
Modeling and Predicting Object Attention

in Natural Scenes

Thesis by

Merrielle Spain

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011

(Defended May 13, 2011)



ii

c© 2011

Merrielle Spain

All Rights Reserved



iii

To Dad, who encourages questions



iv

Acknowledgements

I thank my thesis adviser Prof. Pietro Perona for years of guidance, support, ideas,

and inspiration. I am fortunate to have worked in his lab, and in the process I have

learned a great deal from him about science and life.

Collaborating with a tenacious researcher, Wolfgang Einhäuser early in my grad-
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Abstract

Humans automatically attend to certain objects in a scene. Better understanding

this process could improve a computer’s ability to parse scene images and convey

information about them to humans. This thesis is arranged in three parts. The first

part explores how important a particular object is in a photograph of a complex

scene. We propose a definition of importance and present two methods for measuring

object importance from human observers. Using this ground truth, we fit a function

for predicting the importance of each object directly from a segmented image; our

function combines many object-related and image-related features. We validate our

importance predictions on a large set of objects and find that the most important

objects may be identified automatically. We find that object position and size are

particularly informative, while a popular measure of saliency is not.

The second part explores the relationship between object naming, eye movements,

and saliency maps. Eye movements correlate with shifts in attention and are thought

to be a consequence of optimal resource allocation for high-level tasks such as visual

recognition. Saliency maps, are often built on the assumption that “early” features

(e.g ., color, contrast, orientation, and motion) as opposed to objects themselves drive

attention. We measure the eye position of humans viewing scenes and then ask them

to recall objects that they saw in each scene. Weighted with recall frequency or

maximum saliency, these objects predict fixations in individual images better than

early saliency, suggesting that early saliency may have an indirect effect on attention,

acting through detected objects.

The third part explores the problem of locating objects in a scene irrespective

of category. We introduce the first benchmark for category-independent object de-
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tection. It is composed of a large public dataset of annotated high-resolution scene

images and suitable metrics for performance evaluation. We demonstrate our bench-

mark by comparing three methods for generalized object detection against a baseline

and an upper bound.
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Chapter 1

Introduction

By summer 2011, Facebook will probably host 100 billion photographs [101]. Cheap

cameras and memory have created an explosion of image data on the internet. But,

how do you find the right image barring manual search? Two obstacles for a computer

to recover the right image are: How does a human query the computer for an image?

How does a computer parse the image contents?

There are straightforward solutions for single-object images. The human queries

with an object category, such as “elephant,” or an instance, such as “Dumbo.” The

computer performs category-level [43,44,70,149] or instance-level [79,80,142] recogni-

tion on images and returns likely candidates. However, most photos contain multiple

objects. Recently, the problem of simultaneously detecting, localizing, and naming

multiple objects in an image has become an active area of research [32, 116]. It is

likely that we will eventually have software that can automatically list all the objects

in an image. However, a laundry list containing dozens of object names might not be

ideal for query. Certain objects might be more descriptive of the image than others.

Indeed, change blindness experiments [111] suggest that after looking at pictures of

complex natural scenes, we retain information about only the overall gist of the scene

and a handful of objects. The experiments show that we generally miss differences

between two versions of the same picture, where differences have been introduced by

photo editing, if changes are restricted to objects inessential to the overall meaning.

This is related to a basic feature of human vision. We move our eyes about three times

a second in a pattern of pause and rapid movement: fixation and saccade. Instead
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of an accident of evolution, this is believed to be a compromise between high visual

acuity and rapid access to a large field of view. Visual acuity over our entire visual

field equivalent to the fovea, the small central region of the retina, might require a

ten-ton brain [39]. A sparse sampling suffices because the information content of the

visual world is not uniform and humans are talented at sampling it. How do people

know that a location is informative before they look at there? Different viewers tend

to fixate similar regions of a given scene, although the sequence of fixations is highly

variable [45,85].

If you have viewed something “out of the corner of your eye,” then you know that

there is more to what you are looking at than where your eyes are pointed. The orig-

inal notion was that attention “implies withdrawal from some things in order to deal

effectively with others” [61]. It is generally believed that attention’s main function is

the allocation of processing resources to accomplish complex tasks. The two-process

theory of detection, search, and attention differentiates between automatic detection

and controlled search [119]. For instance, some search tasks are always fast, while ones

that require conjunctions of features slow as the number of distractors increases [137].

If cheap tasks can identify where to attend, then expensive processing can be allocated

effectively.

Pre-motor theory holds that spatial attention results from weaker activation of

the same brain circuitry that drives saccadic eye movements [113]. This suggests that

if an eye movement is made to a particular location, attention will arrive first and

cannot be sent elsewhere. Indeed, the costs and benefits of attentional cueing, or

indicating a search target’s future location, can be eliminated by requiring saccades

to other locations [54].

What guides attention? Although the concept of selective visual attention dates

from the 19th century [61], the factors driving this selection process are still far

from understood. First, what is the role of top-down factors (e.g ., task, observer

idiosyncrasies) as compared with factors that can be inferred from the stimulus?

Second, what is the role of low-level features such as contrast, color, orientation,

flicker, or motion as compared with high-level stimulus structure such as objects or
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gist? We focus on the second question, with eye movements as correlates of attention

[113]. Specifically, we ask whether fixations are driven directly by low-level or early

saliency, or through correlations with high-level scene structure, such as the saliency

of recognized objects. Is attention driven by mechanisms that are earlier than and

independent of recognition, or is attention part of the recognition process itself?

Most attention models are based on a saliency map and a dynamical process for

visiting saliency maxima [58, 67]. Filtering the input image with kernels reminiscent

of early visual mechanisms generates feature maps at various spatial scales. These

are then combined into a single saliency map, which encodes the probability that

an image location will be attended. The saliency map is entirely based on early

features and was originally designed to explain covert attention on simple stimuli.

Saliency maps predict fixations in complex scenes to some extent [97, 99, 104, 127].

Some authors hope that, by progressively refining low-level models, human attention

will eventually be modeled perfectly.

In this view, attention operates independent of object recognition and may be

thought of as guiding scene analysis. This view has recently been challenged. Even

if features of the saliency map, such as luminance-contrast, are good correlates of

fixation [68,83,84,109] several authors have argued that they might not drive attention

causally [9, 22, 129], but contingent on high-level statistics [25]. Rhesus monkeys

preferentially fixate image regions with semantic content instead of noise regions

with the same low-level statistics [63], and it has been suggested that objects, such

as faces, may drive attention in a direct fashion [10, 51, 52], although there is some

contrary evidence [141]. Along similar lines, the perceptual experience instead of

the stimulus predominately influences eye movement behavior when viewing art that

has ambiguous experiences [128]. Therefore, even without an explicitly formulated

task, eye movements are largely influenced by high-level scene properties and scene

interpretation.

The fact that the specifics of the task influence eye motions had been noticed as

early as Buswell [8]. In his seminal study, Yarbus used a variety of tasks, including

abstract interpretations, such as the judgment of social status [148]. In these cases,
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the task clearly dominates the fixation patterns, as it does in complex activities of

daily living [69]. Recent studies suggest that during visual search, early saliency has

little impact on fixation patterns [26, 48, 139], and the effect of a stimulus feature

on fixation depends on its relation to the search target [102]. Models that modulate

low-level channels attempt a mechanistic explanation for such top-down regulation

[92,107,138].

Aside from task and stimulus-features, search in natural scenes is influenced by

prior knowledge on the typical spatial location of the search target, as well as by

contextual information. Modulating saliency map models with such priors improves

their fixation prediction [135]. Such spatial priors may influence fixation behavior

beyond search. The central bias of observers, the tendency for observes to fixate near

the center of natural scene photographs, might reflect the expectation of interesting

objects in this region [129]. In this view, spatial priors are believed to be a bottom-up

function of scene statistics learned from experience and applied in a task-dependent

top-down manner.

The attentional bottleneck view is that attention precedes recognition in the pro-

cessing pipeline [91]. When different information is presented to each ear simultane-

ously and an observer attends to one, most words in the unattended ear cannot be

recognized [6]. However, the fact that important stimuli, such as one’s name, can be

recognized [90] conflicts with the attentional bottleneck view. The precise relation of

attention and recognition, is largely unresolved.

The extent to which overt, or eye movement associated, attention is needed to

recall an item has been studied extensively. Unexpected items are fixated longer and

recalled better [42]. In brief presentations, change detection requires close fixations

[94]. There is an advantage for detecting changes in items fixated earlier and a

correlation between the time spent fixating an item before the change and change

detection [55]. Consistent with these results, information about an object’s position is

accumulated over fixations, but there is some evidence that information about object

identity is not [130]. Besides, better memory for fixated items, it has been argued that

changed items are also fixated earlier after the change [96]. This has been challenged
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with experiments embedding objects in a complex background, which find change

detection restricted to a small region around the current fixation [50]. Although

the details of the relation between fixation and memorization seem dependent on

experimental paradigms, all these data suggest that there is some relation between

the allocation of overt attention and the ability to recall certain properties of an item.

Attention-free feed-forward systems perform well on category recognition tasks

when the scene is pre-segmented into regions containing a single object category

[20,34,38,72,89,112,118,145]. However, real-world objects generally occur in clutter

not isolation, and may cover as little as 0.1% of the image area [117]. In clutter,

attention may be a necessary preprocessing step for recognition [15], for learning

new objects, and for hastening recognition [117]. In summary, while psychophysical

evidence suggests that spatial attention is unnecessary for recognizing isolated objects

or the gist of isolated scenes, attention most likely supports recognition in spatially

and temporally cluttered settings. The interaction of attention and recognition in

natural conditions is thus of interest for human and machine vision.

The literature suggests that saliency maps based on early visual features have

some power in predicting eye movements and attention in natural complex scenes.

This limit is likely intrinsic, and high-level visual properties of a scene will have to

be considered to see a significant predictive improvement. While clearly objects such

as faces have the power to draw attention, we are still far from a quantitative model

that predicts eye movements from the configuration and visual properties of objects

in a scene.

Eye movements indicate attention to locations, not objects. Moreover, there is

evidence for separate object-based and space-based attention systems. Space-based

attention is evidenced by negative priming for an object occupying the same space

as the attended object in overlapping line drawings [134]. Object-based attention

is supported by better performance and faster reaction times for moving attention

within an object than the same distance across objects [17, 19]. Hence, fixation

provides information about space-based attention but not object-based attention,

especially when objects are crowded or hierarchical.



6

As we are interested in the high-level object-based attention, we wish to develop

an object-specific correlate of eye motions. We consider object naming to be a way

of discovering what observers are attending to. Dorsal simultanagnosiacs can only

attend to one object at a time, and correspondingly can only see or recognize one

object at a time, even when the objects occupy the same space [33]. While it is

possible to detect animals and vehicles without attention [75], in the same paradigm

subjects fail to identify (or localize) targets that they had correctly detected [30].

Also, several phenomena indicate that attention has a role in recognition, such as

inattentional blindness [93,122], change blindness [111], repetition blindness [62], and

the attentional blink [21, 30, 108]. In cluttered scenes, viewers must fixate an object

in clutter to recognize it (e.g ., Where’s Waldo?), indicating a need to separate an

object from its surrounds to recognize it [74]. Hence, we consider object naming,

which requires identification, indicative of object-based attention.

We explore the relation between attention and recognition in a natural setting,

with semantically rich natural photographs [120, 121]. This thesis consists of three

parts: First, we explore whether it is possible to identify the important objects in

a given scene automatically and produce a concise list that would facilitate image

search and other applications. To do this we analyze how a large group of viewers

name objects in an image. Given certain observations we model how viewers name

objects, and fit that model to measure object importance. Then, we use this measured

object importance as a ground truth that we predict directly from an image and

manually-segmented objects. This part is based on two published papers [124,125].

Second, we explore which object properties drive attention. We test the hypothesis

that the most meaningful object in an image attracts attention and, with this effect

removed, raw saliency maps have little predictive power. To ensure alertness, while

preserving natural viewing behavior, all observers are asked to aesthetically evaluate

each picture. To investigate the effects of visual search on fixation statistics, half of

the observers search for a verbally defined target object. In both conditions, after

the image disappears and aesthetic evaluation, we ask observers to characterize scenes

with keywords to measure which objects were seen and remembered as significant. For
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both conditions, we assess the mutual relation among three quantities: the locations

our observers fixate, the locations of objects they recall, and the locations of highest

saliency according to the Itti and Koch model [58]. This allows us to compare how well

five quantities predict fixations: raw saliency, object saliency, an optimal combination

of both measures, the mutual prediction of different observers, and general spatial

biases. This part is based on published work with Wolfgang Einhäuser [27].

Third, we ask observers to identify objects with bounding boxes instead of naming.

This creates a new measure of object importance that is instance-specific instead

of category-specific. We combine this bounding box measure of importance with

category-independent object detectors to a create system which can identify bounding

boxes that likely contain important objects. We present the first benchmark for

category-independent object recognition and importance prediction. Figure 1.1 shows

boxes that an idealized category-independent object detector might output. These

bounding boxes are actually an example of the ground truth in our dataset.
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Figure 1.1: Example image annotated with boxed objects.
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Part I

Object Importance
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We face two main challenges: measuring importance, as perceived by viewers, and

automatically predicting the importance of objects in a given image.

Figure 9.3 depicts how these ideas fit together. Chapter 2 describes how we collect

importance information from viewers. Chapter 3 considers the problem of measuring

importance by aggregating data collected from many viewers. Chapter 4 explains how

to predict importance from bottom-up visual properties of an object. We discuss how

subtle manipulation of the human task affects importance in Chapter 4.5. Chapter

4.5 summarizes our main findings.

Measuring ImportanceHuman Annotation

Predicting Importance

1 2 25 .  .  .

f(            ) = 0.4

chair
window

television
ashtray

lamp

0.03
0.08

0.12
0.18

0.42
tv ashtray lamp
lamp lamp table
ashtray television paper
window chair ashtray
bush curtain curtain

Figure 1.2: We wish to predict the importance of an object in a photo. To accomplish
this, we must first produce a ground truth. We do so by combining the opinions of
many viewers (bottom arrow; Chapter 3). From this ground truth we may learn a
function for predicting object importance from image regions (top and right arrows;
Chapter 4).
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Chapter 2

Object Naming

2.1 Human Annotation

Our first step is to discover which objects humans consider important in a given

image. We put off a formal definition of importance to Chapter 3. For the moment

we rely on the intuitive notion and explore ways of identifying which objects people

notice most in a photograph.

2.2 Previous Work

Some previous research explores what people can recognize under extreme circum-

stances. Fei-Fei et al . [36] examine how limited viewing time affects what viewers

report. Torralba et al . [136] investigate which objects people can name with limited

image resolution.

The ESP game, by Ahn and Dabbish [144], presents two players with an image.

Each player types words independently. Their task is to produce a matching word

in the fewest attempts. When the players produce a common word, the game ends,

banning that word from future games. When multiple games are played on the same

image, the resulting words form an ordered list. Intuitively, words associated with

more important objects will tend to come up earlier. However, words are sometimes

adjectives (e.g ., funny), word order is noisy since only two players play together, and

players may develop strategies for reaching consensus quickly, for example naming
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the prevalent color in the image, or typing whatever text may be present.

Elazary and Itti consider the order in which objects are named in LabelMe, a

measure of object interestingness [28, 115]. In LabelMe users name an object and

outline its contour with mouse clicks [115]. A user may annotate any objects in an

image. Results from past users are visible to future users, so an object token can only

be outlined once, producing a single list. This is problematic because, as we shall see

in Chapter 3.6, viewers produce lists with inconsistent object order. Furthermore, the

choice of object is influenced by the ease of outlining the object (e.g ., a window has

a simple contour, while a tree in winter has a complex contour) and by the specific

needs of the annotator, such as collecting a pedestrian database.

2.3 Data Collection

We designed a method for collecting object importance data with two criteria in

mind: first, the data should be collected independently from many human viewers

and second, our annotators should not be motivated by tasks that bias the data.

We collected ordered lists independently from 25 viewers for each image. Through

Amazon Mechanical Turk, U.S. viewers were instructed “Please look carefully at this

image and name 10 objects that you see.” We asked for ten objects so that viewers

wouldn’t just name one or two. Each scene photograph was rescaled to a 600 pixel

diagonal. Most viewers labeled fewer than 20 images, while a handful labeled all of

them. We found that very few lists were empty or nonsense. Viewers received $0.10

per annotated image, and quality is encouraged as all work on Mechanical Turk must

be approved by the requester prior to payment. Viewers were given the same detailed

instructions for each task, which can be found in Figure 2.1.

Before analyzing the collected lists, we cleaned them in four steps. First, we

eliminated lists that were empty or contained nonsense words. Second, we corrected

misspellings with a spell checker. Third, we identified synonyms for each word in

each list using WordNet [1]. Fourth, for each image we chose one synonym for each

group of words. This step was necessary because the same word could have different
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Please look carefully at this image and name 10 objects that you see.

Example:
woman, chair, palm tree, sand, wall, shadow, bag, ocean, trashcan, sidewalk

 only name objects that you see (don't guess that there are waves)
 use singular, concrete nouns (don't say beautiful blue ocean, just say ocean)
 one name per object type (palm tree not palm trees; either palm tree or plant, not both)
 separate objects with commas

http://www.vision.caltech.edu/~spain/example.html

1 of 1 4/26/10 1:04 PM

Figure 2.1: Detailed instructions given to all viewers on Mechanical Turk.
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meanings in different images. For example “building” could mean house in a suburban

picture or skyscraper in an urban one. The fourth step took the longest, requiring

approximately 30 hours of manual labor.

2.4 Image Collection

We selected 97 pictures from Stephen Shore’s collections “American Surfaces” and

“Uncommon Places” [120, 121]. Shore took a photographic diary of his experience

traveling in North America in the 1970s. Our collection of photos contains 22 bedroom

scenes, 4 living room scenes, 5 pool scenes, 19 portraits, 35 suburban scenes, and 12

urban scenes. Figure 2.2 displays a representative sample of these photos. We picked

these scenes because they are commonplace and represent the overall statistics of the

collection. We did not include images that might have been disturbing or offensive

to some viewers.

We chose to sample from the Shore collections because we needed an objective,

representative, and meaningful set of scenes for our experiments. By objective, we

mean that the choice of scenes should be as independent as possible from the exper-

imenters and their goals. By representative, we mean that the collection of images

should sample human visual experience broadly. By meaningful, we mean that the

images should represent notable moments in a person’s visual experience. If we col-

lected objective and representative photos like Switkes [87], by attaching a camera

to a bicycle helmet and snapping one picture per minute automatically, most pho-

tographs would be meaningless (e.g ., the edge of an elevator door). So Shore’s photos

are more objective than an object recognition dataset and more meaningful than ran-

domly captured photographs.

2.5 Data Overview

Comparing lists Examples of ten-object lists produced by five viewers are dis-

played in Table 2.1. The number of objects that are present in an image may be
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Figure 2.2: Representative sample of our images. These photos by artist Stephen
Shore are a visual diary of arresting moments rather than a collection taken by a
computer vision researcher for a particular purpose.
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Table 2.1: Sample lists from five viewers of the first photo in Figure 2.2 as columns.

1 2 3 4 5

lamp lamp tv ashtray curtain
television tv lamp lamp table
chair chair ashtray television chair
ashtray table window chair cord
paper ashtray bush curtain lamp
table matches table window paper
curtain paper cigarette paper tree
window window paper table wall
wall plant chair shade window
shadow curtain curtain latch ash tray
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0

0.05

0.1
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ts

Number of objects
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Figure 2.3: Histogram of the number of objects shared by a pair of lists for the same
image. Data collected from viewers (blue) is compared with random lists created by
uniformly sampling objects named for that image (yellow).
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Figure 2.4: Histogram of an object’s unsigned difference in the rank between two
lists for the same image. Each data point is the median of these differences for an
object-image combination.
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Figure 2.5: Histogram of the number of objects named by a particular number of
viewers. Each data point represents an object in a specific image.
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Figure 2.6: Total number of objects named per image as we consider longer lists.
Lists of length k are obtained by selecting the top k elements of each list.

estimated by considering the size of the union of the 25 ten-word lists provided by

our subjects for that image. We find that each image contains 16 to 40 (mean/median

24) objects. Correspondingly, both the composition and order of the word-word lists

vary. To understand the structure of the lists, we compare these lists with chance

lists. To generate the chance lists we consider the set of objects named in this image

and randomly select ten objects with uniform probability. We generate 25 chance

lists per image.

First, we examine a pair of lists (generated by the same process) and count how

many objects the lists share. Figure 2.3 shows that pairs of lists from viewers have a

much larger intersection of objects than expected by chance (mean 6.2 versus 4.3).

Second, we find a pair of lists that share an object, note the object’s rank in both

lists, and take the difference of those ranks. If the object appears in the same spot

on both lists, then the difference in rank is 0, whereas if it appears first on one and

last on the other, then the difference in rank is 9. We then take the median of the

rank differences, so as not to double count objects. Figure 2.4 shows that an object’s

rank changes slightly less between human lists than expected by chance (mean of 2.5
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versus 3.1). These distributions are statistically different for both list intersection

and rank difference (p = 0 and p = 10−111, Wilcoxon rank sum test).

Third, we look at all the lists for an image and count how many viewers name a

particular object. Figure 2.5 shows that the number of viewers that name an object

has a much larger variance than expected by chance. The lists generated by humans

have many objects that are only named once.

Fourth, we count how many objects are named in the top k words in each list.

Figure 2.6 shows that fewer objects appear at the top of the lists than would be

expected by chance. Notice that for the chance lists, the object count for an image

saturates after the first four objects are named, while the object count climbs more

slowly for the human lists. This indicates agreement in the objects that viewers name

early.

Naming Independence Another issue concerning list structure is whether object

naming is independent. Will one object being named change the likelihood of another

object being named? Given an image that contains both cars and tires, if someone

says “car,” does that make them more likely to say “tire?” Please note that this is

a different concept than Rabinovich et al . who ask whether cars and tires appear in

the same images [106]. We are not discussing the state of the world, but rather what

people name, given the state of the world.

To answer this question we test whether the observed co-occurrence is consistent

with independent naming. For a given object pair, we find all the images that con-

tain both objects and gather the lists associated with these images. We perform a

Pearson’s chi-square test with the Bonferonni correction ( p ≤ .05/tests) and Yates’

correction for continuity only if both objects are present/absent at least five times

(4,224 of 15,043 list pairs). The value of Pearson’s chi-square test-statistic is

χ2
Y ates =

(|O1 − E1| − .5)2

E1

+
(|O0 − E0| − .5)2

E0

, (2.1)

Where O is the observed count and E is the expected count given the marginal

frequencies. The subscript 1 denotes that both objects are named and 0 denotes
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Table 2.2: Object naming is largely independent of other named objects. These are
the only object pairs found to be dependent out of the 4,224 pairs.

Word pair p value

1.0e-05 ×
eye nose 0
door window 0
head skin 0
eye hair 0
eyebrow skin 0
hair nose 0
shoulder skin 0.002
mouth nose 0.01
finger nose 0.02
roof window 0.06
finger skin 0.07
eye mouth 0.1
door roof 0.3
neck skin 0.3
nose skin 0.3
chin nose 0.3
eyebrow shoulder 0.5
hair hand 0.7
finger neck 0.9

otherwise.

We find that generally one object being named does not significantly influence

the probability of another object being named. Only 19 of 4,224 tests (0.4%) show

significant dependence. Table 2.2 enumerates the dependent object pairs; for all of

these pairs the observed co-occurrence is greater than expected co-occurrence.

Failure to name the obvious We noticed an interesting phenomenon: viewers

sometimes fail to mention the most obvious object (Figure 2.7). We identify the

obvious object as the object named early and often, the earliest in mean order of

the more frequent half of objects. This criterion captures when an object is the

main focus of an image. Interestingly, the frequency distribution of obvious objects

is bimodal; many people fail to mention some obvious objects. For instance, most
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Figure 2.7: Some viewers fail to mention the obvious object. We histogram the
number of images by the frequency that people mention the obvious object. While
most viewers name “person” or “house” very early, others fail to mention them.

viewers name “person” or “house” very early, but others fail to mention them at

all. These two objects account for nearly all images in which the obvious object is

frequently missed. Because viewers often fail to name the obvious object, frequency

is poor at identifying the most important object in an image. One possibility is that

people become accustomed to the photos and stop naming things they have seen

often. The data in Figure 2.8 rule out this hypothesis. How frequently the obvious

object is skipped does not increase as the viewer labels more images; it is the same

on the twentieth as it is on the first image labeled.

Westerners are better at ignoring context or frame and focusing on contents [66].

Hence, if the important object is large, viewers might consider it background and

think of the other objects in terms of it.
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Figure 2.8: The frequency that the obvious object is named does not decrease as a
viewer labels more images.
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Chapter 3

Measuring Importance

The observations that most objects are named independently and some objects are

named early and often (Chapter 2.5) prompt us to formalize the concept of importance

as

An object’s importance in a particular image is the probability that it will

be mentioned first by a viewer.

In principle, we would need an extraordinary number of viewers to be able to directly

calculate the importance of all the objects in a picture: some objects’ importances

may be less than 1%, and we would need hundreds of viewers to determine that.

In this section we show that it is possible to measure an object’s importance from

fewer viewers by asking them to name more objects and creating models that take

advantage of object order.

3.1 Urn Model

We model the naming of objects in an image with drawing marbles from an urn

without replacement (see Figure 3.1). The urn contains one marble for each object

category appearing in the image. The marbles are different sizes, affecting their

probability of being chosen. Thus, a marble’s size represents the importance of the

corresponding object. We represent multiple viewers by refilling the urn with the

same set of marbles and sampling.
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Urn model

Object lists

Figure 3.1: A photograph and corresponding lists generated by five viewers. Words
are color coded to facilitate perception of word order. The urn models how humans
name sequences of objects. An image contains many object categories with varied
importance in that image. A viewer names objects one by one until ten are named.
Similarly, an urn is filled with marbles of different sizes, where larger marbles are
more likely drawn. Ten marbles are removed from the urn, creating a sequence.
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This model is based on several assumptions. First, the draws are independent;

this is reasonable because very few object pairs are dependent (Chapter 2.5). Second,

everyone starts with the same urn; we don’t see clusters of different viewer behavior in

our data, as we discuss in Chapter 3.6. Third, marbles can only be removed from the

urn by being drawn. The third assumption is violated for some images. As discussed

in Chapter 2.5, we find that obvious objects are named early or left unnamed. To

model this we develop a variant of the urn model, which we call the forgetful urn. In

this model, viewers draw marbles as before, but the first marble may go unreported

with some probability.1

Figure 3.2 shows importance measured through maximum likelihood (ML), maxi-

mizing the likelihood of observing our data with the importance values as parameters

(Chapter 3.1). The forgetful urn and the urn produce similar estimates of importance

when the most obvious object is not often overlooked, but the forgetful urn’s estimates

are more realistic than the urn’s when the obvious object is frequently skipped.

One possibility is that certain objects are named earlier and more often because

they are more frequent in human speech and hence easier to access. Figure 3.3

compares object importance and naming frequency in our experiments with lexical

frequency from the British National Corpus [73]. There is no pattern showing that

lexical frequency is responsible for the observed naming behavior.

In the urn model that we just described, the probabilities of being drawn are

what we are trying to measure from the data. Previous work on this problem uses

complex numerical methods [40] or requires many marbles of the same type (we

have only one) [82]. Instead of using these approaches, we measure importance by

maximizing the likelihood or probability of observing a set of sequences given the

object importances πi.

Each sequence consists of 10 marbles wmi , where wmi denotes the ith marble drawn

in the mth sequence and is a variable that takes values 1, ...N corresponding to object

names. The wmi are drawn independently without replacement (out of N marbles,

1A rigorous definition of importance is the probability that a marble is drawn first, regardless of
whether it is skipped.
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Figure 3.2: Measured Importance. Scatter plot of frequency that an object appears
on lists and mean order over lists for an image (2nd column). A comparison of the
mean order and frequency an object (dot) shows that in some images the obvious
object (red) is sometimes not named at all. This violates our urn model, but we can
compensate for this behavior and see an improvement in importance measurement
in these cases for the Forgetful Urn (4th column) over the Urn (3rd column). In
the cases where the obvious object is not skipped the importance measurement is
similar. The Markov chain (5th column) arrives at similar results through a different
approach.
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naming frequency.
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where N >> 10), so the probability of drawing a particular sequence of marbles

(wm1 , ...w
m
10) is

10∏
n=1

p(wmn |wmn−1, ...wm1 ) . (3.1)

However, we are drawing marbles without replacement, so this equation is con-

strained by wmi = wmj =⇒ i = j. When we draw the nth marble of a sequence,

n− 1 marbles have already been removed from the urn, so we need to normalize the

remaining importance to 1. The probability that the marble labeled wmn is the nth

marble drawn is

p(wmn |wmn−1, ...wm1 ) =


0 if ∃i ∈ [1, n− 1] : wmi = wmn

πwm
n

1−
∑n−1

i=1 πwm
i

otherwise,
(3.2)

where πi is the probability that marble i is drawn first (from a fresh urn) and
∑

i πi =

1. The first case simply asserts that we are drawing marbles without replacement, so

a marble cannot be drawn twice. If we assume that our data are valid then we are

only concerned with the second case.

3.2 The Forgetful Urn

This model fits our observed data well with an exception: viewers sometimes skip

the most obvious object (Chapter 2.5). Treating this phenomenon rigorously compli-

cates the modeling equations and the methods for fitting the probability parameters.

Luckily, a simple approximation opens the way for an easy treatment: pretending the

first marble is forgotten. Consider a sequence of marbles where the first marble has

been discarded (i.e., really drawn first, but considered undrawn); the marble is most

likely argmaxj:∀ij 6=wm
i
πj, the most important of the undrawn marbles. In this case,

πj will likely be large, whereas for a sequence of marbles in which the first marble

is included, πj will probably be small. Hence we can include the probability of the

largest marble missing from the list, max∀ij 6=wm
i
πj, in the normalization
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p(wmn |wmn−1, ...wm1 ) =
πwm

n

(1−
∑n−1

i=1 πwm
i

)−max∀ij 6=wm
i
πj

. (3.3)

This results in little change when the first marble is not skipped and a mitigated

impact on the probabilities when the first marble is skipped. Since we have 25 inde-

pendent sequences, the likelihood of our observation is

p(obs) =
25∏
m=1

10∏
n=1

πwm
n

(1−
∑n−1

i=1 πwm
i

)−max∀ij 6=wm
i
πj

. (3.4)

To measure importance πwm
i

, we maximize the log-likelihood:

log(p(obs)) =
25∑
m=1

10∑
n=1

log πwm
n
− log((1−

n−1∑
i=1

πwm
i

)− max
∀ij 6=wm

i

πj) . (3.5)

We can wonder if this definition of importance makes sense for objects that may

never be named first. For instance in a photo of Batman and Robin, Robin may never

be named first, yet he is important. In this example, Robin violates the independent

draws assumption of our model, so the model considers Robin’s subordinate position

in the sequence accidental. To test whether this could significantly alter our estimates

of importance, we can take data from the urn model and move the second most

important marble to second place every time it is drawn first. In our simulations,

this change does not decrease the estimated importance of this marble (Wilcoxon

rank sum test).

Optimization Note There are as many parameters as objects mentioned. This

number can get large, which results in poor convergence. If we limit our optimization

to the ten most frequently named objects and set the importance of all other objects to

0.001, our convergence using fmincon in the Matlab Optimization Toolbox (with 100

repetitions after slight agitation of adding 0.5×rand and normalizing) is reasonable

(it fails to converge one time in a hundred).
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3.3 The Relaxed Urn

An alternate interpretation of skipping the obvious object is that the marble proba-

bilities linearly relax with time, reaching a uniform distribution at draw T ≥ 10. So

the probability of drawing marble i on draw n is πi(n), a function of draw number

and the original probability. The time-varying probability π(·) is only meant where

marked with an argument. On the first draw πi(1) = πi, the importance of marble i.

On draw n a marble’s probability with replacement would be

πi(n) =
1

N

n− 1

T − 1
+ πi

T − n
T − 1

, (3.6)

where there are N marbles. As we require values without replacement we plug Equa-

tion 3.6 into Equation 3.2. This normalizes for drawn marbles, yielding the probability

that the marble labeled wmn is the nth marble drawn is

p(wmn |wmn−1, ...w1) =
n−1
N

+ (T − n)πwm
n

(T − 1)− (n−1)2
N
− (T − n)

∑n−1
i=1 πwm

i

. (3.7)

Figure 3.4 shows that under this model the human data are most likely when

T ≈ 50. This indicates that the best performance is when little relaxing occurs in

the ten draws.

3.4 List Statistics and Urn Models

We can compare lists generated by the plain, forgetful, and relaxed urn models with

the human lists from Section 2.5. The model lists were generated by Monte Carlo

simulations using an urn model and marble probabilities fit with the relevant model.

The forgetful urn had a 25% chance of skipping the first marble of a list. The relaxed

urn had a setting of T = 50 for number of draws to reach uniform.

As earlier, we have several ways to compare list composition. First, we examine

a pair of lists and count how many objects the lists share. Figure 3.5 shows that

intersection size from the urn models is between viewers uniform chance. The relaxed
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Figure 3.4: The marble probabilities of the relaxed urn relax to uniform in T draws.

urn with a setting of T = 50 generates the smallest intersection.

Second, we look at differences in object rank between lists. Figure 3.6 shows that

an object’s rank changes similarly in all three urn models, and they are all between

human and chance data.

Third, we count how many objects are named by a certain number of viewers.

Figure 3.7 shows that the number of viewers that name an object have similar distri-

butions between the urn models. As with the other histogram comparisons, the urn

models are all between human and chance data.

3.5 Markov Chain Method

It is also possible to approach importance estimation from a less formally motivated

angle. We can use a Markov chain (MC) to calculate importance about a thousand

times faster than the maximum likelihood approach, and always get a solution. A

Markov chain is specified by a non-negative, stochastic transition matrix M. The

system moves from state i to state j with probability Mij. Aperiodic and irreducible

Markov chains eventually reach a stationary distribution, a unique fixed point where
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Figure 3.5: Histogram of the number of objects shared by a pair of lists for the same
image. Data collected from viewers (blue) is compared with models (orange, red,
green) and uniform chance (yellow).

the state distribution does not change. Conveniently, the stationary distribution is

the principal left eigenvector of the transition matrix. We find the following Markov

chain proposed by Dwork et al . [18] useful for measuring importance:

If the current state is object i, then the next state is chosen by first picking

a ranking τ uniformly from all lists τ1, ..., τ25 containing i, then picking an

object uniformly from the set of all objects j such that τ(j) ≤ τ(i).

In our case Mij is the number of lists on which object j appears earlier than or

ties object i, divided by how many objects appear earlier than or tie object i on

any list. The lists that do not contain object i are ignored for row i. This Markov

chain is aperiodic by construction and empirically irreducible on our data, so we are

guaranteed a stationary distribution. Figure 3.8 gives an example of how the Markov

chain might act for the data in Figure 3.1. Our intuition as to why the stationary

distribution should approximate importance is that the Markov chain is essentially

running the urn backwards. So the stationary distribution is a smoothed version of

the top of the lists.
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than or equal to the old object (yellow) on that list (τ). The asymptotic behavior of
this Markov chain estimates importance.

Figure 3.9 compares the MC importance with the forgetful urn ML importance.

The right column in Figure 3.2 shows the importance measured with the MC. The

results are similar to the ML forgetful urn, except the MC slightly underestimates

the importance of objects that have a true importance of ≥ 0.3 in synthetic data.

3.6 Left-out Object Sequence

One way to assess how much information about our human lists is captured by the

importance values is to use 24 lists to measure importance and try to guess the left-

out, 25th list. We do this by producing a most likely sequence based on the other

human sequences. We use the Spearman footrule to measure the distance between

two lists σ and τ , where σ(i) is the rank assigned to object i in list σ.

D(σ, τ) =
∑
i

|σ(i)− τ(i)| (3.8)

This distance has already been applied in machine learning [18, 71] to compare
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Figure 3.9: Scatter plot where a dot is plotted for each object at its forgetful urn
maximum likelihood and Markov chain measured importance coordinates.
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Figure 3.10: We measure the Spearman footrule distance between a left-out human
list and a list generated from the other 24 human lists. To chose the closest human
list, we consider the first k objects in our left-out list and choose the closest of the
24 lists. For a fair comparison, we force the first k objects in all lists to match the
left-out list.

ranked lists.2 However, since we want to penalize list pairs that share few items

we need a different generalization to partial orderings than Dwork et al . [18] who

disregard unmatched items. We do this by assigning every object missing from the

list a rank of 11. This setting minimizes the variance of the distance as more objects

are revealed on a list; however, other settings produce qualitatively similar results.

We normalize by the maximum score attainable for each pair of lists.

We hide one of the human sequences and try to guess it using the remaining 24

sequences. We measure the performance of a given method by averaging the Spearman

footrule distance between the guessed and the hidden list. Figure 3.10 shows that

importance (both ML and MC methods) guesses sequences better than how one

human sequence guesses another, which in turn is better than chance. Hence, the

ML and MC importance estimates are a better summary of human data than another

human list is.

2Kendall [64] states that Spearman replaced the absolute value with the square.
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Figure 3.11: We measure the Spearman footrule distance between a left-out human
list and a list generated from the other 24 human lists. We look at the distance
between lists as the list length increases. Lists of length k are obtained by selecting
the top k elements of each list.

We could assume that the human sequences cluster and if we select the most

similar list to our held-out sequence in the first k objects named, then this would

improve our results. For a fair comparison, we force the first k objects in all the

guessed lists to match the hidden list and fill the other 10 − k entries with objects

in the order of the guessed list. Figure 3.10 shows that the closest human doesn’t

become better than other methods as more objects are revealed, indicating that no

substantial clustering exists.

One could wonder if the complexity of the ML or MC methods is justified. A

simpler approach would be to estimate importance with an object’s frequency or

median rank across lists. We implemented such methods and compared them with

the ML and MC. Figure 3.11 shows the leave-one-out guess distance as we change

the list length from 1 to 10 objects. We see that median order guesses the beginning

of the list better than the frequency. Importance does a good job overall.



38

Chapter 4

Predicting Importance

Is it possible to predict the importance of an object directly from a photograph

without gathering object lists from humans? We explore a simple bottom-up approach

where importance is predicted by the linear combination of many image features. We

assume that in the near future there will be segmentation algorithms that can produce

good object-level segmentations. Thus, we consider features that may be computed

from the image once an outline of each object is available. Out of 49 possible features,

we select a small subset via regularized regression to maximize both the performance

and interpretability of our model.

4.1 Object Outlines

We assume that computing object importance requires that the image be segmented

accurately into component objects. However, our scene photographs are large and

complex, and, in our hands, segmentations produced by state of the art algorithms

[41,105] are not as detailed as the verbal responses. Figure 4.1 shows that if we select

the best segment for a particular object from multiple segmentations and discard

objects for which a good segmentation cannot be found, most of the importance is

thrown away. As a stop-gap measure, we had our images segmented by hand. We

again use Mechanical Turk, but this time we ask three workers to outline all instances

of a named object category in the image. Our user interface is based on flash code

provided by Sorokin and Forsyth [123]. We generalize the common segmentation
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Figure 4.1: How well do state of the art segmentations match the human drawn
segmentations? We measure the match quality as the intersection over union of the
human and closest computer segment and then sum the importances of matched
objects.

metric |intersection|/|union| [32, 126] (a pixel-wise Jaccard index [60]) to evaluate

the quality of these human segmentations. Our generalization of the criterion to three

annotations is to compare the maximum of the three pairwise consistency values with

0.5. Outlines that do not satisfy the criterion are checked manually and rejected

outlines are discarded. Pixels that are marked as the object in half or more of accepted

outlines belong to the object in our final object mask. In this way, we obtain outlines

for 2,841 named objects.

4.2 Features

We devise features to convey information about photographic composition. Conceiv-

ably, these features capture what makes a particular object important in a particular

image. Table 4.1 is a complete list of the features used to predict importance. Fig-

ure 4.3 illustrates these features, which fall into four general categories: distances,

saliency, area, and overlapping.
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Table 4.1: List of all features used in importance prediction.

Feature sum max mean min

Distance to center ◦ ◦ ◦
Distance left/right max ◦ ◦ ◦
Distance above middle ◦ ◦ ◦
Distance below middle ◦ ◦ ◦
Distance 3rds ◦ ◦ ◦
Distance 3rds box ◦ ◦ ◦
Saliency ◦ ◦ ◦
Gaussian modulated saliency ◦ ◦ ◦
Blurred saliency ◦ ◦ ◦
Learned saliency ◦ ◦ ◦
Color conspicuity map (CM) ◦ ◦ ◦
Intensity CM ◦ ◦ ◦
Orientations CM ◦ ◦ ◦
Area
log(area)
Area order descending
Area order ascending

Percent overlapped
Number of overlapping objects ◦ ◦
Percent of face covered by object
Percent of object covered by face
Object-face intersection/union
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Figure 4.2: Density of named objects. If we look at the mean number of objects
per image covering a particular pixel (photos resized to 50 × 50) we notice that the
distribution is higher in the central third of the image. Furthermore, it is left-right
symmetric, but not top-bottom symmetric. There appears to be a wider horizontal
patch approximately one-third of the way from the bottom.
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Object mask

Distance to center Distance left/right Distance above or below

Distance 3rds Distance 3rds box Overlapping objects

Saliency Modulated saliency Blurred saliency

Color CM Intensities CM Orientation CM

Figure 4.3: 1st row: a photograph and car object mask. 2nd row: Distances relating
to center. 3rd row: Distances relating to the rule of thirds. Number of overlapping
objects per pixel. 4th row: saliency map and modifications. 5th row: Conspicuity
Maps.
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Distances The central bias indicates that an object’s position in an image influences

attention [84,127,129]. Figure 4.2 shows the distribution of objects over a photo. We

sum all object masks (pixels are 1 if they contain the object, 0 otherwise) for all

images, creating an object map [27]. We notice that the object map has a vertical

symmetry axis, so we treat distances to the left and right of the midline equivalently.

However, the object map has no horizontal symmetry axis, so distances up and down

are handled independently. We measure distances from the object mask to important

positions in the image: distances to center, left/right of the vertical midline, above

the horizontal midline, below the horizontal midline, to the four points that divide the

image into thirds, and to the box defined by the four points that divide the image into

thirds. For all distance measures we calculate the maximum, mean, and minimum

distance between pixels in the object mask and the position in question.

Saliency We use a saliency map [59], a computational approach to describe how

low-level features drive human eyes movements as a way to track the allocation of at-

tention. Specifically the algorithm looks for regions that are conspicuous (or different

from neighboring regions) in terms of color, intensity, or orientation, and then com-

bines the conspicuity maps (CM) of these three channels. We use a publicly available

implementation [146] to produce saliency and conspicuity maps. We use the color

CM, intensity CM, orientations CM, as well as the saliency map. We introduce two

modified versions of the saliency map: a blurred saliency map, which is convolved

with a 5 × 5 Gaussian window, and a Gaussian modulated saliency map, which is

multiplied by a Gaussian window (σ = 0.4) to create a central bias. For each of these

measures, we took the sum, max, and mean of the saliency values covered by the

object mask.

A recent approach uses fixations from an image set to create an optimal linear

combination of color CM, intensities CM, orientations CM, and Viola and Jones face

mask [142, 150]. We refer to this as learned saliency. Fixation data from 67 Shore

images (Chapter 5) different from those used to measure object importance enabled

us to fit w ≥ 0 with constrained least squares. Vectorized color, intensities, and
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orientations CMs c, i, and o and a vectorized Viola and Jones face mask f predict a

2◦ std Gaussian smoothed fixation map fix.

arg min
w
||[c i o f ]× w − fix||2 (4.1)

On our images the learned saliency weights w were 0.02, 0.01, 0.0056, and 0.0001.

Area A larger object has more of a chance to be fixated randomly than a small

object, so area is a natural feature. We use an object’s area, log(area), and ascending

and descending rank in terms of area.

Overlapping Parts might conceivably be less important than whole objects. How

an object is overlapped indicates that it might be a part, so we include several related

features: the percent of the object that is overlapped by other outlined objects and

how many objects overlap it pixel-wise. We also run a Viola and Jones face detector

and take the output to be a mask of all faces in the image [142]. We then look at

the percent of the face mask that is covered by the object, the percent of the object

covered by the face mask, and the intersection over union of the object and face

masks.

4.3 Regression

We approximate the function from features to importance as:

log(importance) = β0 +

p∑
j=1

(xjβj) (4.2)

where xj is the value of the jth feature for an object and βj is the coefficient of that

feature.

Our two goals are maximizing prediction and interpretation; we don’t want to

overfit our data and we want to know which are the useful features. Limiting the

magnitude of the βs (excluding β0), called regularization or coefficient shrinkage, is
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a one popular way to improve prediction. The Lasso
∑p

j=1 |βj| ≤ t specifically favors

sparsity, additionally increasing interpretability [133]. We use a 1,455-object (50

image) training set and a 354-object (12 image) validation set to select the simplest

Lasso model within one standard deviation of the lowest residual sum of squares

(RSS) on the validation set. To compare β magnitudes, we standardize data to have

mean 0 and standard deviation 1 before performing the Lasso [47]. We use RSS

for validation only, not for test set evaluation. We do not use the footrule distance

for evaluating predicted importance, because we have measured importance as our

ground truth instead of human-generated object lists.

Figure 4.7 shows the Lasso chosen features and their coefficients. The only 17,

of 49 features, with non-zero coefficients are log of area and ascending/descending

rank of area, mean number of overlapping objects per pixel and percent of object

overlapped by pixel, the intersection/union of object and face mask, percent of object

covered by face, mean distance to the left or right of midline, maximum distance

below the midline, minimum distance from the object to the box defined by the

points that divide the image into thirds, sum of Orientations and Color CMs across

object, maximum Color CM on the object, mean Orientations CM across object, sum

of Gaussian modulated saliency. Plain saliency measures are not selected when a

centrally biased version and CMs are available. Area is not selected when log(area)

is available.

Figure 4.4A shows the quality of importance prediction on a 1,032-object (35

image) test set. We define an important object as having a measured importance

≥ {0.05, 0.15, 0.25, 0.35} and move the threshold across the predicted importance.

These importance values correspond to the top six objects per image, two objects

per image, one object per image, and one object every three images. We find that

our prediction identifies high-importance objects reasonably well; the areas under

the ROC curves are 0.7, 0.77, 0.81, and 0.89. This is in comparison with maximum

learned saliency alone (Figure 4.4B). The corresponding areas under the ROC curves

are 0.57, 0.72, 0.75, and 0.79.

Figure 4.5 shows a scatter plot of the measured importance and normalized pre-
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Figure 4.4: ROC curves for identifying important objects. We define an impor-
tant object as having a measured importance ≥ {0.05, 0.15, 0.25, 0.35} and move
the threshold across the predicted importance. A full model, B maximum learned
saliency alone.
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Figure 4.5: Scatter plot of predicted versus measured importance. Most objects have
very low importances.

dicted importance (Pearson’s correlation coefficient of 0.39). However, the scatter

plot is difficult to interpret because most of the objects have very low importances.

Figure 4.6 shows a few examples of our results; predicted importances are normalized

so the importance in an image sums to 1.

4.4 The Power of Features

One question we can ask is, if we eliminate the largest valued features, does the

prediction collapse? Actually, the RSS gracefully changes from 1,340 to 1,348 to

1,355 to 1,357 as we exclude the three features with the largest magnitude in Lasso.

Figure 4.8 demonstrates that as one feature is excluded, another feature arises to
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water less important, and only a semantic analysis of the scene may resolve this issue.
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Figure 4.8: Excluding the features with the largest coefficients simply causes other
features to replace them. The residual sum of squares is minimally affected.

replace it, indicating that our features are redundant.

Another question is how well a single feature, or only a few, can predict impor-

tance. Figure 4.9 shows that, adding features greedily with stepwise regression, a few

features go a long way.

4.5 Generative and Discriminative Tasks

Earlier we considered the case that the viewer is asked for ten objects, but not told

what exactly will be done with labels. We call this the Plain task:

Please look carefully at this image and name 10 objects that you see.

Alternatively, we can give the viewer the Generative task:

Name 10 objects in this image. Someone will use these words as search

words to find similar images.

Or the Discriminative Task:

Name 10 objects in this image. Focus on what distinguishes this image

from similar-looking ones.
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Figure 4.9: RSS error as features are included by stepwise regression.

The measured importance values in Figure 4.11 compare the lists obtained from

viewers performing either the Plain, Generative, or Discriminative tasks. Figure 4.10

compares the feature coefficients for predicted importance. The values are similar for

the Plain and Generative tasks when generated by the Lasso or stepwise regression.

The Discriminative task produces different results from the other tasks with both

methods. The most noticeable difference is that more weight is given to distance

left/right. The overall differences are small, which tells us that viewers are performing

a stable task.
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Conclusion

We introduced the concept of object importance and showed how to estimate it once

a high-quality object segmentation is available. Our estimator works without object

identity: we can often know that an object is important without knowing what it is.

To study how humans perceive object importance, we asked a large group of

English-speaking observers to name objects they saw in photographs of everyday

scenes. For each of 97 images, we collected 25 independent ten-word lists. This

data set allowed us to observe that objects are named quasi-independently. Thus,

the process of naming objects in images is akin to drawing marbles from an urn

without replacement. Furthermore, some objects tend to be named earlier and more

frequently, which we represent as the marbles having different diameters, and thus

different probabilities of being drawn. The urn model suggests that an object’s im-

portance should be defined as the probability of being named first. The urn model

allowed us to estimate object importance using maximum likelihood applied to the

word lists. We obtained similar results with a Markov chain approach.

We then turned to the question of whether it is possible to predict the importance

of an object directly from an image. We used a simple regression model predicting im-

portance from features that are measurable in the image. A side product of our Lasso

regression was a ranking of how informative different object-related image features

were for predicting importance. While position and size were quite useful, a plain

saliency measure did not rank among the top features. We found that this bottom-

up prediction will often select the most important objects in an image. However,

information about the meaning of the scene may be necessary for perfect prediction.

An unexpected phenomenon we observed was that our viewers sometimes failed
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to report the most obvious object in their ten-word list. This was very repeatable and

had not been previously explored. Our urn model was easily modified to accommodate

this phenomenon.
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Part II

Eye Movements
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Chapter 5

Methods

5.1 Stimuli

The stimuli were 93 photographs from the artist S. Shore’s collection “Uncommon

Places” [121] (shown in Figure 5.1). The images were collected as a visual diary

and come across as casual snapshots of everyday scenes. The images were presented

on 20 inch CRT monitor, located in a dark room at 80 cm from the observer, and

thus subtended 29 × 22 degrees of visual angle (◦). The artist provided digitized

high-resolution images. To fit the resolution and the aspect ratio of our presentation

screen (1024× 768 pixels), images were down-sampled and minimally cropped.

5.2 Experimental Conditions

We tested two experimental conditions, called “what” and “where.” In both con-

ditions, we instructed our observers to imagine that they were a judge for an art

competition and to rate, on a scale from 1 to 5, how interesting each image was.

Asking our observers to rate the images ensured careful observation. We ignored the

ratings in our analysis. In both conditions, observers were asked to provide some (up

to five) keywords to describe the scene. To avoid confounding the eye tracking data,

the keywords were typed after the stimulus disappeared. In the “where” condition,

observers additionally searched for a target object, an object that was specified in

writing on the screen before image presentation. Observers were asked to decide as



57

Figure 5.1: Ninety-three photographs of Stephen Shore’s collection “Uncommon
Places” were used as stimuli.
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quickly as possible whether the target object was present in the scene. Target object

selection made search difficult; target objects were either present but not obvious, or

not present in the image but plausible for the scene and frequently named in other

images (as established independently in an internet-based “what” condition without

eye tracking). In the “what” condition an image was displayed for 3 seconds. In

the “where” condition an image disappeared when observers pressed a key indicating

target object presence or absence. After the disappearance of the image the observer

rated its interestingness from 1 to 5, and then typed up to five keywords (Figure

5.2A).

5.3 Observers

Eight volunteers (six male, two female; mean age: 23) from the Caltech community

participated for pay, four in each condition. All participants were native English

speakers, had normal or corrected-to-normal vision, and normal color vision as as-

sessed by Ishihara plates. None of the participants had any formal art training. All

were naive to the experiment’s purpose and had not previously seen the stimuli. All

procedures conformed to national and institutional guidelines for experiments with

human subjects and to the Declaration of Helsinki.

5.4 Recording Eye Position

Throughout the experiment a noninvasive infrared Eyelink-1000 (SR Research, Os-

goode, ON, Canada) system monitored eye position at a 1000Hz sampling rate. Our

analysis used only data recorded during stimulus presentation (Figure 5.2B). Chin

and forehead rests stabilized observers’ heads. The calibration of the eye tracker’s

gain was validated after each 10 trials and recalibrated as necessary. Linear drift of

the eye tracker was controlled for before each trial onset and corrected when needed.

The average validation error in a 13-point validation procedure was 0.56◦ ± 0.10◦

(mean ± sd over subjects). This error is on the order of the saliency maps’ resolution
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(1/16th of the image resolution, i.e., 0.5◦/bin) and smaller than the typical object

size, which we coarsely estimate by the square root of the number of pixels covered

by an object, yielding 223 pixels or 6.3◦ on average. Thresholds to detect saccades

were set to a velocity of 35◦/s and an acceleration of 9500◦/s2 as recommended by

the manufacturer for the Eyelink-1000 device. There was no minimum duration for

a fixation set, but 99.4% of the 7,318 fixations lasted longer than 50 ms and 97.6%

longer than 100 ms (median: 251 ms; mean: 311 ms). The location of a fixation

was defined as the mean eye position during this fixation. The maximum horizontal

distance covered by the eye during a fixation was below 0.5◦ in 79.0% of cases, be-

low 1◦ for 98.0% of fixations, for the vertical direction these values were 80.5% and

96.7%, respectively (mean: 0.37◦ and 0.38◦; median: 0.32◦ and 0.31◦). The stan-

dard deviation of a fixated location was on average 0.08◦ both in horizontal and in

vertical direction. The typical variation of fixated location during a fixation is thus

small compared to the absolute location accuracy of the eye tracker, the resolution

of saliency maps and the typical size of objects. Presentation of stimuli, recording of

eye position and analysis were implemented in Matlab using its psychophysics and

eyelink toolbox extensions [5, 11,98].

5.5 Object Annotation

For consistency of the main analysis, the authors marked the outlines of the objects

named by the observers (Figure 5.2C). For analysis, we excluded terms describing

the full image, objects not present, words other than concrete nouns, and repetitions

(but counted them in the object naming order). Obvious synonyms were treated as

the same object. The image annotation was blind with respect to the fixations, that

is, only the keywords and the images were used during synonym determination and

object outlining.

To obtain an independent set of labels, an additional observer outlined “all ob-

jects” in a subset of images. Since “all objects” is an ill-defined stopping criterion,

we motivated this observer to label as many objects as possible by making payment
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proportional to the number of labeled objects plus a bonus for objects that occur in

multiple instances in an image ($0.05 per object and $0.01 per additional instance).

5.6 Object Maps, Fixation Maps, and Saliency Maps

Our definition of a saliency map follows the model of Itti and Koch [58], with the au-

thors’ original implementation and parameters (http://ilab.usc.edu). The computed

saliency map has a lower resolution than the original image i, and is linearly scaled

up to image resolution to obtain the saliency map Si(x, y). Analogously, we define

an object map Oi(x, y): for each observer we count the number of objects overlapping

with pixel (x,y) in image i. Then we sum these maps of all observers to obtain a

single map for each image i. Note that in this default definition Oi depends on the

frequency of recall; an object recalled by all observers is weighted 8 times stronger

than an object named once. The term object map refers to this observer-weighted

definition, unless stated otherwise. In addition, we consider unweighted object maps

that count the number of objects overlapping with a given pixel irrespective of the

number of observers recalling an object. Both maps are normalized to maximum 1

to ease comparison without affecting the relative ranking of pixels in each map. To

test the consistency of observers’ fixations, we define a fixation map: we assign each

fixation to the nearest pixel and label the respective pixel as fixated. Due to the

high resolution of the image, overlap between two fixations on the pixel level can be

neglected and we obtain a binary map, with entry 1 for fixated pixels and 0 otherwise.

This map is then smoothed with a 1◦ Gaussian kernel to obtain the fixation map.

Figures 6.1 and 8.1 depict examples of object maps and saliency maps, Figure 6.3

shows an example of a fixation map.

We define the total object saliency of an object as the sum of saliency map values

over the object’s footprint divided by the sum across the whole image. Since this

measure scales with object area, but the area cannot be factored out easily due to the

sparseness of saliency maps, we consider an additional measure. We define maximum

object saliency as the maximum saliency map value inside the object’s outline. As
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the features of the saliency map are computed early in the visual hierarchy, we will

refer to the saliency map values at a given location as early saliency.

5.7 Analysis Methods

Predicting fixations We compute how well the aforementioned maps predict fixa-

tions with a method proposed by Tatler et al . [127]. Each map pixel is either labeled

1 or 0 for fixated or non-fixated. We then computed the hit rate as the fraction of

fixated pixels, where the map scored above a threshold, and the false alarm rate as the

fraction of non-fixated pixels where the saliency map scored above the same threshold.

We plotted hits versus false alarms while varying the threshold to obtain an ROC

curve. The area under the ROC curve (AUC) measures a map’s fixation prediction.

Although other measures of fixation prediction have been proposed in the context of

saliency maps (e.g ., normalized scanpath saliency [99]), our signal detection measure

is invariant to monotonic scaling of maps. This is especially valuable for comparing

the predictions of different maps.

Predicting recall The prediction of object recall cannot be tested directly, since

objects that are not recalled by any observer remain unknown. Instead, we tested how

fixated locations discriminate between idiosyncratic objects, or objects recalled by one

observer, from objects recalled by multiple observers. We labeled the objects by how

many observers recalled them, l(o) = 1 for idiosyncratic objects, l(o) = 2+ for objects

recalled by two observers or more, l(o) = 3+, ...l(o) = 8. The fraction of fixations

inside each object, pooled over all observers is used as measure f(o). The objects

with f(o) above a threshold were false alarms if labeled 1 and hits if labeled n+. By

varying the threshold we obtain an ROC, with the area under the curve (AUC) as a

summary statistic. This AUC measures how fixations discriminate between objects

recalled once from objects recalled twice or more. We performed the same analysis

for objects recalled n times or more as compared to recalled once (objects recalled

more than once but fewer than n times were excluded for this analysis). With the
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same analysis, we tested the recall prediction of the time of fixations on the objects,

object area, length of the object’s boundary, object saliency, and linear combinations

of these measures.

Random reassignment baseline Fixation patterns are driven by both images

and image independent spatial biases [129]. The central bias, the tendency to look

straight ahead in head-fixed settings, is well-known (Figure 6.2 C and D). This bias

predicts that centrally placed objects would be fixated more often in our experiments.

If photographers place important objects centrally, then a double spatial bias would

link important objects and fixation. Analogously, the relation between luminance-

contrast and fixation partly results from such a double spatial bias [84,127,129].

We follow two strategies to assess the effect of these spatial biases: First, we

directly measure the spatial biases of the feature under investigation (Figure 6.1 A

and B). Second, we define a random reassignment baseline to measure how much of

the prediction by a certain map can be explained by its image-independent spatial

biases: We randomly reassign the object, saliency, and fixation map of one image

to another image. Simultaneously we keep the fixations and object recall with the

original image. On these surrogate data, analysis is performed identically to the

actual data. Any effects arising from general biases in the feature are also reflected

in this baseline, while any effects beyond the baseline are image-specific.
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Chapter 6

Inter-Observer Consistency

6.1 Central Bias

In previous studies, fixation prediction could often be partly attributed to a double

central bias [129]: Human observers tend to look straight ahead and images taken

by human photographers tend to be centered on salient objects. We verified the

photographer’s bias in our sample, images by Stephen Shore, considering all 981

objects that were labeled by at least one of the eight observers. We define the center

of an object as the center of mass of all its pixels. Half of the objects have their center

in a circle of 6.1◦ radius around the image center, compared to the image width of 29◦.

That is, 50% of object centers fall within a central circle whose size constitutes 18.8%

of the image area. This central bias occurs primarily in the horizontal direction: half

of the objects are closer than ± 2.9◦ to the vertical midline of the image, a rectangle

that corresponds to 20.2% of the image area. A similar result is observed when

replacing the object’s center its entire footprint, represented in the object maps: The

average over all object maps exhibits its maximum horizontally in the image center,

while the vertical peak is below the midline (Figure 6.1A). Hence there is a spatial bias

on object location. Note that the spatial bias is enhanced by the facts that in artistic

western photography objects are rarely cut off at image boundaries (and if so, pixels

outside the image would be ignored), and that objects that span large parts of the

scene necessarily have their center of mass close to the image center. Since the present

study does not aim to understand the origin of this bias, it is considered a property
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of our stimulus material, in line with other stimulus sets used in the literature.

In contrast, the averaged saliency map does not exhibit a pronounced central peak.

Instead, the saliency distribution is rather uniform if one ignores the boundaries where

saliency is zero for technical reasons (Figure 6.1B). We conclude that, for our stimuli,

saliency has no central bias.

6.2 Task and Fixation

Here we address the effect of task on fixation duration and location. During the 3s

image presentation in the “what” task, observers make on average 10.0 ± 0.4 fixations

(mean ± std across observers; all fixation counts exclude the initial 0th fixation). The

mean is smaller (7.7 ± 2.0) for the “where” task, in which observers terminate each

trial themselves, but there is a larger variation: The standard deviation across images

is 1.9 ± 0.3 for “what,” but 4.8 ± 2.1 for “where.” As expected this high standard

deviation arises from the fact that target-present trials have fewer fixations (7.0 ± 1.6)

than target-absent trials (8.5 ± 2.6), and the inter-observer variation is substantial

(Figure 6.2A).

Since trial duration differs between conditions, the fixation duration is of particular

interest. In the “what” task a fixation takes 251 ms± 134 ms (mean± std across 3,716

fixations). In the “where” task a fixation takes 286 ms± 153 ms (2,862 fixations), with

no significant difference between target-present and target-absent trials (p = 0.24, t-

test, Figure 6.2B). The fixation duration difference in the “what” and “where” tasks

is highly significant (p = 4× 10−23, t-test).

The spatial distribution of fixations shows a pronounced central bias (Figure 6.2C).

Fixations in the “where” condition are spread more widely than in the “what” condi-

tion. The standard deviation of fixation location according to the Bienaymé formula

quantifies this spread. It is larger in the “what” than in the “where” condition for

fixations one to ten (Figure 6.2D). An alternative measure, the average distance be-

tween subsequent fixations, exhibits a similar time course (Figure 6.2E). In conclusion,

duration and spatial distribution of fixations are task-dependent.
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6.3 Fixation Consistency

To investigate inter-observer consistency, we compute a fixation map as described

earlier except we leave out one observer and then predict that observer’s fixations

with the map (Figure 6.3A). The fixation map predicts fixations above chance (AUC

> 50%) in all images with the mean AUC over images ranging from 82.9% ± 8.4%

(MW, mean ± sd) to 93.3% ± 5.4% (MC) with a 88.9% mean across observers

(Figure 6.3B). The random reassignment baseline yields a range of 69.8% ± 11.0%

to 79.8% ± 12.7% (mean: 75.7%, Figure 6.3B). This implies that a perfect model of

average spatial distribution of fixations could predict up to 75.7% of fixations, without

knowledge of the actual stimulus. Although this indicates that much inter-observer

consistency is caused by common spatial biases, the actual data exceeds the random

baseline significantly in all observers (pmax = 4.8×10−12, t-test). Consequently, there

is a large image-specific component to inter-observer consistency. Limiting the map

calculation to within-task slightly worsens predictions (Figure 6.3B), on average by

1.7% (“what” 1.9% ± 1.0%; “where” 1.6% ± 0.8%). This reduction is likely due to

the smaller amount of data over which the map is computed, as the baseline shows a

similar or larger drop (“what” 1.9% ± 0.3%; “where” 4.1% ± 0.9%). The significantly

larger drop in the “where” condition (p=0.004, t-test), however, suggests that general

spatial biases are slightly less relevant, as compared to image-specific effects, in the

“where” condition. This is in line with the faster spread of fixations during search

(Figure 6.2D,E).

Predicting fixations with a map from the other task is consistently worse than

within-task prediction (Figure 6.3B) and significantly worse (at p < 0.05) in all but

one observer (MW). This difference occurs even though the fixation map is based on

four observers in the other task and only three in the same task. Nevertheless, even

across-tasks, the prediction is above chance for all but one image (JB for the image

of an isolated chair, Figure 5.1(4,4)). In the random reassignment baseline there is

no difference between prediction within and across-tasks (p > 0.05 for all observers),

such that we have no evidence for a task modulation of the generic component (or
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spatial bias) of inter-observer consistency. Within “where” observers prediction does

not consistently depend on target presence (Figure 6.3C), ruling out that fixations

on or close to the target dominate inter-observer consistency in the “where” task. In

summary, there is enough inter-observer consistency to predict another individual’s

fixations, despite some task dependence.

6.4 Object Recall Consistency

In each of the 93 images, there were between 6 and 16 objects recalled by at least one

observer and 10.5 ± 2.3 (mean ± sd) on average (Figure 6.4A). Across all images,

the 8 observers recalled 981 individual objects (object categories are counted across

images but once per image). Obvious synonyms were treated as the same object, while

subcategories and parts were counted separately. Nearly half of the objects (457/981,

46.6%, Figure 6.4B) were recalled by only one individual, another 18.7% (183/981)

only by two individuals. Analyzing the four observers in each task separately, the

objects recalled by a single observer account for more than half of the objects recalled

(“what” 338/590, 57.3%, Figure 6.4C; “where” 418/794, 52.6% Figure 6.4D). In all

images there was at least one object recalled by at least four observers (Figure 6.4E).

In 64/93 (68.8%) images, there was an object, which at least 7 observers recalled, and

in 27/93 (29.0%) images, at least one object was recalled by all 8 observers (Figure

6.4E). This means that in most images, there is at least one characteristic object,

an object that is recalled by most of the observers. This motivates the search for

distinctive properties of these characteristic objects.

The order in which a given object is recalled presents an alternative measure

how characteristic or important an object is for a scene. There is a highly significant

correlation between recall frequency and recall order (r = −0.31, p = 2×10−23, Figure

6.4F, black). Actual recall ranks differ significantly from a baseline that corrects for

having no lower limit on how many objects one recalls (Figure 6.4F, gray). Note that

correlation values treat each of the 981 objects as individual datapoints, which is also

used for the fits in the figures. Correlating naming frequency to mean values would
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result in higher correlation values (r = 0.97, p = 6×10−5). That is, individuals name

frequently recalled objects earlier than idiosyncratic objects.
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Chapter 7

Early Saliency and Fixations

7.1 Early Saliency Predicts Fixations Poorly

In this section, we assess how well saliency maps predict fixations. Basic fixation

statistics, such as duration and spatial distribution, exhibit the expected dependence

on task (Figure 6.2): in the “where” task, fixations last less time and are more

widely spread. In some images saliency is an excellent predictor of fixated locations

(Chapter 5), while in other images prediction is poor; the right panel of Figure 6.1C

shows extreme examples of prediction performance. When pooling over all observers’

fixations, the saliency map model’s prediction is better than chance (50%) in 77/93

images. The mean area under the ROC curve is (57.8 ± 7.6)%, significantly different

from chance (p = 5 × 10−16, t-test). To understand the meaning of this number,

we compute the random assignment baseline as lower bound and the inter-observer

prediction as upper bound.

To account for possible effects of spatial bias, we compute a random reassignment

baseline (Chapter 5), as has been suggested earlier [84,127]. We superimpose fixations

from one randomly chosen image on the saliency map of a different image. An effect

resulting from generic biases would appear in this baseline. AUCs for this baseline

reach (52.9 ± 5.7)%. Although this number is significantly larger than chance (p =

3 × 10−6), it is significantly exceeded by saliency’s performance (57.8 ± 7.6)% (p =

2 × 10−6, t-test). Hence the prediction of fixations by saliency is not a consequence

of general spatial bias alone.
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As an upper bound we measure the fixation consistency of distinct observers.

The fixations of one observer are predicted by a map generated from the fixations

of all others with an average AUC of 88.9% (Figure 6.3). This number is far above

the 57.8% obtained for saliency, which suggests that fixation prediction by saliency

maps, albeit better than random, is far from optimal.

7.2 Task Independence of Saliency Map Predic-

tions

Several recent studies [48, 139] suggest that saliency maps do not predict fixation in

search tasks. As discussed above, we find a small amount of predictive power. Across

our set of images, we do not find the prediction to be generally better for “what” than

for “where”, although the differences in prediction performance can be substantial for

individual images (Figure 6.1D). Therefore, across our set of object-rich images there

is no evidence for saliency maps generally predicting fixations either better or worse

in search tasks than in free-viewing for recall.
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Chapter 8

Objects and Fixations

We now explore an alternative hypothesis: observers fixate objects instead of salient

regions. If objects tend to be more salient than background then saliency maps would

predict fixations indirectly, instead of driving fixation directly.

8.1 Predicting Fixations with Object Maps

To test how well objects predict fixations we define object maps in analogy to saliency

maps (Chapter 5). The object map predicts fixated locations above chance in 83

images, with a mean AUC of 65.1% ± 10.6%, which significantly exceeds chance

(p = 5 × 10−24, t-test, Figure 8.1A). This is not fully explained by general spatial

biases, as it exceeds the random reassignment baselines of object maps and fixations

(59.8% ± 10.7%) significantly (p = 0.001, t-test). When comparing the predictions of

object map and saliency map for individual images, the object map outperforms the

saliency map in 68 images, while the opposite is the case in only 25 images (Figure

8.1A). The image-specific ROCs are invariant to monotonic transformations, making

direct comparison possible. A sign test shows that this fraction (68:25) is highly

significant, even when ignoring the absolute size of the effect (p = 9 × 10−6). The

default object map is weighted by the number of observers recalling an object. If

instead the object map is based on the number of objects overlapping with a given

pixel, the mean AUC drops to 61.9% ± 10.5%. This is significantly below the value

for weighted maps (p = 0.04), but still significantly above the saliency maps’ fixation
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prediction (p = 0.003). Image-by-image comparison shows that even the unweighted

map outperforms raw saliency in 57/93 images, again a significant fraction (57:36,

p = 0.04, sign test). Consequently, in most images, knowing the objects is more

predictive of fixations than only knowing early saliency, even if the recall frequency

of objects is unknown.

8.2 If Objects are Known, Early Saliency Con-

tributes Little to Fixation Prediction

Object naming frequency predicts fixated locations in images. On average, this pre-

diction is better than that of early saliency (Figure 8.1). Does saliency contribute

any information beyond what objects tell us already? And vice versa? As first

quantification, we ask how much a linear combination of maps can improve fixation

prediction. Each pixel (x, y) in the image i has a value for the object map Oi(x, y)

and the saliency map Si(x, y). To account for their correlation, we treat Oi and Si as

dimensions of a plane, on which each original pixel is plotted. Note that the maps are

normalized to the same dynamic range (0 to 1). For these data, we perform principal

component analysis (PCA) and project the values on the principal axis. By reassign-

ing the spatial coordinates, we obtain the linear combination of object and saliency

maps that accounts for the most variance. Performing the signal detection analysis

on this map yields a performance of 65.0% ± 11.6%, which is indistinguishable from

the performance of the object map alone (p = 0.995, t-test), but significantly better

than early saliency alone (p = 10−6). The optimal linear combination of object and

saliency maps is provided by Fisher’s linear discriminant analysis (LDA).

Analogously we compute a map by projecting on the most discriminative dimen-

sion for separating fixated and non-fixated pixels. By construction, the prediction of

this map for each image is better than the best of the individual maps. The average

AUC over all images is 69.5% ± 8.2%, only 4.5% larger than the prediction by the

object map alone. Hence the optimal linear combination of early saliency and object
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map is only slightly better than the object map alone. Conversely, the optimal linear

combination exceeds the AUC of saliency alone by 11.7%. This shows that early

saliency does not add substantially to fixation prediction once recalled objects are

known, while object maps are informative even when raw saliency is known. As we

did not separate training and test set, 69.5% is an upper bound to the predictive

power of the combined map on novel data. This is a strong indication that knowing

saliency provides little extra information, once the objects are known.

8.3 Predicting Fixations with Object Saliency

Next we perform an alternative analysis to test whether saliency provides extra in-

formation on fixation probabilities beyond that already provided by object outlines.

We combine object and saliency maps by computing four kinds of object saliency

maps determined by two decisions: The first choice floods the object footprint with

either the maximum object saliency, the maximum saliency map value inside the ob-

ject, or the total object saliency, the sum of saliency map values inside the object.

The second choice either weights the object with how many observers recalled it for

observer-weighted or ignores recall frequency for unweighted. Fixation prediction with

observer-weighted saliency maps is indistinguishable from object maps alone (65.1%):

maximum object saliency results in 65.1% ± 10.9% AUC (p = 0.98, t-test), and to-

tal object saliency in 62.8% ± 12.0% (p=0.18). For unweighted maps, the numbers

drop to 63.3% ± 11.4% and 62.3% ± 11.7%, respectively. These values fall between

the results for weighted and unweighted object maps, but are indistinguishable from

either (comparison to weighted object map: p = 0.26 and p = 0.09; comparison to un-

weighted: p = 0.40 and p = 0.82). This strengthens the result that–once the objects

are known–saliency contributes little additional information to fixation prediction.
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8.4 Predicting Recall with Fixations

Next we consider how well fixations predict object recall. For all analysis we split the

objects into eight categories, depending on how many observers named the object.

First, we first pool fixations over all observers. The fraction of fixations that fall

inside an object’s boundary correlates with naming frequency (r=0.44, p = 7×10−49,

Figure 8.2A) as does the relative time spent inside the object (r=0.43, p = 3×10−45).

Frequently fixated objects are recalled more often. Using signal detection analysis,

we compute how well the fraction of fixations inside an object discriminates objects

recalled exactly once from objects recalled n or more times (Chapter 5). The fraction

of fixations inside the object predicts whether an object is named twice or more

(2+) compared to exactly once with an AUC of 70.3%. Objects named once are

discriminated from objects named 8 times with an AUC of 90.4% (Figure 8.2B). This

prediction is slightly better in the “where” task (67.2%, 76.3%, 81.1% for 1 vs. 2+, 1

vs. 3+, and 1 vs. 4) than in the “what” task (67.2%, 72.3%, 76.1%), but in general

fixations predict recall well.

Since fixations are collected from the same individuals as recalled objects, one

could argue that the relation between object maps and fixations just reflects the fact

that fixated objects are recalled better. We test how well object maps obtained from

a subset of observers predict the fixations of a different observer. As a baseline,

we first predict fixations of each individual (instead of pooled fixations) by the full

object map collected from all eight observers and average for each image over the

eight resulting AUC values. As expected the mean AUC over observers is close to

the pooled fixations (mean over images: 64.9% ± 10.8%, p = 0.94, t-test). More

importantly, excluding the map of the observer, whose fixations are predicted, does

not impair the result significantly (mean 64.5% ± 10.8%, p = 0.77). This shows

that the predictive effect of object maps is not contingent on including a particular

observer’s fixations. To verify this further, we asked a single observer to label all

objects in the ten images with best object map prediction. This observer was given

unlimited time and paid based on the amount of labeled objects. Note that overlap
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of different objects prevents even the map of a single observer from being binary and

from simply converging to uniformity. As expected, the prediction of this individual’s

object map is worse than the eight-observer object map for all ten images tested.

However, the prediction of the individual’s object map is still better than chance in

10/10 and better than that of the saliency map in 9/10 images. This shows that the

predictive effect of the object maps is not contingent on the map resulting from the

same observer or limits on labeling time.

We also look at the relationship between the fraction of fixations that fall on an

object and the log-odds of an object being named versus not named. Here, we count

an object as fixated if some fixation falls within 1◦ visual angle or 36 pixels of the

object mask. We compare the fraction of fixations for named and unnamed objects.

A higher fraction of a subject’s fixations falls on named objects for all viewers (all

subjects excluding MC p ≤ 10−11; MC p = 0.03) for a Wilcoxon rank sum test with

a Holm-Bonferroni correction (Figure 8.3A). We also find a higher fraction of other

viewer’s fixation on named objects for seven out of eight subjects (p ≤ 10−5; MC

p = 0.11). It might be possible to explain away this relationship as viewers naming

objects they fixate, instead of fixating objects. However, a similar relationship is

seen between one’s own fixations and others’ fixations on average (Figure 8.4) and for

individuals (Figure 8.3B). This in turn could be explained by the correlation between

different viewers’ fixations. We take a step farther and consider the fixations of other

observers on objects that were not fixated by the observer in question (Figure 8.5).

As few (10-16%) named objects were not fixated by the viewers (excluding MC 30%)

the individual tests were not significant, but pooling the data across subjects and

excluding MC yielded a just significant result (p = 0.49). The recall of observer

MC is not well predicted by the fixations of others (Figure 8.3B) and MC made

fewer fixations than other viewers (Figure 8.6). Such a clean relationship is not seen

between recall and the absolute number on fixations on an object or the distance of

the nearest fixation to an object (Figure 8.7).

In summary, although fixations and recall are coupled, this effect is not observer-

specific. Instead of recalling an object because of having fixated it, frequently recalled
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objects are fixated frequently, even when fixations and recall come from different

observers or the recalling observer does not fixate the object.
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Chapter 9

Saliency and Object Recall

So far we have shown that saliency maps predict fixations to a limited extent, and

frequently recalled objects are preferentially fixated. Next we aim at completing the

argument that saliency maps predict objects and thus predict fixations indirectly.

The missing part has recently been suggested (Elazary and Itti, 2008), but needs to

be demonstrated for our data and conditions: How well do saliency maps predict

object recall, how do their predictions compare with the predictions of other object

properties, and do their predictions extend beyond fixation alone?

9.1 Object Saliency Predicts Recall Frequency

We assign each object a relative total object saliency, defined as the sum of saliency

map values on the object divided by the sum across the whole image. Across all

objects and observers, object saliency is highly significantly correlated to recall fre-

quency (r = 0.38, p = 2 × 10−34, Figure 8.2C). Does this imply that object saliency

predicts recall frequency on an object-by-object basis? As earlier, we perform signal

detection analysis, testing how well objects named once can be discriminated from

objects recalled more often. Based on object saliency, objects named by all observers

are distinguishable from those named once with an AUC of 85.0%, and even objects

named twice or more are distinguishable from those named once by an AUC of 68.2%

(Figure 8.2D). This is only slightly worse than prediction by the fraction of fixations

(Figure 8.2B); total object saliency predicts recall frequency nearly as well as the
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fraction of fixations on an object. For the “what” task, we find AUCs of 68.9%,

72.0%, and 76.6% for distinguishing an object that is named by exactly one observer

from those named by two observers or more, named by three observers or more, and

named by all four observers. The results for the “where” task are only slightly dif-

ferent and the differences do not have a consistent sign (AUC: 66.8%, 72.2%, 74.6%).

This shows that object saliency’s prediction of recall is not task-dependent.

Since total object saliency scales with object size, we also consider maximum object

saliency, the maximum saliency map value inside an object. Although the correlation

between maximum object saliency and recall frequency is lower than for total saliency

(r = 0.25, Figure 8.2E), it is still larger than all other measures except object area,

and is highly significantly different from 0 (p = 1.2 × 10−15). Similarly, prediction

by maximum object saliency reaches AUCs from 62.3% (1 vs. 2+) to 72.9% (1 vs.

8), lower than for total object saliency, but still substantially above chance (Figure

8.2F).

Several measures other than object saliency suggest themselves for predicting

object recall. For object location there is a highly significant correlation between

the mean horizontal distance of an object to the image center and its recall frequency

(r = −0.20; p = 2 × 10−10), whereas the vertical distance exhibits no significant

correlation (r = −0.04, p = 0.19). Object size also seems intuitive for recall. Recall

frequency is significantly correlated to the area covered by the object (r = 0.32,

p = 2 × 10−24), and the length of the object’s boundary (r = 0.22, p = 8 × 10−12).

Although this indicates that observers preferentially recall large, central objects, the

correlation between total object saliency and recall frequency (Figure 8.2C) exceeds

all other measures tested. These object measures are correlated with object saliency

measures and thus partly redundant in predicting object recall.

9.2 Combinations of Properties Predict Recall

Total object saliency combines the saliency of an object and its area to a common

measure. So, both measures are tightly correlated (r = 0.76, p = 3×10−186); similarly,
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boundary length and area are trivially coupled, with larger area implying a longer

boundary (r = 0.63, p = 8 × 10−110). As only parts of objects within the image

are used to determine its center of mass, large objects are biased toward the center,

reflected in a correlation between center distance and area (r = −0.30, p = 4×10−22).

Maximum object saliency is correlated to all these measures, trivially to total object

saliency (r = 0.56; p = 1.5 × 10−81) and to object area (r = 0.39,p = 3.4 × 10−36).

The latter correlation can partly be understood as a consequence of the sparsity of

saliency maps: peaks are rare, while low values occur frequently; hence, larger objects

have a slightly better chance to capture a peak.

How well does a linear combination of these properties predict recall frequency?

Combining area and total object saliency by performing discrimination along the

first principal axis of all data yields slightly better results than either measure alone:

AUCs range from 69.2% (named once versus named twice or more, Figure 9.1) to

86.2% (once versus eight times). Similar unsupervised inclusion of the other measures

or combining more than two measures does not yield better prediction performance

(Figure 9.1).

Hence, total object saliency is a better predictor of recall than all other measures

combined, and including other measures only marginally improves prediction. As

object saliency enables good prediction of how often an object is recalled, how re-

dundant are fixations? Figure 9.2A depicts the relation of total object saliency and

fraction of fixations inside an object. Combining the measures along the principal

axis of all data slightly improves the discrimination of rarely named objects from

others, but does not improve already good discrimination (Figure 9.2B). Similarly,

maximum object saliency and fixations on an object are related in predicting recall

(Figure 9.2C), but fixation does not add much to object saliency (Figure 9.2D). In-

terestingly, combining maximum object saliency with object area does not reach the

levels of total object area, which argues against the effect of total object saliency

resulting from its correlation with object area. This implies that frequently named

objects are distinguished from rarely named objects by virtue of maximum or total

object saliency and knowing the fixations provides little extra information.
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colors denote measures as given in panel legend. Measures including saliency or area
outperform the other measures.

Interestingly, for idiosyncratic objects the fraction of fixations inside the object is

consistently low. Less than 25% of such objects have a fixation fraction above 8.9%.

In contrast, for objects recalled by all observers the middle half of data extends from

15.8% to 70.4%. In general, objects recalled by many observers received a wider range

of fraction of fixations, than objects recalled by few (Figure 9.2E). A similar tendency

is observed for total object saliency (Figure 9.2F).

It is tempting to speculate that objects recalled by many observers do not require

a fixation to be recalled, while a fixation is necessary to recall objects that are re-

called by few. In this view, objects recalled frequently would be named because they

are diagnostic for a scene or consistent with its general context, while lesser named

objects are primarily recalled as a consequence of fixation. If this hypothesis holds

true, the probability to fixate an infrequently recalled object should be larger for the

observers recalling it, or recalling observers, than for the non-recalling observers. This

difference should be less pronounced for more frequently named objects. Of the 457

idiosyncratic objects, the recalling observer fixated 188 (41.1%). This compares to
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33.6% of non-recalling observers fixating the same objects. Hence, for idiosyncratic

objects, recalling observers are about 22.5% more likely to fixate the recalled object

than non-recalling observers. The symmetric situation is constituted by the 52 ob-

jects that have seven recalling and one non-recalling observers. Here 78.3% of the

recalling observers fixated the object, compared to 73.1% for non-recalling observers.

Hence for frequently recalled objects, recalling observers are only 7.1% more likely to

fixate the object than non-recalling observers. Similar patterns arise if the fraction

of fixations inside the object is considered instead of binary fixated/non-fixated split:

For idiosyncratic objects, the fractions are 10.5% for recallers, compared to 7.9% for

non-recallers, an increase of 32.9%. For objects recalled by seven observers, the in-

crease is merely 7.9% (34.9% compared to 32.3%). The increase in fixation fraction

from non-recallers to recallers is anti-correlated with the overall number of observers

recalling the object (1,...7) (r = −0.85, p = 0.02). Consequently and consistent

with the hypothesis, the relative benefit of fixation for recall reduces with increasing

number of recalling observers.

9.3 Saliency Predicts a Scene’s Most Characteris-

tic Object

As described before, all object saliency measures are correlated with other object

properties such as area. To estimate the effectiveness of saliency in identifying relevant

objects in a scene, a more direct approach is to ask whether saliency can predict

the most frequently recalled or characteristic object. The object with the highest

total object saliency is among those named most frequently in 34/93 images. The

most frequently named object is unique in 77/93 images (in all but one image, no

more than two objects share the highest naming count). In 28/77 of these images,

the object most frequently named has the highest total object saliency (Table 9.1).

For comparison, we measure the probability of obtaining this result through random

selection. By performing 10,000 simulations of this drawing process, we estimate the
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expected numbers to be 11.0/93 and 7.7/77, more than threefold below the actual

values. The maxima obtained across these 10,000 simulations are 25/93 and 19/77.

This indicates that the probability of obtaining the actual numbers of 34/93 and

28/77 at random is far below 1/10,000 (p � 10−5). Hence, total object saliency

predicts the most frequently named object significantly better than uniform random

selection. Since total object saliency factors in object area, we also tested maximum

object saliency. The object with highest maximum object saliency is among the most

frequently selected in 35/93 and 26/77 images (P93(X ≥ 35)� 10−5;P77(X ≥ 26)�

10−5). Remarkably, 9/26 (13/35) of these objects were not selected by total object

saliency (Table 9.1).

How does the object saliency measure compare to other measures in predicting

the most frequently named object? The largest object is among the most frequently

named in 22/93 (16/77) images, which is still significantly better than chance (sim-

ulations: P93(X ≥ 22) = 0.001; P77(X ≥ 16) = 0.004) but more than 50% exceeded

by the 34/93 and 28/77 of saliency. Similarly, proximity to the image center is not as

predictive (23/93, 18/77; P93(X ≥ 23) = 0.0006, P77(X ≥ 18) = 0.0006) as saliency.

Choosing the object with the longest boundary is indistinguishable from random

selection (13/93, 7/77; P93(X ≥ 13) = 0.30, P77(X ≥ 7) = 0.65). This shows that

although object size and central bias contribute to object selection, they are exceeded

by both total and maximum object saliency.

The characteristic object is among the largest, most central, and longest boundary

objects in 36/93 (27/77) cases, making this combination of properties comparable to

or worse than object saliency (Table 9.1). In only 10/59 (7/49) images for which the

characteristic object is not the most salient do the other measures predict this object.

Hence, the other measures provide additional information to object saliency in only

a few images. So, object saliency predicts the most frequently named object better

than any other tested measure or combination of them. Furthermore, other measures

do not add much, once object saliency is known. In summary, object saliency best

predicts which object is most frequently recalled in each image.



94

Table 9.1: Out of the 77 images, which have a unique characteristic object (2nd
column), this object has the highest total object saliency in 28 images (4th column),
the highest maximum object saliency in 26 (5th column), is the largest in 16 (7th
column), the closest to the center in 18 (8th column), and the one with largest
boundary in 7 (9th column). The maximum of the saliency map falls on the most
frequently recalled object in 22 images (6th column), even if the fraction of image
covered by this object may be as small as 4% (number in 6th column).

Times Highest Highest Saliency Largest Closest Longest
Image Most Named Named Total Saliency Max Saliency Peak Area to Center Boundary

9 Church 8 X X (.30)
16 Car 8 X X X X
24 Man 8 X X X
26 House 8 X X X X
27 Chair 8 X X X (.36) X X
31 Road 8 X
40 TV 8 X X X (.25) X
46 Lamp 8 X X
48 Building 8 X X X (.14)
59 House 8 X X X (.49) X X
65 Car 8 X
69 Pool 8 X X (.68)
71 Pool 8 X X
73 Mailbox 8 X
84 Shed 8 X X
85 Bed 8 X X X (.20) X
91 Lightbulb 8 X X (.12)
5 Painting 7 X X X (.50) X X
12 House 7 X
15 Parking Lot 7 X
18 Puzzle 7 X
19 Trailer 7 X X
20 House 7 X X X (.63) X X X
22 House 7 X X X (.30) X
25 House 7 X X X (.26) X
41 House 7 X X X (.42) X X X
46 Parking Lot 7 X
54 House 7 X X X (.67) X X
60 Woman 7 X X X (.31)
63 Car 7 X X X
80 Car 7 X
81 Team 7 X
90 House 7 X
4 Chair 6 X
14 Cafe 6 X
29 House 6 X
53 Building 6 X X X (.73) X
68 Ford-Sign 6 X X (.04)
74 Tree 6 X X X
77 Man 6 X X X (.31)
49 Companion 5 X X X (.56) X
58 Flag 5 X X (.07)
64 Bush 4 X X (.31)
83 Field 4 X

Sum 28 26 22 16 18 7
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9.4 Saliency Peak Falls on Frequently Named Ob-

jects

A complementary way of analyzing how well saliency predicts named objects is to ask

whether the peak or maximum value of the saliency map is located within a recalled

object and, if so, is it within the characteristic object. Note that this is different from

the maximum object saliency analysis before, as the peak is determined over the

whole image and there is a possibility that the maximum is not covered by an object.

The baseline for this analysis is the probability that the peak falls on the object at

random, which equals the object area divided by the image area. The peak falls on

a named object in 78/93 images (83.4%), compared to the mean over all images for

the baseline value (mean object coverage) of 77.0% ± 18.7%. To assess significance

we compare the mean of the baseline values to the fraction of images in which the

maximum is located within the object boundary (one value for the set), and find

them to be significantly different (p = 6.4×10−4, t-test). The most frequently named

object encloses the maximum of the saliency map in 29/93 images (31.2%), which is

again significantly larger than the baseline (22.6% ± 19.4%) of area covered by the

most frequently recalled object(s) (p = 4.6 × 10−5). Restricting analysis to the 77

images with a unique characteristic object, the maximum is in this object in 22/77

images (28.6%) compared to the 20.6% ± 17.8% of area covered by these objects on

average (p = 1.9× 10−4). Table 9.1 (6th column) provides a list of these objects with

the respective baseline values. In summary, these data show that saliency maps, even

without any further knowledge of object content, can be used to pick an image region

containing a relevant object better than chance. This reinforces the interpretation of

saliency maps as measures of (possibly pre-attentive) scene content.
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Conclusion

The present study reconciles two apparently conflicting views of attention: On one

hand, theoretical models use early features [58, 67] and presuppose saliency compu-

tation in early visual areas [76]. On the other hand, there is mounting physiological

evidence that saliency is computed later in the visual hierarchy: frontal areas, such

as the frontal eye fields [131] are known to represent saliency. Furthermore, recent

microstimulation experiments [3] suggest a direct link from FEF to saliency repre-

sentation in visual area V4, which is a prime physiological candidate for saliency

computation [4, 88, 95]. In light of our results, these views are not conflicting (Fig-

ure 9.3). Early saliency is computed in early visual areas V1 and V2, but alone has

only a small effect on attention guidance (57.8% AUC; Figure 9.3 black pathway).

Instead, early saliency in combination with other object properties models the proba-

bility of an object being recalled. The location of characteristic objects then predicts

attention (65.1% AUC) better than early saliency alone. Furthermore, adding early

saliency information to object location contributes little predictive power. LDA anal-

ysis shows that an upper bound on the linear combination of object footprints and

early saliency does not substantially exceed object recall alone (69.5% versus 65.1%;

green versus red). In this view, early saliency does not drive attention directly (Figure

9.3 black pathway), but through its correlation with object properties (red pathway).

In other words, the prediction of objects by saliency, together with the prediction of

fixations by objects, explain away the prediction of fixations by saliency. Based on

the aforementioned physiological evidence, we may speculate that areas high in the

ventral stream, such as V4 or IT, serve as an integration site of object recognition

and early saliency. Regardless of cortical site, our data indicate that the computation
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Figure 9.3: Right: Although early saliency predicts fixations to some extent (57.8%
average AUC), this prediction is mostly explained through correlations with object
recall (red). Object saliency is a measure of saliency within an object’s boundary,
which is highly correlated with recall frequency. The resulting object map predicts
fixations (65.1% AUC) slightly below the upper bound for an optimal linear combi-
nation with saliency (69.5%; green). The random reassignment baseline reveals that
some of the results are accounted for by general spatial biases, which are not specific
to individual images (blue). Idiosyncratic factors include everything not explained by
the mutual prediction of different observers (88.9% AUC). Left: putative brain areas
for computation of the individual steps: early saliency is based on early visual mech-
anisms, while object representations follow in higher ventral areas. This is consistent
with the prime site of saliency computation being in V4 or IT.
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of attention-driving saliency may be distributed, but has a component late in visual

processing that is relevant for natural scene perception.

The suggestion of the present data that saliency drives attention indirectly through

predicting interesting objects reconciles earlier findings: saliency map features do not

need to drive attention [9, 22, 129] despite saliency’s undisputed correlation with fix-

ations during free viewing [99]. However, we do not argue that saliency maps fully

answer how interesting objects are selected, or that saliency map features causally

drive object recognition. Further research by targeted manipulations of object prop-

erties is needed to analyze which stimulus features drive attention, and how they

relate to features that make an object interesting, characteristic, or diagnostic for

a scene and to different types of recall (tokens, types, scene gist, object positions,

etc.). However, our data suggest that the allocation of attention is preceded by some

pre-attentive scene understanding. This is in line with the data [13, 14], showing

that the even the earliest guidance of attention and fixation depends on whether an

object is semantically plausible in a scene. The minimum requirement for such a

decision is a coarse pre-attentive recognition of the scene context, or gist, and some

form of pre-attentive figure-ground segmentation. Taken with our present data, this

strongly suggests that attention cannot be understood as a mere preprocessing step

for recognition, but both need to be handled in a common framework.

In earlier studies of eye movements in natural scenes, prediction by saliency maps

could often be partly attributed to generic spatial biases in fixation and saliency.

Human photographers typically center objects in images (Figure 6.1A) and we prefer

to look straight ahead, so this double central bias can artificially enhance fixation

prediction [83, 127, 129]. Here, we find that the influence of such double biases is

substantial, but does not fully explain the observed relations (Figure 9.3, blue). Fur-

thermore, the bias must be represented in the brain and have adapted to stimulus

statistics. Hence, even a stronger bias than the one observed would not invalidate the

conclusions regarding the neural computation of attention guidance.

We do not find task dependence of saliency’s predictive power for fixation. Two

differences from previous studies may be responsible: first, our targets are verbally
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defined preventing observers from knowing their features in advance; second, the

locations of our targets are difficult to predict from context, which plays an important

role in search [135]. So our results do not necessarily conflict with these studies. The

effect of observer idiosyncrasies (e.g ., memories or cognitive preferences) is low for our

stimuli and tasks, as reflected by the high inter-observer consistency in mutual fixation

prediction (88.9% AUC). It is well conceivable that this number, which bounds the

possible performance of bottom-up models, may drop substantially for different tasks

or stimuli. This, however, would only strengthen the conclusion that higher sites

are important for driving attention. We stress that the interaction of top-down and

bottom-up is not topic of the present study. Instead, we focus on the bottom-up

aspect, in evaluating the relation between early saliency and object saliency.

In any study of overt attention or object recognition, stimulus choice is critical.

Stimulus category influences the prediction performance of saliency maps and other

attention models [20,97,99,103,104]. For our photographs of complex everyday scenes,

fixation prediction (58% AUC) is within the range of similar paradigms, which extends

from 53% for the foliage images of Einhauser et al . [23] to the 68% of Peters et al . [99].

In terms of relating saliency maps to fixations, our images are typical.

The result that interesting objects are often accompanied by high saliency values

was independently observed in a recent analysis [28] with a complementary approach:

while we used a controlled setting, these authors used the large LabelMe database

annotated remotely by often unknown observers [115]. The fact that Elazary and

Itti arrive at similar conclusions about the prediction of objects by saliency maps

supports that this finding is not a consequence of our specific setting, tasks, or image

material. Our data confirm the findings of Elazary and Itti on the relation between

saliency and object naming in a controlled subject population and adds the direct

measurement of fixations. However, neither our data nor Elazary and Itti’s prove a

causal link between saliency and object recall. Saliency might merely be a correlate

instead of a guiding principle of where objects are in natural scenes. The extent

to which low-level features, such as those of the saliency model, guide object recall

remains an interesting issue for further research.
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Object saliency’s prediction of object recall suggests that models of attention may

characterize object properties in natural scenes. This opens several further lines of

research. First, can attention models not only predict free recall, but also recognition

performance under difficult conditions? Evidence suggests that a Bayesian model of

surprising events not only predicts attention allocation [57], but also predicts human

errors during natural scene recognition [24]. Second, can we adapt low-level models

of object recognition to predict attention allocation? Walther et al . [147] have pro-

posed an architecture that shares features between attention and recognition. Third,

can manipulating scene statistics dissociate attention and recognition? While these

questions are beyond the scope of this paper, our data indicate that investigating the

coupling of attention and recognition will be fruitful for understanding human vision

under natural conditions and for modeling attention and recognition in real-world

scenes.

Although frequently named objects are generally more fixated and more salient,

the number of fixations on an object shows a larger variation for frequently named

objects than for rarely named ones. In addition, if only one observer recalls a partic-

ular object, she has a slight tendency for a larger fraction of fixations on that object.

Since we ask for keywords, we may have biased observers to name scene-diagnostic

objects. It is therefore possible that rarely named objects could still be remembered,

if they were specifically queried. In this view, less expected objects need more fixa-

tions, or more salience, to be named. This is in line with the idea that surprising or

unexpected events draw attention, whether they deviate statistically [57] or seman-

tically [42]. Indeed, implausible objects (i.e., objects that conflict with scene gist)

tend to be recalled better [100], although they are recognized worse [12] and their

effective field of view is smaller [13]. Whether semantically implausible objects are

fixated earlier or even pop out [78] has remained controversial. Recent studies that

use more complex scenes than Loftus and Mackworth [78] and control the saliency of

the critical item, typically do not find an early preference to fixate implausible ob-

jects. Instead, they find that implausible objects are fixated longer, more likely to be

fixated again [49], and are fixated earlier than plausible objects only after prolonged
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viewing [140] or if they appear while saccadic suppression suppresses bottom-up at-

tention capture [7]. Under some experimental conditions the recall of an item is

improved by increased numbers of fixations on the object [55], although this effect

can be restricted to certain aspects of the item and depend on query methods [130].

The effect different object properties (saliency, object properties, fixation frequency,

naming frequency, etc.) have on the ability of an observer to recall an item when

queried will be an interesting issue for further investigation. The diversity of find-

ings stresses that the querying for keywords in the present study and the unknown

motivation of LabelMe participants in Elazary and Itti [28] may yield substantially

different results from other tasks, such as change detection or item recall.

In conclusion, we provide evidence that interesting objects, not early features,

guide human attention. In this view, saliency maps model the saliency of an object

instead of the saliency of a location. We stress that this does not deny the usefulness

of saliency maps. On the contrary: saliency maps are reinterpreted as unsupervised

models of characteristic objects in a scene, irrespective of whether their features

causally drive object recall. Some high-level scene interpretation is rapidly available

to the visual system [75,114,132], potentially faster or with less effort than low-level

concepts [53,75]. With the present data, this suggests another interesting speculation:

eye movements or spatial attention are by-products of object-based attention or object

recognition.
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Part III

Generalized Object Detection
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Category-independent object detection, or detecting objects without explicit class

labels, could facilitate unsupervised learning about novel objects [117], enable smarter

image retargeting, and increase speed in recognizing objects in scenes. Also, there is

evidence that humans must separate an object from its surround prior to recogniz-

ing it (e.g ., Where’s Waldo?) [33, 74]. In 2010, alternative algorithms for category-

independent object detection were proposed by Alexe et al . [2] and Endres and

Hoiem [29].

Category-independent object detection could determine which regions are likely

object candidates so that expensive operations are not wasted on obviously non-

object regions. Object recognition approaches founded on sliding windows [143] or

segmentation [46] could directly benefit from this. Specifically, category-independent

object detection could reduce false positives and increase detection speed.

There is currently no appropriate benchmark to compare category-independent

object detection methods. Challenging well-designed benchmarks have a history of

driving progress in computer vision. The Berkeley Segmentation Dataset [86], the Cal-

tech 101 [35] and PASCAL VOC [31] object categorization datasets, and the Caltech

Pedestrian Dataset [16], helped direct research efforts toward successful approaches

in their fields. In this vein, our aim is to provide a suitable benchmark so researchers

can compare performance on appropriately annotated, challenging images. The im-

ages in this dataset are rich scenes captured by a professional photographer and are

not biased, since they are collected independently of machine vision research.
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Chapter 10

Previous Work

The layout of the paper is as follows: Section 10.1 discusses previous work toward the

goal of detecting objects independent of category membership. Section 10.2 describes

the shortcomings of the datasets used for evaluation in the previous work. Section 11.1

describes the Shore dataset that we will release to address these shortcomings. Sec-

tion 11.2 compares the metrics that have been used to evaluate category-independent

object detection. Section 11.3 evaluates the major approaches toward category-

independent object recognition on both the Shore and PASCAL VOC datasets. Sec-

tion 11.4 discusses our findings.

10.1 Methods

Work on category-independent object detection has focused on detecting either a

single object per image or multiple objects per image. Single-object approaches are

relevant, but unsuitable for our multiple-object images. Segmentation plays a key

role in both the single-object and multiple-object cases.

Detecting a Single Object

Liu et al . focused on the problem of localizing a single salient object in a photo [77].

They combined a collection of features, such as RGB chi-square distance and multi-

scale contrast. They mentioned applying inhibition of return to detect multiple salient

objects, but provided neither method nor analysis.
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Alexe [2] Endres [29] Hou [56]

Saliency ◦ ◦
Segmentation ◦ ◦
Boundaries ◦ ◦
Color distance ◦ ◦
Texture distance ◦
Occlusion ◦

Table 10.1: Comparison of visual cues used by Alexe et al ., Endres and Hoiem, and
Hou and Zhang.

Kim and Torralba considered the related problem of finding regions of interest

(ROIs) in cluttered, unlabeled web images [65]. They iteratively chose exemplars

across a dataset and refined ROIs with respect to the exemplar set. The authors

assumed that each photo had exactly one ROI and that categories were repeated

frequently across the dataset. These assumptions preclude detecting multiple objects

or unseen object categories in an image.

Detecting Multiple Objects

Ma and Zhang took the fuzzy grown connected components of a contrast-based

saliency map to be detections [81]. The results were judged qualitatively without

comparison to baselines or other methods.

Rutishauser et al . segmented a region in a feature map with adaptive thresholding

[117]. They evaluated recognition instead of detection.

Hou and Zhang defined a spectral residual saliency map [56]. Drawing inspi-

ration from the scale invariance observation in natural image statistics, Hou and

Zhang equated spectral residual saliency with bumpiness of the log Fourier spectrum.

They thresholded a saliency map and took connected components to be detections.

Therefore, this method cannot detect large, hierarchical, or overlapping objects (e.g .,

Figure 10.1).

Alexe et al . formulated the problem as measuring how likely it is for an arbitrary

bounding box to cover an object of any class [2]. To calculate an objectness score
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Figure 10.1: The spectral residual saliency map (left) results in candidate object
regions (right) when thresholded.

they combined spectral residual saliency, LAB chi-square distance, and Canny edge

density near the detection boundary. However, the feature that they found most

useful was superpixel straddling, a measure of how well a bounding box aligned with

superpixels [110]. They used training data to learn the eight parameters of their cues,

which in turn produced an objectness value for a bounding box.

Endres and Hoiem [29] approached the category-independent object detection

problem with two steps. First, they generated a set of segments grounded in hier-

archical segmentation. Second, they ranked the segments aiming to rank one clean

segment of each object object highly. Features they used for the ranking include color

chi-square distance, texture chi-square distance, boundary strength, and occlusion in-

formation. They use training data to both propose and rank objects.

We evaluated three of the methods described in this subsection, but not the fourth,

Ma and Zhang [81], as it is nearly redundant with Hou and Zhang [56]. Table 10.1

compares the visual cues used by the methods we evaluated.

Segmentation as the Crux

In the methods reviewed earlier, segmentation provides important information. Here,

we explain how.
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Figure 10.2: The box aligned with the lamp disconnects fewer pixels from their seg-
ments, reducing the striped area.

Kim and Torralba observed that superpixels tend to be contained within objects

instead of crossing boundaries. This indicates that bounding boxes should contain

entire segments. Starting with an oversegmentation, they generated detections as

minimum bounding boxes on segment combinations.

Alexe et al . used segmentation to evaluate instead of to propose bounding boxes.

They oversegmented an image with Felzenszwalb and Huttenlocher segmentation [37],

and reasoned that a good window should not break superpixels in half. Figure 10.2

shows two examples of this measure in action. A well-aligned window results in less

orphaned area (the smaller portion of a broken superpixel). However, this treats

object and background segments equivalently.

Endres and Hoiem proposed regions as likely object candidates based on segmen-

tation. Each detection was grown by appending superpixels likely to belong to the

same object as a subregion of the image assumed to be foreground.

10.2 Datasets

The methods discussed in the last section were all tested on different datasets, so

their relative performance is unknown. Here, we discuss why these datasets are inap-

propriate for evaluating category-independent object detection. Figure 10.3 displays
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Figure 10.3: Comparison of image datasets used for category-independent object
detection. Our dataset is shown in Figure 11.1.

Objects Image Annotators
Dataset Images per Im. max side per Im. Categories Used by

MSRA 20,840 1 400 3 All Liu et al . [77]
VOC2007 Test 4,952 2.4 500 1+1 20 Alexe et al . [2], Kim and Torralba [65]
VOC2008 Seg.Val. 512 2.3 500 1+1 20+2 Endres and Hoiem [29]
BSDS Test 100 2.2 481 3+ All Endres and Hoiem [29]
Spectral 62 1.6 256-1280 4 All Hou [56]
LabelMe 30,369 3.3 Any 1+ All, parts No relevant work
Shore 536 27.0 800 x 600 25 All, parts New Benchmark
VOC2007 MTurk 200 24.8 500 25 All, parts New Annotation

Table 10.2: Existing datasets contain smaller images with one or two objects an-
notated per image. LabelMe is a dynamic dataset so numbers are from a specific
date [115].



109

example images, and Table 10.2 contains the statistics from all the datasets discussed

in this section.

The MSRA Salient Object dataset addresses the problem of detecting a single

salient object in a photo [77]. So, the images generally contain a single annotated

object.

The PASCAL VOC image set [31] consists of 20 object categories labeled over a

large collection of photos. Each photo was annotated by one human and checked by

another. Objects of categories other than the chosen 20 are not annotated; we find

that the annotated objects only account for one-tenth of the visible objects (Table

10.2).

The PASCAL VOC Segmentation Taster marks objects in a subset of VOC

images pixel-wise instead of by bounding box. As with the standard VOC image

set, object categories other than a select 20 are unmarked. Additionally, since pixels

belong to a single-object, parts cannot be objects.

The Berkeley Segmentation Dataset (BSDS) [86] enabled quantitative eval-

uation of segmentation and boundary detection. Objects are not annotated in the

dataset, so Endres and Hoiem added annotations that agreed with the original bound-

aries. The annotations were generated by the researchers without a formal procedure

to distinguish objects from non-objects.

The Spectral Residual dataset is a small set of images with annotations summed

across viewers [56]. Hou and Zhang motivated their method as exploring the prop-

erties of backgrounds. Correspondingly, these images have large homogeneous back-

grounds and small non-overlapping objects.

LabelMe allows anyone to upload photos or annotate objects of any type with

a polygon and a keyword [115]. However, there are possibilities of bias and incon-

sistency: Machine vision scientists upload images for particular tasks. There is no

redundancy in annotation, and annotators provide quality control themselves.
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Chapter 11

Benchmark

11.1 New Dataset

As existing datasets have simple images, small images, limited categories of anno-

tation, or inconsistent annotations, we introduce a new dataset. We describe our

method of collecting bounding boxes and our high-resolution, object-rich image set,

which was not collected for category recognition.

Annotation Collection

To generate a dataset of category-agnostic objects requires discussion of what an

object is. Alexe et al . give this definition of an object:

Objects are standalone things with a well-defined boundary and center,

such as cows, cars, and telephones, as opposed to amorphous background

stuff, such as sky, grass, and road.

This is a clear, straightforward operational definition. Unfortunately, the human

concept of an object is inherently flexible such that parts are often valid objects. Is

the door of a house an object, as well as a part? What about a nose? At what scale?

Alexe et al . avoid this issue, because none of the VOC objects are parts of other VOC

objects.

Another issue is that while most objects have well-defined physical boundaries,

they do not always have well-defined image boundaries, as anyone working in seg-
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mentation knows far too well. Also, people will spontaneously group a V formation

of geese into an object, although it lacks physical boundaries.

Our solution is pragmatic: ask users to provide bounding boxes for objects in

scene photographs without telling them what an object is. Humans readily and

consistently carry out this task without a definition of object. Creating a suitable

benchmark may help clarify the task of category-independent object detection. We

believe that generic object detection is as well-defined as other vision tasks such as

boundary detection, texture classification, and shape recovery. Traditionally machine

vision has studied many visual tasks that are not goal-directed.

For each image, we collected up to ten object bounding boxes each from 25 Amazon

Mechanical Turk workers. Amazon Mechanical Turk workers were instructed:

Draw a tight-fitting rectangle around each object you see. You may stop

at 10 or when you run out of objects, whichever comes first. If you skip

objects and provide fewer than 10 rectangles, your HIT will be rejected.

Big objects, small objects, and parts of objects are valid.

We encouraged viewers to annotate many objects, but we used consistent boxes only.

A consistent box is one that matches a box from another viewer as determined by the

PASCAL VOC criterion: the overlap ratio ao between the predicted bounding box

Bp and ground truth bounding box Bgt must exceed 0.5 (50%) by the formula

ao =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(11.1)

We found 87% of provided boxes to be consistent after removing three spammers.

Viewers received $0.10 per image for accepted work. The image content determines

whether a single box is an adequate description. Hence, the bar for acceptance was

half as many consistent boxes as the bottom quartile for that image. So if 75% of

viewers produce at least three consistent boxes for an image, then acceptance requires

two consistent boxes.

Ground truth boxes were generated in the following way: All the consistent boxes

for an image were clustered with a single linkage cutoff of ao = 0.5. A median box
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Figure 11.1: Random sample of our images. These photos by artist Stephen Shore
are a sampling of experiences rather than images gathered for segmentation or object
recognition.

represented each cluster.

Images

We ran our protocol on a new dataset as well as 200 images randomly sampled from

VOC2007 training. We introduce the VOC2007 images to verify that the results are

not specific to the Shore images, and that many object categories are not in the 20

categories. Annotation for all images can be found in the supplementary material.

Our collection of 536 photographs comprises Stephen Shore’s collections “Amer-

ican Surfaces” and “Uncommon Places” [120, 121]. Shore created a visual diary of

his experience traveling across America in the 1970s. The images in this dataset are

object-rich and large: maximum height of 600 or width of 800 pixels. While there are

fewer images than the VOC2007 test, there are ten times as many objects consistently

annotated per image, so the object count is equivalent.

Table 11.1 shows how these images divide into scene categories. Figure 11.1 dis-

plays a random sample of these photos. We used all the images except for six that
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Category Counts

City 49
Closeup other 42
Food 27
Indoor 70
Nature 52
Outdoor other 30
Person 81
Picture 21
Storefront 35
Street 54
Suburb 75
All 536

Table 11.1: The Shore dataset contains a rich variety of images.

might be considered offensive: three cadavers and three nudes.

Stephen Shore explained his sampling method:

I was photographing almost every meal I ate, every person I met, every

waiter or waitress who served me, every bed I slept in, every toilet I peed

in. But also, I was photographing streets I was driving through, buildings

I would see.

These photos are particularly well suited for category-independent object detec-

tion because they depict many objects and scenes. Furthermore, Shore’s goals are

removed from the biases of computer vision.

11.2 Metrics

Approaches to category-independent object detection have been evaluated under dif-

ferent metrics, on different datasets. Here, we describe these metrics and analyze

their suitability.

The widespread PASCAL criterion (Equation 11.1) defines a match in these

evaluations. When multiple detections match one ground truth object, the situation

becomes more complex than counting matches. Detection benchmarks often constrain
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this problem by specifying that each ground truth bounding box may be matched at

most once, starting with highest confidence first [16, 31]. Repeat detections count as

false positives, encouraging methods to perform non-maximal suppression.

We wish to compute the maximum number of objects and detections that can be

matched one-to-one. The minimum between matched objects and matched detections

provides an upper bound on one-to-one matches. This upper bound is only different

from the true value in pathological situations: multiple objects must align well enough

to match the same detection, but poorly enough so that multiple other detections will

not match enough of the objects. We ignore this rare case.

So precision is the fraction of detections that match unique objects, while recall

is the fraction of objects that match detections one-to-one. As detections are usually

more bountiful than objects, recall is unlikely to be less than the fraction of detected

objects after the first few detections.

A different approach, taken by Alexe et al ., allows multiple matches and defines

signal to noise and detection rate. Signal to noise is the fraction of detections

covering ground truth objects. Detection rate is the fraction of ground truth objects

covered by detections. So signal to noise and detection rate are analogous to precision

and recall.

However, signal to noise rewards repeat detections, resulting in bizarre situations.

Correctly finding one object out of dozens can result in detection rate = 1 and signal

to noise ≥ 0.5. Uniformly sampling the entire image, interleaving the known object

location with the sampled windows, yields this result. The more often we insert

the known detection, the higher the signal to noise will become. Repeat detections

should not be rewarded, but whether they should be punished or ignored depends on

the application. Alexe et al . apply this metric to uniformly sampled windows only.

Pathological situations are prevented if the sampling is sparse enough, but signal to

noise cannot be used generally.

The approach taken by Endres and Hoiem compares recall with the mean number

of detections per image. If we want to detect as many objects as possible and

don’t differentiate between repeat detections and false detections (i.e., punish repeat
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detections), this is an intuitive measure. However, if larger images tend to contain

more objects, this measure is not invariant to image size.

Another way we can look at category-independent object detection is to consider

how much object importance has been recalled (Chapter 3).

The Average Precision is a summary statistic that approximates the area under

the precision-recall curve. The VOC2007 measures this as the mean precision at

recall [0, 0.1, ...1] [31]. Another alternative is the F-Measure or the harmonic mean of

precision and recall.

11.3 Benchmarking Previous Methods

We evaluate generic object detectors on the new Shore database and PASCAL VOC2007

[31]. We compare these methods with several baselines and an upper bound. Ground

truth consists of bounding boxes around 15-30 objects per image and 20 object cate-

gories.

Algorithms

The Segment Baseline (BL) proposes bounding boxes from segments alone. Felzen-

szwalb and Huttenlocher [37] segments and pairs of any two segments define minimum

bounding boxes. No bounding boxes are allowed to overlap with ones already in the

collection by ao > 0.8. This segmentation software works quickly on large images and

provides reasonable results on the Shore images. Boxes are scored by summing the

values they cover on a Gaussian window the size of the image. Hence, large boxes

and central boxes score highly.

The Segment Upper Bound (UB) provides an upper bound on segment per-

formance; it is generated by ordering the segment baseline bounding boxes so that n

objects are matched by the first n detections. This is the best possible performance

with segment pairs.

The Hou algorithm thresholds a saliency map and places minimum bounding

boxes on connected components.
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Figure 11.2: Methods evaluated on new benchmark. A Precision and recall suggest
that while Endres and Hoiem outperform other methods, there is significant room
for improvement. B Comparison between recall and detections per image indicates
that Alexe et al . usually perform no better than baseline. C Replacing recall with
importance recalled gives a measure of how well the prominent objects have been
detected.
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Figure 11.3: Algorithm compute time shows that there is no algorithm that is both
fast and precise.

The Endres algorithm generates proposal segments and then ranks them. As with

the Hou algorithm, we use the tightest bounding box as the ground truth consists of

bounding boxes.

The Alexe algorithm combines features to measure the objectness of an arbitrary

bounding box. We use their sampling method to generate windows.

The Alexe Cluster approach reduces repeat-detections. Alexe et al . use category-

specific scores to perform non-maximal suppression. As we do not have these scores,

we combine overlapping detections with complete linkage clustering and a cutoff of

ao = 0.8.

Analysis

Figure 11.2A shows the precision-recall curves for one-to-one matching between ob-

jects and detections. Category-specific detection results on PASCAL yield high pre-

cision in low-recall regimes but zero precision above 0.5 recall [31]. As was found

with category-specific detections, category-independent detections have low precision

in the high-recall regime. None of the methods reach high precision, even with low-

recall. The Endres and Hoiem method dominates others over most recall values. Hou

is never better than the baselines. Precision drops rapidly as a function of recall for
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Figure 11.4: Histogram of object aspect ratios that Alexe et al . detect but Endres
and Hoiem miss (blue) and vice versa (red).

all methods.

Good performance in Figure 11.2B is indicated by fewer detections being able

to recall more objects. Currently, hundreds of detections are required to saturate

recall. This metric is useful in trying to determine if a module is useful for an

object recognition system, as it measures how many detection are needed to reach

a certain recall. Precision does not convey that information. Endres and Hoiem

actually surpass the segmentation upper bound when more than 200 detections per

image are used.

Figure 11.2C replaces recall with object importance recalled where each object

has an importance in [0, 1] and they sum to 1 (Chapter 3). We measure these values

with order information about the annotations. This measures whether the objects

that people attend to have been detected.

Figure 11.2D compares performance against compute time, or the average pre-

cision against seconds per image that each method requires. Notably, there is no

method that attains a high average precision with a low compute time.

Figure 11.4 shows that the strength of Alexe’s method is long, skinny objects
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whereas Endres and Hoiem’s method finds square objects that Alexe et al . misses.

Endres and Hoiem detect parts, which according to the MTurk annotators are valid

objects.

11.4 Predicting Box Importance

The Shore images were divided into three sets: 100 training images, 36 validation

images, and 400 test images. There was an additional test set of 200 Pascal images.

We trained and tested boxes generated by the same technique. Each box was

labeled with the importance of the closest ground truth box, given a match (Equa-

tion 11.1) and otherwise zero. If a technique did not produce many boxes, but the

ones that it did were easily ranked by importance, a great ROC was obtained (e.g .,

Hou in Figure 11.6). Endres and Hoiem do the best job detecting objects (Figure 11.2)

and their object candidates are somewhat amenable to importance prediction.
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Figure 11.5: Importance prediction on test data.
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Figure 11.6: Importance prediction on test data continued.
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Conclusion

The Shore dataset will provide a challenging test for category-independent object

detection. As a 536-scene dataset, selected and annotated for this problem, it is more

suitable for testing this problem than any other public dataset. This dataset is so

challenging that the best performer finds a new object only once every ten detections.

Endres and Hoiem outperform other methods. This is true for both datasets and

all metrics.

An ideal detector would be both fast and accurate. Current methods are fast or

somewhat accurate, but not both. Endres and Hoiem outperform Alexe et al . on

these datasets, but the latter is much faster than the former (Figure 11.2). Alexe et

al . proved the usefulness of an imperfect detector in greatly reducing the number of

windows considered in an object recognition task.

Segmentation is a driving force in category-independent object detection. While

state-of-the-art approaches harness segmentation, segmentation is not the same thing

as category-independent object detection. Category-independent object detection is

the unknown process that boosts segment baseline performance to segment upper

bound performance (Figure 11.2).
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[22] W. Einhäuser and P. König. Does luminance-contrast contribute to a saliency

map for overt visual attention? European Journal of Neuroscience, 17(5):1089–

1097, 2003.



125
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