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Abstract

Advanced numerical solvers and associated simulation tools, such as, for example, numerical algo-

rithms based on novel spectral methods, efficient time-stepping and domain meshing techniques for

solution of Partial Differential Equations (PDEs) (enabling, in particular, effective resolution of ex-

tremely steep boundary layers in short computing times), can have a significant impact in the design

of medical procedures. In this thesis we present three recently introduced numerical algorithms for

medical problems whose performance improves significantly over those of earlier counterparts, and

which can thereby provide solutions to a range of challenging computational problems for planning

and design of medical treatments.
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Chapter 1

Introduction

Recent advances in medical science have given rise to many challenging computational problems.

In some cases the resulting computational demands are so taxing that they simply overwhelm the

capabilities of standard numerical methods. In this thesis we introduce three innovative numerical

algorithms which, relying on novel spectral approaches, efficient time-stepping and domain meshing

techniques for solution of Partial Differential Equations (PDEs) (enabling, in particular, effective

resolution of extremely steep boundary layers in short computing times), improve significantly on

existing numerical tools and provide, in fact, solutions to previously intractable medically-relevant

problems. These methods were devoloped for use in two specific medical applications: 1) the field of

therapeutic magnetic drug delivery, which involves the transport of magnetized particles through a

convecting blood vessel and subsequent diffusion into surrounding tissues, and 2) the reconstruction

of images obtained from Positron Emission Tomography (PET) scans.

1.1 Magnetic Drug Delivery

The goal of magnetic drug delivery is to use magnetic fields to direct and confine magnetically respon-

sive particles (which, containing therapeutic agents, are injected into the bloodstream) to specific

regions in a patient’s body—thus allowing for focused treatment in an area of interest. Numerous

benefits arise from the use of such a site-directed drug delivery system, including the enabled focus-

ing of chemotherapy to tumors, anticoagulants to blood clots, and antibacterial drugs to infection

sites, in addition to the limiting of the potentially debilitating effects of overtreatment. In cancer

treatment, for example, severe complications may arise from overadministration of chemotherapy

to healthy tissues [36]. By instead selectively delivering the necessary treatment, such disease sites

may be treated effectively while minimizing damage to surrounding healthy tissues.
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1.1.1 A Vessel-Membrane-Tissue Model

Several factors are most critical for understanding the efficacy of magnetically controlled drug tar-

geting: 1) the geometry of the vasculature and velocity of the blood flow near the disease site,

2) the susceptibility of the magnetic particles (or ferrofluid) to the externally-applied magnetic

forces, and 3) the in vivo diffusion of the particles into surrounding tissues. Past animal experi-

ments [37, 38, 3, 53, 41] and phase I human clinical trials [38, 39, 35] have observed the accumulation

of magnetic nanoparticles (or ferrofluid) by visual inspection, magnetic resonance imaging (MRI),

and histology studies. These studies have shown that magnetic forces can concentrate micro and

nanoparticles in vivo near the location of the external magnets. However, the details of the accumu-

lation are not visible experimentally: the resolution in both MRI and visual inspection is not high

enough to determine where magnetic forces have overcome blood velocity in the blood vessels and,

because they must be carried out after the animal has been sacrificed and blood flow stopped, only

partial knowledge of the particle behavior is provided through histology studies. Exact determina-

tion of the location of the ferrofluid accumulation via these methods is nearly impossible. In the

recent publication [42], we proposed the use of numerical simulation of a simplified vessel geometry

to better understand the accumulation behavior and evaluate the effects of external magnetic forces

on the convection and diffusion of magnetic particles through the bloodstream and in membranes

and tissues. While taking into account that the simulations are performed in an idealized geometry,

the use of numerical simulation enables preliminary analysis and characterization of the particle

behavior under different levels of diffusive and advective forces produced by the blood velocity and

magnetic fields to be carried out both systematically and inexpensively. Such an analysis will thus,

in turn, better enable the design of a method leading to confinement of the magnetically responsive

particles to a particular region of the body.

An effective mathematical model of a blood vessel has been proposed by Grief and Richardson [26]

and was extensively analyzed in [42] utilizing solver codes based on the numerical methods described

in Chapter 3. The idealized geometry of the Grief and Richardson model is a version of the Krogh

tissue cylinder [23] consisting of a lateral cross section of a blood vessel, including the endothelial

layer (or membrane) and some surrounding tissue, with an external magnet situated below (see

Figure 3.1). The characterizing equation of the resulting Vessel-Membrane-Tissue (VMT) geometry

is given by the hyperbolic convection-diffusion PDE,

∂

∂t
C(~r, t) = −∇ ·

[
C(~r, t) ~Vblood(~r, t)−D(~r) ∇C(~r, t) + k(~r) C(~r, t)∇

(
| ~H(~r, t)|2

)]
, (1.1)

with diffusion coefficient and advective terms varying over each layer.

Numerical solution of the Grief and Richardson VMT model for realistic values of diffusion

coefficients has proven highly challenging to numerical solvers for several reasons, amongst which
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figures prominently the strong concentration build-up, or boundary layer, that appears at the vessel-

membrane interface: due to the discontinuity in diffusion coefficients over each layer, sharp boundary

layers occur when the magnetic forces acting on the particles are strong enough to overcome the blood

velocity, an effect that is particularly noticeable for the extremely small nondimensional diffusion

coefficients present in realistic models of capillaries. Additionally, the advective forces provided by

the blood velocity are significantly more powerful than the diffusive forces, thus giving rise to greatly

disparate time scales; the development of an efficient time evolution methodology was necessary to

produce steady state solutions in a reasonable amount of time.

In analyses prior to the work [42], numerical solution of the VMT problem was performed through

use of the finite-element-based commercial software COMSOL Multiphysics (www.comsol.com).

While capable of solving the VMT problem for large diffusion coefficients, the COMSOL software

encountered many difficulties for the small diffusion coefficients inherent in realistic instances of the

VMT model, especially for larger values of the magnetization. For example, some relevant drug

absorption studies required solutions of convection-diffusion problems with (dimensionless) diffusion

constants of the order of 10−7. In the preliminary studies performed on the COMSOL software,

taking the diffusion and magnetization coefficients to equal 10−4 and 10−3 respectively, a steady

state solution was reached in 36 hours of run time on a 3.16 GHz single processor of a quad-core

Intel Xeon CPR X5460 computer with 32 GB of memory; the corresponding memory requirements

to obtain the steady state solution for values of the diffusion and magnetization equal to 10−5 ex-

ceeded the amount available on the same computer. Therefore, the medically relevant VMT model

with diffusion constant equal to 10−7 and magnetization on the order of 10−6 lies far outside the

domain of applicability of the COMSOL software in the said computer. In contrast, the algorithms

described in Chapter 3 produced accurate solutions for cases relevant to the contribution [42] with-

out difficulty. For example, on a computer with a 2.66 GHz Intel Core 2 Duo processor and 4GB

of memory, our solvers provide the required numerical solutions to the 10−4 and 10−5 problems in

under five minutes using 3 MB (not GB!) of memory and under fourteen minutes using 15 MB of

memory, respectively. One of the most challenging cases considered in [42], in turn, for which the

diffusion constant equals 10−7—a case that is very far from feasible for other methods—completed,

using 25 MB of memory, in a six hour run.

1.1.2 Magnetically Enhanced Diffusion

Magnetic drug delivery inherently suffers from two severe limitations: 1) the inability to focus

treatment on targets located deep inside the body with a stationary magnetic field (when stationary

external magnets are used, particles can only be moved at a maximum depth of 5 cm) and 2)

the fundamental consequence of the classic Samuel Earnshaw theorem [18] that no inverse-square

law force (including magnetic force on a single particle) can create a stable equillibrium in the
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interior of a domain—only unstable equillibria for ferrofluid particles may be attained with a static

magnetic field. Several methods to bypass Earnshaw’s theorem have been proposed, including the

implantation of magnetic materials, such as stents or wires, inside the body in order to create a

local magnetic field [28, 49, 50], and the use of carefully placed external magnets so as to trap the

ferrofluid against certain blood vessel walls [38, 39]. However, these techniques are not always viable

solutions: surgical implantation of such objects in a patient may be undesirable or not feasible in a

clinical setting and, due to the complex nature of the human blood vasculature network, entrapment

of the particles against particular blood vessel walls has proven to be nearly impossible.

To overcome these limitations, Shapiro [51] proposed the development of a dynamic feedback-

control scheme, where manipulation of the magnetically responsive particles is sought through dy-

namic adjustment of the magnetic fields. (An example of the use of dynamic control to bypass

Earnshaw’s theorem has been shown by the work of Potts et al. [47], wherein dynamic manipulation

of a single electromagnet was used to suspend a drop of ferrofluid a distance away from the magnet.)

Development of such a feedback-control scheme depends on evaluation of the effects of external

magnetic forces on the convection and diffusion of magnetically responsive particles through the

relevant tissues. In order to simplify the complex nature of these effects in standard vasculature

geometries, and thus better understand the feasibility of such a control scheme, Shapiro [51] consid-

ered the Grief and Richardson convection diffusion PDE (1.1) over an idealized domain: a circular

region surrounded by eight electromagnets placed equally in a ring (see Figure 4.1). A zero-flux con-

dition is imposed at the boundary of the domain in order to ensure no ferrofluid leaves the domain.

Clearly, the design of adequate control schemes requires efficient numerical solution of such PDEs.

This modification of the Grief and Richardson model may thus be utilized as a test bed for the

development of numerical algorithms capable of evaluating such solutions accurately and efficiently.

For the parameter values inherent in the medical configurations under consideration, the nu-

merical PDE problems have proven quite challenging. For the small diffusion coefficients typically

required to portray a relevant control setup, the imposition of the zero-flux boundary condition com-

bined with the strong convective forces generated by the external magnetic field will cause extremely

sharp boundary layers to rapidly appear near the boundary of the domain.

Once again, numerical studies presented in reference [51] were conducted using the commercial

software package COMSOL Multiphysics. Similarly to the problems encountered for the VMT

configuration, the COMSOL software was incapable of accurately resolving the steep boundary layer

occurring for smaller values of diffusion coefficient. For example, numerical solution for the choice

of diffusion coefficient D = 0.001 and magnetic drift k(~r) = 1 using the previously mentioned Intel

Xeon CPR X5460 computer with 32 GB of memory was not feasible with the COMSOL software:

to do so would require memory allocation greater than the computer’s capacity.

In contrast, taking the diffusion and magnetic drift, k(~r), coefficients to be 0.001 and 20 re-
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spectively, numerical solution of the ad hoc control scheme proposed in [51] was achieved with a

maximum relative error of 10−2 in under two hours with 50 MB of memory by using the solvers

introduced in Chapter 4 of this thesis.

1.2 FC-AD Methodology

The central challenge posed by both of these magnetic drug delivery simulations is the need for

accurate and efficient resolution of boundary layers. Accurate resolution of steep boundary layers

presents many difficulties for numerical solvers, at the heart of which is the requirement of a very fine

spatial step size. This requirement imposes limitations on the type of numerical method efficiently

useable: due to the requirement of such a fine mesh, explicit methods are rendered highly inefficient

by the restrictive CFL condition ∆t ∼ O(∆x2) imposed on the time step.

Further, because numerical solution over a nonrectangular domain is required for the idealized

control setup described above and certainly necessary for more complicated models of the vasculature

system, a standard finite differences approach over a Cartesian grid is not an efficient method

of solution: such a scheme would require either a “staircasing” of the boundary of the domain

or challenging, essentially impractical domain mapping strategies. Use of the first, rather simple

technique reduces the spatial accuracy of the resulting finite difference method to first order. In

addition, due to the absence of solution values outside the computational domain, finite difference

stencils are forced to be made increasingly one-sided as the domain boundaries are approached.

In general, stability is not achieved by simply using high-order centered difference methods in the

interior of the domain and equally high-order biased stencils near the boundary. While there are

several techniques to resolve this problem (such as the use of compact schemes [4] or Summation

By Parts operators [40, 48]), these approaches are computationally expensive and must sacrifice

some accuracy near the boundary to gain stability. Importantly, further, the multidomain strategies

asociated with these algorithms require the discretizations of neighboring domains to match perfectly

at common boundaries; see, e.g., [2] for details.

Numerical solution of PDEs over nonrectangular domains may also be produced by means of

finite element and finite volume solvers. These algorithms do not provide an effective method of

solution in the presence of boundary layers, however: because the spectral radii of differentiation

operators based on nonuniformly spaced structured grids such as those used by finite element and

finite volume methods will, in general, grow superlinearly, these techniques must also satisfy a

stringent CFL condition for stability. High-order methods based on unstructured meshes give rise

to similarly restrictive CFL constraints.

A new methodology for the numerical solution of PDEs in general domains has been recently

introduced by Bruno and Lyon [16]. Based on use of the the well-known Alternating Direction
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Implicit (ADI) methodology first introduced in 1955 by Peaceman and Rachford [45] in conjunction

with the pseudospectral Fourier Continuation (FC) method, the resulting FC-AD algorithm can

yield high-order accurate solutions with unconditional stability over general spatial domains at an

essentially linear computational cost.

Many variants of the finite-difference-based ADI algorithm for the Heat and Laplace Equations

have been put forward in the more than 50 years since its introduction, including methods for solution

of various linear and nonlinear PDEs and solvers providing high-order spatial and temporal accuracy.

Unconditionally stable alternating-direction methods preceding [16] could only achieve high-order

accuracy for PDEs over domains representable as a union of a finite number of rectangular regions

containing perfectly matched Cartesian discretizations. The few unconditionally stable high-order

ADI algorithms that have been applied to nonrectangular geometries rely on use of domain mappings

to transform the given problem into one posed over a rectangular geometry. Unfortunately, the

inherently laborious construction of such domain mappings prohibits the use of these methods for

most problems posed by engineering and scientific applications.

Alternating direction methodologies have also been previously used with spatial differentiation

methods that do not depend on finite difference techniques. In particular, alternating direction

approaches relying on a Fourier basis for differentiation have been proposed [5, 19, 43, 56]. However,

despite efforts seeking to generalize these methods to more general domains, the application of

previous Fourier-based techniques has also been restricted to rectangular geometries.

Because it is dependent on the Fourier approximation of nonperiodic functions, the use of Fourier

bases in alternating directions methodologies requires resolution of a notoriuos problem in numerical

analysis: the Gibbs phenomenon. A cornucopia of methods have been developed to resolve or reduce

the detrimental effects of Gibbs phenomenon (see, e.g., [17, 25, 24, 12]). The Fourier Continuation

method first proposed in [14, 13, 11] and accelerated in [16] eliminates the Gibbs phenomenon

through the use of a “continuation” of the original function into a periodic extension; due to its

periodic nature, the production of such a continuation enables the smooth approximation of the

original function through use of Fourier series without difficulty. The use of this FC continuation

strategy in conjunction with the alternating directions methodology, gives rise to the so-called FC-

AD algorithm.

The high-order accuracy, unconditional stability, and ability to accurately handle boundary con-

ditions over general domains of the FC-AD algorithm provides significant advantages over other

methods. In particular, the unconditional stability allows for the use of significantly larger time

steps than those required by conditionally stable methods. This characteristic is of the utmost

importance in the context of the convection-diffusion equations under consideration in this thesis,

especially in the presence of the overwhelmingly restrictive CFL conditions imposed on the time

step by the fine spatial step size required for the resolution of steep boundary layers. Addition-
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ally, the high-order accuracy and accurate handling of boundary condtitions offered by the FC-AD

algorithm generally allow for accurate results with much coarser discretizations than otherwise nec-

essary. These qualities make the FC-AD method a prime choice for the numerical solution of the

convection-diffusion PDEs used to model magnetic drug delivery.

1.3 Positron Emission Tomography

Positron emission tomography (PET) is a nuclear imaging technique relying on the unique positron-

emitting decay characteristics of radioactive tracer isotopes, or radiopharmeceuticals [20, 46]. After

being introduced into the body (typically through intravenous injection) the radiopharmeceuticals

undergo positron emission decay, ultimately leading to the emission of a pair of high-energy pho-

tons traveling in approximately opposite directions. A ring of detectors placed around the body,

the core component of the PET scanner, enables suitable detection of these high-energy photon

pairs. Raw data collected from a PET scanner is simply a list of “coincidence events” representing

near-simultaneous detection of the pair of high-energy photons by a pair of detectors. These coin-

cident events, in turn, represent lines in space between the detector pairs along which the positron

emission occured. The collection of coincidence events obtained from a PET scanner is described

mathematically by the Radon transform [44, 7, 8, 6]; reconstruction of the desired image follows

from appropriate inversion of the Radon transform.

Over the last few decades, two major types of reconstruction methodologies have emerged in the

field of positron emission tomography (PET): 1) Iterative methods (which include the ML-EM [52]

and OSEM [27] algorithms), and 2) Methodologies based on the Filtered Back-Projection (FBP)

approach [20]. While iterative approaches are significantly slower than FBP-based methods, in

presence of the types of errors arising from PET scanners they produce images of better quality

than their previously existing FBP-type counterparts. As a result, slow iterative approaches are

almost exclusively used in commercial PET devices [46]. In Chapter 5 we introduce a new FBP-

based method for reconstruction of images from PET scans, the Fejér-mFBP algorithm [9], that

incorporates 1) A certain averaging technique that helps moderate the detrimental effects of high

frequencies in the reconstruction process, and 2) A new Fejér-based filtering procedure. The resulting

Fejér-mFBP algorithm runs at essentially the same cost as previous FBP-based methods and, for

the types of noise typical in present day PET devices, it gives rise to images of significantly higher

quality than previous approaches—compare, e.g., Figures 5.3(c) and 5.7(f).
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1.4 Overview of Chapters

The remainder of this thesis is organized as follows. In Chapter 2, an overview of the Fourier

continuation algorithm and its use in explicit and implicit solvers is given. This chapter provides

a basis for the numerical methodologies used in the solution of the convection-diffusion problems

considered in Chapters 3 and 4. Chapter 3 considers the Vessel-Membrane-Tissue (VMT) convection-

diffusion problem and introduces three new VMT solvers based on the techniques discussed in

Chapter 2. Next, Chapter 4 focuses on the magnetically enhanced diffusion model proposed in [51]

and presents a series of numerical tools also based on the methodologies presented in Chapter 2.

Various combinations of these tools enable efficient solution of the proposed model for differing

values of diffusion and magnetic drift coefficients. In Chapter 5, finally, we consider the problem

of reconstruction of images from Positron Emission Tomography (PET) scans and present a new

FBP-based method for image reconstruction.
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Chapter 2

Overview of FC Methodology

2.1 Fourier Continuation Basics

The Fourier Continuation (FC) methodology first introduced in [11, 13] and then accelerated in [16]

is a central element in a class of unconditionally stable implicit PDE solvers, the FC-AD meth-

ods, for linear constant [16] and variable-coefficient [15] PDEs in general domains. At the heart of

this methodology is an accelerated periodic-continuation algorithm enabling a smooth Fourier rep-

resentation of nonperiodic functions without the Gibbs ringing effect inherent in standard Fourier

series approximations of nonperiodic functions. Indeed, by constructing a periodic continuation of

the function in a domain significantly larger than the original interval, the resulting FC method

smoothly resolves the detrimental oscillatory effects of Gibbs phenomenon. In this chapter, we pro-

vide the basic outlines for implementation of two Fourier continuation methods: the unaccelerated

FC(SVD) method presented in [13] and the accelerated FC(Gram) method first introduced in [16].

To facilitate explanation, we will consider both the FC algorithms over the unit interval [0, 1]; ap-

plication to a general interval easily follows from a simple scaling and translation of the discrete

grid.

Consider a smooth function f(x) for which the point values fj = f(xj) are given over the discrete

grid xj , j = 0, ..., N − 1 ∈ [0, 1],

xj = j h, j = 0, ..., N − 1, h = 1/(N − 1).

For a given value b > 1, the Fourier continuation algorithm prescribes a method of construction of

a b-periodic trigonometric polynomial,

f c(x) =
∑

k∈t(M)

ake
2πi
b kx, (2.1)
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with

f c(xj) = f(xj) for j = 0, ..., N − 1.

that approximates f(x) in the interval [0, 1]. The index function t(M) is given by t(M) = {j ∈ N :

−M/2 + 1 ≤ j ≤ M/2} for M even and t(M) = {j ∈ N : −(M − 1)/2 ≤ j ≤ (M − 1)/2} for M

odd. Selection of the bandwith M and the period b depends on the FC method used and will be

determined in what follows. It is important to note that for b = 1, the continuation f c(x) reduces

to the discrete Fourier transform of f(x), and thus typically suffer from Gibbs phenomenon near the

endpoints x = 0, 1. Selecting b > 1, on the other hand, allows for f c(x) to smoothly transition from

the values of f(x) near x = 1 to the values of f(x) near x = 0 without oscillatory effects.

The basic, unaccelerated FC algorithm presented in [13] obtains the coefficients ak through

solution of the least-squares system

min
{ak: k∈t(M)}

N−1∑
j=0

∣∣∣∣∣∣
∑

k∈t(M)

ake
2πi
b kxj − f(xj)

∣∣∣∣∣∣
2

. (2.2)

Numerical results [13] have shown that it is advantageous to use a Singular Value Decomposition

(SVD) to solve least-squares system (2.2); to better distinguish it from the accelerated FC algorithm

presented below, we henceforth refer to this FC method as FC(SVD). Figure 2.1 presents a typical

periodic continuation produced by application of the FC(SVD) method to function values of f(x) =

exp(sin(5.4πx− 2.7π)− cos(2πx)) given in the interval [0, 1].

While adequate for applications requring a small number of highly-accurate continuations, such as

the high-order surface representations in [13], the O(N3) computational cost of one application of the

FC(SVD) method is significantly higher than desirable for use in an algorithm dependent on the rapid

computation of many periodic continuations, such as the FC-AD PDE solver introduced in [16, 15]

and generalized in Section 2.3 of this text. Indeed, because both of these FC-based PDE solvers

depend on computation of O(N2) continuations per time-step, the high cost per continuation required

by the FC(SVD) algorithm would render such solvers extremely infefficient. Recently, [16] overcame

this issue by introducing a significantly accelerated FC method, the FC(Gram) algorithm. To

highlight the differences between the FC(SVD) method and the accelerated FC algorithm presented

in [16] and used in the numerical solvers introduced this text, a brief outline of the FC(Gram)

method is provided in the remainder of this section.

As mentioned earlier in this section, a primary component of the general Fourier continuation

method is the generation of a discrete periodic extension of the given function values into a longer

interval [1, b]. Such an extension can be obtained by appending an additional nd > 0 function values

to the original N function values such that the newly extended function provides a smooth transition

from fN−1 back to f0 on the interval [1, b], as shown in Figure 2.1. Once a discrete periodic extension
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0 1-δ 1 b b+δ

Figure 2.1: Illustration of a periodic extension of f(x) = exp(sin(5.4πx−2.7π)−cos(2πx)) computed
using the accelerated FC(Gram) method, including the original function values (solid circles) and
the extended function values (open circles). The thick black lines depict the function values over
matching intervals Sleft and Sright.

is produced, an application of the FFT algorithm to the newly extended discrete function values in

the interval [0, b] yields the coefficients ak of the Fourier continuation f c(x) (as seen in equation (2.1));

the resulting approximation has bandwidth M = N + nd and period b = (N + nd)/(N − 1).

In the FC(Gram) algorithm, the main idea underlying the construction of the nd extension values

mentioned above involves consideration of both the given function f defined in the interval [0, 1]

together with the translation f(x− b) defined in the interval [b, 1 + b] (depicted as thin black lines

with solid circles in Figure 2.1). Selecting a positive integer nδ, we define the “matching intervals”

Sright = {xj |j = N −nδ, N −nδ + 1, ..., N − 1} to be the set of nδ right-most discretization points in

the interval [0, 1] and Sleft = {b+ xj |j = 0, 1, ..., nδ − 1} to be the set of nδ left-most discretization

points in the interval [b, 1 + b]. Loosely speaking, the nd function values sought are obtained as the

point values of an auxiliary trigonometric polynomial produced by means of a least-squares fit to

the function values of f(x) over Sright and the translation f(x− b) over Sleft.

The construction of such a trigonometric polynomial proceeds by considering two orthonormal

bases of Gram polynomials of degree < m. These bases, denoted by Pright and Pleft, are generated

through application of the Gram-Schmidt orthonormalization process with inner products

〈g, h〉right =
∑

{xj∈Sright}

g(xj)h(xj), and

〈g, h〉left =
∑

{xj∈Sleft}

g(xj − b)h(xj − b),

respectively, to the standard polynomial basis {1, x, x2, ..., xm−1}. As fully detailed in [16], the

FC(Gram) algorithm precomputes a set of functions that smoothly transition from a given poly-
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nomial in Pright to a given polynomial in Pleft over the interval [1, b] by applying the FC(SVD)

algorithm to discrete data sets of the form {p(xj)|xj ∈ Sright} ∪ {q(xj)|xj ∈ Sleft} for each polyno-

mial p ∈ Pright and q ∈ Pleft. This set of precomputed transition functions effectively forms a basis

of smooth transition functions from function values in Sright to function values in Sleft. Thus, by

noticing that the given function values of f(x) in Sright and f(x − b) in Sleft may be expressed as

linear combinations of the Gram polynomials in Pright and Pleft respectively, it follows that we can

quickly compute a smooth transition from f(x) to f(x − b) in the interval [1, b] as an appropriate

linear combination of the precomputed smooth transition functions.

An illustration of the full periodic-extension procedure is provided in Figure 2.1. As indicated

in Figure 2.1, the nd extension values we seek are given simply as the values of this new smooth

transition function over the discrete grid 1 + xj , j = 0, ..., nd − 1. An application of the discrete

Fourier transform in the interval [0, b] to the function values fj appended to the additional nd

extended function values yields the desired trigonometric continuation polynomial f c(x).

Remark 2.1.1 Once a continuous continuation function f c(x) has been obtained, numerical ap-

proximations of the derivatives of f(x) can easily be computed with spectral accuracy through direct

differentiation of f c(x):
df

dx
≈ df c

dx
=

∑
k∈t(M)

2πiak
b

e
2πi
b kx. (2.3)

The overall procedure for approximating one-dimensional derivatives of a given vector of function

values, f(xj), j = 0, ..., N −1 thus consists of application of the FC method followed by an applica-

tion of the differential operator (2.3); clearly, derivatives of higher order can be produced similarly.

Derivatives in multiple spatial dimensions on a structured mesh are implemented through successive

line-by-line applications of the FC algorithm and differential operator in each coordinate direction.

The behavior of the two-dimensional algorithm is straightforward, simply sweeping through hori-

zontal and vertical lines of grid points and applying the one-dimensional differentiation algorithm

in the corresponding coordinate; generalization to higher dimensions and higher-order derivatives is

similarly straightforward.

2.2 Explicit Solver

Recalling the accurate FC-based method for the approximation of spatial derivatives presented in

Remark 2.1.1 of Section 2.1, it is a straightforward matter to prescribe an explicit PDE solver:

the algorithm proceeds, simply, by iterating a time-marching scheme. For the Explicit-Implicit and

Implicit-Implicit FC solvers described in Chapter 4, we made use of the second-order Runge-Kutta

time-marching scheme known as Heun’s method. In detail, denoting Cn = n∆t and Cn = C(u, v, tn),

approximate solution to the general-convection diffusion PDE (2.5) is advanced through use of the
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second-order Runge-Kutta scheme,

C̃n+1 = Cn + ∆tL[Cn],

Cn+1 = Cn +
∆t

2

(
L[Cn] + L[C̃n+1]

)
,

(2.4)

with

L[C] = ~κ(u, v) · ∇2C + ~λ(u, v) · ∇C + ν(u, v)C +Q(u, v, t).

The spatial derivatives present in application of the differential operator L are approximated by the

previously described FC method.

2.3 Alternating Directions Implicit

As mentioned in Section 2.2, an explicit method needs to satisfy the CFL condition 4t ∼ F (4x)

(specifically ∆t ∼ O(∆x2) for the problems under consideration in this thesis) to ensure numerical

stability; the very fine discretization mesh required to resolve the boundary layers occurring in

magnetic drug delivery problems therefore places a severe restriction on the maximum time step

useable by an explicit method. In order to overcome this restriction, the solvers presented in this

text make use of an efficient FC-AD implicit solver [16, 15]. Based on the Alternating Directions

Implicit (ADI) method first developed by Peaceman and Rachford in 1955 [45], the FC-AD solver

relies on line-by-line solution of ordinary differential equations (ODEs) that arise from factorization

of the partial differential operator into differential operators of each variable; the resulting ODEs are

then, in turn, solved for using an efficient FC method. In this section, a description of the FC-AD

method for solution of a generalized version of the PDE (1.1) is provided. This generalization is

chosen to allow for easy adaptation to the various convection-diffusion equations for the solution of

each of the magnetic drug delivery problems presented in later chapters. An outline of the efficient

FC-based ODE solvers used will be provided in Section 2.4.

Consider the general convection-diffusion PDE:

~κ(u, v) · ∇2C + ~λ(u, v) · ∇C + ν(u, v)C +Q(u, v, t) = Ct, (u, v, t) ∈ Ω× (0, T ],

a(u, v) C(u, v, t) + b(u, v)
∂C(u, v, t)

∂n
= G(u, v, t), (u, v, t) ∈ ∂Ω× (0, T ],

C(u, v, 0) = C0(u, v), (u, v) ∈ Ω,

(2.5)

where Ω ∈ R2 is a smoothly bounded domain and ~κ = (κu(u, v), κv(u, v)), ~λ = (λu(u, v), λv(u, v)),

ν, Q, a, b, G, and C0 are all smooth functions. Letting tn = n∆t, Cn = C(u, v, tn), and Qn+ 1
2 =

Q(x, y, (n + 1/2)∆t), we discretize the time derivative using the Crank-Nicolson centered finite
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difference scheme to obtain

Cn+1 − Cn

∆t
=

1

2

(
~κ · ∇2 + ~λ · ∇+ ν

)
(Cn+1 + Cn) +Qn+ 1

2 + E1(u, v,∆t),

where

E1(u, v,∆t) ∼ O(∆t2)

is the truncation error. Grouping together the terms for Cn and Cn+1 yields(
1− ∆t

2

(
~κ · ∇2 + ~λ · ∇+ ν

))
Cn+1 =(

1 +
∆t

2

(
~κ · ∇2 + ~λ · ∇+ ν

))
Cn + ∆tQn+ 1

2 + ∆tE1(u, v, t),

which can, in turn, be expressed in the form

(
1− ∆t

2

(
κu

∂2

∂u2
+ λu

∂

∂u
+ ν

))(
1− ∆t

2

(
κv

∂2

∂v2
+ λv

∂

∂v

))
Cn+1 =(

1 +
∆t

2

(
κu

∂2

∂u2
+ λu

∂

∂u
+ ν

))(
1 +

∆t

2

(
κv

∂2

∂v2
+ λv

∂

∂v

))
Cn

+ ∆tQn+ 1
2 + ∆tE1(u, v,∆t) + E2(u, v,∆t),

(2.6)

after appropriate factorization of the differential operators. A simple calculation shows that the

truncation error E2(u, v,∆t) that arises from factoring the differential operators is on the order of

O(∆t2). For ease of explanation, we introduce the notation

Au =

(
κu

∂2

∂u2
+ λu

∂

∂u
+ ν

)
,

Av =

(
κv

∂2

∂v2
+ λv

∂

∂v

)
,

and rewrite (2.6) in the simpler form

(
1− ∆t

2
Au

)(
1− ∆t

2
Av

)
Cn+1 =

(
1 +

∆t

2
Au

)(
1 +

∆t

2
Av

)
Cn

+∆tQn+ 1
2 + O(∆t2).

(2.7)

Finally, making use of the approximation

Qn+ 1
2 =

1

2

(
1 +

∆t

2
Au

)
∆t

2
Qn+ 1

4 +
1

2

(
1 +

∆t

2
Au

)
∆t

2
Qn+ 3

4 + E3(u, v, t) (2.8)

and taking into account the commutability of the differential operators, we rearrange (2.7) to obtain
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the scheme (
1− ∆t

2
Au

)
C̃n+ 1

2 =

(
1 +

∆t

2
Av

)
C̃n +

∆t

2
Qn+ 1

4(
1− ∆t

2
Av

)
C̃n+1 =

(
1 +

∆t

2
Au

)
C̃n+ 1

2 +
∆t

2
Qn+ 3

4 ,

(2.9)

with C̃n providing an approximation to the exact solution Cn. Noting that terms ∆t
2 Q

n+ 1
4 and

∆t
2 Q

n+ 1
4 denote Q(u, v, (n + 1/4)∆t) and Q(u, v, (n + 3/4)∆t) respectively, the truncation error,

E3(u, v, t) generated from the approximation (2.8) can easily be shown to be of order O(∆t2).

From examining (2.9), it is apparent that solution of C̃n+1 depends on the inversion of the

differential operators
(
1− ∆t

2 Au
)

and
(
1− ∆t

2 Av
)
. Recalling the definitions of Au and Av, appli-

cation of the inverse of such operators to a given function f can be expressed as solution of the

one-dimensional variable-coefficient boundary value problem

αC ′′ + βC ′ + γC = f,

 alC(ul) + blC
′(ul) = Bl,

arC(ur) + brC
′(ur) = Br,

(2.10)

for appropriate functions α, β, and γ. A prescription of the coefficients al, bl, ar, br and boundary

values Bl and Br for the specific PDE under consideration is provided in Chapters 3 and 4. The

function values of α, β, and γ depend on the operator being inverted: application of the inverse of(
1− ∆t

2 Au
)

requires

α(u) = −∆t

2
κu, β(u) = −∆t

2
λu, γ(u) = 1− ∆t

2
ν,

while application of the inverse of
(
1− ∆t

2 Av
)

requires

α(v) = −∆t

2
κv, β(v) = −∆t

2
λv, γ(v) = 1.

An efficient algorithm (based on the FC method introduced in Section 2.1) for the solution of such

ODEs is presented in Section 2.4.

Remark 2.3.1 In the interest of computational efficiency, it is important to notice that repeated

application of the discrete operators
(
1 + ∆t

2 Av
)

and
(
1 + ∆t

2 Au
)

in (2.9) does not actually require

differentiation with respect to the relevant independent variable. Indeed, by rewriting (2.9) as

C̃n+1 =

(
1− ∆t

2
Av

)−1(
1 +

∆t

2
Au

)(
1− ∆t

2
Au

)−1(
1 +

∆t

2
Av

)
C̃n,

we observe that repeated iteration of the ADI algorithm depends on computation of the combi-

nation of application and inversion of the discrete operators, i.e.,
(
1 + ∆t

2 Au
) (

1− ∆t
2 Au

)−1
and
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1 + ∆t

2 Av
) (

1− ∆t
2 Av

)−1
. Further, letting

q =

(
1 +

∆t

2
Au

)(
1− ∆t

2
Au

)−1

f,

we obtain the equivalent system

−κu∆t

2
C ′′ − λu∆t

2
C − ν∆t

2
C + C = f,

κu
∆t

2
C ′′ + λu

∆t

2
C + ν

∆t

2
C + C = q.

(2.11)

Adding these equations yields

q = 2C − f, (2.12)

where C is the solution to the first equation in (2.11); a similar result is easily shown for the v-

dependent combination operator
(
1 + ∆t

2 Av
) (

1− ∆t
2 Av

)−1
. It thus follows that each intermediate

step of (2.9) may be computed by solving the first equation in (2.11) followed by use of (2.12) or its

v-dependent counterpart.

All that remains to complete the scheme is a prescription of the boundary conditions for C̃n+ 1
2

and C̃n+1. The boundary values for C̃n+1 are given through enforcement of the condition

a(u, v) C̃n+1 + b(u, v)
∂C̃n+1

∂n
= G(u, v, tn+1)

for the appropriate boundary points (u, v) ∈ ∂Ω. From examining (2.9), we see that the boundary

values for C̃n+ 1
2 are given through enforcement of

a(u, v) C̃n+ 1
2 + b(u, v)

∂C̃n+ 1
2

∂n
=

1

2

(
1 +

∆t

2
Av

)
G(u, v, tn) +

1

2

(
1− ∆t

2
Av

)
G(u, v, tn+1)

+
∆t

4

(
Q(u, v, tn+ 1

4 )−Q(u, v, tn+ 3
4 )
)
,

(2.13)

for (u, v) ∈ ∂Ω. Because the spatial derivatives of G needed for computation of (2.13) are not

known a priori for complex domains, the FC-AD algorithm makes use of the approximate boundary

condition

a(u, v) C̃n+ 1
2 + b(u, v)

∂C̃n+ 1
2

∂n
= G(x, y, (n+ 1/2)∆t) + E4(u, v, t),

where the time discretization error E4(u, v, t) arising from this approximation can be shown to be

of order O(∆t2).

Accounting for the time-discretization and boundary condition errors, the overall error arising

from one step of the resulting FC-AD scheme is thus of order O(∆t2). While this bound predicts

an overall error of O(∆t), we find that, in practice, the overall accuracy of the FC-AD algorithm
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remains O(∆t2).

Remark 2.3.2 Because appropriate choice of the boundary conditions is dependent on the specific

problem, discussion on the selection and enforcement of the boundary conditions for each magnetic

drug delivery problem is provided in Chapters 3 and 4 below.

2.4 FC-ODE Solver

To accurately compute the solutions of the ODEs present in the ADI scheme (2.9), a suitable discrete

operator that approximates the inverse of the simple differential operator

α(x)
∂2

∂x2
+ β(x)

∂

∂x
+ γ(x) (2.14)

is required. Recently, such discrete-solver operators based on the FC methodology have been de-

veloped for both constant-coefficient [16] and variable-coefficient [15] ODEs. Recalling that, for

appropriate boundary conditions and coefficients, application of the inverse of (2.14) to a given

function f(x) is equivalent to solving the boundary value problem

αC ′′ + βC ′ + γC = f,

 alC(ul) + blC
′(ul) = Bl,

arC(ur) + brC
′(ur) = Br,

(2.15)

we will henceforth refer to these discrete-solver operators as FC-ODE solvers. In this section, we

provide an outline of the constant and variable coefficient FC-ODE solvers presented in [16] and [15],

respectively.

2.4.1 Constant Coefficient Solver

Given discrete right-hand side data fj = f(xj), the constant-coefficient FC-ODE algorithm proceeds

by first approximating the discrete data with its corresponding FC(Gram) continuation Fourier series

f c(x) =
∑

k∈t(M)

ake
2πi

b(xr−xl)
kx
,

The solution of the approximate ODE,

αC̃ ′′ + βC̃ ′ + γC̃ = f c(x),

 alC̃(ul) + blC̃
′(ul) = Bl,

arC̃(ur) + brC̃
′(ur) = Br,

(2.16)
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is then easily obtained as the series

C̃(x) =
∑

k∈t(M)

ak
µk
e

2πi
b(xr−xl)

kx
+c1h1(x)+c2h2(x), µk = γ+β

2πik

b(xr − xl)
+α

(
2πik

b(xr − xl)

)2

. (2.17)

As described below, enforcement of the boundary conditions is achieved through appropriate selec-

tion of the functions h1(x), h2(x) and their associated coefficients c1, c2.

Defining C̃p(x) =
∑
k∈t(M)

ak
µk
e

2πi
b(xr−xl)

kx
, we select h1(x) and h2(x) to be solutions of the corre-

sponding homogeneous problem. That is,

h1(x) = er1(x−xl), h2(x) = er2(x−xr), where

r1 =
−β −

√
β2 − 4αγ

2α
, r2 =

−β +
√
β2 − 4αγ

2α
.

The coefficients c1 and c2 are then obtained through solution of the 2× 2 system of equations alh1(xl) + blh
′
1(xl) alh2(xl) + blh

′
2(xl)

arh1(xr) + brh
′
1(xr) arh2(xr) + brh

′
2(xr)

 c1

c2

 =

 Bl − alC̃p(xl)− blC̃ ′p(xl)

Br − arC̃p(xr)− brC̃ ′p(xr)

 ;

(2.18)

clearly the resulting full solution C̃(x) = C̃p(x)+c1h1(x)+c2h2(x) satisfies the boundary conditions.

2.4.2 Variable Coefficient Solver

While solution of such linear ODEs may be obtained in a fairly straightforward manner when the

coefficients α, β, andγ are constant, this is not the case when the coefficients are variable. Indeed,

the simple previous representation of the Fourier coefficients of the solution in terms of the Fourier

coefficients of the right-hand side (as seen in (2.17)) now depends on convolutions with the Fourier

series of the coefficient functions. Recently, a new FC-based solver has been developed [15] for

variable coefficient ODEs; we provide a brief outline of its implementation in what follows.

Consider again the ODE in equation (2.15). A new ODE approximating (2.15) results from

replacing each function in (2.15) with its corresponding Fourier continuation:

αc(x)
d2Cc(x)

dx2
+ βc(x)

dCc(x)

dx
+ γc(x)Cc(x) = Cc(x). (2.19)

Because the Fourier continuation of a function is periodic by construction, the derivatives of Cc(x)

may be represented as operations on their Fourier coefficients Ĉk. This observation prompts the
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re-expression of (2.19) as

αc(x)
∑

k∈t(M)

(
2πik

b

)2

Ĉke
2πik
b x + βc(x)

∑
k∈t(M)

2πik

b
Ĉke

2πik
b x + γc(x)

∑
k∈t(M)

Ĉke
2πik
b x = f c(x),

(2.20)

where the bandwith M and the period b are prescribed via the FC method discussed in Section 2.1.

From further examination, we see that equation (2.20) applied over a discrete grid is simply a

linear system of equations for the Fourier coefficients Ĉk; an efficient method of solution can be

provided by GMRES with an appropriate preconditioner. As is fully explored in reference [15], such

a preconditioner can be obtained from a second-order implicit finite difference solution of (2.19) with

periodic boundary conditions. Once the Fourier coefficients Ĉk are obtained, a solution to (2.19),

and subsequently an approximation to the solution of (2.15), is produced through direct application

of the IFFT algorithm to Ĉk; we denote this solution as Cp(x).

Similarly to the constant-coefficient FC-ODE solver, satisfaction of the boundary conditions is

enforced through addition of an appropriate linear combination of functions, i.e., C(x) = Cp(x) +

c1h1(x) + c2h2(x). Such functions may again be provided by the solutions of the homogenous ODE

αc(x)
d2Cc(x)

dx2
+ βc(x)

dCc(x)

dx
+ γc(x)Cc(x) = 0. (2.21)

In practice, these functions are found by applying the above GMRES-based solver to the ODE (2.21)

after replacing the zero right-hand side with the smooth periodic functions

f1(x) =

 0, x ∈ [0, 1]

e(−1/(1+n(x)2)), x ∈ (1, b)
and

f2(x) =

 0 x ∈ [0, 1]

n(x)e(−1/(1+n(x)2)), x ∈ (1, b)
, where

n(x) =
2(x(N − 1)− (xN (N − 1) + 1))

nd − 1
.

This choice of right-hand side functions ensures that the solutions of their corresponding ODEs,

h1(x) and h2(x) respectively, satisfy (2.21) in the original interval [0, 1]. Once the approximate

solutions to the homogeneous ODE are obtained, the coefficients c1 and c2 are found through the

inversion of the system of equations (2.18), where the function and derivative values at the boundary

points xl and xr are obtained from appropriate Fourier series expansions.

Remark 2.4.1 In the interest of computational efficiency for use in conjunction with the ADI

algorithm, it is important to note that several of the elements vital to the constant and variable

coefficient FC-ODE solvers do not need to be computed at every iteration. Indeed, observing that,

for a given PDE, the coefficients of the ODEs inherent in the ADI algorithm do not depend on
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the iteration-step index n, the functions h1(x), h2(x) and the matrix in the system (2.18) may be

precomputed and stored before initiating the ADI iterations. Further, if the variable coefficient solver

is used, the continuations of the coefficient functions αc, βc, γc and the finite difference GMRES

preconditioner matrix may also be precomputed and stored.
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Chapter 3

Vessel-Membrane-Tissue Model

The goal of magnetic drug delivery is to use magnetic fields to direct and confine magnetically

responsive particles (which, containing therapeutic agents, are injected into the bloodstream) to

specific regions in a patient’s body—thus allowing for focused treatment in an area of interest. To

design a method leading to confinement of the magnetically responsive particles to a particular region

of the body, a predictive capability must be used to evaluate the effects of external magnetic forces

on the convection and diffusion of magnetic particles through the bloodstream and in membranes

and tissue. A simplified, but effective mathematical model of the resulting Vessel-Membrane-Tissue

(VMT) convection diffusion problem has been proposed by Grief and Richardson [26] and was

recently extensively analyzed in [42]. The aim of the contribution [42] was to determine how the

interplay between the advective and diffusive forces generated from the blood velocity and magnetic

field affects the flow of magnetically responsive particles through the bloodstream and their diffusion

into surrounding tissue without the added difficulties of a complex geometry. As mentioned in [42],

the numerical solution of the Grief and Richardson model proved to be very challenging and required

the development of a sophisticated solver—which we call the VMT solver; in this chapter, we provide

a detailed description of this solver and we briefly describe its application to the problems considered

in [42].

3.1 Introduction to VMT Model

The idealized geometry of the Grief and Richardson model consists of a lateral cross section of a

blood vessel, including the endothelial layer (membrane) and some surrounding tissue. A magnet

is situated far below, see Figure 3.1. Each layer has a different diffusion and magnetic advection

coefficient, with the relationships between the various coefficients given by the Renkin and Renkin

Tissue numbers,

R =
Dm

Dv
and Rt =

Dt

Dv
,
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respectively. For notational convenience, in this chapter we make use of the superscripts v, m, and

t to denote the value of the quantity in the corresponding vessel (v), membrane (m), or tissue (t)

layer.

The characterizing equation of the Grief and Richardson model is the hyperbolic convection-

diffusion PDE,

∂

∂t
C(~r, t) = −∇ ·

[
C(~r, t) ~Vblood(~r, t)−D(~r) ∇C(~r, t) + k(~r) C(~r, t)∇

(
| ~H(~r, t)|2

)]
,

where C(~r, t) is the concentration of magnetic particles in the blood, ~Vblood(~r, t) is the blood convec-

tion, D(~r) is the diffusion coefficient of particles within the bloodstream, and k(~r) is the magnetic

drift coefficient. The term ∇
(
| ~H(~r, t)|2

)
, where ~H(~r, t) represents the externally applied magnetic

field, is referred to as the control.

For the preliminary analyses performed in [42], several further simplifications were made: the

control is set to be constant, the magnetic drift coefficient k(~r) is simplified to 1, the diffusion term

D is assumed to be constant in each layer, and the blood velocity ~Vblood in the vessel is assumed to

be determined by a parabolic profile. A zero convective flux is required on all the outside boundaries

except for the left x-boundary in vessel layer, where the concentration C(x, y, t) is set to 1. Initially,

we assume the concentration equals 1 throughout the vessel layer and it equals 0 everywhere else.

Applying these simplifications gives us the following VMT model:

Ct = D∇2C − vbloodCx +MCy, (x, y, t) ∈ Ω× (0, T ],

C = 1, x = xl, y ≥ Ivm, t ∈ (0, T ],

Cx = 0, x = xl, xr, y < Ivm, t ∈ (0, T ],

Cy = 0, y = yl, yr, t ∈ (0, T ],

C(x, y, 0) =

 1 ; y ≥ Ivm,

0 ; y < Ivm,

(3.1)

whereD is the piecewise constant diffusion, vblood is the (parabolic) blood velocity, M is the piecewise

constant downward magnetic force, Ivm and Imt describe the location of the vessel-membrane and

membrane-tissue interfaces respectively, and the domain of solution is given by Ω = [xl, xr]× [yl, yr].

In the vessel layer, vblood is given by the blunted parabolic profile,

vblood(y) =


(

1− |2y−(Ivm+Imt)|
Ivm−Imt

)g
; y ≥ Ivm,

0 ; y < Ivm,

where g is some constant. In all the numerical simulations shown in Section 3.3, we chose g = 9.

Numerical solution of the VMT model for realistic values of diffusion coefficients has proven



23

Figure 3.1: VMT geometry, as depicted in [42].

highly challenging to numerical solvers for several reasons, amongst which figures prominently the

strong concentration build-up, or boundary layer, that appears at the vessel-membrane interface.

Indeed, due to the discontinuity in diffusion coefficients over each layer, sharp boundary layers occur

when the magnetic forces acting on the particles are strong enough to overcome the blood velocity,

an effect that is particularly noticeable for the extremely small nondimensional diffusion coefficients

present in realistic models of capillaries. Additionally, the advective forces provided by the blood

velocity are significantly more powerful than the diffusive forces, thus giving rise to greatly disparate

time scales: in order to produce a steady state solution in a reasonable amount of time, an efficient

time evolution methodology must be developed.

To overcome these difficulties, each of the VMT solvers presented in this chapter employs a

combination of the following techniques: 1) Use of domain meshes that can adequately resolve

boundary layers while controlling computational costs, 2) The Alternating Directions Implicit (ADI)

method to overcome the severe CFL condition imposed by the fine spatial discretization required

by the previously mentioned meshing scheme, 3) An on-and-off fluid-freezing methodology that

allows for efficient treatment of the multiple timescales that coexist in the problem, and 4) A highly

accelerated time-stepping procedure that enables evaluation of steady states in tissue and membrane

layers. Each of the above four procedures are described in detail in the following subsections.

In analyses prior to the work [42], numerical solution of the VMT problem was performed through

use of the finite-element-based commercial software COMSOL Multiphysics. While capable of solv-

ing the VMT problem for large diffusion coefficients, the COMSOL software encountered many

difficulties for the small diffusion coefficients inherent in realistic instances of the VMT model, es-
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pecially for larger values of the magnetization. For example, in the preliminary studies performed

on the COMSOL software, taking the diffusion and magnetization coefficients to equal 10−4 and

10−3 respectively, a steady state solution was reached in 36 hours of run time on a 3.16 GHz single

processor of a quad-core Intel Xeon CPR X5460 computer with 32 GB of memory; the corresponding

memory requirements to obtain the steady state solution for values of the diffusion and magneti-

zation equal to 10−5 exceeded the amount available on the same computer. Clearly, the medically

relevant VMT model with diffusion constant equal to 10−7 and magnetization on the order of 10−6

lies far outside the domain of applicability of the COMSOL software in the said computer. In con-

trast, the VMT solvers described in this chapter produced accurate solutions for cases relevant to

the contribution [42] without difficulty. For example, on a computer with a 2.66 GHz Intel Core

2 Duo processor and 4GB of memory, our solvers provide the required numerical solutions to the

10−4 and 10−5 problems in under five minutes using 3 MB (not GB!) of memory and under 14

minutes using 15 MB of memory, respectively. One of the most challenging cases considered in [42],

in turn, for which the diffusion constant equals 10−7—a case that is very far from feasible for other

methods—completed, using 25 MB of memory, in a six hour run.

3.2 VMT Solvers

3.2.1 Domain Meshing

As mentioned in the previous section, when the magnetic forces acting on the particles are strong

enough to overcome the blood velocity, a boundary layer appears at the vessel-membrane interface.

To resolve the boundary layer numerically, the VMT solvers presented in this chapter make use of

either one of the following meshing techniques, see also Figure 3.2.1.

3.2.1.1 Graded Mesh

As first presented in [42], one method for achieving accurate numerical resolution of the boundary

layer is provided through implementation an exponential change of variables in the vessel:

ξ = e−Gy,

where G is a prescribed constant. Recalling that Imt and Ivm denote the locations of the tissue-

membrane and membrane-vessel interfaces respectively, the discrete grids used for solution in y are

thus given by

yt := {yj = j(Imt − Il)/(N t − 1)| j = 0, ..., N t − 1},

ym := {yj = j(Ivm − Imt)/(Nm − 1)| j = 0, ..., Nm − 1},

ξv := {ξj = j(e−GIr − e−GI
vm

)/(Nv − 1)| j = 0, ..., Nv − 1},

(3.2)



25

Figure 3.2: Meshing of the domain of solution Ω of the PDE (3.1). The red line represents the
vessel-membrane interface Ivm and the orange line represents the membrane-tissue interface Imt.
Notice that the spatial resolutions in the y-direction vary over each layer; further details on the
selection of the spatial step size in y is provided in Section 3.2.1. In all numerical results presented
in Section 3.3, we used an equispaced grid in the x-direction.

where N t, Nm, and Nv are the number of grid points used in the y-direction in the tissue, membrane,

and vessel layers respectively. An example of these grids for a particular Dv and Mv is displayed in

Figure 3.3(a).

Application of this change of variables transforms the PDE (3.1) in the vessel into the variable-

coefficient convection-diffusion equation

Čt = Dv(Čxx +G2ξ2Čξξ)− vbloodČx +Gξ(GDv +Mv)Čξ, (3.3)

where Č(x, ξ, t) = C(x, y, t).

For clarity, and to highlight the differences between VMT solvers using the above graded mesh

and those using alternate meshing strategies, we henceforth refer to any VMT method using an

exponential change of variables as a Graded VMT Solver. In all the numerical simulations of the

finite differences-based Graded VMT solver shown in Section 3.3, we chose G = −Dv/8Mv and

Nv = 2Ny/5, Nm = 2Ny/5, and N t = Ny/5, where Ny is the number of grid points in the y-

direction.

3.2.1.2 Multiple Equispaced Meshes

An alternate approach for the resolution of the boundary layer is provided through the inclusion

of two additional equispaced meshes located near the boundary layer, such as the those displayed

in Figure 3.3(b). The rationale behind the choice of these meshes lies in computational efficiency:

because the modified PDE (3.3) arising from implementation of the exponentially graded mesh

has variable coefficients, the FC-AD method our VMT solvers are based on would require use of
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Figure 3.3: Grids used by the Graded and Standard VMT solvers. Figure (a) depicts the expo-
nentially graded mesh given by (3.2) with G = −Dv/8Mv and Figure (b) displays the multiple
equispaced meshes given by (3.4) with δm = Dv/Mv, δv = Dv/Mv.

the variable-coefficient FC-ODE solver; due to the GMRES-step, the variable-coefficient FC-ODE

algorithm is more computationally expensive than its constant-coefficient counterpart. In contrast,

the use of additional equispaced meshes does not depend on transformation of the constant-coefficient

PDE (3.1), and so efficient numerical solution is provided by the FC-AD method with the constant-

coefficient FC-ODE solver.

In detail, we make use of the discrete grids

yt := {yj = j(Imt − yl)/(N t − 1)| j = 0, ..., N t − 1},

ycm := {yj = j(Ivm − δm − Imt)/(N cm − 1)| j = 0, ..., N cm − 1},

yfm := {yj = jδm/(Nfm − 1)| j = 0, ..., Nfm − 1},

yfv := {yj = jδv/(Nfv − 1)| j = 0, ..., Nfv − 1},

ycv := {yj = j(yr − Ivm + δv)/(N cv − 1)| j = 0, ..., N cv − 1},

(3.4)

where δm and δv are selected to ensure adequate resolution of the boundary layer. For all the

numerical results presented in Section 3.3, we chose δm = Dv/Mv, δv = Dv/Mv and N t = Ny/5,

N cm = Ny/5, Nfm = Ny/5, Nfv = Ny/5, N cv = Ny/5.

3.2.2 ADI

In order for an explicit method for our problem to be numerically stable, it needs to satisfy the

well-known diffusive CFL condition: ∆t ∼ O(∆x2). The choice of either of the meshing schemes

described above therefore places a severe restriction on the time step used in explicit methods. To



27

Vessel Membrane Tissue

Standard Graded Mesh Standard Standard

(u, v) (x, y) (x, ξ) (x, y) (x, y)

~κ(u, v) (Dv, Dv) (Dv, DvG2ξ2) (Dm, Dm) (Dt, Dt)

~λ(u, v) (−vblood,M
v) (−vblood, Gξ(GD

v +Mv)) (0,Mm) (0,M t)

ν(u, v) 0 0 0 0

Table 3.1: Table of coefficients and coordinates used in each layer, including both the standard equi-
spaced and expontially graded meshes in the vessel. The far left column provides the corresponding
notation used in Section 2.3 for the description of the ADI algorithm.

overcome this restriction, we make use of an efficient solver that does not incur a CFL condition,

namely, the Alternating Directions Implicit (ADI).

Numerical solvers for the full VMT problem arise from implementation of the ADI methodology

in each grid: solution of the ODEs inherent in the ADI algorithm via finite differences yield FD-based

VMT solvers, while FC-based VMT solvers result from application of the FC-AD method in each

grid to the associated PDE. For all the numerical results presented in Section 3.3 that were obtained

from implementation of FD-based VMT solvers, we make use of the standard centered-difference

finite difference scheme.

Recalling the ADI methodology previously described in Section 2.3, we note that application

of the FC-AD algorithm to the VMT model depends on appropriate definition of the coordinates

(u, v) and functions ~κ, ~λ, ν, Q, a, b, G, and C0. From inspection we may immediately note that

the inhomogeneity Q(u, v, t) is simply 0 and the initial condition C0 is given by (3.1). However,

because of the variety of meshes and change of variables available for use in any given VMT solver,

definition of the coefficient functions ~κ, ~λ, and ν in each layer depends on the specific combination

of techniques employed. A listing of the appropriate choices of the coordinates (u, v) and coefficient

functions ~κ, ~λ, ν required for various implementations of the VMT solver is provided in Table 3.1.

Due to the various diffusive and advective terms used in each layer, the boundary conditions at

each layer interface must be treated with care to ensure a correct physical solution. Section 3.2.3

discusses the enforcement of these boundary conditions, henceforth referred to as “jump conditions”,

for FD- and FC-based VMT solvers.

3.2.3 Jump conditions

It is important to note that, due to the discontinuous nature of the diffusive and advective terms,

additional “jump conditions” must be applied at all layer and mesh interfaces to ensure cor-

rect physical solutions. We thus require continuity of the concentration C(x, y, t) and the flux

DCy(x, y, t) +MC(x, y, t) to be enforced across each interface.
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3.2.3.1 FD-Based Methods

For the FD-based ADI method, satisfaction of these jump conditions is achieved through a imple-

mentation combination of forward and backward finite-difference schemes at each layer. For example,

and for ease of explanation, using the forward and backward Euler discretization schemes the jump

conditions at the membrane-tissue interface require

(
−D

t

hty

)
Cni,I−1 +

(
Dt

ht
+
Dm

hm
+M t −Mm

)
Cni,I +

(
−D

m

hm

)
Cni,I+1 = 0, (3.5)

where hm and ht are the spatial step sizes in the membrane and tissue respectively, and Cni,I is the

approximate concentration at x = hxi, y = Imt, and time tn = n∆t. The index I corresponds to

the membrane-tissue index after appropriate discretization. Note that continuity of C is inherently

enforced through the satisfaction of (3.5). The jump conditions at other interfaces are similarly

enforced.

Satisfaction of the zero-flux boundary conditions at the domain boundaries is achieved through

enforcement of

(Cni,1 − Cni,0)/ht = 0, (Cni,Ny − C
n
i,Ny−1)/hv = 0,

where we have again approximated ∂C/∂y using the forward and backward Euler discretization

schemes respectively.

For all implementations of FD-based VMT solvers presented in Section 3.3, we made use of the

second-order forward and backward finite difference schemes

∂Cni,j
∂y

=
1

2h
(−3Cni,j + 4Cni,j+1 − Cni,j+2) + O(h2), and

∂Cni,j
∂y

=
1

2h
(3Cni,j − 4Cni,j−1 + Cni,j−2) + O(h2),

respectively, to enforce both the boundary conditions in x and y and jump conditions at each

interface.

3.2.3.2 FC-Based Methods

Enforcement of the jump conditions for the FC-based solver requires additional considerations. For

ease of explanation, in this section we will consider only the simplest meshing scheme: one equispaced

mesh in each layer. Generalization to more complex meshing schemes may be achieved in a fairly

straightforward manner.

Returning to Section 2.4, we recall that the FC-ODE method enforces boundary conditions

through addition of an appropriate linear combination of solutions to the associated homogeneous

ODE. However, because the jump conditions require the continuity of the concentration and the
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flux across each interface, the systems determining the corresponding coefficients in each layer may

not be treated seperately. Indeed, the 2 × 2 system shown in equation (2.18) now becomes a 6× 6

system relating the coefficients in each layer as follows
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2)
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2|Imt −hm
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,

where F(f) = Dfy+Mf is the flux in the layer specified by the associated superscript and evaluated

at the interface specified by the associated subscript.

3.2.4 Fluid-Freezing Methodology

To resolve the advection in the vessel, we begin by using a small time step, ∆t = 0.5. This presents

a problem, however: because the magnitude of the diffusion in the membrane and tissue is typically

taken to be extremely small, the concentration will not reach steady state in a reasonable amount of

time if the time step is kept small. At the same time, if the time step is taken to be much larger, we

risk being unable to resolve the advection in the vessel. To overcome this difficulty, we periodically

“freeze” the concentration in the vessel and evolve only in the membrane and tissue using a large

time step. Once the freezing approximation is no longer accurate, the vessel is “unfrozen” and the

time-step significantly reduced. The entire system is then evolved at the reduced time step until the

freezing process can be used again.

In detail, freezing occurs when the concentration in the vessel has reached a near steady state;

the concentration is said to have reached a steady state in a specified layer when the maximum

relative residue,
|C(x, y, tn+1)− C(x, y, tn)|

|C(x, y, tn+1)|
, (3.6)

over the relevant layer points (x, y) is smaller than a prescribed tolerance. In the remainder of this

text, we denote the steady state tolerance for the concentration in the vessel, or freezing tolerance,

by σf . The accuracy of the freezing approximation is determined by measuring fulfillment of the

jump conditions (see Section 3.2.3)—if the jump conditions are not satisfied, we unfreeze the vessel,

reduce the time-step, and evolve the complete system, as described above.
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3.2.5 Fast Time-Stepping

The final element of the VMT solver is the inclusion of an efficient time-stepping scheme: to efficiently

obtain steady states in the membrane and tissue regions for each frozen vessel configuration, we

perform a transformation of the differential operators that allows us to take advantage of a fast

steady state solver based on selection of adequately chosen, very large time steps. The required

transformation is actually a change of unknown,

C(x, y, t) = ω(x, y, t)eM
vy/(2Dv), y ≤ Ivm,

that eliminates the magnetic term in the PDE for the membrane and tissue—actually converting

the convection diffusion spatial operator to a spatial operator of Helmholtz type:

ωt = D∇2ω − M

4
ω.

We then select time steps in a form described in [55], that is

4tn =
(ht)2

b

(
b

a

)n+1
Λ

,

where

a = 4 sin2

(
πht

2

)
, b = 4 cos2

(
πxht

2

)
,

h = (Imt − yl)/19 and n is the iteration number. The choice of Λ determines how rapidly the time

steps increase and depends on the relationship between the diffusion and magnetic force coefficients,

D and M and on the VMT solver used; further details on the appropriate selection of Λ are provided

in Section 3.3. To ensure the solution has reached steady state, once the solution time is greater

than time

T =
2

R2Rt

(
Mv

Dv

)2

log

(
Rt

R

)
,

the fluid-freezing methodology is terminated and the entire system is evolved using a small time step

until the maximum relative residue (3.6) in the membrane and tissue is smaller than a prescribed

tolerance, σs. The choice of T arises from a modification of the steady state time for a simple

capillary model, the Krogh tissue cylinder model [10, ?], that incorporates the multiple layers and

magnetic forces present in the VMT model. For all the simulations presented in Section 3.3, after

termination of the freezing methodology at the appropriate time, we use the small time step ∆t = 0.5

until steady state is reached. For all the numerical results presented in Section 3.3, we selected the

steady state tolerance σs = 10−5.

While useful for motivating the theory behind the selection of such a time-stepping scheme, im-
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plementation of the transformation is not needed in practice. Indeed, as the relevant transformation

is simply a multiplication by an exponential, the fast time-stepping scheme is also directly applicable

to the concentration C(x, y, t).

In summary, the use of this fast time-stepping strategy in conjuction with the freezing method-

ology described in the previous section gives rise to fast convergence for the VMT model.

Remark 3.2.1 Returning to the ADI methodology described in Section 2.3, recall that repeated

application and inversion of the relevant differential operators
(
1 + ∆t

2 Ax
)

and
(
1 + ∆t

2 Ay
)

in equa-

tions (2.9) may be simplified through use of the relation (2.12). However, because the time step ∆t

is not kept constant with the introduction of the above fast time-stepping scheme, application of

the differential operator
(
1 + ∆t

2 Ay
)

must be performed directly with every change in time step, i.e,

every time the vessel is frozen or unfrozen. This application maybe performed through either FD

or FC methodologies. A simple second-order centered difference FD scheme provides the required

operator for our FD-based VMT solvers. The FC operator arises from use of the differential oper-

ator (2.3), as described in Remark 2.1.1. It is important to note that for the extremely large time

steps required for the VMT model with small diffusion constants, e.g., time steps on the order of

∆t ∼ 106 are required for the D = 10−7 example presented in Section 3.3, a filtering procedure is

necessary to ensure stability of the FC differential operator in the y-variable. We make use of the

filter presented in [2]:

ŵk = exp

(
−α

(
2k

Nc

)2p
)
f̂k,

where Nc is the length of the vector f̂ of Fourier coefficients and ŵ denotes the filtered Fourier

coefficients. Following the parameter selections detailed in [2], for all the numerical simulations in

this chapter, we used the filter parameters α = 16 ln 10 and p = b3N/5c, where N is the number of

grid points in the relevant layer.

3.3 Numerical Results

As mentioned in Section 3.1, preliminary numerical tests leading to the results demonstrated in ref-

erence [42] were conducted using the commercial software COMSOL Multiphysics. While capable of

solving the VMT problem (3.1) for large values of Dv, the COMSOL software encountered many dif-

ficulties for small values of this parameter, especially for large values of the magnetization coefficient

Mv. For example, for the choices Dv = 10−4, Mv = 10−3, R = 10−2, Rt = 0.1, a COMSOL steady

state solution was obtained in 36 hours of run time on a 3.16 GHz single processor of a quad-core

Intel Xeon CPR X5460 computer with 32 GB of memory; the steady state solution using smaller

parameter choices such as Dv = 10−5, Mv = 10−5, R = 10−2, Rt = 0.1, on the other hand, would

have required a memory allocation beyond the 32GB available in the said computer. In comparison,
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some realistic models of capillaries have a diffusion coefficient on the order of Dv ∼ 10−7; clearly a

more specialized solver is required if such cases are to be tackled successfully.

(Henceforth, for clarity, we no longer include the Renkin and Renkin Tissue numbers, R = 10−2

and Rt = 0.1 respectively, and instead refer to each of the parameter sets by only their diffusion and

magnetization coefficients, Dv and Mv.)

The goal of the analyses performed by Nacev et al. [42] was to determine, for a given Dv and

Mv, whether 1) the concentration forms a boundary layer at the vessel-membrane interface, 2) the

concentration remains in the vessel until steady state, i.e., is dominated by the blood velocity, or

3) the concentration simply diffuses in the surrounding tissue, i.e., is dominated by the magnetic

forces. To determine if a boundary layer is present, reference [42] makes use of the criterion described

in reference [29], that is: a boundary layer is said to be present at a particular point if the value

of the concentration at that point is greater than 101% of the inlet concentration. In particular,

this criterion was applied to the concentration at the point ρ = ((xr − xl)/2, Ivm), the center of

the vessel-membrane interface. Because the boundary condition at xl requires the concentration at

the blood vessel to equal 1, a boundary layer is said to form at the vessel-membrane interface if

C(ρ, t) ≥ 1.01 at steady state [42] . Thus, a reasonably accurate steady state solution is necessary in

order to determine whether a boundary layer has or has not formed. In any case, comparisons with

other software and the accuracy of the calculations themselves, which require long-time evaluation

of a solution dependent on an extremely wide range of diffusivities, only become credible when a

significant convergence pattern is established. In our work we thus performed a convergence analysis

that guarantees an overall relative accuracy of 10−5.

Figure 3.3 displays three steady state solutions obtained from C++ implementations of the FC-

VMT solver for various parameter sets over the domain [0, 24]× [0, 1.85]; the membrane-tissue and

vessel-membrane interfaces are at Imt = 0.85 and Ivm = 1.85 respectively. The first two pairs

of figures shown in Figures 3.4(a), 3.4(b) and 3.4(c), 3.4(d) respectively correspond to numerical

solution of the VMT problem for the above two examples. The third figure pair, as shown in

Figures 3.4(e), 3.4(f), was obtained using Dv = 10−7, Mv = 5 10−6—a parameter set associated

with realistic models of capillaries [42].

Using a computer with a 2.66 GHz Intel Core 2 Duo processor and 4GB of memory, a steady

state solution with 10−5 absolute error at ρ for the parameter choices Dv = 10−4, Mv = 10−3

was obtained in under five minutes using 3 MB; the steady state solution with parameter choices

Dv = 10−5, Mv = 10−4 (see Figures 3.4(a) and 3.4(c)), in turn, was reached in under 14 minutes

using only 15 MB of memory. Figures 3.4(e) and 3.4(f) demonstrate the capabilities of the VMT

solvers for the parameter set Dv = 10−7, Mv = 5 10−6 mentioned above. Note especially the

extremely steep boundary layer present at the vessel-membrane interface (see Figure 3.4(f)) that

was accurately captured in the solution. While very far from feasible for other methods, our VMT
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(a)

FC-VMT Solver

Nx ×Ny Rel. L2 Error Comp. time

100× 100 5.0 10−3 238 secs

200× 200 5.6 10−4 360 secs

400× 400 1.03 10−4 881 secs

800× 800 5.4 10−5 3398 secs

(b)

FD-VMT Solver

Nx ×Ny Rel. L2 Error Comp. time

100× 100 4.7 10−3 105 secs

200× 200 1.1 10−3 366 secs

400× 400 2.0 10−4 1482 secs

800× 800 1.2 10−4∗ 25,802 secs

(c)

Graded FD-VMT Solver

Nx ×Ny Rel. L2 Error Comp. time

100× 100 2.1 10−2 196 secs

200× 200 9.3 10−3 605 secs

400× 400 2.7 10−3 1841 secs

800× 800 5.0 10−4 6666 secs

Table 3.2: Computational times required to obtain various accuracies for the parameter set Dv =
10−5, Mv = 10−4 through use of each of the three VMT solvers. The solutions were computed over
grids of size Nx × Ny with the parameter choices Λ = 25, σf = 10−5, and σs = 10−5. The entry
marked by ∗ was obtained using the selection σf = 10−6.

solvers (specifically the FC-VMT solver) produced steady state solutions with the required 10−5

accuracy at ρ for the third parameter set using 14.8 MB of memory in a 6.5 hour run on the same

2.66 GHz processor.

For the first and second parameter sets, Dv = 10−4, Mv = 10−3 and Dv = 10−5, Mv = 10−4, we

chose iteration parameter Λ = 25. This smaller value of Λ was selected to enable rapid computation

of the steady state solution; because the boundary layer in both of these cases is not extremely steep,

the time steps may be rapidly increased while ensuring an accurate solution. Accurate resolution

of the steep boundary layer occuring in the solution for the third parameter set, Dv = 10−7,

Mv = 5 10−6 (see Figure 3.4(f)), requires a larger value of Λ; for all the numerical simulations of

this parameter set, we chose Λ = 100.

Table 3.2 demonstrates convergence through examination of the relative L2 norm as a function

of grid size for the FC-, FD-, and Graded FD-VMT solvers for the parameter set Dv = 10−5,

Mv = 10−4, while Table 3.3 displays the absolute errors at the point ρ for a 400 × 400 grid. We

note that the 10−5 accuracy we seek at the critical midpoint ρ is obtainable using only a 400× 400

grid with the FC-VMT solver.



34

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

(b)

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d)

(e)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(f)

Figure 3.4: Solution of the steady state concentration C(x, y) obtained through use of the FC-VMT
solver for a VMT model with Ivm = 0.85 and Imt = 0.5 for three parameter sets. Panels (a),
(c), and (e) display the steady state solution over the full domain while Figures (b), (d), and (f)
display a cross section of the steady state solution at the midpoint x = 12 (corresponding to the
dashed line in Figures (a), (c) and (e)). The dashed lines in Figures (b), (d) and (f) represent the
vessel-membrane and membrane-tissue interfaces, Ivm and Imt respectively. Panels (a) and (b):
Dv = 10−4, Mv = 10−3, R = 10−2, Rt = 0.1. Panels (c) and (d): Dv = 10−5, Mv = 10−4,
R = 10−2, Rt = 0.1. Panels (e) and (f): Dv = 10−7, Mv = 5 10−6, R = 10−2, Rt = 0.1. Note, e.g.,
the sharp boundary layers to the right of the point y = 0.85 in Figures (b), (d), and (f) that have
been resolved by the FC-VMT solver, and that would require use of extremely small time steps if
an explicit method were used.
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Abs. Error at ρ Comp. Time

FC-VMT Solver 5.5 10−5 881 secs

FD-VMT Solver 2.0 10−4 1482 secs

Graded FD-VMT Solver 4.3 10−3 1841 secs

Table 3.3: Computational times and errors at the critical midpoint ρ = ((xr − xl)/2, Ivm) using
Dv = 10−5, Mv = 10−4 for the three VMT solvers. The solutions were computed over a 400× 400
grid with the parameter choices Λ = 25, σf = 10−5, and σs = 10−5.
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Chapter 4

Magnetically Enhanced Diffusion

4.1 Introduction

As discussed in Chapter 3, the goal of magnetic drug delivery is to use magnetic fields to direct

and confine magnetically responsive particles to specific regions in a patient’s body, thus allowing

for focused treatment in an area of interest. However, magnetic drug delivery inherently suffers

from two severe limitations: 1) the inability to focus treatment on targets located deep inside the

body with a stationary magnetic field (when stationary external magnets are used, particles can

only be moved at a maximum depth of 5 cm) and 2) the fundamental consequence of the classic

Samuel Earnshaw theorem [18] that no inverse-square law force (including magnetic force on a single

particle) can create a stable equillibrium in the interior of a domain—only unstable equillibria for

ferrofluid particles may be attained with a static magnetic field. To overcome these limitations,

Shapiro [51] proposed the development of a dynamic feedback-control scheme, where manipulation

of the magnetically responsive particles is sought through dynamic adjustment of the magnetic fields.

To design such a feedback-control scheme, a predictive capability must be used to evaluate the

effects of external magnetic forces on the convection and diffusion of magnetically responsive particles

through the relevant tissues. As previously discussed in Chapter 1, a simplified, but effective model

describing these effects has been proposed by Grief and Richardson [26]. The characterizing equation

of the Grief and Richardson model is the hyperbolic convection-diffusion PDE

∂

∂t
C(~r, t) = −∇ ·

[
C(~r, t) ~Vblood(~r, t)−D(~r) ∇C(~r, t) + k(~r) C(~r, t)∇

(
| ~H(~r, t)|2

)]
,

where C(~r, t) is the concentration of magnetic particles in the blood, ~Vblood(~r, t) is the blood veloc-

ity, D(~r) is the diffusion coefficient of particles within the bloodstream, k(~r) is the magnetic drift

coefficient, and ~H(~r, t) represents the externally applied magnetic field. The control of the particles

is effected through the term ∇
(
| ~H(~r, t)|2

)
.

A test of the feasibility of such a dynamic ad hoc control scheme is presented in [51]. In refer-
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ence [51], an idealized control setup is created by making several simplifications to the model: the

domain of solution is taken to be the unit circle, the diffusion coefficient, D, and magnetic drift

coefficient, k(~r), are assumed to be constant, and the effect of blood velocity, ~Vblood(~r, t) is removed.

To ensure no fluid leaves the domain, a zero-flux condition is imposed on the boundary. Initially,

the fluid concentration is set to 1 throughout the domain. Applying these changes to the Grief and

Richardson model yields the control setup:

Ct = D∇2C +Mx(x, y, t)Cx +My(x, y, t)Cy +Mu(x, y, t), (x, y, t) ∈ Ω× (0, T ],

∂C

∂n
= 0, (x, y) ∈ ∂Ω,

C(x, y, 0) = 1, (x, y) ∈ Ω,

(4.1)

where

(Mx(x, y),My(x, y)) = −k∇
(
| ~H(x, y, t)|2

)
, and

Mu(x, y) = −k∇2
(
| ~H(x, y, t)|2

)
.

Design of adequate control schemes requires numerical solution of such PDEs. For the parameter

values inherent in the medical configurations under consideration, the numerical PDE problems

above have proven quite challenging [51]. In this chapter, we utilize the model (4.1) as a test bed

for development of numerical algorithms capable of evaluating such numerical solutions accurately

and efficiently.

Numerical solution of the control setup (4.1) has proven highly challenging to numerical solvers

for several reasons, most prominent of which is the steep build-up of concentration, or boundary layer,

that occurs near the boundary of the domain. For the small diffusion coefficients typically required

to portray a realistic control setup, the imposition of the zero-flux boundary condition combined

with the strong convective forces generated by the external magnetic field will cause extremely sharp

boundary layers to rapidly appear near the boundary of the domain. Numerical resolution of such

boundary layers depends on the use of a very fine spatial step size, thus placing limitations on the

type of numerical method efficiently useable; for example, due to the requirement of such a fine

mesh, explicit methods are rendered highly inefficient by the restrictive CFL condition imposed on

the time step.

Further, because numerical solution over a nonrectangular domain is required for the idealized

control setup described above, a standard finite differences approach over a Cartesian grid is not an

efficient method of solution: such a scheme would require either a “staircasing” of the boundary of

the domain or challenging, essentially impractical domain mapping strategies. Use of the first, rather

simple technique reduces the spatial accuracy of the resulting finite difference method to first order.

In addition, due to the absence of solution values outside the computational domain, finite difference

stencils are forced to be made increasingly one-sided as the domain boundaries are approached. In
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general, stability is not achieved by simply using high-order centered difference methods in the

interior of the domain and equally high-order biased stencils near the boundary. While there are

several techniques to resolve this problem (such as the use of compact schemes [4] or Summation

By Parts operators [40, 48]), these approaches are computationally expensive and must sacrifice

some accuracy near the boundary to gain stability. Importantly, further, the multidomain strategies

asociated with these algorithms require the discretizations of neighboring domains to match perfectly

at common boundaries; see, e.g., [2] for details.

Numerical solutions of PDEs over nonrectangular domains are frequently obtained through use

of finite element and finite volume solvers. However, because the spectral radii of differentiation

operators based on nonuniformly spaced structured grids, such as those used by finite element and

finite volume methods will, in general, grow superlinearly, these techniques must satisfy a stringent

CFL condition for stability. High-order methods based on unstructured meshes give rise to similarly

restrictive CFL constraints.

In this chapter, we present two numerical solvers which, though employment of a combination

of explicit and implicit Fourier Continuation (FC)-based pseudospectral solvers in appropriately

partitioned subdomains, overcome these problems and provide efficient and accurate numerical so-

lutions of the control setup (4.1). These solvers, which we refer to as the Explicit-Implicit and

Implicit-Implict FC solvers, may in turn be used as effective numerical tools for the design of control

schemes.

By dividing the domain of solution Ω into smaller regions each selected to capture a particular

behavior of the concentration, numerical algorithms may be specifically tailored in each subdomain

to provide a much more efficient method of solution. In both the Explicit-Implicit and Implicit-

Implicit FC solvers, adequate numerical resolution of the steep boundary layers is achieved through

partitioning a finely discretized thin annular region toward the boundary; to overcome the extremely

restrictive CFL condition such a grid would place on an explicit method, the Explicit-Implicit and

Implicit-Implicit FC solvers makes use of an efficient implicit approach, the FC-AD solver [16, 15].

Because the concentration varies little away from the boundary layer, for sufficently small values

of the diffusion coefficient D an efficient method of solution is provided in the remainder of the

domain through an explicit FC-based solver; the resulting combination of explicit and implicit FC

methodolgies gives rise to the Explicit-Implicit FC solver. However, because the restriction on

the time step imposed by the CFL condition is dependent on choice of the diffusion coefficient D,

larger values of D cause the CFL condition to once again become overwhelmingly restrictive, thus

rendering use of an explicit method in any subdomain of Ω inefficient; the Implicit-Implicit FC solver

overcomes this restriction by making use of the FC-AD method in the full domain Ω.

Control of the ferrofluid is performed through adjustment of eight external electromagnets equally

situated around ring surrounding the domain of solution, see Figure 4.1; the control term ~H(~x, t) is
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Figure 4.1: Geometry corresponding to the control setup. The domain of solution of the PDE (4.1),
denoted by Ω, is the innermost circle labeled “Ferrofluid Control Region”. The eight surrounding
electromagnets are each represented by two rectangular regions.

simply computed as the magnetic field generated by this ring of magnets. For preliminary analyses

of this idealized control setup, we simply seek to direct and confine the particles to near the center of

the domain. As detailed in [51], focus of the particles to the near the center of the domain is sought

through dynamic adjustment of the magnetic fields as follows: given an initial choice of currents in

the electromagnets, a simulation of the solution of the corresponding PDE is run until a particular

specified time; upon reaching this time, the currents in the electromagnets are adjusted (either from

examination, as done in [51], or by a prescribed control algorithm), and simulation of the newly

adjusted PDE is run until another specified time. This last step is then repeated until adequate

focus of the particles is obtained. We refer to such a collection of currents and times as a control

scheme.

In the analyses performed in [51], numerical solutions of the PDE (4.1) for varying magnetic fields

were obtained through use of the finite-element-based commercial software COMSOL Multiphysics.

While capable of numerically solving (4.1) for weak magnetic fields, the COMSOL software encoun-

tered many difficulties for the stronger magnetic fields required to direct the particles near the center

of the domain, including an inability to resolve the extremely sharp particle concentration build-up

occurring near the boundary in the presence of strong magnetic forces. Further, the computational

times required by the COMSOL software to obtain a solution impose additional difficulties for the

development of a more precise control scheme. For example, the COMSOL software obtained a

solution of the control setup described in [51] in a run time of several days with 32 GB of memory.

In contrast, the Explicit-Implicit FC solver presented in this thesis obtains a solution for a similar
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control setup, in which extremely sharp boundary layers of height 104 occur, in a run time of under

two hours using 50 MB of memory.

The remainder of this chapter is organized as follows. In Section 4.2, we provide a prescription

of the division of the full domain Ω into appropriately selected subdomains allowing for efficient

resolution of the boundary layer. In Section 4.3, we describe in detail our implementation of the

Explicit-Implicit and Implicit-Implicit FC solvers. Finally, in Section 4.4 we present a variety of

numerical experiments, including solution for several different control setups, and compare the per-

formance of the Explicit-Implicit and Implicit-Implict FC solvers to that achieved by COMSOL for

the simulations presented in [51].

4.2 Grids

As discussed in Section 4.1, when the magnetic forces acting on the particles are strong enough

to overcome the effects of diffusion, a sharp build-up of concentration, or boundary layer, appears

near the boundary of Ω. In order to efficiently resolve this boundary layer numerically, we split Ω

into three subdomains: a square domain S near the origin, a wide annular domain R1 extending

from near the center of Ω to near the boundary ∂Ω, and a thin annular domain R2 extending from

the outer radius of R1 to the boundary ∂Ω. Accurate numerical resolution of the boundary layer

is achieved through discretization of the thin annulus R2 with a very fine polar mesh. The wide

annulus R1 is chosen for computational efficiency: because the concentration of particles closer to

the center of the domain is near-constant, adequately accurate numerical solutions can be obtained

with a much coarser mesh. Finally, the coarsely discretized square domain S is implemented near

the origin to avoid any singularities use of a polar mesh at r = 0 may generate. As illustrated in

Figure 4.2, the Cartesian grid

S = {(x, y) | x ∈ [−a, a], y ∈ [−a, a]}

is used to discretize S, while the polar grids

R1 = {(r, θ) | r ∈ [b, 1− ε], θ ∈ [0, 2π)} and

R2 = {(r, θ) | r ∈ [1− ε, 1], θ ∈ [0, 2π)}

are used to discretize R1 and R2 respectively. Note that the square and wide annular domains, S

and R1, are chosen to overlap with one another, while the thin annulus R2 has inner radius equal

to the outer radius of the wide annulus R1—there is no overlap between the annuli. The grid

boundary parameters a, b, and ε as must be carefully chosen to enable accurate numerical resolution

of the boundary layer present at the edge of the domain; appropriate selection of these parameters
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Figure 4.2: Grids used by the Explicit-Implict FC solver. The Cartesian grid S is represented by
the green grid lines, while the polar grids R1 and R2 are represented by the blue and red grid lines
respectively. Notice that the Cartesian grid S and the polar grid R1 overlap, while the polar grids
R1 and R2 are chosen to align along their outer and inner radii respectively.

is discussed in detail in Section 4.4.

Because polar grids are used in the annuli R1 and R2, a change of variables needs to be applied

to the PDE (4.1). Applying a transformation to polar coordinates to (4.1) yields the modified PDE

DCrr +
D

r2
Cθθ + (

D

r
+Mx(x, y) cos θ +My(x, y) sin θ)Cr

+(My(x, y)
cos θ

r
−Mx(x, y)

sin θ

r
)Cθ +Mu(x, y)C = Ct,

Cr(1, θ, t) = 0, θ ∈ [0, 2π).

(4.2)

It is useful to note that this new PDE is of the same structure as the original PDE (4.1); only

the coefficient functions have changed. Thus, because the solution methods incorporated in the

Explicit-Implicit and Implicit-Implicit FC solvers do not depend on prior knowledge of the coeffi-

cient functions, the same techniques may be used in all three domains with only minor modifications.

Recalling that the explicit and implicit FC methodologies discussed in Sections 2.2 and 2.3 respec-

tively were presented for general coordinates (u, v), Table 4.1 provides the relevant details required

for numerical solution of the PDEs (4.1) and (4.2) in the corresponding coordinate systems.
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Cartesian Mesh Polar Mesh

(u, v) (x, y) (r, θ)

~κ(u, v) (D,D)
(
D, Dr2

)
~λ(u, v) (Mx,My)

(
D
r +Mx cos θ +My sin θ,My

(
cos θ
r

)
−Mx

(
sin θ
r

))
ν(u, v) Mu Mu

Table 4.1: Table of coefficients and coordinates used over each of the two grid types for both the
Explicit-Implicit and Implicit-Implicit FC-Solvers. The far-left column provides the corresponding
notation used in Section 2.3 for the description of the ADI algorithm.

4.3 Dynamic Control Solver

Returning to the outline of the general FC-AD methodology presented in Chapter 2, we note that

a full description of the application of the FC-AD method to the dynamic control problem (4.2)

requires prescription of the boundary conditions. Because of the multiple grids used to discretize

the full domain of solution, obtaining these boundary conditions is a nontrivial feat requiring the

implementation of several vital details. A description of these details is provided in Sections 4.3.1

through 4.3.4 below.

4.3.1 Periodic Boundary Conditions

While the FC-AD method was presented for general coordinates in Chapter 2, we recall that the

Explicit-Implicit and Implicit-Implicit FC methods are based on solving the PDE (4.2) in annular

domains. Making the change of notation (u, v) → (r, θ), we note that the boundary condition in

θ is inherently given by periodicity. That is, we require Cn(r, 0) = Cn(r, 2π). Subsequently, the

boundary conditions required for inversion of the operator (2.10) corresponding to Aθ are also given

by periodicity.

It is also useful to note that the FC-ODE method described in Section 2.4 used to invert the

operator
(
1− ∆t

2 Aθ
)

may be reduced to a spectral solver. Indeed, because the coefficient functions of

the ODE associated with the operator
(
1− ∆t

2 Aθ
)

and the solution C̃ are periodic in θ, the Fourier

continuations inherent in the FC-ODE solver may be replaced by their corresponding standard

Fourier series.
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4.3.2 Radial Boundary Conditions

From equation (4.2), it is clear that the right boundary condition for C̃n+1 in the outer annulus R2

is simply given by the homogeneous Neumann boundary condition

∂C̃n+1

∂r
(r, θ) = 0, (u, v) ∈ ∂rR2,

where ∂rR2 = {(1, θ)| θ ∈ [0, 2π)} is the right boundary of R2.

Upon examination, we see that the condition given by equation (4.2) provides only one boundary

condition for Cn+1 (and subsequently C̃n+1) over the outer boundary of R2; clearly a boundary

condition over the inner radius of R2 is required to solve for C̃n+1. Recalling that the inner and

outer radii of R2 and R1 respectively are selected to match one another, a natural choice would be

to take this missing boundary condition to be a Dirichlet boundary condition with value given by

the solution over the coarse annulus, R1: once a solution over the R1 is obtained (possibly via the

explicit method as described in Section 2.2), the boundary values at the inner radius of R1 could

simply be taken as the solution values over the outer radius of R2.

However, choice of differing spatial step sizes and solvers used over R1 and R2 will typically yield

a small discrepancy between the numerical solutions over each domain. Upon viewing the solution

over the full domain, this discrepancy will present itself as a “seam” near the boundary of two

neighboring grids. By obtaining the left boundary condition for R1 directly from the solution over

R2, the discrepancy present at the seam will propagate numerical error deeper into each domain

with repeated iterations of the FC-AD algorithm.

While it is possible to resolve this “seaming” issue by overlapping the two domains R1 and R2

and overwriting (using an interpolation scheme such as, e.g., the one detailed in Section 4.3.5) the

less-accurate solution R1 with the more-accurate solution from R2, this is not an efficient method of

solution in the presence of the steep boundary layers occuring near the boundary of Ω. Indeed, the

overlap between the two grids needed to remove the effects of seam requires significantly increasing

the width of R2, thus, in turn, requiring many more grid points in R2 to enable accurate resolution

of the boundary layer. In practice, this necessary increase in the number of grid points will cause

the implicit solver in R2 and thus the overall solver to become extremely computationally expensive.

An efficient resolution of the detrimental effects of seaming is provided through numerical solution

over an auxiliary grid located over the boundary betweenR1 andR2. In detail, we define the auxiliary

annulus

A = {(r, θ) | r ∈ [1− δ, 1− υ], θ ∈ [0, 2π)},

where δ > ε and υ < ε are chosen to allow for sufficient overlap with R1 and R2; appropriate choice of

δ and υ is provided in Section 4.4. We proceed by explicitly solving in R1 and R2 using the FC-based
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time-marching method described in Section 2.2. By interpolating onto the left and right boundaries

of A, the explicit solutions in R1 and R2 respectively provide approximate boundary values for A.

Once given both approximate boundary values, a numerical solution in A is obtained via the FC-AD

method with Dirichlet boundary conditions. The left boundary condition for R2 is then given as a

Dirichlet boundary condition with value obtained by interpolation of the solution in A onto the left

boundary of R2. Similarly, if an implicit method is to be used, the right boundary condition for R1

may be given as a Dirichlet boundary condition with value obtained by interpolation of the solution

in A onto the right boundary of R1.

Using the notation in Section 2.3, the boundary conditions in R2 are thus given by the selections

al = 1, bl = 0, Bl = C̃A
n+1|∂lR2

, and

ar = 0, br = 1, Br = 0,

where ∂lR2 is the left boundary of R2 and C̃A
n+1

is the approximate solution at time tn+1 obtained

from applying the FC-AD method over A.

Remark 4.3.1 From Section 4.3.1 and the above prescription, we note that the Dirichlet left

boundary condition in r is only easily given at the full next step, that is for the computation of

C̃n+1, while the periodicity boundary conditions in θ hold for both C̃n+1 and the half-step C̃n+ 1
2 .

Thus, for ease of implementation, we rearrange the scheme (2.9) as

(
1− ∆t

2
Aθ

)
C̃n+ 1

2 =

(
1 +

∆t

2
Ar

)
C̃n,(

1− ∆t

2
Ar

)
C̃n+1 =

(
1 +

∆t

2
Aθ

)
C̃n+ 1

2 ,

where, for the appropriate coefficient functions ~κ, ~λ and ν, Ar and Aθ correspond to the previously

defined Av and Au, respectively.

4.3.3 Explicit-Implicit Solver

The Explict-Implict FC solver arises from implementation of the FC-AD method in the thin annulus

R2, as described above, in conjunction with use of an explicit solver in the coarsely meshed regions

S and R1. Such an explicit solver is provided by explicit FC solver described in Section 2.2, with

appropriately selected coordinates and coefficient functions (as detailed in Table 4.2).

Several different time-stepping methods were considered for the solution of Cn, including the for-

ward Euler, second-order Runge-Kutta, and second-order Adams-Bashforth schemes. In comparing

the computational speed versus the accuracy of the overall solution in Ω for each of these methods,

we determined the second-order Runge-Kutta scheme described in Section 2.2 was most efficient for
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our numerical simulations. This is, in part, due to the fact that any of the above explicit methods

used in the right boundary domains S and R1 will be inherently significantly faster than the implicit

method used to resolve the boundary layer in the finely meshed annulus R2. Further, because the

implicit method used in R2 has second order accuracy in time—thus limiting the maximum accuracy

of the overall solution—higher order explicit schemes in S and R1 were not considered.

It is important to note that this explicit time-marching scheme is efficiently applicable only

for when the diffusion coefficient D is sufficiently small and the domains S and R1 are coarsely

discretized: since a large spatial step used, the well-known diffusive CFL condition, 4t ∼ 4x2/D,

for stability is not overly stringent. Use of an explicit method is not computationally efficient in the

domain R2, however: the thin width and high grid resolution of R2 required to resolve the boundary

layer force the CFL condition to become overwhelmingly restrictive. To overcome this difficulty, the

Explicit-Implicit FC-solver makes use of the implicit FC-AD method in the thin annulus R2.

4.3.4 Implicit-Implicit Solver

As mentioned in Sections 4.1 and 4.3.3, the explicit FC-based solver provides an efficient method of

solution for sufficiently small values of diffusion coefficient D. However, when the diffusion coefficient

D is sufficiently large, the CFL condition imposed by an explicit method places a stringent restriction

on the maximum value of the time step ∆t, even in the coarsely discretized fomains S and R1. This

condition is overcome by replacing the explicit FC solver with the implicit FC-AD method in both

S and R1; the resulting fully implicit solver is referred to as the Implicit-Implicit FC solver.

Implementation of the FC-AD method in S and R1 requires prescription of the left boundary

condition in R1 and both boundary conditions in S. Analogously to the appropriate selection of

boundary conditions at the interface between R1 and R2, the relevant boundary conditions for

C̃n+1 may be obtained without the adverse effects of seaming through inclusion of another auxiliary

annulus

A2 = {(r, θ) | r ∈ [b− δ2, b− υ2], θ ∈ [0, 2π)},

located over the boundary between S and R1. Selection of δ2 and υ2 is provided in Section 4.4.

Because a Cartesian mesh is used to discretize the square domain S, implementation of the

FC-AD method in S requires boundary conditions to be provided for the half-step solution C̃n+ 1
2 .

These half-step boundary conditions are obtained by applying the FC-AD method with time step

∆t/2 in A2, where the boundary conditions for solution of C̃n+ 1
2 over A2 are, in turn, provided by

application of the explicit FC solver over S and R1 with time step ∆t/2.

Remark 4.3.2 It is important to note that, for reasonable values of the magnetic advection, larger

values of the diffusion coefficient D give rise to less steep boundary layers. Thus, in the interest

of computational efficiency, the fine annulus R2 and, in turn, the auxiliary annulus A1, specifically
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implemented to resolve steep boundary layers are not necessary for the Implicit-Implicit FC solver

when D is sufficiently large. As this is the case for the numerical results presented in Section 4.4,

our implementations of the Implicit-Implicit FC solver make use of only the grids S, R1, and A2.

4.3.5 Interpolation

Due to the variations in spatial resolution and coordinates between each of the multiple domains,

the discrete grids used in the dynamic control solver will not, in general, have perfectly overlapping

grid points. To enable the proper communication between grids required for both obtaining the

necessary boundary conditions and appropriate overwriting of the solutions, we make use of the

following 2D interpolation scheme.

Considering a set of discrete function values f(ui, vj) given over an N × N grid {(ui, vj)|i, j =

1, ..., N}, we seek to find an approximation to the function value at the point (u0, v0). For each grid

point vj , we proceed by interpolating over the grid points (ui, vj), i = 1, 2, ..., N to obtain an ap-

proximate value of f(u0, vj). A suitable approximation to f(u0, v0) is then obtained by interpolating

over the set (u0, vj) for j = 1, ..., N .

All that remains is selection of a one-dimensional interpolation algorithm. For the numerical

simulations presented in this chapter, we implemented the one-dimensional Neville’s interpolation

algorithm typically used in solution of PDEs over multiple overlapping domains. The algorithm is

as follows: given a set of N data points (ui, fi), the interpolating polynomial p is obtained through

the recursion scheme

pi,i(u) = fi, 1 ≤ i ≤ N,

pi,j(u) =
(u− uj)pi,j−1(u) + (ui − u)pi+1,j(u)

ui − uj
, 1 ≤ i < j ≤ N,

where pi,j denotes the polynomial of degree j−i such that p(uk) = fk for k = i, ..., j. The polynomial

interpolating (ui, fi) for i = 1, ..., N is given by p1,N (u).

4.4 Numerical Results

We present a variety of numerical tests produced by both the Explicit-Implicit and Implicit-Implicit

FC solvers for the ferrofluid model (4.1). In Section 4.4.1, we present simulations, obtained from a

C++ implementation of the Explicit-Implicit FC solver, of the ad hoc control sequence introduced

in [51] for varying diffusion coefficients.
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4.4.1 Ad Hoc Control Examples

In this section, we present numerical examples that follow the setup and ad hoc control scheme

proposed in reference [51]. We consider the domain of solution to be a circular region Ω of radius

1. The externally placed electromagnets are represented by two rectangular domains of opposing

current (see Figure 4.1) and taken to have (dimensionless) length 4, inner radius .025 and outer radius

.325. The eight electromagnets are placed in an equispaced manner around a ring surrounding Ω;

the distance between the center of each electromagnet and the origin was taken to be 1.5. A vertical

current of strength J is applied in a the upper half of each magnet. Similarly, an opposing vertical

current of strength −J is applied in the lower half of each manget. For ease of explanation, the

magnets are labeled in a counterclockwise manner starting from the magnet centered at (1.5, 0).

A detailed discussion of the numerical computation of the relevant magnetic fields is provided in

Appendix A. Following the ad hoc control scheme described in [51], we use the following set of

currents and times:

~J = {0, 0, .5, 0, 0, 0,−.5, 0}, t = 0 to t = 3.9,

~J = {.5, .15, 0,−.15,−.5,−.15, 0, .15}, t = 3.9 to t = 5.4,

~J = {.5, .2, 0,−.2, .− 5, .− 2, 0, .2}, t = 5.4 to t = 9.0

~J = {.5, .25, 0,−.25,−.5,−.25, 0, .25}, t = 9.0 to t = 11.4,

~J = {.5, 0, 0, 0,−.5, 0, 0, 0}, t = 11.4 to t = 14.1

~J = {0, .15, .5, .15, 0,−.15,−.5,−.15}, t = 14.1 to t = 22.5,

~J = {0, .25, .5, .25, 0,−.25,−.5,−.25}, t = 22.5 to t = 30.0,

,

(4.3)

where ~J = (J1, J2, J3, ..., J8) is a vector containing the currents for each of the eight surrounding

electromagnets.

As mentioned in Section 4.1, preliminary numerical tests leading to the contribution [51] were

conducted using the commercial software package COMSOL Multiphysics. Although capable of

providing adequately accurate numerical solutions of the ad hoc control scheme presented in [51],

the COMSOL software was incapable of resolving the steep boundary layer occurring for smaller

values of D. For example, numerical solution for the choice of diffusion coefficient D = 0.001 and

magnetic drift k = 1 using the previously mentioned 3.16 GHz single processor of a quad-core Intel

Xeon CPR X5460 computer with 32 GB of memory was not feasible with COMSOL: to do so would

require memory allocation greater than the computer’s capacity.

For the choices D = 0.1, k = 1, numerical solution of the control scheme (4.3) was achieved with

maximum relative error 10−3 in 8 minutes with 18 MB of memory using a C++ implementation of
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the Implicit-Implicit FC solver on the previously mentioned 2.66 GHz Intel Core 2 Duo processor.

Numerical solutions of the control scheme (4.3) for the parameter sets D = 0.001, k = 10, and

D = 0.001, k = 20 were obtained with maximum relative error 10−2 using a C++ implementation

of the Explicit-Implicit FC-Solver in run times of 40 minutes using 28 MB of memory and two hours

using 50 MB of memory, respectively.

Figures 4.3 and 4.4 display numerical solutions obtained from a C++ implementation of the

Explicit-Implicit FC solver for the control scheme (4.3) for two different parameter sets: D =

0.001, k = 20 and D = 0.001, k = 10. To better display how the control scheme affects the

concentration toward the center of the domain, the colormaps in both Figures 4.4 and 4.3 have been

truncated to range from .3 to 1.1. The extremely steep boundary layers can be clearly seen in the

3D view of the concentration at each end time; note especially the extremely steep boundary layers

on the order of 104 that have been accurately resolved by the Explicit-Implicit FC solver in solution

for the parameter set D = 0.001, k = 20, see Figure 4.4(n).

For the numerical results obtained using the Explicit-Implicit FC solver, we chose the grid pa-

rameters a = 0.41, b = 0.4, and

δ = 10
D

myk
,

ε = 10
2D

muk +
√
mymuk2 + 4Dmu

,

υ = 5
2D

muk +
√
mymuk2 + 4Dmu

,

where my and mu are the maximum values of My and Mu over the domain Ω, respectively. For

the magnet configuration described in [51] and used in the numerical simulations presented in this

section, we have my = 0.0065 and mu = 0.0656. The Implicit-Implicit FC solver uses the grid

parameters a = 0.41, b = 0.4, δ2 = 0.1 and υ2 = b− (
√

2a+ 0.05).

4.4.2 Future Work

From examining the numerical simulations of the ad hoc control scheme proposed in [51], we can

see that the development of more sophisticated control schemes is required to enable the desired

manipulation of the ferrofluid. An example of one such control scheme is provided by [33], wherein a

small circle of ferrofluid (modeled by a Gaussian) located at the left x-boundary is moved along the

x-axis toward the center of the domain. The behavior of the ferrofluid in this example intrinsically

differs from that displayed in our previous control setup by two key factors: 1) a much smaller

diffusion coefficient on the order of D = 10−7 is used and 2) the combination of a small Gaussian

initial condition and the proposed current schematic does not give rise to boundary layer behavior.

The combination of these two factors renders direct application of the above Explicit-Implicit and
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Figure 4.3: Numerical solution of the ad hoc control scheme (4.3) using the parameter choices
D = 0.001, k = 10. The first seven figure sets contain the overhead and corresponding 3D views
of the concentration values at the end time of each of the seven current and time sets. The pink
arrows represent the gradient of the norm of the magnetic field, ∇| ~H(x, y)|2, used to manipulate the
ferrofluid. Panel (o) represents the truncated colormap used to better display the movement of the
ferrofluid in the center of the domain.
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Figure 4.4: Numerical solution of the ad hoc control scheme (4.3) using the parameter choices
D = 0.001, k = 20. The first seven figure sets contain the overhead and corresponding 3D views
of the concentration values at the end time of each of the seven current and time sets. The pink
arrows represent the gradient of the norm of the magnetic field, ∇| ~H(x, y)|2, used to manipulate the
ferrofluid. Figure (o) represents the truncated colormap used to better display the movement of the
ferrofluid in the center of the domain. Note, e.g., the extremely steep boundary layer of magntitude
104 that has been accurately captured by the Explicit-Implicit FC solver, see Figure (n).
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Implicit-Implicit solvers to be somewhat inefficient. First, due to the lack of boundary layer behavior,

the use of the fine annular domain toward the boundary specifically implemented for the accurate

resolution of steep boundary layers is no longer necessary. Second, the small diffusion coefficient

significantly lessens the restriction imposed on the time step by the CFL condition to ensure stability.

This, in turn, enables the efficient use of explicit schemes in the full domain.

To provide accurate numerical solution of such a model, we suggest the development of the

Explicit-Explicit FC-Solver. Easily derivable from the set of numerical tools presented in this chap-

ter, the proposed Explicit-Explicit FC method would depend on numerical solution over only two

domains: an annular domain with a polar mesh such as R = {(r, θ)} extending from the outermost

boundary into the center of the domain, and an overlapping square grid, such as S = {(x, y)},

located over the center of the domain. Use of the Explicit FC-based solver discussed in Section 2.2

would provide efficient and accurate numerical solution over both domains.
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Chapter 5

Positron Emission Tomography

5.1 Introduction

As mentioned in Chapter 1, two major types of reconstruction methodologies exist in the PET field:

1) Iterative methods, which produce high-quality images but are quite slow, and 2) Methodologies

based on the FBP approach [20] which, although fast, do not deliver acceptable image quality. As

a result, slow iterative approaches are almost exclusively used in commercial PET devices [46]. In

recent work [9] we introduced a new FBP-based methodology that incorporates (i) A certain averag-

ing technique that helps moderate the detrimental effects of high frequencies in the reconstruction

process, and (ii) A new Fejér-based filtering procedure. The resulting Fejér-mFBP algorithm runs

at essentially the same cost as previous FBP-based methods and, for the types of noise typical

in present day PET devices, it gives rise to images of significantly higher quality than previous

FBP-based approaches—compare, e.g., Figures 5.3 and 5.6, and see Figure 5.7 and Remarks 5.4.2

and 5.4.3.

In FBP, the Radon transform associated with the PET scanning process is inverted using a

discretized version of a well-known closed-form expression [44, 8, 7, 6]. In detail, PET reconstruction

results from inversion of the Radon transform

f̂(ρ, θ) =

∫ ∞
−∞

F (τ, ρ, θ)dτ, (5.1)

where, letting f(x1, x2) denote the density of the scanned object as a function of Cartesian coordi-

nates x1, x2, the function F is given by

F (τ, ρ, θ) ≡ f(τ cos θ − ρ sin θ, τ sin θ + ρ cos θ),
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Figure 5.1: Variables and geometry associated with the Radon Transform.

together with the change of variables

ρ = x2 cos θ − x1 sin θ,

τ = x2 sin θ + x1 cos θ;

see Figure 5.1.

Writing ∂xi = ∂
∂xi

, the inverse Radon transform, in turn, is given by the closed-form expression

f(x1, x2) =
1

4iπ2
(∂x1

− i∂x2
)

∫ 2π

0

eiθh(ρ, θ)dθ, (5.2)

where, using the symbol −
∫

to denote principal value integrals,

h(ρ, θ) = −
∫ ∞
−∞

f̂(ρ′, θ)

ρ′ − ρ
dρ′ (5.3)

denotes the Hilbert transform of the function f̂(ρ, θ). Using the relations

∂x1 − i∂x2 = − sin θ∂ρ − i cos θ∂ρ = −ie−iθ∂ρ

and taking into account the symmetry of the PET geometry, equation (5.2) becomes

f(x1, x2) = − 1

2π2

∫ π

0

∂ρh(ρ, θ)dθ. (5.4)

Typically, numerical implementations of the FBP algorithm are based on substitution of a Fourier

approximation of the function f̂ (that can be obtained from the discrete approximate values gener-
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ated by the scanning procedure) in the inversion formulae (5.3)–(5.4). The fundamental challenge

inherent in such approaches relates to the ill-posed character of the Radon-transform inversion: a

small perturbation of the Radon transform f̂ , such as those arising from measurement noise, can

cause large errors on the reconstructed image [7]. The approach presented in this chapter remedies

these difficulties and gives rise to reconstructions of high quality, even in the presence of high levels

of noise.

This chapter is organized as follows: in Section 5.2, after a brief description of the standard FBP

algorithm, we introduce our modified FBP methodology—which, on the basis of an appropriate

averaging scheme, moderates the noise-magnifying character of the FBP procedure. Our use of

Fejér means and our overall recommended method, the combined Fejér-mFBP algorithm, are then

described in Section 5.3. Finally, the qualities of our algorithm are demonstrated in Section 5.4.

5.2 Modified Filtered Back-Projection Algorithms

The basic elements of the FBP algorithm are described easily: using the Fourier transform, the

Hilbert transform can be expressed in the form

h(ρ, θ) =
1

2i

∫ ∞
−∞

Fρ→ω{f̂(ρ, θ)} sgn(ω)eiωρ dω, (5.5)

where Fρ→ω{f̂(ρ, θ)} is the Fourier transform of f̂(ρ, θ) with respect to ρ. Differentiating (5.5) with

respect to ρ yields

∂ρh(ρ, θ) =
1

2

∫ ∞
−∞

Fρ→ω{f̂(ρ, θ)} ω sgn(ω)eiωρ dω (5.6)

so that, after substitution into (5.4), we obtain

f(x1, x2) = − 1

4π2

∫ π

0

∫ ∞
−∞

Fρ→ω{f̂(ρ, θ)} ω sgn(ω)eiωρ dω dθ. (5.7)

The FBP algorithm is a direct numerical implementation of this expression based on use of the Fast

Fourier Transform (FFT). Recently, use of other algorithms for evaluation of the Hilbert transform in

equation (5.4) (that employ Chebyshev expansions or Spline representations of f̂ instead of Fourier

approximations), have given rise to new implementations [21, 22] of the FBP algorithm. In the

absence of noise, these algorithms are capable of producing accurate reconstructions for realistic

phantoms such as the Shepp-Logan phantom (see Figure 5.2(a)).

In the remainder of this section we present a different approach to the evaluation of the Hilbert

transform derivative ∂ρh. Based on approximation of the Radon transform by Fourier series in

conjunction with the use of an appropriate averaging procedure, this approach gives rise, in fact,

to a new variant of the FBP method, which we henceforth refer to as the mFBP algorithm. While
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in itself a meaningful improvement over unfiltered FBP approaches, the mFBP algorithm can be

enhanced further by incorporating Fejér summation; see Section 5.3. As shown in Section 5.4, even

in presence of noise, the overall averaged Fejér-mFBP method gives rise to high-quality imaging.

To introduce the mFBP algorithm for evaluation of the derivative of the Hilbert transform,

consider a function f(x1, x2) which vanishes outside a certain circle of radius p, and expand the

function f̂ = f̂(ρ, θ) (which, clearly, vanishes for |ρ| > p for all angles θ) in a Fourier series in the

variable ρ on the interval [−T2 ,
T
2 ] for some T > 2p. In other words, write

f̂(ρ, θ) =
1

2
a0(θ) +

∞∑
k=1

ak(θ) cos

(
2π

T
kρ

)
+

∞∑
k=1

bk(θ) sin

(
2π

T
kρ

)
, (5.8)

where the Fourier coefficients are given by

ak(θ) =
1

T

∫ T
2

−T2
f̂(t, θ) cos

(
2π

T
kt

)
dt =

1

T

∫ p

−p
f̂(t, θ) cos

(
2π

T
kt

)
dt,

bk(θ) =
1

T

∫ T
2

−T2
f̂(t, θ) sin

(
2π

T
kt

)
dt =

1

T

∫ p

−p
f̂(t, θ) sin

(
2π

T
kt

)
dt.

(5.9)

From (5.3) and (5.8) we have

∂ρh(ρ, θ) = ∂ρ

∫ ∞
−∞

f̂(ρ′, θ)

ρ′ − ρ
dρ′ = ∂ρ

∫ T
2

−T2

f̂(ρ′, θ)

ρ′ − ρ
dρ′

= −1

2
a0

T(
T
2

)2 − ρ2
+

∞∑
k=1

akCT (ρ, k) +

∞∑
k=1

bkST (ρ, k), (5.10)

where

CT (ρ, k) = ∂ρ

∫ T
2

−T2

1

ρ′ − ρ
cos

(
2π

T
kρ′
)
dρ′ and,

ST (ρ, k) = ∂ρ

∫ T
2

−T2

1

ρ′ − ρ
sin

(
2π

T
kρ′
)
dρ′.

Now, in view of the well-known expressions for the Hilbert transforms of cosine and sine [32], we

have

∂ρ

∫ ∞
−∞

1

ρ′ − ρ
cos

(
2π

T
kρ′
)
dρ′ = −2π2 k

T
cos

(
2kπρ

T

)
,

∂ρ

∫ ∞
−∞

1

ρ′ − ρ
sin

(
2π

T
kρ′
)
dρ′ = −2π2 k

T
sin

(
2kπρ

T

)
.

(5.11)

As shown in Appendix B, the approximations

CT (ρ, k) ≈ −2π2 k

T
cos

(
2kπρ

T

)
,

ST (ρ, k) ≈ −2π2 k

T
sin

(
2kπρ

T

) (5.12)
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(which arise from consideration of equation (5.11)) can be used without any noticeable impact in

the quality of image reconstructions. Such a substitution is highly advantageous: it eliminates the

need to evaluate CT and ST numerically, and it leads to the new expression

∂ρh(ρ, θ) ≈ 1

2
a0(θ)

T(
T
2

)2 − ρ2
− 2π2

T

∞∑
k=1

k

[
ak(θ) cos

(
2kπρ

T

)
− bk(θ) sin

(
2kπρ

T

)]
, (5.13)

which can be evaluated efficiently by means of FFTs.

Naturally, a reconstruction algorithm is obtained by truncating the infinite sum in (5.13) to a

certain number Nc of Fourier modes. The choice of Nc has a tremendous impact on the quality of

the reconstructed image, especially in the presence of noise. The numerical evaluation of the infinite

sum in (5.13) must therefore be handled carefully: an inappropriately large value of Nc gives rise

to deterioration caused by the noise magnification arising from the factors of k in equation (5.13),

while an inadequately small value of Nc prevents resolution of key features (such as edges) of the

original image.

To address these issues effectively, assuming that for each θ the Radon transform is given at

points ρi = ρ0 + ih for i = 0, ..., Nρ − 1, we seek to avoid noise magnification by using a number

Nc < Nρ of Fourier modes while still employing all the information available in the Nρ values of

the Radon transform for each value of θ. Thus, taking Nc to be an integer divisor of Nρ and

arranging the values ρj into several subsets Si = {ρij = ρi + jhNρ/Nc : j = 0 . . . Nc − 1} of size

Nc (i = 1, ..., Nρ/Nc), we compute Nρ/Nc sequences (aik, b
i
k), k = 1, . . . , Nc, of approximate Fourier

coefficients of f̂(ρ, θ) by means of FFTs—one for each set Ri. The sum (5.13) (and, hence, ∂ρh(ρ, θ))

is then obtained for any given value of ρ by averaging the approximate values of this sum resulting

from the various groups Si.

Our mFBP algorithm thus evaluates ∂ρh by means of the approximate expression

∂ρh(ρ, θ) ≈ Nc
Nρ

Nρ/Nc∑
i=1

{
1

2
ai0(θ)

T(
T
2

)2 − ρ2
− 2π2

T

Nc∑
k=1

k

[
aik(θ) cos

(
2kπρ

T

)
− bik(θ) sin

(
2kπρ

T

)]}
.

(5.14)

Remark 5.2.1 Because the approximation (5.14) results from linear operations on the coefficients

(aik, b
i
k), the above averaging procedure can instead be applied directly to these sequences, or equiv-

alently, as it is checked easily, by computing for each θ all Nρ pairs of Fourier coefficients (ak, bk)

via a single FFT over the complete set ρj , j = 0, ..., Nρ − 1, and simply truncating the sum (5.13)

after Nc terms: the averaged result is thus given by

∂ρh(ρ, θ) ≈ 1

2
a0(θ)

T(
T
2

)2 − ρ2
− 2π2

T

Nc∑
k=1

k

[
ak(θ) cos

(
2kπρ

T

)
− bk(θ) sin

(
2kπρ

T

)]
. (5.15)
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As it eliminates the need to compute multiple truncated sums, this method is somewhat preferable

for simplicity.

The mFBP algorithm is now obtained from 1) Evaluation of ∂ρh(ρ, θ) through equation (5.14) in

conjunction with the above averaging/truncation scheme, and 2) Numerical integration of ∂ρh(ρ, θ)

as in (5.4) via the trapezoidal rule. A description of an interpolation procedure that gives rise to an

efficient implementation of this algorithm is presented in Remark 5.3.1.

Remark 5.2.2 Note that the restriction T > 2p on the period T of the Fourier series allows us to

avoid singularities in the first terms of equations (5.10) and (5.13)—since the range of ρ values is

restricted by the inequality |ρ| < p. Our numerical tests indicate that the value T = 4p results in

higher visual accuracy than smaller values of this parameter; in all the reconstructions presented in

this text the value T = 4p was thus used.

Remark 5.2.3 The similarities between the classical FBP and the present mFBP algorithm are

apparent from comparison of equations (5.6) and (5.13): note the multiplication of the Fourier

modes by the summation index in equation (5.13) and the corresponding application of the ramp

filter ω sgn(ω) in equation (5.6). By using a Fourier series instead of a Fourier transform, however,

the mFBP algorithm takes into account the finite support of the function f̂(ρ, θ). This function can

thus be approximated in a bounded set by a smaller number of frequencies than those required to

adequately perform numerically the Fourier transform Fρ→ω{f̂(ρ, θ)} over the extended ω interval

necessary for approximation of the infinite integral in equation (5.6).

As previously mentioned, a high-quality reconstruction method results if the strategy outlined

in this section is used in conjunction with Fejér means, as discussed in Section 5.3.

5.3 Fejér-mFBP Algorithm

A major drawback of the FBP algorithm is the noise enhancement that arises from the factor ω in

the integrand of equation (5.7): any noise existing in the Radon transform f̂ will be significantly

amplified if, as is often the case, large values of ω must be used. While the mFBP algorithm mitigates

the debilitating effects of noise-amplifying high-frequency Fourier modes through implementation of

an appropriate averaging procedure, this algorithm may still fail to reconstruct key features of an

image in the presence of high levels of noise, see, e.g., Figure 5.5(c).

In addition to noise amplification, the use of Fourier series gives rise to one other inherent

difficulty: Fourier series approximations of discontinuous periodic functions converge very poorly—

in addition to slow convergence, they suffer from a notorious ringing effect, the “Gibbs phenomenon”,

around discontinuity points. While the Radon transform f̂ is not itself discontinuous, the original
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image f typically is. Since equations (5.7) and (5.13) effectively present f as Fourier series, direct

application of such formulae yield reconstructions that suffer from the Gibbs phenomenon.

To address the Gibbs phenomenon and noise amplification problems, the Fejér-mFBP approach

introduced in this text approximates the Fourier sums present in the mFBP algorithm by their

corresponding Fejér means, as discussed below. The Fejér approach possesses useful Fourier approx-

imation properties [20, 54, 57] which lead to corresponding gains in image quality. Figures 5.5(c)

and 5.6(c) demonstrate the quality gains that result as the Fejér means procedure is used instead

of direct summation of Fourier series: using the same data and under the same noise level, the

Fejér-mFBP reconstruction shown in Figure 5.6(c) is clearly superior to the mFBP reconstruction

depicted in Figure 5.5(c), for which Fejér means were not used.

Figure 5.7, in turn, compares the performance of our mFBP approach when used in conjunc-

tion with Fejér means vs. some of the best filtering procedures otherwise available. Clearly, the

Fejér-mFBP reconstruction 5.7(f) represents a significant improvement over the results, shown in

Figures 5.7(a) through 5.7(e), of the algorithms resulting as combinations of the mFBP with previous

filtering methodologies, see Section 5.4.2 and, in particular, Remarks 5.4.2 and 5.4.3.

To introduce the Fejér-mFBP algorithm, recall that the N -th order Fejér mean [20] of a function

g is defined, quite simply, as the average of the first N partial sums of the Fourier series of g:

σN (g)(x) =
1

N

N∑
k=0

Sk(g)(x),

where

Sk(g) =

k∑
j=0

ake
2πijx/T .

The beneficial effect of the Fejér averaging procedure can be appreciated easily by considering the

associated Dirichlet and Fejér kernels. As is known, the N -th partial sum of the Fourier series of a

function g can be represented as the convolution of g with the Dirichlet kernel

DN (x) =
sin
((
N − 1

2

)
x
)

sin
(
x
2

) .

The Fejér means σN of g, in turn, is given by convolution with the Fejér kernel FN :

σN (g)(x) = FN ∗ g , where

FN (x) =
1

N

sin2
(
N x

2

)
sin2

(
x
2

) .

We see that, while the Dirichlet kernel takes on both negative and positive values, making conver-

gence of the series dependent on subtle cancellations that only occur for smooth functions (and do
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not occur for scanning errors, that are typically not smooth), the Fejér kernel takes on only positive

values. Use of Fejér means thus significantly reduces cancellation errors, and therefore, the impact

of noise and the Gibbs’ phenomenon on reconstructed functions and images.

Using a Fejér series of orderNc in conjunction with the averaging scheme introduced in Section 5.2

(Remark 5.2.1 and preceding paragraphs) we obtain the approximation

∂ρh(ρ, θ) ≈ Nc
Nρ

Nρ/Nc∑
i=1

{
1

2
ai0(θ)

T(
T
2

)2 − ρ2
− 2π2

T

Nc∑
k=1

k
Nc − k
Nc

[
aik(θ) cos

(
2kπρ

T

)
− bik(θ) sin

(
2kπρ

T

)]}
.

The Fejér-mFBP algorithm results from an efficient (FFT-based) numerical implementation of this

expression in conjunction with equation (5.4). As discussed in Remark 5.2.1, however, the equivalent

truncated sum

∂ρh(ρ, θ) ≈ 1

2
a0(θ)

T(
T
2

)2 − ρ2
− 2π2

T

Nc−1∑
k=1

k
Nc − k
Nc

[
ak(θ) cos

(
2kπρ

T

)
− bk(θ) sin

(
2kπρ

T

)]
(5.16)

with coefficients ak and bk computed using all Nρ values of f̂(ρ, θ) for each θ is used in numerical

implementation of the Fejér-mFBP algorithm.

Remark 5.3.1 for computational efficiency our mFBP and Fejér-mFBP algorithms make use of an

interpolation scheme. Indeed, in order to produce the derivative of the Hilbert transform (5.15) for

a given angle θ and each value ρ = x2 cos θ − x1 sin θ required for various pixel coordinates (x1, x2)

(see equation (5.4)), our algorithms first evaluate the quantity ∂ρh(ρ, θ) for values of ρ in a fixed

set R = {ri = −1.5 + 3i/(P − 1) : i = 0, . . . , P − 1}—from which all needed values of ∂ρh(ρ, θ) can

be obtained by interpolation. (Here we are working under the assumption that the image is to be

obtained at points (x1, x2) within the unit square, so that p must be ≥
√

2—and, thus, larger than√
x2

1 + x2
2 for all points (x1, x2) in the image. In our definition above of the set R we have assumed

p = 1.5.) The details of the interpolation procedure are as follows: taking into account the fact that

the θ-integration in equation (5.4) is to be performed by means of an application of the trapezoidal

rule based on the set Θ = {θj = πj/(Nθ − 1) : j = 0, . . . , Nθ − 1} (which we chose to coincide with

the set of angles θ at which values of the Radon transform are given), for each θj ∈ Θ our algorithms

evaluate ∂ρh(ri, θj) for all ri ∈ R and then approximate the values ∂ρh(x2 cos θj − x1 sin θj , θj)

through nearest-neighbor linear interpolation in ρ from the set R. In this manner, the contributions

to the trapezoidal-rule approximations to the θ-integrals (5.4) for all needed values of x1 and x2

can be obtained at a reduced computational cost. In all the numerical examples shown in what

follows we used the value P = 3073 which, at the same time provides adequate resolution for the

interpolation procedure in the interval −p ≤ ρ ≤ p, and it leads to efficient evaluation of (5.15)

and (5.16)—since, after the needed zero-padding to the periodicity interval −T/2 ≤ ρ ≤ T/2, this
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value of P gives rise to FFTs of size equal to a power of 2: (3073− 1)T/(rP−1 − r0) = 4096 = 212.

In summary, the Fejér-mFBP algorithm proceeds as follows:

1. For each θ ∈ Θ = {θj = πj/(Nθ − 1) : j = 0, . . . , Nθ − 1} use FFTs to produce approximate

values of the Fourier coefficients ak and bk in equation (5.9) using the N available values of

the Radon transform f̂ :

ak(θ) =
1

T

Nρ∑
i=0

f̂(ρi, θ) cos

(
2kπρi
T

)
, bk(θ) =

1

T

Nρ∑
i=0

f̂(ρi, θ) sin

(
2kπρi
T

)
.

2. Selecting an appropriate value of Nc (see Section 5.2) for each θj ∈ Θ use FFTs to evaluate

the right-hand side of equation (5.16) (which provides an approximation of ∂ρh(ρ, θ)) at the

values R = {ri = −1.5 + 3i/(P − 1) : i = 0, . . . , P − 1}, as described in Remark 5.3.1.

3. For every pixel point (x1, x2), use nearest-neighbor linear interpolation from the set R to

obtain approximate values of ∂ρh(x2 cos θj − x1 sin θj , θj) for each θj ∈ Θ, and include the

corresponding contribution to the trapezoidal rule approximation of the integral (5.4).

The performance of our algorithm, including comparisons with results produced by various other

approaches, is demonstrated in Section 5.4.

5.4 Numerical Tests and Results

We present numerical tests for the 500× 500 pixel Shepp-Logan phantom depicted in Figure 5.2(a).

Unless stated otherwise, the reconstructed images were generated by means of C++ implementations

of the mFBP and Fejér-mFBP algorithms. The computing times required by our algorithms are not

higher than those required by the standard FBP methods: all of the algorithms presented in this

text require computing times of approximately 3.6 seconds to reconstruct 500× 500 pixel images on

a 1.6GHz Intel Core i7 processor.

The Shepp-Logan phantom is a well-known model of a head section constructed from the sum-

mation of different sized ellipses of various density values:

f(x1, x2) = C(1, x1, x2, .69, .92, 0, 0, 0) + C(−.98, x1, x2, .6624, .9740, 0,−.0184, 0)

+ C(−.02, x1, x2, .1100, .3100, .22, 0,−π/10) + C(−.02, x1, x2, .1600, .4100,−.22, 0, π/10)

+ C(.01, x1, x2, .2100, .2500, 0, .35, 0) + C(.01, x1, x2, .0460, .0460, 0, .1, 0)

+ C(.01, x1, x2, .0460, .0460, 0,−.1, 0) + C(.01, x1, x2, .0460, .0230,−.08,−.605, 0)

+ C(.01, x1, x2, .0230, .0230, 0,−.606, 0) + C(.01, x1, x2, .0230, .0460, .06,−.605, 0),
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(a) (b) (c)

Figure 5.2: The original 500 × 500 pixel Shepp-Logan phantom (a), and noiseless-data reconstruc-
tions (b) and (c) resulting from the averaged mFBP and averaged Fejér-mFBP algorithms, respec-
tively. Both reconstructions were obtained using the parameter values Nθ = 1422, Nρ = 711, and
Nc = 237.

where C(w, x1, x2, a, b, x
0
1, x

0
2, φ) takes on the value w inside the ellipse of horizontal radius a and

vertical radius b, centered at the point (x0
1, x

0
2), and rotated by the angle φ, and zero elsewhere. The

data function f̂(ρ, θ) was obtained using the Radon transform (5.1) with Nθ = 1422 and Nρ = 711—

this corresponds to a PET scanner with 1422 detector pairs (tubes). The choice of Nρ = 711 was

made to facilitate comparisons with reconstructions based on MATLAB’s built-in functions ‘radon’

and ‘iradon’: for a given image, the number of detector pairs ρ used by ‘radon’ to generate the

Radon transform (and therefore reconstruct the image from its Radon transform) is determined by

the image size—e.g., the Radon transform of a 500× 500 pixel image is computed by the MATLAB

functions using 711 values of ρ.

While the main goal of this text is to address the effects of noise on the reconstruction process,

it is useful to preface our discussion in these regards by providing an indication of the performance

of the mFBP and Fejér-mFBP algorithms when applied to noiseless data. Figures 5.2(b) and 5.2(c)

thus present (averaged) mFBP and Fejér-mFBP noiseless-data reconstructions of the Shepp-Logan

phantom using with Nc = 237. Comparison with the original phantom, which is displayed in

Figure 5.2(a), shows that both algorithms provide highly accurate noiseless reconstructions: all of

the features of the Shepp-Logan phantom are sharply recovered in both cases.

The performance of our various algorithms in presence of noise is described in what follows. In

brief, our recommended algorithm is the averaged Fejér-mFBP approach: as shown in Figure 5.6,

this algorithm displays an excellent performance even in presence of significant levels of noise. Com-

parisons of variants of this method (including algorithms, discussed in Section 5.4.2, that incorporate

previous filtering methodologies), demonstrate the significant benefits that result from the recom-

mended approach.
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(a) (b) (c)

Figure 5.3: MATLAB’s ‘iradon’ reconstructions of the 500× 500 pixel Shepp-Logan phantom with
Nθ = 1422 and Nρ = 711 for noiseless data (Figure (a)), as well as 10.52% noise (Figure (b)) and
18.38% noise (Figure (c)).

(a) (b) (c)

(d) (e) (f)

Figure 5.4: (a) The original 500× 500 pixel Shepp-Logan phantom and its Fejér-mFBP reconstruc-
tions (b)–(f) in the presence of 10.52% noise, with Nθ = 1422, Nρ = 711, and various values of Nc:
(b) Nc = 237 (c) Nc = 79, (d) Nc = 711, (e) Nc = 237, (f) Nc = 79. Nρ/Nc-fold averaging was
used to produce Figures (e) and (f). The three-fold averaged Fejér-mFBP reconstruction shown in
Figure (e) is clearly superior to those obtained from use of other parameter values.
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(a) (b) (c)

Figure 5.5: mFBP reconstructions of the 500 × 500 pixel Shepp-Logan phantom with Nθ = 1422
and Nρ = 711 for noiseless data (Figure (a)), as well as 10.52% noise (Figure (b)) and 18.38% noise
(Figure (c)).

(a) (b) (c)

Figure 5.6: fejér-mFBP reconstructions of the 500×500 pixel Shepp-Logan phantom with Nθ = 1422
and Nρ = 711 for noiseless data (Figure (a)), as well as 10.52% noise (Figure (b)) and 18.38% noise
(Figure (c)).
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5.4.1 Effects of Noise

As mentioned earlier in this text, owing to high frequency amplification, noise generally has a dra-

matic effect on the quality of the FBP reconstructions. This effect is demonstrated in Figure 5.3,

where the Shepp-Logan phantom is reconstructed by the standard MATLAB FBP algorithm (func-

tion ‘iradon’) without noise (Figure 5.3(a)) and with noise (amounting to 10.52% and 18.38% of the

intensity for Figures 5.3(b) and 5.3(c), respectively, see Remark 5.4.1).

The Fejér-mFBP algorithm introduced in Section 5.3 relies on two main devices to stem the

high-frequency noise-amplification effect inherent in the Radon-transform inversion formula: on

one hand it limits the number Nc of Fourier modes used (while making use of all the information

contained in the data function f̂), and, on the other hand, it uses Fejér summation to neutralize

the ill effects associated with the Gibbs phenomenon. Because the number of Fourier modes Nc has

such an important impact on the reconstruction process (see also Section 5.2), a careful selection of

this parameter must be made. A sample of an extensive set of experiments we performed in these

regards is presented in Figure 5.4—which displays reconstructions of the Shepp-Logan phantom in

the presence of 10.52% noise (see Remark 5.4.1) using the Fejér-mFBP algorithm with various values

of Nc. Considering these and other images we determined that, for noise levels of the order of 10%

to 20%, and for the numbers of detector pairs of the order of those available in present day PET

scanners (we considered Nρ = 711), use of three-fold averaging (Nρ/Nc ∼ 3, or, in the present case,

Nc = 237) leads to arguably optimal reconstructions (compare Figure 5.4(e) to other images in

Figure 5.4). We thus use Nc = 237 with averaging in all following numerical results presented.

In presence of high levels of noise, the mFBP approach ameliorates reconstructions (compare Fig-

ures 5.5(b), 5.5(c) to Figures 5.3(b), 5.3(c)). Clearly, further, the Fejér-mFBP reconstructions with

adequately chosen parameters (e.g., Figures 5.6(b), 5.6(c)) are of significantly higher quality than cor-

responding reconstructions produced by the standard FBP algorithm (such as Figures 5.3(b), 5.3(c)).

The Fejér-mFBP reconstructions also improve upon the mFBP reconstructions, as can be seen by

comparing Figures 5.5(c) and 5.6(c): some loss of information has resulted in both cases but note, for

example, that while some of the smaller, light-grey ellipses (that are present toward the bottom of

the phantom) are not clearly distinguishable in the image reconstructed using the mFBP algorithm

(Figure 5.5(c)), they are clearly visible in the image reconstructed using the Fejér-mFBP algorithm

(Figure 5.6(c)).

Comparisons of the Fejér-mFBP approach with algorithms resulting from other filtering methods

are presented in Section 5.4.2.

Remark 5.4.1 To simulate measurement noise we use the algorithm described in [34]: 1) The

function values f̂(ρ, θ) are first scaled by a constant multiplicative weight until their maximum value

is equal to a prescribed number M ; 2) Each scaled function value S is then replaced by a random
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Comparison of Fejér filtering and previous filtering methodologies (using, in all cases, the
new three-fold averaging approach) for the 500×500 pixel Shepp-Logan phantom with 18.38% noise:
Figures (a) through (f) demonstrate the performance of the basic mFBP algorithm with Nθ = 1422,
Nρ = 711 and Nc = 237 (three-fold averaging), when used in conjunction with: (a) No filtering,
(b) The Shepp-Logan filter (5.17), (c) The cosine filter (5.18), (d) The Hamming window (5.19),
(e) The Hann window (5.20), and (f) The Fejér-based filter introduced in Section 5.3. In particular,
the image (f) appears to be sharper than the best of its counterparts—which is, arguably, Figure (b):
notice, e.g., the parallel array of three ellipses that is more sharply resolved in Figure (f) than it is
in any of the other images under consideration. Compare also against Figure 5.3(c).

number generated from a Poisson distribution with mean equal to S; and finally 3) The noisy data is

divided by the original weight. The amount of noise present in a given Radon transform is evaluated

as 100 times the quotient of the L2 norm of the difference of the given (noisy) data and the original

data by the L2 norm of the original data. For the Shepp-Logan phantom, the choices M = 50 and

M = 150 yield data functions with 18.38% and 10.52% noise respectively.

5.4.2 Fejér-mFBP and Classical Filtering

The difficulties arising from the classical FBP reconstruction algorithm are widely recognized and

have motivated development of a range of filtering techniques [20]. We note that any such filter-

ing method can be used in conjunction with our mFBP and Fejér-mFBP methods with possible

additional benefits. To explore this possibility, in Figure 5.7 we present reconstructions of the
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(a) (b) (c)

Figure 5.8: Shepp-Logan-mFBP and Fejér-mFBP vs. Shepp-Logan-filtered FBP for the 500 × 500
pixel Shepp-Logan phantom with 18.38% noise. Using the parameters Nθ = 1422 and Nρ = 711, the
reconstructions shown in Figures (a)-(c) were obtained from (a) MATLAB’s ‘iradon’ function applied
with MATLAB’s Shepp-Logan filter option, (b) The mFBP algorithm with Nc = 237 (three-fold
averaging) in conjunction with our implementation of the Shepp-Logan filter, and (c) The Fejér-
mFBP algorithm with Nc = 237 (three-fold averaging).

Shepp-Logan phantom produced, in presence of 18.38% noise, by means of the mFBP algorithm in

conjunction with various filtering methods—including the Fejér procedure introduced in Section 5.3

(Figure 5.7(f)) as well as several standard filters [31] (Figures 5.7(a)–5.7(e)): the Shepp-Logan filter,

wk = sinc

(
2k

N− 1

)
, (5.17)

the cosine filter,

wk = cos

(
πk

(N − 1)
− π

2
+ 1

)
, (5.18)

the Hamming window,

wk = 0.54− 0.46 ∗ cos

(
2πk

N − 1

)
, (5.19)

and the Hann window,

wk =
1

2

(
1 + cos

(
2πk

N − 1

))
. (5.20)

Note that, while all the reconstructions shown in Figure 5.7 display the prominent features of the

Shepp-Logan phantom, the image produced by the Fejér-mFBP algorithm is superior to those pro-

duced by the alternatively filtered mFBP algorithms: the Fejér-mFBP image displays the combined

benefits of accuracy and sharpness, and it retains the high contrast of the original phantom.

Remark 5.4.2 Amongst the reconstructions displayed in Figure 5.7, the one that comes closest

in quality to that obtained by means of the Fejér-mFBP combination is the one resulting from

the Shepp-Logan-mFBP combination. Notice that the Fejér-mFBP image 5.7(f) does represent an

improvement over the Shepp-Logan-mFBP image 5.7(b): for example, the upper-right portion of the
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large circle appears truncated in the Shepp-Logan-mFBP image, while it is intact in the Fejér-mFBP

image. Further, in the mFBP/Shepp-Logan image the lower half of the uppermost small circle is

not visible, and the parallel array of three ellipses is not sharply resolved. In comparison, all of these

features are crisply reconstructed in the Fejér-mFBP image 5.7(f).

Remark 5.4.3 In view of the quality, discussed in Remark 5.4.2, of the Shepp-Logan-mFBP re-

construction, the question arises as to whether the classical FBP algorithm combined with the

Shepp-Logan filter would give rise to reconstructions of similar quality. To answer this question we

performed an additional series of tests, some of whose results are displayed in Figure 5.8. It is clear

from these images that the mFBP strategy (and not just the filters used) has a significant impact

on the quality of the reconstructions presented in this text.
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Chapter 6

Conclusions

In this thesis we presented three numerical algorithms designed to overcome the demands of the chal-

lenging computational problems inherent in the development of new medical treatment techniques.

First, we considered the challenging VMT convection-diffusion problem. Through a combination

of exponential meshing, the fast ADI method, and an efficient time-stepping scheme used in con-

junction with a novel “fluid-freezing” methodology, the three VMT solvers presented in this thesis

effectively resolve flow of magnetically driven therapeutic drug particles through a convecting blood

vessel and diffusion into surrounding tissues. The VMT solvers provide steady state solutions for

simulations with realistic blood vessel parameters, thus allowing for detailed study of the complex

interplay between the convective and diffusive forces present in the VMT model.

Next, we considered the problem of magnetically enhanced diffusion. In Chapter 4, we presented

a variety of numerical tools based on explicit FC-based solvers and the implicit FC-AD method used

in conjunction with effective domain meshing techiniques to enable accurate and efficient capture

of solution behaviors. Appropriate combinations of these techniques provide rapid and accurate

solution of the control setup proposed in [51], in addition to enabling the development of more

sophisticated control schemes.

Based on consideration and adequate treatment of fine spectral properties of discontinuous func-

tions and numerical errors, finally, we introduced the new Fejér-mFBP algorithm for inversion of

PET-scan data. This algorithm enables crisp PET reconstructions, even in presence of consider-

able amounts of noise, at a computing cost comparable to those required by previous lower-quality

FBP-based methods.
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Appendix A

Numerical Computation of
Magnetic Fields

The basic laws of magnetostatics are given by

∇× ~B =
4π

c
~J,

∇ · ~B = 0,

~B = µ
4π

c
~H,

where µ is the magnetic permeability and ~J is the current density of a given magnet (see [30] for

further details). It is well-known that the magnetic field ~B and, in turn, ~H, may be obtained as the

curl of some vector field ~A(~x), the vector potential,

~B(~x) = ∇× ~A(~x),

where the general form of the vector potential is given by

~A(~x) =
µ

c

∫ ~J(~x)

|~x− ~x′|
d3x′.

In order to ensure relevance in our comparisons, we model the electromagnets as in [51]—that is, by

a series of infinite wires along the z-axis. For a wire of finite length 2W along the z-axis, the vector

potential ~A(~x) is given by

Ax(x) = 0, Ay(x) = 0, Az(x) = ln

[√
x2 + y2 + (z −W )2 −W√
x2 + y2 + (z +W )2 +W

]
. (A.1)
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Letting z = 0, as is the case for the control setup (4.1), and taking the curl of ~A(~x), yields the

magnetic field components

Hx(x, y, z) =
1

4π

2WJy

(x2 + y2)
√
x2 + y2 +W 2

Hy(x, y, z) = − 1

4π

2WJx

(x2 + y2)
√
x2 + y2 +W 2

Hz(x, y, z) = 0.

(A.2)

Taking the limit W →∞, we have the simplified components

Hx(x, y) =
1

4π

2yJ

x2 + y2
,

Hy(x, y) = − 1

4π

2xJ

x2 + y2
.

(A.3)

An approximation of the magnetic field components for an electromagnet with current density Ji

and centered at the point (xi, yi) may then be obtained from translation and integration of the

components in (A.3) as follows:

Hi
x(x, y) =

1

4π

∫ L/2

−L/2

∫ ro

ri

2(y − yi − r)Ji
(x− xi − l)2 + (y − yi − r)2

dr dl,

− 1

4π

∫ L/2

−L/2

∫ −ri
−ro

2(y − yi − r)Ji
(x− xi − l)2 + (y − yi − r)2

dr dl,

Hi
y(x, y) = − 1

4π

∫ L/2

−L/2

∫ ro

ri

2(x− xi − l)Ji
(x− xi − l)2 + (y − yi − r)2

dr dl,

+
1

4π

∫ L/2

−L/2

∫ −ri
−ro

2(x− xi − l)Ji
(x− xi − l)2 + (y − yi − r)2

dr dl

,

(A.4)

where L is the length of the magnet, and ri and ro are the inner and outer radii, respectively.

Computation of the norm of the full magnetic field arises from straightforward summation of the

magnetic field components for each magnet:

| ~H(x, y)|2 =

(
8∑
i=1

Hi
x(x, y)

)2

+

(
8∑
i=1

Hi
y(x, y)

)2

.

In the interest of computational efficiency, the integrals (A.4) and their corresponding first and

second derivatives in x and y may be precomputed and stored ahead of time. The gradient and

Laplacian of the norm of the magnetic field arising from the desired combination of currents, and as

required in the solution of (4.1), may then be efficiently obtained as appropriate linear combinations

of the precomputed integrals and derivatives.
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Appendix B

Hilbert Transform Approximations

As mentioned in Section 5.2, the functions CT and ST can be adequately approximated by corre-

sponding sinusoids; see equation (5.12). Use of these approximations, which generally do not affect

the quality of reconstructed images, lead to reductions in computing costs—the image reconstruction

algorithm can be based on FFTs and thus be significantly accelerated.

To evaluate the errors implicit in the approximations (5.12), first note that, using the well-known

sine and cosine integrals [1]

Si(x) =

∫ x

0

sin(t)

t
dt,

Ci(x) = −
∫ ∞
x

cos(t)

t
dt,

the derivatives of the finite Hilbert transforms (5.11) are given by

CT (ρ, k) = − T (−1)k

T 2 − 4x2
+

2πk

T

(
sin

(
2πkx

T

)
γT (ρ, k)− cos

(
2πkx

T

)
σT (ρ, k)

)
, and

ST (ρ, k) =
2πk

T

(
− cos

(
2πkx

T

)
γT (ρ, k) + sin

(
2πkx

T

)
σT (ρ, k)

)
,

where

γT (ρ, k) = Ci

(
(−T + 2ρ)π

T

)
− Ci

(
(T − 2ρ)π

T

)
,

σT (ρ, k) = Si

(
(−T + 2ρ)π

T

)
+ Si

(
(T − 2ρ)π

T

)
.

The approximation errors

EC(ρ, k) = ∂ρ

∫ ∞
−∞

1

ρ′ − ρ
cos

(
2π

T
kρ′
)
dρ′ − CT (ρ, k), and

ES(ρ, k) = ∂ρ

∫ ∞
−∞

1

ρ′ − ρ
sin

(
2π

T
kρ′
)
dρ′ − ST (ρ, k),
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Figure B.1: The true values (solid lines) of CT (ρ, k) for k = 1, 2, 3 and 4 (Figures (i)–(iv)) and
ST (ρ, k) for k = 1, 2, 3 and 4 (Figures (v)–(viii)) plotted with their corresponding approximations
(circles) computed via (5.12) using T = 4.

which are clearly given by

EC(ρ, k) = ∂ρ

∫
|ρ′|≥T2

1

ρ′ − ρ
cos

(
2π

T
kρ′
)
dρ′, and

ES(ρ, k) = ∂ρ

∫
|ρ′|≥T2

1

ρ′ − ρ
sin

(
2π

T
kρ′
)
dρ,

can be estimated through applications of integration by parts: we obtain

|EC(ρ, k)| =

∣∣∣∣∣
(

T

2πk

)2

∂ρ

(
(−1)k

(
1

(T/2− ρ)2
+

1

(T/2 + ρ)2

)
+

∫
|ρ′|≥T2

2

(ρ′ − ρ)3
cos

(
2πk

T
ρ′
)
dρ′

)∣∣∣∣∣
≤ 4

(
T

2πk

)2 ∣∣∣∣ 1

(T/2− ρ)3
− 1

(T/2 + ρ)3

∣∣∣∣ = O

(
1

k2

)
and

|ES(ρ, k)| =

∣∣∣∣∣
(

T

2πk

)
∂ρ

(
(−1)k

(
1

T/2− ρ
+

1

T/2 + ρ

)
+

∫
|ρ′|≥T2

1

(ρ′ − ρ)2
sin

(
2πk

T
ρ′
)
dρ′

)∣∣∣∣∣
≤ 2

(
T

2πk

) ∣∣∣∣ 1

(T/2− ρ)2
− 1

(T/2 + ρ)2

∣∣∣∣ = O

(
1

k

)
.

Clearly the errors decay as k increases. In fact, the approximations (5.12) are adequately accurate for

all values of k: Figure B.1 compares CT and ST with their corresponding approximations for k = 1,

2, 3 and 4; the approximations for higher values of k are even tighter—as claimed in Section 5.2.
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[40] K. Mattson, M. Svärd, and M. Shoeybi. Stable and accurate schemes for the compressible

Navier-Stokes equations. J. Comput. Phys., 227:2293–2316, 2008.

[41] Y. Morimoto, M. Okumura, K. Sugibayashi, and Y. Kato. Biomedical applications of magnetic

fluids. 2. Preparation and magnetic guidance of magnetic albumin microsphere for site specific

drug delivery in vivo. Journal of Pharmacobio-Dynamics, 4:624631, 1981.



76

[42] A. Nacev, C. Beni, O. Bruno, and B. Shapiro. The behaviors of ferro-magnetic nano-particles

in and around blood vessels under applied magnetic fields. J. Magn. Magn. Mater., 2010.

[43] O. Næss and K. Eckhoff. A modified Fourier Galerkin method for the Poisson and Helmholtz

equations. J. Sci. Comput., 17:529–539, 2002.

[44] F. Natterer. The Mathematics of Computerized Tomography. John Wiley & Sons Inc., 1986.

[45] D.W. Peaceman and H.H. Rachford, Jr. The numerical solution of parabolic and elliptic differ-

ential equations. J. Soc. Ind. Appl. Math, 3:28–41, 1955.

[46] M.E. Phelps. PET: Physics, Implementation, and Scanners. Springer, 2006.

[47] H.E. Potts, R.K. Barrett, and D.A. Diver. Dynamics of freely-suspended drops. Journal of

Physics D: Applied Physics, 34:2626–2636, 2001.

[48] S. Reddy and L. Trefethen. Stability of the method of lines. Numer. Math., 62:235–267, 1992.

[49] A.J. Rosengart, M.D. Kaminski, H.T. Chen, P.L. Caviness, A.D. Ebner, and J.A. Ritter. Mag-

netizable implants and functionalized magnetic carriers: A novel approach for non invasive yet

targeted drug delivery. J. Magn. Magn. Mater., 293:633–638, 2005.

[50] O. Rotariu and N.J.C. Strachan. Modeling magnetic carrier particle targeting in the tumor

microvasculature for cancer treatment. J. Magn. Magn. Mater. - Proceedings of the Fifth Inter-

national Conference on Scientific and Clinical Applications of Magnetic Carriers, 293:639–646,

2005.

[51] B. Shapiro. Towards dynamic control of magnetic fields to focus magnetic carriers to targets

deep inside the body. J. Magn. Magn. Mater., 321:1594–1599, 2009.

[52] L.A. Shepp and Y. Vardi. Maximum Likelihood Reconstruction for Emission Tomography.

IEEE Trans. Med. Imag., 1:113–122, 1982.

[53] C. Simon. Magnetic drug targeting. New paths for the local concentration of drugs for head

and neck cancer. HNO, 53:600–601, 2005.

[54] E.M. Stein and R. Shakarchi. Fourier Analysis: An Introduction. Princeton University Press,

2003.

[55] D.M. Young. Iterative Solutions of Large Linear Systems. Dover, 2003.

[56] G. Zhao and Q. Liu. The unconditionally stable pseudospectral time-domain (PSTD) method.

IEEE Mircow. Wireless Comp. Lett., 13:475–477, 2003.

[57] A. Zygmund. Trigonometric Series. Cambridge University Press, 2003.


