of the base, p,.1 gives the lab coordinates of the point pg.

In addition, bodies can perform such transformations through the routines like body — pt,
which takes a point in the frame of a segment, and returns the corresponding lab coor-

dinates. Note that direct reference to the link associated with the segment is not made.

The relevant frames associated with a link are the cm frame, which originates at
the center of mass of the link and is typically aligned with the principle axes; the joint
frame, which is attached to the proximal joint of a link and is by convention a translate
of the lab frame at the zero position of the entire body; and the individual segment
frames. Link information is loaded at run-time by giving, for each link, information

about joint axis, joint-to-joint vector, and joint-relative center of mass location as well

50

as segment information.

2.8.1 Forward kinematics

The function body — pt(bpt, segnum) takes a point in coordinates of the frame attached
to segment segnum and returns the corresponding lab coordinates. Each segment
frame is related to a link frame by a constant transformation. The link frames for an
articulated body are obtained via Denavit-Hartenberg convention, so that the argu-
ment b must be first transformed to the appropriate link frame, then to lab coordinates.
To facilitate these conversions, a body keeps methods which generate configuration-
dependent homogeneous transformation matrices, e.g. go1 is the 4x4 matrix which

takes points from link frame 1 to link frame 0, the base frame.

2.8.2 Force to acceleration

Rigid bodies
For a collection of constraint forces F; and external forces Fg*, both in lab coordinates
and applied at points in body coordinates b; and b§™ respectively, the acceleration of

a point p4 = x + Rby in lab coordinates is

= —ZF (Rba) IAlz (2.54)

+—Z Ff*' — (Rby) IAlz (R EEt + 3 (2.55)

Two routines must be supplied by a body (rigid or articulated) which is to be sub-
jected to point constraints. First, accog() represents the non-constraint related terms
in the acceleration of a point b4, which is the body-coordinates version of p4. Sec-
ond, force2accel() represents the matrix coefficient of the constraint force Fj in the

acceleration expression. So

acc_0F(bp) ——ZF (Rby) IAlz Rb VF; + 8 (2.56)
J

o1

where
B =—(Rba) ;' Lo +w x w x (Rby) (2.57)

and terms like (f%\b)F are of course torques in lab coordinates.

For the second routine, we have

1 —

force2accel(ba,bj) = M = —13,3 — (Rba)I,* (RD;) (2.58)

my

This is a little different from Barzel and Barr [1988], in which the block was decom-
posed into 4 pieces, I'G + AH.

Articulated bodies

The acceleration of a point attached to a rigid body due to a collection of forces Fj

applied at points b; was given above by

Pa = Jab+ Jad (2.59)
= N JaM I+ JaMg (the — CO) + J a0 (2.60)

J
(2.61)

and 7, represents non-constraint forces such as gravity, joint limits, and internal
friction. J4(b, s) is the Jacobian associated with a point b attached to the frame of
link s (b is written w.r.t. frame s). Therefore the routine for the non-constraint-related

terms in the acceleration of a point is just

acc_0(bp) = JAM 7 (Tpe — CO) + J A0 (2.62)

(2.63)

52

and the matrix coefficient for the effect of a constraint force on point acceleration is
14T
force2accel(ba, bj) = JaM ;" J; (2.64)

The term .J6 calls for special attention. Spatial accelerations are propagated outward

from the base according to Rodriguez and Kreutz-Delgado [1992] equation 2.18:

a(k) = ¢T(k+1,k)a(k +1) + HY(k)O(k) + a(k) (2.65)

where a(k) describes the velocity dependent “bias accelerations.” Focusing on the
terms independent of é, the velocity-dependent acceleration of a point p in lab coor-

dinates that is attached to link % is

a(p) = ¢"'(p — Op)a(k) + a(p) (2.66)
where

olp) = ’ (2.67)
w(k) x w(k) x (p — O)

and J@ = lin(a(p)) where lin() extracts the linear part of a spatial vector. See

equations 2.19, 2.27 in [Rodriguez and Kreutz-Delgado, 1992].

2.8.3 Inertial properties

Murray et al. [1994] give a very clean account of the inertial properties of a rigid body
and the relevant coordinate transform issues. Here is a piece of their development,
modified slightly to agree with the notation of Rodriguez (which is more useful for

implementation).

The kinetic energy of a body can be written using the velocity of a mass element

at point p in lab coordinates. Since p = & + Rb where z is the center of mass location,

53

and R is the orientation of the body frame, the kinetic energy is

1 .
KE = 5/ p(0) || + Rb|[2dV (2.68)
14
1 |
= §m||jc||2+§w;;rfbwb (269)
1
= SV MV (2.70)

w
where V}, = ’ is the body velocity of the rigid body, ¢~'¢g, which consists of a linear
Up

and an angular component. The body linear velocity is v, = RT# where # is the
center-of-mass velocity in lab coordinates (note that ||vp||> = 2" RRT & = ||||?). The
body angular velocity is w, = RTw, where w, is angular velocity in lab coordinates.
M, is the generalized inertia matrix at the center of mass, defined as

M, = L0 (2.71)

0 mlsgs

and it has a block diagonal form because x is located at the center of mass. It is fully
diagonal if, in addition, R is aligned with the principle axes of the body, so that I is
diagonal. We refer to (z, R) so chosen as the base frame of the body, and call (2.71)
the generalized inertia of a body at the base frame. (All that’s really needed is the

origin located at the cm; nondiagonal [, isn’t a big deal).

Suppose gap = (Tap, Rap) transforms points in the base frame b to a new frame a.
Note in passing that the reverse transformation is gpq = (Zpa, Roa) = (—RL7ap, RL,).
The inertia matrix M, can be transformed to frame a by transforming the velocities

(twists) V4 that appear in the quadratic form (2.70):

Rap 0
Vo = Vb (2.72)
i’abRab Rab

= AduVy (2.73)

54
with the adjoint transformation Ad,, defined by the equation. Ad,, transforms ve-

locities in frame b to velocities in frame a. The inverse transformation is

-1 Rgb 0
(Adg)™ = (2.74)
—Raydar Fay
and V, = Ad_;'V,. Tt should be possible to show that Ad_ = Ady,, shouldn’t it? At

any rate, kinetic energy (invariant under coordinate transformations) becomes

1 1
KE = 5v;,TM,,V,,:5(Ad;,}va)TMb(Ad;,}va) (2.75)
1
= JVIML (2.76)
where
M, = Adyf M,Ady (2.77)

_ RaplyRY, — mz? ma (2.78)
—mz mlsgzs

Going in the other direction, an inertia matrix with respect to frame a can be trans-
formed to frame b by M, = AdL, M, Ad,,. These formulas are useful for computing
the inertial properties of rigid bodies with respect to a link frame when the bodies are
composed of a number of segments, each of which is defined by a constant (zap, Rap)
which takes points in the segment frame to the link frame. Segment frames are by
convention chosen at the center of mass of a shape primitive. Note that (2.77) is the
general formula, while (2.78) is the formula specialized to the case when M, is block

diagonal, i.e. when frame b is located at the center of mass.

Given a collection of disjoint segments, with segment frames given relative to a link
frame, we can transform all the individual segment inertias (given for frames located at
the centers of mass) to the link frame, with equation (2.77), and add them up (from the

additivity of kinetic energy) to get M, the constant inertia relative to the link frame

55
at the zero position. In order to get the spatial inertia matrix’, we use gsz, = (0, Rgy,)
which maps points in the link frame to points in the spatial frame. Then the spatial
inertia is given by Mg = Adgi My Adg}, which takes each 323 matrix block of My
and replaces it with Rg;, PRL,. Given the configuration dependent spatial inertia ma-
trices for each link, the full generalized inertia matrix for an open-chain manipulator

can be efficiently formed using the algorithm in Rodriguez and Kreutz-Delgado [1992].

Note in passing that equation (2.74) with R = 13,3 gives the twist transformation

for a frame that is translated, but not rotated, i.e. Aal(;llh3

) = ¢ (z) in Rodriguez’
notation Rodriguez and Kreutz-Delgado [1992]. So transforming from the spatial in-
ertia to lab inertia is just Mpe = é(x)MséT (z) in Rodriguez’ notation. This lab

inertia for a single link is only part of the full generalized inertia calculation, however.

"The spatial inertia matrix is not the transformation of the link inertia matrix to the lab. It’s the
transformation of the link inertia to a frame oriented with the lab but located at the link origin. We
should carefully define this as the spatial frame, as distinct from the lab frame.

56

Chapter 3 A class of mixture models for adaptive

configuration control of open-chain robots

3.1 Introduction

Motivated by the need for control algorithms for anthropomorphic robots whose struc-
tural details are incompletely known, this paper presents a computational study of
adaptive schemes for trajectory tracking in open chain manipulators. We present a
class of nonparametric controllers — controllers whose detailed structure is not based
on rigid body nonlinear dynamics — and compare performance with nonadaptive and
model-based adaptive methods in a variety of circumstances. Such comparisons are
relatively rare, with emphasis typically placed on formal proofs of stability. The main
contribution of this paper is to give some insight, through simple examples and simula-

tion study, regarding performance issues that are not always apparent in formal proofs.

The most basic and widely used technique for configuration control employs proportional-
derivative (PD) feedback, a non-adaptive technique in which actuator torques are de-
signed to emulate a force field whose equilibrium occurs at in the neighborhood of a
desired set point. When used for maintaining constant configurations, the approach
is provably globally asymptotically stable for open chain manipulators in the absence
of external forces such as gravity[Arimoto and Miyazaki, 1983]. Implementation of
PD control requires relatively little knowledge about robot structure, though some
knowledge is implicit in the choice of reasonable feedback gains. A common com-
plaint, however, is that PD control is not adequate for more demanding time-varying

configuration tracking problems.

On the other end of the spectrum lie control methods which use detailed knowledge

57
of the kinematic and inertial structure of the robot. Computed torque [Murray et al.,
1994, =] is a non-adaptive method in which the rigid body dynamics and external
forces acting on a manipulator are perfectly canceled, resulting in a second order sys-
tem whose dynamics may in principle be arbitrarily designed. As the name suggests,
computed torque centers on the inverse dynamics of a manipulator, the nonlinear
equations which give the joint torques associated with particular values of joint con-
figuration, velocity and acceleration. Perfect knowledge of the inertial parameters
appearing in the inverse dynamics is a stringent requirement, and accurate measure-
ment of these parameters is a challenging task [Armstrong et al., 1985]. However, a
unique property of the inverse dynamics for open chain manipulators has motivated
several direct adaptive approaches: the unknown inertial parameters appear linearly in
the inverse dynamics equations. A flurry of activity in the robotics literature produced
a number of model-based adaptive controllers exploiting this property, controllers with
provable stability for tracking control [Slotine and Li, 1991], [Wen and Bayard, 1988],
[Whitcomb et al., 1993]. The algorithms all use nonlinear compensation terms in
addition to PD feedback, and the fundamental analysis tool is the mechanical kinetic

energy of the manipulator.

An important common denominator of the model-based approaches is the assump-
tion that “nonidealities,” be they due to unmodelled dynamics, external forces, etc.,
are nonexistent or bounded and “small.” However, two points should be carefully con-
sidered. First, deviations due to externally imposed force fields, joint limits, actuator
torque limits, unexpected obstacles, etc., are an integral part of control in “unengi-
neered” and uncertain environments. Second, it’s not always necessary to have an
accurate dynamical model in order to provide accurate control; the success of PD
feedback rests on this fact. The first point has motivated the use of nonparametric
methods for adaptive control® which apply compensation terms intended to approzi-

mate the inverse dynamics. In these studies, great effort goes into guaranteeing that

! This use of the term nonparametric is standard in the regression and neural network literature.
The methods described always have free parameters, but they do not necessarily correspond to
physically meaningful quantities such as masses and moments of inertia.

58
a highly accurate inverse dynamics model can be constructed, and in some cases,
perfect modelling ability is assumed. But the second point mentioned above applies

equally well to nonparametric methods, and perfect modelling may be necessary.

We begin from the premise that the attractive feature of nonparametric methods is the
promise of control without precise implementation of global nonlinear inverse dynam-
ics. In the sections below we present and study a heuristically motivated compensation
scheme — motivated by Lyapunov analysis but not capable of provable perfect tracking.
Of course, perfect tracking is an unattainable goal anyway, so our purpose is to show
through simple examples that the method presented is competitive with model-based
schemes. We carefully consider a number of factors influencing performance, since

many ingredients contribute to the success or failure of an adaptive scheme.

In section (3.2), we review the relevant properties of open-chain rigid body dynam-
ics, PD control, and Lyapunov synthesis. Section (3.3) introduces the approximate
compensation scheme that is the main topic of this paper, and also describes the
model-based scheme of [Slotine and Li, 1991] used for comparison. Section (3.4) de-
scribes simulation results and discusses a number of issues relevant to assessing the

performance of adaptive controllers.

3.2 Preliminaries

A Lagrangian analysis [Murray et al., 1994], [Spong and Vidyasagar, 1989] leads to a
compact set of equations governing the generalized coordinates 0,9 of an open-chain

manipulator?:

M(6)8 + C(8,0)0 = Tens(6,6) + 7o (3.1)

2An open chain manipulator is snake-like in structure and contains no closed kinematic loops.

29

>y

Figure 3.1: Arm-like manipulator models

M (#) is the generalized inertia matrix, and it is symmetric and positive definite for
any 0. C(0, 0) is a matrix describing Coriolis and centripetal effects; it stems from
the configuration dependence of M, is itself linearly dependent on 9, and satisfies
M = C + C7, so that M — 2C is skew-symmetric independent of 6 and . On the
right-hand side of (3.1), 7., represents external forces such as gravity and friction,

and 7, are actuator torques under our control.

The equations (3.1) apply to any open-chain manipulator, but of primary interest
are anthropomorphic arm-like manipulators which have a shoulder, elbow, and pos-
sibly a wrist. Figure la shows a few common mechanisms, and figure 1b shows a
planar two-link arm in more detail. The simulations presented below use the two-link
arm model because elbow-shoulder interactions are arguably the dominant rigid-body
issue for arm-like manipulators, and because a two-link arm is a common system for

experimental (e.g. [Whitcomb et al., 1993]) evaluation of control methods.

A number of problems in configuration control are associated with the dynami-

60
cal system (3.1). These problems call for the generation of actuator torques to satisfy
a performance objective for the generalized coordinates 6(t). For the stabilization
problem, 7,(t) is chosen to guarantee the asymptotic stability of a desired set point
04. For tracking, the actuator torques should cause (¢) to converge asymptotically
to a desired trajectory 64(t) for which ||04(¢)|| and ||64(t)|| are bounded. Practically

speaking, convergence in some small finite time is desired.

Because (3.1) describes a mechanical system which obeys conservation of energy (in
fact, that is how the equations of motion are derived), an elegant solution to the sta-
bilization problem [Arimoto and Miyazaki, 1983] is to create an artificial potential
field whose unique energy minimum occurs at the desired configuration. The addition
of damping terms to dissipate kinetic energy guarantees that the closed loop system
will approach the minimum energy configuration. The kinetic energy of a manipulator
which obeys (3.1) is given by the quadratic form Vi, = %HTM ()0. The time derivative
of Vie gives a clear idea of how kinetic energy is “injected” into the system; it is the

work done by external and actuator torques (see appendix for details):
‘./;ce - éTTezt + éTTa (32)

In the absence of external forces (7., = 0), PD control for the stabilization problem

creates a linear spring force field with linear damping;:
Ta — —K,,(H - Hd) — Kd9 (33)

where K, and K, are positive definite gain matrices, and 6, is the desired constant
set point. A Lyapunov function consisting of the sum of the kinetic energy V4. and the
“virtual” spring energy (6 — 64)T K,,(6 — 64) can be used to prove global asymptotic
stability of the set point.

When conservative and/or dissipative forces such as gravity and friction are present,

61
the PD control (3.3) still implies global asymptotic stability; however, the equilibrium
point to which the system converges is not given by 64, but is given implicitly by
0+ K, Yreat(04,0) = 04. This equation can have multiple solutions, and local stability
depends on the eigenvalues of [1nen + K, 10%t] =1 where 1pgy, is the n by n identity
matrix. If the K, gains are sufficiently large®, local stability for any set point is pre-
served. Formally, a stable equilibrium 6, can be positioned arbitrarily close to the
desired set point 63 with choice of sufficiently large K,. However, the resulting high
arm stiffness is not always acceptable, especially in environments with the possibility
of interaction with other objects. For example, biomechanical studies (e.g. [Bennett
et al., 1992]) indicate that in natural postures, the human arm is not stiff enough to

nullify the influence of gravitational forces, suggesting a role for feedforward compen-

sation.

Moving on to the tracking problem, define error signals e = 6 — 04, ¢ = 0 — 0,
for the time varying desired configuration 64(¢). Then tracking requires a control law
which asymptotically stabilizes the error dynamics for (e, ¢) about (0,0). The starting

point for all solutions is a time-varying PD control of the form
Ta = —K,(0—0604(t)) — Kq(6 — 04(t)) (3.4)

Unlike in the constant set point case, (e,é) = 0 is not asymptotically stable under
PD control, even in the absence of external forces. However, the resulting closed loop
system is “totally stable” in that (e, é) will remain bounded for bounded desired tra-
jectories with sufficiently small velocities and accelerations. The proof follows easily
from the definition of total stability in [Slotine and Li, 1991]. Note that this does not
ensure small tracking errors, but it hints at the generally good behavior of PD con-
trol; in practice for “slow” desired trajectories and “high” feedback gains, PD control
performs well [Arimoto, 1984]. But of course there are situations which call for fast

movements and/or low feedback gains, and in such cases a more elaborate solution is

3By which we mean ”if the minimum eigenvalue of K, is sufficiently large.”

62

warranted.

Since the initial appearance of Lyapunov-based proofs for PD solutions to the sta-
bilization problem, several methods have been developed to address the more strin-
gent demands of the tracking problem ([Wen and Bayard, 1988], [Whitcomb et al.,
1993], [Slotine and Li, 1991], [Sadegh and Horowitz, 1987]). These methods have the
common feature of requiring structural details of the manipulator model in order to
form nonlinear compensation torques. Perfect tracking is obtained by using perfect
knowledge of the configuration-based nonlinearity and inertial constants in (3.1) so
as to formally invert the dynamics and replace them with exponentially stable error
dynamics. If the inertial parameters are known and the kinematics carefully modelled,
the information needed for these model-based schemes can be computed relatively
efficiently.* Such modelling and measurement can be quite challenging [Armstrong
et al., 1985], a fact which has driven the development of provably stable model-based
adaptive control schemes [Bayard and Wen, 1988], [Whitcomb et al., 1993],[Slotine
and Li, 1991], [Sadegh and Horowitz, 1987].

We will use the same tools developed for model-based adaptive schemes to moti-
vate the nonparametric method given in the next section. The method of [Slotine and
Li, 1991] is the starting point; the key idea of their approach, as descended from the
“sliding surface” literature [Slotine and Li, 1983], is to consider 0, rather than 6, as the
controlled quantity. If § could be controlled directly, setting 0 = 03—\ (0—04) for A > 0
would solve the tracking problem. Defining the reference velocity 6, (t) = fa—\(0—8,),
the tracking problem can be converted to the problem of making the reference velocity
error s= 60— 0, = ¢+ \e converge to zero. 0, describes a sliding surface [Slotine and
Li, 1991], a time-varying vector field, onto which we would like 6(¢) to converge. Other
approaches for addressing time variation due to 64(t) exist, but Lyapunov-based sta-

bility analysis is greatly simplified by the notions of a reference velocity and a sliding

4Computational expense was once a compelling motivation for non-model-based approaches. How-
ever advances in algorithms and computing power have made the calculation of terms in (3.1) possible
at real-time speeds, if the necessary parameters are known.

63

surface.

Defining a kind of pseudo kinetic energy, the s-energy, V, = %STM s by analogy to

Ve, differentiating gives (see appendix for details):

Ve, = sT(r, — M6, — C0, + Tegt) = 5°Tq — 57T, (3.5)

MO, + CO, + Tozs (3.6)

Tr

where the first term, s, consists of energy injected due to control action, and the

T7,. consists of energy stemming from the nonlinear dynamics, external

second term, s
forces, and details of the desired trajectory. 7, defines a time-varying reference torque
closely related to the inverse dynamics (3.1). PD feedback for time-varying 6; can be

rewritten

Tpd — —pr - Hd) - Kd(é - éd) = _Kd(é - (éd - Kd_le(H - ed))) (3~7)
_ Ky (3.8)

and provided that Kd’le is positive definite, we can set A = Kd’le. Then if the
control torques consist of a PD term and a compensation term 7., i.e. 7, = Tpq + T,

(3.5) becomes
Vo= —sTKgs+ s (1, — 73) (3.9)

and we can define the reference torque error as e, = 7, — 7,.

The model-based approaches of Slotine and Li (and the closely related approaches
of [Wen and Bayard, 1988], [Whitcomb et al., 1993]) are based on viewing 7. as a
static function of state measurements and of the desired trajectory. The reference
torque 7, = M(H)ér + C(#, 9)9r — Teat(0, 9) is a function of 6, 6, 6,, and 6,. If a

parameterized form 7.(p, 0, 9, 9r,ér) is chosen such that for some choice of constant

64
parameters pg, T.(po) = 7, then the compensation torques exactly cancel the reference
torques. For this parameter choice, V,=—-sTK;s<0and s > 0 = e — 0 so that

asymptotic perfect tracking results.

Nonparametric methods ([Jordan and Rumelhart, 1992], [Kawato et al., 1987], [San-
ner and Slotine, 1995]) involve choosing a more generic, non-model based form for
Te, and determining adaptation rules for the unknown parameters. In analyzing such
methods, great emphasis is placed on the static function approximation capabilities of
a nonparametric form for 7.. Typically by assumption or by design, the form for 7,

has the ability to globally approximate 7, so that the worst case reference torque error

suPg 4,6, 5, 7e = 7| (3.10)

is “small” for some choice of constant parameters. The tools of approximation theory
can be employed to this end, but computational resources required for designs based
on global approximation theory can be quite severe (e.g. [Sanner and Slotine, 1995]).
Given the inevitable presence of unmodelled dynamics, it is important to understand

what can happen when 7. cannot act as a good static global approximation to 7,.

3.3 Compensation schemes for dynamic forces

In this section we motivate an architecture and learning rules for a class of compensa-
tion torques based on mizture models. Our scheme is like all adaptive and nonadaptive
schemes in having a PD component, so a few points about the use of PD control alone
for tracking are worth underlining. First, although formal stability analysis often re-
quires only that K,, K4 be positive definite, the behavior of the closed loop depends
on the interaction of these gains with inertial properties. Picking reasonable gains
requires at least gross knowledge of the scale of the inertia matrix M (#); hence no
adaptive controller can claim no knowledge of the inertial parameters. Second, highly

accurate tracking control can be achieved with high gain PD control [Arimoto, 1984].

65
However, as gains are increased, instability due to the interaction of high gains with
unmodelled aspects such as delays or high-frequency resonances is a serious practi-
cal issue. Further, for a system intended for interaction with the environment, high
gains are often undesirable; configuration control should be decoupled (to the de-
gree possible) from mechanical impedance of the manipulator. Third, it’s possible to
design gains for a PD tracking controller based on a linearization of the nonlinear dy-
namics (3.1) about some configuration ([Spong and Vidyasagar, 1989], [Murray et al.,
1994]); The resulting pole placement, produces gain matrices which take account of the
coupling between joints. Of course, that approach requires knowledge that adaptive
methods assume is unavailable. At any rate, PD control serves as a baseline solution
for tracking control, and is a starting point for more complicated schemes requiring

additional design and computational effort.

From the s-energy derivative (3.9), a criterion for good compensator 7. is that it
follow the time-varying signal 7,(¢) as closely as possible. Neglecting external forces
(to be considered later), 7, is a linear function of the known reference velocity and

acceleration 6, and 6,. A natural compensator form emphasizing this linearity is
7. = Af, + B9, (3.11)

Because the dominant nonlinearity of M and C'is configuration dependent, we propose

forming the matrices A and B as linear mixtures, i.e.

A= ZAigi(g) B= Z Bigi(0) (3.12)

66

where the g¢;(¢) are scalar nonlinear configuration dependent gating functions. By

choosing gating functions to be normalized gaussians defined by

1
gi(0) = Ee*”‘”i”””“ (3.13)
7 =Y e lo-eill/20 (3.14)
(3.15)

there is a simple interpretation of equation 3.12 as a collection of linear ”experts”
[Jordan and Jacobs, 1994]. The gating functions form a partition of unity over the
configuration space (3; gi(f) = 1); each partition has an associated ”expert” used
to produce a torque 7, = Aiér + Biér and the individual 7,; are blended to produce
the final compensation torque 7.. The variance of the gaussians in (3.13) controls the
sharpness of the partition boundaries; low variances correspond to hard boundaries

while high variances lead to significant smoothing between the different linear maps.

Note that there are many possible forms for nonlinear regressors®, and (3.12) is just
one example. The neural network literature has intensively studied the problem of
function approximation through combinations of nonlinear basis functions; (3.12) is
a variant in which the g¢; play the role of basis functions. It’s beyond the scope of
this paper to discuss the details of this literature (see [Girosi et al., 1995] for review),
but there are three points that are relevant here. First, there is no fundamental dif-
ference in approximation power between different nonlinear basis functions. A recent
result establishes that essentially any collection of nonlinear functions produces lin-
ear combinations which are dense in the space of continuous functions on bounded
domains. Second, an important qualification to the previous statement occurs when
basis functions reflecting known nonlinear structure are employed. In such a case,
the number of basis functions needed to accurately approximate a target function can
potentially be much smaller than the number required if a more “generic” basis set

such as normalized gaussians were used. Third, new issues arise when the parameters

Snonlinear as a function of 4

67
defining the basis functions themselves may be altered. Although this case, which
includes the “classic” multilayer perceptron algorithms, offers interesting computa-
tional possibilities [Barron, 1993], the resulting nonlinearly parameterized models are

difficult to analyze. In this paper we assume that the gating functions are fixed a priori.

The compensator (3.11) mimics the linear structure of the reference torque (3.6) to
create a class of compensators with configuration dependent nonlinearity. Note how-
ever that there is no set of parameters for which a compensator of the form (3.11)
can exactly approximate (3.6), regardless of the number of gating functions used. The

Coriolis/centripetal torques in (3.6) are given by
[Ch,); = >N Tijk0;6rk (3.16)
ik

where the Christoffel symbols [Armstrong et al., 1985] are configuration dependent.
The product velocity terms in this expression cannot be matched by (3.11), and part
of the purpose of this study is to consider the potential effects of this kind of structural

mismatch in approximation ability.

The “ultimate” compensation model is one which exploits complete knowledge of the
rigid body dynamics structure, and is useful for comparison purposes. As mentioned
above, the model-based approach of [Slotine and Li, 1991] exploits the fact that 3.6 ad-
mits an exact linearly parameterized form for any open-chain robot. Their algorithm

employs compensation torques of the form
7. =Y(0,0,0,,0,)a (3.17)

where the parameters a correspond to sums and products of inertial constants. The
"regressor matrix” Y plays a role like the bass or gating functions, in that it encap-
sulates the fixed and nonlinear parts of the compensator. The elements of Y can be

obtained from a derivation (and symbolic manipulation) of the equations of motion,

68
whose details depend on the kinematic structure. Therefore the elements of Y repre-
sent the "right” basis functions for rigid body dynamics, but obviously require strong

knowledge about the manipulator structure.

3.3.1 Learning rules and dissipative maps

Adaptation rules for the mixture compensators above can be developed through a
simple interpretation of the Lyapunov synthesis methods used in model-based con-

trol. If we knew the reference torque error e, = 7, — 7., any free parameters in a

compensator 7. could be adjusted to reduce %ef@r, giving a gradient rule of the form
w = —H%Ter for parameter w. However, e, cannot be directly obtained, since it

depends on 7,., which in turn depends on the unknown rigid body dynamics details.
The s-energy derivative in (3.9) implies a dissipative mapping between e, and s, the
reference velocity error which can be measured. The general properties of dissipative
and passive mappings are well known in linear and model based adaptive control [As-
trom and Wittenmark, 1995], [Narendra and Annaswamy, 1989]. Here we emphasize
that signals related by a dissipative map are in effect positively correlated. From the
positive definiteness of the inertia matrix M (0), the s-energy V(t) = sTMs is lower

bounded by zero. From (3.9),
t t
Vi(t) == [sTKas + [sTe, +V,(0) > 0 (3.18)
0 0

For initial conditions of #(0) = 6,(0), 6(0) = 64(0), the V,(0) term vanishes. Note
that if for any period of time, say [0, ?], the reference velocity error s is nonzero, then
fot_ sT K4s will be strictly greater than zero since Ky is positive definite. Then (3.18)

implies
t t
/ sle, Z/ sTKys >0 (3.19)
0 0

and for all ¢ > ¢, f(f sTe, > 0. Intuitively, this result indicates that the vector output

of a dissipative system has, on average, a positive projection on the input (e,) if both

69
are nonzero. In this case, the dissipative relationship suggests that s can serve as
an approximation for e,; adjustments based on s instead of e, will point on average
in the correct direction. Then a gradient rule for the mixture compensator (3.11) is
simply
Aijk = _ngi(g)sjérk

Bijr = —n9i(0)50:% (3.20)
where we've substituted s for e, in a gradient formula. This adaptation rule is very

similar in form to the model-based adaptive rule given in [Slotine and Li, 1991]:

or. T
8ai

a; = —n s = —nY;is; (3.21)

In all cases, n is a positive learning rate or adaptation gain; its role will be discussed

in the results section.

A more sophisticated adaptation rule with adaptive learning rates can be derived

by applying ideas from recursive estimation. The compensator torque can be written®

. = 3[4 By QEZ;Z (3.22)
i Gi r
= Wo(t) (3.23)

where W is the n by 2nN matrix W = [A; B; A3 B,... Ay By| of adjustable parameters,

and ®(t) is the 2nN dimensional regressor vector

T = [91¢T92¢T---9N¢T] (3.24)

r

where ¢ = | . (3.25)
Or

If P and @Q are m by n matrices, then [P Q] denotes a m by 2n matrix, and [g] denotes a 2m

by n matrix.

70
analogous to Y from the model based approach. If 7, is intended to take be an estimate
of 7., we can write 7, = Wy® + d(t) where d(t) is a model mismatch term which is
zero in the event that 7, can be perfectly approximated. Then e, = (W —W;)® —d(t),

and the gradient rule takes the form
W = —ne, o7 ~ —nsd” (3.26)

Since the problem is one of linear regression (the nonlinearity being hidden inside ®),
the ability to fit the parameters in W depends on the degree to which ® spans its 2n/N
dimensional space as it evolves in time. As is standard in linear adaptive control, we
can use the time-varying excitation matrix ®®7 to determine directions corresponding
to well determined parameters. An adaptation rule which varies learning rates based

on these directions is

W = —P(t)e, T (3.27)

P =—-pPodpTp (3.28)

where P(t) is a 2nN by 2nN matrix of adapting learning rates, whose evolution
depends on the rank of the excitation matrix ®®7. As with the gradient rule (3.20),
§ can serve as an approximation to e, in the adaptation (3.27). The initial conditions
P(0) can be chosen as nla,nzony Where 7 is a positive constant. If the regressor @ is
sufficiently exciting, P(t) will decay to zero. In practice, P(t) decays according to the
subspace of directions in parameter space that are determined by the ”data” given in

a particular trajectory of ®(¢). To recap, the schemes for tracking include:

1. PD control: 7 = 7, = —K,(8 —84) — K4(f —4). This corresponds to zero addi-

tional compensation, and represents a lower baseline for tracking performance.

2. Linear mixture 7 = Tpg+ 7, = Tpd+flér + Bér, mixtures and adaptation schemes

defined above.

71
3. Model-based regressor 7 = Tpq+7. = Tpa+Y (0, 0,0,, ér)a, a = —nYTs. This cor-
responds to complete knowledge of the structure of the nonlinear compensation,

and represents an upper baseline for performance.

The next section details some simulation results illustrating the performance of these

schemes.

3.4 Simulations

A number of simulation experiments with a two-link arm model (figure 1) were per-
formed in order to compare the performance of the compensation schemes described
above. Inertial and kinematic parameters corresponding to two different arms were
tested. The first parameter set, due to [Uno et al., 1989] approximates an average
human arm and has been used in a number of biomechanical studies modelling human
arm movements. The second, due to [Slotine and Li, 1991] corresponds to an arm that
is larger, has significantly greater inertia, and has a mass distribution that approxi-
mates the firm grasp of a load. Parameter details are given in the appendix. Unless

otherwise noted, all simulations are performed in the absence of external forces.

3.4.1 Desired trajectories and error measures

Following the experimental comparison of model-based adaptive controllers in [Whit-
comb et al., 1993], we adopted a number of conventions for comparing tracking perfor-
mance. Desired trajectories were varied over different domains in joint space; figure
2a shows the example domains used. Also, different types of desired trajectory were
used; sinusoidal and smooth point-to-point movements (figure 2b,2¢). Finally, for a
given joint space domain and trajectory type, different movement speeds and accel-
erations were tested. For example, we looked at sinusoidal trajectories with different
frequencies and point-to-point movements with different peak speeds (not shown). In
the sections below, movement bandwidth informally refers to the peak speed and accel-

eration of a trajectory. A tracking task is defined by a particular choice of trajectory

72

Elbow angle (radians)
|

3 ‘ 3
Joint space 3) »
% 95 % o % 9 5
0 0 0 [
00 o o o o 00
00 00 00 00 R
P o @® ® o —~ 1k o o
g ® 00 00 ® g o
£ 00 0o 0o 00 g o
o 00 0 0 o o 00 g al
o ol 0o 0 o 0 0 00 o ol 000000
g’ 0 O 0 0 0 0 0 O g’
‘ & o o0 o o o o 0o o 4 &
Joint space 1 E o oo o o oo o § o o
a) 00 w o 2
Woar o ® ® o Wotp
o oo 00 00 o0 °
0o oo Q0 00 0 00
. 0 0, o o]
Joint space 2 %90 9 o R ° w %%%
0
1o oo Cooes® 2
3) 3

. . . L . . .
1 2 3 -3 -2 1 2

L L L a L L
1 2 3 -3 -2 -
Shoulder angle (radians)

-1 -1 0
Shoulder angle (radians) Shoulder angle (radians)

Figure 3.2: Desired trajectories for tracking. a) Examples of three different joint space
areas covered by different 04(¢). b) Sinusoidal 04(t), shoulder and elbow frequency
757 and 27 respectively. ¢) Point-to-point 64(t), bell-shaped velocity profile. In b)
and c) circles are spaced 20 msec. apart.

type, joint space area, and movement bandwidth. A wide variety of tracking tasks
was studied; for complete details, see the appendix. The purpose of simulating a set of
tracking tasks instead of a single illustrative example (cf. [Sanner and Slotine, 1995],
[Kawato et al., 1987]) was to isolate the different factors contributing to success or

failure of the proposed tracking schemes.

All the controllers were simulated with identical feedback gains for the PD part of
the control torque. As noted above, higher gains lead to more accurate tracking,
but there are many contexts in which high gains cannot be employed. For this rea-
son, we experimented with gains well below any stability limits, loosely based on
experimentally-determined stiffness and viscosity ranges for the human arm [Bennett

et al., 1992].

To make sensible comparisons under varied conditions, a quantitative performance
metric must be established. This is a subtle problem for nonlinear systems, since
the tools of frequency domain performance analysis are not always applicable. A

physically meaningful measure, used effectively in the experimental comparison of

73

045} \53
Q 8
8 o ©
0.4F © 1
8 8
0.35F Kp=9,Kd=1 o
—_ © O
2 03f o i
8
g ° €
5 0257 Kp=16,Kd=1.33
5 6 °
N 02f R o ©
8
0.15F 8 ° i
6 ° .
L e S] °
0.1 a © Kp=25,Kd=1.66
o i o ° ©
0.05F o - o oo i
. g o ©°
0 ° 1 1 1 1 1 L

1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Bandwidth scale factor

Figure 3.3: L, error for PD controllers at 3 different gain values for a range of move-
ment bandwidths of a sinusoidal trajectory 04(t) = (1.33(1 — cos(27mkt), . 75cos(2mkt)).
The bandwidth scale factor k varies from 0 to 1 along the horizontal axis.

[Whitcomb et al., 1993], is the L, error norm given by

g [letolran' (3.29

where e(t) = 0(t) — 04(t). This measure has units of radians (1rad. ~ 57°) and is a

form of the commonly used root mean squared error from signal processing.

In addition to an absolute error measure, it’s useful to look at the relative perfor-
mance of different control schemes. In a number of the figures below, the Ly error
of an adaptive method on a particular tracking task is presented relative to the per-
formance of a PD controller (with the same gains) on the same task. The resulting

normalized performance measure permits the combination of data from different tasks.

74

0000
[e]
Q.
[}

S&%

Joint angle error (radians)
o
T
.
e]
o

Elbow angle (radians)
o
T

°©@@%%%%%%%

0000
00
%o,

— Joint 1
- = Joint2

-1 I I I I ! I I I I
I

0 1 2 3 4 5 6 7 8 9 10 -1 L L L
Time (seconds) -1 1 2

Shoulder angle (radians)

Figure 3.4: Typical low-gain PD performance on a fast sinusoidal trajectory. a) Joint
angle errors asa function of time. b) Desired (solid) and actual (circles) trajectories
superimposed in joint space. Circles are spaced 20 msec. apart.

3.4.2 Results

Figure 3 shows the Ly error for PD control for different bandwidth trajectories and
different choices of PD gains. As expected, slower trajectories and/or higher gains
lead to better performance. The arrow in the figure indicates an example of the perfor-
mance of a “low” gain controller on a fast trajectory. An expanded view of this trial is
shown in figure 4, which shows time-domain and joint space views of the performance.
Figure 4a shows the (substantial) joint angle error as a function of time, and 4b shows
the actual and desired trajectories superimposed in joint space. For this choice of
gains (K, = 9, K; = 1, in the range of stiffness and viscosity for a comparably sized

human arm), PD control does a rather poor job of tracking the desired trajectory.

Figure 5 summarizes the main results for the adaptive schemes. In this figure and
the figures below, IDSL refers to the model-based inverse dynamics method of Slotine
and Li. M1, M2, ... M8 refer to mixture compensators (3.11) with N = 1,2,...,8
partitions respectively. Adaptation gain is the same for al the adaptive controllers
(n = 0.01), as are the PD gains (K, =9, K4 = 1). Each data point represents the Ly
error measured over a 10 second period, after adaptation for 30 seconds. Although

there are important qualifications to be discussed below, the basic trends in the figure

75

-
T

o
©
T

°
®
T

Scale: PD =1.0

o
3

o
)
T

Normalized L2 Error
o o
i &l
T

o o
N w
B
b
e
L
[

°
o

RS

IDSL M1 M2 M4 M6 M8

o

Figure 3.5: Normalized L2 errors for the Slotine-Li arm, sinusoidal 0,4(t). Bars denote
mean performance, error tics denote 1 standard deviation. Plot combines results from
different trajectory types, movement bandwidths, and joint space areas.

are consistently observed:

e All adaptive controllers can exhibit performance substantially better than PD

control in the absence of external forces.

e The mixture models tend to enhance performance despite an inability to per-

fectly approximate the reference torque.

e The model-based controller, which uses additional information about the kine-
matic structure, performs consistently better than the approximate mixture mod-

els when there are no external forces.

Figure 6 shows a particular example of the performance of the adaptive scheme M4 on
the same tracking task shown in figure 4. There is certainly a dramatic improvement
in performance over the PD controller. The next few sections describe additional

findings concerning the behavior of the compensation schemes.

Adaptation gain

The adaptation gain 7 has a significant qualitative impact on performance, in that high

values can induce instability. When 7 is low enough to ensure stability, differences

76

— Joint 1
—- = Joint2

=)
T

Joint angle error (radians)
o
Elbow angle (radians)

4 5 1
Time (seconds) Shoulder angle (radians)

Figure 3.6: Mixture-compensator performance on a fast sinusoidal trajectory (com-
pare with figure 4). a) Joint angle errors as a function of time. b) Desired (solid) and
actual (circles) trajectories superimposed in joint space. Circles are spaced 20 msec.
apart.

between trials using different values for n are marginal. Figure 7 shows performance
for three different values of adaptation gain. However it is essential to note that the
data for n = 0.1 excludes a number of unstable trials; the arrows indicate compen-
sators for which instability was observed. For adaptation gains higher than n = 0.1,
instability was typical, and all the adaptive schemes could exhibit unstable behavior.
This is an important observation because there are always unmodelled dynamic ef-
fects. In this case, the unmodelled dynamics are not due to external physical forces
(since this simulation is contrived to exclude them). Rather, the stability problems
arise because we are actually simulating a discrete time approximation to a continu-
ous set of differential equations, an issue for real and simulated robots. The typical
adaptive control analysis requires only that adaptation gains be positive for formal
stability. In practice, as is the case with PD feedback gains, the adaptation gain must

be sufficiently small to avoid problems due to discretization.

Unfortunately, there is usually no simple way to determine the appropriate adap-
tation gain for a particular situation. Recursive estimation learning rules like the one
described in section3.3.1 partially address this problem, but those rules still require

initial conditions for learning rates. As is the case with gradient learning rules, if the

o

7

ela=0.1 08 ea=0.05 08 eta=0.01

Instability observed here) a

03 03

S

o

S

IDSL M1

A
tiifi) 3

IDSL M1 IDSL M1

Figure 3.7: Normalized L2 errors for the Uno arm for different values of adaptation
gain n. a) n = 0.1, b) n = 0.05, ¢) n = 0.01.

initial conditions for learning rates in a recursive estimation scheme are “too large,”
instability can result. The qualitative sensitivity to adaptation gain is a major stum-
bling block for all adaptive control schemes, and rigorous methods are lacking in all

but the simplest situations.

External forces

Significant external forces that are not explicitly accounted for in the structure of
the adaptive compensators degrade performance, but improvements over PD control
are still typical. Further, tasks with unmodelled external forces tend to reduce the
differences between the model-based and mixture compensators. Figure 8 shows an
example of performance in the presence of gravity as an unmodelled external force.
In 8a, the absolute Ly errors are shown with and without gravity (Note that this fig-
ure combines data from different tasks, but the std. deviation bars are omitted for
clarity). In 8b, normalized errors are shown. Note that the adaptive methods were
able to perform well on many trajectories despite the fact that there was no constant
parameter choice for any of the methods which would allow global approximation of
the static gravitational force. Figure 9 shows another example in which nonlinear vis-
cosity forces are added as external forces. Again, absolute performance is degraded

(not shown), relative performance continues to favor the adaptive methods, and dif-

78

O Gravity present
X Gravity absent 1 091

o
©
T

7-Sep-96

o
@
o
o

Scale: PD=1.0

o

3

o

3
T

=4
=
T

o
=~
T

L2 error (radians)
o
o
Normalized L2 Error
=)
o

o
R
]
e
]
b
e

o o
N w

X
o o
N w
[EE—
[EE—
— 4
— 4
_

0.1 © ; ° © ° ° 0.1
Ar X .
x X x x
X
0 L L 0
PD IDSL M1 M2 M4 M6 M8 IDSL M1 M2 M4 M6 M8

Figure 3.8: External forces: gravity. a) Absolute Ly errors with and without gravity;
std. deviation bars omitted for clarity. b) Normalized errors with gravity present.

ferences between the adaptive methods are reduced.

In both examples, the adaptation feedback loop allows 7. to track 7,. There is
a limit to this ability in the case of gravity as an external force, however. If the de-
sired trajectory is slow or constant, the adaptive methods (which copntain no static
terms) will not be able to hold the slowly varying postures due to the dominance of
the gravitational forces. Of course, static forces can be modelled and the compen-
sator for modified accordingly, with adaptation rules easily obtainable as with the
dynamic compensator above. The point is that the tracking problem need not al-
ways be equated with the problem of perfect modelling of inverse dynamics, and that

adaptation feedback is essential.

Parameter convergence

For gradient learning, the parameter derivatives will be nonzero when s is nonzero.
As a result, the parameters do not converge to constant values, but rather fluctuate in
order to keep the compensation torques close to the reference torques. Figure 10 shows
an example of the time varying behavior of some of the adaptive parameters for an

M4 compensator; the traces are typical and representative of parameter fluctuations

79

o
©
T

=4
©
T

Scale: PD = 1.0

e
3
T

=4
=
T

Normalized L2 Error
o =)
> o
T

o o
o w
e
[
[
i
i
i

e

=)

IDSL M1 M2 M4 M6 M8
Figure 3.9: External forces: nonlinear viscosity, normalized errors.

for all the adaptive methods (including model-based). These fluctuations allow the
compensation torque applied by a particular scheme to follow the reference torques
despite the fact that constant parameters would lead to poorer inverse dynamics ap-
proximation. This is an essential feature of on-line adaptive methods, and has been
neglected in the literature. When the tracking problem is cast as anexercise in static
approximation, parameter fluctuation is viewed as something to be avoided. But our
experience with simulations suggests that parameter fluctuation typically enhances the
performance of an adaptive method by allowing feedback from the reference velocity

error s to make up for structural definiences in the adaptive compensator.

Different mixture models

For most of the examples encountered, there is no consistent difference between the
different types of mixture model. In fact, careful modelling of the rigid body nonlin-
earity may be uneccessary. This is not the same as saying the nonlinearity is negligible.
Rather, if the nonlinear terms are treated as disturbancees, the adaptive feedback loop
may still be able to track the desired reference torque and achieve “good” performance.
This is because the disturbances due to nonlinearity are not random noise; they are
trigonometric and quadratic functions of the state, and tend to vary smoothly as the

state does. The passive relation between s and 7. and 7, provides a good source of

80

0.08

0.06

0.04

0.02

Adapting parameters (units vary)

—-0.02 1 1 1 1 1
0 5 10 15 20 25 30

Time (seconds)

Figure 3.10: Typical behavior of adapting parameters in a mixture compensator as a
function of time for a sinusoidal trajectory.

information about these “disturbances.” Preliminary simulations with more elaborate
arms suggest that linear or weakly nonlinear adaptive methods continue to substan-

tially better performance than PD control.

One consequence of this is that it is unclear whether substantial effort intended to
guarantee a certain level of static nonlinear approximation is warranted. For example,
[Sanner and Slotine, 1995] develop an approximation theoretic approach to the design
of a compensator for the two-link arm model used here. The radial basis function net-
works needed to model the inertia and Coriolis/Centripetal matrices have over 5000
adjustable parameters; the resulting controller does far better than PD control, but
there is no indication that it performs better than a computationally simpler adaptive
scheme. Our simulations suggest marginal and diminishing returns from increasing
the number of basis functions for the typically encountered desired trajectories. De-
sign schemes for nonparametric models of static functions tend to produce implausibly

conservative resource requirements [Barron, 1993].

81
3.5 Conclusions

Online adaptive control is an important building block for designing systems, real or
virtual, intended to operate in the presence of parametric or structural uncertainty.
The adaptive method presented here is a simple scheme based on a selective view of
the structure of the equations of motion for open chain manipulators. The dissipative
relationship between a performance measure, s, and an unknown control error, e,
is exploited as in model-based control to derive gradient and recursive-estimation
adaptation rules. The simulation experiments indicate the usefulness of the approach,
with important qualifications concerning the choice of adaptation gains. Compensation
based on mixture models therefore offers a promising middle ground between PD

control and more knowledge-intensive model-based schemes.

3.6 Appendix

3.6.1 Lyapunov arguments

The kinetic energy of an open-chain manipulator described by (3.1) is
Vie(0,0) = %QTM(H)G (3.30)
so that
Vie = 6TM(0)8 + %GTM(H)G (3.31)

and substituting the closed loop dynamics (3.1) for the first term gives

.) .. 1.

Vie = 6" (Teoe + 70— C(6,0)8) + 67 M(6) (3.32)
1. . .

= S0T(M = 2000 + 0 (Tes + 70) (3.33)

= 0" 7en + 677, (3.34)

82
where the standard definition of the Coriolis/centripetal matrix C' gives the skew-

symmetry of M — 2C ([Murray et al., 1994], [Slotine and Li, 1991]).

For s-energy V, = 357 M's, differentiating gives

. 1 .

V, = sTM(6)s+ 5sTM(e)s (3.35)
.. . 1 .

= sTMO —s" MO, + 5sTM(o)s (3.36)

= ST(_Mér - Cer + Tewt) + ST(Tpd + 7_comp) (337)

were the last line is obtained by adding and subtracting C6, from the previous one.

3.6.2 Simulation details

The sinusoidal desired trajectories used were of the form

Ou(t) = oq+ P1(1 — cos(wt)) (3.38)

Oa2(t) = o+ Pacos(wt) (3.39)

where «; and [3; are chosen to translate and scale the trajectory into one of the joint
space regions shown in figure 2. Choice of a; = 0, 81 = 1.33, f2 = 0.75, wy = 0.75m,
wy = 27 produces the desired trajectory used in [Sanner and Slotine, 1995]. For other

choices, the trajectories are of the general form used in [Whitcomb et al., 1993].

The trajectories for straight-line movements with bell-shaped velocity profiles were
created by interpolating between start and end configurations with a sigmoidal differ-

ential equation:

o=MAo(1.0—-0) (3.40)

83
With initial conditions 1 >> ¢(0) > 0, this equation produces solutions in the sigmoid
family o(t) = 1/(1+e7*), which have the properties of smooth, symmetric acceleration
and decceleration, bell-shaped velocity profiles, and peak velocity easily controlled by
A. For start and end points 059" and 05", desired configuration trajectories can then

be produced with

Ba(t) = 63" +o(t)(65" — 63") (3.41)
04(t) = Ao(1.0 — o) (057 — g3temt) (3.42)
0a(t) = Xo(1.0 — o) (1 — 20) (85" — p5tat) (3.43)

A complete sequence can be prduced by concatenating segments produced with these
equations. There are obviously many ways of producing straight line movements (e.g.
critically damped second-order dynamics), we used this scheme because it roughly

matches the observed metrics of human point-to-point movements.

The differential equations associated with the equations of motion (3.1) and the adap-
tive compensation schemes (refs) were numerically integrated with a 5th order Cash-
Karp Runge-Kutta adaptive time step method [Press et al., 1990]. The continuous
time error norm (3.29) was evaluated discretely in the obvious way:

1 N

S lleto)| 2t — 1))} (3.44)

In—to ;=

(

where t; is the ascending sequence of sample times produced by the numerical inte-

gration routine.

84

Bibliography

Arimoto. Control and dynamics. In Michael Brady, editor, Robotics Science. Plenum

Press, New York, New York, 1984.

S. Arimoto and F. Miyazaki. Stability and robustness of PID feedback control for
robot manipulators of sensory capability. In Proceedings International Symposium

of Robotics Research, pages 1-1, Cambridge, Massachusetts, 1983. MIT Press.

Brian Armstrong, Oussama Khatib, and Joel Burdick. The explicit dynamical model
and inertial parameters of the puma 560 arm. In IEEFE International Conference

on Robotics and Automation Proceedings, pages 510-518, 1985.

Karl Astrom and Bjorn Wittenmark. Adaptive control. Addison-Wesley, Reading,
Massachusetts, 1995.

David Baraff. Dynamic simulation of non-penetrating rigid bodies. Ph.D. thesis, Cornell

University, 1992.

Alan Barr. Geometric modelling and fluid dynamic analysis of swimming spermatozoa.

Ph.D. thesis, Renselaer Polytechnic Institute, 1983.

Andrew Barron. Universal approximation bounds for superpositions of a sigmoidal

function. IEEFE Transactions on Information Theory, 39:930-945, 1993.

Ronen Barzel. Physically based modelling for computer graphics: a structured ap-

proach. Ph.D. thesis, California Institute of Technology, 1992.

Ronen Barzel and Al Barr. A modelling system based on dynamic constraints. Com-

puter Graphics, 22(4):179-188, 1988.

David S. Bayard and John T. Wen. New class of control laws for robotic manipulators,

Part 2: Adaptive case. International Journal of Control, 47(5):1387-1406, 1988.

85
D. J. Bennett, J. M. Hollerbach, Y. Xu, and . W. Hunter. Time-varying stiffness of

human elbow joint during cyclic voluntary movement. Ezperimental Brain Research,

88:433-442, 1992.

A. R. Collar and A. Simpson. Matrices and engineering dynamics. Ellis Horwood

Limited, Chichester, West Sussex, England, 1987.
James Cremer. The Isaac project. Cornell University Technical Report, 1992.

F. Girosi, M. Jones, and Tomaso Poggio. Regularization theory and neural network

architectures. Neural Computation, 7:219-269, 1995.
James Hopcroft. The Newton project. Cornell University Technical Report, 1986.

Michael 1. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the

EM algorithm. Neural Computation, 6(2):181-214, 1994.

Michael I. Jordan and David E. Rumelhart. Forward models: supervised learning

with a distal teacher. Cognitive Science, 16:307-354, 1992.

M. Kawato, K. Furukawa, and R. Suzuki. A hierarchical neural network model for
control and learning of voluntary movement. Biological Cybernetics, 57:169-185,

1987.

Ming Lin and John Canny. Closest features for collision detection. Berkeley Technical

Report, 1995.

Brian Mirtich. Impulse based simulation. Technical report, University of California

at Berkeley, 1996.

Marcus Mitchell. Impulses and constraints for dynamic simulation, in preparation.

Technical report, California Institute of Technology, 1996.

Richard Murray, Zexiang Li, and Shankar Sastry. A mathematical introduction to

robot manipulation. CRC Press, Boca Raton, Florida, 1994.

86
Kumpati Narendra and Anna Annaswamy. Stable adaptive systems. Prentice-Hall,

Englewood Cliffs, New Jersey, 1989.

Preston Pfarner. In preparation. Master’s thesis, California Institute of Technology,

1996.

John Platt. Constraint methods for neural networks and computer graphics. Ph.D.

thesis, California Institute of Technology, 1989.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical recipes in C: the art of scientific computing. Cambridge University Press,

Cambridge, 1990.

Guillermo Rodriguez and Kenneth Kreutz-Delgado. Spatial operator factorization
and inversion of the manipulator mass matrix. IEEFE Transactions on Robotics and

Automation, 8(1):65-75, 1992.

N. Sadegh and R. Horowitz. Stability analysis of an adaptive controller for robotic
manipulators. In Proceedings IEEE Conference on Robotics and Automation, pages

1223-1229, 1987.

Robert Sanner and Jean-Jacques Slotine. Stable adaptive control of robot manipula-

tors using “neural” networks. Neural Computation, 7(4):753-790, 1995.

Jean-Jacques Slotine and Weiping Li. Tracking control of nonlinear systems using
sliding surfaces, with application to robot manipulators. International Journal of

Control, 38:465-492, 1983.

Jean-Jacques Slotine and Weiping Li. Applied nonlinear control. Prentice Hall, En-

glewood Cliffs, N.J., 1991.
Mark Spong and K. Vidyasagar. Robot control and analysis. John Wiley, 1989.

Mark W. Spong and M. Vidyasagar. Robot dynamics and control. John Wiley and
Sons, 1989.

87
Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal trajectory

in human multijoint arm movement - minimum torque-change model. Biological

Cybernetics, 61:89-101, 1989.

C. W. Wampler and L. J. Liefer. Applications of damped least-squares methods to
resolved rate and resolved-acceleration control of manipulators. Journal of Dynamic

Systems, Measurement, and Control, 110:31-38, 1988.

John T. Wen and David S. Bayard. New class of control laws for robotic manipulators,
Part 1: Non-adaptive case. International Journal of Control, 47(5):1361-1385,
1988.

Louis L. Whitcomb, Alfred A. Rizzi, and Daniel E. Koditschek. Comparative ex-
periments with a new adaptive controller for robot arms. IEEE Transactions on

Robotics and Automation, 9(1):59-69, 1993.

