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Abstract 

 

 
 The measurement of interface mechanical properties between an adhesive layer and a 

substrate is significant for optimization of a high-quality interface. A common method for 

measuring these properties is the peel test. While there are many interesting applications 

of peel in such areas as cell and gecko adhesion, the focus here is to obtain a better 

understanding of the fundamental mechanics underlying the problem.  

 The mechanics of the peel test is examined through experiments, finite element 

simulations, and theoretical analysis with the aim of developing governing relations to 

describe the role of fracture in the peel test for elastic adhesive tapes. An inverse 

formulation is developed to extract a cohesive zone law from a set of experimental peel 

tests using a theoretical framework based upon non-linear beam theory. Through 

extracting a cohesive zone law, the adhesion energy during a peel test is determined 

along with the force distribution in the process zone. This local method of determining 

the adhesion energy is compared to a global method used by Rivlin in the context of 

finite deformations, showing good agreement.  

 The effect of rate dependence in the peel test is also examined experimentally, with 

the results used to derive a rate-dependent power law for the adhesion energy in a peel 

test as a function of the peel rate. The effects of varying different geometrical parameters 

during the peel test and how they affect the force distribution and adhesion energy are 

also presented. Finally, a study of the stability in the peel test, including the role of 

compliance through several newly developed force-controlled experimental 

configurations is discussed. The stiffness of the system is varied by altering the 
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magnitude and direction of the applied load during a test. This change in stiffness can be 

tuned to trigger or delay the onset of instability. Theoretical stability criteria are also 

presented to to develop insights into the role of parameters investigated experimentally.  
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Chapter 1 

 

 

 

Introduction   
 

 

 

 The applications of peeling and its role in adhesion are widespread in both 

engineering and biology. A specific problem that has captivated a diverse group of 

scientists, particularly mechanicians, in the area of peeling and adhesion for the last 

decade is the enhancement of the adhesive properties of materials through studying 

analogous behavior in nature. More specifically, investigations focused on naturally-

occurring reversible adhesion in biological systems can be applied to the development of 

engineered reversible adhesive systems, which have a wide range of engineering 

applications including biomedical devices [1], microelectronic storage and packaging [2], 

and surgical robotics [3]. At the core of this problem are the mechanics, both on the 

micro- and macroscale, of how a natural reversible adhesion process works.  

 

 The reversible adhesion problem can be broken down into two parts: 1) enhancing 

adhesion, and 2) decohesion, or releasing adhesion. Traditional adhesives used in every-

day settings such as tapes and glue are categorized as pressure-sensitive adhesives 

(PSAs). While these materials can stick to most surfaces with the application of simple 

contact and slight pressure, detachment of these adhesives usually prevents significant 

reattachment due to contamination. Thus, while one can attempt to enhance the strength 
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of these adhesives, releasing this adhesion in order to complete the reversible process is 

currently very difficult [4]. 

 

 The best way to examine the entire process of reversible adhesion is to study 

examples in nature. One of the most investigated examples is the mechanics and 

locomotion of the gecko. The gecko is often referred to as “nature’s supreme climber” 

due to its ability to scale vertical and inverted surfaces [5]. This is possible through the 

structural hierarchy of the gecko’s foot, which acts as a reversible dry adhesive. The 

smallest two levels of this structure are the micron-sized setae and the sub-micron-sized 

spatulae. Experimental studies on the setae of a gecko’s foot show that when a single seta 

is properly oriented and dragged, it can generate 200 µN in shear force (parallel to the 

adhered surface) and 40 µN in normal force (perpendicular to the adhered surface). The 

resulting net forces are more than three orders of magnitude greater than required to 

support a gecko’s body weight. While the gecko is a strong climber, it is also able to 

detach its foot from a surface in as little as 15 ms [6]. Thus, the question arises of how the 

setae on a gecko’s foot are strong enough to support so much force, while simultaneously 

allowing the gecko to move so rapidly. The answer to this is attributed to the macroscopic 

peeling process by which the gecko removes its foot. By efficiently peeling its foot from 

the surface through a critical angle of about 30°, the foot easily detaches, leaving behind 

no residue. In this peeling process, the question arises of the stability of the gecko’s foot. 

This stability may be influenced by the stored energy in the muscles of the foot, 

particularly in the process of how the gecko releases the stored energy to optimize its 

efficiency. 
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 The gecko adhesion process is ideal as a basis for modeling synthetic adhesive 

materials because of the implications of the structural hierarchy of the gecko’s foot. 

Recent research suggests that a structural hierarchy is the key principle behind robust 

adhesion [7]. In an adhesion process, this hierarchy is a combination across multiple 

length scales. As a new level of hierarchy is added, the adhesion energy is exponentially 

enhanced. In the case of the gecko, adhesion is based upon the hierarchical structure of 

the setae and spatulae on the foot that become smaller at the contact regions with the 

surface. With the introduction of this theory, we can see that it is neither the macroscale 

nor the microscale individually that govern the adhesion process, but rather a 

combination across length scales [8]. 

 

 When dealing with a multiscale problem such as reversible adhesion, it is important 

to understand the behavior across all length scales. This is where the use of mechanics, 

both micromechanics and mechanics on a continuum scale, plays an important role. The 

application of micromechanics is useful for studying the adhesion between the smallest 

fibers of an adhesive and the surface to which they are attached. These forces are very 

small when measured individually. However, considering the collection of fibers as a 

continuum on the macroscale, the global adhesion force is several orders of magnitude 

larger. 

 

1.2 Early Background of the Mechanics of Peeling 

 

 The measurement of interface mechanical properties between an adhesive layer and a 

substrate is significant for optimization of a high-quality interface [9]. A common method 
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for measuring these properties is the peel test, a technique that can be traced back to the 

results of investigations on the surface energy that exists between two elastic solids in 

contact [10]. However, the way in which these interfacial properties are investigated and 

measured has evolved over the past half-century. In the 1950’s and 60’s, two primary 

drivers in the study of interfacial adhesives were the tire and rubber industry. Gent 

pioneered numerous studies, both simple and complex, in the peeling of an adhesive 

polymer from a surface at a fixed angle, either perpendicular to or parallel to the surface 

[11]. Kaelble produced a series of papers in the early 1960’s, which were among the first 

to draw the parallel that the peel problem could be viewed in the spirit of fracture 

mechanics [12, 13, 14], focused specifically on the mechanics of peeling and adhesion 

and the role of microfracture mechanisms in the process. Further studies at the forefront 

include the adhesion tests of Liechti and Knauss [15], the constitutive behavior of an 

adhesive polymer in a double cantilever beam configuration using optical interferometry 

[16], and the investigation of the local fibrillation zone that develops in an adhesive when 

peeled from a surface and the relation of a local stress distribution to this region [17]. 

Perhaps the most significant study is that of Rivlin in 1944, where a simple relation was 

derived in the context of finite deformations between the adhesion energy in the peeling 

process and the applied force at a fixed peel angle [18]. 

 

 At the same time, the review of the study of peel cannot be considered complete 

without the work of three of the pioneers of the field of contact mechanics, Johnson, 

Kendall, and Roberts (JKR). Stemming from the Hertz contact problem and subsequent 

JKR contact adhesion model [19], Kendall investigated the peeling problem to develop 

simple analytical relations to describe the different phenomena that govern the peel test 
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and its significant utility in studying adhesion. Such studies include the determination of 

the shape of an elastic band upon being peeled from a surface [20], the development of 

interfacial dislocations in a peel test [21], and foremost the application of first principles 

in mechanics to describe the competing energies in the process [22].  

 

 The rate-dependence of the peel problem has also been investigated, particularly since 

the peeling of adhesives involves the behavior of soft materials, which display non-linear 

elastic and viscoelastic properties. An early study of Anderson (1974) extracted the 

adhesion energy during a mixed-mode fracture process from a peel test using a layer of 

solithane adhered to a PMMA substrate [23]. This material system combination was seen 

to be highly rate-dependent, which motivates the need for the study of rate-dependency in 

the peel test.  

 

1.3 Current Work in Peeling – The Need for Experiments 

 

 Recent work in peeling is of interest in a variety of scientific areas. There are several 

applications of peeling in the field of biomechanics, particularly in the area of gecko 

adhesion, as previously discussed. In the microelectronics community, the focus of 

peeling has been on the delamination strength of thin films to silicon substrates [24]. 

Additionally, environmental conditions such as moisture and thermal gradients can 

degrade the strengths of devices due to strain mismatches between the film and the 

substrate. From an industrial standpoint, the peel test has been used primarily for 

comparative strength testing of materials for case-specific applications. These include 

quality control devices in which the ultimate peel strength of a material is a critical 

parameter [25]. 
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 While there are many interesting applications of peel in such areas as cell adhesion 

and motility [26, 27], biomaterial adhesion [28], as well as the development of 

mechanical and material laws for adhesion based upon systems like the gecko, the focus 

on the peel test is to obtain a better understanding of the fundamental mechanics 

underlying the problem. The proposition of this test as one based upon first principles and 

fracture mechanics has generated a renewed interest in the subject, particularly in 

developing theoretical models of the process [29, 30]. There is significant insight into the 

adhesion process that is obtained in modeling the peel test as a bimaterial interfacial 

fracture problem. Wei and Hutchinson have developed models describing the 

macroscopic work of fracture in the peel test that make beautiful correlations between the 

adhesion energy in a fracture problem and a peel test [31]. Thouless and Yang have 

conducted parametric analyses of the peel test to examine the incorporation of various 

phenomena such as shear forces and bending energies into analytical models [32]. Other 

recent models are aimed at incorporating additional parameters during the peeling 

process such as the dissipation of plastic energy [33], non-linear elastic effects [34], and 

the extensibility of the tape [35, 36].  

 

 While analytical models exist, there is a need for more rigorous experiments in the 

peel test to validate these models. Pesika et al. have conducted simple yet elegant peel 

tests that provide insight into developing a process-zone model that mimics the material 

properties of the gecko [37]. Wei and Zhao developed an experimental peel arrangement 

for testing the adhesion of ductile thin films to ceramic substrates [38]. In combination 
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with analytical models, experimental peel tests can yield very powerful insights into the 

role of adhesion energy during a peel test. 

 

1.4 Global Energy Approach – Peel Mechanics 

 

 Consider the peeling of an elastic thin film from a rigid substrate, shown in Figure 1.1 

[18]. Specified parameters are the film thickness, h, film width, b, peel force, Pf, the 

angle of peel between the film and the substrate, !, the extension of the unadhered 

portion of the film, "e, the length of the peeled portion of film, c, the elastic modulus of 

the film, E, and the incremental length of the film to be peeled, !c. For this problem, a 

linearly elastic, extensible adhesive film with constant width and thickness is assumed. 

 

 

 
Figure 1.1: Schematic of the peel test for a linearly elastic, extensible adhesive tape 

(Kendall, 1975).  
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 An energy balance of the process of peeling the film through the length !c shows that 

the work done by the peel force is equal to the change of the stored internal energy of the 

system 

 

! 

"W
P

= "U
E

+ "U
S
 

(1.1) 

 

where !WP is the work due to peel, !UE the change in the elastic energy stored in the 

film due to extension of the peeled portion c, and !US the change in the surface energy 

due to the creation of new crack surfaces.  

 

 The surface energy US is defined as the amount of energy required to peel the tape to 

a new location while at a constant peel angle !. It is given by 

 

! 

U
S

= "bG#c  

(1.2) 

 

where G is the adhesion energy, defined as the energy required to fracture a unit area of 

interface. The peel test can be considered as a fracture mechanics problem with a 

bimaterial interface of an adhesive and its backing attached to a rigid substrate. In this 

case, G is analogous to the fracture energy, considering that the surface energy here is 

due to the creation of new surfaces during the peeling process.  

 

 To determine the elastic energy term UE, consider the extension of the tape in the 

peeled region, given by 

 

! 

"e =
Pf#c

Ebh
. 

(1.3) 
 

Thus, the elastic energy is given by the area under the force-displacement curve, or 
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! 

UE =
1

2
P"e =

Pf

2
#c

2Ebh
. 

(1.4) 

 

 Balancing the energy stored via elastic and surface energies is the work done due to 

peel.  When the film is peeled from A to B (Fig. 1.1), the point of application of the peel 

force Pf will move a distance, 

! 

"c + # $"c cos% . Therefore, the work due to peel is given 

as 

 

! 

WP = "Pf#c 1+ cos$ +
Pf

Ebh

% 

& 
' 

( 

) 
* . 

(1.5) 

 

Substituting Eqs. 1.2, 1.4, and 1.5 into Eq. 1.1 and solving for the adhesion energy, G 

 

! 

G =
Pf

2

2Eb
2
h

+
Pf

b
1" cos#( ). 

(1.6) 

 

If the film is assumed to be inextensible, the first term corresponding to elastic energy 

vanishes and the simplified expression, known as the Rivlin Equation, is 

 

! 

Pf

b
=

G

1" cos#
. 

(1.7) 

 

 This expression was originally developed independent from Kendall’s method by 

Rivlin in the context of finite deformations [18]. The assumption made here is that the 

tape is inextensible. Note that the Kendall equation (Eq. 1.6) includes the elastic energy 

of the tape, whereas Rivlin did not consider this term. An inextensible tape is said to be 

infinitely stiff. In this case, the elastic modulus is very large and the first term in Eq. 1.6 

vanishes. This can also be observed by comparing the quantity of stress Pf/bh to the 
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elastic modulus E. For an inextensible material, E >> Pf/bh. For soft materials, this may 

not be the case and the extensibility of the film must be considered. The elastic energy 

term also plays a significant role at small peel angles (close to 0°).  

 

 The beauty of the energy-balance approach taken by Rivlin and Kendall is in its 

simplicity. The adhesion energy of the peel test can be estimated with knowledge of the 

peel angle ! and the far-field peel force, Pf. However, the Rivlin model does not give any 

information about the forces and displacements near the crack tip. In terms of a fracture 

mechanics problem, the Rivlin model does not provide any information, such as forces 

and displacements, near the crack tip. In order to obtain such detail, another method of 

describing this local region during a peel test is needed. One possible method is to treat 

this local region as a cohesive zone, which is described in the next section. One of the 

aims of this thesis is to use a cohesive zone law to obtain information in this local process 

zone region. This relates to the idea of approaching the peeling problem from both a 

macro (global) scale by using the Rivlin model, while considering the micro (local) scale 

that is governed by the cohesive zone.  

!

1.5 The Cohesive Zone Law 

 

 The concept of a cohesive zone law is useful to describe the behavior close to the 

crack tip in a fracture mechanics problem, particularly in eliminating the singularity that 

occurs directly at the crack tip. One of the first studies in this area is that of Dugdale and 

the strip yield model [39]. Although the Dudgale model was originally developed to 

study thin, metal sheets, it is utilized as a primary model for the study of ductile fracture 
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as it sheds light on the limitations of the small scale yielding approach to describing the 

local region around a crack tip.      

             

 The Dugdale model essentially determines a region of constant or finite stress ahead 

of the crack tip. In the process of determining this value of finite stress, the crack opening 

displacement is also determined. This model is prototypical of the concept of the 

cohesive zone law. Barenblatt [40] utilized concepts from both Prandtl [41] and Dugdale 

to model a cohesive zone as a region around the crack tip in which the stresses in the 

yield zone ahead of the crack are expressed as a function of the displacement across the 

yield zone. Consider the mode-I fracture problem shown in Figure 1.2, given in the x1-x2 

plane [42].  

 

 
Figure 1.2: Cohesive zone in a fracture problem (from Hutchinson, 1979). 

 

 



! 12 

 The crack, shown on the left of the diagram, precedes a region just beyond the crack 

tip shown with length #a. This length #a here defines the length of the cohesive zone. 

The cohesive zone height is defined by the crack tip opening displacement, "i which is a 

result of the displacement of the upper and lower crack surfaces,  and , respectively. 

The stress in this region is defined by $2i, which will be a function of the crack tip 

opening displacement, as can be seen in the figure. At the edge of the cohesive zone (x1 = 

#a), the cohesive stress $2i goes to 0. 

 

 The cohesive zone in a mode-I fracture problem can be defined in any number of 

ways in what is termed a cohesive zone law, or the material law that defines the stress in 

the cohesive zone as a function of the crack tip opening displacement, ". The law is 

sometimes referred to as a traction-separation law. A set of studies by Ungsuwarungsri 

and Knauss derives a series of cohesive zone laws to describe the effects of non-linear 

cohesive forces on a crack tip [43, 44].  A schematic of a typical cohesive zone model is 

shown in Figure 1.3 [45].  

 

 

 

   
Figure 1.3: Schematic of a generic cohesive zone law (from Zehnder, 2008). 
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 The two key parameters needed to define the cohesive zone law are the peak stress, 

! 

ˆ " , and the critical crack tip opening displacement (CTOD), "c. The CTOD corresponds 

to the point ahead of the crack tip where the cohesive stress $ goes to 0, i.e., where 

! 

" = "
c
. Another interesting feature of the cohesive zone law is that the area under the 

cohesive zone curve in Figure 1.3 is equivalent to the fracture or adhesion energy of the 

process, G, or the energy required to separate the interface 

 

! 

G = " #( )
0

# c

$ d#  

(1.8) 

 

where G is the fracture energy and 

! 

" #( ) is the functional form of the cohesive zone law. 

One of the most commonly used forms for the cohesive zone law is a power-law 

formulation written in terms of the stress in the x2 direction 
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where $0 is the peak cohesive stress and n is the exponent of the power law. Figure 1.4 

shows some typical sample cohesive zone laws of the form in Eq. 1.9, with n = 0, 1, and 

2 corresponding to the different zone shapes from left to right, respectively.  

 

 
Figure 1.4: Sample cohesive zone laws used, of the form in Eq. 1.9. 
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 The cohesive zone law is traditionally used in computational fracture mechanics as a 

phenomenological material law for describing the stress state around a crack tip. One of 

the primary questions is how exactly one defines the cohesive zone around the crack tip 

in a fracture problem, and how one determines the cohesive zone law for a given material 

system. The law is usually postulated based on some prior knowledge of the problem, and 

is iterated several times in to obtain agreement with known theoretical results and/or 

experimentally-observed behavior. To postulate the law, the user simply defines the key 

parameters, which form the shape of the law in Figure 1.4.  

 

 The cohesive zone is not limited to fracture problems of exclusively a single mode. 

The case of a mixed-mode fracture problem (i.e., mode-I and mode-II) can be modeled 

by accounting for the displacements that result in both the x1 and the x2 direction: the 

opening displacement "n, and the sliding displacement "t, respectively, as shown in the 

Figure 1.5. 

   
Figure 1.5: Opening displacement vs. sliding displacement in a mixed-mode fracture 

problem (from Hutchinson, 1992). 
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 When a crack opens, the displacements that result can be separated into an opening 

displacement, "n and a sliding displacement, "t. The two displacement components are 

combined to express an overall displacement " by 

 

! 

" = "
t

2
+ "

n

2
.

 (1.10) 

 

 In the context of finite element implementation, if limited or no knowledge is had of 

the magnitude of the opening and sliding displacements, a weighting factor % is 

introduced as shown in Eq. 1.11. This weighting factor can be tuned and simply 

represents a ratio that relates the two displacement components 

 

! 

" = # 2"
t

2
+ "

n

2
. 

(1.11) 

 

 In the case of a pure mode-I problem, as already discussed, % = 0. This parameter % is 

another term that can be implemented into a computational cohesive zone law. 

Hutchinson [42] and Hutchinson and Tvergaard [46] have done much work in developing 

applicable theory for a cohesive zone law for the mixed-mode case of a mode-I/mode-II 

fracture problem. In this case, the work per unit area needed to separate the interface is 

independent of the combination of crack face displacements leading to separation. The 

fracture energy is an extension of Eq. 1.8, where the effective displacement " is used 

along with the opening and tangential stresses in both the x1 and x2 directions, 

respectively. The effective displacement and tractions are implemented using a non-

dimensional crack separation measure 
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and the fracture energy is 
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n
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(1.13) 

 

1.6 Objectives 

 

 This thesis examines the mechanics of the peel test through experiments, finite 

element simulations, and theoretical analysis with the aim of developing governing 

relations to describe the role of adhesion in the peel test for elastic adhesive tapes and in 

the fracture process in general. Chapter 2 discusses an experimental peel test 

configuration developed for the study and investigation of the peeling of elastic adhesive 

tapes. Displacement-controlled tests are conducted for a range of peel angles using 

Scotch MagicTape adhered to a rigid glass substrate, and the experimental results are 

compared to the governing relations of Rivlin and Kendall. By making the analogy that 

the fibrillation zone that develops in these tests is a cohesive zone in a fracture-based 

study, the opening displacements in the cohesive zone are measured experimentally via 

an imaging technique that is implemented and used during a peel test. The resulting 

information about the shape and size of the fibrillation zone is then utilized in Chapter 3 

for conducting a finite element simulation. A series of simulations of the peel test are 

conducted, with the results compared to the experimental findings to determine the role 

of bending in the adhesive backing. Chapter 3 also presents a new theoretical framework 

in the context of finite deformation beam theory to extract a cohesive zone law from an 
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experimental peel test. Through extracting a cohesive zone law, the adhesion energy 

during a peel test is determined along with the force distribution in the process zone. This 

local method of determining the adhesion energy is compared to the global method used 

in the Rivlin model.  

 

 Chapter 4 investigates the rate-dependent effects of the peel test. Using the same 

experimental peel setup as in Chapter 2, tests are conducted for both Scotch Magic Tape 

and Scotch Packing Tape at different peel rates for a range of peel angles. The results are 

used to derive a rate-dependent power-law for the adhesion energy in a peel test as a 

function of the peel rate. The effects of varying different geometrical parameters during 

the peel test and how they affect the force distribution and adhesion energy are also 

discussed. Finally, a study of the stability including the role of compliance during a peel 

test using a newly developed force-controlled experimental configurations is discussed in 

Chapter 5. Experiments that monitor the tip position of an inextensible adhesive tape are 

conducted over time subject to a constant applied load at the tape extremity while the 

width of the tape is decreased as a function of the tape length. The stiffness of the system 

is varied by altering the magnitude and direction of the applied load during a test. This 

change in stiffness can be tuned in order to trigger or delay the onset of instability. 

Theoretical stability criteria are also presented for developing insights into the role of 

parameters investigated experimentally. 
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Chapter 2  

 

 

Cohesive Zone Law Extraction: Experimental 

Methods 
 

 

 

2.1 Introduction 

 

The goal of this study is to treat the peel test described in Chapter 1 as a fracture 

mechanics problem and develop a cohesive zone law for a specific material system in a 

peeling configuration. An inverse formulation is used to extract a cohesive zone law from 

a series of experimental peel tests to describe the local stress behavior in the fibrillation 

zone that develops. This formulation will be described in the next two chapters, 

beginning with the current one, which details the experimental method and results used in 

this study. The development of a peel test configuration is described and validated with a 

series of experiments. By making the analogy that the fibrillation zone that develops in 

these tests is a cohesive zone in a fracture-based study, the displacement in the cohesive 

zone is measured experimentally via an imaging technique along with other relevant 

parameters to be described in this chapter.  

 

2.2 Experimental Setup – Peel Test 

 

For this study, an experimental configuration is developed for conducting a 

displacement-controlled peel test of an adhesive tape from a rigid substrate. Tests are 

conducted using Scotch Magic Tape (3M, Minneapolis, MN), a well-known adhesive 

system for comparison to known results in the literature for validation purposes. The 
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backing material of this tape is generally observed to be elastic, with the modulus 

obtained independently through a uniaxial tension test (the modulus measurement and 

method are described in detail in the next section). The width and the thickness of the 

tape backing are 19 mm and 50 µm, respectively. 

 

 
 

Figure 2.1: Experimental peeling configuration. 

 

 

The experimental setup is shown in Figure 2.1. The peel base is constructed out of 

delrin, a commercial plastic, and mounted on an aluminum post. The base holds the glass 

substrate from which the tape is peeled, to be described later. The aluminum post is 

attached to 25-mm micrometer translation stages (Newport, Irvine, CA) to allow for 

precise alignment of the base. The base can be adjusted to obtain a range of angles from 

0°-180° (0° to 90° in the configuration shown here; to obtain 90° to 180°, the base is 

turned around). The peel force Pf is measured at the end of the unadhered portion of the 

tape with a 500 g load cell (ALD-MINI-UTC-M, AL Design, Inc., Buffalo, NY). Since 
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the peel force increases significantly at lower angles, a 1.2 kg load cell from the same 

manufacturer is used for tests at 40° and lower, as for the widths of tape used in these 

experiments, the forces measured exceed the 500 g capacity load cell. The load is 

monitored in-situ with a digimeter (MD-40, Newport, Irvine, CA), configured to show 

the output force from the load cell in grams. The load cell is screwed into the end of an 

aluminum peel arm, which is attached to a motorized translation stage (M-410.CG, 

Physik Instrumente, Irvine, CA). The stage has a total travel range of 100 mm, a 

maximum velocity of 1 mm/s, and resolution of 100 nm. The stage is vertically mounted 

to an optical rail and used to apply a crosshead displacement (u), which peels the tape at a 

constant rate from a glass substrate. The glass substrate used is a generic piece of 

industrial grade lime glass cut to size with dimensions 203 x 127 x 3.175 mm (8” x 5” x 

1/8”) for the length, width, and thickness, respectively. The glass substrate is held in a 

notched path on the inside perimeter of the peel base. On the top right hand side of the 

stage, two red screws are used as stops to keep the glass from moving during a test. Data 

is acquired for specific sampling rates and test times from the load cell through a virtual 

instrument created in Labview (DAQM02, National Instruments, Austin, TX).  

 

Prior to testing, the glass surface is cleaned with acetone, followed by wiping with 

isopropanol, and left to dry. The adhesive tape is applied to the glass surface with a roller. 

Ideally, it appears that the longer the adhesive is left on the surface once attached before 

testing, the more steady a peel force can be obtained, along with more consistent results. 

To mitigate this phenomenon, all tests are conducted after the adhesive is left to rest for 

20 minutes prior to testing. Due to the stochastic nature of this process, great care is taken 

in being consistent in the process of applying the adhesive to the surface.  
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The process zone in a peel test is defined as the region from the last detached fibril to 

the critical point where the fibrillation starts, which is the contact point between the 

adhesive tape and the glass substrate. A schematic of the process zone is shown in Figure 

2.2.            

 
Figure 2.2: Schematic of the process zone in the peel test. 

 

 

To investigate the fibrillation of the adhesive in the process zone, the geometry of the 

process zone is measured by acquiring in-situ images of the fibrils in the deformed 

configuration 

! 

y
1
" y

2( ) using a 2-megapixel monochromatic digital CCD camera (UP-

2000CL B/W, Uniqvision, Santa Clara, CA) attached to a long- distance video lens (K2/S 

Infinity, Boulder, CO). A sequence of images is acquired every 0.5 s for the duration of a 

peel test (typically 10 minutes) at a constant angle. Separate tests are conducted for peel 

angles ranging from 30° to 90°. The height and length of the zone are measured for each 

image using a simple post-processing scheme implemented in Matlab (MathWorks, 

Natick, MA).  
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2.3 Elastic Modulus Measurement 

 

To consider any possible effects of the extensibility of the tape in the unadhered 

portion of the tape, the elastic modulus E must be determined. An specifically designed 

axial tensile tester is used to measure this value for the Scotch Magic Tape. The setup, 

shown in Figure 2.3, was designed for the testing of mechanical properties of soft 

materials such as hydrogels, rubbers, and other polymers. Shown in the figure is a 

hydration tank that is not used in the present measurements. It is used with the tensile 

tests for other studies involving the testing of materials in hydration, such as hydrogels. 

 

 
 

Figure 2.3: Tensile setup used for determining elastic modulus. 
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 The tape is clamped between two grips manufactured out of delrin. The top grip is 

attached to a delrin rod, in-turn screwed on to the end of a 500 g load cell (ALD-MINI-

UTC-M, AL Design, Inc., Buffalo, NY). The bottom grip is fixed upon two linear 

translation stages (Newport, Irvine, CA) for fine adjustment and alignment prior to 

testing. The load cell is attached to an aluminum T bracket, which is mounted to a 

motorized translation stage (M-410.2S, Physik Instrumente, Irvine, CA). The stage, a 

different model than that used with the peel test, has a maximum load capacity of 50 N, 

maximum stage velocity of 6 mm/s, and a resolution of 100 nm. The stage is mounted to 

a vertical optical rail and attached to an optical table. 

 

The load is monitored in-situ with a digimeter (MD-40, Newport, Irvine, CA), 

configured to show the output force from the load cell in grams. The load cell output 

values are acquired with a virtual instrument created in Labview (DAQ-M02, National 

Instruments, Austin, TX). In order to measure the displacement, a linear variable 

differential transformer (Omega, Stamford, CT) is mounted on top of the translation 

stage, with its tip resting on the T bracket attached to the motor stage. The LVDT has a 

stroke length of ± 1.5mm and a resolution of 2.5 µm. While it may be sufficient to use the 

travel distance of the motor for the displacement in a given test, using the LVDT to 

directly measure the displacement is a more accurate method. In the case of extensible 

tapes such as the ones tested here, non-uniform deformations are not expected and thus 

this global method of measuring displacements and calculating strain should be 

sufficient. 
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Tests are conducted using samples of Scotch Magic Tape of dimensions length, 

width, and thickness of 117 mm, 19 mm and 50 !m, respectively. A plot of the nominal 

stress vs. strain in a tensile test is shown in Figure 2.4. The tests are conducted at a 

crosshead displacement rate of v = 10 !m/s, which is the same rate as the peel tests 

central to this study and described in the next section.  

 

Figure 2.4: Stress vs. strain for Scotch Magic Tape obtained in a uniaxial test. 

 

 

The elastic modulus is measured from the slope of the linear portion of the curve 

above, indicated by the two vertical black lines. For this set of 15 tests, the modulus is E 

= 1.65 ± 0.15 GPa, which agrees with values in the literature [34]. The non-linear portion 

of the curve, from the start of the test until about 17% strain, can be attributed to seating 

and slipping in the grips. To reduce slipping in the grips, sandpaper is adhered to both 
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sides of the grips in order to sandwich the tape between two pieces. However, since the 

LVDT is measuring displacement of the motor and not the actual displacement of the 

adhesive tape, the above result is useful only for obtaining a value of the elastic modulus, 

E. To investigate further stress-strain behavior such as failure stress, yield stress, and very 

large deformations, a more accurate displacement measurement method would have to be 

used. Since the focus of this study is not on exploring the mechanical behavior of 

adhesive tape in tension, the above result is sufficient for this investigation. 

 

2.4 Steady-State Peel Force 

 

Using the peel configuration described in Section 2.2, peel tests are conducted for 

Scotch Magic Tape through a range of angles with the objective of determining the 

steady-state peel force Pf. Figure 2.5 shows a typical plot of the peel force vs. time for a 

90° peel test at a rate of v = 10 µm/s. 

 

 
Figure 2.5: Peel force (Pf) vs. time (t) for a 90° peel test at a rate of v = 10 µm/s. 
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A pre-load is applied to ensure that the sample is taut prior to commencing peeling. 

As the adhesive is peeled, the force increases until it levels off at a roughly steady-state 

value. This is the steady-state region, where the focus of this study is directed. The peel 

force Pf used for each test is taken as an average of its values in the steady-state region. 

The peel base does not move horizontally as the sample is peeled. Thus, towards the end 

of the test, the load increases slightly due to a small decrease in peel angle !. This change 

has been observed to be ~1°, and is consistent with slight increase in steady-state peel 

force in Figure 2.5 

 

Peel tests are conducted for angles of 30° to 90° at 10° increments. A total crosshead 

displacement of 6 mm is imposed at a rate of 0.01 mm/s, and the peel force (Pf) is 

measured over a time period of 10 minutes. The tape used in the investigation has width, 

b =19 mm (3/4”) and thickness, h = 50 µm. The measured steady-state peel forces are 

plotted as a function of the peel angle in Figure 2.6 and compared to those predicted by 

the Kendall and Rivlin models. Recall from Chapter 1 these relations given for a linearly 

elastic extensible (Kendall) and inextensible (Rivlin) tape 
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In the Kendall model (Eq. 1.6), the elastic modulus of the tape backing material is E = 

1.65 GPa, obtained independently through a uni-axial tensile test described in Section 

2.3.  The values of adhesion energy used in both models are determined from the 
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experimentally measured 90° peel force, which in this case is G = 34.5 N/m. This value is 

employed for calculating the theoretical peel forces at the lower angles. Figure 2.6 shows 

that the peel forces correlated by the two models begin to exhibit a difference at small 

peel angles, due to the important role of the elastic energy term associated with 

stretching. However, for the range of peel angles (30°-90°) investigated in this study, the 

difference is negligible, which validates the inextensibility assumption for the present 

work. Compared to both model evaluations, the measured peel forces show good 

agreement within experimental scatter. 

 

 
 

Figure 2.6: Measured steady-state peel force (Pf) vs. peel angle (!). 
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One aspect that is of interest is whether or not the adhesion energy G is a function of 

the peel angle. This will be investigated in detail in Chapter 4. 

 

2.5 Process Zone Characterization 

 

The process zone analysis is aimed at examining two phenomena: the steady-state 

behavior of the process zone geometry, and the dependence of the geometry on the peel 

angle.  The process zone image in a representative test is shown in Figure 2.7. The image 

here is acquired for a peel angle of ! = 90° after the steady-state peel force has been 

achieved.  
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Figure 2.7: Image of the process zone for a 90° peel test. 

 

 

From this image, the fibrillation zone can be quantified clearly. The last attached 

fibril can be identified, which defines the end of the cohesive zone. While the origin of 

the zone is more difficult to locate accurately at this resolution, it is identifiable enough at 

a given angle to see a trend in the zone size as a function of angle. This will be seen in 

more detail in subsequent sections. To determine the length scale from the image, an 

image of sets of line pairs from a 1951 USAF target grid is acquired prior to testing. This 

image allows for determination of the scaling factor in units of mm/pixel. 

 

The parameters of interest from these tests are the length and height of the process 

zone L and ", respectively, as well as the shape of the backing material in the process 
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zone. The radius of curvature of the backing can be described analytically with a 

mathematical function, which will be explored in detail in the next chapter. Figures 2.8 

and 2.9 show images of the process zone for tests at lower peel angles of 70° and 30°.  

 

 
 

Figure 2.8: Image of the process zone for a 70° peel test. 
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Figure 2.9: Image of the process zone for a 30° peel test. 

 

 

Prior to quantitative analysis of the fibrillation, there are some qualitative results that 

can be seen by comparing the images of the process zones at the three different peel 

angles shown here (Figs. 2.7-2.9). The size of the process zone appears to change as the 

peel angle changes. Specifically, the length of the zone (L) appears to increase with 

increasing peel angle. Another interesting observation is that to a good approximation, 

the fibrils appear to remain perpendicular to the glass substrate throughout the process 

zone. If the schematic in Figure 1.5, comparing a sliding versus an opening displacement, 

is considered, the opening displacement appears to dominate any sliding displacements 

that are present. This will be investigated in detail in Chapter 3. To examine how the 

shape of this process zone potentially changes during the steady-state, five separate 

images at equal time increments (100 s) through the steady-state phase are quantified. 

Figure 2.10 shows the shape of the process zone for these five individual time steps in a 
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90° peel test. The time increments are color-coordinated, as shown in the legend of 

Figure 2.10. 

 

 
 

Figure 2.10: Process zone shape at five separate time increments in the steady-state 

regime throughout a 90° peel test. 

 

 

As is seen here, the shape of the zone remains fairly constant during the steady-state 

period for a single peel test at ! = 90°. Examining the steady-state process in the same 

manner for peel angles down to 30°, Figures 2.11 to 2.16 show the similar behavior for 

similar time increments. The colors for the shapes in each plot represent the same time 

increments as in Figure 2.10. 

 



! 33 

 
 

 
 

 
 

Figures 2.11 to 2.16: Process zone shape at five separate time increments in the steady-

state regime for peel angles ! = 80°, 70°, 60°, 50°, 40°, 30°. 

 

 

There is some variation in the shape of the process zone for all angles, but for the 

most part it can be concluded that the geometry of the process zone remains constant for 

the steady-state process within a 10-15% experimental scatter. Table 2.1 shows the 
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average size of the process zone for a single test for each angle at the varying time 

increments. 

 
!  L [µm] "  [µm] 

90 574 ± 27 242 ± 39 

80 602 ± 69 177 ± 29 

70 576 ± 27 291 ± 45 

60 538 ± 95 234 ± 40 

50 643 ± 87 267 ± 47 

40 589 ± 46 242 ± 19 

30 626 ± 55 221 ± 25 

 

Table 2.1: Average process zone size for five separate time increments for a single peel 

test at a given peel angle.  

 

 

Since the shape of the zone will be treated as constant irrespective of time during the 

steady-state process based on the aforementioned results, the shape is taken to be the 

average of the five randomly-selected instances in time during a single test. However, the 

reproducibility between tests for a given angle must be examined as well. Examining the 

case of ! = 90°, Figure 2.17 compares the shapes of the process zone for five separate 

peel tests conducted at this angle.  
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Figure 2.17: Process zone shape for five separate 90° peel tests. 

 

 

For five separate tests, there is good consistency for all but one test (the blue curve), 

which itself is not far from the other four shapes. The average values for the entire range 

of peel angles (30° to 90°) are given in Table 2.2 using data from the five separate peel 

tests at each angle. Note the difference between the values in Tables 2.1 and 2.2. Recall 

that the values of L and " in Table 2.1 are the averages of the process zone for a single 

test at each angle for five separate time increments. 

 

Peel Angle ! L [µm] ! [µm] 

90 412 ± 78 226 ± 21 

80 505 ± 11 212 ± 51 

70 523 ± 22 223 ± 39 

60 634 ± 0.7 259 ± 23 

50 600 ± 85 207 ± 30 

40 621 ± 78 222 ± 21 

30 617 ± 32 181 ± 22 

 

Table 2.2: Process zone sizes for varying peel angles. 

!

!
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As is seen for all of the angles in Table 2.2, the error for the process zone size is 

roughly 20% at a given angle. Having established that the process zone can be quantified 

within a given test and from multiple tests, it is important to examine the dependence of 

the geometrical parameters on the peeling angle e.g. 

! 

L "( ), 

! 

" #( ) . The plots below in 

Figures 2.18 and 2.19 show the relationship between the length and height of the process 

zone for peel angles from 30° to 90°. 

 
 

Figure 2.18: Process zone length (L) vs. peel angle (!). 
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Figure 2.19: Process zone height (") vs. peel angle (!). 

 

 

Figure 2.18 shows a definite increase in the length of the process zone L as the peel 

angle ! decreases. As for the height of the process zone ", it seems to remain relatively 

constant independent of the peel angle.  

 

2.6 Conclusions 

 

This chapter described the experimental methods developed and implemented as the 

basis for extracting a cohesive zone law from a series of experimental peel tests for 

linearly elastic adhesive tapes. The elastic modulus of the candidate material, Scotch 

Magic Tape, is determined using a separate tensile test arrangement. An original 

experimental peel test is developed and the steady state peel force is compared to the 
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well-established Rivlin and Kendall models available in the literature. Using a simple 

imaging technique, the process zone during a peel test is quantified for a range of peel 

angles by examining the fibrillation that occurs during debonding. The shape of this 

process zone remains constant throughout the steady-state process for a given angle. For 

a range of peel angles 30˚ to 90˚, the length of the process zone increases as the peel 

angle decreases and the height of the process zone appears to remain constant for the 

same range of peel angles. 
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Chapter 3 

 

 

Cohesive Zone Law Extraction: Finite Element 

Simulation and Non-Linear Beam Theory 
 

 

 

3.1 Introduction 

 

To extract a cohesive zone law from the experimental peel tests described in the 

Chapter 2, a theoretical framework is developed to model the peeling configuration 

appropriately. To determine the proper framework, a finite element simulation is 

developed to examine the mechanical behavior of the tape backing in the process zone. 

This finite element simulation motivates the treatment of the tape as a non-linear beam 

adhered to rigid substrate, with a cohesive zone equivalent to the fibrillation zone 

observed in experiments. Upon fitting the shape of the experimental profile of the process 

zone with an analytical function, this fit is implemented into the theoretical framework 

described here. A full-field force distribution in the process zone is obtained for a range 

of peel angles from 30˚ to 90˚, and the cohesive zone laws at each of these angles is 

extracted. From the cohesive zone curves, the adhesion energy can be determined with 

this local process zone method and compared to the global method of determining the 

adhesion energy proposed by Rivlin [18]. 

 

3.2 Finite Element Formulation 

 

Prior to developing a relevant theoretical framework for modeling this problem and 

extracting a cohesive zone law, a finite element simulation is conducted to investigate the 
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behavior of the peeling configuration. The goal of this analysis is to investigate the 

possible effects of bending as the tape is peeled from the rigid glass substrate, specifically 

with regard to the effects of the bending stiffness in the adhesive backing. Based upon 

inspection, the axial force in the tape backing is proportional to Eh, where E is the elastic 

modulus and h the thickness of the tape backing. The bending moment in the backing is 

proportional to Eh
3
. Thus, by altering the modulus and thickness of the backing, the axial 

force is kept the same while effectively changing the bending stiffness. This relation is 

explored in detail in the context of the finite element simulation presented here. 

 

 The geometry of the peeling configuration as modeled in the simulation is shown 

below in Figure 3.1.  

 
 

Figure 3.1: Schematic of the finite element formulation of the tape peeling process. 
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The problem is formed as a 2D plane (x-y) problem using Abaqus Standard [47] 

assuming unit width in the z direction. The glass substrate is treated as a rigid solid, such 

that all deformation is confined to the adhesive and the cohesive zone between the 

adhesive and the substrate. The adhesive backing is modeled as a Bernoulli-Euler beam. 

2D linear beam elements are used to mesh the adhesive, with thickness, h = 50 µm and 

width, b = 1 mm. 

 

While the overall goal of this study is to derive a cohesive zone law for the process 

zone from an experimental peel test, a separate user-defined cohesive zone law is 

implemented into the finite element simulation solely to investigate the global 

mechanical behavior of the adhesive. This is implemented by considering the adhesion 

energy, G from the global energy balance described in Chapter 1. The estimation 

provides valuable insight into applicable theory for extracting a more precise cohesive 

zone law from the experimental data acquired in Chapter 2 during a peel test.  

 

 Using a coordinate frame y1-y2 in the deformed configuration, a power-law cohesive 

zone law of the following form, 
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" y
2( ) ="
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(3.1) 

 

is used, where !0 is the stress in the cohesive zone at y2 = 0. Initially, the simulations 

were performed for n = 0 (e.g., constant cohesive zone stress). The stress in the cohesive 

zone can be estimated by considering the Rivlin equation (Eq. 1.7). Recall that 
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! 

G =
Pf

b
1" cos#( ). 

(1.7) 

 

 Since the adhesion energy, G is the area under the cohesive zone law curve !(y2), one 

can determine !0 from 

 

! 

"
0

=
Pf

b#
1$ cos%( )  

(3.2) 

 

where " is the height of the process zone, measured experimentally. The hypothesis here 

is that a global energy balance of the entire system can also be used to describe the 

energy locally in the process zone as originally proposed by Rivlin. 

 

To input the cohesive zone law into Abaqus Standard, a user-defined script is 

implemented using Fortran following the method of Camacho and Ortiz [48]. For 

purposes of comparison in this investigation, a constant cohesive zone law is used, as is 

seen for a constant peel angle and tape width from Eq. 3.2. A schematic of this law is 

shown in Figure 3.2. The goal here is to implement the same cohesive zone law while 

varying the elastic modulus and thickness to investigate the effects of bending, 

independent of what the specific cohesive zone law may be. As previously mentioned, 

the specific cohesive zone law, which is the goal of this study, will be derived later in this 

chapter.  
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Figure 3.2: Schematic of the constant cohesive zone law !(y2) used in the finite element 

simulation. 

 

 

The finite element simulation is conducted by imposing a displacement at the end of 

the tape backing. The output from the simulation gives the force along the tape backing 

as a function of position for the entire length of the tape. The length of the process zone L 

will also be obtained from the simulation and compared to the experimentally measured 

length L from the experimental results. The peel arm here is set to be the same length as 

in the experimental tests described in Chapter 2.  

 

3.3 Finite Element Results – Experimental Case 

 

A simulation is performed as formulated in the previous section for a peel angle of # 

= 90˚. The total computation time is approximately ten minutes on an Intel Core™2 Duo 

2.4 GHz processor. To investigate the experimental version specifically, an initial test is 

conducted using parameters from the measurements in Chapter 2. The input parameters 

include the material properties of the tape (E  = 1.65 GPa (Young’s modulus), $ = 0.2 

(Poisson’s ratio)), the initial peel arm length (L = 75 mm), and the displacement to be 

applied at the end of the tape (u = 120 mm). The cohesive zone law is input using the 
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experimental opening displacement (the height of the process zone), "  = 222 !m, the 

experimentally-measured peel force Pf = 34.5 N/m, and the value of !0 calculated from 

Eq. 3.2 for this case, !(y2) = 0.27 MPa. 

 

A plot of the axial force along the curve following the shape of the tape backing, 

denoted S11 in the plot, is shown in Figure 3.3 for a region local to the process zone. The 

direction of S11 is in a coordinate system where a curve s is defined to follow the backing 

of the tape. This choice of coordinates is described in detail in a subsequent section. The 

cohesive zone is also shown in the plot. 

 

 
 

Figure 3.3: Axial force, denoted S11, along the tape backing in a simulation for # = 90°. 

 

 

The plot in Figure 3.3 provides insight into several interesting features. From a 

qualitative view of the contour plot, the axial force in the process zone is not constant. 
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Experimentally, recall that the peel force is measured at a point far away from the process 

zone. Based upon the result in Figure 3.3, it can be concluded that the far-field steady-

state peel force itself is not equivalent to the forces in the process zone.  

 

Another observation that can be made is that at the end of the process zone, the peel 

angle # is not 90°, which is the far-field peel angle employed in the simulation. The 

backing therefore has some curvature at this point, which reflects the presence of bending 

stiffness. Consider if the backing of the tape is modeled with no bending stiffness. In this 

case, the curvature that exists in the backing is induced by the cohesive zone force, !0. 

Outside of the process zone, where the cohesive zone force is equal to 0, there are no 

forces acting on the backing and therefore no curvature should be present.  

 

In order to verify the cohesive zone law that is input for this instance, the cohesive 

zone force is plotted in Figure 3.4 as a function of the position x in the deformed 

configuration. 
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Figure 3.4: Contact cohesive force as a function of horizontal position, x in the deformed 

configuration.  

 

 

The element size in this simulation is 50 µm. The origin of the process zone is at the 

position x = 1.5 mm, while the end of the end of the process zone is at x  = 2.2 mm. The 

explanation for the spike at the origin of the process zone can be explained by the 

singularity that develops at the crack tip [42]. From x = 1.7 mm to 2.2 mm, there is a drop 

in the contact force of 0.0135 N, which corresponds to the cohesive zone force of the 

same value in the opposite direction being applied. This contact force is monitored along 

the substrate, hence explaining why the force is negative in Figure 3.4. The length, L of 

the process zone here is 730 !m, which is larger than the length in the experimental 

results. 
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From the contour plot of S11, the axial force along the adhesive backing can be 

quantitatively determined. This force, denoted P(s), is plotted as a function of the 

horizontal position, x, along the tape backing in Figure 3.5.  

 

 
 

Figure 3.5: Axial force, P(s), vs. position, x in the deformed configuration. 

 

 

As suggested by the contour plot in Figure 3.3, the axial force does not remain 

constant in the process zone. The peak axial force occurs at x = 2 mm, which does not 

correspond with the edge of the process zone. At the end of the process zone, the axial 

force is 2.7 N, which is not equivalent to the far-field peel force Pf. Compared to the 

contact cohesive force, the axial force dominates the force distribution. 
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3.4 Finite Element Simulation - Parametric Study 

 

Now that the experimental results have been simulated, the input parameters for the 

elastic modulus E and the tape thickness h are altered to simulate a beam with different 

bending stiffness. These simulations were performed to gain insight into the role of 

bending stiffness on the process zone geometry. Two cases are considered here: the first, 

where the modulus E and the thickness h are increased and decreased by a factor of 10, 

respectively, and then the second case by a factor of 100. This will effectively decrease 

the bending stiffness of the beam, as well as keep the axial force P(s) the same for all 

cases while altering the bending stiffness of the beam.  

 

To achieve convergence for these simulations, it is also necessary to change the 

constant cohesive zone force, !0 and the opening displacement, ". To keep the energy G 

the same as in the simulation, the two parameters are similarly increased and decreased 

by the same factors of 10 and 100 as with the modulus, E and opening displacement, ". A 

summary of the parameters used for these simulations is given in Table 3.1.  

 

Simulation # E h "  !0 

1 (Experimental) 1.65 GPa 50 µm 0.222 mm 0.27 MPa 

2 16.5 GPa 5 µm 2.22 mm 0.027 MPa 

3 165 GPa 0.5 µm 22.22 mm 0.0027 MPa 

 

Table 3.1: Summary of input parameters used in the finite element simulations for 

different bending stiffnesses. 

 

 

Simulations are conducted for cases 2 and 3 in Table 3.1, and the process zone is 

quantified. Figure 3.6 shows the shapes of the process zone for each of the two cases 
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described in this section, along with the profile from the experimental simulation (blue), 

denoted in a y1-y2 coordinate frame. The curves shown represent the shape of the tape 

backing. The profiles are normalized by the respective opening height, ". 

 

 
Figure 3.6: Process zone shape y2(y1) for three different bending stiffnesses. The 

experimental profile is shown in blue.  

 

 

In both cases where the bending stiffness has been decreased, the angle of the backing 

at the edge of the process zone is 90°. Thus, in these two cases, there is minimal to no 

bending present as evidenced by the fact that the local angle at the edge of the process 

zone is equal to the far-field peel angle. However, this is not the case for the experimental 

curve shown in blue in Figure 3.6. At the edge of the process zone, as mentioned 

previously, the local angle is not the same as the far-field peel angle. This suggests the 
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presence of bending in the tape backing, which must be accounted for in developing the 

theoretical framework for modeling this peeling configuration. 

 

3.5 Local Process Zone Model  

The results from the finite element simulations in the previous section are now used 

to motivate a closed-form theoretical framework for analyzing the peeling configuration. 

This analysis is used to determine the full-field force distribution in the process zone as 

well as a cohesive zone law to describe the process zone. Consider the peeling of an 

elastic adhesive film from a rigid substrate, as shown in Figure 3.7. The film has an 

elastic modulus E with a cross-sectional area of width b and thickness h.  The adhesive 

backing is treated as a 2D planar beam, while the deforming adhesive in the process zone 

itself is considered as a cohesive zone (the cohesive zone description will be given in the 

next section).  As the adhesive backing is peeled from the surface at a fixed angle, #0, it is 

similar to a bimaterial interfacial fracture problem. As the crack propagates, a process 

zone length, L, and height, ", are defined.  
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Figure 3.7: Schematic of a peeling configuration for an elastic adhesive film from a rigid 

substrate. 

 

 

A base curve s is defined along the backing of the adhesive, with y1 and y2 being the 

coordinate frame in the deformed configuration. P(s) is the axial force in the beam. Far 

from the process zone, the axial force P(s) is the measured peel force Pf. Force 

equilibrium between two points, s1 and s2, along s requires  
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F s
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1( ) + f s( )ds = 0
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(3.3) 

or 

  

! 

d
! 
F 

ds
+
! 
f = 0 

(3.4) 

 

where   

! 

! 
F  is the internal force in the beam and 

  

! 

! 
f  is the applied external force [49]. In 

component form, we can write Eq. 3.4 in terms of forces and moments 
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dT s( )
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(3.6) 

 

  

! 

dM s( )
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+ "N s( ) +
! 
m = 0  

(3.7) 

 

where T(s) and N(s) are the internal axial and transverse forces along s, respectively,  

and  unit vectors in the tangential and transverse directions, respectively, and % a 

material constant related to the extensibility of the beam. A schematic of these forces is 

shown below in Figure 3.8, where the parameter ! is the cohesive zone force.  

 

 
Figure 3.8: Force distribution at a point along the adhesive backing. 

 

 

 The parameter k is related to the curvature of the beam by 

 

! 

k =
d"

ds
 

(3.8) 
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where # is the local angle at a given position along s. The local angle # is related to the 

slope curve s at any point by 

 

! 

tan" =
dy

2

dy
1

. 

(3.9) 

 

The quantity dy2/dy1 can be determined by fitting a function to the shape of the tape 

backing from the experimental results in Chapter 2. To fit the experimental profile shown 

in Figure 2.7, an elliptical function is used. The general equation of an ellipse is given by 
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for an ellipse centered at 

! 

y
10
,y

20( ). The constants A and B are fit empirically. Rewriting 

Eq. 3.10 in terms of y2 results in 
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Using this form, the profile of the tape backing is fit as a quarter of a full ellipse. To 

center this ellipse, one can see that the origin of process zone lies along the fourth 

quadrant of the ellipse. For a process zone of length, L and height, " in the deformed 

configuration, the elliptical fit is centered at 

! 

y
10
,y

20( ) = 0,"( ) . Thus, the form of the 

ellipse used analytically to fit the experimental profile is 
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where the constants A and B are determined experimentally. An image of the process 

zone for a 90° peel test from Figure 2.7 is shown in Figure 3.9 with the elliptical profile 

fit imposed. 

 

 

Figure 3.9: Image of the process zone for a 90° peel test with the elliptical profile (Eq. 

3.12) fit to the tape backing, shown in red. 

 

 

 There are several functional forms for fitting the experimental profile that may yield 

similar results to the ones shown in this chapter (for example, a second-order polynomial 

fit 

! 

y
2
y
1( ) = Ay

1

2 + By
1
 also fits the experimental profile reasonably well). To ultimately 

determine the best function, the choice of curve fit should be motivated by some physical 

argument rather than arbitrarily fitting the best curve to the profile. As will be seen in the 

remainder of this section, the profile shape function will be differentiated four times for 

input into this theoretical framework. While the function itself seems like an accurate fit, 

a higher-order derivative may not necessarily be accurate. 

 

The derivative of Eq. 3.12 can be related to the local angle # at any point along the 

curve, s, by 
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Expressing the local angle # as a function of the beam shape, one has 
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For an inextensible beam, the parameter % = 1 and for an increment ds along the base 

curve, 
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Dividing this expression by dy1
2
, we can utilize the experimental fit to obtain a relation 

for the change in y1 with respect to the base curve s,  
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From this expression, k can be determined as a function of y1, which will be a useful 

relation when solving the equilibrium relations Eqs. 3.5-3.7, 
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where  
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and thus 
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As there are no external moments applied,   

! 

! 
m = 0 and Eq. 3.7 becomes 
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The internal moment can be related to the curvature by 
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and Eq. 3.21 can be written in terms of N as 
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Solving for N as a function of y1 yields 
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3.6 Cohesive Zone Definition 

 

 Consider the force distribution as shown in the previous section in Figure 3.8. A 

distributed cohesive zone force 

! 

"
0
 is defined acting vertically downward with respect to 

the deformed configuration. This requires making the assumption that the deformation of 

the fibrils in the process zone is normal to the substrate, with no sliding displacement. 

Therefore, the cohesive force, 

! 

"
0
 can be written as 
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 The tangent and normal unit vectors t and n can be expressed as a function of the 

angle, # by 
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and thus the external force 
  

! 

! 
f  is resolved in the tangential and normal directions as 
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 Returning to the equilibrium equation in component form, using Eqs. 3.5 and 3.6 to 

insert the cohesive zone law behavior, having solved for the transverse force N in the 

previous section,  
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 This yields two equations with two unknowns, T and !0. Both expressions are solved 

for !0 and set equal to eliminate a variable 
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 This expression is a first-order, non-linear ordinary differential equation in s. To solve 

for T, the dT/ds term is cleared, resulting in 
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 It is more useful to express T as a function of y1 in the deformed configuration, rather 

than s in the undeformed configuration. Thus, Eq. 3.33 is rewritten as 
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and thus dy1/ds is eliminated since it appears in every term 
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 To solve this equation, a boundary condition must be imposed at either end of the 

process zone 0 & y1 & L. By making use of the far-field steady-state peel force Pf obtained 

experimentally, a force balance is considered for the beam outside of the process zone 

where the cohesive force 

! 

"  = 0. This force balance is shown in Figure 3.10. 
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Figure 3.10: Force balance outside the process zone for determining the applicable 

boundary condition at y1 = L. 
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where #0 is the angle at which the far-field peel force Pf is measured and # is the local 

angle at some point along the beam (this definition for #0 and # will be used for the rest 

of the chapter). To obtain the boundary condition, Eq. 3.39 is evaluated at y1 = L. Using 

this boundary condition, Eq. 3.38 is solved numerically using Matlab.  

 

 Substituting T and N into either Eq. 3.33 or Eq. 3.34, one can solve for the cohesive 

zone stress !0. Solving for !0, the cohesive zone stress !0 is obtained as a function of y1: 
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 The distributions of !0(y1) and y2(y1) are then combined to yield the cohesive zone 

law !0(y2).   

 

3.7 Local Process Zone Force Distribution and Cohesive Zone Results 

 Using the model derived in the previous section in the context of finite deformation 

beam theory, the experimental results from Chapter 2 are used to extract the cohesive 

zone law in Eq. 3.40. The experimental profiles from peel tests through a range of peel 

angles of 30˚ to 90˚ are fit using the elliptical form shown in Eq. 3.12 This allows for the 

determination of the empirical constants A and B. Figures 3.11 and 3.12 show the 

relationship between the constants A and B, respectively, and the peel angle, #. 

 

 
 

Figure 3.11: Empirical constant A as a function of peel angle, #. 
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Figure 3.12: Empirical constant B as a function of peel angle #. 

 

 

 From the Figures 3.11 and 3.12, the constant A increases as the peel angle decreases, 

while B appears to remain nearly constant with exception of the increase at # = 30°. The 

constant A is an order of magnitude larger than B. In the process of fitting the curves, it is 

seen that the value for A can generally be related to the length of the process zone, L, by 

 

 
(3.41) 

 

 Table 3.2 summarizes the results for the empirical fitting constants A and B, along 

with the values for the process zone length and height, L and !. 
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L [!m] " [!m] A [!m] B [!m]  

412 ± 78 226 ± 21 (679 ± 1.28) x 10
-4 

(-12 ± 0.89) x 10
-4

 

 

Table 3.2: Process zone geometry and fitting coefficients for peel angle of #0 = 90°. 

 

 

 Using the experimental parameters obtained for L, ", A, B, and the steady-state peel 

force Pf, the data is input into the model from Section 3.6 in order to extract a relation 

between the cohesive zone stress !0!and the height of the process zone !. Additionally, 

the internal transverse and axial forces in the tape backing, N and T, respectively, can be 

determined and compared to the finite element simulations. Figure 3.13 shows the 

transverse force, N plotted as a function of y2 for a peel angle of 90°, where the maximum 

value of y2 is the height of the process zone " measured experimentally.  
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Figure 3.13: Transverse (normal) force in the tape backing, N, as a function of the 

opening displacement, y2 in the cohesive zone for a peel angle of 90°. 

 

 

 At the end of the cohesive zone (y2 = "), the transverse force N approaches zero but 

does not reach it. This correlates with the results of the finite element simulations (Figure 

3.6), as in the case where there is still curvature in the backing as a result of a bending 

moment, the transverse force will be non-zero. 

 

 The axial force T is plotted as a function of the length of the process zone, y1 in 

Figure 3.14. 
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Figure 3.14: Axial force in the tape backing, T as a function of the process zone length, 

y1 in the cohesive zone for a peel angle of 90˚.  

 

 

 The axial force is non-zero at the origin of the process zone, which is not in 

agreement with the finite element simulations. This can be attributed to the boundary 

condition prescribed by Eq. 3.39, and is discussed later in this section. 

 

 Figure 3.15 is a plot of the cohesive zone law, or the !0 - " relationship, which can 

now be determined since the force distribution is known. 
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Figure 3.15: Cohesive zone stress-displacement relation for a 90° peel test. 

 

 

 The cohesive zone force !0 goes to zero at the end of the process zone, where y2 = ". 

The general shape of this curve is very similar to the power-law form given in Eq 1.9 

with n = 2. The transverse and axial forces N and T, respectively, along with the cohesive 

zone relation !0 - " are determined for the range of peel angles 30° to 90°. For 

comparison with the 90° tests, Figures 3.16 to 3.18 show plots of the axial and transverse 

forces, T and N, respectively, along with the cohesive zone law curve for a peel angle of 

70°. 
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Figure 3.16: Transverse (normal) force in the tape backing, N, as a function of the 

opening displacement, y2 in the cohesive zone for a peel angle of 70°. 
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Figure 3.17: Axial force in the tape backing, T as a function of the process zone length, 

y1 in the cohesive zone for a peel angle of 70˚. 
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Figure 3.18: Cohesive zone stress-displacement relation for a 70° peel test. 

 

 

 Comparing the transverse and axial forces between the 90° and the 70° peel test, the 

shape of the transverse force, N, for both angles is similar, with the 90° peel test having a 

larger peak transverse force. The axial force, T, at the end of the process zone (y1 =L) for 

the 70° peel test is larger than that of the 90° peel test, consistent with finite element 

simulations. However, at the origin of the process zone (y1 = 0) for the two angles, the 

axial force, T, is not consistent. The shapes of the axial force curves for both angles (Figs. 

3.14 and 3.17) are also not the same. Since the boundary condition for the axial force is 

applied at the end of the process zone (y1 =L), this may explain why the values of T are 

not consistent with the finite element simulations at the origin of the process zone (y1 = 

0) despite their agreement at the end of the process zone. Comparing Figures 3.15 and 
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3.18, the cohesive stress-displacement relations for the two angles have similar shapes, 

with the peak stress, !0, being lower for the 70° tests. 

 

 To determine the adhesion energy G of this cohesive zone, the "-! curve can be 

integrated as previously described in Chapter 1 

 

! 

G = " y
2( )

0

#

$ dy
2
. 

(3.42) 

 

 The adhesion energy can also be determined using the global energy balance 

approach of Rivlin previously described (Eq. 1.7). Comparing the values of G obtained 

through these two different methods, the validity of the local method using finite 

deformation beam theory is analyzed. Figure 3.19 shows the adhesion energy G obtained 

by both the Rivlin model and the model presented here as a function of the peel angle, #.  
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Figure 3.19:  Adhesion energy G for range of angles. GCZ  is obtained through the local 

process zone model, while GRivlin is obtained through the global energy balance. 

 

 

For a peel angle of 40°, there is a large difference both in the experimental results as 

well as the correlation between the two methods of determining G. This angle is the only 

case in which the cohesive zone model yields a higher value of adhesion energy than the 

Rivlin model. For all other angles shown in Figure 3.19, the cohesive zone model 

predicts a lower value of the adhesion energy, G. The difference between the two 

methods is that the Rivlin model determines the global adhesion energy through the far-

field peel force Pf and peel angle #0. The new method presented here determines slightly 

smaller values of adhesion energy through the far-field peel force, Pf, and the size of the 

local process zone. The model here also provides the local force distribution in the 
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process zone, which the Rivlin model does not provide. As is seen from the finite element 

simulations, the peel force in the process zone is not constant (Figure 3.5). The present 

analytical model is able to quantify the forces in this region given that the size of the 

process zone can be quantified experimentally.  

 

While the advantage of the model presented here is the ability to describe the 

behavior in the process zone, the implementation of this model is more complicated than 

the Rivlin model. The simplicity of the Rivlin model is that the adhesion energy can be 

determined as a function of two far-field variables (Pf and#0) that can easily be measured. 

The cohesive zone model here is sensitive to the values of the empirical constants A and 

B in the curve fit. As previously mentioned, there are any number of functions that could 

be used to fit the experimental profile. It is also important to note that in the cohesive 

zone extraction, an experimentally-obtained data curve is being differentiated four times 

as it is implemented into the theoretical framework. While the curve fit itself is a 

functional form, new error may be introduced as the curve fit is processed several times. 

As previously mentioned, a different boundary condition could be used in order to 

produce a force distribution that is in better agreement with finite element simulations. 

This may also improve the correlation between the adhesion energies. 

 

It is also observed that the adhesion energy, G, appears to be constant within some 

quantifiable error, independent of the peel angle, #0, which is in agreement with previous 

studies [49]. In the context of the cohesive zone law extraction method used here, since 

the adhesion energy is not a function of the peel angle #0, determining the cohesive zone 

law for a 90˚ peel test may be sufficient to describe the cohesive zone law for an entire 
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range of angles. The relation between the adhesion energy, G, and the peel angle, #0, will 

be investigated in more detail in Chapter 4.  

 

The definition of the moment M in Eq. 3.7 includes no shear forces. Consider the case 

where shear forces are included in the definition of the moment as is the case in the 

Timoshenko beam theory [50]. In the current framework, it is assumed that plane sections 

remain plane (Bernoulli-Euler beam theory). However, when shear is included, it can no 

longer be assumed that plane sections remain plane. The shear force component is 

normally incorporated for short beams, where the ratio of thickness h to length L is h/L ~ 

10. A form factor ' is introduced, which is nominally 5/6 for rectangular cross section. 

The theory considered in the previous section, which does not include shear forces, is a 

sufficient approximation when the following condition is met: 

 

! 

EI

"LAµ
<<1 

(3.43) 

 

where µ is the shear modulus of the beam. For the material used here (Scotch 

MagicTape), $ = 0.2, 

! 

I =
bh

3

12
 , b = 19mm (3/4”), h = 50 µm, and

! 

" = 5 6. Thus, 

! 

EI

"LAµ
 = 

1.1385 x 10
-6

, meeting the condition in Eq. 3.43. Hence, the exclusion of shear forces in 

the analysis is justified. 

 

3.8 Conclusions 

 

A theoretical framework has been developed to model the peeling configuration 

appropriately and extract a cohesive zone law from the data of an experimental peel test. 

The model is motivated using a finite element simulation to model the peeling 
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configuration and investigate the mechanics phenomena in the tape backing. Under the 

context of finite deformation beam theory, this model enables the determination of the 

full-field force distribution in the process zone, as well as the cohesive zone law for a 

range of peel angles. The adhesion energy is calculated from the cohesive zone law and 

compared to the Rivlin model, showing good agreement. Thus, the inverse method of a 

local cohesive zone extraction of the process zone from an experimental peel test 

produces similar results as the global energy balance method of Rivlin, and is a viable 

method for determining the adhesion energy of the system. The methodology also 

provides insights regarding the force distribution in the process zone. 

 

 

!
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Chapter 4 

 

 

Rate Dependence in the Peel Test 
 

 

 

4.1 Introduction 

 

This chapter explores rate-dependent effects and phenomena during the peel test. 

Thus far, this thesis has considered the steady-state effects of peel at a constant single 

peel velocity, v0 = 10 µm/s. In this section, the effects of varying the peel velocity will be 

examined to develop relations between the adhesion energy, the peel angle, and the rate 

of peel. 

 

4.2 Experimental Method 

 

The candidate material used here is Scotch Industrial Packing Tape (3M, 

Minneapolis, MN). This specific adhesive tape is used because of its large width (b = 48 

mm), which will be utilized in parts of the study to conduct stability experiments where 

the width changes as a function of position. Tests are conducted using the same peel 

configuration as described in Chapter 2, configured slightly differently, as shown in 

Figure 4.1.  
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Figure 4.1: Modified peel test configuration for studying rate dependence. 

 

 

The peel base is turned around opposite of the prior experiments described in Chapter 

2. A wider grip is used to accommodate the increased width in tape as compared to the 

Scotch MagicTape used prior, and the initial peel arm, defined as L0, is set to be very 

small, as shown in the figure. As the translation stage is moved vertically, the angle will 

change rapidly. This allows for a rapid change of the peel angle, as opposed to the 

previous tests where the angle was kept constant for a given test. However, the tradeoff is 

that a steady-state peel force is not reached. The grips are made from delrin, a 

commercial plastic. The tape is peeled from a rigid glass plate with dimensions 203 x 127 

x 3.175mm (8” x 5” x 1/8”) for the length, width, and thickness, respectively. 

 

Three separate types of measurements will be discussed in this chapter. The first set 

examines the dependence of peel force and adhesion energy on the peel velocity through 
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a range of angles. Using the setup in Figure 4.1, tests are conducted for varying initial 

peel velocities with a short initial peel arm length of L0 = 12.7 mm (0.5”). While a steady-

state peel force is never reached, it is interesting to see how the peel force and adhesion 

energy change with angle as the angle is reduced from 90° towards 0°. 

 

Further experiments are then performed using a longer peel arm similar to the original 

configuration in Chapter 2. The goal of these tests is to measure the steady-state peel 

force (Pf) for a range of angles and compare to the similar curve in Chapter 2 for the 

Scotch MagicTape material. The adhesion energy G is also plotted as a function of peel 

angle, to examine the question of whether or not the adhesion energy is a function of peel 

angle. Finally, a set of measurements is conducted to examine the relation between the 

steady-state peel force Pf and the peel velocity v for tests with a constant peel angle of 

90°. The goal is to develop a rate-dependent law that relates the peel force (Pf) and the 

peel velocity (v). 

 

4.3 Influence of Peel Arm Length on Local Change in Peel Angle 

 

In Chapter 2, experiments were conducted while keeping the peel angle constant 

during a test in order to achieve a steady-state peel force at the given angle. This is done 

to compare the results to the predictions by Rivlin and Kendall models [18, 22]. One way 

in which this is accomplished is by having a long peel arm, as it is seen geometrically that 

this enables the peel angle to be kept constant without moving the base upon which the 

rigid substrate is held. However, the peel angle can be changed rapidly by making the 

peel arm very short. Consider the case of a 90° peel test shown in Figure 4.2. The 

extremity of the tape, denoted ya, is subject to a fixed velocity v and pulled vertically in 
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order to initiate peel. The test begins in the initial, undeformed configuration !0, with 

defined parameters including the initial peel arm length L0, initial tip position a0, and 

initial peel angle "0. The tape is peeled through some distance to the deformed 

configuration !i (Figure 4.2), where the new tip position and peel angle are denoted by ai 

and "i, respectively.  

 
Figure 4.2: Schematic of a displacement-controlled peel test at velocity v. 

 

 

The variables a0 and ai can be related by 

 

! 

a
i
" a

0
= a, 

(4.1) 

 

where a is referred to as the instantaneous tip position with respect to the initial 

configuration. From geometry, the new peel angle "i (assuming inextensibility) is 
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i
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a + L
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(4.2) 

 

The influence of the initial peel arm length on the local change in peel angle is seen in 

Figure 4.3 over a range of tip positions. As L0 is increased, the angle change for a given 
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tip position decreases. As discussed briefly in Chapter 2, to keep the peel angle relatively 

constant during a peel test at an intended constant angle, L0 is set to 76.2 mm (3”). 

 
 

Figure 4.3: Change in peel angle, " vs. tip position, a for varying initial peel arm length, 

L0. 

 

 

For a peel arm of L0 = 25.4 mm (1”), the peel angle deviates from the initial peel 

angle by over 40 degrees for a change in tip position of 50 mm. As the peel arm is 

increased, the change in peel angle for a given tip position is reduced. 

 

4.4 Relation between Applied Peel Rate and Tip Velocity 

 

Consider the displacement controlled peel test described and shown schematically in 

Figure 4.2. An expression for the tip position a during a peel test as a function of the 

prescribed displacement of the tape at position ya is derived below. 
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Assuming an inextensible tape, the following quantities are defined: L0 as the initial 

peel band length (debonded portion), a0 as the initial tip position, ai as the instantaneous 

tip position, and Li as the instantaneous length of the debonded portion of the peel band. 

The tip position is defined as the point of the first presence of a fibril in the process zone; 

relative to Chapter 2, it is the same as the origin of the process zone. The peel angle at a 

given time is denoted "i. These variables can be related by 

 

! 

L
i
= L

0
+ a, 

(4.3) 

 

where a is used to denote the quantity, ai-a0.  The following geometrical relations are 

based upon Figure 4.2: 

 

! 

Li sin"i = ya# i; 
(4.4) 

 

! 

L
i
cos"

i
= a; 

(4.5) 

 

! 

sin
2" + cos

2" =1. 
(4.6) 

 

Combining Eq. 4.4 and Eq. 4.5: 

! 

Li
2

= ya" i
2

+ ai
2
. 

(4.7) 

 

Substituting Eq. 4.3 into Eq. 4.7: 

 

! 

L
0

+ ai( )
2

= ya" i
2 + a2. 

(4.8) 

 

Differentiating this expression with respect to time, one arrives at 

 

! 

2 L
0

+ a( )
da

dt
= 2ya
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+ 2a
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(4.9) 
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.

 
(4.10) 

 

Simplifying, an expression for the tip velocity can be obtained as 

 

! 

da

dt
=
ya

L
0

dya

dt  

(4.11) 

 

and from this, the tip position at a given time is obtained. A plot of the tip position vs. 

time along with the extremity position (denoted ya-i in Figure 4.2) is shown in Figure 4.4. 

While the extremity position is linearly increasing in the vertical direction, the tip 

position does not increase at the same rate as the peel angle decreases. Figure 4.5 shows 

how the peel angle is related to the tip position independent of time, for a given L0. 
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Figure 4.4: Position vs. time during a displacement controlled peel test for an initial peel 

arm length of L0 = 12.7 mm (0.5”). The stage velocity is the prescribed velocity at the 

extremity of the tape, denoted by ya in Figure 4.2. 
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Figure 4.5: Peel angle, " vs. tip position, a, for an initial peel arm length of L0 =12.7 mm 

(0.5”). 

 

 

4.5 Varying Peel Angle Tests Including Variable Width 

 

As previously discussed, tests were conducted where the peel angle is forced to 

change very quickly in a single peel test. This will allow the tip velocity to change as a 

function of angle while the applied extremity velocity remains constant. It also allows for 

the examination of the peel force and adhesion energy for a range of angles through 

which the tape is being forced to move. Thus, there is less time for the adhesive to react 

and it is being forced to respond to the instantaneous tip velocity. This is in contrast to the 

constant-angle peel tests where equilibrium is reached and the values for these quantities 
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are taken from there. Though steady-state peeling is never achieved, the continuously 

varying angle tests provide insights concerning the rate-dependence of adhesion. 

 

Recall from Chapter 1 that the adhesion energy G for a linear elastic extensible tape 

adhered to a substrate as given by Kendall is 

 

! 

G =
Pf

2

2Eb
2
h

+
Pf

b
1" cos#( ). 

(1.6) 

 

For the experiments and analysis that follows, inextensibility of the tape is assumed, 

for which the adhesion energy given by Rivlin is 

 

! 

G =
Pf

b
1" cos#( ). 

(1.7) 

 

Figure 4.6 shows the tip velocity as a function of the peeling angle. From the starting 

peel angle of 90° to a peel angle of ~20°, the tip velocity is roughly five times greater 

than the prescribed velocity at the extremity (in this case, 10 µm/s). 
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Figure 4.6: Peel angle, ", vs. tip velocity, da/dt, for a varying-angle peel test for Lo = 

12.7 mm (0.5”). 

 

 

In one set of experiments, a new parameter is introduced, namely a variable width for 

the adhesive tape. The width of the tape is usually kept constant (recall for the packing 

tape, b = 48 mm). Here, a linear decrease in width is introduced at a point where the tip 

position a = 50 mm from the beginning of the test, as shown in Figure 4.7. The variable 

width section is a linear function of the tape width, given by 

! 

y = b
0
1"
2

5
x

# 

$ 
% 

& 

' 
( , where b0 is 

the initial constant width of the tape. The width of the tape changes at x = ac, as shown in 

Figure 4.7. 
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Figure 4.7: Schematic of variable width tape. 

 

 

Peel tests are conducted with the packing tape for both constant and variable width 

sections. Several extremity velocities are tested: v0 = 5, 10, 30, 60, 90 µm/s. For the 

extremity velocity of v0 = 30 µm/s, the variable width is introduced. A plot of the peel 

force vs. tip position is shown in Figure 4.8. 
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Figure 4.8: Peel force, Pf, vs. tip position, a, for various prescribed extremity velocities. 

The test at v0 = 30 µm/s is for a variable width tape, with the width decreasing at a = 50 

mm. 

 

 

For a given extremity (applied) velocity, the peel force increases in all cases with tip 

position, which is a result of the decreasing peel angle. Since there exists a point where 

the angle will not change anymore regardless of how long the tip propagates, the peel 

force approaches the steady-state condition. It is also clear that the peel force for a given 

tip position increases as the tip velocity increases. Looking specifically at the v0 = 30 

µm/s, the change in width that commences at a = 50 mm also has an effect on the peel 

force. The peel force approaches zero at some tip position since the tape at this point is 

peeled completely off of the glass substrate. 
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The adhesion energy G is plotted below as a function of the peel angle, shown in 

Figure 4.9. 

 
Figure 4.9: Adhesion energy, G, vs. peel angle, ", for varying extremity velocities. The 

test at v0 = 30 µm/s is for a variable width tape, with the width decreasing at a = 50 mm. 

 

 

The adhesion energy appears to decrease as a function of peel angle for a prescribed 

extremity velocity. For a given peel angle, the adhesion energy increases as a function of 

the extremity velocity. Based upon these results, it can be hypothesized that the adhesion 

energy depends upon both the extremity/tip velocity and the peel angle (e.g., ). 

However, it must be noted that the tip velocity and the peel angle are not independent of 

each other, as shown in Figure 4.6. Several previous studies assume the adhesion energy 

to be constant with respect to the peel angle [37, 38]. To examine this, separate 

measurements are conducted which examine G as a function of v and " independently. 
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The change in width implemented in the v = 30 µm/s test is investigated in more detail in 

Chapter 5, on stability. 

 

The conditions under which steady-state data might apply to transient loadings can be 

estimated by relating the size of the cohesive zone (measured experimentally in Chapter 

2) to the change in tip velocity during a peel test. The steady-state solution applies so 

long as during the propagation history of the crack,  

 

! 

˙ K t( )
K t( )

<<
˙ a t( )

2" t( )
 

(4.12) 

 

where 

! 

K t( ) is the stress intensity factor, 

! 

˙ K t( )  the change in stress intensity factor with 

time, 

! 

˙ a t( ) the crack tip speed, and 

! 

" t( )  the length of the cohesive zone [51]. This 

expression states that differences between steady-state and transient conditions arise only 

if there are significant changes in the crack tip speed during the time interval when the 

crack passes through the cohesive zone. The right-hand side of Eq. 4.12 states that during 

the time when the stress intensity factor changes by an incremental amount, the distance 

traveled by the crack tip must be much larger than the cohesive zone size for the steady-

state solution to apply. Starting from a peel angle of 90°, if the change in peel angle in 

which the stress intensity factor changes by an incremental amount is estimated to be 10°, 

Figure 4.5 shows that crack tip travels a distance of ~3 mm for this range.  Recall from 

Chapter 2 that the size of the cohesive zone for peel angles of 80° to 90° is ~500 µm. 

Therefore, the ratio of the distance traveled by the crack tip to the cohesive zone size is 
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about six, which is not very large and suggests that in this case the steady-state data does 

not apply to transient loadings.  

 

4.6 Constant Peel Angle Tests 

 

As a result of the previous tests in the previous section, the relationship between the 

adhesion energy, G, with both the extremity velocity, v0, and the peel angle, ", need to be 

investigated independent of each other. This section aims to do this by conducting peel 

tests at constant angles, keeping the velocity constant for a given test at a given angle. 

Peel tests are conducted for a range of angles of 30° to 90° at rates of v0 = 10 µm/s and v0 

= 50 µm/s. In all of the tests, the total tip position propagation is 6 mm. In all of these 

tests, the initial peel arm length is chosen to be in the range L0 = 76.2mm (3”) to 

114.3mm (4.5”). The measured steady-state peel force, Pf, is plotted vs. peel angle, ", and 

shown in Figure 5.10. The experimental data is plotted by the circles, with the Rivlin 

expression (Eq. 1.6) shown by the lines with values of the adhesion energy G chosen to 

fit each curve. 
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Figure 4.10: Steady-state peel force vs. peel angle for peel velocities of v = 10 µm/s and 

50 µm/s for Scotch Packing Tape 

 

 

This plot shows a clear dependence of the steady-state peel force, Pf on the peel 

velocity, v. For both velocities, the Rivlin relation fits the data quite well assuming a 

constant value of the adhesion energy, G. In attempts to make measurements at lower 

peel angles (0°, 10°, 20°), it is very difficult to obtain steady-state peel-force values. This 

is so because of the effect of extensibility at lower angles. To keep the peel angle 

constant at these lower angles, the peel arm length must be increased. As the peel angle 

approaches 0°, essentially a tensile test of the tape is being conducted, as opposed to a 

peel test. As is seen from the finite element simulations in Chapter 3, the force along the 

tape does not remain constant throughout the process zone, and very likely is not constant 

in other portions of the tape and adhesive. Future investigations can be geared towards 
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measuring this by utilizing a non-contact measurement technique such as digital image 

correlation (DIC) to examine strain and consequently stress in various portions of the 

tape sections during a peel test.  

 

The adhesion energy as a function of rate and peel angle is also investigated. Figure 

4.11 is a plot of the adhesion energy, G, vs. peel angle, ", for the same tests in Figure 

4.10. The adhesion energy here is calculated rather than fit (as in Figure 4.10) using the 

Rivlin relation (Eq. 1.6) along with the prescribed peel angle, " and the experimentally 

measured steady-state peel force, Pf. 

 
Figure 4.11: Adhesion energy vs. peel angle for peel velocities of v0 = 10 µm/s and 50 

µm/s for Scotch Packing Tape. 
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In addition to the tests conducted for the Scotch Packing Tape at given velocities, the 

plot includes data from the Scotch Magic Tape tests at v0 = 10 µm/s from Chapter 2 for 

comparison. For all three sets of data, the adhesion energy is constant with respect to a 

given peel angle for a given peel rate. Comparing the values of G for the Magic Tape and 

Packing Tape at v0 = 10 µm/s, the values are almost the same, suggesting that the two 

tapes have similar adhesive properties. The two materials also have similar elastic 

moduli, E = 1.65 GPa for the Magic Tape versus E = 1.60 GPa for the Packing Tape. 

There is also more scatter in the data for the Magic Tape as compared to the Packing 

Tape. This can be attributed to the different widths of the two tapes used for testing, b = 

19 mm for Magic Tape, b = 48 mm for Packing Tape. Because the Magic Tape is 

narrower, the effects of any misalignment in the experiment are amplified and can be a 

cause of more substantial error in the results, as seen in Figure 4.11.  

 

Finally, a clear dependency of the adhesion energy on the peel velocity (e.g., ) 

exists, as the adhesion energy for a given angle is greater for the peel tests at higher peel 

velocity. While G is not a function of the peel angle, it is indeed a function of the peel 

velocity, v. 

 

4.7 Rate-Dependent Law for the Peel Test 

 

Based upon the results of the previous section, which show a dependency of the 

adhesion energy on the peel velocity, tests are conducted at several peel velocities using a 

constant-angle peel configuration with a constant peel angle " = 90°. The goal is to 

develop a rate law between the adhesion energy, G, and the peel velocity, v, for a range 

of velocities. Figure 4.12 shows the adhesion energy plotted against the peel velocity for 
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peel velocities of v = 2, 10, 50, and 100 µm/s for a peel angle of " = 90°, and the same 

data is plotted on a logarithmic scale in Figure 4.13. For this peel angle, the adhesion 

energy given by the Rivlin relation is equivalent to the peel force, Pf, per unit width, b. 

 
Figure 4.12: Adhesion energy, G, vs. peel velocity, v, for various tip velocities. The 

curve is fit with a power-law relation. 
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Figure 4.13: Adhesion energy, G, vs. peel velocity, v, on a logarithmic scale for different 

tip velocities. The curve is fit with a linear regression line. 

 

 

There exists a clear linear trend between G and v here on the log-log plot as seen in 

Figure 4.13. A fit of this curve as shown is given by  

 

 
(4.13) 

 

This yields a power-law expression for this material system given by  

 

 

(4.14) 

 

where v0 and G0 are reference values for a peel velocity of 1 !m/s and the corresponding 

value for adhesion energy, respectively. For this system, G0 = 11.2 N/m at v0 = 1 !m/s. 
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This law compares well to similar rate-dependent studies of adhesive materials [52, 53], 

albeit with different empirical constants.  

 

4.8 Conclusions 

 

This chapter has examined the effect of rate on the peel force during the peel test for a 

material system of Scotch Packing Tape adhered to a rigid glass substrate. Using a new 

peeling configuration, a set of three experiments were conducted in order to specifically 

investigate the relationship between the adhesion energy, the peel angle, and the peel 

velocity. Initial experiments where the peel angle was changed rapidly suggested a 

dependence of the adhesion energy, G, on the peel velocity, v, and the peel angle, ". 

Further experiments showed that at a constant peel velocity, the adhesion energy 

remained constant for the entire range of peel angles tested. Finally, experiments 

conducted at a constant peel angle of 90° for varying velocities showed a clear power-law 

rate-dependency of the adhesion energy on the peel velocity. 
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Chapter 5 

 

 

Stability of Peeling 
 

 

 

5.1 Introduction 

 

 A fundamental question of interest in peeling is the stability of this process. The role 

of various parameters including adhesion energy, compliance of the loading system, and 

geometry of the tape on the stability of the peeling needs are of interest. Recent studies 

have focused on understanding the role of stability in the gecko adhesion problem [5, 6], 

particularly with regard to the force distribution in the contact of the gecko’s foot to a 

surface and the detachment of setae. This study aims to investigate the stability including 

the role of compliance during a peel test through implementation of a force-controlled 

experimental configuration. Experiments are conducted that monitor the tip position of an 

inextensible adhesive tape over time subject to a constant applied load at the tape 

extremity while the width of the tape is decreased as a function of the tape length. In 

addition to examining the effect of the applied load and the change in width on the 

stability of the debonding process, the stiffness of the system is varied by altering the 

magnitude and direction of the applied load during a test. This change in stiffness also 

affects the tip velocity, and can be tuned to trigger or delay the onset of instability. 

Theoretical stability criteria are also presented to develop insights of the role of 

parameters investigated experimentally. The stability of peeling can be viewed as a 

classical application of stability concepts in fracture mechanics to the peel test [42]. 
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5.2 Experimental Method – Controlled Stiffness 

 

To investigate the stability of the peel test, a force-controlled experimental setup is 

developed in which a constant force is applied to the extremity of the tape and the tip 

position is monitored over time for a given test. Figure 5.1 is a detailed view of the 

experimental configuration implemented in the laboratory.  

 

 

 
 

Figure 5.1: Force-controlled configuration for investigating stability of peeling of elastic 

tapes. 

 

 

For the experiments conducted here, Scotch Packing Tape (3M, Minneapolis, MN) is 

used as the model material. This tape is chosen because of its large width (b = 48 mm), 

which will be useful in investigating the effect of variable width on the stability of the 

peeling process. The tape is adhered to the underside of a glass substrate with dimensions 

127 mm x 127 mm x 3 mm (5” x 5” x 1/8”). Prior to testing, the glass surface is cleaned 

with acetone, followed by isopropanol, and left to dry. The adhesive tape is applied to the 

glass surface with a roller to minimize the presence of air pockets between the tape and 

the substrate. Ideally, it appears that the longer the adhesive is left on the surface once 
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attached before testing, the more steady a peel force can be obtained, along with more 

consistent results. Based on this observation, to minimize experimental variations, all 

tests are conducted after the adhesive is left to sit for 30 minutes prior to testing. Due to 

the stochastic nature of this process, great care is taken in being consistent in the process 

of applying the adhesive to the surface.  

 

The glass substrate is held between two acrylic glass plates, each with a 127 mm (5”) 

radius cut-out with depth of 12.7 mm (0.5”). This allows for the substrate to be rotated 

and set at any angle for the beginning of a test.  The acrylic glass plates are bolted to an 

optical rail on each side (304 mm (12”) and 457 mm (18”) in height, respectively), which 

are fixed to an optical table. Two pieces of delrin held together by two screws are used as 

a grip to clamp the end of the tape. To attach the weight, numbers of small spherical 

beads each weighing approximately 0.3 g are placed into a rectangular receptacle 

constructed from corrugated cardboard (hidden by the vertical guide in the figure). The 

receptacle is tied to the front and back ends of the screws of the delrin grip with 89 N (20 

lbf) fishing wire. The use of small spherical beads allows for small increments of weight 

to be added or removed. A vertical guide is formed using a thin aluminum sheet attached 

to a 304 mm (12”) optical rail, which is mounted vertically. This guide restricts the 

applied load to movement in the vertical direction only. Thus, as the load descends 

vertically when the tape is peeled, the peel angle ! will change throughout the test.  

 

The tip position of the tape is imaged and monitored during the tests. Recall from 

Chapter 4 that the tip position, a, is defined as the contact point between the tape and the 

glass substrate. The tip is imaged with a 2-megapixel monochromatic digital CCD 
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camera (UP-2000CL B/W, Uniqvision, Santa Clara, CA). The camera is attached to an 

optical post, which is attached to a series of manual translation stages (Newport 

Corporation, Irvine, CA) to allow for fine adjustment of the camera. The camera and 

mounting configuration is not shown Figure 5.1.  

 

Figure 5.2: Image of the tip position, a, as acquired with a CCD camera during a force-

controlled peel test. 

 

 

For these experiments, one image is acquired every 5 seconds for the duration of the 

test. To determine the length scale from the image, an image of sets of line pairs from a 

1951 USAF target grid is acquired prior to testing. This image allows for determination 

of the scaling factor in units of mm/pixel. Figure 5.2 shows a sample image of the tape 
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debonding from the glass substrate during a test. To track the tip position, a, over time, 

all of the images from a given test are loaded sequentially in Matlab (Mathworks, Natick, 

MA) and the tip position is selected manually. The selected tip position is stored for each 

image and subsequently tracked over time, as is shown in a later section. 

 

Using this specific experimental configuration, tests are conducted to examine the tip 

position of the tape as a function of time for different combinations of applied loads. The 

tests use a tape that goes from constant to variable width, as shown in Figure 5.3, which 

is used to investigate effect of the change in width on tip velocity and stability. The 

variable width section is a linear function of the tape width, given by 

! 

y = b
0
1"
2

5
x

# 

$ 
% 
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' 
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where b0 is the initial constant width of the tape. The width of the tape changes at x = ac, 

as shown in Figure 5.3. 

 

 
 

Figure 5.3: Schematic of variable width tape used in the peeling tests. 

 

 

An initial constant weight P0 is applied at an initial peel angle of ! = 90° and the tip 

position is imaged as the tape peels from the substrate in the section of constant width (a 

= 0 to 50 mm). After some time increment has passed, the weight is increased to P1 . This 
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new increased weight will cause the tip to propagate at a faster rate and take it into the 

variable width section. The change in tip velocity, da/dt, is investigated for different 

combinations of P0 and P1.  

 

5.3 Debonding Stability Criteria 

 

Figure 5.4 shows a schematic of the force-controlled peeling configuration. An elastic 

adhesive tape is adhered to a rigid substrate with a peel angle !. A set of forces Fperp and 

Fpar are applied to the extremity of the tape in the directions perpendicular (! = 90°) and 

parallel to the substrate (! = 0°), respectively.  

 

 

 
Figure 5.4: Schematic of the force-controlled peel configuration. F is the resultant axial 

force acting along (!) the backing of the tape. 

 

 

These two forces form a resultant force F along the tape backing, which is expressed as 

 

. 

(5.1)
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 The experimental realization of such a test can be considered by hanging a fixed load 

from the extremity of the tape (Fperp) with a separate tensile force imposed horizontally 

(Fpar), simultaneously. The details of the applications of these forces are discussed in the 

next section on experimental methods. Recall that the peel force, Pf, is measured along 

the backing of the tape. The parameter Fperp is the force applied in the perpendicular 

direction with respect to the substrate. The peel force 

! 

ˆ P f  is the total peel force used in the 

Rivlin relation for determining the adhesion or debonding energy. Recall the Rivlin 

relation from Chapter 1:  

 

! 

ˆ P f =
Gb

1" cos#
,
 

(5.2)
 

 

where b is the width of the tape, ! is the peel angle, and G is the adhesion or debonding 

energy. Stability criteria for the debonding of the tape during the peeling process can be 

examined by considering the relation between the peel force  used in the Rivlin 

relation and the perpendicular force (applied load), Fperp. To resolve Fperp in the direction 

of the peel force, , the generalized resultant force F is introduced. For the Rivlin 

expression, the driving force F, which is the resultant of the applied load, is equivalent to 

the peel force, . The applied load, Fperp, can be related to the resultant force F through 

geometry, 

 
(5.3)
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 Figure 5.5 shows the relation between the force, F, and the peel angle, !. The solid 

curve represents the resistance to peeling given by the Rivlin expression (Eq. 5.2), while 

the dashed curve represents the driving force for debonding due to the applied load (Eq. 

5.3).  

 

 
 

Figure 5.5: Force, F, as a function of the peel angle, !. The solid curve represents the 

resistance to peeling given by the Rivlin relation, while the dashed curve represents the 

driving force for debonding due to a specified applied load, Fperp. 

 

 

 The Rivlin curve in Figure 5.5 represents the equilibrium state of peeling or intrinsic 

material resistance to debonding. For a given angle !, there is a corresponding force on 

the Rivlin curve that defines the equilibrium force at which peeling will not occur. That 

is, for some load F at an angle ! on the Rivlin curve, the tape will not debond. For the 
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tape to debond, the peel angle must be increased or the applied force must be increased. 

The three regions denoted A, B, and C correspond to regions of stability criteria. When 

the driving force (

! 

Fperp /sin" ) curve is above the Rivlin curve (region C), unstable 

debonding will occur. For the point of intersection between the driving force and Rivlin 

curves (region B), stable debonding will occur. Finally, when the driving force curve is 

below the equilibrium curve, no debonding will occur and peeling will be arrested. 

 

 To best understand the utility of Figure 5.5 in the force-controlled peel-tests, consider 

the case where a constant load Fperp is applied for a tape of constant width at an initial 

peel angle of 90˚. This corresponds to the dashed curve in Figure 5.5. At this point, the 

driving force curve is above the equilibrium Rivlin curve, designated region C on the 

plot. Debonding in this region is unstable, as the tape will peel off and the tip position, a, 

will advance. As the tape is peeled, the angle will decrease, as described in the 

experimental setup section. Following the driving force curve, eventually at an angle of ! 

= 68˚, this curve will intersect the Rivlin curve. At this intersection, the tape will no 

longer debond and the propagating tip will arrest. This is the case of stable debonding. 

For the tape to debond further, a larger force must be applied, so as to shift the driving 

force curve up the vertical axis. An example is shown of a larger force being applied in 

Figure 5.5. Note how the driving force curve is now shifted up in comparison to Figure 

5.4 as a result of this increase in applied load. For the same angle ! = 68° where the 

intersection of the two curves occurs in Figure 5.5, Figure 5.6 shows the case of unstable 

peeling since the force F is increased. 
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Figure 5.6: Force, F, as a function of the peel angle, !, for an increase in applied load, 

Fperp (with respect to Figure 5.5). The solid curve represents the resistance to peeling 

given by the Rivlin relation, while the dashed curve represents the driving force for 

debonding due to the applied load, Fperp. 

 

 

5.4 Experimental Method – Role of Stiffness in the Parallel Direction 

 

 In Section 5.2, a force-controlled peeling configuration is described that confines the 

applied force vertically (Fperp), restricting the movement of the weight horizontally. This 

corresponds to a system with infinite stiffness ( ) parallel to the substrate. As 

alluded to in the introduction, it is interesting to examine how varying this stiffness, K, 

which will alter the parallel force Fpar, in addition to varying the applied load, Fperp 

affects the stability of the peeling process. Consider an elastic string that can be attached 

to the extremity of the tape to apply the parallel force Fpar. While the elastic modulus, E, 
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of the string is a property of the material, the stiffness, K, is a property of the structure. K 

is generally defined as  

 

! 

K =
Fpar

"  
(5.4)

 

 

where Fpar is the force and " is the resultant displacement. Relating Eq. 5.4 to the 

geometry and material properties: 

 

! 

K =
Ewt

s

L  
(5.5)

 

 

where w, ts, and L are the  width, thickness, and length, respectively, of a elastic string of 

rectangular cross section. If the length and thickness of the string remain constant, as the 

width (w) of the string is increased, the stiffness, K, will increase, for a constant 

thickness, ts. 

 

 To investigate the effect of the compliance of the system experimentally, an 

experimental setup is developed based upon the vertically-guided setup in Figure 5.1. 

This new experimental arrangement is shown in Figure 5.7. 
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Figure 5.7: Variable stiffness experimental setup, which incorporates a string parallel to 

the substrate attached to the tape in addition to the vertically guided weight.  

 

 

 The tape used in these experiments is Scotch Packing Tape (3M, Minneapolis, MN). 

The tape is adhered to the glass substrate in the same manner as in Section 5.2. The glass 

substrate is held between two acrylic glass plates, each with a 127 mm (5”) radius cut-out 

with depth of 12.7 mm (0.5”). This allows for the substrate to be rotated and set at any 

angle for the beginning of a test.  The acrylic glass plates are bolted to an optical rail on 

each side (304 mm (12”) and 457 mm (18”) in height, respectively), which are fixed to an 

optical table. Two pieces of delrin are used as a grip to clamp the end of the tape, held 

together by two screws. To attach the weight, numbers of small spherical beads each 

weighing ~0.3 g are placed into a rectangular receptacle constructed from corrugated 

cardboard (hidden by the vertical guide in the figure). The receptacle is tied to the front 

and back ends of the screws of the delrin grip with 89 N (20 lbf) test fishing wire. The 
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use of small spherical beads allows for small increments of weight to be added and 

subtracted, which can be used to alter Fperp. 

 

 To implement a variable stiffness in the horizontal direction, an elastic string with a 

thickness (ts) of 1 mm (elastic strap, Michael’s, Irving, TX) is woven through a slot in the 

weight receptacle and clamped at the end with a fastener. Variable lengths and widths of 

the elastic string will be used, and are described in detail later in this chapter and will be 

used to alter Fpar. The string is clamped at the other end by a similar delrin grip to the one 

used to hold the extremity of the tape. The grip is screwed on to a 500 g load cell (ALD-

MINI-UTC-M, AL Design, Inc., Buffalo, NY), which is attached to an aluminum T 

bracket and fixed to a motorized translation stage (M-410.CG, Physik Instrumente, 

Irvine, CA). The stage has a total travel range of 100 mm, a maximum velocity of 1 

mm/s, and resolution of 100 nm. The stage is used to apply a crosshead displacement to 

the string, effectively changing the force in the horizontal direction, Fpar. The stage is 

mounted on an optical T bracket, which is attached to a linear translation stage mounted 

vertically on an optical post. The optical post is mounted to a separate linear translation 

stage fixed to an optical table. As the applied weight falls when the tape is peeled, the 

height of the motorized translation stage is manually adjusted in small increments to keep 

the string stiffness direction parallel to the substrate plane. 

 

 The load from the load cell is monitored in-situ with a digimeter (MD-40, Newport, 

Irvine, CA), configured to show the output force from the load cell in grams. The initial 

parallel force, Fpar0, is determined by setting the tension in the string and observing the 

value through the digimeter. The parallel force Fpar is decreased during a test by moving 
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the stage towards the tape and substrate during a test, resulting in the tension in the string 

being decreased. Data is acquired at a rate of five samples per second for the duration of a 

test from the load cell through a virtual instrument created in Labview (DAQM02, 

National Instruments, Austin, TX). The test times are typically on the order of one hour 

(3600 s).  

 

 Two separate types of tests are conducted with this configuration. The first is for a 

tape of constant width. Tests are conducted with two different string widths of w = 12.7 

mm (1/2”) and 6.35 mm (1/4”), for varying combinations of Fperp and the initial Fpar0 

force which produce the same resultant force F. The tape is set at a shallow initial peel 

angle to change the equilibrium condition quickly along the driving force curve to 

propagate the peel. The stage is set to move at a velocity of 150 µm/s for the entire 

duration of the test, slowly releasing the tension in the string and thus decreasing Fpar. 

The goal is to investigate how altering the parallel and perpendicular force components 

affect the tip velocity and, hence, the stability of peeling.  

 

 In the second set of tests, the width of the tape is varied as in the infinite stiffness 

tests of Section 5.2. For all tests, a single string width of w = 12.7 mm (1/2”) is used 

along with values of Fperp and Fpar0 of 300 g and 350 g, respectively. In these tests, the 

horizontal loading stage is moved so as to decrease the tension in the string for varying 

amounts of time and then stopped. By stopping the stage at different times, the parallel 

force component Fpar will be different and its effect on the stability, particularly in the 

variable width portion of the tape, can be examined.  
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5.5 Theory of Stability for Peeling 

  

 Consider an inextensible tape with width b. The debonding energy G is assumed to be 

independent of the peel velocity v as well as independent of the peel angle !. While the 

results of Chapter 4 contradict the assumption of the debonding energy being rate-

independent, the peel velocities examined in this study are an order of magnitude slower 

than the peel velocities in Chapter 4. The typical peel velocities (tip speeds) in the present 

investigation range from 3 to 10 µm/s. Furthermore, the aim of this work is to examine 

the stability of the peeling process, not the rate-dependency of the process. Let Pf be the 

peel force per unit width of tape, previously defined as 

! 

ˆ P f b. 

 

 The following expression serves as the basis for examining the stability in peeling of 

tapes [54], 

 

! 

d G "Gb( )
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= "

bf
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KL
0

 

(5.6)

 

where 

! 

G  is the energy release rate, 

! 

b' the derivative of the tape width with respect to 

position (i.e., db/da), L0 is the initial length of the peel arm,  is the current peel angle, a 

is the current position of the tip, and K is the string stiffness. The energy release rate 

represents the energy available in the system available for debonding provided externally 

through the applied loading, F. The stability of peeling and its dependence on the string 
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stiffness is analogous to the stability of crack in a fracture specimen and its dependence 

on machine compliance [42]. 

 

 

 From examining Eq. 5.6, criteria for debonding are established. Debonding will occur 

when 

 

! 

G "Gb = 0 
(5.7) 

 

 For the case of debonding, stability criteria can also be established. The debonding is 

unstable if 

 

! 

d G "Gb( )
da

> 0,
 

(5.8)
 

 

while the debonding is stable if 

 

! 

d G "Gb( )
da

< 0.
 

(5.9)
 

!

 Consider now the variable stiffness tests described in Section 5.5. For the case of a 

tape with constant width (

! 

b' = 0), the expression in Eq. 5.6 can be simplified: 

 

! 

d G "Gb( )
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= "
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L
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2# +

bPf

KL

< 0.
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!
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 For this case, debonding is always stable. Now consider the case where the tape width 

decreases linearly as a function of the tape length (

! 

b' < 0), as shown in Figure 5.2.  

Debonding here is unstable if 

 

! 

bPf

L
1" cos#( )
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or, simplified in a more convenient form, 
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 These results show that as the string stiffness, K, is decreased, the system moves 

towards the unstable state. By manipulating the string stiffness K, the system can be 

moved between stable and unstable peeling. Important observations are made by 

examining the two extreme cases for the string stiffness: 

! 

K = " and K = 0. When 

! 

K = " 

(prescribed or dead load), this corresponds to the experimental configuration of Section 

5.2 where the weight attached to the extremity of the tape is vertically guided. In this 

case, the stability criterion takes the form 

 

! 

b'< "
b

L
1+ cos#( )

"1
.

 
(5.13)

 

 

 For this specific case, consider two separate tests, denoted #1 and #2, in which the 

same initial values are imposed for the width, peel arm length, and peel angle, bo, Lo, and 

!0. The difference will be in the relation between the change of width and Eq. 5.13 such 

that for test #1: 



! 114 

 

! 

b'> "
b
0

L
0

1+ cos#
0( )
"1
,

 

(5.14)

 

 

and for test #2: 

 

! 

b'< "
b
0

L
0

1+ cos#
0( )
"1
,

 

(5.15)

 

 

 For the case of test #1, the debonding of the tape is initially stable. However, for test 

#2, the debonding is initially unstable. Thus, by tuning the parameters b0, L0 and !0 with 

respect to the value of b’, an instability can be triggered or avoided. It should be noted 

that for the case of b’< 0, debonding is always unstable. 

 

 Finally, considering the other stiffness extreme of an infinitely soft string where K = 0 

(prescribed displacement), Eq. 5.6 can be expressed as  

 

! 

d G "Gb( )
da

= "b'Pf 1" cos#( ).
 

(5.16) 

 

5.6 Results: Prescribed Load Tests 

 

 Tests are conducted for Scotch Packing Tape adhered to a rigid glass substrate 

subjected only to prescribed vertical load using the experimental setup shown in Figure 

5.1. The initial peel arm length, L0, or the length of tape from the tip position, a, to the 

grip is set to 25.4 mm (1”). The tip position, a, is imaged as a function of time for an 

initial peel angle of ! = 90° and shown below in Figure 5.8. 
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Figure 5.8: Tip position, a, as a function of time, t, for a force-controlled peel test with a 

guided extremity.  

 

 

 An initial load of P0 = 60 g is applied at time t = 0. Note from Figure 5.3 that the 

width of the tape is constant at b =48 mm until a tip position of a = 50 mm, at which 

point the width decreases linearly as a function of the tape length. The instantaneous 

slope of the position as a function of time represents the instantaneous tip velocity, da/dt. 

From time t = 0 to t = 2000 s, the plot shows that the tip velocity is decreasing as the time 

t increases. This occurs as a result of the decreasing peel angle. Recall from Chapter 4 

that the peel angle can be expressed as a function of the tip position, a, and the length of 

the initial peel arm, L0, by 
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 Thus, at time t = 2000 s, the tip position is a = 11 mm and the instantaneous peel 

angle !i = 62°. Since the tip velocity is decreasing, the debonding here is stable, since it is 

approaching an equilibrium position where it will arrest. At t = 2000s, the weight is 

increased to reach a total applied load P1 = 200 g. This results in a faster tip velocity, as 

can be seen from Figure 5.7. At the tip position where the width begins to decrease (a = 

50 mm), the tip velocity, da/dt, no longer remains steady and clearly tends towards 

unstable debonding.  

 

 The experimental test shown in Figure 5.8 is now related to the stability regions 

discussed in Section 5.3. Consider the same plot of the Rivlin relation and the driving 

force in Figure 5.5 applied to this experiment. In the experiment, the initial peel angle  !0 

= 90° with an applied load of Fperp = 60 g. This corresponds to a position on the driving 

force curve that is above the equilibrium position of the Rivlin curve. As the load is 

applied from t = 0 s to t = 2000 s, the angle is decreased and eventually the driving force 

curve approaches the Rivlin curve. As equilibrium is approached, Figure 5.8 shows a 

correspondence with a decreasing tip velocity. When the driving force and Rivlin curves 

intersect, this is the point where the tip position will cease to propagate and results in 

arrest of the debonding. At this point in the experiment, the applied load Fperp is now 

increased to P1, which translates to a shift vertically up of the driving force
 
curve similar 

to the scenario presented in Figure 5.6. Now, the tape will continue to peel, this time at a 
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faster velocity. Before equilibrium is reached again, the variable width is introduced 

! 

b'< 0( ) and the peeling becomes completely unstable. 

 

 Upon examining the previous test to look at how the tip velocity changes as a result 

of the applied loads P0 and P1, it is now interesting to examine what happens for 

additional experiments when different combinations of P0 and P1 are applied. Figure 5.8 

shows two separate tests for two different selections of applied loads. For both tests, a 

load P0 is applied at t = 0 with an initial peel arm length of L0 = 12.7 mm (1/2”) at an 

initial peel angle of !0 = 90°. At t =3000 s, additional weight is added resulting in a new 

applied load P1. In both tests, the tape width is constant at b = 48 mm until a tip position 

of a = 50 mm is reached, at which point the width begins to decrease linearly as a 

function of the tape length. Table 5.1 lists the values of the applied loads for each test. 
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Figure 5.9: Comparison of tip position, a, as a function of time, t, for two separate force-

controlled peel tests with guided tip extremities.  

 

 

Test # P0 (g) P1 (g) 

SC1 60  200 

SC2 50  125  

 

 

Table 5.1: Applied loads, P0 and P1 for the tests shown in Figure 5.9. 

 

 

 This plot shows that there is a relationship between the tip velocity and the applied 

load Pi. For the initial applied load P0, the tape is peeled farther for the dotted  curve with 

a larger applied load in the same amount of time. When the load is increased to P1, the tip 

velocity increases in both cases, with the curve corresponding to #SC1 test moving faster 

than the curve corresponding to #SC2 test as a result of the larger load. Similar to the 

previous test shown in Figure 5.8, peeling tends toward the unstable condition when the 
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variable width section is reached. Thus, as described in the theoretical criteria presented 

in Section 5.7, the change in width is a driving condition in affecting the stability of the 

system. 

 

5.7 Results: Variable Stiffness Tests 

 

 The experimental method described in Section 5.4 for introducing a variable stiffness 

K through an additional applied force Fpar is carried out with strings of varying width w. 

These tests differ from the tests of Section 5.6 with an infinite stiffness string in that the 

initial peel angle !0 is set to be approximately 40° as opposed to 90°. In the initial 

configuration with an applied vertical load Fperp and Fpar0 from the string, the tape is at 

the equilibrium position where the driving force and Rivlin equilibrium curves intersect. 

As the tension in the string is released, in turn decreasing Fpar, the peel angle ! will 

increase, resulting in movement away from the equilibrium position along the driving 

force
 

curve. The tape will then peel from the substrate as a result of the loading 

combination Fperp and Fpar.  

 

 The first set of experiments investigates the effects of varying combinations of Fperp 

and Fpar0 along with varying string stiffness for Scotch PackingTape of constant width b 

= 48 mm. Table 5.2 gives a summary of the combination of Fperp, Fpar0, and string widths 

w (stiffness K is proportional to the width) considered.  
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Table 5.2: Summary of test parameters for constant tape width (b = 48 mm) for variable 

specified stiffness. 

 

 

 Note that for all combinations of Fperp and Fpar0, the initial resultant force F0 remains 

the same (F0 = 500 g). The length of initial peel arm, L0, and initial string length, LS, in all 

of these tests is set to 50.8 mm (2”) and 393 mm (15.5”), respectively. A plot of the tip 

positions, a, of the tape as a function of time, as imaged during the tests, are shown in 

Figure 5.10. The corresponding outputs from the load cell for the force Fpar as a function 

of time are shown in Figure 5.11. 

 

Test # String width, w (mm) Fperp (g) Fpar0 (g) F0 (g) 

SK1 6.35  300  400  500  

SK2 12.7  300  400  500  

SK3 6.35  400  300  500  

SK4 12.7  400  300  500  
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Figure 5.10: Tip position, a as a function of time, t, for tests of variable string stiffness 

and combinations of Fperp and Fpar0 for the same initial resultant force F0.  
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Figure 5.11: Measured force parallel to the substrate, Fpar, as a function of time, t, for 

tests of variable string stiffness and various combinations of Fperp and Fpar0. The 

corresponding tip position as a function of time is shown in Figure 5.10.  

 

 

 Examining Figure 5.10, while the initial resultant force, F0 in all cases is the same, 

there is a clear effect of the string stiffness, K, as well as the combination of forces Fpar0 

and Fperp. Recall from Eq. 5.5 that the stiffness of the string increases as the width of the 

string increases. This corresponds to the trend we see in the plot in Figure 5.10. 

Examining two curves with the same Fperp/Fpar0 combination but with different widths 

(SK1 and SK2, SK3 and SK4), the tip velocity da/dt decreases as the width increases. 

Thus, a system with increased stiffness K results in a slower peeling rate. It is seen further 

why this result exists from Figure 5.10, since for the same Fpar0, the decrease in Fpar is 
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less for a stiffer string over the same time increment (recall that for all tests here, the 

string is relaxed at a constant rate of 150 µm/s).  

 

 In all cases, the stage is stopped at time t = 600 s. Since the tape is still debonding 

from the substrate as is seen by the increasing position for the entire time in Figure 5.10, 

the parallel force Fpar then increases. This is a result of the tip position, a, moving away 

from the string while the string is fixed at the load cell.  

 

 The increase in Fpar after time t = 600 s does not seem to affect the propagation of the 

tip position since the tape used here is of constant width. However, this increase in Fpar 

does have an effect on the tip position for the variable width tape, and hence the stability 

of the debonding process. The infinite stiffness (prescribed load) tests of Section 5.7 

already show that the tip velocity increases as the applied load Fperp increases. This is 

seen in Figure 5.10 as well, by comparing tests for the same string width (e.g. SK1 and 

SK3, SK2 and SK4). This is further evidence that altering the force components Fpar0 and 

Fperp has an effect on the tip velocity.  

 

 To examine the exclusive effect Fpar has on the tip velocity and the stability of the 

debonding process, tests are conducted for variable width tape while the stage is stopped 

at different amounts of time to alter the change in Fpar. In all of these tests, the applied 

load Fperp and initial parallel force Fpar0 are kept the same at 300 g and 350 g, 

respectively. A string with the same width of w = 12.7 mm (1/2”) is used for all tests 

described here. The parameters are summarized in Table 5.3. 
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Test # Stage stop time 

(s) 

 Fpar0 (g)  Fperp (g) String width, w 

(mm) 

SV1 300 350  300  12.7  

SV2 400  350 300  12.7  

SV3 500  350  300  12.7  

SV4 600 350  300  12.7  

 

Table 5.3: Summary of test parameters for the stage stop tests with variable width tape.  

 

 

 The tip position, a, is plotted as a function of time for the four tests with variable 

width tape in Figure 5.12. In all cases, the initial peel angle is !o = 40° and the initial tip 

position is set at a point in a region of the constant-width portion of the tape, 5 mm prior 

to reaching the variable-width portion. 

 

 
 

Figure 5.12: Tip position, a, as a function of time, t, for varying stage stop times for 

separate tests with tape of variable width. 
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 For all of the tests except the one for a stop time of 600 s (SV4), the tip position when 

the stage is stopped is just prior to the position where the tape changes width. Figure 5.12 

shows that the stability of the debonding process is affected by the time at which the 

stage is stopped. The parallel force Fpar is larger for the smaller stop times than the larger 

stop times. As the stop time is increased, the value of Fpar at the corresponding stop time 

is lower, resulting in an increase of the tip velocity da/dt promoting unstable peeling. 

While the tape debonds completely for stop times of 500 s (SV3) and 600 s (SV4), the 

tape is still attached to the substrate at the end of the test for the stop times of 300 s (SV1) 

and 400 s (SV2). Although the process also becomes unstable for the smaller stop times, 

the tip velocity increases at a slower rate. This is consistent with the theoretical stability 

criterion of Section 5.6 that the debonding process is always unstable for a decreasing 

tape width. 

 

5.8 Conclusions 

 

 This chapter examined the stability of the peel test through a series of experimental 

investigations aimed at understanding criteria that govern the debonding process of an 

inextensible adhesive tape to a rigid glass substrate. Experiments show that the tip 

position and hence the tip velocity change as a function of time as a result of a change in 

the peel angle as well as the width of the tape. The significance of this result is that the tip 

velocity is directly related to the adhesion energy of the debonding process, which 

provides a simple yet rigorous method to characterize stability through means of a simple 

experimental measurement. Additionally, the experiments conducted here show that there 

is a relation between the stiffness of the system and the stability. While the stiffness in 
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these investigations was altered using an elastic string to change a parallel force 

component in these tests, this can provide significant insight into the gecko adhesion 

problem in terms of how the gecko alters the force magnitude and directions of the setae 

during attachment and detachment.  

 

 

!
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Chapter 6 

 

 

Summary and Future Work 
 

 

 

6.1 Cohesive Zone Law Extraction 

 

 This thesis has examined the mechanics of the peel test through experiments, finite 

element simulations, and theoretical analysis with the aim of developing governing 

relations to describe the role of adhesion in the peel test for elastic adhesive tapes and in 

the fracture process in general. An experimental peel test configuration has been 

developed and validated for the study of the peeling of elastic adhesive tapes. A cohesive 

zone law is extracted using the experimentally-measured profile of the tape backing in 

the framework of finite deformation beam theory for a range of peel angles. This 

cohesive zone law provides information about the mechanical behavior of the adhesive in 

the process zone, including the full-field force distribution and the adhesion energy. The 

adhesion energy computed from the cohesive zone law shows good correlation with the 

value obtained using the Rivlin model, which utilizes a global energy balance of the 

system. Recall that a cohesive zone law is traditionally postulated and used in a finite 

element simulation to compare to a known theoretical or experimental result or data set. 

The new method of using the cohesive zone law to extract the adhesion energy is unique 

in that it provides a rigorous method of determining the cohesive zone law based upon 

the measured shape of the tape backing during an experiment.  
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 The validity of the method of cohesive zone law extraction presented in this thesis 

can be improved in several ways. The formulation in this work is conducted using a 

single material system: Scotch Magic Tape adhered to a rigid glass substrate. It remains 

to be seen if this method also yields accurate results for another material, such as a softer 

adhesive tape such as Scotch+ 33 Electric Tape. In the present study, the substrate (glass) 

is also treated as rigid and as such is not modeled. With regard to the investigations by 

Gao and coworkers [7, 8] on the hierarchical structure of the gecko’s foot, experimenting 

with different substrates with surface roughness as well as both random and patterned 

defects would introduce a dependency of the system on the substrate as well.  

 

 The inverse method used for extracting information from the experiments and using 

it as input for the theory could be tested independent of the Rivlin model by doing the 

process in reverse. To further validate the cohesive zone law derived in Chapter 3, this 

law could be input in a finite element simulation of the peel test to compare the predicted 

shape and force profile to the experimental data. Additionally, the boundary condition 

used to solve for the axial force T in the non-linear beam theory could be changed and 

improved. Recall that the far-field peel force Pf measured experimentally is imposed at 

the position y1 = L (end of the cohesive zone) as a boundary condition. However, the 

finite element simulations show that the axial force  at the edge of the process zone 

is not exactly equal to the far-field peel force measured experimentally. A potential way 

to impose a more accurate boundary condition would be to prescribe the peel force at 

infinity of the beam  
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 The overall result could be improved by implementing a physically-based functional 

form of the curve-fit for the experimental profile in the process zone. The elliptical 

profile used here yields accurate results, but is not motivated by any physical 

phenomenon. By including the bending energy similar to the theory used in Chapter 3, 

Kendall [20] has derived the shape of a peeled band. This shape could potentially be a 

more accurate fit and thus yield a similar if not better result for the cohesive zone law. As 

mentioned previously, there are any number of functions that can be used to fit the 

experimental profile. The second-order polynomial fit first attempted was of similar 

accuracy to the elliptical profile. However, since the profile is differentiated four times 

throughout the implementation into non-linear beam theory, the end result was not 

accurate. This also alludes to an unavoidable source of error in that the experimental data 

is extracted and used in analytical expressions. Any experimental error will simply be 

propagated through and amplified in the end result, which in this case is the cohesive 

zone law and thus the adhesion energy.  

 

 Finally, while the cohesive zone law provides a full-field force distribution in the 

process zone, future work could be aimed at experimentally measuring the full-field 

displacements in this region. The finite element simulations show that the forces in the 

process zone are not uniform. Thus, the displacements in this region will also vary 

throughout the process zone. A candidate method to measure the displacements is the 

digital image correlation (DIC) technique. DIC is a non-contact, full-field optical strain 

measurement technique that can be implemented to measure the displacements directly 

during a peel test. In addition to measuring the deformations in the tape backing, the 

deformation of the fibrils themselves could be measured. This will allow for accurate 
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determination of both the opening and sliding displacements in-situ. An experimental 

challenge in using this technique would be applying a stochastic speckle pattern on the 

adhesive fibrils and/or the tape backing during a test without affecting the adhesive 

properties of the material.  

 

 The use of DIC would also allow for the potential viscoelastic characterization of the 

tape. This would enable an improved material model over a linear elastic adhesive. 

Furthermore, the extensibility of the tape could be measured and included in a model. 

This would enable further investigation of peel angles below 30˚, for which extensibility 

plays a significant role. 

 

6.2 Rate-Dependence and Stability of Peel 

 

 Chapter 4 investigated the rate-dependent effects of the peel test. Using the same 

experimental peel setup as in Chapter 2 with Scotch Packing Tape as the material, a rate-

dependent power-law for the adhesion energy as a function of peel rate is derived. The 

effect of varying geometrical parameters in the peel test such as the length of the peel arm 

L0 and its effect on the tip position and velocity were also examined. While the rate-

dependency of the adhesion energy for a single peel angle of ! = 90˚ is seen, future work 

could examine the effect of rate for a larger range of angles. The results of Chapter 4 

show that the adhesion energy is constant with respect to the peel angle, but not the 

velocity. To further improve the proposed rate-dependent power law, its application to a 

range of peel angles is recommended. The idea of rate-dependency in peel can be 

extended to the shape of the cohesive zone law. Since the adhesion energy is rate-
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dependent, this suggests that the shape of the cohesive zone will also change as a function 

of rate.  

 

 Finally, a study of the stability including the role of compliance during a peel test 

through several force-controlled experimental configurations was discussed in Chapter 5. 

Experiments show that the tip position and hence the tip velocity changes as a function of 

time as a result of a change in the peel angle as well as the width of the tape. The 

significance of this result is that the tip velocity is directly related to the adhesion energy 

of the debonding process, which provides a simple and yet rigorous method to 

characterize stability through means of a simple experimental measurement. Future work 

aimed at further correlating the experimental results to the theoretical stability criteria 

will result in significant insight into how the stiffness can be tuned to trigger or delay the 

onset of stability. Additionally, the experiments show that there is a relation between the 

stiffness of the system and the stability. While the stiffness in these investigations was 

altered using an elastic string to change a parallel force component in these tests, this can 

provide significant insight into the gecko adhesion problem in terms of how the gecko 

alters the force magnitude and directions of the setae during attachment and detachment. 

Applying the stability and stiffness criteria directly to previous studies of the gecko may 

provide additional information as to the micromechanics of the gecko foot during its 

motion. 

 

 

 

 

 

 

!
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