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Multiscale Geometric Integration of Deterministic and Stochastic

Systems

by

Molei Tao

Abstract

In order to accelerate computations and improve long time accuracy of numerical

simulations, this thesis develops multiscale geometric integrators.

For general multiscale stiff ODEs, SDEs, and PDEs, FLow AVeraging inte-

gratORs (FLAVORs) have been proposed for the coarse time-stepping without

any identification of the slow or the fast variables. In the special case of de-

terministic and stochastic mechanical systems, symplectic, multisymplectic, and

quasi-symplectic multiscale integrators are easily obtained using this strategy.

For highly oscillatory mechanical systems (with quasi-quadratic stiff potentials

and possibly high-dimensional), a specialized symplectic method has been devised

to provide improved efficiency and accuracy. This method is based on the in-

troduction of two highly nontrivial matrix exponentiation algorithms, which are

generic, efficient, and symplectic (if the exact exponential is symplectic).

For multiscale systems with Dirac-distributed fast processes, a family of sym-

plectic, linearly-implicit and stable integrators has been designed for coarse step

simulations. An application is the fast and accurate integration of constrained

dynamics.

In addition, if one cares about statistical properties of an ensemble of trajec-

tories, but not the numerical accuracy of a single trajectory, we suggest tuning

friction and annealing temperature in a Langevin process to accelerate its conver-

gence.

Other works include variational integration of circuits, efficient simulation of a

nonlinear wave, and finding optimal transition pathways in stochastic dynamical

systems (with a demonstration of mass effects in molecular dynamics).
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Chapter 1

Introduction

When I was shooting birds at pigs on my mobile phone (amazingly, this is a very

popular game in 2010 and 2011) waiting for a take-away order, I was suddenly

struck by the thought that my phone exceeds the sum of all computational powers

employed in 1970 to send humans to the moon. How can I be part of this rest-

less development of technology? I may not be able to immediately contribute to

advances in hardware, but I could manipulate equations. And by manipulating

equations, serious scientific computations can be made much cheaper. Soon, I will

be able to do something more on my phone than slingshotting birds.

1.1 Necessity of numerical integration

Differential equations of various types, including ordinary differential equations

(ODEs), stochastic differential equations (SDEs), partial differential equations

(PDEs), and differential algebraic equations (DAEs), are mathematical tools for

describing changes in a system. Therefore, their importance in natural sciences,

engineering and social sciences is needless to mention. In addition, more and more

modern entertainment, ranging from the bird-shooting video game to 3D block-

busters, are based on modeling using differential equations.

Solving differential equations, however, is not always an easy task. Firstly,

nonlinearity in the equation oftentimes eliminates the possibility of obtaining a

closed-form analytical solution. For example, the simple ODE θ̈ = sin θ that mod-
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els a pendulum cannot be solved exactly. In addition, even if analytical expressions

are available, they are not necessarily easy to manipulate. For instance, the simple

ODE mq̈ + cq̇ + kq = 0 that models a damped harmonic oscillator has a closed-

form solution, but it is a long expression and difficult to work with. Moreover,

the mathematical investigation of the existence and/or uniqueness of a solution is

highly nontrivial in many cases. Also, there are different senses in which a solution

could solve the system. For instance, an ODE with an initial condition may have

a solution that exists only until a finite time, or it could admit a class of solutions

[228]; an SDE with an initial condition might have different solution in the sense

of Itō or Stratonovich [219]; a PDE could have no solution in the strong sense,

yet still admit a single or even multiple weak solutions [99]; a DAE with an initial

condition may have zero or many solutions, just due to its ODE component, which

could be further complicated by the additional algebraic constraints.

Numerical integrations partially solve these issues. With the aid of modern

computers, many nonlinear differential equations can be numerically integrated

(we oftentimes use the word ‘integrate’ to mean ‘solve’ in the context of differ-

ential equations). In addition, the sense in which these equations are solved is

often assumed by the integrator; for instance, finite difference method assumes the

existence of a smooth strong solution, while finite element method is based on a

weak formulation.

1.2 Limitations of numerical integration

1.2.1 Computational costs in terms of both time and memory

As a long-standing challenge, the problem of numerical integration is far from being

completely solved. A first difficulty is that a traditional numerical integration of

a complex system consumes a significant amount of time and memory.

Multiscale systems are a particular example. Specifically, if the system ex-

hibits dynamics on different timescales, for instance when its governing equations

contain a stiff parameter, then traditional integrators require resolving the fastest
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timescale so that the correct slow timescale can be obtained. This, obviously, is not

computationally efficient, and an integration that uses a coarse timestep, which

corresponds to the slow timescale, is often desired.

For instance, it could take a traditional integrator ∼ 1012 integration steps to

simulate the folding of a protein. A protein usually takes milliseconds to fold, but

fast components of its dynamics, such as bond oscillations, happen at the timescale

of picoseconds [26]. Since these components contribute to the global dynamics in a

nontrivial way, traditional integration requires them to be resolved. This, however,

was not practically feasible until the recent development of a specialized super com-

puter [253], which nevertheless still spent months on such a computation. Despite

being computationally expensive, such numerical simulations are vital to scientific

studies because they are still much cheaper than in vivo or in vitro experiments,

and they provide microscopic details that are beyond the accuracy of contemporary

experimental measurements.

On top of the difficulty in bridging different timescales, the dimensionality of

the system also incurs computational expenses. Consider for example the evolution

of the universe, whose simulation is of great cosmological interest. In the famous

Millennium Simulation [263], researchers used an N-body simulation withN ≈ 1010

to reproduce the history of our universe; the price for their fruitful investigation of

cosmology is a one-month simulation (based on a classical algorithm of symplectic

leap-frog), 512 processors, and 700 GB memory, which is beyond the computational

capacity of most applied math labs in the year of 2011.

Notice that the N-body simulation of universe evolution not only involves a

large number of variables but also exhibits dynamics over multiple timescales.

Unlike the protein dynamics for which the presence of stiff parameters induces a

separation of timescales, the origin of multiple timescales in the N-body model is

due to nonlinearities in the corresponding dynamical system. In fact, nonlinearities

also manifest in protein models (mainly contained in noncovalent forces). As a

consequence, the slow dynamics is further split into a slow scale and a slower

scale, resulting in at least three timescales in the protein dynamics.
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Of course, in the case of PDE, the system could exhibit not only different

timescales but also different spatial scales.

1.2.2 Inaccuracy of long time simulation

The second challenge in numerical integration is the accumulation of numerical

error with increased integration time. The textbook error bounds are of the form

C exp(CT )hp (see for instance [129]), where T is the total simulation time, h is

the size of the integration timestep, C is a positive constant that depends on the

derivative of the vector field, and p is another positive constant indicating the

order of convergence. This means that for a fixed T , the integration can be made

accurate by choosing h small enough, but no matter how small h is, the error may

blow up exponentially in a long time simulation. This issue worsens in multiscale

systems, because, by the time the slow timescale is reached, errors from the fast

timescale will have already accumulated intensively. This could be illustrated by

an example of a stiff system: indicate the stiff parameter as ε−1, then in the worst

case the above error bound is written as

ε−1C exp(ε−1CT )hp (1.1)

where the constant C in the classical error bound is replaced by ε−1C due to the

stiffness contained in the vector field. Consequently, the error blows up (as ε→ 0)

at T = O(1).

Interestingly, this illustrates that rapid advances in computer hardware alone

cannot relieve the concern on computational efficiency of numerical integrations.

In fact, we require algorithmic breakthroughs regardless of the availability of com-

putational power. The reason is the following: with a fast enough computer, we

can choose a small integration step to simulate a complex system with high accu-

racy till time O(1); however, no matter how small this step is, the integration will

not be accurate at an arbitrary time T due to the exponential growth with T in

(1.1), unless sophisticated methods specifically designed for long time simulations
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are proposed.

1.3 Examples of state-of-the-art numerical approaches

This section discusses an incomplete list of contemporary efforts towards solving

the problems of multiscale integration and long time simulation (without includ-

ing this thesis’ contribution). Details of the methods and rigorous definitions of

terminologies will not be described here, but relevant information could be found

in later chapters of this thesis.

1.3.1 Structure preserving methods

One way to improve long time numerical integrations is to utilize structures (many

of which are geometric) in the system of interest. ‘The subject of geometric numer-

ical integration deals with numerical integrators that preserve geometric properties

of the flow of a differential equation, and it explains how structure preservation

leads to an improved long-time behavior’ [131].

Mechanical systems: Mechanical systems conserve energy and momentum maps

(such as linear momentum and angular momentum; a slightly more modern ex-

ample is the charge conservation due to a U(1) symmetry in quantum field theory

[264]), and their solution flows preserve an underlying geometric structure of sym-

plecticity (multisymplecticity in the case of PDE), which intuitively means that

any infinitesimal volume in the phase space will be preserved. All these conserva-

tions are consequences of an underlying variational structure in the system (details

can be found, for instance, in [3, 194]).

Structure preserving numerical methods for Hamiltonian systems have been

developed in the framework of geometric numerical integration [128, 179], and

various structures have been addressed by different approaches. For instance,

symmetric methods are based on the reversibility of their updating maps, and

thus have good long time performance [128]; energy-momentum methods enforce
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the conservation of momentum by their updating rules [254]; Lie-group integrators

ensure that the numerical solution stays in a desired Lie-group by updating rules

obtained from a geometric computation [154].

What is worth special emphasis is the family of variational integrators, for it

might be the method that preserves the most structures so far. Variational inte-

gration theory derives integrators for mechanical systems from discrete variational

principles that correspond to discrete mechanics [192]. Therefore, a variational in-

tegrator naturally preserves a discrete symplectic form, obeys a discrete Noether’s

theorem (and therefore preserves discrete momentum maps), and nearly conserves

the energy in the system because it in fact yields the exact solution of a nearby

mechanical system (due to backward error analysis). Variational integrators fall in

a larger category of symplectic integrators (see [245] for a review on symplectic in-

tegrators). On the converse, symplectic integrators are at least locally variational

[128], and therefore they usually have similar preservation properties as variational

integrators.

The preserved structures in symplectic integrators certainly help long time nu-

merical integrations. An intuitive illustration is, the (near) preservation of energy

in a harmonic oscillator rules out the possibility of any exponential growth in er-

ror, because otherwise the energy will not remain bounded. In fact, it has been

shown that symplectic integrators for integrable systems have an error bound that

is linearly growing with the integration time [131]. A well-known numerical obser-

vation is, no matter how small a time step is used, the oscillation amplitude of a

harmonic oscillator integrated by non-symplectic Forward Euler/Backward Euler

will increase/decrease unboundedly, whereas that given by Variational Euler (also

known as symplectic Euler) will be oscillatory with a variance controlled by the

step length.

Other notable properties of variational integrators include: ‘Variational inte-

grators can readily incorporate holonomic constraints (via, e.g., Lagrange multi-

pliers) and nonconservative effects (via, e.g., their virtual work)’ (quoted from

[40] with references [295, 192]). In addition, variational integrators can handle
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nonholomonic mechanical systems and degenerate Lagrangian systems, because

these systems can be formulated in the context of implicit Lagrangian systems

(associated with a Dirac structure) [302], which have a variational structure based

on the Hamiltonian-Pontryagin-d’Alembert principle [303]. Furthermore, statisti-

cal properties of the dynamics, such as Poincaré sections, are well preserved by

variational integrators even with large time steps [39].

Stochastic systems: For a system based on SDEs with geometric ergodicity,

temporal averaging of its long time behavior converges to the spatial average with

respect to its corresponding ergodic measure. A strategy has been proposed to

provide numerical approximations that satisfy an analogous (discrete) geometric

ergodicity [198], which according to the authors is ‘the first step in an analysis of

the convergence of invariant measures of discretizations to those of the SDE itself ’

following ‘the pioneer work’ of [272].

For the special case of stochastic mechanical systems, ‘since the foundational

work of Bismut [33], the field of stochastic geometric mechanics is emerging in

response to the demand for tools to analyze continuous and discrete mechanical

systems with uncertainty’ [40]. For instance, an incomplete list of integrators for

Langevin equations, which model mechanical systems under dissipation and per-

turbation by external noises, include [255, 136, 290, 69, 203, 204, 206, 175, 188,

40, 41, 42]. One interesting result is that the composition of the one-step up-

date of a variational integrator and an Ornstein-Uhlenbeck process will produce

a good numerical solution — good in the sense that the numerical approxima-

tion converges to an ergodic measure that is close in total variation norm to the

Boltzmann-Gibbs ergodic measure associated to the exact solution [41]. Indeed,

in the case of Langevin, the long time accuracy in terms of statistics is a natu-

ral stochastic extension of the preservation of a near-by energy function. While

the preservation of energy can be schematically viewed as that the solution stays

in a constant energy submanifold with probability one, which can be numerically

approximated by a symplectic integrator, the numerical preservation of a near-by
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Boltzmann-Gibbs measure has its root in the quasi-symplecticity [205] and/or the

conformal symplecticity [202] of the corresponding integrator.

One interesting note is that there are deterministic chaotic systems that are

ergodic (e.g., Lorenz attractor [185]), and a natural thought would be to devise an

integrator that nonintrusively produces numerical approximations that are ergodic

with respect to a measure close to the exact ergodic measure. I am aware of few

existing approaches achieving this possibility.

Conservation law PDEs: PDEs of this type satisfy the Rankine-Hugoniot con-

ditions [99], which provide an important characterization of shock propagations.

Finite volume methods used on conservation law PDEs, for instance, obey discrete

conservation laws, satisfy analogous Rankine-Hugoniot conditions, and therefore

work for shock capturing [182]. Moreover, if carefully designed (for instance, Go-

dunov’s method [120]), a conservative numerical scheme is able to pick the solution

that satisfies the correct entropy condition among a family of weak solutions. The

satisfaction of the Rankine-Hugoniot identity and the entropy inequalities certainly

benefits long time simulations.

Hamiltonian PDEs: Hamiltonian PDEs are a special class of infinite dimen-

sional mechanical systems. Naturally, structures in mechanical systems, such as

the conservations of momentum maps, which in the continuous setting are guar-

anteed by Noether’s theorem from symmetries, will be important to long time

simulations. A brief review of Hamiltonian PDEs, as well as a numerical recipe

of multisymplectic integrators which satisfy a discrete Noether’s theorem, can be

found in Section 3.2.1. Hamiltonian PDEs are not to be confused with Hamilton-

Jacobi PDEs (reviewed in, for instance, [99]).

Oftentimes, structure preserving ODE integrators such as those described above

are called geometric integrators, because they preserve various geometric proper-

ties. We will call structure preserving SDE/PDE solvers geometric integrators as

well.
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1.3.2 Multiscale methods

‘Dynamical systems with multiple time scales pose a major problem in simulations

because the small time steps required for stable integration of the fast motions

lead to large numbers of time steps required for the observation of slow degrees of

freedom’ [286]. Regarding the numerical integration of multiscale systems with

coarse steps, a large variety of methods are applicable to different systems. A

large portion of them have been devoted to stiff systems, in which the presence of

a large parameter gives rise to a separation of timescales.

Stiff ODEs and SDEs: Traditionally, stiff dynamical systems based on ODEs

and SDEs have been separated into two classes with distinct integrators: stiff sys-

tems with fast transients and stiff systems with rapid oscillations [14, 85, 242]. The

former have been solved using implicit schemes [112, 79, 128, 130, 304], Cheby-

shev methods [177, 1] or the projective integrator approach [111]. The latter

have been solved using filtering techniques [110, 168, 246] or Poincaré map tech-

niques [113, 229]. We also refer to methods based on highly oscillatory quadrature

[74, 152, 151], an area that has undergone significant developments in the last few

years [153].

When slow variables can be identified, different types of fast processes can be

handled in a unified framework, and asymptotically their effective contribution

to the slow process could be described analytically by an averaging theorem (see

for instance [258, 226, 224, 225, 239]). Two classes of numerical methods have

been built on this observation: The equation-free method [165, 164, 15] and the

Heterogeneous Multiscale Method (HMM) [86, 97, 85, 13, 87] (as well as its variant,

the seamless method [89]).

We further review continuous and numerical treatments of SDE asymptotic

problems in Section 2.3.1.

Stiff PDEs: A more difficult case is stiff PDEs. If the system exhibits fast

transients (i.e., fast variables convergent towards a Dirac point distribution, or
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equivalently (using the terminology in [102]), ‘asymptotically stable’), asymptotic

preserving schemes [102] based on implicit methods allow for simulations with

large time steps. We also refer to [159, 211] for multiscale transport equations and

hyperbolic systems of conservation laws with stiff diffusive relaxation.

For cases in which the slow process can be identified, we refer to [86] for a

review that includes various applications; also, for a discrete KdV-Burgers’ type

equation with well-identified fast and slow variables, a coarse time-stepping of the

system can be achieved via the equation-free approach [19].

PDEs in homogenization theory: Multi-scale PDEs can be divided into two

(possibly overlapping) categories: PDEs with large (or stiff) coefficients and PDEs

with highly oscillating or rough coefficients. This thesis only considers the first

category.

The second type is the subject of asymptotic and numerical homogenization

theory. An example of equations in this category is the following elliptic PDE

− div(a∇u) = f (1.2)

with the coefficient a(·) being highly oscillatory, random (stationary and ergodic),

or rough. Since homogenization is a profound field and it is not the scope of this

thesis, we just refer to an incomplete list of continuous and numerical treatments

in [5, 23, 27, 70, 157, 223, 167, 167, 43, 116, 117, 210, 209, 261, 262, 296, 44, 146,

147, 68, 86, 96, 119, 21, 22, 6, 20, 220, 29, 221, 34, 35, 86, 96, 30, 92, 216, 281, 135,

54, 11, 12].

One explanation to why homogenization works is based on the compactness of

the solution space (i.e., when f spans the unit ball of L2, u spans a (strongly) com-

pact subset of H1, which can be approximated in H1-norm by a finite-dimensional

space). This is different from the approaches introduced in this thesis, which are

instead based on the separation between slow and fast timescales in systems of the

first category (in many cases we also make use of the local ergodicity of the fast

timescale).
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Other multiscale systems: Another complicated case of multiscale systems

is when the equations do not explicitly contain a stiff parameter but there is a

separation of timescales, which is usually due to the nonlinearity of the equation

and/or initial/boundary conditions. If the fast process in such a system is tran-

sient, implicit schemes should work for both ODEs and PDEs. If the slow variable

can be explicitly identified, there are examples to which HMM applies [86]; if the

slow variable is not identified, but is however known to be a linear function of the

original coordinate, there is also an example in which the seamless method works

[89].

In addition, [148] provides an example to represent a continuum-scaled system

of 3D incompressible Navier-Stokes PDE in two scales by adopting a cut off in the

Fourier domain and then treating the problem using a homogenization approach.

1.3.3 Structure preserving multiscale methods

Efforts have been made to combine structure preserving integrators and multi-

scale methods together (see Equation (1.1) for a motivation). The following is an

incomplete list of examples:

Highly oscillatory mechanical systems: For Hamiltonian systems with stiff

potentials that are quadratic (such systems are often called highly oscillatory me-

chanical systems), there are at least two types of numerical integrators, which we

will briefly discuss in the following presentation (we also refer to [71] for a recent

review). The first type does not rely on an identification of fast or slow variables,

and includes, for instance, the following:

Impulse methods [297, 124, 286] are symplectic integrators that admit a uni-

form error bound on the positions when the potential energy is a sum of an arbi-

trary soft potential and a quadratic stiff potential [276], and this uniform bound

justifies the use of a large integration timestep. In their abstract form, impulse

methods are not limited to quadratic stiff potentials; however, their practical im-

plementation requires an approximation of the flow associated with the stiff po-
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tential, which in most non-quadratic cases could only be obtained via a small-step

integration, and is therefore computationally expensive.

Impulse methods have been mollified [109, 240] to gain extra stability and

accuracy while the mollified method remains symplectic. Both mollified impulse

methods and Gautschi-type integrators [143] (reversible but not necessarily sym-

plectic any more) can be shown to be members of the exponential integrator family

[123]. It has been proved that these methods allow large-time-stepping of Hamilto-

nian systems with quadratic stiff potentials, and they are ‘preferable to symplectic

methods for oscillatory differential equations’ [123]. On the other hand, we ob-

served numerically that the long time performances of mollified impulse methods

on the Fermi-Pasta-Ulam problem [101] (at the timescale O(ω), where ω is the

fast frequency corresponding to the quadratic stiff potential) were less satisfactory

than that of impulse methods [276]. In addition, neither mollified impulse methods

nor Gautschi-type integrators can be viewed as splitting methods, and therefore

it is not clear at this time how or whether it is possible to generalize them to in-

tegrate Langevin equations with stiff frictions using macroscopic timesteps (a way

to generalize splitting methods to stiff Langevin equations is proposed in [276]).

IMEX is a variational integrator for stiff Hamiltonian systems [265]. It works

by introducing a discrete Lagrangian via a trapezoidal approximation of the soft

potential and a midpoint approximation of the fast potential. It is explicit in the

case of quadratic stiff potential, but is implicit if the stiff potential has nonlinear

derivatives. In addition to the drawback that implicit methods are usually slower

than explicit methods if comparable step lengths are employed, there is no guaran-

tee on IMEX’ accuracy for general problems, because ‘implicit methods in general

fail to capture the effective dynamics of the slow time scale because they cannot

correctly capture non-Dirac invariant distributions’ [184].

The second type of numerical algorithms, on the other hand, is based on a

separation of slow or fast variables. Here is an incomplete list of examples:

The reversible averaging integrator proposed in [181] averages the force on slow

variables and avoids resonant instabilities exhibited in impulse methods. It treats
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the dynamics of slow and fast variables separately and assumes respectively piece-

wise linear and harmonically-oscillatory trajectories of the slow and fast variables.

It is reversible, however, not symplectic.

In addition, a Hamilton-Jacobi approach is used to derive a homogenization

method for multiscale Hamiltonian systems [176], and the resulting method is

symplectic and works for not only quadratic but quasi-quadratic fast potentials.

We also refer to [82] for a generalization of this method to systems that have either

one slowly varying fast frequency or several constant frequencies. The difficulty

with this analytical approach is how to deal with high-dimensional systems with

different varying fast frequencies.

General multiscale mechanical systems: For general mechanical systems

with non-quadratic stiff potentials, many different perspectives have been pro-

posed.

Asynchronous Variational Integrators [183] use timesteps of different lengths

to treat different extents of stiffness and provide a way to derive conservative

symplectic integrators for PDEs. However, stiff potentials still require a fine time

step discretization over the whole time evolution.

A similar idea is in the early work of multiple time-step methods [267], which

evaluate forces to different extents of accuracies by approximating less important

forces via Taylor expansions, but the idea has issues with long time behavior,

stability and accuracy, as described in Section 5 of [180].

A popular method introduced by Fixman [103] is to freeze the fastest bond

oscillations in polymers, so that stiffness in the equations could be removed. In

order to correct the effect of freezing, a compensating log term analogous to an

entropy-based free energy was added to the Hamiltonian. This method is successful

in studying statistics of the system, but does not always reconstruct the correct

dynamics [232, 227, 37].

Several homogenization approaches for Hamiltonian systems (in analogy to the

classical homogenization theory [27, 158]) have been proposed. We refer to M-



14

convergence introduced in [249, 38], the two-scale expansion of the solutions to the

Hamilton-Jacobi form of Newton’s equations with stiff quadratic potentials [176],

and PDE methods in weak KAM theory [100]. We also refer to [59], [150], and

[239].

In addition, it is worth mentioning that methods based on averaging, such as

HMM and the equation-free method, could work for systems with arbitrary stiff

potentials too; however, besides the difficulty in identifying the slow variable, as

well as the necessity for using a smaller timestep (i.e., mesoscopic, as opposed to

the macroscopic ones used by many of the above methods designed for quadratic

stiff potentials), there has been no success in making these generic multiscale ap-

proaches symplectic for Hamiltonian systems. In their original form, these methods

are based on the averaging of the instantaneous drifts of the slow variable, which

breaks symplecticity in all variables. On the other hand, variants that preserve

structures other than the symplecticity on all variables have been successfully pro-

posed. By using Verlet/leap-frog macro-solvers, methods that are symplectic on

slow variables (when those variables can be identified) have been proposed in the

framework of HMM (Heterogeneous Multiscale Method) in [252, 56]. A ‘reversible

averaging’ method has been proposed in [178] for mechanical systems with sep-

arated fast and slow variables. More recently, a reversible multiscale integration

method for mechanical systems was proposed in [14] in the context of HMM. After

tracking down the slow variables, this method enforces reversibility in all variables

as an optimization constraint at each coarse step when minimizing the distance

between the effective drift obtained from the micro-solver and the drift of the

macro-solver. We also refer to [243] for a symmetric HMM for mechanical systems

with stiff potentials of the form 1
ε

∑ν
j=1 gj(q)

2.

Why is symplectic integration good for multiscale Hamiltonian systems?

Although backward error analysis (relating symplecticity and energy conservation)

does not apply directly to stiff systems (due to large Lipschitz constants), improved

long time behaviors of symplectic integrators, such as near-preservation of energy
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and conservation of momentum maps, are often numerically observed. Modulated

Fourier expansion [72] has been proposed to explain favorable long time energy

behaviors of some integrators for oscillatory Hamiltonian systems.

Multiscale SDEs: Although a significant amount of research has been con-

ducted in both the direction of geometric integration of SDEs (see, e.g., the dis-

cussion in Section 1.3; here ‘geometric’ means statistics capturing/preserving) and

the direction of multiscale analysis/integration of SDEs (see, e.g., the discussion in

Section 2.3.1), little has been done to combine the two, i.e., to study the geometric

multiscale integration of SDEs.

Multiscale PDEs: Multiscale methods that provide conservative approxima-

tions have been proposed. For instance, [156] proposed a multiscale finite volume

approach to elliptic problems, and the main idea is ‘to use a finite volume global

formulation with multiscale basis functions and obtain a mass conservative velocity

field on a coarse grid’ [93]. ‘A similar approach was independently proposed later’

[93] in [94], where a finite volume element method as ‘a global coupling mecha-

nism for multiscale basis functions’ [93] was formally introduced. The approach of

[156] was generalized to parabolic problems [133]. Nevertheless, few conservative

methods have been proposed for multiscale hyperbolic conservation laws.

To the best of my knowledge, so far there has been no multiscale multisym-

plectic integrators proposed for Hamiltonian PDEs.

1.4 Structure of this thesis

As can be seen from the above, the current status of the field (prior to this thesis)

is as follows: (i) if a macroscopic integration step independent of ε is desired, ex-

isting symplectic multiscale integrators for mechanical systems are mostly limited

to quadratic stiff potentials (with the exception of the Hamilton-Jacobi homoge-

nization approach, which works for a subclass of quasi-quadratic stiff potentials),

and they are not generalized (well enough) to stiff Langevin SDEs; (ii) to integrate
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general multiscale ODEs, SDEs and PDEs using coarse steps, on the other hand,

slow variables (depending on the situation, perhaps the fast ones as well) have

to be identified; (iii) moreover, no multiscale ODE/PDE integrator that preserves

symplecticity/multisymplecticity has been proposed. Additional open questions

include: (iv) when a mechanical system with a quasi-quadratic stiff potential has

a large amount of fast degrees of freedom, how can its high-dimensional frequency

matrix be diagonalized in a symplectic and efficient way, if a diagonalization is

necessary at all? (v) the simulation of constrained mechanical systems already

uses a macroscopic timestep, but could it be made even faster?

(ii) and (iii) will be addressed in Chapters 2 and 3. Specifically, in Chapter 2,

we propose a strategy to construct multiscale ODE/SDE integrators from arbitrary

single-scale integrators. The resulting methods, called FLow AVeraging integra-

tORs (FLAVORs), are two-scale flow convergent; more significantly, FLAVORs do

not require any identification of slow or fast variables, and they inherit structure

preservation properties from corresponding legacy codes, such as symplecticity.

In Chapter 3, the strategy of FLAVORization is extended to stiff PDEs. We

show that various numerical PDE approaches, including finite difference, multi-

symplectic integrators, and pseudospectral methods, could all be FLAVORized

(and hence made multiscale). Two-scale flow convergence of the numerical solu-

tions can again be demonstrated.

Then, to address (i), we considered highly oscillatory mechanical systems in

Chapter 4. The stiff potential is no longer limited to being quadratic (which cor-

responds to fast harmonic oscillators, and is generalized to stiff Langevin system

and analyzed in Section 4.2), but instead allowed to be fully quasi-quadratic (i.e.,

fast ‘harmonic’ oscillators with a large number of distinct slowly varying frequen-

cies, which are mixed by a slowly varying diagonalization frame; see Section 4.3).

These treatments differ from the FLAVOR strategy for general multiscale systems,

because the special context allows even faster computations (due to macroscopic

integration steps) and better convergence properties (namely, strong convergence

on both slow and fast positions).
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An interesting by-product in Chapter 4 is the introduction of two numerical

algebra algorithms: the first one (Section 4.3.4) is an efficient and generic method

for the symplectic exponentiation of a matrix, and the second one (Section 4.3.5)

is an efficient and generic method for repetitive (symplectic) exponentiations of a

slowly varying sequence of matrices. These simple methods have highly nontrivial

properties, and successfully address (iv).

In Chapter 5, we consider another special case of multiscale mechanical sys-

tems, in which the fast dynamics asymptotically approaches a Dirac point distri-

bution as stiffness goes to infinity. For this case, it is again possible to employ a

macroscopic integration step, for an implicit method is sufficient to capture the ef-

fective dynamics. The contribution is a method that replaces expensive nonlinear

solves in the classical Newmark implicit integrators [214] by cheap linear solves,

while yet the stability and symplecticity of these integrators are maintained.

An interesting application in this chapter is the cheap simulation of constrained

dynamics, in which we replace rigid constraints by stiff springs oscillating around

constrained values. Both speed and accuracy advantages over the classical con-

strained dynamics algorithm of SHAKE [237] are obtained. This provides an

affirmative answer to (v).

In Chapter 6, we relieve the requirement on the accuracy of individual trajec-

tories, and instead ask for an accuracy of the statistical properties of an ensemble

of trajectories. This results in an accelerated approach for sampling an arbitrary

statistical distribution, which is achieved by tuning the friction and annealing the

temperature in the geometrical integration of a Langevin system. Besides the idea

itself (surprisingly, little literature on the annealing idea applied to the problem

of statistical sampling has been found), our contribution includes an analytical

illustration of an optimal friction, a bound on the sampling error given a finite

temperature cooling schedule, and a semi-empirical optimization of this bound.

An interesting feature of this approach is that it could be used concurrently with

many other accelerated sampling approaches, and the base Langvin integrator

could be the multiscale ones mentioned above (although a rigorous theory on the
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resulting geometric ergodicity has not been formulated yet), and in this way the

speed-ups could be stacked.

Some other relevant topics are listed in Chapter 7. Section 7.1 concerns the

integration of electric circuits, whose simulation is highly nontrivial because the

system is constrained, degenerate, and subject to non-conservative forces. Two ad-

ditional complications are: circuits are subject to environmental noise, and most

modern circuits are multiscale. All these difficulties are solved in a variational

framework, where constraints are handled by a projection, the degeneracy and

forcing are dealt with in the framework of Lagrange-d’Alembert-Pontryagin prin-

ciple and its discretization, the noise is treated by a stochastic variational principle,

and the up-scaling is taken care of by an application of FLAVOR (Chapters 2 and

3). The physical implications of classical structure preserving properties of vari-

ational integrators are shown by co-authors (not included, see [218]), and a new

preserved quantity of frequency spectrum is studied both numerically and analyt-

ically.

Section 7.2 describes a frequency domain approach for the efficient simulation

of an acoustic wave in a nonlinear homogeneous medium (Westervelt equation).

The ODE integrator in the frequency domain is essentially a first-order impulse

method described in Section 4.2.1, which allows a macroscopic-time-stepping.

Section 7.3 proposes a quantification of the importance of mass effects in molec-

ular dynamics. This is based on the optimization of the rate functional in Freidlin-

Wentzell large deviation theory [107], which describes rates of transitions in SDEs.

Two methods for the optimization are presented. The first is analytical, and it

works with arbitrary starting and ending points, however only for linear systems.

The second is numerical, and it works for arbitrary systems, however only with

meta-stable starting and ending points.
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Chapter 2

FLAVORs for ODEs and SDEs: Explicit geometric

integrations of general stiff multiscale systems without the identification of

slow or fast variables

To propose symplectic multiscale integrators for generic Hamiltonian systems with-

out identifying the slow or fast variables, we designed FLow AVeraging integratORs

(FLAVORs) [274]. FLAVORs are not restricted to Hamiltonian systems, but inte-

grate general stiff multiscale ODEs and SDEs using a mesoscopic timestep, which

means there is no need to resolve the fast timescale. Nevertheless, the correct slow

dynamics will still be obtained. The idea is to account for the effective contribu-

tion of the fast variables by requiring the minimum amount of information on their

dynamics, which turns out to be their local ergodic measure, and an average with

respect to this measure can be approximated by averaging flow maps. This is very

different from existing methods, such as HMM and the equation-free approach (see

Section 1.3.2), all of which average instantaneous drifts.

Consequently, a FLAVOR can be constructed from any convergent single-scale

legacy integrator. It inherits conservation properties (e.g., symplecticity) from the

legacy method, and therefore provides the first symplectic approach to integrate

multiscale mechanical systems. Moreover, FLAVORs do not require the fast or

the slow timescale to be a priori identified, but only requires the existence of such

a scale separation. In addition, a FLAVOR is explicit if the legacy method is
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explicit. Unlike past methods reviewed in Section 1.3.2, FLAVORs apply in a

unified way to both stiff systems with fast transients and stiff systems with rapid

oscillations, with or without noise, using a mesoscopic integration timestep chosen

independently from the stiffness. Because of all these, FLAVOR is the state of art

method for accurate and efficient long time integrations of generic stiff multiscale

systems.

Most of the results in this chapter are published in [274].

2.1 FLAVORs for general ODEs

2.1.1 Averaging

Consider the following ODE on Rd,

u̇ε = G(uε) +
1

ε
F (uε). (2.1)

In Subsections 2.1.8, 2.2.2, 2.3.2, 2.3.6 and 2.4.2 we will consider more general

ODEs, stiff deterministic Hamiltonian systems (2.42), SDEs ((2.59) and (2.73))

and Langevin equations ((2.81) and (2.82)); however, for the sake of clarity, we

will start the description of our method with (2.1).

Condition 2.1.1. Assume that there exists a diffeomorphism η := (ηx, ηy), from

Rd onto Rd−p × Rp (with uniformly bounded C1, C2 derivatives), separating slow

and fast variables, i.e., such that (for all ε > 0) the process (xεt, y
ε
t) = (ηx(uεt), η

y(uεt))

satisfies an ODE system of the form


ẋε = g(xε, yε) xε0 = x0

ẏε = 1
εf(xε, yε) yε0 = y0

. (2.2)

Condition 2.1.2. Assume that the fast variables in (2.2) are locally ergodic with

respect to a family of measures µ drifted by slow variables. More precisely, we

assume that there exists a family of probability measures µ(x, dy) on Rp indexed
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by x ∈ Rd−p and a positive function T 7→ E(T ) such that limT→∞E(T ) = 0 and

such that for all x0, y0, T and φ uniformly bounded and Lipschitz, the solution to

Ẏt = f(x0, Yt) Y0 = y0 (2.3)

satisfies

∣∣∣ 1

T

∫ T

0
φ(Ys)ds−

∫
Rp
φ(y)µ(x0, dy)

∣∣∣ ≤ χ(‖(x0, y0)‖
)
E(T )(‖φ‖L∞ + ‖∇φ‖L∞)

(2.4)

where r 7→ χ(r) is bounded on compact sets.

Under Conditions 2.1.1 and 2.1.2, it is known (we refer for instance to [239]

or to Theorem 14, Section 3 of Chapter II of [258] or to [226]) that xε converges

towards xt defined as the solution to the ODE

ẋ =

∫
g(x, y)µ(x, dy), x|t=0 = x0 (2.5)

where µ(x, dy) is the ergodic measure associated with the solution to the ODE

ẏ = f(x, y), (2.6)

in which the slow variable x is fixed.

It follows that the slow behavior of solutions of (2.1) can be simulated over

coarse time steps by first identifying the slow process xε and then using numerical

approximations of solutions of (2.2) to approximate xε. At least two classes of

integrators have been founded on this observation: The equation free method

[165, 164] and the Heterogeneous Multiscale Method [86, 97, 85, 13]. One shared

characteristic of the original form of those integrators is, after identification of the

slow variables, to use a micro-solver to approximate the effective drift in (2.5) by

averaging the instantaneous drift g with respect to numerical solutions of (2.6)

over a time span larger than the mixing time of the solution to (2.6).
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2.1.2 FLAVORs

Instead of averaging the instantaneous drift on the slow variable xε (the first equa-

tion in (2.2)) with respect to samples of the fast variable yε, we propose to average

the instantaneous flow of the ODE (2.1) with the slow and fast variables hidden.

We call the resulting class of numerical integrators FLow AVeraging integratORS

(FLAVORS). Since FLAVORS are directly applied to (2.1), hidden slow variables

do not need to be identified, either explicitly or numerically. Furthermore FLA-

VORS can be implemented using an arbitrary legacy integrator Φ
1
ε
h for (2.1) in

which the parameter 1
ε can be controlled (Figure 2.1). More precisely, assume that

Figure 2.1: A pre-existing numerical scheme resolving the microscopic time scale can be used

as a black box and turned into a FLAVOR by simply turning on and off stiff parameters over a

microscopic timescale τ (on) and a mesoscopic timescale δ (off). The bottom line of the approach

is to (repeatedly) compose an accurate, short-time integration of the complete set of equations

with an accurate, intermediate-time integration of the non-stiff part of the system. While the

integration over short time intervals is accurate (in a strong sense), this is extended to intermediate

time integration (in the sense of measures) using the interplay between the short time integration

and the mesoscopic integration. The computational cost remains bounded independently from

the stiff parameter 1/ε because: (i) The whole system is only integrated over an extremely short

(τ � ε) time interval during every intermediate (δ) time interval. (ii) The intermediate time step

δ (that of the non-stiff part of the system) is limited not by the fast time scales (ε) but by the

slow ones (O(1)).

there exists a constant h0 > 0 such that Φα
h satisfies for all h ≤ h0 min( 1

α , 1) and

u ∈ Rd ∣∣Φα
h(u)− u− hG(u)− αhF (u)

∣∣ ≤ Ch2(1 + α)2 (2.7)
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then FLAVOR can be defined as the algorithm simulating the process

ūt =
(
Φ0
δ−τ ◦ Φ

1
ε
τ

)k
(u0) for kδ ≤ t < (k + 1)δ (2.8)

where τ is a fine time step resolving the fast time scale (τ � ε) and δ is a mesoscopic

time step independent of the fast time scale satisfying τ � ε� δ � 1 and

(
τ

ε
)2 � δ � τ

ε
(2.9)

In our numerical experiments, we have used the “rule of thumb” δ ∼ γ τε where γ

is a small parameter (0.1 for instance).

By switching stiff parameters FLAVOR approximates the flow of (2.1) over a

coarse time step h (resolving the slow time scale) by the flow

Φh :=
(
Φ0

h
M
−τ ◦ Φ

1
ε
τ

)M
(2.10)

where M is a positive integer corresponding to the number of “samples” used to

average the flow (δ has to be identified with h
M ). We refer to Section 2.1.5 for

the distinction between macro- and meso-steps, the intuition behind the timesteps

requirement (2.9), and the rationale and mechanism behind FLAVORs.

Since FLAVORs are obtained by flow-composition, we will show in Section

2.2 and 2.4 that they inherit the structure preserving properties (for instance

symplecticity and symmetries under a group action) of the legacy integrator for

Hamiltonian systems and Langevin equations.

Under conditions (2.9) on τ and δ, we show that (2.8) is strongly accurate

with respect to (hidden) slow variables and weakly (in the sense of measures)

accurate with respect to (hidden) fast variables. Motivated by this observation,

we introduce the related notion of two-scale flow convergence in analogy with

homogenization theory for elliptic PDEs [215, 4] and call it F-convergence for short.

F -convergence is close in spirit to the Young measure approach to computing slowly

advancing fast oscillations introduced in [18, 17].
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2.1.3 Two-scale flow convergence

Let (ξεt )t∈R+ be a sequence of processes on Rd (functions from R+ to Rd) indexed

by ε > 0. Let (Xt)t∈R+ be a process on Rd−p (p ≥ 0). Let x 7→ ν(x, dz) be a

function from Rd−p into the space of probability measures on Rd.

Definition 2.1.1. We say that the process ξεt F-converges to ν(Xt, dz) as ε ↓ 0 and

write ξεt
F−−→
ε→0

ν(Xt, dz) if and only if for all functions ϕ bounded and uniformly

Lipschitz-continuous on Rd, and for all t > 0,

lim
h→0

lim
ε→0

1

h

∫ t+h

t
ϕ(ξεs) ds =

∫
Rd
ϕ(z)ν(Xt, dz) (2.11)

The idea is that X is the slow variable, and ν(Xt, dz) corresponds to a measure

on the full space (including both the slow and the fast variables) for a given

Xt. For the case of FLAVORs, ν(Xt, dz) will correspond to a Dirac distribution

concentrated at the value of the slow variable Xt, times the local ergodic measure

of the fast variable, and then pulled back to the original coordinates by the scale

separation diffeomorphism.

2.1.4 Asymptotic convergence result

Our convergence theorem requires that uεt and ūt do not blow up as ε ↓ 0; more

precisely, we will assume that the following conditions are satisfied:

Condition 2.1.3. 1. F and G are Lipschitz continuous.

2. For all u0, T > 0, the trajectories (uεt)0≤t≤T are uniformly bounded in ε.

3. For all u0, T > 0, the trajectories (ūεt)0≤t≤T are uniformly bounded in ε,

0 < δ ≤ h0, τ ≤ min(h0ε, δ).

For π, an arbitrary measure on Rd, we define η−1 ∗ π to be the push forward

of the measure π by η−1.

Theorem 2.1.1. Let uεt be the solution to (2.1) and ūt be defined by (2.8). Assume

that equation (2.7) and Conditions 2.1.1, 2.1.2 and 2.1.3 are satisfied, then
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• uεt F -converges to η−1 ∗
(
δXt ⊗µ(Xt, dy)

)
as ε ↓ 0 where Xt is the solution to

Ẋt =

∫
g(Xt, y)µ(Xt, dy) X0 = x0. (2.12)

• ūt F -converges to η−1 ∗
(
δXt ⊗ µ(Xt, dy)

)
for ε ≤ δ/(−C ln δ), τ

ε ↓ 0, ε
τ δ ↓ 0

and ( τε )2 1
δ ↓ 0.

We refer to Section A.1 of the appendix for the detailed proof of Theorem 2.1.1.

Remark 2.1.1. The F -convergence of uεt to η−1∗
(
δXt⊗µ(Xt, dy)

)
can be restated

as

lim
h→0

lim
ε→0

1

h

∫ t+h

t
ϕ(uεs) ds =

∫
Rp
ϕ(η−1(Xt, y))µ(Xt, dy) (2.13)

for all functions ϕ bounded and uniformly Lipschitz-continuous on Rd, and for all

t > 0.

Remark 2.1.2. Observe that g comes from (2.5). It is not explicitly known and

does not need to be explicitly known for the implementation of the proposed method.

Remark 2.1.3. The limits on ε, τ and δ are in essence stating that FLAVOR is

accurate provided that τ � ε (τ resolves the stiffness of (2.1)) and equation (2.9)

is satisfied.

Remark 2.1.4. Throughout this chapter, C will refer to an appropriately large

enough constant independent from ε, δ, τ . To simplify the presentation of our re-

sults, we use the same letter C for expressions such as 2CeC instead of writing it

as a new constant C1 independent from ε, δ, τ .

2.1.5 Rationale and mechanism behind FLAVORs

We will now explain the rationale and mechanism behind FLAVORs. Let us start

by considering the case where η is the identity diffeomorphism. Let ϕ
1
ε be the flow

of (2.2). Observe that ϕ0 (obtained from ϕ
1
ε by setting the parameter 1

ε to zero)

is the flow of (2.2) with yε frozen, i.e.,

ϕ0(x, y) = (x̂t, y) where x̂t solves
dx̂

dt
= g(x̂, y), x̂0 = x. (2.14)
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The main effect of FLAVORs is to average the flow of (2.2) with respect to fast

degrees of freedom via splitting and re-synchronization. By splitting, we refer

to the substitution of the flow ϕ
1
ε
δ by composition of ϕ0

δ−τ and ϕ
1
ε
τ , and by re-

synchronization we refer to the distinct time-steps δ and τ whose effects are to

advance the internal clock of fast variables by τ every step of length δ. By av-

eraging, we refer to the fact that FLAVORs approximates the flow ϕ
1
ε
H by the

flow

ϕH :=
(
ϕ0
H
M
−τ ◦ ϕ

1
ε
τ

)M
(2.15)

where H is a macroscopic time step resolving the slow timescale associated with

xε, M is a positive integer corresponding to the number of samples used to average

the flow (δ is identified with H
M ), and τ is a microscopic time step resolving the fast

timescale, of the order of ε, and associated with yε. In general, analytical formulae

are not available for ϕ0 and ϕ
1
ε , and numerical approximations are used instead.

Observe that when FLAVORs are applied to systems with explicitly separated

slow and fast processes, they lead to integrators that are locally in the neighbor-

hood of those obtained with HMM (or equation-free) with a reinitialization of the

fast variables at macrotime n by their final value at macrotime step n−1 and with

only one microstep per macrostep [87, 89].

We will now consider the situation where η is not the identity map and give

the rationale behind the step size requirements (2.9).

ūnδ
Φ

1
ε
τ //

η

��

ūnδ+τ
Φ0
δ−τ //

η

��

ū(n+1)δ

η

��
(x̄, ȳ)nδ

Ψ
1
ε
τ //

η−1

OO

(x̄, ȳ)nδ+τ
Ψ0
δ−τ //

η−1

OO

(x̄, ȳ)(n+1)δ

η−1

OO

As illustrated in the above diagram, since (x̄t, ȳt) = η(ūt), simulating ūnδ defined

in (2.8) is equivalent to simulating the discrete process

(x̄nδ, ȳnδ) :=
(
Ψ0
δ−τ ◦Ψ

1
ε
τ

)n
(x0, y0) (2.16)
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where

Ψα
h := η ◦ Φα

h ◦ η−1 (2.17)

Observe that the accuracy (in the topology induced by F-convergence) of ūt with

respect to uεt, solution of (2.1), is equivalent to that of (x̄t, ȳt) with respect to

(xεt, y
ε
t) defined by (2.2). Now, for the clarity of the presentation, assume that

Φα
h(u) = u+ hG(u) + αhF (u) (2.18)

Using Taylor’s theorem and (2.18), we obtain that

Ψα
h(x, y) = (x, y) + h

(
g(x, y), 0

)
+αh

(
0, f(x, y)

)
+

∫ 1

0
vT Hess η(u+ tv)v(1− t)2 dt

(2.19)

with

u := η−1(x, y) and v := h(G+ αF ) ◦ η−1(x, y) (2.20)

It follows from (2.19) and (2.20) that Ψ
1
ε
h is a first-order-accurate integrator approx-

imating the flow of (2.2) and Ψ0
h is a first-order-accurate integrator approximating

the flow of (2.14). Let H be a coarse time step and δ a meso-step. Since x̄ remains

nearly constant over the coarse time step, the switching (on and off) of the stiffness

parameter 1
ε averages the drift g of x̄ with respect to the trajectory of ȳ over H.

Since the coarse step H is composed of H
δ mesosteps, the internal clock of the fast

process is advanced by H
δ ×

τ
ε . Since H = O(1), the trajectory of ȳ is mixing with

respect to the local ergodic measure µ provided that τ
δε � 1, i.e.,

δ � τ

ε
(2.21)

Equation (2.21) corresponds to the right hand side of equation (2.9). If η is a

non-linear diffeomorphism (with non-zero Hessian), it also follows from equations

(2.19) and (2.20) that each invocation of the integrator Ψ
1
ε
τ occasions an error (on

the accuracy of the slow process) proportional to ( τε )2. Since during the coarse

time step H, Ψ
1
ε
τ is called H

δ -times, it follows that the error accumulation during
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H is H
δ × ( τε )2. Hence, the accuracy of the integrator requires that 1

δ × ( τε )2 � 1,

i.e., (τ
ε

)2 � δ (2.22)

Equation (2.22) corresponds to the left hand side of equation (2.9).

Observe that if η is linear, its Hessian is null and the remainder on the right

hand side of (2.19) is zero. It follows that if η is linear, the error accumulation

due to fine time steps on slow variables is zero and Condition (2.21) is sufficient

for the accuracy of the integrator.

It has been observed in [88] and in Section 5 of [289] that slow variables do not

need to be identified with HMM/averaging type integrators if η is a linear map

and
∆t

M
� τ

ε
(2.23)

where is M the number of fine-step iterations used by HMM to compute the

average the drift of slow variables and ∆t is the coarse time step (in HMM) along

the direction of the averaged drift. The analysis of FLAVORs associated with

equation (2.19) reaches a similar conclusion that if η is linear in the sense that the

error caused by the Hessian of η in (2.19) is zero then the (sufficient) condition

(2.21) is analogous to (2.23) for M = 1. It is also stated on Page 2 of [88] that

“there are counterexamples showing that algorithms of the same spirit do not work

for deterministic ODEs with separated time scales if the slow variables are not

explicitly identified and made use of. But in the present context, the slow variables

are linear functions of the original variables, and this is the reason why the seamless

algorithm works.” Here, the analysis of FLAVORs associated with equation (2.19)

shows an algorithm based on an averaging principle would indeed, in general, not

work if η is nonlinear (and (2.22) not satisfied) due to the error accumulation (on

slow variables) associated with the Hessian of η. However, the above analysis also

shows that if Condition (2.22) is satisfied, then, although η may be nonlinear,

FLAVORs will always work without the identification of the slow variables.
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2.1.6 Non-asymptotic convergence result

Theorem 2.1.2. Under assumptions and notations of Theorem 2.1.1, there exists

C > 0 such that for δ < h0, τ < h0ε and t > 0,

|xεt − ηx(ūt)| ≤ CeCtχ1(u0, ε, δ, τ) (2.24)

and

∣∣∣∣ 1

T

∫ t+T

t
ϕ(ūs) ds−

∫
Rp
ϕ(η−1(Xt, y))µ(Xt, dy)

∣∣∣∣
≤ χ2(u0, ε, δ, τ, T, t)(‖ϕ‖L∞ + ‖∇ϕ‖L∞) (2.25)

where χ1 and χ2 are functions converging towards zero as ε ≤ δ/(C ln 1
δ ), τ

ε ↓ 0,

ε
τ δ ↓ 0 and ( τε )2 1

δ ↓ 0 (and T ↓ 0 for χ2).

Remark 2.1.5. For ε ≤ δ/(−C ln δ) and δ ετ + τ
ε ≤ 1, the following holds

χ1(u0, ε, δ, τ) ≤
√
δ +

(τ
ε

)2 1

δ
+ E

( 1

C
ln

1

δ

)
+
(δε
τ

) 1
2 +

(τ
ε

) 1
2 + E

( 1

C
ln
((δε

τ
+
τ

ε

)−1
))

(2.26)

and χ2 satisfies a similar inequality.

Remark 2.1.6. Choosing τ ∼ γε and δ ∼ γ τε ,where γ is a small constant inde-

pendent from ε, Theorem 2.1.2 shows that the approximation error of FLAVOR is

bounded by a function of γ converging towards zero as γ ↓ 0. If follows that the

speed up is of the order of δ
τ ∼

γ
ε , i.e., scales like 1

ε at fixed accuracy. In order

to be able to compare FLAVOR with integrators resolving the fast timescale using

fine time steps, we have limited ε from being too small, and hence the speed up in

the numerical experiments to 200× (but this can be arbitrary large as ε ↓ 0). For

sufficiently small ε, we observe that FLAVORs with microstep τ and mesostep δ

overperform their associated legacy integrator with the same microstep τ over large

simulation times (we refer to Section 2.6.3 on the Fermi-Pasta-Ulam problem).

This phenomenon is caused by an error accumulation at each tick (microstep) of
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the clock of fast variables. Since FLAVORs (indirectly, i.e., without identifying

fast variables) slow down the speed of this clock from 1
ε to a value τ

δε ∼
1
γ indepen-

dent from ε, this error does not blow up as ε ↓ 0 (as opposed to for an integrator

that resolves the fast timescale). For this reason, if this error accumulation on

fast variables is exponential, then the speed up at fixed accuracy does not scale

like 1
ε , but like e

T
ε where T is the total simulation time. A consequence of this

phenomenon can be seen in Figure 2.10 (associated with the FPU problem) where

Velocity-Verlet fails to capture the O(ε−1) dynamics with a time step h = 10−5

whereas FLAVORs remain accurate with τ = 10−4 and δ = 2 · 10−3.

Remark 2.1.7. The reader should not be surprised by the presence of the ex-

ponential factor eCt in (2.24). It is known that global errors for numerical ap-

proximations of ODEs grow, in general, exponentially with time (see for instance

[129]). These bounds are, however, already tight; consider, for instance, how error

propagates in a generic numerical scheme applied to the special system of ẋ = x.

It is possible to show that the increase of global errors is linear in time only for

a restricted class of ODEs (using techniques from Lyapunov’s theory of stability

[293]). Notice that the constant C in the exponential of our bound does not scale

with ε−1, and therefore the bound is uniform and rather tight.

Remark 2.1.8. We refer to [97] for higher order averaging based methods. In

particular, [97] shows how, after identification of slow variables, balancing the

different error contributions yields an explicit stable integration method having the

order of the macro scheme.

2.1.7 Natural FLAVORs

Although convenient, it is not necessary to use legacy integrators to obtain FLA-

VORs. More precisely, Theorems 2.1.1 and 2.1.2 remain valid if FLAVORs are

defined to be algorithms simulating the discrete process

ūt :=
(
θGδ−τ ◦ θετ

)k
(u0) for kδ ≤ t < (k + 1)δ (2.27)
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where θετ and θGδ−τ are two mappings from Rd onto Rd (the former approximating

the flow of the whole system (2.1) for time τ , and the latter approximating the

flow of v̇ = G(v) for time δ − τ), satisfying the following conditions:

Condition 2.1.4. 1. There exists h0, C > 0 such that for h ≤ h0 and any

u ∈ Rd, ∣∣θGh (u)− u− hG(u)
∣∣ ≤ Ch2 (2.28)

2. There exists τ0, C > 0, such that for τ
ε ≤ τ0 and any u ∈ Rd,

∣∣∣θετ (u)− u− τG(u)− τ

ε
F (u)

∣∣∣ ≤ C(τ
ε

)2
(2.29)

3. For all u0, T > 0, the discrete trajectories
((
θGδ−τ ◦ θετ

)k
(u0)

)
0≤k≤T/δ

are

uniformly bounded in ε, 0 < δ ≤ h0, τ ≤ min(τ0ε, δ).

Observe that (2.8) is a particular case of (2.27) in which θε = Φ
1
ε and the

mapping θG is obtained from the legacy integrator Φα by setting α to zero. We

sometimes call (2.8) a nonintrusive FLAVOR for distinction.

2.1.8 FLAVORs for generic stiff ODEs

FLAVORs have a natural generalization to systems of the form

u̇α,ε = F (uα,ε, α, ε) (2.30)

where u 7→ F (u, α, ε) is Lipschitz continuous.

Condition 2.1.5. Assume that:

1. ε 7→ F (u, α, ε) is uniformly continuous in the neighborhood of 0.

2. There exists a diffeomorphism η := (ηx, ηy), from Rd onto Rd−p × Rp, inde-

pendent from ε, α, with uniformly bounded C1, C2 derivatives, such that the

process (xαt , y
α
t ) =

(
ηx(uα,0t ), ηy(uα,0t )

)
satisfies, for all α ≥ 1, the ODE

ẋα = g(xα, yα) xα0 = x0, (2.31)
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where g(x, y) is Lipschitz continuous in x and y on bounded sets.

3. There exists ν > 0 and a family of probability measures µ(x, dy) on Rp such

that for all x0, y0, T
(
(x0, y0) := η(u0)

)
and ϕ uniformly bounded and Lips-

chitz

∣∣∣ 1

T

∫ T

0
ϕ(yαs ) ds−

∫
Rp
ϕ(y)µ(x0, dy)

∣∣∣ ≤ χ(‖(x0, y0)‖
)(
E1(T )+E2(Tαν)

)
‖∇ϕ‖L∞

(2.32)

where r 7→ χ(r) is bounded on compact sets and E2(r) → 0 as r → ∞ and

E1(r)→ 0 as r → 0.

4. For all u0, T > 0, the trajectories (uα,0t )0≤t≤T are uniformly bounded in

α ≥ 1.

Remark 2.1.9. Observe that slow variables are not kept frozen in equation (2.32).

The error on local invariant measures induced by the (slow) drift of xα is controlled

by E2. More precisely, the convergence of the right hand side of (2.32) towards

zero requires that T goes to zero and at the same time Tαν goes towards infinity.

Assume that we are given a mapping Φα,ε
h from Rd onto Rd approximating the

flow of (2.30). If the parameter α can be controlled, then Φα,ε
h can be used as a

black box for accelerating the computation of solutions of (2.30).

Condition 2.1.6. Assume that:

1. There exists a constant h0 > 0 such that Φα,ε satisfies for all h ≤ h0 min( 1
αν , 1),

0 < ε ≤ 1 ≤ α

∣∣Φα,ε
h (u)− u− hF (u, α, ε)

∣∣ ≤ C(u)h2(1 + α2ν) (2.33)

where C(u) is bounded on compact sets.

2. For all u0, T > 0, the discrete trajectories
((

Φ0,ε
δ−τ ◦ Φ

1
ε
,ε

τ

)k
(u0)

)
0≤k≤T/δ

are

uniformly bounded in 0 < ε ≤ 1, 0 < δ ≤ h0, τ ≤ min(h0ε
ν , δ).
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FLAVOR can be defined as the algorithm given by the process

ūt =
(
Φ0,ε
δ−τ ◦ Φ

1
ε
,ε

τ

)k
(u0) for kδ ≤ t < (k + 1)δ (2.34)

The theorem below shows the accuracy of FLAVORs for δ � h0, τ � εν and(
τ
εν

)2 � δ � τ
εν .

Theorem 2.1.3. Let u
1
ε
,ε

t be the solution to (2.30) with α = 1/ε and ūt be defined

by (2.34). Assume that Conditions 2.1.5 and 2.1.6 are satisfied then

• u
1
ε
,ε

t F -converges towards η−1 ∗
(
δXt ⊗ µ(Xt, dy)

)
as ε ↓ 0 where Xt is the

solution to

Ẋt =

∫
Rp
g(Xt, y)µ(Xt, dy) X0 = x0, (2.35)

• As ε ↓ 0, τε−ν ↓ 0, δ ε
ν

τ ↓ 0, τ2

ε2νδ
↓ 0, ūt F -converges towards η−1 ∗

(
δXt ⊗

µ(Xt, dy)
)

as ε ↓ 0 where Xt is the solution of (2.35).

Proof. The proof of Theorem 2.1.3 is similar to that of Theorem 2.1.1 and 2.3.1.

Only the idea of the proof will be given here. The condition ε � 1 is needed

for the approximation of uα,ε by uα,0 and for the F -convergence of u
1
ε
,0. Since

yαt = ηy(uα,0t ) the condition τ � εν is used along with equation (2.33) for the

accuracy of Φ
1
ε
,ε

τ in (locally) approximating yαt . The condition δ � τ
εν allows for

the averaging of g to take place prior to a significant change of xαt ; more precisely,

it allows for m � 1 iterations of Φ
1
ε
,ε

τ prior to a significant change of xαt . The

condition
(
τ
εν

)2 � δ is required in order to control the error accumulated by m

iterations of Φ
1
ε
,ε

τ .

Remark 2.1.10. It is easy to see that Theorem 2.1.3 remains valid if Item 4 of

Condition 2.1.5 and Item 2 of Condition 2.1.6 do not hold for all u0 but only for

a subset of initial conditions u0 ∈ I for some I ⊂ Rd and the trajectories of u and

ū remain in I for all ε.

We also observe that Theorem 2.1.3 can easily be generalized to situations where

η is not injective, for instance to a situation where η is a differentiable mapping
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from Rd onto Rd−p × Rq where q < p. In that situation, Item 4 of Condition

2.1.5 and Item 2 of Conditional 2.1.6 should be replaced by the condition that η(u)

and η(ū) do not blow up as ε ↓ 0. Furthermore, the convergence of u and ū are

only partial in the sense that η(u) F -converges towards δXt ⊗ µ(Xt, dy) but the

projection of u on the kernel of η (i.e., η−1(0, 0)) may not F -converge.

2.1.9 Limitations of the method

The proof of the accuracy of the method (Theorems 2.1.1 and 2.1.2) is based on

an averaging principle; hence, if ε is not small (the stiffness of the ODE is weak),

although the method may be stable, there is no guarantee of accuracy. More

precisely, the global error of the method is an increasing function of ε, δ, τ
ε , δε

τ ,

( τε )2δ. Writing γ := τ
ε , the accuracy requires γ2 � δ � γ. Choosing δ = γ

3
2 , the

condition ε� δ � 1 (related to computational gain) requires ε
2
3 � γ � 1, which

can be satisfied only if ε is small.

The other limitation of the method lies in the fact that a stiff parameter 1
ε needs

to be clearly identified. In many examples of interest (Navier-Stokes equations,

Maxwell’s equations,...), stiffness is a result of nonlinearity, initial conditions or

boundary conditions and not of the existence of a large parameter 1
ε . Molecular

dynamics can also create widely separated time-scales from nonlinear effects; we

refer, for instance, to [301] and references therein.

2.2 FLAVORs for deterministic mechanical systems

2.2.1 Hamiltonian system and its geometric integration

Deterministic mechanical systems are governed by Hamiltonian equations [3]. Since

averaging with FLAVORs is obtained by flow composition, FLAVORs have an in-

trinsic extension to multiscale structure preserving integrators for stiff Hamiltonian

systems.

Recall that finite dimensional Hamiltonian systems in a Euclidean phase space
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Rd × Rd could be described by ODEs of the form


ṗ = −∂qH(p, q)

q̇ = ∂pH(p, q)

(2.36)

where the most typical form of the Hamiltonian is

H(q, p) :=
1

2
pTM−1p+ V (q), (2.37)

which corresponds to the total energy of the system. Notice that the phase space

does not have to be Euclidean, but could be as general as a cotangent bundle T ∗M

of a configuration manifold M (possibly infinite dimensional).

Recall an integrator for (2.36) in Euclidean space is symplectic, if and only if

its one-step update map Φ : (q, p) 7→ (q̃, p̃) satisfies

(DΦ)T · J ·DΦ = J, (2.38)

where

DΦ =

∂q̃∂q (q, p) ∂q̃
∂p(q, p)

∂p̃
∂q (q, p) ∂p̃

∂p(q, p)



is the Jacobian matrix, and J =

 0 I

−I 0

 corresponds to the symplectic 2-form.

Remark 2.2.1 (Variational integrator). One way to obtain a symplectic integra-

tor is via a discrete variational principle, and the resulting integrator will be not

only symplectic but also variational. The strategy is the following: assuming the

corresponding Lagrangian L(q, q̇) is known (in the non-degenerate case it could

be obtained as the Legendre transformation of H(q, p)), then the exact dynamics

(whose Hamiltonian form is given by (2.36)) is equivalently the critical point of

the following action functional:

S[q(·)] :=

∫ T

0
L(q(t), q̇(t), t) dt (2.39)



36

If one approximates the integral by a sum of discrete Lagrangians that satisfy

Ld(q(kh), q((k + 1)h)) ≈
∫ (k+1)h

kh
L(q(t), q̇(t), t) dt (2.40)

for all k, where h is the integration timestep, then the critical point (with vanishing

derivatives with respect to all discrete points qk) of the discrete action

Sd(q0, q1, . . . , qN ) :=
N−1∑
i=0

Ld(qi, qi+1) (2.41)

yields the discrete equations of motion (i.e., Discrete Euler-Lagrangian equations),

which correspond to a variational (symplectic) integrator. More details of this

construction could be found, for instance, in [192].

A simplest stiff Hamiltonian system corresponds to a sum of stiff and soft

potentials, i.e., H = 1
2p
TM−1p+ V (q) + 1

εU(q), and the corresponding Hamilton’s

equations write as


ṗ = −∇V (q)− 1

ε∇U(q)

q̇ = M−1p

(2.42)

2.2.2 FLAVORs for Hamiltonian equations

Assume that we are given a first-order-accurate legacy integrator for (2.42) in

which the parameter 1/ε can be controlled, i.e., a mapping Φα
h acting on the phase

space such that for h ≤ h0 min(1, α−
1
2 )

∣∣∣Φα
h(q, p)− (q, p)− h

(
M−1p,−V (q)− αU(q)

)∣∣∣ ≤ Ch2(1 + α) (2.43)

Write Θδ, the FLAVOR discrete mapping approximating solutions of (2.42)

over time steps δ � ε, i.e.,

(q(n+1)δ, p(n+1)δ) := Θδ(qnδ, pnδ). (2.44)
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FLAVOR can then be defined by

Θδ := Φ0
δ−τ ◦ Φ

1
ε
τ (2.45)

Theorem 2.1.3 establishes the accuracy of this integrator under Conditions 2.1.5

and 2.1.6 provided that τ �
√
ε� δ and τ2

ε � δ � τ√
ε
.

Remark 2.2.2. We also refer to Remark 2.1.10 for the application of Theorem

2.1.3 to Hamiltonian systems. Consider for instance the linear Hamiltonian system

H(q1, q2, p1, p2) := 1
2p

2
1 + 1

2p
2
2 + 1

2q
2
1 + 1

ε (q2 − q1)2. If the system is started from

q2(0)−q1(0) = O(
√
ε), then the energy remains bounded as ε ↓ 0 and (q1, q2, p1, p2)

F -converges due to the first part of Remark 2.1.10.

For the same example, if the system is started from a point such that q2(0) −

q1(0) 6= O(
√
ε) then the energy in the system blows up as ε ↓ 0, the range of p2−p1

blows up and it can therefore not converge, even in the sense of measures. However

the (slow) process (q1 + q2, p1 + p2) satisfies an equation of the type (2.31) where

the dependence on fast variables is only through q2 − q1 (yα = q2 − q1 in (2.31))

and q2 − q1 is locally ergodic (as defined in Item 3 of Condition 2.1.5) and does

converge in the sense of distributions. Henceforth if q2(0) − q1(0) 6= 0 then the

generalization of Theorem 2.1.3 (see second part of Remark 2.1.10) applies with η

non-injective.

2.2.3 Structure preserving properties of FLAVORs

We will now show that FLAVORs inherit the structure preserving properties of

their legacy integrators.

Theorem 2.2.1. If for all h, ε > 0 Φε
h is symmetric under a group action, then

Θδ is symmetric under the same group action.

Theorem 2.2.2. If Φα
h is symplectic on the co-tangent bundle T ∗M of a config-

uration manifold M, then Θδ defined by (2.45) is symplectic on the co-tangent

bundle T ∗M.
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Theorem 2.2.1 and Theorem 2.2.2 can be resolved by noting that “the overall

method is symplectic — as a composition of symplectic transformations, and it

is symmetric — as a symmetric composition of symmetric steps” (see Chapter

XIII.1.3 of [128]).

Write

Φ∗h :=
(
Φ−h

)−1
(2.46)

Let us recall the following definition corresponding to Definition 1.4 of the Chapter

V of [128]:

Definition 2.2.1. A numerical one-step method Φh is called time-reversible if it

satisfies Φ∗h = Φh.

The following theorem, whose proof is straightforward, shows how to derive

a “symplectic and symmetric and time-reversible” FLAVOR from a symplectic

legacy integrator and its adjoint. Since this derivation applies to manifolds, it also

leads to structure-preserving FLAVORs for constrained mechanical systems.

Theorem 2.2.3. If Φα
h is symplectic on the co-tangent bundle T ∗M of a config-

uration manifold M, then

Θδ := Φ
1
ε
,∗
τ
2
◦ Φ0,∗

δ−τ
2

◦ Φ0
δ−τ
2

◦ Φ
1
ε
τ
2

(2.47)

is symplectic and time-reversible on the co-tangent bundle T ∗M.

Remark 2.2.3. Observe that (except for the first and last steps) iterating Θδ

defined by (2.47) is equivalent to iterating

Θδ := Φ0,∗
δ−τ
2

◦ Φ0
δ−τ
2

◦ Φ
1
ε
τ
2
◦ Φ

1
ε
,∗
τ
2

(2.48)

It follows that a symplectic, symmetric and reversible FLAVOR can be obtained in

a nonintrusive way from a Störmer/Verlet integrator for (2.42) [131, 129, 292].
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2.2.4 An example of a symplectic FLAVOR

If the phase space is Rd×Rd, then an example of symplectic FLAVOR is obtained

from Theorem 2.2.2 by choosing Φα
h to be the symplectic Euler (also known as

Variational Euler or VE for short) integrator defined by

Φα
h(q, p) =

q
p

+ h

M−1
(
p− h

(
V (q) + αU(q)

))
−V (q)− αU(q)

 (2.49)

and letting Θδ be defined by (2.45).

2.2.5 An example of a symplectic and time-reversible FLAVOR

If the phase space is the Euclidean space Rd × Rd, then an example of symplectic

and time-reversible FLAVOR is obtained by letting Θδ be defined by (2.47) with

Φα
h being the symplectic Euler integrator given by (2.49) and its adjoint given by:

Φα,∗
h (q, p) =

q
p

+ h

 M−1p

−V (q + hM−1p)− αU(q + hM−1p)

 (2.50)

2.2.6 An artificial FLAVOR

Natural FLAVORs defined by (2.27) (for instance, the nonintrusive FLAVOR given

by (2.8)) are not the only ways to average the flows of (2.37). We present below

an alternative method based on the freezing and unfreezing of degrees of freedom

associated with stiff potentials. We have called this method ‘artificial’ because the

legacy method cannot be used as a black box. In an example of this approach, the

discrete flow approximating solutions of (2.42) is given by (2.44) with

Θδ := θtrδ−τ ◦ θετ ◦ θVδ (2.51)

where θVδ is a symplectic map corresponding to the flow of Hslow(q, p) := V (q),

approximating the effects of the soft potential on momentum over the mesoscopic
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time step δ and defined by

θVδ
(
q, p
)

=
(
q, p− δ∇V (q)

)
. (2.52)

θετ is a symplectic map approximating the flow of Hfast(q, p) := 1
2p
TM−1p+ 1

εU(q)

over a microscopic time step τ :

θετ
(
q, p
)

=
(
q + τM−1p, p− τ

ε
∇U(q + tM−1p)

)
(2.53)

θtrδ−τ is a map approximating the flow of the Hamiltonian Hfree(q, p) := 1
2p
TM−1p

under a holonomic constraint imposing the freezing of the stiff potential U (i.e.,

in non-holonomic short-hand form, U̇ = 0). Velocities along the direction of con-

straints have to be stored and set to be 0 before the constrained dynamics, i.e.,

frozen, and the stored velocities should be restored after the constrained dynam-

ics, i.e., unfrozen; geometrically speaking, one projects to the constrained sub-

symplectic manifold, runs the constrained dynamics, and lifts back to the original

full space. Oftentimes, the exact solution to the constrained dynamics can be

found (examples given in Section 2.5.3, 2.5.2, 2.6.2, 2.6.3 and 2.6.4).

When the exact solution to the constrained dynamics cannot be easily found,

one may want to employ integrators for constrained dynamics such as SHAKE [236]

or RATTLE [10] instead. This has to be done with caution, because symplectic-

ity of the translational flow may be lost. The composition of projection onto the

constrained manifold (freezing), evolution on the constrained manifold, and lifting

from it to the unconstrained space (unfreezing) preserves symplecticity in the un-

constrained space only if the evolution on the constrained manifold preserves the

inherited symplectic form. A numerical integration preserves the discrete symplec-

tic form on the constrained manifold, but not necessarily the projected continuous

symplectic form.

Remark 2.2.4. This artificial FLAVOR is locally a perturbation of nonintrusive
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FLAVORs. By splitting theory [199, 128],

θtrδ−τ ◦ θετ ◦ θVδ ≈ θtrδ−τ ◦ θVδ−τ ◦ θετ ◦ θVτ ≈ θtrδ−τ ◦ θVδ−τ ◦ Φ
1
ε
τ (2.54)

whereas Φ0
δ−τ ◦Φ

1
ε
τ ≈ θfreeδ−τ ◦ θ

V
δ−τ ◦Φ

1
ε
τ , where θfree is the flow of Hfree(q, p) under

no constraint. The only difference is that constraints are treated in θtr but not in

θfree.

Remark 2.2.5. This artificial FLAVOR can be formally regarded as Φ∞δ−τ ◦ Φ
1
ε
τ .

In contrast, the nonintrusive FLAVOR is Φ0
δ−τ ◦ Φ

1
ε
τ .

The advantage of this artificial FLAVOR lies in the fact that only τ �
√
ε� δ

and δ � τ√
ε

are required for its accuracy (and not τ2

ε � δ). We also observe that,

in general, artifical FLAVOR overperforms nonintrusive FLAVOR in FPU long

time (O(ω2)) simulations (we refer to Section 2.6.3).

2.2.7 Variational derivation of FLAVORs

FLAVORs based on variational legacy integrators [192] are variational too. Recall

that discrete Lagrangian Ld is an approximation of the integral of the continuous

Lagrangian over one time step, and the Discrete Euler-Lagrangian equation (DEL)

is obtained by applying the variational (least action) principle to the discrete

action, which is a sum of discrete Lagrangians. The following diagram commutes:

Singlescale Ld
FLAV ORization //

variational principle

��

Multiscale Ld

variational principle

��
Singlescale DEL

FLAV ORization //Multiscale DEL

For example, recall Variational Euler (i.e., symplectic Euler) for system (2.37)

with time step h 
pk+1 = pk − h[∇V (qk) + 1

ε∇U(qk)]

qk+1 = qk + hpk+1

(2.55)

can be obtained by applying variational principle to the following discrete La-
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grangian

Ld
1/ε
h (qk, qk+1) = h

[
1

2

(
qk+1 − qk

h

)2

−
(
V (qk) +

1

ε
U(qk)

)]
. (2.56)

Meanwhile, FLAVORized Variational Euler with smallstep τ and mesostep δ

p′k = pk − τ [∇V (qk) + 1
ε∇U(qk)]

q′k = qk + τp′k

pk+1 = p′k − (δ − τ)∇V (q′k)

qk+1 = q′k + (δ − τ)pk+1

(2.57)

can be obtained by applying variational principle to the FLAVORized discrete

Lagrangian

Ldδ(qk, q
′
k, qk+1) = Ld

1/ε
τ (qk, q

′
k) + Ld

0
δ−τ (q′k, qk+1)

= τ

[
1

2

(
q′k − qk
τ

)2

−
(
V (qk) +

1

ε
U(qk)

)]
+ (δ − τ)

[
1

2

(
qk+1 − q′k
δ − τ

)2

− V (q′k)

]
(2.58)

FLAVORizations of other variational integrators such as Velocity Verlet follow

similarly.

2.3 FLAVORs for general SDEs

2.3.1 Averaging

For the sake of clarity, we will start the description of with the following SDE on

Rd:

duεt =
(
G(uεt) +

1

ε
F (uεt)

)
dt+

(
H(uεt) +

1√
ε
K(uεt)

)
dWt, uε0 = u0 (2.59)
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where (Wt)t≥0 is a d-dimensional Brownian motion; F and G are vector fields on

Rd; H and K ared × d matrix fields on Rd. In Section 2.3.6, we will consider a

more general form (2.73).

Regarding asymptotic problems for stochastic differential equations, we refer

to Skorokhod’s detailed monograph [258], as well as the early work of Gikhman

[115], Krylov [169, 170], Bogolyubov [36] and Papanicolaou-Kohler [222]. Like in

the ODE cases, effective equations for stiff SDEs can be obtained by averaging the

instantaneous coefficients (drift and the diffusivity matrix squared) with respect

to the fast components; Section 3 of Chapter II in [258] can be referred to for

a detailed analysis including error bounds. Numerical methods such as HMM

[87] and equation-free methods [15] have been extended to SDEs based on this

averaging principle. Another idea is to treat fast variables by conditioning; here, we

refer to optimal prediction [66, 65, 67] that has also been used for model reduction.

Existing contributions also include [16, 126, 280, 52, 53, 184, 2].

In order for averaging to work, we again need conditions including a separation

of timescales and a locally ergodic fast process:

Condition 2.3.1. Assume that:

1. F,G,H and K are uniformly bounded and Lipschitz continuous.

2. There exists a diffeomorphism η := (ηx, ηy), from Rd onto Rd−p × Rp, inde-

pendent of ε, with uniformly bounded C1, C2 and C3 derivatives, such that

the process (xεt, y
ε
t) = (ηx(uεt), η

y(uεt)) satisfies the SDE


dxε = g(xε, yε) dt+ σ(xε, yε)dWt, xε0 = x0

dyε = 1
εf(xε, yε) dt+ 1√

ε
Q(xε, yε)dWt, yε0 = y0

(2.60)

where g is d − p dimensional vector field; f a p-dimensional vector field; σ

is a (d− p)× d-dimensional matrix field; Q a p× d-dimensional matrix field

and Wt a d-dimensional Brownian motion.
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3. Let Yt be the solution to

dYt = f(x0, Yt) dt+Q(x0, Yt) dWt, Y0 = y0, (2.61)

there exists a family of probability measures µ(x, dy) on Rp indexed by x ∈

Rd−p and a positive function T 7→ E(T ) such that limT→∞E(T ) = 0 and for

all x0, y0, T and φ with uniformly bounded Cr derivatives for r ≤ 3,

∣∣∣ 1

T

∫ T

0
E
[
φ(Ys)

]
−
∫
φ(y)µ(x0, dy)

∣∣∣ ≤ χ(‖(x0, y0)‖
)
E(T ) max

r≤3
‖φ‖Cr (2.62)

where r 7→ χ(r) is bounded on compact sets.

4. For all u0, T > 0, sup0≤t≤T E
[
χ
(
‖uεt‖

)]
is uniformly bounded in ε.

Remark 2.3.1. Like in the proof of Theorem 2.1.1, the uniform regularity of F ,

G, H and K can be relaxed to local regularity by adding a control on the rate of

escape of the process towards infinity. To simplify the presentation, we will use the

global uniform regularity.

We will now extend the definition of two-scale flow convergence introduced in

Section 2.1.3 to stochastic processes.

2.3.2 Two-scale flow convergence for SDEs

Let
(
ξεt (ω)

)
t∈R+,ω∈Ω

be a sequence of stochastic processes on Rd (progressively

measurable mappings from R+ × Ω to Rd) indexed by ε > 0. Let (Xt)t∈R+ be a

(progressively measurable) stochastic process on Rd−p (p ≥ 0). Let x 7→ ν(x, dz)

be a function from Rd−p into the space of probability measures on Rd.

Definition 2.3.1. We say that the process ξεt F-converges to ν(Xt, dz) as ε ↓ 0

and write ξεt
F−−→
ε→0

ν(Xt, dz) if and only if for all function ϕ bounded and uniformly

Lipschitz-continuous on Rd and all t > 0,

lim
h→0

lim
ε→0

1

h

∫ t+h

t
E
[
ϕ(ξεs)

]
ds = E

[ ∫
Rd
ϕ(z)ν(Xt, dz)

]
(2.63)
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2.3.3 Nonintrusive FLAVORs for SDEs

Let ω be a random sample from a probability space (Ω,F ,P) and Φα
h(, ω) a random

mapping from Rd onto Rd approximating the flow of (2.59) with α = 1/ε. If the

parameter α can be controlled, then Φα
h can be used as a black box for accelerating

the computation of solutions of (2.59) without prior identification of slow variables.

Indeed, assume that there exists a constant h0 > 0 and a normal-distributed

random vector ξ(ω) such that for h ≤ h0 min( 1
α , 1)

(
E
[∣∣Φα

h(u, ω)−u−hG(u)−αhF (u)−
√
hH(u)ξ(ω)−

√
αhK(u)ξ(ω)

∣∣2]) 1
2

≤ Ch
3
2 (1+α)

3
2

(2.64)

then FLAVOR can be defined as the algorithm simulating the stochastic process
ū0 = u0

ū(k+1)δ = Φ0
δ−τ (., ω′k) ◦ Φ

1
ε
τ (ūkδ, ωk)

ūt = ūkδ for kδ ≤ t < (k + 1)δ

. (2.65)

where ωk, ω
′
k are i.i.d. samples from the probability space (Ω,F ,P), δ ≤ h0 and

τ ∈ (0, δ) such that τ ≤ h0ε. Theorem 2.3.1 establishes the asymptotic accuracy

of FLAVOR for τ � ε� δ and

(τ
ε

) 3
2 � δ � τ

ε
. (2.66)

Remark 2.3.2. ωk simulates the randomness of the increment of the Brownian

motion between times δk and δk+τ . ω′k simulates the randomness of the increment

of the Brownian motion between times δk+τ and δ(k+1). The independence of ωk

and ω′k is reflection of the independence of the increments of a Brownian motion.

2.3.4 Convergence theorem

Theorem 2.3.1. Let uε be the solution to (2.59) and ūt defined by (2.65). Assume

that equation (2.64) and Condition 2.3.1 are satisfied, then
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• uεt F -converges towards η−1 ∗
(
δXt ⊗ µ(Xt, dy)

)
as ε ↓ 0 where Xt is the

solution to

dXt =

∫
g(Xt, y)µ(Xt, dy) dt+ σ̄(Xt) dBt X0 = x0 (2.67)

where σ̄ is a (d− p)× (d− p) matrix field defined by

σ̄σ̄T (x) =

∫
σσT (x, y)µ(x, dy) (2.68)

and Bt a (d− p)-dimensional Brownian motion.

• ūt F -converges towards η−1 ∗
(
δXt ⊗ µ(Xt, dy)

)
as ε ↓ 0, τ ≤ δ, τ

ε ↓ 0, δε
τ ↓ 0

and
(
τ
ε

) 3
2 1
δ ↓ 0.

The proof of convergence of SDEs of type (2.60) is classical, and a comprehen-

sive monograph can be found in Chapter II of [258]. A proof of (mean squared)

convergence of HMM applied to (2.60) (separated slow and fast variables) with

σ = 0 has been obtained in [87]. A proof of (mean squared) convergence of

the Equation-Free Method applied to (2.60) with σ 6= 0 but independent of fast

variables has been obtained in [118]. Theorem 2.3.1 proves the convergence in dis-

tribution of FLAVOR applied to SDE (2.59) with hidden slow and fast processes.

One of the main difficulties of the proof of Theorem 2.3.1 lies in the fact that we are

not assuming that the noise on (hidden) slow variables is null or independent from

fast variables. Without this assumption, xεt converges only weakly towards Xt,

the convergence of uε can only be weak and techniques for strong convergence can

not be used. The proof of Theorem 2.3.1 relies on a powerful result by Skorokhod

(Theorem 1 of Chapter II of [258]) stating that the convergence in distribution of a

sequence of stochastic processes is implied by the convergence of their generators.

We refer to Section A.2 of the appendix for the detailed proof of Theorem 2.3.1.
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2.3.5 Natural FLAVORs for SDEs

As for ODEs, it is not necessary to use legacy integrators to obtain FLAVORs for

SDEs. More precisely, Theorem 2.3.1 remains valid if FLAVORs are defined to be

algorithms simulating the discrete process
ū0 = u0

ū(k+1)δ = θGδ−τ (., ω′k) ◦ θετ (ūkδ, ωk)

ūt = ūkδ for kδ ≤ t < (k + 1)δ

(2.69)

where ωk, ω
′
k are i.i.d. samples from the probability space (Ω,F ,P), and θετ and

θGδ−τ are two random mappings from Rd onto Rd satisfying the following Condition

2.3.2, which implies that θετ (., ω) approximates in distribution the flow of (2.59)

over time steps τ � ε and θGh (., ω) approximates in distribution the flow of

dvεt = G(vεt) dt+H(vεt) dWt (2.70)

over time steps h� 1.

Condition 2.3.2. Assume that:

1. There exists h0, C > 0 and a d-dimensional centered Gaussian vector ξ(ω)

with identity covariance matrix such that for h ≤ h0,

(
E
[∣∣θGh (u, ω)− u− hG(u)−

√
hH(u)ξ(ω)

∣∣2]) 1
2

≤ Ch
3
2 (2.71)

2. There exists τ0, C > 0 and a d-dimensional centered Gaussian vector ξ(ω)

with identity covariance matrix such that for τ
ε ≤ τ0,

(
E
[∣∣θετ (u, ω)−u−τG(u)−τ

ε
F (u)−

√
τH(u)ξ(ω)−

√
τ

ε
K(u)ξ(ω)

∣∣2]) 1
2

≤ C
(τ
ε

) 3
2

(2.72)

3. For all u0, T > 0, sup0≤n≤T/δ E
[
χ
(
‖ūnδ‖

)]
is uniformly bounded in ε, 0 <
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δ ≤ h0, τ ≤ min(τ0ε, δ), where ū is defined by (2.69).

2.3.6 FLAVORs for generic stiff SDEs

FLAVORs for stochastic systems have a natural generalization to SDEs on Rd of

the form

duα,ε = F (uα,ε, α, ε) dt+K(uα,ε, α, ε) dWt (2.73)

where (Wt)t≥0 is a d-dimensional Brownian motion, and F and K are Lipschitz

continuous in u.

Condition 2.3.3. Assume that:

1. γ 7→ F (u, α, γ) and γ 7→ K(u, α, γ) are uniformly continuous in the neigh-

borhood of 0.

2. There exists a diffeomorphism η := (ηx, ηy), from Rd onto Rd−p × Rp, inde-

pendent from ε, α, with uniformly bounded C1, C2 and C3 derivatives, and

such that the stochastic process (xαt , y
α
t ) = (ηx(uα,0t ), ηy(uα,0t )) satisfies for

all α ≥ 1 the SDE

dxα = g(xα, yα) dt+ σ(xα, yα) dWt xα0 = x0 (2.74)

where g is d−p dimensional vector field, σ is a (d−p)×d-dimensional matrix

field, and g and σ are uniformly bounded and Lipschitz continuous in x and

y.

3. There exists a family of probability measures µ(x, dy) on Rp such that for all

x0, y0

(
(x0, y0) := η(u0)

)
, T and ϕ with uniformly bounded Cr derivatives

for r ≤ 3,

∣∣∣ 1

T

∫ T

0
E
[
ϕ(yαs )

]
ds−

∫
ϕ(y)µ(x0, dy)

∣∣∣ ≤
χ
(
‖(x0, y0)‖

)(
E1(T ) + E2(Tαν)

)
max
r≤3
‖ϕ‖Cr (2.75)
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where r 7→ χ(r) is bounded on compact sets and E2(r) → 0 as r → ∞ and

E1(r)→ 0 as r → 0.

4. For all u0, T > 0, sup0≤t≤T E
[
χ
(
‖uα,0t ‖

)]
is uniformly bounded in α ≥ 1.

Remark 2.3.3. Like in the proof of Theorem 2.1.1, the uniform regularity of g

and σ can be relaxed to local regularity by adding a control on the rate of escape of

the process towards infinity. To simplify the presentation, we have used the global

uniform regularity.

Let ω be a random sample from a probability space (Ω,F ,P) and Φα,ε
h (., ω) a

random mapping from Rd onto Rd approximating in distribution the flow of (2.73)

over time steps τ � ε. If the parameter α can be controlled, then Φα,ε
h can be

used as a black box for accelerating the computation of solutions of (2.73). The

acceleration is obtained without prior identification of the slow variables.

Condition 2.3.4. Assume that:

1. There exists h0, C, ν > 0 and a d-dimensional centered Gaussian vector ξ(ω)

with identity covariance matrix such that for h ≤ h0, 0 < ε ≤ 1 ≤ α and

h ≤ h0 min( 1
αν , 1)

(
E
[∣∣Φα,ε

h (u)− u− hF (u, α, ε)−
√
hξ(ω)K(u, α, ε)

∣∣2) 1
2

≤ Ch
3
2 (1 + α

3ν
2 )

(2.76)

2. For all u0, T > 0, sup0≤n≤T/δ E
[
χ
(
‖ūnδ‖

)]
is uniformly bounded in ε, 0 <

δ ≤ h0, τ ≤ min(h0ε
ν , δ), where ū is defined by (2.77).

Let δ ≤ h0 and τ ∈ (0, δ) such that τ ≤ τ0ε
ν . Then a FLAVOR integration is

defined as the stochastic process t 7→ ūt given by
ū0 = u0

ū(k+1)δ = Φ0,ε
δ−τ (., ω′k) ◦ Φ

1
ε
,ε

τ (ūkδ, ωk)

ūt = ūkδ for kδ ≤ t < (k + 1)δ

(2.77)
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where ωk, ω
′
k are i.i.d. samples from the probability space (Ω,F ,P).

The following theorem shows that the flow averaging integrator is accurate

with respect to F -convergence for τ � εν � δ and

( τ
εν
) 3

2 � δ � τ

εν
. (2.78)

Theorem 2.3.2. Let u
1
ε
,ε

t be the solution to (2.73) with α = 1/ε and ūt be defined

by (2.77). Assume that Conditions 2.3.3 and 2.3.4 are satisfied then

• u
1
ε
,ε

t F -converges towards η−1 ∗
(
δXt ⊗ µ(Xt, dy)

)
as ε ↓ 0 where Xt is the

solution to

dXt =

∫
g(Xt, y)µ(Xt, dy) + σ̄(Xt) dBt X0 = x0 (2.79)

where σ̄ is a (d− p)× (d− p) matrix field defined by

σ̄σ̄T (x) =

∫
σσT (x, y)µ(x, dy) (2.80)

and Bt a (d− p)-dimensional Brownian motion.

• As ε ↓ 0, τε−ν ↓ 0, δ ε
ν

τ ↓ 0,
(
τ
εν

) 3
2 1
δ ↓ 0, the numerical solution ūt F -converges

towards η−1 ∗
(
δXt ⊗ µ(Xt, dy)

)
as ε ↓ 0 where Xt is the solution to (2.79).

Proof. The proof of Theorem 2.3.2 is similar to the proof of Theorem 2.3.1. The

condition ε � 1 is needed for the approximation of uα,ε by uα,0 and for the F -

convergence of u
1
ε
,0. Since yαt = ηy(uα,0t ) the condition τ � εν is used along with

(2.76) for the accuracy of Φ
1
ε
,ε

τ in (locally) approximating yαt . The condition δ � τ
εν

allows for the averaging of g and σ to take place prior to a significant change of

xαt; more precisely, it allows for m � 1 iterations of Φ
1
ε
,ε

τ prior to a significant

change of xαt. The condition
(
τ
εν

) 3
2 � δ is required in order to control the error

accumulated by m iterations of Φ
1
ε
,ε

τ .
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2.4 FLAVORs for stochastic mechanical systems

2.4.1 Langevin system and Boltzmann-Gibbs distribution

Stiff stochastic mechanical systems are commonly modeled by stiff Langevin equa-

tions of the form
dq = M−1p

dp = −∇V (q) dt− 1
ε∇U(q) dt− cp dt+

√
2β−1c

1
2dWt

(2.81)

or 
dq = M−1p

dp = −∇V (q) dt− 1
ε∇U(q) dt− c

εp dt+
√

2β−1 c
1
2√
ε
dWt,

(2.82)

where c is a positive symmetric d×d matrix indicating the strength of the viscous

friction, and β ≥ 0 is a real number, also known as the inverse of the temperature.

(2.81) and (2.82) model a stochastic mechanical system whose deterministic

part is given by a Hamiltonian

H(q, p) :=
1

2
pTM−1p+ V (q) +

1

ε
U(q), (2.83)

and additional internal dissipation due to friction and external perturbation due

to noise are included. The phase space is the Euclidean space Rd × Rd, but again

it could be as general as a cotangent bundle T ∗M of a configuration manifoldM.

Remark 2.4.1. In (2.81), both the dissipation and the noise are weak (soft),

whereas they are both strong (stiff) in (2.82). Provided that hidden fast variables

remain locally ergodic, one can also consider a mixture of both soft and stiff noise

and friction. For the sake of clarity, we have restricted our presentation to (2.81)

and (2.82).

Remark 2.4.2. If c is not constant and M is not the usual Rd × Rd Euclidean

space, one should use the Stratonovich integral instead of the Itô integral.

The energy of the system (given by the Hamiltonian function) will no longer be
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conserved, but fluctuating according to a balance between the injection of energy

due the noise and the loss of energy due to the dissipation. Naturally, the amplitude

of fluctuation positively scales with the temperature 1/β (in the statistical sense).

More precisely, define a probability distribution of Boltzmann-Gibbs on the phase

space by

dµ = Z−1 exp(−βH(q, p))dqdp, (2.84)

where Z =
∫
T ∗Rd exp(−βH(q, p)) dq dp is the partition function, and H is the

Hamiltonian. Then in many cases (see for instance [198] for sufficient conditions)

Boltzmann-Gibbs is the ergodic and invariant measure of (2.81) or (2.82).

2.4.2 FLAVORs for Langevin equations

Like the case in Section 2.2, we assume that we are given a mapping Φα
h acting on

the phase space such that for h ≤ h0 min(1, α−
1
2 )

∣∣∣Φα
h(q, p)− (q, p)− h

(
M−1p,−V (q)− αU(q)

)∣∣∣ ≤ Ch2(1 + α) (2.85)

Next, consider the following Ornstein-Uhlenbeck equations:

dp = −αcp dt+
√
α
√

2β−1c
1
2dWt (2.86)

The stochastic flow of (2.86) is defined by the following stochastic evolution map:

Ψα
t1,t2(q, p) =

(
q, e−cα(t2−t1)p+

√
2β−1αc

1
2

∫ t2

t1

e−cα(t2−s)dWs

)
(2.87)

Let δ ≤ h0 and τ ∈ (0, δ) such that τ ≤ τ0/
√
α. FLAVOR for (2.81) can then be

defined by


(q̄0, p̄0) = (q0, p0)

(q̄(k+1)δ, p̄(k+1)δ) = Φ0
δ−τ ◦Ψ1

kδ+τ,(k+1)δ ◦ Φ
1
ε
τ ◦Ψ1

kδ,kδ+τ (q̄kδ, p̄kδ)

(2.88)
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and FLAVOR for (2.82) can be defined by


(q̄0, p̄0) = (q0, p0)

(q̄(k+1)δ, p̄(k+1)δ) = Φ0
δ−τ ◦ Φ

1
ε
τ ◦Ψ

1
ε
kδ,kδ+τ (q̄kδ, p̄kδ)

(2.89)

Theorem 2.3.2 establishes the accuracy of these integrators under Conditions

2.3.3 and 2.3.4 provided that τ �
√
ε� δ and

(
τ√
ε

) 3
2 � δ � τ√

ε
.

Remark 2.4.3. Notice that a single-scale Geometric Langevin Integrator [41] can

be constructed by using a one-step update map θkh,(k+1)h = Φα
h ◦Ψα

kh,(k+1)h. In this

sense, the above is just a FLAVORization of θ.

2.4.3 Structure preserving properties of FLAVORs

First, observe that if Φα
h and Ψ

1
ε
h are symmetric under a group action for all ε > 0,

then the resulting FLAVOR, as a symmetric composition of symmetric steps, is

symmetric under the same group action (analogous to Theorem 2.2.1).

Similarly, the following theorem shows that FLAVORs inherit structure-preserving

properties from those associated with Φα
h (the component approximating the Hamil-

tonian part of the flow).

Theorem 2.4.1.

• If Φα
h is symplectic, then the FLAVORs defined by (2.88) and (2.89) are

quasi-symplectic as defined in Conditions RL1 and RL2 of [205] (it degener-

ates to a symplectic method if friction is set equal to zero and the Jacobian

of the flow map is independent of (q, p)).

• If in addition c is isotropic then FLAVOR defined by (2.88) is conformally

symplectic, i.e., it preserves the precise symplectic area change associated to

the flow of inertial Langevin processes [202].

Proof. Those properties are a consequence of the fact that FLAVORs are compo-

sition schemes. The quasi-symplecticity and conformal-symplecticity of GLA [41]

has been obtained in a similar way.
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Remark 2.4.4. Quasi-symplecticity and conformal-symplecticity highly correlate

to the convergence towards and the preservation of a near-by Boltzmann-Gibbs in

the single-scale case (we refer to the proof in [41]). In the multiscale case considered

here, the Boltzmann-Gibbs corresponding to the FLAVOR solution (if exists) will

by no means be near by in the usual sense (i.e., in total variation norm), but it

may be given by an effective Hamiltonian that no longer contains the stiffness.

2.4.4 An example of a quasi-symplectic FLAVOR

An example of quasi-symplectic FLAVOR can be obtained by choosing Φα
h to be

the symplectic Euler integrator defined by (2.49) or (2.50). This integrator is also

conformally symplectic if c is isotropic and soft (with O(1) norm).

2.4.5 An example of a quasi-symplectic and time-reversible FLA-

VOR

Defining Φα
h by (2.49) and Φα,∗

h by (2.50), an example of quasi-symplectic and time-

reversible FLAVOR can be obtained by using the symmetric Strang splitting:

(q̄(k+1)δ, p̄(k+1)δ) = Ψ1
kδ+ δ

2
,(k+1)δ

◦Φ
1
ε
,∗
τ
2
◦Φ0,∗

δ−τ
2

◦Φ0
δ−τ
2

◦Φ
1
ε
τ
2
◦Ψ1

kδ,kδ+ δ
2

(q, p) (2.90)

for (2.81) and

(q̄(k+1)δ, p̄(k+1)δ) = Ψ
1
ε

(k+1)δ− τ
2
,(k+1)δ◦Φ

1
ε
,∗
τ
2
◦Φ0,∗

δ−τ
2

◦Φ0
δ−τ
2

◦Φ
1
ε
τ
2
◦Ψ

1
ε

kδ,kδ+ τ
2
(q, p) (2.91)

for (2.82). Notice the symmetrization of (2.88) will be

(q̄(k+1)δ, p̄(k+1)δ) = Ψ1
(k+1)δ− τ

2
,(k+1)δ ◦ Φ

1
ε
,∗
τ
2
◦Ψ1

kδ+ δ
2
,(k+1)δ− τ

2

◦ Φ0,∗
δ−τ
2

◦ Φ0
δ−τ
2

◦Ψkδ+ τ
2
,kδ+ δ

2
◦ Φ

1
ε
τ
2
◦Ψ1

kδ,kδ+ τ
2
(q, p), (2.92)

which is slightly more complicated than (2.90), but in fact both of them work (they

are locally equivalent due to splitting theory).
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These integrators are also conformally symplectic if c is isotropic and soft (with

O(1) norm).

2.4.6 An example of Boltzmann-Gibbs reversible Metropolis-adjusted

FLAVOR

Geometric Langevin Algorithm [41] is not stochastically stable if the vector field

that it integrates is only locally but not globally Lipschitz. The statistics com-

munity has been composing a Metropolis step (which includes a proposed local

momentum flip) with a usual integration step to overcome this difficulty and ob-

tain ergodicity (if the noise applied on momentum is not degenerate), and the

convergence towards a near-by Boltzmann-Gibbs by doing so is proved [42].

This Metropolis-Adjusted Geometric Langevin Algorithm can also be FLA-

VORized: since the probability density of Ψt1,t2 can be explicitly computed, it

follows that the probability densities of (2.90) and (2.91) can be explicitly com-

puted, and therefore these algorithms can be Metropolized and made reversible

with respect to the Boltzmann-Gibbs distribution. This Metropolization leads to

stochastical stability, as well as ergodicity if the noise applied on momentum is

not degenerate. Observe that if the proposed move is rejected, the momentum

has to be flipped and the acceptance probability involves a momentum flip. It is

proven in [42] that GLA [41] remains strongly accurate after a Metropolization

involving local momentum flips. Whether this preservation of accuracy over tra-

jectories transfers in a weak sense (in distributions) to FLAVORs remains to be

investigated.
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2.5 Numerical analysis of FLAVOR based on Varia-

tional Euler

2.5.1 Stability

Consider the following linear Hamiltonian system

H(x, y, px, py) =
1

2
p2
x +

1

2
p2
y +

1

2
x2 +

ω2

2
(y − x)2 (2.93)

with ω � 1. Here x+y
2 is the slow variable and y − x is the fast variable.

It can be shown that, when applied to (2.93), Variational Euler (also known

as symplectic Euler, i.e., (2.49)) is stable if and only if h ≤
√

2/ω. Write Θδ,τ the

non-intrusive FLAVOR (2.45) obtained by using Symplectic Euler (2.49) as the

legacy integrator. Write Θa
δ,τ the artificial FLAVOR described in Section 2.2.6.

Theorem 2.5.1. The non-intrusive FLAVOR Θδ,τ with 1/
√
τ � ω � 1 is stable

if and only if δ ∈ (0, 2).

The artificial FLAVOR Θa
δ,τ with 1/τ � ω � 1 is stable if and only if δ ∈ (0, 2

√
2).

Proof. The numerical scheme associated with Θδ,τ can be written as


yn+1

xn+1

(py)n+1

(px)n+1

 = T


yn

xn

(py)n

(px)n

 (2.94)

with

T =


1 0 δ − τ 0

0 1 0 δ − τ

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

τ − δ 0 1 0

0 0 0 1




1 0 τ 0

0 1 0 τ

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

−τ(ω2 + 1) τω2 1 0

τω2 −τω2 0 1


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The characteristic polynomial of T is

λ4 + (−4 + δ2 − δ2τ2 + 2δτ3 − τ4 + 2δτω2 − δ2τ2ω2 + 2δτ3ω2 − τ4ω2)λ3 + (6− 2δ2

+ 2δ2τ2 − 4δτ3 + 2τ4 − 4δτω2 + δ3τω2 + 2δ2τ2ω2 − 4δτ3ω2 − δ3τ3ω2 + 2τ4ω2

+ 2δ2τ4ω2 − δτ5ω2)λ2

+ (−4 + δ2 − δ2τ2 + 2δτ3 − τ4 + 2δτω2 − δ2τ2ω2 + 2δτ3ω2 − τ4ω2)λ+ 1 (2.95)

Since ω � 1, τ � 1/ω2, as long as δ . 1, roots to the above polynomial are

(by continuity; we refer for instance to Theorem 1 of [78]) close to roots to the

asymptotic polynomial

λ4 + (δ2 − 4)λ3 + (6− 2δ2)λ2 + (δ2 − 4)λ+ 1 (2.96)

which can be shown to be 1 with multiplicity 2 and 1
2(2 − δ2 ± δ

√
δ2 − 4). It is

easy to see that all roots are complex numbers with moduli less or equal to one if

and only if |δ| ≤ 2.

The numerical scheme associated with Θa
δ,τ can be written as in (2.94) with

T =


1 0 δ−τ

2
δ−τ

2

0 1 δ−τ
2

δ−τ
2

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

−τω2 τω2 1 0

τω2 −τω2 0 1




1 0 τ 0

0 1 0 τ

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

−δ 0 1 0

0 0 0 1

(2.97)

The characteristic polynomial of T is

2λ4+(4ω2τ2+τδ+δ2−8)λ3+(12−2δ2−2δτ−8τ2ω2+2δ2τ2ω2)λ2+(4ω2τ2+τδ+δ2−8)λ+2

(2.98)

Similarly, since ω � 1, τ � 1/ω, as long as δ . 1, roots to the above polynomial

are close to roots to the asymptotic polynomial

2λ4 + (δ2 − 8)λ3 + (12− 2δ2)λ2 + (δ2 − 8)λ+ 1 (2.99)
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(a) Nonintrusive FLAVOR (b) Artificial FLAVOR

Figure 2.2: Stability domain of non-intrusive and artificial FLAVOR applied to (2.93) as a

function of δ and τ/ε. ω = 1/
√
ε = 1000.

which can be shown to be 1 with multiplicity 2 and 1
4(4−δ2±δ

√
δ2 − 8). All roots

are complex numbers with moduli less or equal to one if and only if |δ| ≤ 2
√

2

Figures 2.2(a) and 2.2(b) illustrate the domain of stability of nonintrusive FLA-

VOR (based on symplectic Euler (2.45) and (2.49)) and artificial FLAVOR (2.51)

applied to the flow of (2.93), i.e., values of δ and τ/ε ensuring stable numerical in-

tegrations. We observe that artificial FLAVOR has a much larger stability domain

than nonintrusive FLAVOR. Specifically, for nonintrusive FLAVOR and large val-

ues of δ, τ = o(
√
ε) is not enough and one needs τ = o(ε) for a stable integration,

whereas artificial FLAVOR only requires τ =
√

2ε, a minimum requirement for a

stable symplectic Euler integration of the fast dynamics.

Notice that there is no resonance behavior in terms of stability; everything

below the two curves is stable and everything outside is not stable (plots not

shown).

2.5.2 Error analysis

The flow of (2.93) has been explicitly computed and compared with solutions

obtained from nonintrusive FLAVOR based on symplectic Euler ((2.45) and (2.49))

and with artificial FLAVOR (2.51).
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(a) Error of nonintrusive FLAVOR as a

function of δ and τ/
√
ε. Notice that not

all pairs of step lengths lead to stable in-

tegrations.

(b) Error of artificial FLAVOR as a func-

tion of δ and τ/
√
ε

(c) Optimal τ/
√
ε and error of nonintru-

sive FLAVOR as functions of δ

(d) Optimal τ/
√
ε and error of artificial

FLAVOR as functions of δ

(e) Error dependence on τ/
√
ε for a given

δ: nonintrusive FLAVOR

(f) Error dependence on τ/
√
ε for a given

δ: artificial FLAVOR

Figure 2.3: Error analysis of (2.93). Parameters are ω =
√
ε = 103, x(0) = 0.8 and y(0) =

x(0) + 1.1/ω.
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The total simulation time is T = 10, and absolute errors on the slow variable

have been computed using the Euclidean distance between the final positions of the

analytical solution and the numerical solution. Figures 2.3(a) and 2.3(b) illustrate

errors as functions of the mesostep δ and the scaled microstep τ/ε. Observe that

given δ, errors are minimized at specific values of τ/ε for both integrators, but the

accuracy of nonintrusive FLAVOR is less sensitive to τ/ε. Figures 2.3(c) and 2.3(d)

plot the optimal value of τ/ε as a function of δ and the associated error. Observe

also that for nonintrusive FLAVOR, the optimal value of τ/ε only weakly depends

on δ, whereas for artificial FLAVOR the optimal value of τ/ε roughly scales linearly

with δ. Figure 2.3(e) and 2.3(f) describe how error changes with microstep τ

while mesostep δ is fixed. Figure 2.3(e) can be viewed in correspondence with

the condition δ � τ/ε required for accuracy. This requirement, however, is just a

sufficient but not necessary condition to obtain an error bound, as we can see in

Figure 2.3(f). There, the weak dependence of the error on τ/ε (for a fixed δ) shows

that one does not have to choose the microstep with too much care nor optimize

the integrator with respect to its value, if an artificial FLAVOR is used. As a

matter of fact, all the numerical experiments illustrated in this chapter (except

for Figures 2.3(c) and 2.3(d)) have been performed without any tuning of the τ/ε

value. We have simply used the rule of thumb δ ∼ γ τε where γ is a small parameter

(0.1 for instance).

Final remarks are, (i) there is no resonant value of δ or τ , and (ii) it appears

that the benefits of artificial FLAVORs lie in their superior accuracy and stability.

2.5.3 Numerical error analysis on a nonlinear system

In this section, we will consider the nonlinear Hamiltonian system

H(x, y, z, px, py, pz) =
1

2
p2
x+

1

2
p2
y+

1

2
p2
z+x

4+ε−1ω1

2
(y−x)2+ε−1ω2

2
(z−y)2 (2.100)

That is, the stiff potential is U = ω1
2 (y − x)2 + ω2

2 (z − y)2, and the soft potential

is V = x4. Here x+y+z
3 acts as a slow degree of freedom and y − x and z − y act
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Figure 2.4: Comparison between trajectories integrated by Variational Euler and FLAVOR

(defined by (2.45) and (2.49)). FLAVOR uses mesostep δ = 0.01 and microstep τ = 0.0005, and

Symplectic Euler uses time step τ = 0.0005. Time axes in the right column are zoomed in (by

different ratios) to illustrate the fact that fast variables are captured in the sense of measure.

FLAVOR accelerated the computation by roughly 20x ( δ = 20τ). In this experiment ε = 10−6,

ω1 = 1.1, ω2 = 0.97, x(0) = 0.8, y(0) = 0.811, z(0) = 0.721, px(0) = 0, py(0) = 0 and pz(0) = 0.

Simulation time T = 50.

as fast degrees of freedom.

Figure 2.4 illustrates t 7→ x(t)+y(t)+z(t)
3 (slow variable, convergent strongly) and

t 7→ (y(t) − x(t), z(t) − y(t)) (fast variables, convergent in measure) computed

by symplectic Euler and the induced symplectic FLAVOR (2.45)). Define q :=

(x, y, z). To illustrate the F -convergence property of FLAVOR, we fix H = 1,

vary the mesostep δ = H/M by changing M , and show in Euclidean norm the

difference between 1
M

∑M−1
i=0 q(T − ih/M) computed by FLAVOR and symplectic

Euler in Figure 2.5(a). Notice that we average over a short time span of width h,

so that the convergence on both the slow variable and the fast variable (convergent

only in the sense of measure) could be captured. As shown in Figure 2.5(a), the

error scales linearly with 1
M for sufficiently large M ’s, and therefore the global
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(a) Asymptotically linear

error dependence on δ =

1/M

(b) Asymptotically linear

error dependence on total

simulation time T

(c) Asymptotically inde-

pendent of the scaling fac-

tor ω

Figure 2.5: Error dependence on parameters in a FLAVOR simulation of (2.100)

error is a linear function of the mesostep δ and the method is first-order uniformly

convergent. Figure 2.5(b) shows that the error in general grows linearly with the

total simulation time, and this linear growth is observed over a very long simulation

time span (even longer than ω = ε−1/2). Figure 2.5(c) shows that the error does

not depend on ω ( ε−1/2) for a fixed δ, as long as ε is not too large (i.e., ω not

too small). This is not caused by reaching the limit of machine accuracy, but

a characteristic of the method: the plateau for large ω corresponds to a almost

complete scale separation, where the error of FLAVOR will only depend on the

mesostep, which is again intuitive because FLAVOR as a multiscale method is

uniformly convergent (despite of ω).

Again, there is no resonant value of δ in the terms of a blown up error.

The fact that the error scales linearly with total simulation time is a much

stronger (numerical) result than our (theoretical) error analysis for FLAVORs

(in which the error is bounded by a term growing exponentially with the total

simulation time). We conjecture that the linear growth of the error is a consequence

of the fact that FLAVOR is symplectic and is only true for a subclass of systems,

possibly integrable systems. A rigorous analysis of the effects of the structure

preservation of FLAVORs on long-term behavior remains to be done.
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2.6 Numerical experiments

2.6.1 Hidden Van der Pol oscillator (ODE)

Figure 2.6: Van der Pol oscillator over a timespan of 5/ε (a) Direct Forward Euler simulation of

(2.102) with time steps resolving the fast time scale (b) (nonintrusive (2.34)) FLAVOR simulation

of (2.102) (c) Polar to cartesian image of the (nonintrusive (2.34)) FLAVOR simulation of (2.101)

with hidden slow and fast variables. Forward Euler uses time step h = 0.05ε = 0.00005. The

two FLAVORS simulations use δ = 0.01 and τ = 0.00005. Parameters are 1
ε

= 1000, x(0) = 1,

y(0) = 1

Consider the following system ODEs


ṙ = 1

ε (r cos θ + r sin θ − 1
3r

3 cos3 θ) cos θ − ε r cos θ sin θ

θ̇ = −ε cos2θ − 1
ε (cos θ + sin θ − 1

3r
2 cos3 θ) sin θ

(2.101)

where ε � 1. Taking the transformation from polar coordinates to Cartesian

coordinates by [x, y] = [r sin θ, r cos θ] as the local diffeomorphism, we obtained
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the hidden system: 
ẋ = −εy

ẏ = 1
ε (x+ y − 1

3y
3)

(2.102)

Taking the second time derivative of y, the system can also be written as the

2nd-order ODE:

ÿ + y =
1

ε
(1− y2)ẏ. (2.103)

The latter is the classical Van der Pol oscillator [291]. Nonintrusive FLAVOR as

defined by (2.34) can be directly applied to (2.101) (with hidden slow and fast

processes) by turning on and off the stiff parameter 1
ε . More precisely, defining

Φε,α(r, θ) by

Φα,ε
h (r, θ) :=

r
θ

+ αh

(r cos θ + r sin θ − 1
3r

3 cos3 θ) cos θ

−(cos θ + sin θ − 1
3r

2 cos3 θ) sin θ

− εh
r cos θ sin θ

cos2θ


(2.104)

FLAVOR is defined by (2.34) with ū := (r̄, θ̄), i.e.,

(r̄t, θ̄t) =
(
Φ0,ε
δ−τ ◦ Φ

1
ε
,ε

τ

)k
(r0, θ0) for kδ ≤ t < (k + 1)δ. (2.105)

We refer to Figure 2.6 for a comparison of integrations by Forward Euler (bench-

mark) and FLAVORs. FLAVORs give trajectories close to Forward Euler and

correctly capture the O(1
ε ) period [291] of the relaxation oscillation. Moreover, a

200x acceleration is achieved using FLAVOR.

2.6.2 Hamiltonian system with nonlinear stiff and soft potentials

In this section, we will apply the Symplectic Euler FLAVOR defined by (2.45) and

(2.49) to a mechanical system whose Hamiltonian is

H(y, x, py, px) :=
1

2
p2
y +

1

2
p2
x + ε−1y6 + (x− y)4 (2.106)
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Figure 2.7: In this experiment, ε = 10−6, y(0) = 1.1, x(0) = 2.2, py(0) = 0 and px(0) = 0.

Simulation time T = 2. FLAVOR (defined by (2.45) and (2.49)) uses mesostep δ = 10−3 and

microstep τ = 10−5, Variational Euler uses small time step τ = 10−5, and IMEX uses mesostep

δ = 10−3. Since the fast potential is nonlinear, IMEX is an implicit method and nonlinear

equations have to be solved at every step, and IMEX turns out to be slower than Variational

Euler. FLAVOR is strongly accurate with respect to slow variables and accurate in the sense of

measures with respect to fast variables. Comparing to Symplectic Euler, FLAVOR accelerated

the computation by roughly 100x.

Here, stiff potential ε−1U = ε−1y6 and soft potential V = (x − y)4 are both

nonlinear.

Figure 2.7 illustrates t 7→ y(t) (dominated by a fast process), t 7→ x(t)−y(t) (a

slow process modulated by a fast process), and t 7→ H(t), respectively computed

by Symplectic Euler, the induced symplectic FLAVOR ((2.45) and (2.49)), and

IMEX [265]. Notice that x− y is not a purely slow variable but contains some fast

component, and therefore the FLAVOR integration of it contains a modulation of

local oscillations, which could be interpreted as that fast component slowed down

by FLAVOR. It is not easy to find a purely slow variable or a purely fast variable

in the form of (2.2) for this example, but the integrated trajectory for such a slow

variable will not contain these slowed-down local oscillations.
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2.6.3 Fermi-Pasta-Ulam problem over four timescales

Figure 2.8: Fermi-Pasta-Ulam problem [101] – 1D chain of alternatively connected harmonic

stiff and non-harmonic soft springs

In this section, we will consider the Fermi-Pasta-Ulam (FPU) problem [101]

illustrated by Figure 2.8, which is mechanical system with the Hamiltonian

H(q, p) :=
1

2

m∑
i=1

(p2
2i−1 + p2

2i) +
ω2

4

m∑
i=1

(q2i − q2i−1)2 +

m∑
i=0

(q2i+1 − q2i)
4. (2.107)

(a) By Variational Euler with small

time step τ ′ = 5 × 10−5 = 0.05/ω. 38

periods in Subplot 2 with zoomed-

in time axis (∼380 in total over the

whole simulation span).

(b) By artificial FLAVOR (2.51) with

mesostep δ = 0.002 and microstep

τ = 10−4 = 0.1/ω. 38 periods in

Subplot 2 with zoomed-in time axis

(∼380 in total over the whole simu-

lation span).

Figure 2.9: Simulations of the FPU problem over T = 2ω. Subplot 2 of both fig-

ures have zoomed-in time axes so that whether phase lag or any other distortion of trajec-

tory exists could be closely investigated. In this experiment m = 3, ω = 103, x(0) =

[0.4642,−0.4202, 0.0344, 0.1371, 0.0626, 0.0810] is randomly chosen, and y(0) = [0, 0, 0, 0, 0, 0].

The FPU problem is a well known benchmark problem [201, 128] for multiscale

integrators because it exhibits different behaviors over widely separated timescales.

The stiff springs nearly behave like harmonic oscillators with period ∼ O(ω−1).

Then, the centers of masses linked by stiff springs (i.e., the midpoints of stiff
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springs) change over a timescale O(1). The third timescale, O(ω), is associated

with the rate of energy exchange between stiff springs. Energy exchange among stiff

springs extends to even slower timescales, in either a periodic or a chaotic fashion

[106, 104]. On the other hand, the total energy of the stiff springs behaves almost

like a constant over an even longer time span. This wide separation of timescales

can be seen in Figures 2.9, 2.10, and 2.12, where four subplots address different

scales: Subplot 1 shows the fast variables (q2i− q2i−1)/
√

2; Subplot 2 shows one of

the slow variables (q2+q1)/
√

2; Subplot 3 shows the energy transfer pattern among

stiff springs, which is even slower; Subplot 4 shows the near-constant total energy

of three stiff springs. All four subplots are time-series. Comprehensive surveys on

FPU problem, including discussions on timescales and numerical recipes, can be

found in [128, 71].

Figures 2.9(a) and 2.9(b) compare symplectic Euler (with microsopic time

steps) with the artificial FLAVOR (2.51). On a timescale O(ω) (ω � 1), FLAVOR

captured slow variable’s periodic behavior with the correct period and phase, as

well as the slower process of energy transfer. At the same time, FLAVOR acceler-

ated the computation by roughly 40x (since δ = 40τ ′).

It is not worrisome that artificial FLAVOR produces stiff spring energy trajec-

tories with rapid local oscillations, which exhibit both thicker individual energy

curves and total energy with larger variance. In fact, these local oscillations do

not seem to affect the global transfer pattern nor its period and are caused by the

numerical error associated with microstep τ . This can be inferred because local

oscillations disappear after replacing the Variational Euler approximation of θετ by

the exact flow of Hfast. As illustrated in Figure 2.11, the exact flow helps to obtain

thin energy curves of stiff springs with no rapid local oscillations, as well as a total

energy with a variance even smaller than that given by fine-step Variational Euler

(Figure 2.9(a)).

Now, we reach further to O(ω2) total integration time to investigate differ-

ent integrators’ performances in capturing the long time energy exchange pattern

(Figure 2.10).
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(a) By Velocity Verlet with tiny time

step h = 10−5 (two orders of magnitude

smaller than the stability limit).

(b) By artificial FLAVOR (2.51) with

mesostep δ = 0.002 and microstep τ =

0.0005 = 0.1/ω.

(c) By IMEX with mesostep δ = 0.002. (d) By Impulse Method with mesostep

δ = 0.002.

Figure 2.10: Simulations of FPU problem over T = 1
4
ω2. Initial conditions are x(0) =

[1, 0, 0, 1/ω, 0, 0] and y(0) = [0, 0, 0, 0, 0, 0] so that energy starts concentrated on the leftmost

soft and stiff springs. We chose a smaller ω = 200 because with a larger ω it would take weeks to

run Velocity Verlet on a laptop.

There is a significant difference among stiff spring energy transfer patterns pro-

duced by Velocity Verlet, FLAVOR, IMEX and the Impulse Method. Here, there

is no analytic solution or provably accurate method for comparison. FLAVOR is

the only method that shows periodic behavior on the long time scale and conver-

gence tests show that FLAVOR’s trajectories remain stable under small variations

of step sizes.

Notice that the system would be integrable and periodic if nonlinearity did

not exist (see Figure 2.12 for integration of a system in which the slow potential
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is quadratic; there, the system could be perfectly integrated by all FLAVORs,

Velocity-Verlet, IMEX and the Impulse Method (results not shown)). When non-

linearity is present, for a fixed small number of springs, the nonlinearity will not

destroy the periodicity of the system unless the linear counterpart is weak (i.e., ω

is small; see for instance [186] for an example of chaotic threshold on nonlinearity),

which should not be the case here since ω is very large.

Figure 2.11: By artificial FLAVORs (Section

2.2.6) based on exact fast flow with mesostep

δ = 0.002 and microstep τ = 10−4. Less oscilla-

tory stiff spring energies. 38 periods in Subplot

2 with zoomed-in time axis (∼380 in total over

the whole simulation span).

Figure 2.12: Harmonic FPU, T = 50ω, exact

solution

Since we employed a tiny timestep in Velocity-Verlet, originally in hope that

it could be used as a long time simulation benchmark, it is worth discussing why

its performance is still not satisfactory. Being a second-order method, Velocity-

Verlet has an error bound of O(eTh2). On the other hand, backward error analysis

guarantees that the energy of the integrated trajectory oscillates around the true

conserved energy, hence eliminating the possibility of exponential growth of the

numerical solution. Nevertheless, at this moment there is no result known to the

authors to link these two analytical results to guarantee long term accuracy on the

exchange of stiff springs’ energies. This exchange is in fact a delicate phenomenon,

and a slight distortion in stiff spring lengths could easily disrupt its period or even

its periodicity. We believe this is what Velocity-Verlet numerical errors did in the
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long time simulation.

These numerical observations seem to indicate that symplectic FLAVORs may

have special long time properties. Specifically, although we could not quantify the

error here because there is no benchmark to compare to when the total simulation

time is O(ω2), the long term behavior seems to indicate an error growing much

slower than exponentially (please refer to Remark 2.1.7 for a discussion on expo-

nential error bounds and Figure 2.5(b) for another example of conjectured linear

error growth). A rigorous investigation on FLAVORs’ long time behavior remains

to be done.

(a) FLAVOR (b) Velocity Verlet

Figure 2.13: Quantities of interest in integrations of FPU over different timescales. FLAVOR

(2.51) captures the fastest timescale in the sense of measure, while Velocity Verlet cannot accu-

rately capture the slowest (O(ω2)) timescale despite the small time step it uses. Here FLAVOR

is 200 times faster than Velocity Verlet. All parameters are the same as in Figure 2.10(a) and

2.10(b), e.g., ω = 200, δ = 0.002, τ = 0.0005 and h = 10−5.

Figure 2.13 summarizes FLAVOR’s performance on various timescales in a

comparison to Velocity Verlet.

Notice that there are many sophisticated methods designed to integrate the

FPU problem (see [128] for a review), as well as general multiscale methods that

can be applied to the FPU problem. HMM uses an identification of slow variables

[13] to capture the energy transfer between stiff springs over a time span at the

order of ω. Simulations shown here, however, are over a much longer time span at

the order of O(ω2).
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Remark 2.6.1 (On resonances). Multiscale in time integrators are usually plagued

by two kinds of resonances. FLAVORs have none of them.

The first type, called Takens resonance [271], is related to the case in which

there are no closed equations for only slow variables [38]. FLAVORs avoid Takens

resonance because they do necessarily not look for the closed equations, but instead

keep the information on the local invariant measure of fast variables (recall the

notion of F-convergence in Section 2.1.3). Observe that the FPU problem exhibits

Takens resonance because the eigenfrequencies of the strong potential are identical.

Nevertheless, FLAVORs still capture the solution trajectories given any large value

of ω with mesostep δ � 1/ω independent of ω.

The second type [55] is related to instabilities created by interactions between

parameters ε, τ , δ, and the intrinsic frequency of the system. For instance, if ε−1 =

ω2, one suspects that resonances could happen at ωδ or ωτ equal to multiples of π/2.

The analysis provided in Section 2.5 shows that such an unstable interaction does

not occur, either in the sense of stability or in terms of numerical errors. This

can be intuitively understood upon observing that FLAVORs never approximate

cos(δω), while on the other hand, they do approximate cos(τω), whose resonance

frequency τ = 2π/ω is ruled out by the requirement that τ � ε for nonintrusive

FLAVOR and τ �
√
ε for artificial FLAVOR.

2.6.4 Nonlinear two-dimensional primitive molecular dynamics

Now consider a two-dimensional, two degrees of freedom example in which a point

mass is linked through a spring to a massless fixed hinge at the origin. While the

spring as well as the point mass are allowed to rotate around the hinge (the spring

remains straight), the more the spring-mass tilts away from its equilibrium angle

the more restorative force it will experience. This example is a simplified version of

prevailing molecular dynamics models, in which bond lengths and angles between

neighboring bonds are both spring-like; other (non-local) potential energy terms

are ignored.

Denote by x and y the Euclidean coordinates of the mass, and px, py the
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corresponding momenta. Also, introduce polar coordinates (r, θ), with x = r cos θ

and y = r sin θ. Then the Hamiltonian reads

H =
1

2
p2
x +

1

2
p2
y +

1

2
ω2(r − r0)2 + (cos θ)2

=
1

2
p2
x +

1

2
p2
y +

1

2
ω2(
√
x2 + y2 − r0)2 +

x2

x2 + y2
(2.108)

where r0 is equilibrium bond length parameter, and ω is a large number that

indicates the bond oscillation frequency.

Remark 2.6.2. This seemingly trivial example is not easy to integrate.

1. If the system is viewed in Euclidean coordinates (x, y, px, py) it is completely

nonlinear with a nonpolynomial potential, and hence the Impulse Method or

its variations [124, 286, 109, 240], or IMEX [265], or the homogenization

method introduced in [176] cannot be applied using a mesostep.

2. If the Hamiltonian is rewritten in generalized coordinates (r, θ, pr, pθ), H =

1
2p

2
r+

1
2
p2θ
r2

+ 1
2ω

2(r−r0)2+ 1
2 cos(θ)2, a fast quadratic potential can be identified.

However, the mass matrix

1 0

0 r2

 is not constant, but rapidly oscillating,

and hence methods that work for quasi-quadratic fast potentials (i.e., “har-

monic oscillator” with a slowly changing frequency) ([176] for example) can-

not be applied.

Figure 2.14 compares symplectic Euler with the induced symplectic FLAVOR

((2.45) and (2.49)) applied to (2.108) in Euclidean coordinates. Also, the imple-

mentation of an artificial FLAVOR on this example (if needed) is easy, because

the free dynamics with no soft potential and frozen stiff potential is just a rotation

around the origin.

FLAVOR reproduced the slow θ trajectory and accelerated the simulation by

roughly 50x times (since δ = 50τ). It can also be seen from both energy fluctuations
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Figure 2.14: Simulation of (2.108). Symplectic Euler uses small time step τ = 0.0002 and

the induced symplectic FLAVOR ((2.45) and (2.49)) uses mesostep δ = 0.01 and microstep

τ = 0.0002. In this simulation ω = 500, x(0) = 1.1, y(0) = 0.8, px(0) = 0, py(0) = 0 and

simulation time T = 100.

and the trajectory of the fast variable that the fast process’ amplitude is well

captured although its period has been lengthened.

2.6.5 Nonlinear molecular clip

We now consider a united-atom representation of a three-atom polymer with two

bonds (e.g., propane or water molecule). This is a simplified version of several

prevailing molecular dynamics force fields (for example, CHARMM [51], AMBER

[76], or a simpler example of butane [235, 238]). Since the angular momentum

is conserved, instead of the 3D space we could fix the coordinate system in a 2D

plane. Introduce both Cartesian coordinates (x1, y1, x2, y2, x3, y3) and generalized

coordinates r1 =
√

(x2 − x1)2 + (y2 − y1)2 and r2 =
√

(x3 − x2)2 + (y3 − y2)2 for

bond lengths and θ for the angle between the two bonds (Figure 2.15). The kinetic
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Figure 2.15: One example configuration of a propane molecule (united-atom representation).

energy is

K.E. =
1

2
m1(ẋ2

1 + ẏ2
1) +

1

2
m2(ẋ2

2 + ẏ2
2) +

1

2
m3(ẋ2

3 + ẏ2
3) (2.109)

where m1, m2, and m3 denote the masses of the atoms.

The potential energy consists of a bond term and a bond angle term, both of

which are of harmonic oscillator type:

P.E. = Vbond + Vangle (2.110)

Vbond =
1

2
Kr[(r1 − r0)2 + (r2 − r0)2] (2.111)

Vangle =
1

2
Kθ(cos(θ)− cos(θ0))2 (2.112)

Notice that the system is in fact fully nonlinear: if written in generalized coor-

dinates, the kinetic energy will correspond to a nonlinear and position-dependent

mass matrix, whereas in Cartesian coordinates, both terms in the potential energy

are non-polynomial functions of the configuration.

In the case of propane, m1 = 15µ,m2 = 14µ,m3 = 15µ where µ = 1.67 ·

10−27kg, r0 = 1.53Å, Kr = 83.7kcal/(molÅ2), θ0 = 109.5◦ and Kθ = 43.1kcal/mol

[235].

The propane system is characterized by a separation of timescales to some
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extent: bond stretching and bond-angle bending are characterized by 1014 and

1013 Hz vibrational frequencies respectively [304]. To examine FLAVORs, we use

unitless parameters and exaggerate the timescale separation by setting Kr to be

8370 and Kθ to be 4.31. We also let µ = 1, without loss of generality, for arithmetic

considerations.

In this system, the bond potential is the fast potential and the bond-angle

potential is the slow one. It is well known that using only a coarse time step

(characteristic of bond-angle oscillations) by freezing bond lengths produces bi-

ased results, and many physics-based methods have been proposed to remedy this

difficulty (for example the approach of Fixman [103]; also see a review in [304]).

On the other hand, few multiscale methods work for this fully nonlinear system.

Figure 2.16: Simulations of exaggerated propane molecule (Section 2.6.5). Symplectic Euler

uses h = 0.01 and the induced symplectic FLAVOR ((2.45) and (2.49)) parameters are δ = 0.1

and τ = 0.01. Initial conditions are [x1, y1, x2, y2, x3, y3] = [0, 0, 1.533, 0, 2.6136, 1.0826] and

[m1ẋ1,m1ẏ1,m2ẋ2,m2ẏ2,m3ẋ3,m3ẏ3] = [−0.4326,−1.6656, 0.1253, 0.2877,−1.1465, 1.1909] (ran-

domly chosen).

Figure 2.16 compares symplectic Euler with the induced symplectic FLA-
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VOR ((2.45) and (2.49)) applied in Euclidean coordinates. 10x acceleration is

achieved. A simulation movie is also available at http://www.youtube.com/

watch?v=BxMIdE_FN1k .

2.6.6 Forced nonautonomous mechanical system: Kapitza’s in-

verted pendulum

As the famous Kapitza’s inverted pendulum [162] shows (for recent references,

see for instance [14] for a numerical integration, and [241] for a generalization

to a stochastic setting), the up position of a single pendulum can be stabilized

if the pivot of the pendulum experiences external forcing in the form of vertical

oscillation. Specifically, if the position of the pivot is given by y = sin(ωt), the

system is governed by

lθ̈ = [g + ω2 sin(2πωt)] sin θ (2.113)

where θ denotes the clockwise angle of the pendulum from the positive y direction,

l is the length of the pendulum and g is the gravitational constant. In this case,

the rapid vibration causes the pendulum to oscillate slowly around the positive y

direction with a O(1) frequency.

A single scale integration of this system could be done by Variational Euler

with discrete d’Alembert principle to account for external forces [192]:


θ(i+1)h = θih + hpih/l

p(i+1)h = pih + h[g + ω2 sin(2πωih)] sin(θ(i+1)h)

, (2.114)

where the time step h has to be smaller than O(1/ω).

http://www.youtube.com/watch?v=BxMIdE_FN1k
http://www.youtube.com/watch?v=BxMIdE_FN1k
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Figure 2.17: Simulations of the inverted pendulum. The integration by Variational

Euler + d’Alembert principle uses time step h = 0.2/ω/
√
l ≈ 0.000067, while

FLAVOR (defined by (2.115)) uses δ = 0.002 and τ = 0.2/ω/
√
l. Also, g = 9.8,

l = 9, θ(0) = 0.2, θ̇(0) = 0 and ω = 1000

A FLAVOR is given by

θnδ+τ = θnδ + τpnδ/l

pnδ+τ = pnδ + τ [g + ω2 sin(2πωnτ)] sin(θnδ+τ )

θ(n+1)δ = θnδ+τ + (δ − τ)pnδ+τ/l

p(n+1)δ = pnδ+τ + (δ − τ)g sin(θ(n+1)δ)

(2.115)

Observe that the time dependent force is resynchronized to the τ time scale

from the δ time scale. Specifically, the FLAVOR (2.115) uses ω2 sin(2πωnτ) instead

of ω2 sin(2πωnδ).

Numerical results are illustrated in Figure 2.17 (also available as a movie at

http://www.youtube.com/watch?v=QL2oFq9fyXM ). Notice in this example that

http://www.youtube.com/watch?v=QL2oFq9fyXM
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θ, being the only degree of freedom, contains a combination of slow and fast dynam-

ics. FLAVOR could only capture the fast dynamics in the sense of measures, and

this is why dents appear as modulation on the slow oscillation of θ. Also, although

this forced system does not admit a conserved energy, the value of the Hamilto-

nian should oscillate periodically due to the periodic external driving force. A

non-mechanics based method (e.g., Forward Euler) would produce an unbounded

growth or a decrease in the energy, which is wrong, but FLAVORs do not have

this drawback.

2.6.7 Nonautonomous SDE system with hidden slow variables

Figure 2.18: (a) Integration of (2.116) by nonintrusive FLAVOR (2.65) using mesostep step δ =

0.01 (b) Integration of (2.116) by Euler-Maruyama using fine time step h = 10−4 (c) Integration

of (2.118) by Euler-Maruyama using the same small step h = 10−4. Expectations of the slow

variable (whether or not hidden) are obtained by empirically averaging over an ensemble of 100

independent sample trajectories. ε = 10−4, x(0) = 1 + ε, y(0) = 1, T = 2 (the expectation of the

real solution will blow up around T = 3). We have chosen a big enough c = 10 so that the scale

separation transformation is a diffeomorphism.
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Consider the following artificially made nonautonomous SDE system


du = 4

3(u+v)2

(
−1

2

(
v−u

2

)2
+ 5 sin(2πt)

)
dt− 1

ε

((
u+v

2

)3
+ c− v−u

2

)
dt−

√
2
εdWt

dv = 4
3(u+v)2

(
−1

2

(
v−u

2

)2
+ 5 sin(2πt)

)
dt+ 1

ε

((
u+v

2

)3
+ c− v−u

2

)
dt+

√
2
εdWt

(2.116)

where c is a constant and the two dWt terms refer to the same Brownian motion.

The system (2.116) can be converted via the local diffeomorphism


u = (x− c)1/3 − y

v = (x− c)1/3 + y

, (2.117)

into the following hidden system separating slow and fast variables


dx = −1

2y
2dt+ 5 sin(2πt)dt

dy = 1
ε (x− y)dt+

√
2
εdWt

. (2.118)

Nonintrusive FLAVOR (2.65) can be directly applied to (2.116) using a time step

δ � ε without prior identification of the slow and fast variables, i.e., without know-

ing (2.118). The expected values of solutions of (2.116) integrated by FLAVORs

with mesostep δ and Euler-Maruyama with a small time step τ are presented in

Figure 2.18. FLAVOR has accelerated the computation by 100x.

2.6.8 Langevin equations with slow noise and friction

In this section, we put the double spring system in Section 2.6.2 in the real world

(i.e., with noise and friction), and the system is now modeled by the SDEs (both

springs are made quartic just for the computational concern on the single-scale
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benchmark integration):

dy = pydt

dx = pxdt

dpy = −ε−1y3dt− 4(y − x)3dt− cpydt+ σdW 1
t

dpx = −4(x− y)3dt− cpxdt+ σdW 2
t

. (2.119)

Figure 2.19: SDE (2.119): autocorrelation functions of E[y(t)y(0)] (dominantly

fast) and of E[(x(t) − y(t))(x(0) − y(0))] (dominantly slow), empirically obtained

by GLA and FLAVORs.

We compare several autocorrelation functions and time-dependent moments

of this stochastic process integrated by a quasi-symplectic FLAVOR ((2.88) and

(2.49)) and Geometric Langevin Algorithm (GLA) [41]. Expectations are empir-

ically calculated by averaging over an ensemble of 100 sample trajectories with

T = 30, ε = 10−8, τ = 0.001, δ = 0.01. y(0) = 2.1/ω (with ω := 1/
√
ε),

x(0) = y(0) + 1.8, c = 0.1 and σ = 0.5. GLA uses time step h = 0.001. Noise and
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(a) E
(
x(t)− y(t)

)
(b) E

(
(x(t)− y(t))2

)
Figure 2.20: SDE (2.119): Empirical moments obtained from simulations of en-

sembles of (2.119) with GLA and quasi-symplectic FLAVOR (Section 2.4.4)

friction are slow here in the sense that they are not of order O(ω) or larger.

As can be seen from Figure 2.19, 2.20(a), and 2.20(b), in the regime dominated

by deterministic dynamics (roughly from t = 0 to t = 8), various moments calcu-

lated empirically by FLAVORs and GLA are in agreement. Also in that regime,

autocorrelation functions of the slow variables agree, whereas autocorrelation func-

tions of the fast variables agree only in the sense of measures (after time averaging

over a mesoscopic (o(1)) time span). The discrepancy between FLAVOR and GLA

when t > 8 is due to stochastic fluctuation and is an effect of the finite number of

samples (100) used to compute sample averages.

These numerical results illustrate the statistical properties of FLAVORs in

addition to the weak convergence of single trajectory (recall that if the noise is

applied to slow variables, FLAVORs do not converge strongly but only in the sense

of distributions). Although FLAVORs do not converge to the Boltzmann-Gibbs

that GLA converges to (if we just consider the usual sense of total variational norm,

the fast variable will have a different marginal distribution), we nevertheless do see

that moments of the slow variable converge to the benchmark, which suggests at

least a convergence in distribution towards the marginal of the invariant/ergodic

distribution that corresponds to the slow variable.



82

2.6.9 Langevin equations with fast noise and friction

Consider a stochastic mechanical system with a similar configuration to the above.

The difference is that the soft spring oscillates at a frequency nonlinearly dependent

on the stiff spring’s length, and the left mass experiences strong friction and noise

while the right mass does not (i.e., degenerate noise). The Hamiltonian is

H(y, x, py, px) =
1

2
p2
y +

1

2
p2
x +

1

4
ω4y4 + ey(x− y)2, (2.120)

and the governing SDEs are:

dy = pydt

dx = pxdt

dpy = −ω4y3dt− (2 + y − x)(y − x)eydt− ω2cpydt+ ωσdW t

dpx = −2(x− y)eydt

. (2.121)

In this system, the deterministic dynamics and the effects of noise and friction

both involve a O(1/ω2) timescale. We have implemented the stiff noise and friction

version of FLAVORs ((2.89) and (2.49)).

In Figure 2.21, we have plotted the first and second moments of the dominantly

slow variable x(t)−y(t) as well as the first moment of the dominantly fast variable

y(t) as functions of time. Moments of the dominantly slow variable integrated

by quasi-symplectic FLAVOR (Section 2.4.4) and GLA [41] concur, numerically

suggesting weak convergence and conservation of marginal Boltzmann-Gibbs. 100x

computational acceleration is achieved.
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Figure 2.21: E[x(t)− y(t)], E[y(t)], and E[x(t)− y(t)]2 obtained by GLA and quasi-symplectic

FLAVOR (Section 2.4.4). Expectations are empirically calculated by averaging over an ensemble

of 50 sample trajectories with T = 10, ω = 100, τ = 10−4, δ = 0.01. y(0) = 1.1/ω, x(0) =

y(0) + 1.8, c = 0.1 and σ = 1. GLA uses time step h = 10−4.
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Chapter 3

FLAVORs for PDEs

We generalize FLow AVeraging integratORs to stiff PDEs (the ODE/SDE version

of FLAVORs is introduced in Chapter 2). Again, the strategy of turning on and off

stiff coefficients on an alternating microscopic-mesoscopic mesh is adopted. Like

in the previous chapter, slow and fast variables do not need to be identified.

The generality of this strategy is illustrated by its applications to finite differ-

ence methods (Section 3.1), multi-symplectic integrators (Section 3.2), and pseu-

dospectral methods (Section 3.3); although we have not done so, the proposed

strategy can also apply to finite element methods or finite volume methods in

order to preserve various structures in multiscale integrations.

The convergence of PDE-FLAVORs is analyzed in Section 3.4.1 via a semi-

discrete approach, in which the space is first discretized/interpolated, and then

the ODE-FLAVORs convergence result is linked to the error analysis of PDEs.

A non-asymptotic error bound is given to quantify the two-scale convergence of

the numerical solution (strong convergence on the hidden slow variables and weak

convergence on the hidden fast variables).

We also show in Section 3.5 that applying the ODE-FLAVOR strategy to

characteristics leads to accurate approximations of stiff PDEs solutions.

Recall (from Section 1.3.2) that the majority of generic multiscale PDE solvers

either require identified slow/fast variables (which are in general much more diffi-

cult to find because they may depend on the discretization), or rely on assumptions
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such as a fast process convergent to a point distribution. FLAVORs do not have

these restrictions. Moreover, FLAVORs are among the few approaches to multi-

scale structure-preserving PDE integrations, because FLAVORs inherit structure

preservation properties from legacy codes, such as multisymplecticity illustrated

in Section 3.2.

Most of the results in this chapter are published in [278].

3.1 Finite difference and space-time FLAVOR mesh

3.1.1 Single-scale method and limitation

Consider a multiscale PDE:

F (1, ε−1, x, t, u(x, t), ux(x, t), ut(x, t), uxx(x, t), uxt(x, t), utt(x, t), . . .) = 0 (3.1)

where F is a given function (possibly nonlinear), ε is a small positive real parameter

and x and t are spatial and temporal coordinates.

To obtain a numerical solution of (3.1), the simplest single-scale finite difference

approach employs a uniform rectangular mesh with time step length h and space

step length k, and approximates the solution u by its values at discrete grid points.

Differential operators will be approximated by finite differences; for instance, ac-

cording to forward space forward time rules: ux(ik, jh) ≈ (ui+1,j − ui,j)/k and

ut(ik, jh) ≈ (ui,j+1 − ui,j)/h, where uij is the numerical solution at discrete grid

point with space index i and time index j. After this discretization, the original

PDE is approximated by a finite dimensional algebraic system, which can be solved

to yield the numerical solution.

Of course, a necessary condition for obtaining stability and accuracy in the nu-

merical solution is that h and k have to be small enough. A quantitative statement

on how small they need to be will depend on the specific PDE and discretization.

For 1D linear advection equations ux − aut = 0 and forward time forward space

discretizations, the h < k/a CFL condition [77] has to be met to ensure stabil-
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ity, which is also a neccessary condition for accuracy [174]. Intuitively, the CFL

condition guarantees that information does not propagate faster than what the

numerical integrator can handle. The Von Neumann stability analysis [61] helps

determine analogous CFL conditions for linear equations with arbitrary discretiza-

tions. The stability of numerical schemes for general nonlinear equations remains

a topic of study. We refer to [268] for additional discussions on single-scale finite

difference schemes. In general, the presence of a stiff coefficient ε−1 in equation

(3.1) requires h and k to scale with ε in order to guarantee the stability of numer-

ical integration schemes. This makes the numerical approximation of the solution

of (3.1) computationally untractable when ε is close to 0.

3.1.2 Multiscale FLAVORization and general methodology

FLAVORs are multiscale in the sense that they accelerate computation by adopting

both larger time and space steps. A finite difference scheme can be FLAVORized

by employing two rules:

First, instead of a uniform mesh, use a mesh as depicted in Figure 3.1, in

which a uniform spatial grid corresponds to a mesoscopic space step K that does

not scale with ε, and an alternating temporal grid corresponds to two time steps,

microscopic h (scaling with ε) and mesoscopic H − h (H independent from ε). It

is worth mentioning that when using this non-uniform mesh, grid sizes have to be

taken into consideration when derivatives are approximated by finite differences.

1st-order derivatives are straightforward to obtain, and we refer to Section 3.2 for

approximations of higher-order derivatives.

Second, the stiff parameter ε−1 should be temporarily set to be 0 (i.e., turned

off) when the current time step is the mesoscopic H − h; if the small time step

h is used instead, the large value of ε−1 needs to be restored, or in other words,

stiffness should be turned on again.

The rule of thumb is that k and h should be chosen such that the integration

of (3.1) with these step sizes and stiffness turned on is stable and accurate. On the

other hand, there is another pair of step size values such that the same integration
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Figure 3.1: Mesh used by FLAVORs. A uniform mesoscopic space step is used and two alter-

nating microscopic and mesoscopic time steps are used. Stiffness is turned on in red regions and

turned off otherwise.

with stiffness turned off is stable and accurate, and K and H should be chosen to

be an order of magnitude smaller than these values. FLAVORs does not require

a microscopic k, but only a mesoscopic space-step K, a microscopic time-step h,

and a mesoscopic time-step H.

The intuition is as follows: adopt the point of view of semi-discrete approach

for PDE integration, in which space is discretized first and the PDE is approxi-

mated by a system of ODEs. The integration (in the time) of the resulting finite

dimensional ODE system can be accelerated by applying the FLAVOR strategy

to any legacy scheme (used as a black box). Turning on and off stiff coefficients in

the legacy scheme and alternating microscopic time steps (stiffness on) with meso-

scopic time steps (stiffness on) preserves the symmetries of that scheme and at

the same time induces an averaging of the dynamic of (possibly hidden) slow vari-

ables with respect to the fast ones. With this strategy, the FLAVORized scheme
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advances in mesoscopic time steps without losing stability. The (possibly hidden)

slow dynamic is captured in a strong sense, while the fast one is captured only

in the (weak) sense of measures. A rigorous proof of convergence of the proposed

method relies on the assumption of existence of (possibly hidden) slow variables

and of local ergodicity of (possibly hidden) fast variables (we refer to Section 3.4).

It is important to observe that the proposed method does not require the identifi-

cation of slow variables.

3.1.3 Example: Conservation law with Ginzburg-Landau source

Consider a specific stiff PDE:

ut + f(u)x = ε−1u(1− u2) (3.2)

in which f(u) = sinu and 0 < ε� 1. Use the boundary condition of u(x = 0, t) =

u(x = L, t) and the initial condition of u(x, t = 0) = sin(πx). This system contains

two scales: the fast process corresponds to u quickly converging towards 1 or −1,

and the slow process corresponds to the front (with steep gradients) that separates

u > 0 from u < 0 propagating at an O(1) velocity.

We will FLAVORize the following Lax-Friedrichs finite difference scheme:


ui+1,j+1 = ūi+1,j − h

(
fu(ūi+1,j)

ui+2,j−ui,j
2k + ε−1ūi+1,j(1− ū2

i+1,j)
)

ūi+1,j , ui+2,j+ui,j
2

(3.3)

where ui,j = ui+L/k,j and ui,1 = sin (π(i− 1)k). If the domain of integration is

restricted to [0, L]× [0, T ], then i = 1, 2, . . . , bL/kc+1, and j = 1, 2, . . . , bT/hc+1.

We use h = 0.1ε and k = 0.2ε for our purposes, both of which we found numerically

at the order of the stability limit. In our experiment, we chose ε = 2 · 10−3, and

therefore h = 0.0002 and k = 0.0004.
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The FLAVORized version of this scheme is:
ũi+1,j = ūi+1,j − h

(
fu(ūi+1,j)

ui+2,j−ui,j
2K + ε−1ūi+1,j(1− ū2

i+1,j)
)

ūi+1,j , (ui+2,j + ui,j)/2

ui+1,j+1 =
ũi+2,j+ũi,j

2 − (H − h)
(
fu(

ũi+2,j+ũi,j
2 )

ũi+2,j−ũi,j
2K

) (3.4)

where ui,j = ui+L/K,j and ui,1 = sin (π(i− 1)K). If the domain of integration is

restricted to [0, L]×[0, T ], then i = 1, 2, . . . , bL/Kc+1, and j = 1, 2, . . . , bT/Hc+1.

We use the same h as before, and choose H = 0.005 and K = 0.01, which ensures

that the stability of the integration remains independent of ε.
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Figure 3.2: Errors of FLAVOR based on Lax-Friedrichs as a function of H and h. H samples

multiples of 0.1ε, starting from 2x to 50x with 1x increment, and h ranges from 0.01ε to 3ε with

0.01ε increment. Errors with magnitude bigger than 1 are not plotted, for they indicate unstable

integrations.

Errors of FLAVOR based on Lax-Friedrichs with different H and h values are

computed by comparing the results to a benchmark Lax-Friedrichs integration

with fine steps h = 0.1ε and k = 0.2ε. More precisely, we calculated the distance
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Figure 3.3: Numerical solutions to (3.2) by Lax-Friedrichs (left, (3.3)) and its FLAVORization

(right, (3.4)).

between two vectors respectively corresponding to FLAVOR and Lax-Friedrichs

integrations, which contain ordered u(x, t) values on the intersection of FLAVOR

and Lax-Friedrichs meshes (which is in fact the FLAVOR mesh as long as H is

a multiple of 0.1ε). 1-norm is used and normalized by the number of discrete

points to mimic the L1 norm for the continuous solution. Experimental settings

are ε = 2 ·10−3, L = 2 and T = 2. As we can see in Figure 3.2, FLAVOR is indeed

uniformly convergent in the sense that the error scales with H, as long as h takes

an appropriate value. This is not surprising, because we have already proven in

the ODE case that the error is bounded by a function of H (uniformly in ε) as

long as
(
h
ε

)2 � H � h/ε, and this error can be made arbitrarily small as H ↓ 0

(notice H can still be much larger than ε as ε ↓ 0).

Also, a typical run of FLAVOR (H = 0.005 and K = 0.01) in comparison to the

benchmark (h = 0.0002 and k = 0.0004) is shown in Figure 3.3. FLAVOR captured

the slow process strongly in the sense that it obtained the correct speeds of both

steep gradients’ propagations (up to arithmetic error and fringing). In this setting,

FLAVOR achieves a HK
2hk = 312.5-fold acceleration. It is worth restating that

both spatial and temporal step lengths of FLAVOR are mesocopic, whereas the

counterparts in a single scale finite difference method have to be both microscopic

for stability. The computational gain by FLAVOR will go to infinity as ε→ 0, and
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this statement will be true for all FLAVOR examples shown in this chapter.

3.2 Multisymplectic integrator for Hamiltonian PDEs

3.2.1 Single-scale method

We refer to [49, 193, 195] for a discussion on the geometry of Hamiltonian PDEs

(e.g., multi-symplectic structure). We will now recall the Euclidean coordinate

form of a Hamiltonian PDE:

Mzt +Kzx = ∇zH(z) (3.5)

where z(x, t) is a n-dimensional vector, M and K are arbitrary skew-symmetric

matrices on Rn, and H : Rn → R is an arbitrary smooth function. The solution

preserves the multi-symplectic structure in the following sense:

∂tι(U, V ) + ∂xκ(U, V ) = 0 (3.6)

where ι and κ are differential 2-forms defined by

ι(x, y) = 〈Mx, y〉 and κ(x, y) = 〈Kx, y〉 (3.7)

and U and V are two arbitrary solutions to the variational equation (the solution

is identified with dz : R2 7→ Rn):

Mdzt +Kdzx = DzzH(z)dz, dz(x, t) ∈ Rn (3.8)

Preservation of multi-symplecticity can be partially and intuitively interpreted as

a conservation of infinitesimal volume in the jet bundle, which generalizes the

conservation of phase space volume in Hamiltonian ODE settings to field theories.

A broad spectrum of PDEs fall in the class of Hamiltonian PDEs, including

generalized KdV, nonlinear Schrödinger models, nonlinear wave equations, atmo-
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spheric flows, fluid-structure interactions, etc. [46, 45, 48, 49]. We also refer to

[50] and references therein for surveys on numerical recipes, and to [183] for an

application to numerical nonlinear elastodynamics.

Hamiltonian PDEs (3.5) can be viewed as Euler-Lagrange equations for field

theories, which are obtained by applying Hamilton’s principle (i.e., a variational

principle of δS/δz = 0) to the following action:

S(z(·, ·)) =

∫∫
L(z, zt, zx) dt dx (3.9)

where the Lagrangian density is given by

L(z, zt, zx) =
1

2
〈Mzt, z〉+

1

2
〈Kzx, z〉 −H(z) (3.10)

This variational view of Hamiltonian PDEs will intrinsically guarantee the

preservation of multi-symplecticity, and there will be a field generalization of

Noether’s theorem, which ensures conservation of momentum maps correspond-

ing to symmetries.

Numerically, instead of discretizing the equation (3.5), we prefer the approach

of variational integrators because they are intrinsically multi-symplectic and there-

fore structure-preserving [193, 195, 192, 183]. These integrators are obtained as

follows: first discretize the action (3.9) using quadratures, then apply variational

principle to the discrete action (which depends on finitely many arguments), and

finally, solve the algebraic system obtained from the variational principle, i.e., the

discrete Euler-Lagrange equations.

For an illustration, consider a nonlinear wave equation:

utt − uxx = V ′(u) (3.11)

with periodic boundary condition u(x+L, t) = u(x, t) and compatible initial con-

ditions u(x, t = 0) = f(x) and ut(x, t = 0) = g(x). Suppose we are interested in

the solution in a domain [0, L]× [0, T ].
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Rewrite the high-order PDE as a system of first-order PDEs (notice these

covariant equations can be obtained through an intrinsic procedure, which works

on manifolds as well [47]):

vt − wx = V ′(u) (3.12)

ut = v (3.13)

ux = w (3.14)

The corresponding Lagrangian density is:

L =
1

2
u2
t −

1

2
u2
x + V (u) (3.15)

Using a forward time forward space approximation, we obtain the following

discrete Lagrangian:

Ldi,j , hijkij

[
1

2

(
ui,j+1 − ui,j

hij

)2

− 1

2

(
ui+1,j − ui,j

kij

)2

+ V (ui,j)

]
(3.16)

≈
∫ tj+1=tj+hij

tj

dt

∫ xi+1=xi+kij

xi

dx

[
1

2
u2
t −

1

2
u2
x + V (u)

]
(3.17)

where space step kij and time step hij define a rectangular grid of size kij × hij .

The simplest single-scale choice would be kij = k and hij = h for some k and h.

As a consequence, the continuous action S is approximated by a discrete action:

Sd =
N∑
α=1

M∑
β=1

Ldα,β ≈ S =

∫∫
L dt dx (3.18)

and Hamilton’s principle of least action δSd = 0 gives

∂

∂ui,j

N∑
α=1

M∑
β=1

Ldα,β = 0 (3.19)

for 1 ≤ i ≤ N and 1 ≤ j ≤ M , where N and M are such that
∑N

α=1 kαβ = L for

any β and
∑M

β=1 hαβ = T for any α.
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Taking derivative with respect to ui,j , we obtain the following discrete Euler-

Lagrange equations:

kij
ui,j − ui,j+1

hij
−hij

ui,j − ui+1,j

kij
+hijkijV

′(ui,j)+ki,j−1
ui,j − ui,j−1

hi,j−1
−hi−1,j

ui,j − ui−1,j

ki−1,j
= 0

(3.20)

The system of above equations is explicitly solvable when equipped with bound-

ary conditions and initial conditions; for instance, below is a consistent discretiza-

tion of the continuous version:
ui,j = ui+N,j , ∀i, j

ui,1 = f
(∑i

α=1 kα1

)
, ∀i

ui,2 = ui,1 + hi1g
(∑i

α=1 kα2

)
, ∀i

(3.21)

This numerical recipe is convergent. In fact, multi-symplectic integrators ob-

tained from variational principles can be viewed as special members of finite dif-

ference methods, whose error analysis is classical.

It is worth pointing out that the above procedure works for any Hamiltonian

PDEs of form (3.5). Also, notice that high-order derivatives are dealt with in an

intrinsic way regardless of whether the mesh is uniform.

3.2.2 FLAVORization of multi-symplectic integrators

Now consider a multiscale Hamiltonian PDE

M(1, ε−1)zt +K(1, ε−1)zx = ∇zH(1, ε−1, z) (3.22)

Any single-scale multi-symplectic integrator can be FLAVORized (to achieve

computational acceleration) by using the following strategy: (i) Use the two-scale

mesh illustrated in Figure 3.1, and (ii) turn off large coefficients when taking

mesoscopic time-steps. Unlike FLAVORizing a general finite difference scheme,
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we FLAVORize the action Sd instead of the PDE. Specifically, choose
kij = K, ∀i, j

hij = h, ∀i and odd j

hij = H − h, ∀i and even j

(3.23)

and let ε−1 = 0 in Ldi,j for even j’s and all i’s, while the large value of ε−1 is kept in

Ldi,j for odd j’s and all i’s. h and H correspond to a microscopic and a mesoscopic

time-step, and K corresponds to a mesoscopic space-step; the same rule of thumb

for choosing them in Section 3.1 applies.

After applying the discrete Hamilton’s principle, the resulting discrete Euler-

Lagrange equations corresponding to a multi-symplectic integrator will still be

(3.20), except that stiffness is turned off in half of the grids. Multisymplecticity

is automatically gained, because the updating equations originate from a discrete

variational principle [193].

3.2.3 Example: Multiscale Sine-Gordon wave equation

Consider a specific nonlinear wave equation (3.11) in which V (u) = − cos(ωu) −

cos(u). If ω = 0, this corresponds to the Sine-Gordon equation, which has been

studied extensively due to its soliton solutions and its relationships with quantum

physics (for instance, as a nonlinear version of Klein-Gordon equation). We are

interested in the case in which ω (identified with ε−1 in this case) is big, so that a

separation of timescale exhibits.

Arbitrarily choose L = 2 and use periodic boundary condition u(x + L, t) =

u(x, t), and let initial condition be u(x, 0) = sin(2πx/L) and ut(x, 0) = 0. Denote

total simulation time by T . Use the FLAVOR mesh (3.23). In order to obtain a

stable and accurate numerical solution, k and h have to be o(1/ω), and K and H

need to be o(1).

A comparison between the benchmark of the single-scale forward time forward

space multi-symplectic integrator ((3.20) with hij = h and kij = k) and its FLA-
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Figure 3.4: Numerical solutions to multiscale Sine-Gordon equation by single-scale 1st-order

multi-symplectic integrator (left) and its FLAVORization (right). For clarity, the surface plots

(but not simulations) use the same mesh size.

VORization ((3.20) with mesh (3.23) and V ′(u) = ω sin(ωu)+sin(u) for odd j and

V ′(u) = sin(u) for even j) is presented in Figure 3.4. ω = 20, k = L/20/ω and

h = k/2, and K = L/40 and H = K/2. It is intuitive to say that the slow process

of wave propagation is well-approximated by FLAVOR, although the fast process

of local fluctuation is not captured in the strong sense. Error quantification is not

done, because what the slow and fast processes are is not rigorously known here.

HK/2hk = 50-fold acceleration is obtained by FLAVOR.

Readers familiar with the splitting theory of ODEs [199] might question whether

FLAVORs are equivalent to an averaged stiffness of ω̃ = ω h
H (which corresponds

ω̃ = 2 in the numerical experiment described above). The answer is no, because

the equivalency given by the splitting theory is only local. In fact, the same single-

scale forward time forward space multi-symplectic integration of the case ω = 2 is

shown in Figure 3.5, which is clearly distinct from the FLAVOR result in Figure

3.4.
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Figure 3.5: Numerical solutions to multiscale Sine-Gordon equation with the ‘equivalent’ stiff-

ness by single-scale 1st-order multi-symplectic integrator. For clarity, the surface plot (but not

the simulation) uses the same mesh size (as in Figure 3.4).

3.3 Pseudospectral methods

3.3.1 Single-scale method

Consider a PDE

ut(x, t) = Lu(x, t) (3.24)

with periodic boundary condition u(x, t) = u(x+L, t) and initial condition u(x, 0) =

f(x), where L is a differential operator involving only spatial derivatives.

The Fourier collocation method approximates the solutions by the truncated

Fourier series:

uN (x, t) =
∑
|n|≤N/2

an(t)ein2πx/L (3.25)

and solves for an(t)’s by requiring the PDE to hold at collocation points yj :

∂tuN (yj , t)− LuN (yj , t) = 0 (3.26)

This yields a system of N ODEs, which can be integrated by any favorite ODE

solver. Of course, specific choices of collocations points will affect the numerical

approximation. Oftentimes, the simplest choice of yj = Lj/N, j = 0, . . . , N − 1 is



98

used, and in this case, the method is also called a pseudospectral method. We refer

to [139] for additional details on Fourier collocation methods. It is worth mention-

ing that pseudospectral methods can also be multi-symplectic when applied to

Hamiltonian PDEs [62].

3.3.2 FLAVORization of pseudospectral methods

When the PDE is stiff (for instance, when L contains a large parameter ε−1),

FLAVORs can be employed to integrate the stiff ODEs (which will still contain

ε−1) resulting from a pseudospectral discretization.

Similarly, for the FLAVORization of a pseudospectral method, it is sufficient to

choose N � L instead of N � ε−1L, i.e., the space-step can be coarse (K = o(1)).

For time stepping, alternatively switching between h = o(ε) and H − h for a

mesoscopic H = o(1) is again needed, and stiffness has to be turned off over the

mesoscopic step of H − h. In a sense, we are still using the same FLAVOR ‘mesh’

(Figure 3.1), except that here we do not discretize space, but instead truncate

Fourier series to resolve the same spatial grid size.

3.3.3 Example: A slow process driven by a non-Dirac fast process

Consider the following system of PDEs
ut + ux − q2 = 0

qt + qx − p = 0

pt + px + ω2q = 0

(3.27)

with periodic boundary conditions u(x, t) = u(x + L, t), q(x, t) = q(x + L, t),

and p(x, t) = p(x + L, t), and initial conditions u(x, 0) = fu(x), q(x, 0) = f q(x),

and p(x, 0) = fp(x). The integration domain is restricted to [0, T ] × [0, L]. The

stiffness ε−1 is identified with ω2. We choose the initial condition of fu(x) =

f q(x) = cos(2πx/L) and fp(x) = 0.

In this system, q and p correspond to a fast process, which is a field theory
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version of a harmonic oscillator with high frequency ω. u is a slow process, into

which energy is pumped by the fast process in a nontrivial way.

We have chosen to FLAVORize (3.27) because it does not fall into the (simpler)

category of systems with fast processes converging towards Dirac (single point

support) invariant distributions [102].

We use the classical 4th-order Runga-Kutta scheme (see, for instance, [129])

for the (single-step) time integration of the pseudospectrally discretized system

of ODEs (3.26). Write φω
2

h : ãu,q,pn (t) 7→ ãu,p,qn (t + h) its numerical flow over a

microscopic time step h (consisting of four sub-steps), where ãu,q,pn (t) are numerical

approximations to the Fourier coefficients in (3.25), for the unknowns u, q and p at

an arbitrary time t. Then, the corresponding FLAVOR update over a mesoscopic

time step H will be φ0
H−h ◦ φω

2

h , which consists of eight sub-steps.
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Figure 3.6: Single-scale (left) and multiscale pseudospectral (right) integrations of slow u in

system (3.27). Plotting mesh for the single-scale simulation is coarser than its computation mesh.

We present in Figure 3.6 and Figure 3.7 a comparison between the benchmark

of single-scale pseudospectral simulation and its FLAVORization. It can be seen

that the slow process of u is captured in strong (point-wise) sense, whereas the

fast process of q is only approximated in a weak sense (i.e., as a measure, in

the case wave shape and amplitude are correct, but not the period). We choose

L = 2, T = 10 and ω = 1000. The single-step integration uses N = 20 and

h = 0.1/ω (notice that this is already beyond the stability/accuracy region of a
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Figure 3.7: Single-scale (left) and multiscale pseudospectral (right) integrations of fast q in

system (3.27). Plotting mesh for the single-scale simulation is coarser than its computation mesh.

The same color does not indicate the same value in these two plots.

single-scale finite difference, since the space step does not depend on 1/ω; the

spectral method is more stable/accurate for a large space-step), and FLAVOR

uses N = 20, h = 1/ω2 and H = 0.01. H/2h = 50-fold acceleration is achieved by

FLAVOR.

3.4 Convergence analysis

3.4.1 Semi-discrete system

All FLow AVeraging integratORS described in previous sections are illustrations

of the following (semi-discrete) strategy: first, space is discretized or interpolated;

next, spatial differential operators are approximated by algebraic functions of

finitely many spatial variables; finally, the resulting system of ODEs is numeri-

cally integrated by a corresponding ODE-FLAVOR (see Chapter 2 or [274]). In

this section, we will use the semi-discrete ODE system as an intermediate link to

demonstrate that these PDE-FLAVORs are convergent to the exact PDE solution

under reasonable assumptions (in a strong sense with respect to (possibly hidden)

slow variables and in the sense of measures with respect to fast variables).

More precisely, consider a spatial mesh (vector)MS = [x1, x2, . . .], a temporal

mesh (vector) MT = [t1, t2, . . .], and a domain mesh (matrix) M = MS ×MT .
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Examples of these meshes include the FLAVOR meshMS = [K, 2K, . . . , NK] and

MT = [h,H,H+h, 2H, . . . , (M−1)H, (M−1)H+h,MH], and a usual single-scale

(step) integration mesh MS = [k, 2k, . . . , L] and MT = [h, 2h, . . . , T ] (recall the

domain size is L = NK by T = MH). We will use the FLAVOR mesh throughout

this section. We will compare the solution of the PDE (3.28) with the solution

obtained with the FLAVOR strategy at these discrete points.

For simplicity, assume the PDE of interest is 1st-order in time derivative:

ut(x, t) = F (1, ε−1, x, t, u(x, t), ux(x, t), . . .) (3.28)

Observe that a PDE (3.1) with higher-order time derivatives can be written as a

system of 1st-order (in time derivatives) PDEs.

Now consider a consistent discretization of PDE (3.28) with space step K and

time step h (we refer to Page 20 of [268] for a definition of the notion of consistency,

which intuitively means vanishing local truncation error). Letting h ↓ 0 in this

discretization, we obtain a semi-discrete system (continuous in time and discrete

in space). This semi-discrete system is denoted by the following system of ODEs,

with approximated spatial derivatives:

u̇1(t) = f1(u1, u2, . . . , uN , ε
−1, t)

u̇2(t) = f2(u1, u2, . . . , uN , ε
−1, t)

· · ·

u̇N (t) = fN (u1, u2, . . . , uN , ε
−1, t)

(3.29)

Assuming existence and uniqueness of an exact C1 strong solution u to the PDE

(3.28), and writing u(MS
i , t) its values at the spatial discretization points, we

define for each i the following remainder:

Ri(ε−1, t) ,
∂u

∂t
(MS

i , t)− fi(u(MS
1 , t), u(MS

2 , t), . . . , u(MS
N , t), ε

−1, t) (3.30)

which is a real function of t indexed by ε−1.
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Then, ui(t) approximates the exact solution u(MS
i , t) evaluated at grid points

in the sense that these remainders vanish as ε−1K ↓ 0 (where K :=MS
i −MS

i−1):

Lemma 3.4.1. Assume that F in (3.28) satisfies

|F (1, ε−1, x, t, u(x, t), ux(x, t), . . .)| ≤ (1 + ε−1)|F (1, 1, x, t, u(x, t), ux(x, t), . . .)|

(3.31)

Assume that the fi in (3.29) satisfies similar inequalities. Then, there exists a

constant Ci independent from ε, h, H or K, such that for bounded t and u

|Ri(ε−1, t)| ≤ (1 + ε−1)CiK (3.32)

Remark 3.4.1. (3.31) is true, for instance, in cases where

F (1, ε−1, x, t, u(x, t), . . .) = F0(x, t, u(x, t), . . .) + ε−1F1(x, t, u(x, t), . . .). (3.33)

Proof. The linear scaling with K in (3.32) immediately follows from the definition

of consistency, and the parameter 1 + ε−1 in (3.32) has its origin in (3.31).

Remark 3.4.2. The consistency of finite difference methods can be easily shown

using Taylor expansions. For instance, applying a Taylor expansion to the solution

of ut − ε−1ux = a(u) leads to

u(iK, (j + 1)h) =u(iK, jh) + h
(
ε−1
(u((i+ 1)K, jh)− u(iK, jh)

K

+O(K)
)

+ a(u(iK, jh))
)

+O(h2)

(3.34)

which implies

∂

∂t
u(iK, t) = ε−1u((i+ 1)K, t)− u(iK, t)

K
+ a(u(iK, t)) + ε−1O(K) (3.35)

and naturally establishes the correspondence of fi(u1, . . . , uN , ε
−1, t) = ε−1 ui+1(t)−ui(t)

K +

a(ui(t)) and Ri = ε−1O(K) for a 1st-order finite difference scheme. Notice that
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the remainders are still stiff, but we will see later that this is not a problem, since

they can be handled by ODE-FLAVORs. The consistency of pseudospectral method

can be shown similarly using Fourier analysis.

With Ri defined in (3.30), consider the following system of ODEs:


u̇1(t) = f1(u1, u2, . . . , uN , ε

−1, t) +R1(ε−1, t)

· · ·

u̇N (t) = fN (u1, u2, . . . , uN , ε
−1, t) +RN (ε−1, t)

(3.36)

with initial condition ui(0) = u(MS
i , 0). Obviously, its solution (ui(t))1≤i≤N is the

exact PDE solution sampled at spatial grid points, i.e., ui(t) = u(MS
i , t).

We will now establish the accuracy of PDE-FLAVOR by showing that an ODE-

FLAVOR integration of (3.36) leads to an accurate approximation of (ui(t))1≤i≤N .

Since space (with fixed width L) is discretized by N grid points, we use the follow-

ing (normalized by N) norm in our following discussion (suppose vi(t) = v(MS
i , t)

for a function v):

‖[v1(t), v2(t), . . . , vN (t)]‖ , 1

N
‖[v1(t), v2(t), . . . , vN (t)]‖1 (3.37)

Observe that if v(·, t) is Riemann integrable, then

lim
K↓0

∥∥[v(MS
1 , t), v(MS

2 , t), . . . , v(MS
N , t)]

∥∥→ 1

L
‖v(·, t)‖L1 (recall L = NK is fixed),

(3.38)

and hence the norm (3.37) does not blow up or vanish as N →∞.

3.4.2 Sufficient conditions and the two-scale convergence of PDE-

FLAVORs

We will now prove the accuracy of PDE-FLAVORs under the assumption of exis-

tence of (possibly hidden) slow and locally ergodic fast variables. The convergence

of PDE-FLAVORs will be expressed using the notion of two-scale flow convergence
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introduced in Chapter 2 or [274], which corresponds to a strong convergence on

the slow variables and a weak convergence on the fast ones.

The scale separation and local ergodicity assumption is analogous to Conditions

2.1.1 and 2.1.2, except that now we allow the scale separation diffeomorphism and

the local ergodic measure to be slowly time-dependent:

Condition 3.4.1. Assume that the ODE system (3.36) satisfies the following con-

ditions:

1. (Existence of hidden slow and fast variables): There exists a (possibly time-

dependent) diffeomorphism ηt : [u1(t), . . . , uN (t)] 7→ [x(t), y(t)] from RN onto

RN−p×Rp with uniformly bounded C1, C2 derivatives with respect to ui’s and

t, and such that for all ε > 0, (x(t), y(t)) satisfies


ẋ(t) = f(x(t), y(t), t)

ẏ(t) = ε−1g(x(t), y(t), t)

, (3.39)

where f and g have bounded C1 derivatives with respect to x, y and t.

2. (Local ergodicity of vast variables): There exists a family of probability mea-

sures µt(x, dy) on Rp indexed by x ∈ RN−p and t ∈ R, and a family of positive

functions T 7→ Et(T ) satisfying limT→∞E
t(T ) = 0 for all bounded t, such

that for all x0, y0, t0, T bounded and φ uniformly bounded and Lipschitz, the

solution to

Ẏt = g(x0, Yt, t0) Y0 = y0 (3.40)

satisfies

∣∣∣ 1

T

∫ T

0
φ(Ys)ds−

∫
Rp
φ(y)µt0(x0, dy)

∣∣∣ ≤ χt0(‖(x0, y0)‖
)
Et0(T )(‖φ‖L∞+‖∇φ‖L∞)

(3.41)

where r 7→ χt0(r) is bounded on compact sets, and µt has bounded derivative

with respect to t in total variation norm.
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Under Conditions 3.4.1, the computation of the solution of PDE (3.28) can be

accelerated by applying the FLAVOR strategy to a single-scale time integration of

the semi-discretized system (3.29). We recap the construction of FLAVORs:

Write Φα
t,t+τ the numerical flow of a given (legacy) ODE integrator for (3.29):

Φα
t,t+τ : [ũ1(t), . . . , ũN (t)] 7→ [ũ1(t+ τ), . . . , ũN (t+ τ)] , (3.42)

where ũi(s) approximates ui(s) for all s, τ is the integration time step, and α is

a controllable parameter that replaces the stiff parameter ε−1 in (3.29) and takes

values of ε−1 (stiffness ‘on’) or 0 (stiffness ‘off’).

Definition 3.4.1 (ODE-FLAVORs). The FLow AVeraging integratOR associated

with Φ is defined as the algorithm simulating the process:

[ū1(t), . . . , ūN (t)] =
(
Φ0

(k−1)H+h,kH ◦ Φ
1
ε

(k−1)H,(k−1)H+h

)
◦ · · ·

◦
(
Φ0
H+h,2H ◦ Φ

1
ε
H,H+h

)
◦
(
Φ0
h,H ◦ Φ

1
ε
0,h

)
([u1(0), . . . , uN (0)]) (3.43)

where (the number of steps) k is a piece-wise constant function of t satisfying

kH ≤ t < (k + 1)H, h is a microscopic time step resolving the fast timescale

(h� ε), H is a mesoscopic time step independent of the fast timescale satisfying

h� ε� H � 1 and

(
h

ε
)2 � H � h

ε
(3.44)

In order for a FLAVOR to be convergent, the legacy code, of course, has to be

consistent:

Condition 3.4.2. Consider the legacy ODE integrator with one-step update map

Φα
t,t+τ introduced in (3.42). Suppose there exist constants C > 0 and H0 > 0

independent of N and α, such that for any τ ≤ H0 min(1/α, 1) and bounded vector
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[u1, . . . , uN ],

‖Φα
t,t+τ (u1, . . . , uN )− [u1, . . . , uN ]− τ [f1(u1, . . . , uN , α, t), . . .

. . . , fN (u1, . . . , uN , α, t)]‖ ≤ Cτ2(1 + α)2 , (3.45)

Observe that we are integrating (3.29) but not (3.36), since the remainders

Ri’s are a priori unknown unless the exact PDE solution is known. However,

the following lemma implies that the FLAVORization of this integration is in fact

convergent to the solution of (3.36), even though Ri’s are possibly stiff. This is

due to the joint effect of the FLAVOR mesh and the turned-on-and-off stiffness.

Lemma 3.4.2. Assume that Φα
t,t+τ , introduced in (3.42), satisfies Condition 3.4.2.

Let h and H be the time steps used in the FLAVORization 3.4.1. If h � ε,

H � h/ε, and K = O(H), then

‖Φα
t,t+τ (u1, . . . , uN )− [u1, . . . , uN ]− τ [f1(u1, . . . , uN , α, t) +R1(α, t), . . .

. . . , fN (u1, . . . , uN , α, t) +RN (α, t)]‖ ≤ Cτ2(1 + α)2 (3.46)

where τ = h when α = ε−1 and τ = H − h when α = 0.

Proof. By Condition 3.4.2, we have

‖Φα
t,t+τ (u1, . . . , uN )− [u1, . . . , uN ]− τ [f1(u1, . . . , uN , α, t), . . .

. . . , fN (u1, . . . , uN , α, t)]‖ ≤ Cτ2(1 + α)2 (3.47)

for any τ ≤ min(1/α, 1)H0. In addition, Lemma 3.4.1 gives a bound on the

remainders: when α = ε−1, there exists a constant C̃ > 0 independent of N and

ε−1, such that for all i,

|τRi(ε−1, t)| ≤ τC̃Kε−1 (3.48)

Because we use τ = h in this case and K � ε−1τ , the above is bounded by

τC̃(Ĉε−1τ)ε−1 ≤ Cτ2(1 + α)2 for some constants Ĉ � 1 and C = C̃Ĉ. When
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α = 0 on the other hand, there exists a constant C̃ > 0 such that for all i

|τRi(ε−1, t)| ≤ τC̃K (3.49)

Because K = O(H) and we use τ = H − h = O(H) in this case, the above is

bounded by τC̃Ĉτ ≤ Cτ2(1 + α)2 for some constants Ĉ and we let C = C̃Ĉ.

Notice that the value of K is fixed in both cases but τ has different values: the

flow map used in FLAVOR associated with α = 0 is the one with mesoscopic step

Φ0
t+h,t+H , i.e., τ = H −h; when α = ε−1 on the other hand, the flow map is Φε−1

t,t+h

and τ = h. Finally, the triangle inequality gives

‖Φα
t,t+τ (u1, . . . , uN )− [u1, . . . , uN ]− τ [f1(u1, . . . , uN , α, t) +R1(α, t), . . .

. . . , fN (u1, . . . , uN , α, t) +RN (α, t)]‖ ≤ ‖Φα
t,t+τ (u1, . . . , uN )− [u1, . . . , uN ]−

τ [f1(u1, . . . , uN , α, t), . . . , fN (u1, . . . , uN , α, t)]‖+
1

N

N∑
i=1

|τRi(α, t)| ≤ 2Cτ2(1 + α)2 ,

(3.50)

which finished the proof after absorbing the coefficient 2 into C.

We also need the usual regularity and stability assumptions to prove the accu-

racy of FLAVORs for (3.36).

Condition 3.4.3. Assume that

1. f1, f2, . . . , fN are Lipschitz continuous.

2. For all bounded initial condition [u1(0), . . . , uN (0)]’s, the exact trajectories

([u1(t), . . . , uN (t)])0≤t≤T (i.e., solution to (3.36)) are uniformly bounded in

ε.

3. For all bounded initial condition [u1(0), . . . , uN (0)]’s, the numerical trajecto-

ries ([ū1(t), . . . , ūN (t)])0≤t≤T (defined by (3.43)) are uniformly bounded in ε,

0 < H ≤ H0, h ≤ min(H0ε,H).
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The following theorem shows the two-scale flow convergence of FLAVORs under

the above conditions.

Theorem 3.4.1. Consider FLAVOR trajectories in Definition 3.4.1. Under Con-

ditions 3.4.1, 3.4.2 and 3.4.3, there exist C > 0, Ĉ > 0 and H0 > 0 independent

from ε−1 and N , such that for K/Ĉ < H < H0, h < H0ε and t > 0,

‖x(t)− [ηt]x(ū1(t), . . . , ūN (t))‖ ≤ CeCtχ1(u1(0), . . . , uN (0), ε,H, h) (3.51)

and for all bounded and uniformly Lipschitz continuous test functions ϕ : RN 7→ R,

∣∣∣∣ 1

∆t

∫ t+∆t

t
ϕ([ū1(s), . . . , ūN (s)]) ds−

∫
Rp
ϕ([ηt]−1(x(t), y))µt(x(t), dy)

∣∣∣∣
≤ χ2(u1(0), . . . , uN (0), ε,H, h,∆t, t)(‖ϕ‖L∞ + ‖∇ϕ‖L∞) (3.52)

where χ1 and χ2 are bounded functions converging towards zero as ε ≤ H/(C ln 1
H ),

h
ε ↓ 0, ε

hH ↓ 0 and (hε )2 1
H ↓ 0 (and ∆t ↓ 0 for χ2); see Remark 2.1.5 for details

about χ1 and χ2.

Recall notations: NK = L is the fixed spatial width, [ηt]x and [ηt]−1 respec-

tively denote the x (slow) component and the inverse of the diffeomorphism ηt

(defined in Condition 3.4.1), x(t) = [ηt]x(u1(t), . . . , uN (t)) corresponds to the slow

component of the exact PDE solution sampled at grid points, and ui(t) and ūi(t)

represent the exact and the FLAVOR approximation of the solution to the semi-

discrete system with the remainders (3.36).

Proof. The proof of Theorem 3.4.1 is analogous to that of Theorems 2.1.1 and

2.1.2. The proof requires (3.46), which is guarantied from Condition 3.4.2 by

Lemma 3.4.2. It is easy to check that the slow dependence on time of f , g, η and

µ does not affect the proof given in Appendix A.

Remark 3.4.3. Condition 3.4.2 implies that the constant C in Theorem 3.4.1

does not depend on N or K. This is important because although using a finer
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mesh leads to a smaller K and a larger N = L/K, Condition 3.4.2 (which is

equivalent to the accuracy of the semi-discrete approximation of the PDE) ensures

that, as long as K = O(H) and h � εH, the constant C in the error bounds on

the slow component (3.51) and the fast component (3.52) will not blow up.

Remark 3.4.4. Observe that the application of the FLAVOR strategy does not

require the identification of the diffeomorphism η (which may depend on the spatial

discretization).

3.5 On FLAVORizing characteristics

The convergence result of the previous section is based on the semi-discretization of

the original PDE. PDEs and ODEs are also naturally connected via the method of

characteristics, and therefore it is natural to wonder whether a numerical integra-

tion of those characteristics by FLAVORs would lead to an accurate approximation

of the solution of the original PDE. The answer to this question will be illustrated

by analyzing the following (generic) PDE:


F (Du, u, q, ε−1) = 0, q ∈ U

u(q) = γ(q), q ∈ Γ

(3.53)

where U ⊂ Rd is the domain in which solution is defined, Γ and γ define ini-

tial/boundary conditions.

The following condition corresponds to assuming that characteristics are well-

posed and the unknown has its value slowly changing along any characteristic.

Condition 3.5.1. Assume that

1. The PDE F (Du, u, q, ε−1) = 0 admits characteristics:

q̇ = f(q, z, ε−1) (3.54)

ż = g(q, z) (3.55)

u(q(t)) = z(t) (3.56)
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where q ∈ U is a vector corresponding to coordinates of characteristics in

the domain of the PDE, and z corresponds to the unknown’s value along the

characteristics.

2. For arbitrary ε, any point in U is reachable from the initial condition via one

and only one characteristic.

The following conditions correspond to the assumption of existence of (possibly

hidden) slow and locally ergodic fast variables for those characteristics.

Condition 3.5.2. Consider ODE (3.54). Assume that:

1. There exists a z-dependent diffeomorphism ηz : q 7→ [x, y] from Rd onto

Rd−p × Rp with uniformly bounded C1, C2 derivatives with respect to both q

and t, such that (x, y) satisfies (with z(t) given by (3.55))


ẋ = f1(x, y, z)

ẏ = ε−1f2(x, y, z)

(3.57)

where f1, f2, and g have bounded C1 derivatives with respect to x, y and

z, and u([ηz]−1(x, y)) has bounded C1 derivatives with respect to the (slow)

variables x and z.

2. There exists a family of probability measures µz(x, dy) on Rp indexed by

x ∈ Rd−p and z ∈ R, as well as a family of positive functions T 7→ Ez(T )

satisfying limT→∞E
z(T ) = 0, such that for all x0, y0, z0, T bounded and φ

uniformly bounded and Lipschitz, the solution to

Ẏt = f2(x0, Yt, z0) Y0 = y0 (3.58)

satisfies

∣∣∣ 1

T

∫ T

0
φ(Ys)ds−

∫
Rp
φ(y)µz0(x0, dy)

∣∣∣ ≤ χz0(‖(x0, y0)‖
)
Ez0(T )(‖φ‖L∞+‖∇φ‖L∞)

(3.59)
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where r 7→ χz0(r) is bounded on compact sets, and µz has bounded derivative

with respect to z in total variation norm.

The second item of Condition 3.5.2 corresponds to the assumption that the

fast variable y is locally ergodic with respect to a family of measures µ drifted by

the slow variables x and z.

The following lemma shows that, under the above conditions, the solution of

PDE (3.53) is nearly constant on the orbit of the fast components (y) of any

characteristic.

Lemma 3.5.1. Under Conditions 3.5.1 and 3.5.2, for any fixed constant C1 (in-

dependent of ε−1), there exists a constant C2 independent of ε−1, such that for any

0 ≤ t1 ≤ C1, 0 ≤ t2 ≤ C1 and (fixed) x0 and z0,

∣∣u ([ηz0 ]−1(x0, Y (t1))
)
− u

(
[ηz0 ]−1(x0, Y (t2))

)∣∣ ≤ C2ε (3.60)

where Y (t1) and Y (t2) are two points on the orbit of Ẏ (t) = f2(x0, Y (t), z0).

Proof. Under Conditions 3.5.1 and 3.5.2, it is known (we refer for instance to

[239], or to Theorem 14, Section 3 of Chapter II of [258], or to [226]) that x and z

converge as ε→ 0 towards x̃ and z̃ defined as the solution to the following ODEs

with initial condition x0 and z0
˙̃x =

∫
f1(x̃, y, z̃)µz̃(x̃, dy)

˙̃z =
∫
g([ηz̃]−1(x̃, y), z̃)µz̃(x̃, dy)

(3.61)

Therefore, writing y(t) the solution of ẏ = ε−1f2(x̃, y, z̃), we have as ε→ 0

u([ηz̃(t)]−1(x̃(t), y(t)))→ z̃(t) (3.62)

Now, taking the time derivative of û = u ◦ η−1, we obtain

ûx ˙̃x+ ûyẏ + ûz ˙̃z = ˙̃z + Ṙ(ε) (3.63)
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where R(ε) is a function of t that goes to 0 as ε→ 0.

Furthermore,

Ẏ (t) = f2(x0, Y (t), z0)

= f2(x̃(εt), y(εt), z̃(εt)) +
∂f2

∂x̃
(x̃(εt)− x0) +

∂f2

∂z̃
(z̃(εt)− z0) +

∂f2

∂y
(y(εt)− Y (t))

+ o(ε) + o(y(εt)− Y (t))

By Taylor expansion, x̃(εt) − x0 and z̃(εt) − z0 are obviously O(ε). Applying

Gronwall’s lemma, we also obtain that y(εt)− Y (t) = O(ε). Therefore,

Ẏ (t) = f2(x̃(εt), y(εt), z̃(εt)) +O(ε) = εẏ(t) + o(ε) (3.64)

Combining (3.63) with (3.64), we obtain

u
(
η−1(x0, Y (t1))

)
− u

(
η−1(x0, Y (t2))

)
=

∫ t2

t1

ûy · Ẏ (t) dt = ε

∫ t2

t1

ûy · ẏ dt+ o(ε)

= ε

(∫ t2

t1

( ˙̃z − ûx ˙̃x− ûz ˙̃z) dt+R(ε)
∣∣∣t2
t1

)
+ o(ε) (3.65)

Since ûx, ˙̃x, ût and ˙̃z are bounded, and R(ε) is vanishing (and hence bounded), we

conclude that the right hand side is O(ε).

Condition 3.5.3. Assume that the domain U is bounded (independently from

ε−1).

Lemma 3.5.2. If Conditions 3.5.1, 3.5.2, and 3.5.3 hold, then every point in U

is reachable by a characteristic from the initial condition in bounded time (inde-

pendently from ε−1).

Proof. From Condition 3.5.1, we already know that every point is reachable, and

therefore it suffices to show that hitting times do not blow up as ε→ 0. Since x(·)

converges to x̃(·) (see proof of Lemma 3.5.1), by considering the x component of

the characteristic (projected by η), it becomes trivial to show that the hitting time

converges to a fixed value (and hence, does not blow up). Using Condition 3.5.3,
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we conclude that that any point in U can be hit in (uniformly) bounded time from

the initial condition.

Analogously to the Integrator 3.4.1, a legacy integrator for (3.54) and (3.55)

can be FLAVORized, and shown to be convergent under regularity and stability

conditions (analogous to Condition 3.4.3) requiring f1, f2 and g to be Lipschitz

continuous and q̃(t) and z̃(t) to be bounded. The convergence result is analogous

to Theorem 3.4.1, modulo the following change of notation: the slow index is

now z instead of t, the original coordinates are q instead of ui, the vector field

of the original coordinates is f instead of fi, and the dynamics of the slow index

comes from the nontrivial drift of ż = g(q, z) instead of the trivial ṫ = 1. We define

ũ(q̃(t)) := z̃(t) for all t on each FLAVORized characteristic [q̃(t), z̃(t)]. Naturally, ũ

is only defined at discrete points in the domain U . These discrete points, however,

densely ‘fill’ the space in the sense that (as shown by the proof of the following

theorem) FLAVORied characteristics remain very close to exact characteristics

(x components are close in Euclidean distance, and y components are close as

well in terms of orbital distance induced by the infimum of point-wise Euclidean

distances).

By the two-scale convergence theorem, we can quantify for each characteristic:

the strong convergence of its slow coordinate and the unknown’s value along it,

and the weak convergence of its fast coordinate. Finally, the ODE FLAVORization

error bounds of each characteristic collectively transfers to error bounds of the PDE

approximation by considering the entire family of characteristics starting from all

points (in the initial condition).

Theorem 3.5.1. Write ũ(q̃) the solution obtained by FLAVORizing all charac-

teristics. Under Conditions 3.5.1, 3.5.2, 3.5.3, a consistency condition analogous

to Condition 3.4.2, and a regularity and stability condition analogous to Condition

3.4.3 (under a change of notation as described above), there existsW a constant C

independent of ε−1 and q0 ∈ Γ, such that

|ũ(q̃)− u(q̃)| ≤ Cχ1(q0, γ(q0), ε, δ, τ)(1 + χ2(q0, γ(q0), ε, δ, τ, T, t)) (3.66)
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for any q̃ on any FLAVORized characteristic, where q0 ∈ Γ and γ(q0) correspond

to the initial condition that leads to q̃ via a FLAVORized characteristic, and χ1

and χ2 are vanishing error bound functions.

Remark 3.5.1. When Γ is compact (such as in the case of periodic boundary

condition), χ1 and χ2 can be further chosen to be independent of q0 (hence q̃) by

taking a supremum over Γ.

Proof. By Condition 3.5.1, each q ∈ U can be traced back to q0 ∈ Γ through

a characteristic. By Lemma 3.5.2, the characteristic starting from q0 reaches q

in bounded time T . Using the two-scale convergence of the FLAVORization of

these characteristics (a result analogous to Theorem 3.4.1), we deduce that the

approximation error associated with z̃T (on each FLAVORized characteristic) can

be bounded by Cχ1 (with respect to the true value u(q) = zT , the error CeCT has

been replaced by C because T is bounded).

Now observe that q̃T 6= qT , where q̃T is the coordinate of the FLAVORized

characteristics starting from q0. As before, let [xT , yT ] = η(qT ) and [x̃T , ỹT ] =

η(q̃T ). The error on the slow component is ‖xT − x̃T ‖ ≤ Cχ1. The possibly large

error on the fast component is not a problem because we can look for a near-by

point on the fast orbit with introducing only an O(ε) error on the unknown’s value

(Lemma 3.5.1): 
u(η(xT , yT )) = u(η(xT , y

∗
T )) +O(ε)

y∗T = arg minYt|Ẏt=f(xT ,Yt)
‖ỹT − Yt‖

(3.67)

Since ‖x̃T −xt‖ is small, the local ergodic measures that represent the orbits given

by Ẏt = f(xT , Yt) and Ẏt = f(x̃T , Yt) will be small: ‖µ(xT , dy)− µ(x̃T , dy)‖T.V. ≤

Cχ1χ2 is by chain rule. Because ỹT is on the orbit of Ẏt = f(x̃T , Yt), we will have

‖y∗T − ηy(q̃T )‖ ≤ Cχ1χ2.
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All together, we obtain

|ũ(q̃T )− u(q̃T )| = |z̃T − u(q̃T )|

≤ |z̃T − u(q)|+ |u(qT )− u(q̃T )|

≤ Cχ1 + C‖∇(u ◦ η)‖∞ (‖xT − ηx(q̃T )‖+ ‖yT − ηy(q̃T )‖)

≤ Cχ1 + C(χ1 + χ1χ2) = Cχ1 + Cχ1χ2 (3.68)

Remark 3.5.2. To keep the presentation concise, we have written C to indicate

all constants that do not depend on essential parameters.

Remark 3.5.3. As shown above, u will be captured strongly. Du, on the other

hand, depends on a derivative with respect to the fast variable, and therefore will

only be convergent in a weak sense.

Relevance to an error analysis for PDE-FLAVORs: The above result guar-

antees the convergence of FLAVORized characteristics. It is also possible to estab-

lish an error bound on the difference between a specific PDE-FLAVOR discretiza-

tion and the approximation given by the above FLAVORized characteristics (and

hence prove the convergence of this specific PDE-FLAVOR discretization). Such

an error bound could be obtained by first transforming FLAVORized character-

istics to PDE-FLAVOR grid points via interpolating functions, and then using

the fact that coordinate transformations do not affect the efficiency of FLAVORs.

Many details are left to be filled in.
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Chapter 4

Quadratic and quasi-quadratic stiff potentials

Significant research has been done for coarse-timing-stepping of mechanical sys-

tems with quadratic stiff potentials (see Section 1.3.3), i.e., with Hamiltonian writ-

ten as

H(q, p) =
1

2
pTM−1p+ V (q) +

ε−1

2
qTKq, (4.1)

where M and K are constant positive-definite symmetric matrices and V (·) is an

arbitrary function. This type of system is also frequently referred to as highly-

oscillatory second-order differential equations.

Highly-oscillatory mechanical systems call for a specialized treatment, even

though general multiscale strategies such as FLAVORization (Chapters 2 and 3)

apply. On the one hand, computations could be further accelerated in this special

case, because it is possible to use a macroscopic timestep for symplectic integrations

— although both are independent of the stiffness in the equation, a macroscopic

step is an order of magnitude larger than a mesoscopic step, which is required

by general multiscale methods based on averaging, such as FLAVORs, HMM and

equation-free (notice only FLAVORs are symplectic).

On the other hand, all position variables, including the fast ones, could be

captured numerically in a strong sense. This seems implausible at a first glance,

because a single integration step (macroscopic) spans over many periods of the fast

process. However, this peculiarity, as well as the previously mentioned acceleration

by the meso-to-macro up-scaling, could be simultaneously explained: in FLAVORs
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we sample the fast process in order to get its effective contribution, but for highly

oscillatory mechanical systems it is known that the fast process approximates

harmonic oscillations at each step. Because of this, both the weak convergence of

FLAVORs on fast variables and the strong convergence of methods in the chapter

are natural. In fact, the weak convergence of FLAVORs is already optimal, because

in general, a signal of B hertz needs 2B points for its representation due to Nyquist-

Shannon sampling theorem [251], and these 2B points are clearly more than what

a mesoscopic step could provide. A more careful inspection shows, however, that

this theorem is only a sufficient but not necessary condition. If additional a priori

information is available, such as a low dimensional set of bases for the signal,

then the signal can be reconstructed by fewer parameters1. This is indeed why

the fast process in highly oscillatory mechanical systems could be captured by

macroscopic steps, because in this case bases are known to be harmonic functions.

For general unknown fast processes, which are what FLAVORs aim at, however,

a low dimensional set of bases does not exist a priori.

Regarding integrations of this type, we will present three of our contributions:

1. The impulse method [297, 124, 286] is one of the prevailing methods that

enables such an integration. It has also been ‘mollified’, i.e., a filter on the

slow force is introduced, so that the resulting method has better stability

and accuracy.

We try to find a variational principle for the impulse method, but end up

rediscovering one of its mollified versions. This possibly could facilitate more

analysis on the mollified impulse method, including backward error analysis

and a study of momentum maps, but the generality of this new variational

principle is much beyond the variational derivation of a mollified impulse

method: it should work for imposing arbitrary assumptions on the form

of the solutions (for the case of impulse, the assumption is that each half-

step update corresponds to the flow of harmonic oscillators). Details of

1We refer to compressive sensing [58, 83] for a discussion.
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this principle will be given in Section 4.1, but its applications remain to be

investigated.

2. There have been, of course, various error analyses on impulse methods, for

instance [109, 123, 240], but either (i) position and momentum are shown to

be convergent at different orders, or (ii) a filter on the slow force is needed

so that position and momentum can be considered together in the analysis,

in which case, however, the method is no longer the original impulse but the

mollified ones.

We use a different perspective to view the original impulse method as a split-

ting method, and by doing this we are able to [276] (i) propose a new error

analysis that treats position and momentum simultaneously; (ii) generalize

the impulse method to the general Langevin case with slow force, fast (lin-

ear) force, (fast) friction, and noise, all present at the same time (the impulse

method has been extended to Langevin dynamics [255], but the method there

only considers a slow force and could not handle fast frictions); (iii) show for

the first time that the original impulse method is not only symplectic but

also variational.

3. Lastly, but perhaps most significantly (it is stated last simply because it

needs the previous results), we use the perspective of splitting and the error

analysis introduced above to propose coarse-step-integrators of mechanical

systems with quasi-quadratic stiff potentials, i.e., with Hamiltonian

H(q, p) =
1

2
pTM−1p+ V (q) +

ε−1

2
[qfast]TK(qslow)qfast, (4.2)

We also propose efficient and symplectic matrix exponentiation algorithms

to enable such integrations, but these exponentiation algorithms are generic,

and their applications are not limited to numerical integrations.

As a result, (possibly high-dimensional) mechanical systems with quasi-

quadratic stiff potentials can be accurately and symplectically integrated
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using macroscopic timesteps. Our approach is so far the only method that

could do so (see [82] for a method for systems that have either one varying

fast frequency or several constant frequencies).

4.1 Hamilton-Pontryagin-Marsden principle

4.1.1 The general variational principle

Hamilton-Pontryagin principle is a variational principle that generalizes the well-

known Hamilton principle of ‘least’ action. Specifically, given the Lagrangian

L : Q×TQ 7→ R of a mechanical system in a configuration space Q, the equation of

motion will be given by the critical point (q(t), v(t), p(t)) of the following functional:

S =

∫ T

0
L(q, v) + 〈p, q̇ − v〉 dt (4.3)

where naturally q(t) ∈ Q, v(t) ∈ TQ, and p(t) ∈ T ∗Q. It is not difficult to see that

they indeed correspond to position, velocity and momentum.

Variational integrators could be derived by discretizing the action using quadra-

tures, and then taking the variation with respect to finite many arguments. For

instance, one simplest discretization (based on a left-point rule) would be:

Sd =

N−1∑
i=0

h

(
L(qi, vi) +

〈
pi,

qi+1 − qi
h

− vi
〉)

, (4.4)

where h is the timestep satisfying Nh = T .

Now suppose there is some a priori knowledge about the form of the solution,

i.e., qi+1 = f(qi, vi) for some function f , which we wish to enforce and incorporate

into the variational principle. It can be seen that (4.4) in fact uses an assumption

that qi+1 = qi + hvi. In the general case, we will simply replace that by f , and

obtain the following discrete action:

Sd =

n−1∑
i=0

h

(
L(qi, vi) +

〈
pi,

qi+1 − f(qi, vi)

h

〉)
, (4.5)
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I wish to call the discrete action (4.5) accompanied by the usual variational prin-

ciple of δSd = 0 the Hamilton-Pontryagin-Marsden principle, in order to

acknowledge Professor Jerrold Eldon Marsden’s immortal contributions to contin-

uous and discrete mechanics.

4.1.2 An example application to quadratic stiff potentials

An easiest example of the applications of Hamilton-Pontryagin-Marsden princi-

ple (its action defined in (4.5)) is that it gives the exact solution to a harmonic

oscillator, although the principle itself is only a numerical approximation.

Specifically, if the Lagrangian is L(q, v) = 1
2v

2 + 1
2ω

2q2, and an a priori knowl-

edge of qi+1 = cos(ωh)qi + sin(ωh)/ωvi is available, by solving


∂qiSd = 0

∂viSd = 0

∂piSd = 0

(4.6)

for all i and eliminating pi, we obtain:


qi+1 = cos(ωh)qi + sin(ωh)

ω vi

vi+1 = −ω sin(ωh)qi + cos(ωh)vi

, (4.7)

which is the exact solution of the system (notice that we get the correct velocity

for free).

Now, if the Lagrangian is L(q, v) = 1
2v

2 + 1
2ω

2q2 +V (q), i.e., the one considered

by impulse and mollified impulse methods, and the same a priori knowledge is

again used, then by applying Hamilton-Pontryagin-Marsden principle (its action

defined in (4.5)) we obtain:


qi+1 = cos(ωh)qi + sin(ωh)

ω vi

vi+1 = −ω sin(ωh)qi + cos(ωh)vi − sin(ωh)
ω ∇V (qi+1)

(4.8)
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Notice that a first order version of the impulse method is (see Section 4.2):


qi+1 = cos(ωh)qi + sin(ωh)

ω vi

vi+1 = −ω sin(ωh)qi + cos(ωh)vi − h∇V (qi+1)

, (4.9)

which is apparently the limit of (4.8) as ω → 0.

Curiously enough, (4.8) coincides with a first-order version of the mollified

impulse method that corresponds to the LongAverage filter on the slow force (see

[109]). Although we will also show that impulse method is variational (Section

4.2), (4.9) is interesting in the sense that its variational formulation is in a close

form (as opposed to an infinite series expansion involving Poisson brackets for

the case of the original impulse method). This opens the possibilities for various

analyses, such as conservation of momentum maps, modulated Fourier expansion,

and backward error analysis.

4.2 Stochastic impulse methods and error analysis in

energy norm

Most results in this section can be found in a submitted manuscript [276].

4.2.1 Methodology

We will directly consider the Langevin setting, for the Hamiltonian setting is a

degenerate case of it. Namely, consider numerical integrations of the following stiff

Langevin SDEs Mdq = pdt

dp = −∇V (q)dt− ε−1Kqdt− cpdt+ σdW
(4.10)

where 0 < ε � 1, q ∈ Rd, p ∈ Rd, K is a positive definite d × d matrix, c and σ

are positive semi-definite d × d matrices, respectively indicating viscous damping

coefficients and amplitudes of noises. We restrict ourselves to Euclidean phase
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spaces, although the method is readily generalizable to manifolds. In addition, we

require that matrices K and c commute; a special case satisfying this requirement

is c being a scalar.

In the case of no noise no friction (c = 0 and σ = 0), the system degenerates

to a deterministic mechanical system with Hamiltonian (4.1).

Also, the method as well as its properties (e.g., uniform convergence) general-

izes to open systems: Mdq = pdt

dp = F (q)dt− ε−1Kqdt− cpdt+ σdW
(4.11)

but we stick to (4.10) for simplicity in descriptions.

Denote by φf (τ) :
(
qf (t), pf (t)

)
7→
(
qf (t+ τ), pf (t+ τ)

)
and φs(τ) : (qs(t), ps(t)) 7→

(qs(t+ τ), ps(t+ τ)) respectively the τ -flow maps of the autonomous SDE systems

 Mdqf = pfdt

dpf = −ε−1Kqfdt− cpfdt+ σdW
(4.12)

and  Mdqs = 0

dps = −∇V (qs)dt
(4.13)

Since the first system is a linear SDE and the second is a free drift, flows of both

can be obtained exactly.

Then Stochastic Impulse Methods (SIMs) are defined via compositions of φf

and φs. Here are several examples of SIMs with a timestep H:

Integrator 4.2.1. 1st-order SIM in the c = 0, σ = 0 case, is given by the
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one step update of φs(H) ◦ φf (H):



qk′ = A11(H)qk +A12(H)pk

pk′ = A21(H)qk +A22(H)pk

qk+1 = qk′

pk+1 = pk′ −H∇V (qk′)

where

 A11(H) A12(H)

A21(H) A22(H)

 = exp

 0 M−1H

−ε−1KH 0

 ,

q0 = q(0)

p0 = p(0)

Remark 4.2.1. The other 1st-order SIM, as the above’s dual, can be obtained via

the one step update φf (H) ◦ φs(H). Both these 1st-order composition schemes are

well known as the Lie-Trotter splitting [285].

Integrator 4.2.2. 1st-order SIM in the full Langevin case, given by the
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same one step update φs(H) ◦ φf (H):



qk′ = B11(H)qk +B12(H)pk +Rqk(H)

pk′ = B21(H)qk +B22(H)pk +Rpk(H)

qk+1 = qk′

pk+1 = pk′ −H∇V (qk′)Rqk(H)

Rpk(H)

 ∼ N (

0

0

 ,
Σ2

11(H)) Σ2
12(H))

Σ2
21(H)) Σ2

22(H))

), i.i.d.

where

 B11(H) B12(H)

B21(H) B22(H)

 = exp

 0 M−1H

−ε−1KH −cH

 ,

q0 = q(0)

p0 = p(0)

,



Σ2
11(H) =

∫ H
s=0

(
B12(H − s)σσTBT

12(H − s)
)
ds

Σ2
12(H) =

∫ H
s=0

(
B12(H − s)σσTBT

22(H − s)
)
ds

Σ2
21(H) =

∫ H
s=0

(
B22(H − s)σσTBT

12(H − s)
)
ds

Σ2
22(H) =

∫ H
s=0

(
B22(H − s)σσTBT

22(H − s)
)
ds

Remark 4.2.2.

Rqk(H)

Rpk(H)

 indicates the value of
∫ H
s=0B(H − s)

 0

σdWs

 and

hence is a vectorial normal random variable with zero mean and covariance ofΣ2
11(H) Σ2

12(H)

Σ2
21(H) Σ2

22(H)

.

Integrator 4.2.3. 2nd-order SIM in the full Langevin case, given by the
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one step update φs(H/2) ◦ φf (H) ◦ φs(H/2):



qk′ = qk

pk′ = pk − H
2 ∇V (qk)

qk′′ = B11(H)qk′ +B12(H)pk′ +Rqk(H)

pk′′ = B21(H)qk′ +B22(H)pk′ +Rpk(H)

qk+1 = qk′′

pk+1 = pk′′ − H
2 ∇V (qk′′)

Remark 4.2.3. This uses the 2nd-order composition scheme known as the Strang

or Marchuk splitting [266, 191]. When no noise or friction, i.e. c = 0 and Σ = 0,

the resulting integrator degenerates to the prevailing Verlet-I/r-RESPA impulse

method [124, 286].

Remark 4.2.4. Higher order SIMs can be obtained systematically since generic

way for constructing higher order splitting/composition schemes exists (see for

example [128]). For instance, a 4th order SIM is given by φs(cH/2) ◦ φf (cH) ◦

φs((1−c)H/2)◦φf ((1−2c)H)◦φs((1−c)H/2)◦φf (cH)◦φs(cH/2) where c = 1
2−21/3

[213].

4.2.2 Preserved structures

In the case of c = 0 and σ = 0, since φs and φf are the exact flows of Hamiltonian

systems, they are symplectic. Therefore, SIMs, as compositions of the two, are

symplectic.

Moreover, SIMs are not only symplectic but variational, in the sense that their

equations of motion are obtained as the critical point of a well-defined action,

which is the integral of a discrete Lagrangian and dependent on finitely many

discrete degrees of freedom. In fact, SIMs exactly preserve a Hamiltonian, which

could be obtained from H1(q, p) := V (q) and H2 := 1
2p
TM−1p + ε−1

2 qTKq via

Poisson brackets, because a SIM is a composition of two flows that correspond to

the split Hamiltonian systems (see [128] for how Hamiltonian splitting results in a
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new Hamiltonian). If a Lagrangian aspect is needed, a non-degenerate Legendre

transformation will do the job. Nevertheless, neither the corresponding Hamilto-

nian or the Lagrangian will be in a closed form, because they are both expressed

in forms of infinite series [128].

When noise and friction are present, SIMs are quasi-symplectic for RL1 and

RL2 in [205] can be easily checked to be true, i.e., they degenerate to symplec-

tic methods if friction is set equal to zero and the Jacobian of the flow map is

independent of (q, p). In addition, if c is isotropic, then SIMs are conformally

symplectic, i.e., they preserve the precise symplectic area change associated to the

flow of inertial Langevin processes [202]. These properties are consistent with the

numerically observed convergence (in distribution) towards the Boltzmann-Gibbs

invariant measure.

4.2.3 Uniform convergence

In the case of c = 0 and σ = 0, convergence of SIMs is guaranteed by the general

construction of splitting schemes. In the full Langevin setting, analogous conver-

gence results for the same splitting schemes can be easily obtained using generators

of SDEs. By this approach, however, the error bound will contain the scaling factor

ε−1 and therefore restrain the timestep from being large.

Instead, we seek for uniform convergence results, i.e., error bounds that don’t

depend on ω. It turns out a uniform error bound on both position q and momentum

p holds, but in a special norm called scaled energy norm, which translates to a

uniform error bound on q in Euclidean norm but a non-uniform bound on p in

Euclidean norm.

Definition 4.2.1. Scaled energy norm:

Ω , ε−1/2
√
K

‖

q
p

 ‖E , ‖
 q

Ω−1p

 ‖2 =
√
qT q + εpTK−1p
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This is well defined because K is positive definite.

Condition 4.2.1. We will prove a uniform bound on the scaled energy norm of

the global error of Integrator 4.2.2 if the following conditions hold:

1. Matrices c and K commute. A special case could be c being a scalar.

2. limε→0
√
ε‖c‖2 ≤ C for some constant C independent of ε, i.e. c ≤ O(ε−1/2).

3. σ is independent of ε−1, in the sense that limε→0 ε
p‖σ‖2 = 0 for any p > 0.

4. In the integration domain of interest ∇V (·) is bounded and Lipschitz contin-

uous with coefficient L, i.e. ‖∇V (a)−∇V (b)‖2 ≤ L‖a− b‖2.

5. Denote by x(T ) = (q(T ), p(T )) the exact solution to (4.10), and xT =

(qT , pT ) the discrete numerical trajectory given by Integrator 4.2.2, then

E‖x(T )‖22 ≤ C and E‖xT ‖22 ≤ C for some constant C independent of ε−1

but dependent on initial condition E‖

q0

p0

 ‖22, amplitude of noise σ and fric-

tion c. (This is the traditional stability requirement, but it could also be

understood as a bounded energy requirement.)

Remark 4.2.5. Notice that the damping coefficient c is allowed to be large (stiff).

The general GLA [41] approach of constructing a Langevin integrator from a sym-

plectic scheme by composing an Ornstein-Uhlenbeck flow with the symplectic inte-

grator will not allow a macroscopic timestep in this case of fast dissipation, but

SIMs do not have such a problem.

Theorem 4.2.1. If Condition 4.2.1 holds, the 1st order SIM (Integrator 4.2.2) for

multiscale Langevin system (4.10) (c 6= 0, σ 6= 0) has in mean square sense a uni-

form global error of O(H1/2) in q and a non-uniform global error of ε−1/2O(H1/2)

in p, given a fixed total simulation time T = NH:

(E‖q(T )− qT ‖22)1/2 ≤ CH1/2 (4.14)

(E‖p(T )− pT ‖22)1/2 ≤ ε−1/2‖
√
K‖2CH1/2 (4.15)
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where q(T ), p(T ) is the exact solution and qT , pT is the numerical solution; C is a

positive constant independent of ε−1 but dependent on simulation time T , scaleless

elasticity matrix K, scaled damping coefficient
√
εc (O(1)), amplitude of noise σ,

slow potential energy V (·), and initial condition E‖

q0

p0

 ‖22.

Proof. We refer to Appendix A.3.

Remark 4.2.6. By looking at the proof, one can be assured that all convergence

results of SIMs apply to situations where the deterministic system is in a more

general form of M d2

dt2
q = −ε−1Kq+F (q), where F (q) doesn’t have to be −∇V (q).

In the special case of Hamiltonian system, the same integrator gains 1/2 more

order of accuracy.

Condition 4.2.2. We will prove a uniform bound on the scaled energy norm of

the global error of Integrator 4.2.1 if the following conditions hold:

1. In the integration domain of interest ∇V (·) is bounded and Lipschitz contin-

uous with coefficient L, i.e. ‖∇V (a)−∇V (b)‖2 ≤ L‖a− b‖2.

2. Denote by x(T ) = (q(T ), p(T )) the exact solution to (4.10) with c = 0 and

σ = 0, and xT = (qT , pT ) the discrete numerical trajectory given by Integrator

4.2.1, then ‖x(T )‖22 ≤ C and ‖xT ‖22 ≤ C for some constant C independent

of ε−1 but dependent on initial condition ‖

q0

p0

 ‖22. (This is the traditional

stability requirement, but it could also be understood as a bounded energy

requirement.)

Theorem 4.2.2. If Condition 4.2.2 holds, the 1st order SIM (Integrator 4.2.1)

for multiscale Hamiltonian system ( (4.10) with c = 0, σ = 0) has a uniform global

error of O(H) in q and a non-uniform global error of ε−1/2O(H) in p, given a

fixed total simulation time T = NH:

‖q(T )− qT ‖2 ≤ CH (4.16)

‖p(T )− pT ‖2 ≤ ε−1/2‖
√
K‖2CH (4.17)
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where q(T ), p(T ) is the exact solution and qT , pT is the numerical solution; C is a

positive constant independent of ε−1 but dependent on simulation time T , scaleless

elasticity matrix K, slow potential energy V (·) and initial condition ‖

q0

p0

 ‖2.

Proof. It follows by simplifying the proof of Theorem 4.2.1.

Remark 4.2.7. These results are to our knowledge the first error analysis of the

impulse method that unites both position and momentum without the introduction

of a slow force filter (i.e., mollification).

4.2.4 Stability

As one sees from Condition 4.2.1 and 4.2.2 (as another nonlinear demonstration

of Lax equivalence theorem [174]), stability is necessary for global convergence.

Instability could either come from the problem itself (not all SDEs have bounded

solutions in the mean square sense), or from imperfection in numerical integra-

tion schemes. Here consider the latter possibility only. It is shown that impulse

methods are not unconditionally stable [109], and its improvement, mollified im-

pulse methods, are still susceptible to instability intervals (although narrower) in

a linear example [55]. Nevertheless, instability intervals of impulse method are al-

ready narrow regions; for instance, the first instability interval in the stiff example

considered by [55] is 0.544 < H < 0.553. It is intuitive that instability intervals

for the stochastic case with damping or higher-order schemes will not be wider.

Therefore, one could still choose a large timestep H in SIMs without hitting the

instability, by at most a few integration tryouts with slightly varied H values.

Remark 4.2.8. Stochastic impulse method could be mollified by using Hamilton-

Pontryagin-Marsden principle (Section 4.1) if additional stability is desired. This

is one possible future direction.
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4.2.5 A stochastic numerical example

Consider a “Wall – linear stiff Spring – Mass – nonlinear soft Spring – Mass” system

with both masses under isotropic noise and friction (Figure 4.1). The Hamiltonian

is H(x, y, px, py) = 1
2p

2
x + 1

2p
2
y + 1

2ω
2x2 + 1

4(y − x)4 and the governing equations

write as:

Figure 4.1: 2-spring systems



dx = pxdt

dy = pydt

dpx = −(ω2x+ (x− y)3)dt− cpxdt+ σdW 1
t

dpy = −(y − x)3dt− cpydt+ σdW 2
t

(a) Full period case: sin(ωH) = 0 (b) Quarter period case: cos(ωH) = 0

Figure 4.2: Empirical moments obtained by 1st-order SIM with macroscopic step H and 1st-

order GLA [41] with microscopic step h. Parameters are ω = 100, c = 0.1, β = 2c
σ2 = 10,

x(0) = 0.8/ω, y(0) = 1.1 + x(0), px(0) = 0, py(0) = 0; h = 0.1/ω and H is chosen to be not

scaling with ω yet corresponding to a resonant frequency; empirical moments are obtained by

averaging 5000 simulations.

1st-order SIM (Integrator 4.2.2) is compared in Figure 4.2 to the benchmark of
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Geometric Langevin Integrator (GLA) [41], which is both Boltzmann-Gibbs pre-

serving and path-wise convergent. Agreements on empirical moments of integrated

trajectories serve as evidences of convergence in distribution. The large timesteps

used by SIM are chosen to be the resonance frequencies and they do produce stable

accurate results. O(ω)-fold acceleration is gained by SIM.

4.2.6 A deterministic numerical example

Consider again the deterministic Fermi-Pasta-Ulam (FPU) problem ([101]; dis-

cussed in Section 2.6.3 and illustrated in Figure 2.8), which corresponds to the

Hamiltonian:

H(q, p) :=
1

2

m∑
i=1

(p2
2i−1 + p2

2i) +
ω2

4

m∑
i=1

(q2i − q2i−1)2 +

m∑
i=0

(q2i+1 − q2i)
4 (4.18)

Conventionally, the following transformation is used



xi = (q2i + q2i−1)/
√

2

xm+i = (q2i − q2i−1)/
√

2

yi = (p2i + p2i−1)/
√

2

ym+i = (p2i − p2i−1)/
√

2

, i = 1, ...m, (4.19)

so that the stiff potential is diagonalized:
H(x, y) = 1

2

∑2m
i=1 y

2
i + Vf (x) + Vs(x)

Vf (x) = ω2

2

∑m
i=1 x

2
m+i

Vs(x) = 1
4((x1 − xm+1)4 +

∑m−1
i=1 (xi+1 − xm+i+1 − xi − xm+i)

4 + (xm + x2m)4)

We present in Figure 4.3 1st-order SIM simulation (Integrator 4.2.1) together

with Variational Euler (also known as symplectic Euler) simulation of FPU over

a time span of O(ω). Good results are obtained by SIM beyond the timescale

of O(1) (as guaranteed by Theorem 4.2.1) but actually over O(ω), and 200-fold

(ω = 200) acceleration is gained at the same time.
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(a) 1st-order SIM, large step H = 0.1 (b) Variational Euler, small step h =

0.1/ω = 0.0005

Figure 4.3: Simulations of FPU over T = 5ω. Parameters are ω = 200, m = 3, x(0) =

[1, 0, 0, 1/ω, 0, 0], y(0) = [0, 0, 0, 0, 0, 0]. Different subplots use different time axes to accentuate

different timescales: Subplot1 shows scaled expansions of three stiff springs xm+i, which are fast

variables; Subplot2 shows scaled middle point position of the first stiff spring x1, which is one

of the slow variables; Subplot3 shows the energy transferring pattern among stiff springs, which

is even slower; Subplot4 shows the near-constant total energy of three stiff springs. The fast

variables of stiff spring expansions are in fact oscillating much faster than shown in Subplots 1,

because Subplots 1 are plotted by interpolating mesh points with a coarse mesh size of H.

Notice that mollified impulse methods with ShortAverage, LongAverage or

LinearAverage filters (introduced in [109]) do not accurately capture the rates of

energy exchanging among stiff springs over a time span longer than O(ω) (results

not shown).

4.3 Quasi-quadratic stiff potentials

Most results in this section can be found in a submitted manuscript [273].
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4.3.1 The general methodology for arbitrary stiff potentials

Consider the numerical integration of a multiscale Hamiltonian system:


M

q̇fast
q̇slow

 =

pfast
pslow


ṗfast
ṗslow

 = −∇V (qfast, qslow)− ε−1∇U(qfast, qslow)

(4.20)

where qslow, pslow and qfast, pfast are slow and fast degrees of freedom (in the

sense that slow degrees of freedom have bounded time derivatives, whereas time

derivatives of fast ones may grow unboundedly as ε→ 0). Notice that not all stiff

Hamiltonian systems are multiscale, and whether a separation of timescales exists

depends on specific forms of V (·), U(·) and initial conditions; to the authors’

knowledge, however, a generic theory that determines whether a stiff system is

multiscale has not been fully developed yet.

Assume without loss of generality that M is the identity matrix. The governing

ODE system (4.20) can be written as the sum of three vector fields:



q̇fast = 0

ṗfast = 0

q̇slow = pslow

ṗslow = 0



q̇fast = 0

ṗfast = − ∂V
∂qfast

q̇slow = 0

ṗslow = − ∂V
∂qslow



q̇fast = pfast

ṗfast = −ε−1 ∂U
∂qfast

q̇slow = 0

ṗslow = −ε−1 ∂U
∂qslow

Denote the exact flow map of each system respectively by φi(s), i = 1, 2, 3 over a

time of s. It is easy to see that all of them are symplectic.

Observe that φ1 and φ2 are analytically available. We only consider the case

where φ3 is also analytically or numerically known; more precisely, the numerical

solution φ̃3 has to have a consistent uniform local error over a coarse time step

H = o(1), i.e., ‖φ̃3(H)−φ3(H)‖ ≤ CH2 for a constant C independent of ε−1. This

can be satisfied for arbitrary U(·) by a symplectic integration with a microscopic

timestep h = o(
√
ε), which is in the same spirit as the impulse method. On



134

the other hand, for specific types of U(·), such as quasi-quadratic stiff potentials

(defined in Section 4.3.2), a method alternative to fine-scale integration can be

proposed (see Section 4.3.4 and 4.3.5).

Having the three flow maps at hand, one-step update of the proposed method

is obtained by composing the three flow maps: φ1(H)◦φ2(H)◦φ3(H). Notice that

any split can result in a convergent numerical scheme, but this particular split

treats two timescales independently and therefore is uniformly convergent at least

in the quasi-quadratic stiff potential case (illustrated later); also, it results in a

symplectic scheme.

Remark 4.3.1. If there were no slow variable, we would compose the flows of
q̇fast = pfast

ṗfast = −ε−1 ∂U
∂qfast

and


q̇fast = 0

ṗfast = − ∂V
∂qfast

and obtain a first-order version

of the original impulse method.

Remark 4.3.2. There are also alternative higher-order ways of composing these

flow maps; see, for instance, [128, 213]. In fact, the original impulse method

is second-order and can be constructed from a second-order composition scheme.

However, we will stick to first-order Lie-Trotter (φ1(H) ◦ φ2(H) ◦ φ3(H)) in this

section.

Remark 4.3.3. If the impulse method were used to integrate (4.20), its practical

implementation requires a numerical approximation to the stiff system


q̈fast = −ε−1∂U/∂qfast(qfast, qslow)

q̈slow = −ε−1∂U/∂qslow(qfast, qslow)

, (4.21)

which generally needs to be based on a numerical integration with small steps. The

advantage of the impulse method over Verlet is that ∇V only needs to be evaluated

at coarse timesteps, but nevertheless its computational cost blows up as ε→ 0.

The proposed method, on the other hand, only requires an exact solution or a
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numerical approximation to the following stiff system:


q̈fast = −ε−1∂U/∂qfast(qfast, ·)

ṗslow = −ε−1∂U/∂qslow(qfast, ·)
, (4.22)

in which qslow is fixed.

Compared to (4.21) (required by the impulse method), (4.22) is always easier

to solve or approximate. In another words, whenever the proposed method requires

an introduction of microscopic integration, the impulse method does so as well. On

the other hand, when the impulse method needs a microscopic step, the proposed

method might still be able to use a macroscopic step, as we will immediately see.

4.3.2 Quasi-quadratic stiff potentials: Introduction

One case in which the proposed method allows macroscopic steps but the impulse

method does not is when U = 1
2 [qfast]

T
K(qslow)qfast, where K is an arbitrary

positive definite df -by-df symmetric-matrix-valued function. This U represents

stiff harmonic oscillators with non-constant but slowly varying frequencies, and we

call such potentials quasi-quadratic.

In this case, we show that the exact flow map φ3 can be explicitly computed by

exponentiating a matrix. To be practical, of course, we numerically approximate

the matrix exponential.

Still, if not handled appropriately, the computational cost of the numerical ex-

ponentiation blows up rapidly as ε decreases and/or the dimension of the system

increases. Furthermore, symplecticity would also be jeopardized by inaccuracies

in the numerical exponentiations. In fact, there are various approaches to expo-

nentiate a matrix, including diagonalization, series methods, scaling and squaring,

ODE solving, polynomial methods, matrix decomposition methods, and splitting,

etc., as comprehensively reviewed in [208]; few of them, however, guarantee the

resulting implementation of the proposed method to be symplectic (as it analyt-

ically should be), unless the computation is executed to a very high precision at
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the cost of losing computational efficiency. For instance, the prevailing method

of scaling and squaring, which is used by the MATLAB command ‘expm’, uses a

Padé approximation [141], which is unfortunately not symplectic (see (4.37) and

corresponding discussion). Similarly, there is no reason for methods based on ma-

trix decompositions (e.g., diagonalization, QR decomposition, etc.; see for instance

[121]) to preserve the geometric structure of symplecticity.

In this section, we propose an integrator well-adapted to high-dimensional sys-

tems, which computes the exponentiation in an efficient and symplectic way. Only

O(n) matrix multiplication operations at each coarse time step are needed, where

n is a preset small integer at most log ε−1. Although simple in appearance, to

guarantee the symplecticity (in all variables) of the resulting method and compu-

tational efficiency at the same time is a surprisingly difficult problem, and in fact

it is highly nontrivial even when K(qslow) is a scalar [176].

In addition to a solution to this problem, we also provide a general method for

iteratively exponentiating a slowly varying sequence of (possibly high dimensional)

matrices in an efficient way (see Sections 4.3.5 and 4.3.11). This method works for

any matrices, and it is not restricted to the numerical integration of (4.20). The

preservation of symplecticity associated with these two proposed matrix exponen-

tiation schemes (both suit high-dimensional systems; the first one is in Section

4.3.4) is a core difficulty that we addressed.

4.3.3 When the frequency matrix is diagonal

Given a quasi-quadratic stiff potential, the third split vector field writes as



q̇fast = pfast

ṗfast = −ε−1K(qslow)qfast

q̇slow = 0

ṗslow = −ε−1 1
2 [qfast]

T∇K(qslow)qfast

(4.23)
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where the last equation is understood as ṗslowi = −ε−1 1
2 [qfast]

T
∂iK(qslow)qfast for

i = 1, . . . , ds.

The flow of this dynamical system on qfast and pfast is just an exponential

map, which in this case corresponds to linear combinations of initial conditions

with trigonometric coefficients. For pslow, because qslow (and hence ∇K(qslow))

is fixed, one could obtain its exact flow by analytically integrating a quadratic

function of trigonometric functions.

When df = 1, the exact flow map of (4.23) over time H is (letting ω =√
ε−1K(qslow)):



qfast 7→ cos(ωH)qfast + sin(ωH)/ωpfast

pfast 7→ −ω sin(ωH)qfast + cos(ωH)pfast

qslow 7→ qslow

pslow 7→ pslow − ε−1 1
2∇K(qslow) 1

4ω3

(
2ω(H[pfast]2 + pfastqfast + ω2H[qfast]2)

−2ωpfastqfast cos(2ωH) + (−[pfast]2 + ω2[qfast]2) sin(2ωH)
)

(4.24)

where again the last equation is understood as

pslowi 7→ pslowi − ε−1 1
2∂iK(qslow) 1

4ω3

(
2ω(H[pfast]2 + pfastqfast + ω2H[qfast]2)

−2ωpfastqfast cos(2ωH) + (−[pfast]2 + ω2[qfast]2) sin(2ωH)
)

(4.25)

When df ≥ 2, the obvious method to obtain the exact flow of (4.23) is

based on a diagonalization of K. More precisely, since K is symmetric, we

can write ε−1K(qslow) = ε−1Q(qslow)TD(qslow)Q(qslow), where ε−1D(qslow) =

diag[ω2
1, . . . , ω

2
df

]). Then

exp

 0 HI

−ε−1HK(qslow) 0

 =

QT 0

0 QT

 exp

 0 HI

−ε−1HD 0

Q 0

0 Q

 =

QT 0

0 QT

 ·
 diag[cos(ω1H), . . . , cos(ωdfH)] diag[sin(ω1H)/ω1, . . . , sin(ωdfH)/ωdf ]

diag[− sin(ω1H)ω1, . . . ,− sin(ωdfH)ωdf ] diag[cos(ω1H), . . . , cos(ωdfH)]

Q 0

0 Q


(4.26)
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A similar (but lengthy) calculation will give the expression of the flow on pslow.

If the diagonalization frame of K(·) is constant, i.e., Q does not depend on

qslow, then Q needs to be computed only once throughout the simulation, and

then the calculation of the flow on qfast and pfast is dominated by the cost of 2

matrix multiplication operations per coarse step (at expense of O(df
2.376) per mul-

tiplication by the state-of-art Coppersmith-Winograd algorithm [75]). However,

if the frame varies (Q depends on qslow), then diagonalizing K at each time step

can offset the gain obtained by the macro-time-stepping of the algorithm. This is

especially true if df is large. Moreover, errors in numerical diagonalizations may

accumulate and deteriorate the symplecticity of φ3.

We address those difficulties by proposing a method, described below, for the

numerical integration of (4.23) that is symplectic and that remains computation-

ally tractable in high-dimensional cases (large df ).

4.3.4 Fast matrix exponentiation for the symplectic integration of

the entire system

The proposed approximation of φ3 is based on matrix exponentiation. We will

first describe its analytical formulation, and then present an accurate numerical

approximation that is both symplectic and computationally cheap.

The first step of our method is based on the following property of matrix

exponentials illustrated in [288]: if N and M are constant square matrices of the

same dimension, then

exp

−NT M

0 N

H
 =

F2(H) G2(H)

0 F3(H)

 (4.27)

with 
F2(H) = exp(−NTH)

F3(H) = exp(NH)

F3(H)TG2(H) =
∫ H

0 exp(NT s)M exp(Ns) ds

(4.28)
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This could be proven by solving the ODEs that F2, F3, G2 satisfy (see Lemma 4.3.8

for a more difficult case).

Therefore, ordering coordinates as qfast, pfast, takingN :=

 0 I

−ε−1K(qslow) 0


and Mi :=

ε−1∂iK(qslow) 0

0 0

 with i = 1, . . . , ds which indicates the component

of the slow variable, we obtain that if

F2(H) G2,i(H)

0 F3(H)

 := exp

−NT Mi

0 N

H
 (4.29)

then the (linear) flow map on qfast, pfast is given by

exp(NH) = F3(H) (4.30)

and the (nonlinear) drift on pslow is given by

∫ t+H

t
qfast(s)T ε−1∂iK(qslow)qfast(s) ds

=

∫ H

0

qfast(t)
pfast(t)

T exp(NT s)Mi exp(Ns)

qfast(t)
pfast(t)

 ds
=

qfast(t)
pfast(t)

T F3(H)TG2,i(H)

qfast(t)
pfast(t)

 (4.31)

Therefore, φ3(H) is given by:

qfast
pfast

 7→ F3(H)

qfast
pfast


qslow 7→ qslow

pslowi 7→ pslowi − 1
2

qfast
pfast


T

F3(H)TG2,i(H)

qfast
pfast


(4.32)
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where in the last equation i = 1, . . . , ds.

In addition, our specific choice of Mi is a symmetric matrix for each i, be-

cause K(·) is symmetric. Consequently, exp(NT s)Mi exp(Ns) is symmetric, and

therefore

F3(H)TG2,i(H) = (F3(H)TG2,i(H))T (4.33)

Assuming we have F3 and G2,i (which will be given by Integrator 4.3.2), (4.20)

can be integrated by the following:

Integrator 4.3.1. Symplectic integrator for (4.20) with U = 1
2 [qfast]

T
K(qslow)qfast:

its one-step update mapping qk, pk onto qk+1, pk+1 with a macroscopic timestep H

is given by:



qslowk′ = qslowk +Hpslowk

qfastk′ = qfastk

pslowk′ = pslowk −H∂V/∂qslow(qslowk′ , qfastk′ )

pfastk′ = pfastk −H∂V/∂qfast(qslowk′ , qfastk′ )

(4.34)



qfastk+1

pfastk+1

 = F3,k

qfastk′

pfastk′


qslowk+1 = qslowk′

pslowk+1,i = pslowk′,i −
1
2

qfastk′

pfastk′

T F T3,kG2,k,i

qfastk′

pfastk′


(4.35)

where F2,k, G2,k,i (i = 1, . . . , ds) and F3,k are numerical approximations of that

in (4.29) at each time step k′ (using qslowk′ ), for instance computed by Integrator

4.3.2.

Remark 4.3.4. Integrator 4.3.1 could be mollified by using Hamilton-Pontryagin-

Marsden principle (Section 4.1) if additional stability is desired. This is one pos-

sible future direction.

To numerically approximate the above flow map (4.32), i.e., to obtain F3,k

and G2,k,i, we need to ensure two points: (i) an approximation of the matrix
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exponential (and hence F3,k and G2,k,i) will not affect the symplecticity of the

resulting approximation of φ3; (ii) the numerical computation of the exponential

(4.29) will not offset the savings gained by using a coarse timestep. This is not easy;

in fact, here is an illustration of a popular non-decomposition-based exponentiation

method that fails to satisfy this symplecticity condition:

Example: MATLAB function ‘expm’ [141] uses a scaling and squaring strategy

based on the following identity:

exp(X) = [exp(X/2n)]2
n

(4.36)

where n is a big enough preset integer such that X/2n has a small norm, and

therefore Padé approximation [141] could be employed to approximate exp(X/2n).

The simplest (1,0) Padé approximation, which is essentially Taylor expansion to

1st-order, gives

exp(X) ≈ [I +X/2n]2
n

(4.37)

However, this approximation is not symplectic. For instance, consider a counterex-

ample of X =

 0 I

−Ω2 0

. Obviously, this corresponds to a vectorial harmonic

oscillator, and exp(X) ought to be symplectic. However, it can be easily checked

that A := I +X/2n does not satisfy ATJA = J and hence is not symplectic. �

Our idea is to obtain F2,k and F3,k using a modified scaling and squaring strat-

egy, in which the Padé approximation is replaced by a symplectic approximation

originated from a reversible symplectic integrator (we use Velocity-Verlet). More

precisely, suppose h > 0 is a small constant, then we have the following identity:

F2,k(H) G2,k,i(H)

0 F3,k(H)

 =

F2,k(h) G2,k,i(h)

0 F3,k(h)

H/h (4.38)
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F3,k(h) can be approximated by the following:

exp

 0 hI

−hε−1K(qslowk′ ) 0

 ≈
I − h2

2 ε
−1K(qslowk′ ) h

(
I − h2

4 ε
−1K(qslowk′ )

)
−hε−1K(qslowk′ ) I − h2

2 ε
−1K(qslowk′ )

 ,
(4.39)

which can be easily checked to be symplectic thanks to the specific O(h2) and

O(h3) corrections in the above expression.

It is a classical result (global error bound of Velocity-Verlet) that links F3,k(H)

with the approximated F3,k(h):

∥∥∥∥∥∥∥exp

 0 HI

−Hε−1K(qslowk′ ) 0

−
I − h2

2 ε
−1K(qslowk′ ) h

(
I − h2

4 ε
−1K(qslowk′ )

)
−hε−1K(qslowk′ ) I − h2

2 ε
−1K(qslowk′ )

H/h
∥∥∥∥∥∥∥

2

≤ ε−1C exp(CH)h2 (4.40)

for some constant C > 0, because the approximation in (4.39) corresponds to the

celebrated Velocity-Verlet integrator with updating rule:
xi+ 1

2
= xi + h

2yi

yi+1 = yi − hε−1K(qslowk′ )xi+ 1
2

xi+1 = xi+ 1
2

+ h
2yi+1

(4.41)

for the system


ẋ = y

ẏ = −ε−1K(qslowk′ )x

, which is well-known to have a 2nd-order

global error.

We can repeat the same procedure to get an approximation of F2,k(H) by using

the following approximated F2,k(h):

exp

 0 hε−1KT (qslowk′ )

−hI 0

 ≈
 I − h2

2 ε
−1KT (qslowk′ ) hε−1KT (qslowk′ )

−h
(
I − h2

4 ε
−1KT (qslowk′ )

)
I − h2

2 ε
−1KT (qslowk′ )


(4.42)

To approximate G2,k,i(h), we follow the result of Lemma 4.3.1 that in the
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continuous case G2,k,i = −J ∂
∂qslow
k′,i

F3,k and let

G2,k,i(h) = −J∂iF3,k(h) ≈

 hε−1 ∂
∂qslow
k′,i

K(qslowk′ ) h2

2 ε
−1 ∂

∂qslow
k′,i

K(qslowk′ )

−h2

2 ε
−1 ∂

∂qslow
k′,i

K(qslowk′ ) −h3

4 ε
−1 ∂

∂qslow
k′,i

K(qslowk′ )


(4.43)

Notice that if (1,0) Padé approximation (i.e., 1st-order Taylor expansion) is

used, we will get

G2,k,i(h) ≈ hMi =

hε−1 ∂
∂qslow
k′,i

K(qslowk′ ) 0

0 0

 (4.44)

Naturally, (4.43) is a higher-order correction of this.

G2,k,i(H) will also be accurate: since the accuracy of (4.37) is well established,

the higher-order corrections that we add in F2,k(H), F3,k(H), G2,k,i(H) will not

lead to a less accurate scheme. This can immediately be seen in the context of

the numerical integration of a stable system, where a local error of O(h2) will only

lead to a global error of at most ε−1CHh [174]. We also refer to Appendix A in

[208] for an analogous error analysis if one prefers to directly work with matrices.

To sum up, the following numerical approximation of F3,k and G2,k,i will si-

multaneously guarantee symplecticity, accuracy, and efficiency:

Integrator 4.3.2. Matrix exponentiation scheme that complements the updating

rule of Integrator 4.3.1. n ≥ 1 is an integer controlling the accuracy of the ap-

proximation of the matrix exponentials. k is the same index as the one used in

Integrator 4.3.1, and the following needs to be done for each k:

1. Evaluate Kk := K(qslowk′ ) and ∂iKk := ∂
∂qslow
k′,i

K(qslowk′ ). Let h = H/2n,

Ak :=

 I − ε−1Kk
h2

2 ε−1Kkh

−h(I − ε−1Kk
h2

4 ) I − ε−1Kk
h2

2

 , (4.45)



144

Ck :=

I − ε−1Kk
h2

2 h(I − ε−1Kk
h2

4 )

−ε−1Kkh I − ε−1Kk
h2

2

 , (4.46)

and for i = 1, . . . , ds,

Bk,i :=

 ε−1∂iKkh ε−1∂iKk
h2

2

−ε−1∂iKk
h2

2 −ε−1∂iKk
h3

4

 . (4.47)

2. Let F 1
2,k := Ak, G1

2,k,i := Bk,i, F
1
3,k := Ck, then repetitively apply

F j+1
2,k Gj+1

2,k,i

0 F j+1
3,k

 :=

F j2,k Gj2,k,i

0 F j3,k

2

=

F j2,kF j2,k F j2,kG
j
2,k,i +Gj2,k,iF

j
3,k

0 F j3,kF
j
3,k

 for j = 1, . . . , n.

3. Define F2,k := Fn+1
2,k , G2,k,i := Gn+1

2,k,i, F3,k = Fn+1
3,k .

Remark 4.3.5. The trick for an efficient computation is that raising to the 2nth

power is computed by n self multiplications, which is due to the semi-group property

of the exponentiation operation. An obvious upper bound to guarantee accuracy

is n ≤ C log ε−1 (because the error of numerical exponentiation is bounded by

ε−1Ch = ε−1CH/2n). In all numerical experiments in this section, n = 10 worked

well, which is a value much smaller than log ε−1, and this choice of n makes the

computation cost of the same order as if K could be diagonalized by a constant

orthogonal matrix.

Remark 4.3.6. Observe that, for a finite-time simulation, the cost of comput-

ing φ3 numerically with microscopic time-steps blows up with a speed of O(ε−1),

whereas the cost of matrix exponentiations via Integrator 4.3.2 blows up at a max-

imum speed of O(log ε−1).

Theorem 4.3.2 shows that Integrator 4.3.2 not only ensures F2,k and F3,k to be

symplectic, but also guarantees a symplectic approximation to φ3 (Eq. 4.32).

Speed-up is obtained because at each step the computation cost is dominated

by 2(ds + 1)n matrix production operations (of df × df matrices), where n is a
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small integer. If the Coppersmith-Winograd algorithm is used to realize the matrix

multiplication operation, then the time complexity for exponentiation at each step

is nO(d2.376
f ) (assuming ds = O(1); the problem of matrix exponentiation is less

difficult otherwise).

4.3.5 An alternative matrix exponentiation algorithm based on

updating

An alternative way to approximate the flow map (4.32) is to use the slowly varying

property of K to generate a symplectic update of the exponential computed at the

previous step. The main idea of the method is as follows: given a sequence of

matrices {Xk} that vary slowly, use the approximation

exp(Xk) = [exp(Xk/2
n)]2

n ≈ [exp(Xk−1/2
n) exp((Xk −Xk−1)/2n)]2

n
(4.48)

where n is a preset constant. Again, we use the trick of self-multiplication for

computing the 2nth power, and efficiency is guaranteed exactly as before.

Accuracy is achieved because, as shown in the following theorem, the approxi-

mation error decreases at an exponential rate with respect to n.

Theorem 4.3.1. Theorem 5 in [208]:

‖ exp(A+B)−(exp(A/2n) exp(B/2n))2n‖2 ≤ 2−n−1emax(µ(A+B),µ(A)+µ(B))‖[A,B]‖2

(4.49)

where µ(X) is the maximum eigenvalue of (X∗+X)/2, and [A,B] = AB−BA is

the canonical Lie bracket.

Remark 4.3.7 (Generality). This exponentiation method based on corrections

(4.48) is not limited to the integration of (4.20), but works for repetitive exponen-

tiations of any slowly varying matrix. It would also work for a set of matrices, as

long as they could be indexed to ensure a slow variation.

Remark 4.3.8 (Other possible updating methods). Regarding updating matrix

exponentials, since there are results such as [95] on relationships between perturbed
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eigenvalues and perturbation in the matrix, a natural thought is to use eigenstruc-

tures that were explored in the previous step as initial conditions in iterative al-

gorithms (such as Jacobi-Davidson for eigenvalues [259] or Rayleigh Quotient for

extreme eigenvalues [283]). This idea, however, did not significantly accelerate the

computation as we explored in numerical experiments with an incomplete pool of

methods. Other matrix decompositions methods (QR for instance) did not gain

much from previous decompositions either in our numerical investigations.

For our purpose of integration, Xk and A are identified with N in Section 4.3.4

at each timestep, and B is identified as the difference in N ’s between consecutive

steps. Since K(qslow) (and hence N as well) is changing slowly, ‖B‖2 � ‖A‖2;

furthermore, the calculation of [A,B] (omitted; notice that B is nilpotent) shows

that ‖[A,B]‖ � ‖A‖. Therefore, the error bound here (4.49) is much smaller than

that based on scaling and squaring for the same n. Consequently, we will be able

to further decrease the value of n by a few (not a lot because a decrease in n

exponentially increases the error).

The reason that we do not identify Xk and A with

−NT Mi

0 N

 is due to a

consideration of symplecticity in all variables, because otherwise G2,k,i, obtained

as the upper-right block of the exponential, will not be exactly the derivative of

F3,k. Instead, we let G2,k,i = −J ∂
∂qslow
k′,i

F3,k, where F3,k is updated from F3,k−1 us-

ing (4.48). Taking the derivative, however, incurs additional computation, because

F3,k now depends on not only qslowk but also qslowk−1 , and therefore ∂qslowk′,i /∂q
slow
(k−1)′,j

has to be computed so that a chain rule applies to facilitate the computation.

In the end, the computational saving based on updating the exponentiation be-

comes less significant due to the extra cost in updating ∂qslowk′,i /∂q
slow
(k−1)′,j , but the

implementation becomes more convoluted. We leave the details to Section 4.3.11.
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4.3.6 Analysis: Symplecticity

For concise writing, we carry out matrix analysis in block forms in this section.

Coordinates are ordered as qfast, pfast, qslow, pslow, and therefore J =

J 0

0 J

 is

the coordinate representation of the canonical symplectic 2-form on the full phase

space (abusing notations, we use J :=

 0 I

−I 0

 to represent the symplectic 2-form

on both the fast subspace (for qfast, pfast) and the slow subspace (for qslow, pslow);

this should not affect the clarity of the analysis). We also recall that a map

x 7→ φ(x) is symplectic if and only if φ′(x)T Jφ′(x) = J or φ′(x)TJφ′(x) = J for all

x’s (depending on whether x represents all variables or only slow or fast variables).

Lemma 4.3.1. The numerical approximation to φ3 given by (4.35) is symplectic

on all variables if and only if F3,k is symplectic and, for i = 1, . . . , ds, G2,k,i =

−J ∂F3,k

∂qslow
k′,i

(note that for a fixed i, G2,k,i,
∂F3,k

∂qslow
k′,i

and J are df × df matrices).

Proof. For conciseness and convenient reading, write qfastk′ and pfastk′ as qf and pf ,

∂/∂qslowk′,i as ∂i, and G2,k,i and F3,k as G2,i and F3 in this proof.

The Jacobian of the numerical approximation to φ3 : qk′ , pk′ 7→ qk+1, pk+1 given

by (4.35) can be computed as:

A =

F3 ∂1F3

qf
pf

 · · · ∂dsF3

qf
pf

 0 · · · 0

0 · · · 0




0 0
...

...

0 0


−
(
qTf pTf

)
F T3 G2,1

...

−
(
qTf pTf

)
F T3 G2,ds

I 0

−∗ I

(4.50)

where (∗)i,j = 1
2 [qf ; pf ]T∂j(F

T
3 G2,i)[qf ; pf ], and the 0’s in the upper-right block,
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the lower-left block, and the lower-right block respectively corresponds to df -by-1,

1-by-df , and ds-by-ds zero matrices. Notice that we have F T3 G2,i in the lower-

left block because F T3 G2,i is symmetric (their exact values satisfy this because of

(4.33), and their numerical approximations satisfy this because of Lemma 4.3.6).

Symplecticity is equivalent to AT JA = J, whose left hand side writes out to

be

AT JA =

FT3 J GT2,1F3

qf
pf

 · · · GT2,dsF3

qf
pf

 0 · · · 0

0 · · · 0


(
qTf pTf

)
∂1F

T
3 J

...(
qTf pTf

)
∂dsF

T
3 J

0 0

...
...

0 0


∗T I

−I 0

×A

=

FT3 JF3 + 0 (FT3 J∂1F3 +GT2,1F3)

qf
pf

 · · · (FT3 J∂dsF3 +GT2,dsF3)

qf
pf

 0 · · · 0

0 · · · 0


4

(
[qf ; pf ]T ∂iF

T
3 J∂jF3[qf ; pf ]

)
i=1,...,ds;j=1,...,ds

0

0 0
+
− ∗T +∗ I

−I 0

(4.51)

where 4 is naturally negative the transpose of the upper-right block because

AT JA is skew-symmetric for any A.

This is equal to J if and only if the upper-left block and the bottom-right block

are both J and the upper-right block and the bottom-left block are both zero. The

requirement on the upper-left block is

F T3 JF3 = J (4.52)

By the arbitrariness of qf and pf , the requirement on upper-right and bottom-left

blocks translates to:

F T3 J∂iF3 +GT2,iF3 = 0 (4.53)
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which further simplifies to

G2,i = −J∂iF3 (4.54)

because F T3 J∂iF3 = ∂i(F
T
3 JF3) − ∂iF T3 JF3 = −∂iF T3 JF3, F3 is invertible due to

(4.52), and JT = −J .

The bottom-right block needs to be J , and this requirement is equivalent to

[qf ; pf ]T
(
∂iF

T
3 J∂jF3 +

1

2
∂i(F

T
3 G2,j)−

1

2
∂j(F

T
3 G2,i)

)
[qf ; pf ] = 0 (4.55)

By (4.54), the above left hand side rewrites as

[qf ; pf ]T
(
∂iF

T
3 J∂jF3 −

1

2
∂iF

T
3 J∂jF3 −

1

2
FT3 J∂i∂jF3 +

1

2
∂jF

T
3 J∂iF3 +

1

2
FT3 J∂j∂iF3

)
[qf ; pf ]

= [qf ; pf ]T
(

1

2
∂iF

T
3 J∂jF3

)
[qf ; pf ] + [qf ; pf ]T

(
1

2
∂jF

T
3 J∂iF3

)
[qf ; pf ] (4.56)

Since what are summed up above are just two real numbers, the second number

remains the same after taking its transpose, which due to JT = −J yields

[qf ; pf ]T
(

1

2
∂jF

T
3 J∂iF3

)
[qf ; pf ] = −[qf ; pf ]T

(
1

2
∂iF

T
3 J∂jF3

)
[qf ; pf ] (4.57)

Therefore, (4.55) does hold.

Lemma 4.3.2. In Integrator 4.3.2, all Ak and Ck are symplectic; moreover, all

F2,k and F3,k are symplectic, too.

Proof. Straightforward computation using (4.45) and (4.46) shows that ATk JAk =

J and CTk JCk = J . Moreover, since the product of symplectic matrices is sym-

plectic, all F2,k and F3,k, being powers of Ak and Ck, are symplectic.

Lemma 4.3.3. In Integrator 4.3.2, ATkCk = I (and equivalently CkA
T
k = I) for

all k; moreover, F T2,kF3,k = I (and equivalently F3,kF
T
2,k = I).

Proof. Straightforward computation using (4.45) and (4.46) shows that ATkCk = I.

Therefore, (AkAk)
TCkCk = ATk ICk = I, and by induction (A2n

k )TC2n

k = I, i.e.,

F T2,kF3,k = I.
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Lemma 4.3.4. In Integrator 4.3.2, Bk,i = −J ∂
∂qslow
k′,i

Ck for all k and i, and G2,k,i =

−J ∂
∂qslow
k′,i

F3,k for all k and i.

Proof. Use the short-hand notation ∂i := ∂
∂qslowk,i

. Straightforward computation

using (4.47) and (4.46) shows that Bk,i = −J∂iCk for all k and i.

Since

F2,k G2,k,i

0 F3,k

 =

Ak Bk,i

0 Ck

2n

for all i, by induction, it is only necessary

to prove that G2,k,i = −J∂iF3,k when n = 1. In this case, G2,k,i = AkBk,i+Bk,iCk

and F3,k = CkCk, and the equality can be proved by the following:

Because Bk,i = −J∂iCk, CTk Ak = I (Lemma 4.3.3) and J = CTk JCk (Lemma

4.3.2), we have

CTk AkBk,i = −CTk JCk∂iCk (4.58)

Since symplectic matrix is nonsingular, this is

AkBk,i = −JCk∂iCk (4.59)

Adding Bk,iCk = −J∂iCkCk, we have

AkBk,i +Bk,iCk = −J∂i(CkCk) (4.60)

Hence, the induction works.

Lemma 4.3.5. In Integrator 4.3.2, CTk Bk,i = BT
k,iCk for all k and i.

Proof. This can be shown by straightforward computation using (4.47) and (4.46).

Lemma 4.3.6. In Integrator 4.3.2, F T3,kG2,k,i = GT2,k,iF3,k for all k and i.

Proof. By Lemma 4.3.5, CTk Bk,i = BT
k,iCk for all k and i. By Lemma 4.3.3,

ATkCk = I and CTk Ak = I.

Since

F2,k G2,k,i

0 F3,k

 =

Ak Bk,i

0 Ck

2n

for all i, by induction, it is only necessary

to prove that F T3,kG2,k,i = GT2,k,iF3,k when n = 1. In this case, G2,k,i = AkBk,i +
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Bk,iCk and F3,k = CkCk, and this equality can be proved upon observing for all i:

CTk C
T
k (AkBk,i +Bk,iCk) = CTk Bk,i + CTk C

T
k Bk,iCk = BT

k,iCk + CTk B
T
k,iCkCk

= BT
k,iA

T
kCkCk + CTk B

T
k,iCkCk = (AkBk,i +Bk,iCk)

TCkCk (4.61)

Theorem 4.3.2. The proposed method (Integrator 4.3.1+4.3.2) is symplectic on

all variables.

Proof. By Lemma 4.3.2, 4.3.4, 4.3.1, and 4.3.6, the numerical approximation to φ3

given by (4.35) is symplectic on all variables.

The flow given by (4.34) is symplectic on all variables as well, because it is

the composition of φ1 and φ2, which respectively correspond to Hamiltonians

H1(qfast, pfast, qslow, pslow) = [pslow]2

2 andH2(qfast, pfast, qslow, pslow) = V (qfast, qslow),

and hence both are symplectic.

Consequently, the proposed method, which composes (4.34) and (4.35), is sym-

plectic.

4.3.7 Analysis: Uniform convergence

This integrator is convergent due to splitting theory [285], i.e., the global error on

qslow, qfast, pslow, pfast is bounded by ε−1CH for some constant C > 0 in Euclidean

norm.

Moreover, this integrator is uniformly convergent in q under typical or reason-

able assumptions, and hence H can be chosen independently from ε for stable and

accurate integration.

Condition 4.3.1. We will prove a uniform bound of the global error on position

for Integrator 4.3.1 under the following (classical) conditions:

1. Regularity: In the integration domain of interest, ∇V (·) is bounded and Lip-

schitz continuous with coefficient L, i.e. ‖∇V (a) − ∇V (b)‖2 ≤ L‖a − b‖2.
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2. Stability and bounded energy: For a fixed T and t < T , denote by x(t) =

(q(t), p(t)) the exact solution to (4.20), and by xt = (qt, pt) the discrete nu-

merical trajectory given by Integrator 4.3.1, then ‖x(t)‖22 ≤ C, ‖xt‖22 ≤ C,

|H(q(t), p(t))| ≤ C and |H(qt, pt)| ≤ C for some constant C independent of

ε−1 but dependent on initial condition ‖

q0

p0

 ‖22 and possibly T as well.

Condition 4.3.2 (Slowly varying frequencies). Consider the solution q(s), p(s) up

to time s <= H to the system



dqfast = pfastdt

dqslow = pslowdt

dpfast = −∂V/∂qfast(qfast, qslow)dt− ε−1K(qslow)qfastdt

dpslow = −∂V/∂qslow(qfast, qslow)dt− ε−1 1
2 [qfast]T∇K(qslow)qfastdt

,

(4.62)

with initial condition q(0), p(0) in the domain of interest that satisfies bounded

energy. Assume that qfast can be written as

Q(t)

df∑
i=1

~ei
√
εai(t) cos[

√
ε−1θi(t) + φi] (4.63)

where Q(t) is a slowly varying matrix (i.e., Qij(t) ∈ C1([0, H]) and there exists a C

independent of ε−1 such that ‖Q(t)‖ ≤ C and ‖Q̇(t)‖ ≤ C for all t ∈ [0, H]), indi-

cating a slowly varying diagonalization frame, df is the dimension of the fast vari-

able, ~ei are standard vectorial basis of Rdf , ai(t)’s are slowly varying amplitudes

(in the same sense as for Q(t)), θi(t)’s are non-decreasing and slowly varying in

the sense that θi(t) ∈ C2([0, H]), |θ̈i(t)| ≤ C, |θi(t)| ≤ C, and C1 ≤ θ̇i(t) ≤ C2 for

some C > 0, C1 > 0, C2 > 0 independent of ε−1, and φi’s are such that θi(0) = 0.

Remark 4.3.9. In the case of constant frequencies (K(·) being a constant) and no

slow drift (V (·) being a constant), we have qfast = Q
∑df

i=1 ~ei
√
εai cos[

√
ε−1ωit+φi]

(the amplitude is O(
√
ε) because of bounded energy). When K is not a constant,

Condition 4.3.2 is supported by an asymptotic expansion of qfast. In particular,
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to the leading order in ε, we have θ̇i(t) = ωi(t) where the ω2
i (t) are the eigenvalues

of K(qslows ). The rigorous justification of this asymptotic expansion for df > 1 is

beyond the scope of this section.

Lemma 4.3.7. If Condition 4.3.2 holds, there exists C1 > 0, C2 > 0 independent

of ε−1 such that

‖
∫ H

0
f(t)qfast(t)dt‖ ≤ ε

(
C1 max

0≤s≤H
‖f(s)‖+ C2H max

0≤s≤H
‖ḟ(s)‖+O(H2)

)
(4.64)

for arbitrary matrix valued function f ∈ C1([0, H]) that satisfies f(0) = 0.

Proof. Recall the form of qfast in Condition 4.3.2. It is sufficient to prove that

for all i’s the i-th component of qfast satisfies (4.64), whereas the i-th component

writes as:

√
ε

df∑
j=1

Qij(t)aj(t) cos[
√
ε−1θi(t) + φi] (4.65)

Furthermore, since summation commutes with integral and therefore will only

introduce a factor of df on the bound, it is sufficient to prove (4.64) for qfast =
√
εQij(t)aj(t) cos[

√
ε−1θi(t) + φi]. On this token, we could assume that we are in

the 1D case and absorb Q(t) into aj(t).

Similarly, slowly varying ai(t) can be absorbed into the test function f(t), and

doing so will only change the constants on the right hand side. Therefore, it will

be sufficient to prove that:

∣∣∣∣∫ H

0

√
ε cos[

√
ε−1θ(t) + φ]f(t)dt

∣∣∣∣ ≤ ε(C1 max
0≤s≤H

|f(s)|+ C2H max
0≤s≤H

|f ′(s)|+O(H2)

)
(4.66)

for a scalar valued function f ∈ C1([0, H]) that satisfies f(0) = 0.

By Condition 4.3.2, θ is strictly increasing. If we write τ = θ(t), there will be

a θ−1 such that t = θ−1(τ). With time transformed to the new variable τ , the

integral on the left hand side of (4.66) is equal to

∫ θ(H)

0

√
ε cos[

√
ε−1τ + φ]f(θ−1(τ))

dθ−1

dτ
(τ) dτ (4.67)
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By integration by parts, this is (since f(0) = 0)

−ε sin[
√
ε−1H+φ]f(H)

1

θ̇(H)
+ε

∫ θ(H)

0
sin[
√
ε−1τ+φ]

[
df

dt

(
dθ−1

dτ

)2

+ f(θ−1(τ))
d2θ−1

dτ2
(τ)

]
(4.68)

Because θ̈ ≤ C, ω−CH ≤ θ̇ ≤ ω+CH, where ω := θ̇(0) ≥ C1 > 0. Together with

dθ−1

dτ = 1
θ̇
, we have dθ−1

dτ = 1/ω +O(H). Similarly, we also have

d2θ−1

dτ2
=

d

dτ

1

θ̇(t)
=
dt

dτ

d

dt

1

θ̇(t)
= − 1

θ̇(t)3
θ̈(t) = O(1) (4.69)

It is easy to show that θ(H) = O(H). Together with sin(·) being O(1), the left

hand side in (4.66) is bounded by

εf(H)O(1) + εO(H)

(
O(1) max

0≤s≤H
|ḟ(s)|+O(1) max

0≤s≤H
|f(s)|

)
≤ ε

(
O(1) max

0≤s≤H
|f(s)|+O(H) max

0≤s≤H
|ḟ(s)|

)
(4.70)

Theorem 4.3.3. If Conditions 4.3.1 and 4.3.2 hold, the proposed method (Inte-

grator 4.3.1) for system (4.20) has a uniform global error of O(H) in q, given a

fixed total simulation time T = NH:

‖q(T )− qT ‖2 ≤ CH (4.71)

where q(T ), p(T ) is the exact solution and qT , pT is the numerical solution; C is a

positive constant independent of ε−1 but dependent on simulation time T , scaleless

elasticity matrix K, slow potential energy V (·) and initial condition ‖

q0

p0

 ‖2.



155

Proof. Let K̃ be a constant matrix and consider the following system:



dq̃fast = p̃fastdt

dq̃slow = p̃slowdt

dp̃fast = −∂V/∂qfast(q̃fast, q̃slow)dt− ε−1K̃q̃fastdt

dp̃slow = −∂V/∂q̃slow(q̃fast, q̃slow)dt

, (4.72)

Integrator 4.3.1, applied to the system (4.72) under Condition 4.3.1, has been

shown in Theorem 4.2.2 to be uniformly convergent in ‘scaled energy norm’ (Def-

inition 4.2.1, or equivalently, uniformly convergent on position and non-uniformly

convergent on momentum). Recall that the ‘scaled energy norm’ was defined to

be

‖[q̃, p̃]‖E =

√
q̃T q̃ + εp̃T K̃−1p̃, (4.73)

but in fact K̃−1 is not important because it is justO(1), and the following definition

would also work for the proof there:

‖[q̃, p̃]‖E =
√
q̃T q̃ + εp̃T p̃ (4.74)

Observe that, (4.73) is proportional to the square root of the physical energy. That

is why the name.

The system considered here, however, is (4.62). To prove uniform convergence

for (4.62), it is sufficient to show that (i) a δ difference between two trajectories of

(4.72) in scaled energy norm leads to a difference of δ(1 + CH) in scaled energy

norm after a time step H (ii) trajectories of (4.72) and (4.62) starting at the same

point remain at at a distance at most O(H2) in scaled energy norm after time H,

i.e., a 2nd-order uniform local error. (i) was shown by Lemma A.3.5 in Appendix

A.3, and we will now prove (ii).

We can assume without loss of generality that we start at time 0, and let

K̃ = K(qslow(0)), qfast,slow(0) = q̃fast,slow(0) (where qfast,slow = (qfast, qslow)) and

pfast,slow(0) = p̃fast,slow(0). We first let x = q̃fast − qfast and y = p̃fast − pfast,

and proceed to bound x and y:
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The evolutions of x and y follow from


ẋ = y

ẏ = −
(

∂V
∂qfast

(q̃)− ∂V
∂qfast

(q)
)
− ε−1

(
K̃q̃f −K(qslow)qfast

) (4.75)

Writing f1 = −
(

∂V
∂qfast

(q̃)− ∂V
∂qfast

(q)
)

and f2 = (K̃ −K(qslow))qfast, we have


ẋ = y

ẏ = f1 − ε−1K̃x− ε−1f2

(4.76)

If we let B(t) = exp

 0 I

−ε−1K̃ 0

 t
, we will have

x(t)

y(t)

 = B(t)

x(0)

y(0)

+

∫ t

0
B(t− s)

 0

f1 − ε−1f2

 ds (4.77)

The first term on the right hand side drops off because x(0) = 0 and y(0) = 0 by

definition.

Since K̃ is a constant matrix, it is sufficient to diagonalize it and treat each

diagonal element individually. Hence, assume without loss of generality that we are

in the 1D case. Then B(s) =

 cos(
√
ε−1K̃s) sin(

√
ε−1K̃s)/

√
ε−1K̃

−
√
ε−1K̃ sin(

√
ε−1K̃s) cos(

√
ε−1K̃s)

.

As a consequence,

y(t) =

∫ t

0
cos[

√
ε−1K̃(t− s)]

[
f1 − ε−1(K̃ −K(qslow))qfast

]
ds (4.78)

By Lipschitz continuity of ∇V (Item 1 of Condition 4.3.1), we will have

|f1(t)| ≤ L|x(t)| = L|
∫ t

0
y(s)ds| = O(t) (4.79)

The first inequality holds because f1 is the difference between partial derivatives

of V , which could be bounded by the difference between full derivatives. The last



157

equality holds because y = p − p̃ is bounded due to the fact that [q(s), p(s)] and

[q̃(s), p̃(s)] are bounded (Item 2 of Condition 4.3.1). Consequently, we have

∣∣∣∣∫ t

0
cos[

√
ε−1K̃(t− s)]f1 ds

∣∣∣∣ ≤ ∫ t

0
|f1| = O(t2) (4.80)

In order to bound
∫ t

0 cos[
√
ε−1K̃(t − s)]

[
ε−1(K̃ −K(qslow))qfast

]
ds, we use

Lemma 4.3.7 (with the choice of f = K̃ − K(qslow)). Indeed, cos[
√
ε−1K̃(t −

s)] can be absorbed into qfast(s) =
√
ε cos[

√
ε−1θ(s) + φ]: due to an equality

2 cos(A) cos(B) = cos(A+B) + cos(A−B), θ will be just added by ±
√
K̃ and φ

will have a new constant value, neither of which will violate Condition 4.3.2.

For f , we clearly have f = 0 at s = 0. By mean value theorem, there is a

ξs such that f(s) = K ◦ qslow(0) − K ◦ qslow(s) = dK◦qslow
dt (ξs) · s, and therefore

f(s) = O(s). Similarly, ḟ(s) = O(1). Plotting these two bounds in Lemma 4.3.7,

we obtain

∣∣∣∣∫ t

0
cos[

√
ε−1K̃(t− s)]

[
ε−1(K̃ −K(qslow))qfast

]
ds

∣∣∣∣ = O(t) (4.81)

Putting this together with (4.80), we arrive in y(t) = O(t), and x(t) =
∫ t

0 y(s) ds =

O(t2) follows.

Next, we bound y: since

∣∣∣∣∫ t

0
cos[

√
ε−1K̃(t− s)]

[
ε−1(K̃ −K(qslow))qfast

]
ds

∣∣∣∣
=

∣∣∣∣∫ t

0
cos[. . .]ε−1O(s)

√
εO(1) cos[. . .] ds

∣∣∣∣ = ε−1/2O(t2) (4.82)

we have y(t) = ε−1/2O(t2). Together with x(t) = O(t2), this is equivalent to

‖[x, y]‖E = O(t2).

Similarly, we can bound qslow − q̃slow and pslow − p̃slow. Let xs = qslow − q̃slow
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and ys = pslow − p̃slow, then we have:


ẋs = ys

ẏs = −
(

∂V
∂qslow

(q̃)− ∂V
∂qslow

(q)
)
− ε−1 1

2 [qfast]T∇K(qslow)qfast
(4.83)

Analogous to before, the first term on the right hand side of the ys dynamics isO(t).

Since qfast = O(ε1/2), the second term on the right hand side is O(1). Therefore,

ẏs = O(1), ys(t) = ys(0) + O(t) = O(t), and xs(t) = xs(0) +
∫ t

0 y
s(s) ds = O(t2).

For our purpose of fast integration, we use a big timestep H ≥
√
ε, and hence

ys(H) = O(H) ≤ ε−1/2O(H2) (notice that if H <
√
ε, we do not even need to prove

uniform convergence, because the non-uniform error bound that is guaranteed by

Lie-Trotter splitting theory is already very small).

O(H2) and ε−1/2O(H2) bounds on separations of slow position and slow mo-

mentum imply a O(t2) uniform bound in scaled energy norm (analogous to that

of the fast degrees of freedom). This demonstrates a 2nd-order uniform local error

on all variables in scaled energy norm, and therefore concludes the proof.

Remark 4.3.10. Unlike (4.71), a global bound on the error of momentum will

not be uniform. The error propagation is quantified in scaled energy norm, and

in 2-norm we will only have ε−1/2O(H2) local error and ε−1/2O(H) global error

on momentum. In fact, Integrator 4.3.1 applied to the constant frequency system

(4.72) is non-uniformly convergent on momentum (Theorem 4.2.2).

4.3.8 Numerical example: A diagonal frequency matrix

Consider the Hamiltonian example introduced in [176]:

H =
1

2
p2
x +

1

2
p2
y + (x2 + y2 − 1)2 +

1

2
(1 + x2)ω2y2 (4.84)

When ω = ε−1/2 � 1, bounded energy translates to initial conditions x(0) ∼

ωy(0), which satisfy separation of timescales: x is the slow variable, and y is the

fast. K(x) = 1 + x2 is trivially diagonal. In addition to conservation of total
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energy, I =
p2y

2
√

1+x2
+
√

1+x2ω2y2

2 is an adiabatic invariant.
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(a) The proposed method with coarse

timestep H = 0.1
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(b) Variational Euler with small

timestep h = 0.1/ω = 0.001
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(c) Very long time simulation by the pro-

posed method with coarse timestep H =

0.1

Figure 4.4: Simulations of a diagonal fast frequency example (4.84) by the proposed method

and Variational Euler. ω = 100; x(0) = 1.1, y(0) = 0.7/ω.

A comparison between Variational Euler and the proposed method is shown

in Figure 4.4. There it can be seen that preservations of energy and adiabatic

invariant are numerically captured at least to a very large timescale. Since there

is no overhead spent on matrix exponentiation here, an accurate 100x speed up is

achieved by the proposed method (because H/h = 100).

It is known that the impulse method and its derivatives (such as mollified

impulse methods) are not stable if the integration step falls in resonance inter-
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Figure 4.5: Investigation on resonance frequencies of the proposed method on example (4.84).

The ratio between x(T )|T=100 integrated by the proposed method integration and benchmark

provides the ruler: a ratio closer to 1 means a more accurate integration, and deviations from 1

stand for step lengths that correspond to resonance frequencies. Time step H samples from 0.001

to 0.2 with an increment of 0.001. ω = 100; x(0) = 1.1, y(0) = 0.7/ω. Benchmark is obtained by

fine VE integration with h = 0.01/ω.

vals (mollified impulse methods have much narrower resonance intervals, which

however still exist) [109, 55]. Similarly, it will be very unnatural if the proposed

method does not have resonance, because it reduces to a 1st-order version of im-

pulse methods when there is no slow variable (Remark 4.3.1). In fact, in our

numerical investigation (Figure 4.5), we clearly observe resonance frequencies be-

fore the integration step reaches the unstable limit (around H ≈ 0.5), and widths

of resonant intervals increase as H grows for this particular example; however, we

will not carry out a systematic analysis on resonance.

4.3.9 Numerical example: A non-diagonal frequency matrix

Extend the previous example to a toy example of 3 degrees of freedom:

H =
1

2
p2
x+

1

2
p2
y+

1

2
p2
z+(x2+y2+z2−1)2+

1

2
ω2

y
z

T 1 + x2 x2 − 1

x2 − 1 3x2

y
z

 (4.85)

It is easy to check that eigenvalues of K(x) =

1 + x2 x2 − 1

x2 − 1 3x2

 are both

positive when x > 0.44, which will always be true if the initial condition of x
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stays close to 1 and ω is big enough. In this case, bounded energy again implies

x(0) ∼ ωy(0) ∼ ωz(0) and gives clear separation of timescales: x is the slow

variable and y and z are the fast. K(x) has its orthogonal frame for diagonalization

as well as its eigenvalues slowly varying with time.
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Figure 4.6: Simulations of a non-diagonal fast frequency example (4.85) by Variational Euler,

the proposed method with different implementations of matrix exponentiations. ω = 100, VE uses

h = 0.1/ω = 0.001 and the proposed method uses H = 0.1 and n = 10; x(0) = 1.1, y(0) = 0.2/ω,

z(0) = 0.1/ω, and initial momenta are zero.

Figure 4.6 shows a comparison between Variational Euler, the proposed method

with the matrix exponentiations computed by diagonalization and analytical in-

tegration (Eq. 4.26; diagonalization implemented by MATLAB command ‘diag’),

and the proposed methods based on exponentiations (Eq. 4.27 and 4.32) via

MATLAB command ‘expm’ [141] and via the fast matrix exponentiation method

(Integrator 4.3.2). The default MATLAB matrix multiplication operation is used.

All implementations of the proposed method are accurate, except that numerical

errors in repetitive diagonalizations contaminated the symplecticity of the corre-

sponding implementation over a long time simulation (as suggested by drifted en-

ergy), whereas two other implementations, respectively based on accurate but slow

‘expm’ and fast symplectic exponentiations, do not have this issue. In a typical

notebook run with MATLAB R2008b, the above four methods respectively spent
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11.12, 0.23, 0.29 and 0.24 seconds on the same integration (till time 50), while 0,

0.14, 0.18, and 0.14 seconds were spent on matrix exponentiations. Computational

gain by the symplectic exponentiation algorithm will be much more significant as

the fast dimension becomes higher. Notice also that the computational gain by

the proposed method over Variational Euler will go to infinity as ε → 0, even if

the fast matrix exponentiation method is not employed.

4.3.10 Numerical example: A high-dimensional non-diagonal fre-

quency matrix

Consider an arbitrarily high-dimensional example:

H =
1

2
p2 +

1

2
yT y + (xTx+ q2 − 1)2 +

1

2
ω2xTT (q)x (4.86)

where q, p ∈ R correspond to the slow variable, x, y ∈ Rdf correspond to fast

variables, and T (q) is the following Toeplitz matrix valued function:

T (q) =



1 q̂1 q̂2 . . . q̂df−1

q̂1 1 q̂1 . . . q̂df−2

q̂2 q̂1 1 . . . q̂df−3

...

q̂df−1 q̂df−2 q̂df−3 . . . 1


(4.87)

where q̂ = q/2 so that eigenvectors and eigenvalues vary slowly with q given an

initial condition of q(0) ≈ 1. Note that the expression of T (·) is highly nonlinear.

We present in Figure 4.7 a comparison between Variational Euler and the pro-

posed methods with the matrix exponentials computed by MATLAB command

‘expm’ and by the fast matrix exponentiation method (Integrator 4.3.2) on a high

dimensional example with df = 100. Accuracy-wise, the proposed method simula-

tions yield results similar to VE (note that fast variables are not fully resolved due

to a coarse time step that is larger than their periods). Speed-wise, Variational

Euler, the proposed methods via ‘expm’ and via symplectic exponentiation respec-



163

0 10 20
0.9

0.95

1

1.05

1.1

P
os

iti
on

s

 The proposed method via expm

0 10 20
−0.4

−0.2

0

0.2

0.4

P
os

iti
on

s

0 10 20
0.42

0.44

0.46

0.48

0.5

0.52

E
ne

rg
y

0 10 20
0.9

0.95

1

1.05

1.1

P
os

iti
on

s

 The proposed method via symplectic exponentiation

0 10 20
−0.4

−0.2

0

0.2

0.4

P
os

iti
on

s

0 10 20
0.42

0.44

0.46

0.48

0.5

0.52

E
ne

rg
y

0 10 20
0.9

0.95

1

1.05

1.1

P
os

iti
on

s

 

 

 

Variational Euler

xslow

0 10 20
−0.4

−0.2

0

0.2

0.4

P
os

iti
on

s

 

 

ωxfast
1

ωxfast
2

0 10 20
0.42

0.44

0.46

0.48

0.5

0.52

E
ne

rg
y

Figure 4.7: Simulations of a non-diagonal fast frequency high-dimensional example (4.87) by

Variational Euler, the proposed method via MATLAB matrix exponentiation ‘expm,’ and the

proposed method via fast matrix exponentiations (n = 10). Fast variable dimensionality is

df = 100. ω = 1000. VE uses h = 0.1/ω and the proposed method uses H = 0.1, q(0) = 1.05, x(0)

is a df + 1-dimensional vector with independent and identically distributed components that are

normal random variables with zero mean and variance of 1/ω/
√
df (so that energy is bounded),

and initial momenta are zero. Only trajectories of the first two fast variables were drawn for

clarity.

tively spent 136.7, 66.0 and 12.0 seconds on the same integration, while 65.7 and

11.7 seconds were spent on matrix exponentiation operations in the latter two.

Notice that if Coppersmith-Winograd [75] is used to replace MATLAB matrix

multiplication, the number 11.7 should be further reduced. In spite of that, the

proposed method with the proposed matrix exponentiation scheme already holds

a dominant speed advantage, and this advantage will be even more significant if ω

and/or df is further increased (results not shown).
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4.3.11 Additional details about the alternative matrix exponenti-

ation scheme based on updating

We will present in Integrator 4.3.3 an alternative (symplectic) way for computing

F3,k and G2,k,i. This alternative is based on iteratively updating the matrix ex-

ponential from the computation at the previous step. We will first demonstrate

its full version, and then provide a simple approximation which is not exactly

symplectic on all variables but symplectic on the fast variables (in the sense of

a symplectic submanifold) and exhibits satisfactory long time performance in nu-

merical experiments.

Lemma 4.3.8. Define:


α(t) β(t) γ(t)

0 F2(t) G2(t)

0 0 F3(t)

 := exp



−NT MJ 0

0 −NT M

0 0 N

 t
 (4.88)

Then for any H, we have −F3(H)Tγ(H) =
∫ H

0 F T3 (s)M(−JG2(s)) ds.

Proof. Differentiating (4.88) with respect to t and equating each matrix component

on left and right hand sides, we obtain:



α̇ = −NTα

Ḟ2 = −NTF2

Ḟ3 = NF3

β̇ = −NTβ +MJF2

Ġ2 = −NTG2 +MF3

γ̇ = −NTγ +MJG2

(4.89)

where the initial conditions obviously are α(0) = I, F2(0) = I, F3(0) = I, β(0) =

0, G2(0) = 0, γ(0) = 0.

Solving these inhomogeneous linear equations leads to known results including
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F2(t) = exp(−NT t), F3(t) = exp(Nt) andG2(t) =
∫ t

0 exp(−NT (t−s))M exp(Ns) ds,

as well as new results such as

γ(t) =

∫ t

0
exp(−NT (t− s))MJG2(s) ds, (4.90)

which is equivalent to

− F3(H)Tγ(H) =

∫ H

0
F3(s)TM(−JG2(s)) ds (4.91)

Lemma 4.3.9. If M = MT , F T2 F3 = I and ∂F3 = −JG2, such as those derived

from N and M defined in Section 4.3.4, then

∂G2(H) = F2(H)
(
− (F3(H)Tγ(H))T − F3(H)Tγ(H) +

∫ H

0
F3(s)T∂MF3(s) ds

− (−JG2(H))TG2(H)
)

(4.92)

Proof. By Leibniz’s rule

∂G2(H) = [F3(H)T ]−1
(
∂
(
F3(H)TG2(H)

)
− ∂F3(H)TG2(H)

)
(4.93)

By the definition of F3 and G2, this is

∂G2(H) = F2(H)

(
∂

(∫ H

0
F3(s)TMF3(s) ds

)
− (−JG2(H))TG2(H)

)
, (4.94)

in which

∂

(∫ H

0

F3(s)TMF3(s) ds

)
=

∫ H

0

∂F3(s)TMF3(s) ds+

∫ H

0

F3(s)TM∂F3(s) ds+

∫ H

0

F3(s)T ∂MF3(s) ds

=

∫ H

0

(−JG2(s))TMF3(s) ds+

∫ H

0

F3(s)TM(−JG2(s)) ds+

∫ H

0

F3(s)T ∂MF3(s) ds

= −(F3(H)T γ(H))T − F3(H)T γ(H) +

∫ H

0

F3(s)T ∂MF3(s) ds (4.95)
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for γ(H) defined in Lemma 4.3.8.

Remark 4.3.11.
∫ H

0 F3(s)T∂MF3(s) ds = F̃3(H)T G̃2(H) can be computed by

again using the trick of:

F̃2(t) G̃2(t)

0 F̃3(t)

 := exp

−NT ∂M

0 N

 t
 (4.96)

Of course, to get B′0,i,j = ∂jB0,i, we use the fact that B0,i = G2,0,i(H/2
n).

Lemma 4.3.10. Suppose qfast(k+1)′, p
fast
(k+1)′, q

slow
(k+1)′, p

slow
(k+1)′ are obtained from qfastk′ ,

pfastk′ , qslowk′ , pslowk′ by Integrator 4.3.1 with F3,k and G2,k,i satisfying F T3,kJF3,k = J

and G2,k,i = −J ∂
∂qslow
k′,i

F3,k, then

∂qslow(k+1)′,i

∂qslowk′,j

= I+
H

2

qfastk′

pfastk′

(G2,k,j(H)TJG2,k,i(H) + F3,k(H)T
∂

∂qslowk′
G2,k(H)

)qfastk′

pfastk′


(4.97)

Proof. Using chain rule, we have:

∂qslow(k+1)′,i

∂qslowk′,j

= I +
H

2
×qfastk′

pfastk′

( ∂

∂qslowk′,j

F3,k(H)TG2,k,i(H) + F3,k(H)T
∂

∂qslowk′,j

G2,k,i(H)

)qfastk′

pfastk′

 (4.98)

This simplifies to (4.97) because G2,k,i = −J ∂
∂qslow
k′,i

F3,k and −JT = J .

Integrator 4.3.3. Iterative matrix exponentiation scheme (alternative to Integra-

tor 4.3.2) that obtains F3,k and G2,k,i via symplectic updates. k is the same index

as the one used in Integrator 4.3.1. n ≥ 1 is an integer controlling the accuracy of

matrix exponential approximations.

1. At the beginning of simulation, let qslow0′ = qslow0 + Hpslow0 and evaluate

K0 := K(qslow0′ ) and ∂iK0 := ∂
∂qslow

0′,i
K(qslow0′ ) (i = 1, . . . , ds). Calculate
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A0 B0,i

0 C0

 := exp

−NT
0 M0,i

0 N0

H/2n
 by any favorite matrix exponen-

tiation method (e.g., by the symplectic method introduced in Section 4.3.4),

where N0 =

 0 I

−ε−1K0 0

 and M0,i =

ε−1∂iK0 0

0 0

.

2. Compute B′0,i,j = ∂
∂qslow

0′,j
B0,i. One cheap way to do so is to use Lemma 4.3.9

with Remark 4.3.11.

3. Start the updating loop, with the step count indicated by k starting from 1;

let qslow,fast1 = qslow,fast0 , pslow,fast1 = pslow,fast0 , and
qslow
1′
qslow
0′

= I;

4. Carry out the qk, pk 7→ qk′ , pk′ half-step (in Integrator 4.3.1). Evaluate

Kk := K(qslowk′ ), and let Dk :=

0 ε−1(KT
k −KT

k−1)H/2n

0 0

. Define Ak :=

Ak−1 exp(Dk) and use the equality exp(Dk) = I+Dk (since Dk is nilpotent);

similarly, define Ck := Ck−1 exp(−DT
k ) = Ck−1 − Ck−1D

T
k ;

5. Let Bk,i = −J ∂Ck
∂qslow
k′,i

, which can be computed from known values using chain

rule:

Bk,i = −J ∂(Ck−1(I +Dk))

∂qslowk′,i

= −J

 ds∑
j=1

∂qslow(k−1)′,j

∂qslowk′,i

∂Ck−1

∂qslow
k−1′,j

(I +Dk) + Ck−1
∂Dk

∂qslowk′,i


=

ds∑
j=1

∂qslow(k−1)′,j

∂qslowk′,i

Bk−1,j(I +Dk) + Ck−1
∂Dk

∂qslowk′,i

(4.99)

To compute ∂Dk
∂qslow
k′,i

, we need the derivatives of Kk and Kk−1 with respect to

qslowk′,i ; the former is trivial, and the latter again can be computed by chain

rule:
∂KT

k−1

∂qslowk′,i

=

ds∑
j=1

∂qslow(k−1)′,j

∂qslowk′,i

∂KT
k−1

∂qslow
k−1′,j

(4.100)
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6. B′k,i,j can be similarly computed from B′k−1,i,j, Bk−1,i, Ck−1 and Dk by repet-

itively applying chain rule. The detail is lengthy and hence omitted.

7. Let F 1
2,k := Ak, G1

2,k,i := Bk,i, F
1
3,k := Ck, then repetitively apply

F j+1
2,k Gj+1

2,k,i

0 F j+1
3,k

 :=

F j2,k Gj2,k,i

0 F j3,k

2

=

F j2,kF j2,k F j2,kG
j
2,k,i +Gj2,k,iF

j
3,k

0 F j3,kF
j
3,k

 for j = 1, . . . , n, and

finally define F2,k := Fn+1
2,k , G2,k,i := Gn+1

2,k,i, F3,k = Fn+1
3,k .

8. Compute
∂qslow

(k+1)′,i
∂qslow
k′,j

by using Lemma 4.3.10, so that it could be used by Step 5

for the next k. ∂
∂qslow
k′,j

G2,k,i(H) is computed based on the following:

∂

∂qslowk′,j

(AkBk,i+Bk,iCk) = −AkBT
k,jJAkBk,i+AkB

′
k,i,j+B′k,i,jCk−Bk,iJBk,j

(4.101)

where the first term is due to ∂Ak
∂qslow
k′,j

= −AkBT
k,jJAk, which is because ∂ATC+

AT∂C = ∂(ATC) = ∂I = 0 and therefore ∂AT = −AT∂CC−1 = ATJBC−1 =

ATJBAT . A similar trick of self multiplication applies to get the derivative

of the 2n-times product.

9. Carry out the qk′ , pk′ 7→ qk+1, pk+1 half-step update of numerical integration

using F2,k, F3,k and G2,k,i, and then increase k by 1 and go to Step 4 until

integration time is reached.

F3,k and G2,k,i computed in this way (Integrator 4.3.3) will also satisfy Lemma

4.3.1 and render the integration symplectic on all variables. Proofs are omitted but

they are analogous to those in Section 4.3.6, and all structures, such as reversibility,

symplecticity of F2 and F3 (illustrated by corresponding lemmas), and the relation

between F3 and G2, will be preserved as long as they are satisfied by A0, B0,i, C0

(i.e., the initial matrix exponentiation is accurate).

In terms of efficiency, this method only uses one single matrix exponentiation

operation and then keeps on updating it. Nevertheless, it is not easy to implement,
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and its speed advantage is not dominant. However, if the requirement on symplec-

ticity is not that strict and a small numerical error in the matrix exponential is

allowed (recall an analogous case of the famous implicit mid-point integrator, in

which implicit solves are in fact not done perfectly and continuously polluting the

symplecticity), we could use the approximation of
∂qslow

(k+1)′,i
∂qslow
k′,j

= I. This will intro-

duce a local error of O(Hn/2n) in G2,k,i at each timestep (details omitted), but the

local error in F2,k and F3,k is 0, and the method is symplectic on the submanifold

of the fast variables (although not symplectic on all variables). The approximating

method is:

Integrator 4.3.4. An efficient approximation of Integrator 4.3.3:

1. At the beginning of simulation, let qslow0′ = qslow0 +Hpslow0 and evaluate K0 :=

K(qslow0′ ) and ∂iK0 := ∂iK(qslow0′ ) (i = 1, . . . , ds) and calculate

A0 B0,i

0 C0

 :=

exp

−NT
0 M0,i

0 N0

H/2n
 by any favorite matrix exponentiation method,

where N0 =

 0 I

−ε−1K0 0

 and M0,i =

ε−1∂iK0 0

0 0

; let qslow,fast1 =

qslow,fast0 and pslow,fast1 = pslow,fast0 .

2. Start the updating loop, with the step count indicated by k starting from 1;

3. Carry out the qk, pk 7→ qk′ , pk′ half-step. Evaluate Kk := K(qslowk′ ) and

∂iKk := ∂iK(qslowk′ ), let Dk :=

0 ε−1(KT
k −KT

k−1)H/2n

0 0

 and Ek,i :=ε−1(∂iKk − ∂iKk−1)H/2n 0

0 0

. Define

Ak Bk,i

0 Ck

 :=

Ak−1 Bk−1,i

0 Ck−1

 ×
exp

Dk Ek,i

0 −DT
k

 and use the equality exp

Dk Ek,i

0 −DT
k

 =

I +Dk Ek,i

0 I −DT
k


(because DkEk,i = 0 and Ek,iD

T
k = 0) to evaluate Ak = Ak−1 + Ak−1Dk,

Bk,i = Bk−1,i +Ak−1Ek,i −Bk−1,iD
T
k , and Ck = Ck−1 − Ck−1D

T
k ;
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4. Let F 1
2,k := Ak, G1

2,k,i := Bk,i, F
1
3,k := Ck, then repetitively apply

F j+1
2,k Gj+1

2,k,i

0 F j+1
3,k

 :=

F j2,k Gj2,k,i

0 F j3,k

2

=

F j2,kF j2,k F j2,kG
j
2,k,i +Gj2,k,iF

j
3,k

0 F j3,kF
j
3,k

 for j = 1, . . . , n, and

finally define F2,k := Fn+1
2,k , G2,k,i := Gn+1

2,k,i, F3,k = Fn+1
3,k .

5. Carry out the qk′ , pk′ 7→ qk+1, pk+1 half-step update of numerical integration

using F2,k, F3,k and G2,k,i, and then increase k by 1 and go to Step 3 until

integration time is reached.

Numerical experiments presented in Sections 4.3.8, 4.3.9 and 4.3.10 are re-

peated using this approximating integrator. Energy preservations are as good as

before, and slow trajectories show no significant deviation, suggesting no signif-

icant effect of the approximated symplecticity (detailed results omitted). This

approximation, on the other hand, allows a choice of an even smaller n, such as

n = 5 for the previous examples, which results in a further speed-up.
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Chapter 5

SyLiPN: Symplectic, linearly-implicit, and stable integrators, with

applications to fast symplectic simulations of constrained dynamics

In the special case in which the system is stiff but admitting a trivial (Dirac-

distributed) fast dynamics, implicit methods are enough for its coarse-step-integration.

We propose a way to avoid expensive nonlinear solves in implicit methods, and

yet keep the stability and symplecticity. This method applies to, for instance,

the numerical integration of constrained dynamics, which could be modeled by a

subclass of differential algebraic equations (DAEs).

Most results in this section can be found in a submitted manuscript [279].

5.1 Introduction

Implicit integrators are widely used for stable integrations, and the symplectic

members of them have been successful in long time integrations of mechanical

systems [128]. However, implicit methods require solving nonlinear systems, and

therefore are generally much slower than linearly-implicit methods, because the

latter only ask for solving linear systems, which can be carried out by various fast

algorithms (see for instance [9] and references therein). For symplectic integrators,

if one solves nonlinear equations partially (for instance, by carrying out only the

first step in a gradient method [231]), or linearizes the nonlinearity (which is in

fact similar to the former), symplecticity will in general be lost, resulting in an
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unsatisfactory long time performance, such as drifted energy and momentum, etc.

To overcome these drawbacks, we propose a family of linearly-implicit and

symplectic integrators that inherits the stability property of implicit methods.

These methods are obtained via linearizing the push-forward of the Newmark

family of implicit integrators [214, 257, 192]. We call them SyLiPN (Symplectic

Linearized Push-forward Newmark).

As an important application of SyLiPN, we propose an efficient way to inte-

grate mechanical systems with holonomic constraints. Since generalized coordinate

approaches (e.g., [155]) and Lagrange multiplier methods (e.g., [237, 8, 138, 207])

are both implicit in general, we suggest a faster approach: first, model the con-

strained dynamics as stiff differential equations without algebraic constraints by

replacing the rigid constraints by stiff springs (this model was proposed in [244]

and could be dated back to the idea of penalty method, which was for instance

reviewed in [230]); then, integrate the modified system by SyLiPN using a macro-

scopic timestep, which needs not to resolve the stiffness. Because the fast dynamics

here (fast in the sense defined in Chapter 2) is merely a point distribution (as stiff-

ness goes to infinity), the slow dynamics could be well captured by an implicit

method [184], such as SyLiPN. Since a large timestep is used and each step is only

linearly-implicit, constrained dynamics can be rapidly integrated in a symplectic

way.

Two demonstrations, respectively on a double pendulum and a chain of many

pendulums (an approximation to a continuous rope), are included. SyLiPN ex-

hibits clear speed advantage. In addition, SyLiPN appears to be much more ac-

curate than SHAKE when the integration timestep is very small. Similar applica-

tions, such as inexpensive large time-steppings of rods and shells with preserved

momenta and nearly-preserved energy, could be useful in computer graphics and

structure dynamics.
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5.2 SyLiPN: Symplectic, linearly-implicit, and stable

integrators

Consider the numerical integration of a mechanical system:

Mq̈ = −∇V (q) (5.1)

where q ∈ Q is the configuration and V ∈ C2(Q) is the potential energy function.

Oftentimes Q = Rn, and in this case the mass M is indicated by a n-by-n matrix.

The following Newmark family of algorithms have been widely used in structure

dynamics [214]:

Integrator 5.2.1. Newmark:
qk+1 = qk + hq̇k + h2

2 [(1− 2β)ak + 2βak+1]

q̇k+1 = q̇k + h[(1− γ)ak + γak+1]

ak = M−1(−∇V (qk))

(5.2)

It was known [192] that Newmark is 2nd-order accurate when γ = 1/2 and

1st-order otherwise, and it is generally implicit when β 6= 0. It was also shown

[161] that Newmark is variational for arbitrary β when γ = 1/2 (we will restrict

ourselves to this case throughout this chapter). However, it is worth noticing that

the symplectic form that Integrator 5.2.1 preserves is not the canonical one. In

fact, it was shown [257, 192] that if one pushes forward the Newmark integrator

by the map η : TQ→ TQ:

η(q, v) = (q + βh2M−1∇V (q), v) , (5.3)

then we obtain an integrator that preserves the canonical symplectic form on T ∗Q:
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Integrator 5.2.2. Push-forward Newmark:
xk+1 = xk + hvk + 1

2h
2ak

vk+1 = vk + 1
2h(ak + ak+1)

ak = −M−1∇V (xk + βh2ak)

(5.4)

The Newmark and push-forward Newmark schemes can be shown to be un-

conditionally linearly stable if β ≥ 1/4 [64, 257], and Newmark was further shown

to be nonlinearly stable in the same case under several assumptions [149]. In ad-

dition, push-forward Newmark was shown to be stable near stable fixed points

in general nonlinear settings unless specific resonances occur [256]. Nevertheless,

there are nonlinear cases in which Newmark is no longer stable [98, 172]. In fact,

few convergent methods are unconditionally stable for arbitrary nonlinear systems

to the authors’ knowledge (e.g., see a discussion in [298]).

Now, linearize the nonlinear force in push-forward Newmark at each step by

Taylor expansion at xk, so that a nonlinear implicit equation becomes a linear one.

One obtains:

Integrator 5.2.3. Symplectic Linearized Push-forward Newmark (SyLiPN):


xk+1 = xk + hvk + 1

2h
2ak

vk+1 = vk + 1
2h(ak + ak+1)

ak = −M−1∇V (xk)−M−1HessV (xk)βh
2ak

(5.5)

Remark 5.2.1. Notice that the third line, i.e., the force evaluation, could be

rewritten as

ak = −(I +M−1HessV (xk)βh
2)−1M−1∇V (xk) (5.6)

This evaluation, however, should be executed by solving a symmetric linear system

instead of inverting a matrix due to the consideration of computational efficiency.

In this sense, SyLiPN is linearly implicit.
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Since Newmark or Push-forward Newmark requires solving a nonlinear system

at each step, SyLiPN exhibits a speed advantage. We will quantify this advantage

numerically in Section 5.4.

Theorem 5.2.1. SyLiPN (Integrator 5.2.3) is linearly unconditionally stable if

β ≥ 1/4.

Proof. This is straightforward, because for linear test problems in which V (·) is

quadratic, SyLiPN is identical to Push-forward Newmark, which is equivalent to

Newmark in terms of stability.

Remark 5.2.2. [149] uses an energy bound based on an assumption to demonstrate

the nonlinear stability of Newmark. The same energy bound applies to SyLiPN,

because Newmark and SyLiPN differ in force estimations by only a high-order term

of O(h2), which will not affect the leading term of the energy bound. The assump-

tion introduced there, however, can not be checked a priori for either Newmark

or SyLiPN. Possible violations of this assumption may result in a nonlinear in-

stability of Newmark or SyLiPN. As commented before, unconditional stability for

arbitrary nonlinear systems is beyond the scope of current research.

Remark 5.2.3. For possible improvements of nonlinear stability, one may resort

to linearizations of more stable methods (such as those in [171]). However, few

methods after the linearization are still symplectic.

Theorem 5.2.2. If V ∈ C3(Q), SyLiPN (Integrator 5.2.3) has a 3rd-order local

error, i.e., start with xk, vk at time kh and denote by x̃k+1, ṽk+1 the exact solution

at time (k + 1)h and by xk+1, vk+1 the numerical solution after one-step update,

then x̃k+1 − xk+1 = O(h3) and ṽk+1 − vk+1 = O(h3).

Proof. Assume without loss of generality that M = I. Writing a(·) = −∇V (·), we

have

ak = a(xk)/(1− a′(xk)βh2) = a(xk) +O(h2) (5.7)
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and

a(xk+1) = a(xk)+(xk+1−xk)a′(xk)+O
(
(xk+1 − xk)2

)
= a(xk)+hvka

′(xk)+O(h2)

(5.8)

Since the exact dynamics is governed by


ẋ = v

v̇ = a(x)

, (5.9)

if smoothness of the solution is assumed, we obtain by Taylor expansion that

x̃k+1 = xk + hvk +
h2

2
v̇k +O(h3)

= xk + hvk +
h2

2

(
ak +O(h2)

)
+O(h3)

= xk + hvk +
h2

2
ak +O(h3) = xk+1 +O(h3) (5.10)

ṽk+1 = vk + ha(xk) +
h2

2
a′(xk)vk +O(h3)

= vk +
h

2
(a(xk) + a(xk) + ha′(xk)vk) +O(h3)

= vk +
h

2
(ak +O(h2) + a(xk+1) +O(h2)) +O(h3)

= vk +
h

2
(ak +O(h2) + ak+1 +O(h2)) +O(h3) = vk+1 +O(h3) (5.11)

Remark 5.2.4. By the famous Lax-Richtmyer equivalence theorem [174], an O(hp)

local error (also known as ‘consistency’ when p ≥ 2) together with stability will lead

to an O(hp−1) global error (i.e., ‘convergence’ for p ≥ 2). For our case, if SyLiPN

is stable, then it is 2nd-order convergent (with an O(h2) global error).

Theorem 5.2.3. SyLiPN (Integrator 5.2.3) is symplectic.

Proof. The Jacobian of the one-step update given by (5.5) can be computed. A
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lengthy calculation shows that (details are omitted here):

∂xk+1

∂xk

∂xk+1

∂yk
∂yk+1

∂xk

∂yk+1

∂yk

T J
∂xk+1

∂xk

∂xk+1

∂yk
∂yk+1

∂xk

∂yk+1

∂yk

 = J (5.12)

where J =

 0 1

−1 0

 is the canonical symplectic matrix. This proves that the

integrator is symplectic.

Remark 5.2.5. Linearizing Newmark or implicit midpoint will not result in a

symplectic method, although the resulting integrator will be linearly-implicit, stable

and 2nd-order. It is rare that the linearization of an implicit method is symplectic.

5.3 Linearly-implicit symplectic simulation of constrained

dynamics

Now consider again a mechanical system in which particles with a mass matrix

M positioned at q are evolving on a potential landscape V (·), but this time a

(possibly vectorial) holonomic constraint g(q) = 0 is present. One mathematical

way to represent this problem is via Hamilton’s principle on a constrained manifold:

define the action functional:

S(q(t)) :=

∫ b

a

1

2
q̇(t)TMq̇(t)− V (q(t)) dt (5.13)

and look for critical trajectory on the constrained manifold, i.e., solve the equation:

δS/δq = 0 for q(t) ∈ g−1(0) ∀t (5.14)

Traditional approaches to simulate such a system include: introducing gener-

alized coordinates (e.g., [155]), so that the constraints completely disappear; using

Lagrange multipliers (e.g., SHAKE [237], RATTLE [8], SETTLE [138], LINCS

[207]), so that the problem converts to the numerical simulation of a DAE system;
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and so on. These methods allow an o(1) integration step, but in general both

involve solving nonlinear systems that slows down the computation.

We relax the rigid constraint by instead using a stiff spring to reinforce the

constraint up to a small deviation (e.g., [244] and [230]). More precisely, modify

the potential energy V (q) to be V (q) + 1
2ω

2g(q)2, and then simulate the modified

mechanical system without the constraint:

Mq̈ = −∇V (q)− ω2g(q)∇g(q) (5.15)

The idea is that, as ω → ∞, trajectories of this modified system will ap-

proximate those of the constrained dynamics. Due to energy conservation in the

modified system, q̇Mq̇/2 + V (q) + 1
2ω

2g(q)2 has a constant bounded value due to

the initial condition, and therefore 1
2ω

2g(q)2 = O(1) unless instability happens. As

a consequence, g(q) = O(1/ω) and the constraint will be satisfied approximately.

In the sense of separation of timescales (formally defined in Chapter 2), small oscil-

lations around the constrained values are of frequency O(1/ω) and correspond to

a fast process, which converge to a Dirac point distribution (fixed value), whereas

the slow process approximates the dynamics on the constrained manifold.

The link between this formalism and the approach of Lagrange multiplier can be

understood as follows: assume the existence of a limiting solution q(t) as ω →∞,

and then let λ = limω→∞−ω2g(q), we obtain the following DAE system:


Mq̈ = −∇V (q) + λ∇g(q)

g(q) = 0

(5.16)

Due to the uniqueness of the solution, this asymptotic solution is identical to the

continuous Lagrange multiplier solution, because they satisfy the same equation.

Note that the equivalence between the approaches of generalized coordinate and

continuous Lagrange multiplier was established in [295]. Consequently, our model

is formally equivalent to the generalized coordinate approach in non-pathological

cases, and is therefore justified.
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On a more technical note regarding non-pathological cases, one of the known

necessary conditions for the existence of a limiting solution is that Takens chaos

[271] does not happen. Since Takens chaos happens when multiple eigenfrequencies

of the fast process are identical, this source of inaccuracy could be easily avoided by

choosing different large values of ω for multiple constraints, i.e., to use a modified

potential energy of V (q) + 1
2g(q)Tdiag(ω1, ω2, . . . , ωn)g(q), where n is the number

of constraints and ωi’s have distinct values. We did not observe any anomaly in

our numerical experiments, and the trajectories of the modified system always

approximated the constrained dynamics well when ω was large.

Numerically, one could use a textbook symplectic integrator, such as symplectic

Euler (also known as Variational Euler or leapfrog) or Velocity-Verlet, together

with a timestep of length of o(1/ω) to simulate the modified system. However,

this is not optimally efficient for obvious reasons (although sometimes it is already

faster than generalized coordinate or Lagrange multiplier approaches).

Alternatively, the above SyLiPN (Integrator 5.2.3) allows a large step of size

o(1) for a linearly-implicit integration, which naturally will be much faster when

ω is large. The reason that SyLiPN with o(1) timestep works for (5.15) is because

the stiffness in this system results in a fast dynamics that converges to a point dis-

tribution (a precise definition of the sense of convergence can be found in Chapter

2), whose contribution to the slow dynamics therefore could be captured by an

implicit method [184].

5.4 Numerical examples

5.4.1 Double pendulum

Implementation: Consider a double pendulum system. One way to represent

the system is to use 4 degrees of freedom and 2 nonlinear constraints in Euclidian
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coordinates. Writing in the above notations, we have

M =


m1 0 0 0

0 m1 0 0

0 0 m2 0

0 0 0 m2

 (5.17)

V (x1, y1, x2, y2) = −gy1 − gy2 (5.18)

g(x1, y1, x2, y2) =

 x2
1 + y2

1 − L2
1

(x2 − x1)2 + (y2 − y1)2 − L2
2

 (5.19)

wherem1,m2 are two masses, g is the gravitational constant, and L1, L2 are lengths

of the two pendulums. To simplify our notations, we adopt a unitless convention

and assume m1 = m2 = g = 1.

Implementation of our constraint-free approach on this system is straightfor-

ward (Eq. 5.15).

To integrate in generalized coordinates θ, φ, let x1 = L1 sin θ, y1 = −L1 cos θ, x2 =

L1 sin θ + L2 sinφ, y2 = −L1 cos θ − L2 cosφ. Then the Lagrangian L(q, q̇) =

1
2 q̇Mq̇T − V (q) with q = [x1 y1 x2 y2] turns out to be

L̃(θ, φ, θ̇, φ̇) =
1

2

(
2L2

1θ̇
2+L2

2φ̇
2+2L1L2(cos θ cosφ+sin θ sinφ)θ̇φ̇

)
+2L1 cos θ+L2 cosφ

(5.20)

in which the length constraints are intrinsically handled. Corresponding Euler-

Lagrangian equations will give the constrained dynamics. Numerically, one ap-

proximates the action
∫ (k+1)h
kh L̃(θ, φ, θ̇, φ̇)dt using a quadrature rule and obtains

a discrete Lagrangian L̃d(θk, φk, θk+1, φk+1). Applying the least action principle

again, a set of discrete Euler-Lagrangian equations [192] are obtained. Notice that

the mass matrix in the generalized coordinates is

M̃(θ, φ) =

 2L2
1 L1L2(cos θ cosφ+ sin θ sinφ)

L1L2(cos θ cosφ+ sin θ sinφ) L2
2

 ,
(5.21)

which is no longer constant but position dependent. As a consequence, variational
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integrators given by discrete Euler-Lagrangian equations, even symplectic Euler

or Verlet, will be implicit.

Regarding numerical approximations to the continuous Lagrange multiplier

system (5.16), the well-known algorithms of SHAKE and RATTLE can be viewed

as variational integrators with 1st-order and 2nd-order quadrature discretizations

of the Lagrange-d’Alembert principle
∫ (
L(x1, y1, x2, y2)+λ ·g(x1, y1, x2, y2)

)
dt, in

which constraints are realized via a vectorial Lagrange multiplier λ(t) [192]. These

methods also involve an implicit solve at each step to compute the virtual force

(λ) that reinforces the constraints.

Results: Figure 5.1 provides a comparison of different integration methods. Our

constraint-free model (Subplots 1 and 3) produced results almost identical to

SHAKE simulations, and they are also in good agreement with the benchmark pro-

duced by the generalized coordinate approach. Notice that a non-zero measured

set of initial conditions leads to chaotic behaviors in this system [233]; therefore,

a symplectic integration of the system is desired [60, 200]. On a similar note, an

accurate integration is highly nontrivial even when the initial condition (e.g., the

one here) is not in the chaotic region, as numerical errors may easily lead to chaotic

regions from regular trajectories. None of the methods tested here exhibits such

an errant behavior.

Speed-wise, Variational Euler (VE) on the constraint-free modified system,

SHAKE, SyLiPN, and two generalized coordinate implicit VEs respectively took

34.1, 23.8, 1.0, 36.7 and 373.5 seconds for the above simulation (on a 2.4 GHz laptop

running MATLAB 7.7 and ‘fsolve’ as the nonlinear solver). SHAKE, SyLiPN and

generalized coordinate implicit VEs are able to use a large timestep independent

of ω, whereas VE on the constraint-free modified system uses a small timestep

to resolve the stiffness. SHAKE and generalized coordinate approach are based

on solving nonlinear equations, which significantly solved down the computation.

SyLiPN uses a large step and only involves solving linear systems, and therefore

is superior in terms of computational efficiency.
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Figure 5.1: Comparison of x1(t), y1(t), x2(t), y2(t) integrated by small step explicit Variational

Euler on the modified system (Eq. 5.15), big step implicit SHAKE, big step linearly-implicit

SyLiPN on the modified system, and big step and medium step (benchmark) Variational Eulers

in generalized coordinates. Initial positions are x1(0) = 0, y1(0) = −1, x2(0) = 1, y2(0) = −2 and

initial momenta are zero, L1 = 1 and L2 =
√

2, and total simulation time is 50. The modified

system (corresponding to Subplots 1 and 3) uses ω = 1000 although ω = 100 produces no visible

difference. SyLiPN uses β = 0.4. Subplot 1 uses h = 0.1/ω for stability, Subplot 2 uses h = 0.01

for stability too, Subplot 3 and 4 use h = 0.01 to match SHAKE, and Subplot 5 uses h = 0.001,

a step much smaller than stability requirement in order to reduce numerical error and serve as a

benchmark.
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Two points regarding solving linear systems for a chain of pendulums are worth

mentioning. First, the increase in computational cost when extending from two

pendulums to finitely many will only be linear, which is the best one can expect.

This is because the coefficient matrix in the linear system only has nonzero entries

around its diagonal, due to the fact that both the original potential and the con-

straining potential involve only local interactions. Second, one could actually ana-

lytically pre-compute a position-dependent nonlinear function, which corresponds

to the inversion of the matrix I + HessV (x)βh2, so that SyLiPN (Integrator 5.2.3)

becomes entirely explicit. Doing so, however, will not result in a gain in speed,

because the linear solve is less expensive than a force computation by evaluating

the pre-computed matrix inversion and multiplying it by a vector. In fact, we

counted the time elapses of both linear solves and explicit multiplications with

the pre-computed inverse matrix in our numerical experiments, and they respec-

tively take 1.0 and 14.0 seconds (the inverse matrix was generated automatically

by Mathematica function ‘Inverse’, and therefore the code for computing it may

not be optimized). In this sense, a linearly-implicit method is good enough.

5.4.2 Convergence test

By Theorem 5.2.2 and Remark 5.2.4, we know that SyLiPN is a 2nd-order inte-

grator. However, this is only a quantification of its integration ability at small h.

In this section, we will numerically investigate two additional questions:

(i) How does the integration error of SyLiPN scale with the timestep h when

h is large?

(ii) Besides the error of ODE integration, the constrained dynamics model

(5.15) is also just an approximation. Combining both approximations, how does

the error of SyLiPN simulation of the constrained dynamics depend on h?

In addition, we found in our numerical experiments that SHAKE yields a sig-

nificant error when h becomes sufficiently small, and this is due to numerical errors

in solving nonlinear equations. On the other hand, SyLiPN does not exhibit this

drawback.
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Double pendulum: First, continue our numerical experiments on the double

pendulum system (Section 5.4.1). The same initial condition and β will be used,

but we decrease ω from 1000 to 100 to demonstrate the error in the constrained

dynamics model, and we also decrease the simulation time from 50 to 10 so that

the following investigation can be done within a short time. In addition, we further

decrease h from 0.001 to 0.0001 in the generalized coordinate implicit VE so that

the benchmark will be more accurate.

To study question (i), we compare SyLiPN integration of (5.15) with timestep

h and a benchmark integration of (5.15) obtained by Variational Euler with a very

small timestep 0.0001/ω. Values of h are enumerated, and differences between

integrated positions at a fixed time (t = 10 in our case) are collected (measured

in 2-norm and normalized by the 2-norm of the benchmark position). These pairs

will approximate SyLiPN’s integration error as a function of h. Assuming

error = C1h
C2 (5.22)

for some constants C1 > 0 and C2 > 0, we fit a linear model log(error) = logC1 +

C2 log h to obtain C1 and C2. C2 is the power that we are interested in; for instance,

a value of ≈ 2 means a 2nd-order global error.

As can be seen in Figure 5.2, when h� h0/ω (where h0/ω is the stability limit

of Variational Euler for (5.15)), the convergence towards the solution to (5.15)

is in fact faster than quadratic, and the bigger h is the faster the convergence.

Of course, when h < h0/ω, the convergence rate converges to C2 ≈ 2, which is

consistent with Theorem 5.2.2. Put together, the convergence rate decreases from

a large value at big h to 2 at small h. This provides another piece of evidence

explaining why SyLiPN with a large h is accurate.

To investigate question (ii), we carry out a similar analysis, but this time the

benchmark is obtained by generalized coordinate implicit Variational Euler with

a very small step h = 0.0001. As can be seen in Figure 5.3, when h � h0/ω, the

convergence towards the solution to (5.14) is at least quadratic, and the smaller
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(c) Very small h = 0.0001,

0.00011, . . ., 0.0002 < h0/ω

Figure 5.2: Relative error of SyLiPN integration of (5.15) with (5.19) as a function

of h. The straighter the line is in the log-log plot (first row), the better the error

function fits in a power law (5.22).

the h, the closer the convergence rate approaches quadratic. Interesting behavior

happens at h ∼ h0/ω, where the error reaches a plateau and does not further

decrease with h to 0. This is because the constrained dynamics model (5.15)

introduces an O(1/ω) error from (5.14). This error could be reduced by increasing

ω (plot not shown), but an ω > 100 (and a corresponding small h) is rarely

necessary, unless a high precision beyond 1/1000 is in demand.

Moreover, we see in Figure 5.4 that a numerical implementation of SHAKE

yields significant error when h is further decreased, while SyLiPN is not conver-

gent to the benchmark either but its error is much smaller. In particular, in this

experiment SHAKE yields ∼ exp(−6) error when h is small, but when h further

becomes smaller, the error grows to ∼ 1 (i.e., 100%) at some point, and then de-

creases to ∼ exp(−2) again and stablizes. This is due to the inevitable numerical

errors in solving nonlinear systems in SHAKE: we plotted λ the Lagrange multi-

plier in SHAKE as a function of time (results not shown) and found that λ was

0 in the first few steps but then suddenly became very large; this is because h

is so small that in the first few steps it appears to the nonlinear solver that the

constraints are satisfied without any virtue force, but then the deviation of the
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(c) Small h = 0.001, 0.002,

. . ., 0.03 & h0/ω. The fit

doesn’t work because the

error does not go to 0 as

h→ 0 (and hence the model

(5.22) is wrong).

Figure 5.3: Relative error of SyLiPN simulation of the constrained dynamics (5.14)

with (5.19) as a function of h. The straighter the line is in the log-log plot (first

row), the better the error function fits in a power law (5.22).

constraint from being satisfied accumulates, and this eventually leads to a sudden

overshot of the Lagrange multiplier. On the contrary, SyLiPN does not exhibit

such a problem, and its error converges to a small non-zero value because the con-

straint is only satisfied approximately with an error of O(1/ω), and this error can

be reduced by choosing a large ω.

Uniform circular motion: To rule out the possibility of an inaccurate bench-

mark, we repeated the above experiments on a particle with no potential energy

but constrained by x2 + y2 = 1, whose dynamics can be solved exactly and cor-

responds to a uniform circular motion. We obtained similar results (with slightly

different numerical values of powers), and SHAKE still exhibits inaccuracy at tiny

h, but we will not repeat the details.
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(b) SyLiPN with constrained dynamics

model (5.15)

Figure 5.4: Relative error of SHAKE and SyLiPN simulation of the constrained

dynamics (5.14) with (5.19) as a function of h. h is chosen from 0.00001 � h0/ω

to 0.001 ≈ h0/ω with an increment of 0.00001. The benchmark is obtained by

generalized coordinate implicit Variational Euler with a very small step h = 0.0001.

5.4.3 High-dimensional case: A chain of many pendulums

Now consider a high-dimensional generalization: a chain of finitely many pendu-

lums (which approximates a rope, except for that ropes in reality are subject to

dissipations and therefore not chaotic). The system is similarly modeled by (5.15)
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with:

M =



m1 0 · · · · · · 0 0

0 m1 · · · · · · 0 0
...

...
. . . 0

...
...

...
... 0

. . .
...

...

0 0 · · · · · · mn 0

0 0 · · · · · · 0 mn


(5.23)

V (x1, y1, · · · , xn, yn) = −
n∑
i=1

gyi (5.24)

g(x1, y1, · · · , xn, yn) =


x2

1 + y2
1 − L2

1

(x2 − x1)2 + (y2 − y1)2 − L2
2

...

(xn − xn−1)2 + (yn − yn−1)2 − L2
n

 (5.25)

where n indicates the total number of pendulums. We again assume without loss

of generality that mi = 1 and g = 1.

Figure 5.5 provides a comparison between SHAKE and SyLiPN. The system is

chaotic, meaning that even the same converging integrator with slightly different

time step lengths will eventually produce completely different trajectories, and

therefore we terminate the integration before chaotic behavior starts to manifest

so that the comparison still makes sense. Such a termination time is decided so

that SHAKE with different integration step lengths produces the same trajectory,

but simulations beyond that time will yield significant deviations. SyLiPN agrees

well with SHAKE till this termination time. An animation that compares the

simulations is available at http://www.youtube.com/watch?v=naTStCPuW9M.

Speed-wise, SHAKE with h = 0.1, h = 0.05, h = 0.2 and SyLiPN with h = 0.1

respectively spent 18.9, 37.1, 11.5 and 1.5 seconds on the above simulation (on a

2.4 GHz laptop running MATLAB 7.7 and ‘fsolve’ as the nonlinear solver). Again,

SyLiPN based on linear solves demonstrates a clear speed advantage.

http://www.youtube.com/watch?v=naTStCPuW9M
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Figure 5.5: Comparison of x1(t), y1(t), xn(t), yn(t) integrated by implicit SHAKE with h = 0.05,

h = 0.1 and h = 0.2 and linearly-implicit SyLiPN with h = 0.1 on the modified system (5.15).

n = 20; initial positions are xi(0) = i, yi(0) = 0 for i = 1, 2, . . . , n and initial momenta are zero;

Li = 1; the modified system uses ω = 100; total simulation time is 20; SyLiPN uses β = 0.4.
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Chapter 6

Temperature and friction accelerated

sampling

In a stochastic setting, accurately obtaining the statistics of an ensemble of nu-

merical solutions is often desired. This accuracy is, of course, distinct from a

trajectory-wise accuracy. In fact, it is not only possible but also computation-

ally beneficial to ignore the correctness of each single trajectory but still obtain

a statistically correct ensemble. For the purpose of sampling from a statistical

distribution, this is perfectly fine, because, after all, the dynamics is artificially

introduced only in order to enable sampling.

Based on this philosophy, we propose a method to accelerate the convergence of

a Langevin process towards its corresponding Boltzmann-Gibbs (B-G) distribution,

so that an efficient B-G sampling could be achieved.

Most results in this chapter are included in a submitted manuscript [277].

6.1 Introduction

Specifically, consider the following Langevin Stochastic Differential Equations dq = pdt

dp = −∇V (q)dt− cpdt+
√

2c/βdW
(6.1)
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where p, q ∈ Rd represent position and momentum, V (·) is the potential energy,

W is a standard Wiener process, M is the mass matrix, c is a positive semi-

definite d × d matrix indicating the damping coefficient, β ∈ R+ is the inverse of

temperature, and c and β are constants that do not depend on q or p.

It is known that the stochastic process defined by (6.1) has an invariant distri-

bution of Boltzmann-Gibbs defined by:

dµ = Z−1 exp(−βH(q, p))dqdp (6.2)

where Z =
∫
T ∗Rd exp(−βH(q, p))dqdp is the partition function, and H(q, p) =

pTM−1p/2 + V (q) is the Hamiltonian function.

When the solution of (6.1) is also geometrically ergodic with respect to µ

(we refer to [197] and [198] for sufficient conditions on the potential V ), it is

then natural to use long-time trajectories of (6.1) as approximate samples of B-G

distribution.

One important thing to notice is that being able to sample from B-G enables

sampling an arbitrary smooth-enough probability density function. The trick is

to set V (q) = −β−1 lnπ(q), and then the marginal distribution on q from B-G will

have the density function π(·).

This chapter is concerned with the following questions:

1. Although the friction parameter c does not affect the invariant distribution,

it does affect the rate of convergence. How should c be chosen for faster

convergence and hence accelerated sampling?

2. If sampling from B-G is the objective, the inverse temperature β does not

need to be kept constant over the total simulation time T . How should

the cooling schedule t 7→ β(t), t ∈ [0, T ] be chosen in order to minimize the

distance between the distribution of [q(T ), p(T )] and the desired B-G?

The short answers will be:

1. Friction should be chosen so that the local quadratic approximation to the
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potential corresponds to a critical damped oscillator.

2. A near-optimal cooling schedule, which is a finite-dimensional map from

integer (i.e., the step count) to real (i.e., the temperature at each step),

could be obtained by minimizing an error bound, which does not (directly)

depend on the dimension of the system (and hence the optimization does

not become harder in high-dimensional cases), but only on a few real-valued

parameters that characterize the energy landscape.

In many cases, an inverse linear cooling schedule, which overheats the system

and then inverse linearly drops the temperature to the desired value, provides

a better efficiency than many other schedules.

6.2 A concise review and our contribution

Methods for sampling Boltzmann-Gibbs distribution are greatly desired due to its

practical usages, partly because various phase-space integrals, which are widely

used in constant temperature statistical physics [57, 108] and non-perturbative

calculations of quantum field theories [163], can be approximated by summations

of functions of sampled points in phase-space. This sampling is, however, a known

computational challenge [24, 134, 163]. The nonlinearity of the potential and the

curse of dimensionality, for instance, make sampling methods slowly convergent.

Classical sampling approaches include purely statistical methods such as Metropo-

lis algorithm and importance sampling that are solely for sampling purposes (see

for instance [25] and references therein for a review and comparison), stochas-

tic molecular dynamics (primarily Langevin dynamics), deterministic dynamics

plus an external thermostat (such as Nosé-Hoover [217, 144], Berendsen [28] or

Andersen [7] thermostats), Hybrid Monte Carlo [84] (which introduces auxiliary

dynamics to avoid random walks), etc. We also refer to [234] for an example that

combines stochastic molecular dynamics and purely statistical approach.

Langevin dynamics, which adds friction and noise to mechanical equations to

model energy exchange with a heat bath [287, 247, 248], is a good candidate for
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sampling purposes. It has been shown in the context of classical molecular sam-

pling that both stochastic dynamics and deterministic dynamics with thermostats

outperform purely statistical methods in convergence rate as the size of the sys-

tem grows, and stochastic dynamics has a robust behavior with respect to space

dimension (we refer to [57] for a linear alkane molecule). Also, since overdamped

Langevin is a special case of Hybrid Monte Carlo [63], it is not surprising to ob-

serve cases in which Langevin dynamics is computationally more efficient than

purely statistical methods. Moreover, if the system is stiff or multiscale, existing

stiff or multiscale Langevin integrators such as SIM [276] or FLAVOR [275] can

be directly employed for accelerated computation.

Various concepts related to the idea of annealing have been proposed. A cool

schedule was first introduced in Simulated Annealing algorithm [166] for global

optimization, which can also be viewed as (uniformly) sampling from the set of

global minimizers of V . Temperature accelerated dynamics has been proposed in

[260] for events simulations. The concept there is to raise temperature of the sys-

tem to make rare events occur more frequently, intercept each attempted escape

from potential wells and extrapolate time to low temperature. Another temper-

ature approach has been used to calculate free energy [189]. In that method,

overheated auxiliary variables are introduced to equilibrate the collective variables

faster. The type of annealing that we use is a global cooling schedule that was

used in Simulated Annealing. Surprising as it may seem, we have never seen

any demonstration of employing annealing for sampling purposes, although the

abundant applications for optimization purposes are needless to mention.

In addition, although the use of Langevin for sampling is well known, to the

best of our knowledge, there has been no study on an optimal choice of friction in

Langevin dynamics.

Our proposed strategy (tuning friction and annealing temperature) is distinct

from prevailing accelerated sampling methods, such as conformational flooding

[125], replica exchange [269], umbrella sampling [282], self-guided MD [299], hy-

perdynamics [294], affine invariant ensemble sampler [122], and many others re-
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viewed in [31], especially in the sense that it can be used concurrently with many

of these methods. Indeed, while tuning friction is mostly restricted to dynamics

based methods, annealing may apply to any method that involves temperature.

Note that temperature is a rather general notion because it can often be introduced

artificially; for instance, see [212] for an example in which temperature is intro-

duced in an MCMC algorithm for Bayesian updating. Based on this reason, there

is no point in comparing our strategy with most other acceleration approaches.

6.3 Methodology

6.3.1 Background algorithms

Although any Langevin integrator can serve as a background algorithm and be

tuned and annealed, we base our numerical simulations on Geometric Langevin

Algorithm (GLA) introduced in [41], which is recapped as follows:


p̂n = e−cnhpn +

√
1−e−2cnh

βn
ξn

qn+1 = qn + hp̂n

pn+1 = p̂n − h∇V (qn+1)

(6.3)

where h is the timestep length, ξn’s are i.i.d. standard normal random variables,

and cn = c and βn = β in absence of friction tuning or temperature annealing.

The choice of GLA is motivated by its conformal-symplecticity and long-time

properties [41]. Specifically, under certain conditions, GLA is not only pathwise

accurate but also convergent towards B-G in the sense that its invariant measure

deviates O(h) from Boltzmann-Gibbs measure in total variation norm (and hence

it captures statistical properties). It is worth mentioning that similar properties

are shown to hold under weaker conditions for a Metropolized version of GLA

[234, 42], which can also be tuned and annealed for accelerated samplings.

For multiscale or stiff systems (where V (q) = V0(q) + ε−1V1(q) for instance),

FLAVORs [275] are possible alternative background algorithms that are also conformal-

symplectic (we also refer to SIMs [276] for quadratic stiff potentials).
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6.3.2 Choice of friction

If V is quadratic (of the form V = qTKq
2 ), we show in Section 6.4.1 that optimal

acceleration is achieved by choosing c = 2K
1
2 so that all degrees of freedom of the

harmonic oscillator are critically damped. It is also important to notice that this

choice does not depend on temperature.

Based on this observation, we heuristically propose to tune the friction cn at

each time step of the simulation according to the Hessian of the potential V :
kn =


1
2
∂2V
∂q2

(qn), ∂2V
∂q2

(qn) � 0

α2/4I, otherwise

cn = 2
√
kn

(6.4)

where α is a fixed real parameter, preassigned to handle the case of negative

curvature; for instance, it could be equal to 0 or to the original value of c.

6.3.3 Choice of temperature

Annealing has successfully been applied to optimization problems [166]. A cooling

schedule describes how to choose T (n) = 1/βn as a function of n. For optimization-

based cooling schedules, one requires limi→∞ T (i) = 0. We refer to [127, 73, 284]

for general reviews of optimization-based cooling schedules, and to [114, 132] for

theoretical bounds on the convergence of specific schedules.

In this chapter, however, we are interested in situations where the total number

of steps N is finite and fixed, the final temperature T (N) = Tf = 1/β > 0 is strictly

positive and is the temperature at which one wishes to sample B-G.

It is then natural to seek to minimize the distance between the distribution of

(qN , pN ) and B-G at temperature 1/β using T (1), . . . , T (N − 1) as optimization

variables. In Section 6.4.2 we derive a bound on this distance using convergence

rates of Markov chains. Notice that this bound holds in disregard of the dimension

of the phase space. A numerical minimization of that bound suggests the following

near-optimal cooling schedule for Tf > 0 (for Tf = 0 we refer to [73] and references
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therein) and N < N0 (N0 is the number of steps needed for sampling by a naive

Langevin simulation; see Section 6.4.3 for details):

βn =
n

N

1

Tf
+ (1− n

N
)

1

Ti
, T (n) = 1/βn, (6.5)

where N is the total-number of simulation steps, Tf the temperature at which the

Gibbs distribution needs to be sampled, and the initial temperature Ti > Tf is a

free parameter chosen to overcome the maximal potential barrier, i.e., Ti � CV /k

(for simplicity we let the Boltzmann constant k be equal to one in our setting; CV

can be intuitively interpreted as the maximum elevation in potential landscape,

and we refer to [81] for a rigorous definition).

6.3.4 Friction and temperature accelerated sampling

Put together, annealed and tuned GLA (AnnealTuneGLA) for accelerated B-G

sampling is the following:

kn =

 1
2
∂2V
∂q2

(qn) ∂2V
∂q2

(qn) � 0

α2/4 otherwise

cn = 2
√
kn

βn = n
N

1
Tf

+ (1− n
N ) 1

Ti

p̂n = e−cnhpn +
√

1−e−2cnh

βn
ξn

qn+1 = qn + hp̂n

pn+1 = p̂n − h∇V (qn+1)

(6.6)

Compared to the background GLA, the distribution of the accelerated trajectory at

a fixed time is closer to the desired B-G in the total variation sense (see numerical

experiments below). A possible exact preservation of a near-by distribution is,

however, not yet proved for AnnealTuneGLA. Accelerations due to tuning friction

and annealing temperature are independent.

It is worth mentioning that 1st-order GLA is not unconditionally stable, nor

is AnnealTuneGLA. Therefore, h or α should not be chosen to be too large.



197

6.4 Analysis and optimization

6.4.1 Optimal friction in linear systems

In this section, we will show that with β fixed, the choice of c = 2
√
k will enable

the fastest convergence of the following system: dq = pdt

dp = −kqdt− cpdt+ σdW
(6.7)

where σ =
√

2c/β. Assume k is a scalar for the moment. For our purpose, consider

positive k, because if k is 0 the system decouples, and if k is negative the system

is not ergodic and does not admit an invariant distribution.

The solution to the above linear system can be explicitly written as q(t) = B11(t)q(0) +B12(t)p(0) +
∫ t

0 B12(t− s)σdWs

p(t) = B21(t)q(0) +B22(t)p(0) +
∫ t

0 B22(t− s)σdWs

(6.8)

where B(t) is the fundamental matrix defined by the autonomous ODE dB
dt = 0 1

−k −c

B, and written in block form as

B(t) =

B11(t) B12(t)

B21(t) B22(t)

 = exp

 0 1

−k −c

 t
 (6.9)

After calculating out the matrix exponential, the expectation of position writes

as follows

Eq(t) = B11(t)q(0) +B12(t)p(0)

=
e

1
2(−c+

√
c2−4k)t

(
c+
√
c2 − 4k

)
− e

1
2(−c−

√
c2−4k)t

(
c−
√
c2 − 4k

)
2
√
c2 − 4k

q(0)

+
e

1
2(−c+

√
c2−4k)t − e

1
2(−c−

√
c2−4k)t

√
c2 − 4k

p(0) (6.10)
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Naturally, the expectation approaches 0 as t → +∞. Recall that c and k are

nonnegative reals. We will show in the following discussion that the maximum

speed of convergence toward 0 will be achieved with c = 2
√
k:

1. When c2 − 4k > 0, −c −
√
c2 − 4k < −c +

√
c2 − 4k < 0 and none of the

coefficients are zero. Therefore the bottleneck for convergence of B11(t) and

B12(t) will be e
1
2(−c+

√
c2−4k)t, which will be minimized as c2 ↓ 4k.

2. When c2 − 4k = 0, B11 = 1
2e
−ct/2(2 + ct) and B12 = e−ct/2t.

3. When c2−4k < 0, define a real number ω =
√

4k − c2. B11 = e−ct/2(c sin(ωt/2)/ω+

cos(ωt/2)) and B12 = e−ct/22 sin(ωt/2)/ω. Notice cos(ωt/2) and sin(ωt/2)

can not be simultaneously zero, and therefore the convergence rate is con-

trolled by e−ct/2, which will be minimized when c2 ↑ 4k.

Hence when c = 2
√
k this linear system (6.7) converges the fastest. Notice that

this choice corresponds to a critically damped system (as opposed to overdamped

or underdamped).

Remark 6.4.1. One may carry out the same analysis for p(t), and the result

will be the same (omitted). Therefore, the same choice will enable the fastest

convergence towards B-G, because B-G is, after all, a distribution of q and p.

When the system is linear but multi-dimensional, k can be assumed without loss

of generality to be a symmetric matrix, and it can be immediately seen that there is

no theoretical difficulty because one can diagonalize k and choose c diagonal-wisely.

Therefore, any numerical method that calculates the square root of a matrix could

work here for getting c. There are many possible numerical approaches for square

rooting matrices, for instance by preconditioning if the matrix has some special

structure (which is usually the case in molecular systems), or as in [137] or [140],

but for consideration of conciseness we will not discuss this numerical topic.
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6.4.2 Error bound of cooling schedules

Lemma 6.4.1 (Spectral gap and weak convergence rate). Consider an aperiodic

and irreducible homogeneous Markov Chain (X0, X1, . . . , Xn, . . .), with transition

operator (matrix) A. Suppose A is diagonalizable, and the initial state X0 is drawn

from the distribution µ. Denote by π the invariant distribution of this Markov

Chain, and by ρ the second largest absolute value of A eigenvalues, which will

show to be the convergence rate. Given an arbitrary test function f that maps the

state space E of the chain to R, then ρ < 1 and

|Eµf(Xn)− Eπf | ≤ ρn|Eµf − Eπf | (6.11)

Proof. For an easy illustration, write in finite dimensional linear algebra language.

Denote by λ1 ≥ λ2 ≥ . . . ≥ λd the ordered eigenvalues of A. Since the chain is

irreducible and aperiodic, it is well known that 1 = λ1 > λ2 ≥ . . . ≥ λd > −1, and

ρ = max(a2, |ad|) < 1. Since A is diagonalizable, it admits both left eigenvectors

and right eigenvectors. Denote by ψ1, ψ2, . . . , ψd and φ1, φ2, . . . , φd left and right

eigenvectors associated to λ1, λ2, . . . , λd. Assume without loss of generality that

all ψ’s have entries sum up to 1. It can be easily shown that they are biorthogonal.

Eigenspace associated to eigenvalue 1 is one dimensional.

Now represent the distribution µ as a row vector a that indicates state space

density. Apparently, entries of a are non-negative and sum up to 1. Moreover,

it is a classical proof that ψ1 represents the invariant distribution π. In addition,

denote f by a column vector f , whose entries are arbitrary. Then (6.4.1) can be

rewritten as

|aAnf − ψ1f | ≤ ρn|af − ψ1f | (6.12)

Assume g = f −


ψ1f

· · ·

ψ1f

, then since entries of a sum up to 1, the above inequality
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is equivalent to

|aAng| ≤ ρn|ag| (6.13)

Expand a in ψ’s and g in φ’s: a = a1ψ1 + · · · + adψd, g = g1φ1 + · · · + gdφd. By

the definition of g, it is easy to check that ψ1g = 0. Since φj(j 6= 1) is orthogonal

to ψ1, we have g1 = 0. Therefore

|aAng| = |a1g1 + a2λ
n
2g2 + · · ·+ adλ

n
dgd|

= |a2λ
n
2g2 + · · ·+ adλ

n
dgd|

≤ ρn|a2 + · · ·+ ad| ≤ ρn|ag| (6.14)

Remark 6.4.2. The chain does not have to be reversible (i.e., A needs not be self-

adjoint). In fact, although Metropolis algorithm is reversible, Langevin dynamics

generally is not.

Remark 6.4.3. The mild requirement that A is diagonalizable can be relieved, and

a similar result will still hold, because the eigenspace associated to eigenvalue 1 is

one dimensional and g1 will always be 0. By using Jordan canonical form of A,

one can prove that there exists a positive integer M so that ‖AM‖Frobenius < 1, and

therefore the ρn bound for the diagonalizable case could be safely replaced by ρn/N .

Convergence might be slower, however still certain.

Corollary 6.4.1 (Local error bound). Denote by µi the distribution of the phase

space coordinate obtained by i steps of AnnealGLA simulation using a cooling

schedule T (·), by πT (i) the Boltzmann-Gibbs distribution at temperature T (i), and

by ρi the convergence rate of the Markov Chain given by Langevin integrator at

temperature T (i) (TuneGLA in our case). Then in the sense of total variation,

‖µi − πT (i)‖TV ≤ ρi‖µi−1 − πT (i)‖TV (6.15)
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Proof. This is a direct application of Lemma 6.4.1. Choose f to be the index func-

tion IA for arbitrary measurable set A. Recall that total variation norm is defined

as ‖µ − π‖TV := supA∈B |µ(A) − π(A)|, where B is the σ-algebra of measurable

space.

Lemma 6.4.2 (Global error bound). Let ai = ‖µi − πT (i)‖TV , bi = ‖πT (i−1) −

πT (i)‖TV , pi =
∏N
k=i ρk. Then

aN ≤ a1p2 +

N∑
j=2

bjpj (6.16)

Proof. By Corollary 6.4.1 and triangle inequality, we have

‖µi−πT (i)‖TV ≤ ρi‖µi−1−πT (i)‖TV ≤ ρi(‖µi−1−πT (i−1)‖TV +‖πT (i−1)−πT (i)‖TV )

(6.17)

i.e., ai ≤ (ai−1 + bi)ρi. By induction, we obtain

aN ≤ a1ρ2ρ3 . . . ρN + b2ρ2ρ3 . . . ρN + b3ρ3 . . . ρN + · · ·+ bNρN (6.18)

Assumption 6.4.1 (Bound on spectral gap). Based on [107], [250], [80], [81],

[41], [198] and transition state theory, it is reasonable to assume that in the stable

regime of integration:

0 < ρi ≤ 1− f(h, h0)e
− CV
T (i) (6.19)

where h is the integration timestep, h0 is a constant indicating the stability limit on

step length (and hence 0 ≤ h ≤ h0), f(a, b) is some function such that f(0, b) = 0

and f(a, b) ≤ 1, and CV ≥ 0 corresponds the elevation of potential, which is a

constant defined as follows:

Assumed without loss of generality that inf V = 0. Define Vmin = {p ∈ E :
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V (p) = 0}. Define the elevation of a path γ(x, y) linking x and y by:

Elev(γ(x, y)) = sup
p∈γ(x,y)

V (p) (6.20)

Define the elevation between two points by the minimal elevation path:

Elev(x, y) = inf
γ(x,y)

Elev(γ(x, y)) (6.21)

Define the elevation of potential by:

CV = sup
x∈E

(
inf

y∈Vmin

(Elev(x, y)− V (x))

)
(6.22)

Remark 6.4.4. This assumption is reasonable due to various reasons:

1. Diaconis and Stroock proved a general theorem on bounds of eigenvalues of

Markov chain [81], and as a corollary we will have ρ ≤ 1 − 1
d3
e−CV /T for

a Metropolis chain at temperature T , where CV is the one in (6.22) and

d is a constant (corresponding to our f(h, h0)). The Markov chain of An-

nealTuneGLA is a more general case, and we assume the same thing still

holds.

2. By using Freidlin-Wentzell theory [107], Schütte and Huisinga [250] show

that in the low temperature limit the characteristic time of crossing a potential

barrier of height CV is τ = eCV /T . Therefore by large deviation theory [80],

the convergence rate ρ given by one step update with length of h will be

exp(−Ch/τ) for some C, where C certainly depends on h0. Taylor expansion

to the 1st-order turns this to our assumption when h is small.

3. The form of how the convergence rate depends on the temperature dates back

to the Arrhenius rate law and the development of transition state theory [173].

4. GLA is geometric ergodic [41]. Our assumption implies 0 ≤ ρ < 1, which is

consistent with this.
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Lemma 6.4.3. a1 = 1 if the initial condition of simulation is (q1, p1) = x for an

arbitrary deterministic value x.

Proof. Notice µ1 is a Dirac delta and πT (1) is a continuous distribution. Choose

Â = {x}, then

‖µ1−πT (1)‖TV := sup
A
|µ1(A)−πT (1)(A)| ≥ |µ1(Â)−πT (1)(Â)| = |1−0| = 1 (6.23)

Since a total variation distance could at most be 1, a1 := ‖µ1 − πT (1)‖TV = 1.

Lemma 6.4.4. Assume 0 ≤ T (j − 1)− T (j)� T (j), then

0 ≤ bj ≤ EHT (j)
T (j − 1)− T (j)

T (j)2
+ o (T (j − 1)− T (j)) (6.24)

where ET (j)H is the average energy of B-G at temperature T (j). Denote ET (j)H =

αjT (j), then

0 ≤ bj ≤ αj
T (j − 1)− T (j)

T (j)
+ o (T (j − 1)− T (j)) (6.25)

Oftentimes αj ≈ 1.

Proof. For conciseness, use the notation T = T (j) and dT = T (j − 1)− T (j)� T

throughout this proof. We have

bj =
1

2

∫
T ∗Q

∣∣∣∣ 1

ZT
e−H/T − 1

ZT+dT
e−H/(T+dT )

∣∣∣∣ dqdp ≥ 0 (6.26)

where

ZT+dT =

∫
T ∗Q

e−H/(T+dT ) dqdp

=

∫
T ∗Q

e−H/T e−H(−dT/T 2+o(dT )) dqdp

=

∫
T ∗Q

e−H/T
(
1 +HdT/T 2 + o(dT )

)
dqdp

= ZT
(
1 + ETHdT/T 2 + o(dT )

)
(6.27)
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Therefore,

bj =
1

2

∫
T ∗Q

1

ZT
e−H/T

∣∣∣∣1− ZT
ZT+dT

e−H(1/(T+dT )−1/T )

∣∣∣∣ dqdp
=

1

2

∫
T ∗Q

1

ZT
e−H/T

∣∣∣∣1− 1

1 + ETHdT/T 2 + o(dT )
e−H(−dT/T 2+o(dT ))

∣∣∣∣ dqdp
=

1

2

∫
T ∗Q

1

ZT
e−H/T

∣∣1− (1− ETHdT/T 2 + o(dT )
) (

1 +HdT/T 2 + o(dT )
)∣∣ dqdp

=
1

2

∫
T ∗Q

1

ZT
e−H/T

∣∣ETHdT/T 2 −HdT/T 2 + o(dT )
∣∣ dqdp

≤ 1

2

∫
T ∗Q

1

ZT
e−H/T

(∣∣ETHdT/T 2
∣∣+
∣∣HdT/T 2

∣∣+ o(dT )
)
dqdp (6.28)

Since H is bounded from below, assume without loss of generality that H ≥ 0.

Then

bj ≤
1

2

∫
T ∗Q

1

ZT
e−H/T

(
ETHdT/T 2 +HdT/T 2 + o(dT )

)
dqdp

= ETHdT/T 2 + o(dT ) (6.29)

Remark 6.4.5. This bound is tight in the following sense:

Lemma 6.4.5. If H is a positive definite quadratic function (for instance, nor-

malized harmonic oscillator H(q, p) = (q2 + p2)/2), then αj = 1, and the bound of

bj in Lemma 6.4.4 is reached: bj = αj
T (j−1)−T (j)

T (j) + o (T (j − 1)− T (j)).

Proof. Notice that Boltzmann-Gibbs in this case (possibly after linear transfor-

mation in phase space) can be written as dµ = e−H(q,p)/T /TdH. αj = 1 hence

obviously follows.

For the latter, setHc = log T1
T2

T1T2
T1−T2 by solving 1

T (j−1)e
−Hc/T (j−1)− 1

T (j)e
−Hc/T (j) =

0 so that sign changes across Hc. Since T (j − 1) ≥ T (j) and
∫∞
Hc

= 1 −
∫ Hc

0 , we
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have

bj =

∫ Hc

0

(
1

T (j − 1)
e−H/T (j−1) − 1

T (j)
e−H/T (j)

)
dH

=
T (j − 1)

T (j)

− T (j)
T (j−1)−T (j)

− T (j − 1)

T (j)

− T (j−1)
T (j−1)−T (j)

(6.30)

As T (j − 1)− T (j)→ 0, L’Hospital’s rule gives

bj →
T (j − 1)− T (j)

T (j)
(6.31)

Theorem 6.4.1. Assume a Langevin integrator (qi−1, pi−1) 7→ (qi, pi) at tempera-

ture T (i) with step length h has a bound on convergence rate ρi ≤ 1−f(h, h0)e
− CV
T (i)

(Assumption 6.4.1), corresponds to a Markov Chain with a diagonalizable transi-

tion operator, the initial condition is (q1, p1) = x for some deterministic x, and

the cooling schedule satisfies 0 ≤ T (j − 1)− T (j)� T (j), then

‖µN − πN‖TV ≤
N∑
j=2

αj T (j − 1)− T (j)

T (j)

N∏
k=j

(
1− f(h, h0)e

− CV
T (k)

)
+ o (T (j − 1)− T (j))


+

N∏
k=2

(
1− f(h, h0)e

− CV
T (k)

)
(6.32)

where µN is the distribution of (qN , pN ), πN is Boltzmann-Gibbs at temperature

T (N), and αj = ET (j)H/T (j) (oftentimes αj ≈ 1).

Proof. By applying Lemma 6.4.3, Lemma 6.4.4, Assumption 6.4.1 to Lemma 6.4.2.

6.4.3 Optimization with respect to cooling schedules

Naturally, one would like to minimize the error bound (6.32) with respect to T (n)’s.

This is however difficult because (6.32) is a highly nonlinear function of T . Instead,

we consider the following prevailing types of cooling schedules (denote by Tf the
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final temperature at which we want to sample the B-G, and by N the number of

steps we can afford to employ):

Inverse logarithmic cooling:

T (n) = Tf
log(N + 1)

log(n+ 1)
(6.33)

This is the most popular schedule for optimization ([114, 132], for instance, have

been frequently cited), but truncated at Tf before T → 0. Recall inverse logarith-

mic cooling is T (n) = C
log(n+1) , and C is fixed by requiring T (N) = Tf . When N

is fixed, there is no need to choose any parameter. This schedule will serve as our

benchmark.

Shifted inverse logarithmic cooling:

T (n) = Tf +
C

log(n+ 1)
(6.34)

where C > 0 is the free parameter to be optimized. T (N) is set to be Tf .

Exponential cooling:

T (n) = Tfe
C̃(N−n) = TfC

N−n (6.35)

where C = eC̃ > 1 is the free parameter to be optimized.

Shifted exponential cooling:

T (n) = Tf + C̃ · C−n (6.36)

where C̃ > 0 and C > 1 are free parameters. For ease on optimization, we chose

C̃ = 10−4TfC
N so that temperatures ‘smoothly’ cool to Tf , and are left to optimize

only one free parameter.
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Linear cooling:

T (n) =
n

N
Tf + (1− n

N
)Ti (6.37)

where Ti > Tf is the free parameter. This is used in [270] for optimization purposes.

This seemingly too fast cooling schedule does give a small error bound in typical

cases (see below).

Inverse linear cooling:

T (n) = 1/

(
n

N

1

Tf
+ (1− n

N
)

1

Ti

)
(6.38)

where Ti > Tf is the free parameter. Instead of linearly interpolating the tem-

perature, this linearly interpolates β which is the inverse of temperature to ensure

more steps at low temperatures.

Optimal error bound: We optimize the error bound (6.32) for different total

numbers of steps (N ’s) with respect to the cooling schedules (or more precisely,

their parameters) described above. As indicated in Table 6.1, the optimal choice

depends on the total simulation time (N , or more precisely, the ratio between Nh

and the mixing time of the original system). Unless N is too small or too large,

optimal inverse linear cooling produces a small error bound, optimal linear and

exponential coolings have close performances as well, and all three optimal cooling

schedules are similar. If the number of steps is too small, B-G will not be approx-

imated well by any cooling schedule, and it is better to use the trivial schedule of

constant temperature. If the number is instead too large (usually not the case of

interest because accelerated sampling is desired), most types of cooling schedules

will yield small errors, and surprisingly, shifted exponential cooling outperforms

inverse logarithmic cooling, which is a popular cooling schedule for large N .

In these experiments, Tf = 20, CV = 150, f(h, h0) = 1, and αj = 1. In this

typical setting Tf/CV is small and the B-G distribution is concentrated in potential

wells, h is close to h0, and αj ≈ 1. If the Tf/CV is large, however, the optimization
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N Constant Inverse log Shifted inverse log Exp Shifted exp Linear Inverse linear

(no cooling) (benchmark)

200 0.896 1.304 0.950 0.8961 0.8961 0.8961 0.8961

600 0.718 0.560 0.752 0.3722 0.718 0.3652 0.3682

1000 0.575 0.325 0.597 0.2663 0.346 0.2673 0.2653

2000 0.331 0.142 0.336 0.1534 0.161 0.1554 0.1514

5000 0.063 0.047 0.064 0.0465 0.028 0.0475 0.0465

1: Achieved by the limiting case of almost constant temperature

2,3,4,5: Achieved by almost the same linear-alike optimizers within each row

Table 6.1: Optimal error bound for different cooling schedules given N total steps. Within

each row, bold indicates the minimum error bound. Different values of N are chosen to represent

regimes of very small, small, medium, large, very large N values, in the sense of being compared

to the total mixing steps which in this case renders the error bound 0.5 with a constant cooling

and is N ≈ 1250.

suggests not to anneal (result not shown). Optimization is done using MATLAB

command ‘fmincon’.

It is worth mentioning again that these optimization results do not directly

depend on the dimension of the system nor details of the potential landscape, but

only rely on several characteristic parameters: CV , f(h, h0), and αj .

6.5 Numerical experiments
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Figure 6.1: Potential energy landscape.
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Consider a one dimensional nonlinear molecular system consisting of two dis-

tinct heavy (fixed) atoms and a light atom between them. It is modeled as a single

degree of freedom Hamiltonian system with a Lennard-Jones potential function

V (q) =
(
q−12 − q−6

)
+ 5

(
(4− q)−12 − (4− q)−6

)
(Figure 6.1). The energy land-

scape consists of a local potential barrier and two potential wells. The attraction

due to the right atom is larger than the left one. If one starts the dynamics with

zero initial momentum and position in the left basin, the asymptotic (long time)

position distribution will be a marginal of B-G and concentrated in the right basin.

Therefore, the expectation of position q at a fixed time can be used as an indicator

of the convergence rate for this nonlinear system (see also Remark 6.4.1 for why).

1 2 3
0

2

4

6

8

10
Empirical distribution by GLA at Time=40

q

p.
d.

f.

1 2 3
0

2

4

6

8

10
at Time=80

q
1 2 3

0

2

4

6

8

10
at Time=120

q
1 2 3

0

2

4

6

8

10
at Time=160

q
1 2 3

0

2

4

6

8

10
at Time=200

q

Figure 6.2: Evolution of the empirical distribution obtained by GLA (Eq. 6.3) with c = 0.1. The

Markov process is converging as the distribution peaks more and more in the right potential basin.

Simulation is done with a step length h = 0.01 and distributions are approximated empirically

by an ensemble of 10000 trajectories.

Throughout this section we use parameters β = 10, q(0) = 1.1 and p(0) =

0. With an arbitrarily chosen c = 0.1, Langevin dynamics integrated with a

B-G preserving method GLA (Eq. 6.3) takes more than 200 time units before

indiscernible convergence (Figure 6.2).

6.5.1 Effect of friction

Enumerating c values for fixed β (and hence temperature T ), one obtains different

values of E[q(TotalTime)] for a fixed total simulation time (Figure 6.3). This

confirms that the value of c affects the convergence rate. The optimal fixed value

is c = 0.7 in this example.

Although in practice it is rarely the case that an optimization can be carried

out beforehand to determine the best value of c for fastest convergence of GLA, we
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Figure 6.3: Expectations of position at a fixed time for different frictions obtained by GLA (Eq.

6.3). Larger expectation implies better convergence in this problem, and therefore this indicates

the relationship between choice of c and convergence rate. The fixed time is TotalTime=100, step

length is h = 0.01, expectations are calculated by an empirical average over an ensemble of 1000

trajectories. c values are enumerated from 0.01, 0.02, . . ., 1.99, 2.00 and 2.10, . . ., 19.90, 20.00.

nevertheless use GLA with the optimal friction c = 0.7 for comparison purposes.

We will show that TuneGLA outperforms even this optimized GLA, demonstrating

that c really needs to be tuned locally.

6.5.2 Additive effects of tuning friction and annealing tempera-

ture

In Figure 6.4, GLA with c = 0.7 (the optimal fixed value), TuneGLA (GLA with

friction tuning) which adaptively tunes c but does not anneal (Eq. 6.6), An-

nealGLA (GLA with temperature annealing) which uses an inverse linear cooling

schedule (C = 10Tf ) but does not tune c (Eq. 6.38), and AnnealTuneGLAs that

tune and anneal with α = 0 and α = 0.7, respectively, are compared. We observe

that tuning friction and annealing temperature individually accelerates the con-

vergence, and their effects are additive. Therefore, the proposed AnnealTuneGLA

has the fastest rate of convergence. In addition, here the choice of α = 0 slightly

outperforms α = 0.7, which is set to be the value of the optimal c. The optimal

choice of α has not been investigated.
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6.5.3 Numerical validation on choices of cooling schedule

These cooling schedules have been implemented on the concrete example in Section

6.5. We did not optimize cooling schedules with respect to free parameters but

used a heuristic/generic constant instead. Error on the empirical expectation

of position has been investigated for each schedule in Figure 6.5. The ranking

of different types of schedules depends on total simulation time and agrees with

theoretical prediction (except for large total simulation times which are dominated

by numerical error accumulation).

In addition to Figure 6.5 and the above discussion that compare cooling sched-

ules for different total simulation times, we fix total time and show time dependent

errors of different schedules in Figure 6.6. Here total simulation time is 30 and

we are in the medium N regime. Inverse linear cooling indeed has better per-

formances, followed closely by linear cooling, both consistent with the theoretical

analysis. Rigorously speaking, one should compare cooling schedules only towards

the end of the simulation, because different cooling schedules are at different tem-

peratures in the middle of the simulation; however, the superiority of inverse linear

cooling is in fact exhibited throughout the simulation.

These numerical experiments and theoretical bounds indicate that inverse lin-

ear cooling is ranked at the top. It is worth pointing out that although annealing

accelerates convergence significantly, one has to choose a priori parameters (in most

of our cases, total simulation step N and constant C or Ti). This issue usually

needs a case-by-case investigation, but CV (if known) could be used in conjunction

with the error bound to determine N and C.
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Figure 6.4: Comparison of errors of GLA, TuneGLA with c adaptively tuned, AnnealGLA with

inverse linear cooling schedule, and AnnealTuneGLA with both. c = 0.7 that ensures fastest

GLA convergence (Figure 6.3) is used in GLA and AnnealGLA. A comparison between choices

of α (which indicates the value of c when curvature of potential is negative for tuning (Eq. 6.6)

is also presented. Total simulation time=30 is fixed, and error at each step throughout the

simulation is recorded. Simulation step length is h = 0.01. Error at time t is calculated by

| 1
M

∑M
i=1 q

i(t)− Eq(∞)|, where M = 10000 is the total number of independent trajectories, qi(t)

is the position of the ith trajectory at time t, and Eq(∞) is well approximated by empirical

average of an ensemble of 20000 GLA trajectories at total simulation time of 300. The constant

of initial temperature in the inverse linear cooling (Eq. 6.38) is C = 10Tf and applies to all three

AnnealGLAs.
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Figure 6.5: Errors of representative cooling schedules as functions of total simulation time

(hence of total simulation step N too). Errors are calculated by | 1
M

∑M
i=1 q

i
N − Eq(∞)|, where

M = 10000 is the total number of independent trajectories, qiN is the Nth step position of

the ith trajectory, N · h is the total simulation time and the step length h = 0.01. Eq(∞) is

well approximated by empirical average of an ensemble of 20000 TuneGLA trajectories at total

simulation time of 300. Constants used in cooling schedules are: Shifted inverse log: C = 0.01Tf ,

Exp: C = 1.5, Shifted exp: T (1) = 2Tf , Linear: C = 2Tf , Inverse linear: C = 10Tf . Basically

all settings are the same as in Section 6.5 except for total simulation time and cooling schedule

used. Total simulation time is enumerated from 5 to 100 with an increment of 1.
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Figure 6.6: Comparison of errors of TuneGLA with c adaptively tuned and AnnealTuneGLA

with different cooling schedules. Again, TuneGLA uses α = 0.7, total simulation time=30 is fixed,

and all other settings are the same as in Figure 6.5 and 6.4 too.



215

Chapter 7

Applications and related projects

7.1 Variational integrators for noisy multiscale circuits

When simulating the dynamics of an electrical circuit, one is faced with four dif-

ficulties: (i) the system involves external (control) forcing through external (con-

trolled) voltage sources and resistors; (ii) the system is constrained via the Kirch-

hoff current (KCL) and voltage laws (KVL); (iii) the corresponding Lagrangian

is degenerate; (iv) circuits in reality are always noisy and exhibiting multiple

timescales. Variational integrators that collaborators and I proposed not only

could overcome the first three difficulties, but also have nice structure preserva-

tion properties, including a better energy behavior and a preservation of frequency

spectrum. Moreover, they could be extended to simulate noisy circuits (via the

approach of stochastic variational integrator [40]) and multiscale circuits (via the

approach of FLAVORs (Chapter 2)).

Most results in this section are excerpts or paraphrases of the content of a

submitted manuscript [218]. In order to credit collaborators’ contributions, many

concepts described there will not be included in my thesis, such as the modeling

and the underlying geometry (the Dirac structure). A mathematical formulation

of the problem, however, is necessary and will be recapped.
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7.1.1 Constrained variational formulation

A circuit, when modeled in a geometric context (we refer to [218] for details),

corresponds to a mechanical system with Lagrangian L : TQ→ R defined as

L(q, v) =
1

2
vTLv − 1

2
qTCq (7.1)

with q(t) and v(t) being time-dependent charges and the currents (vector) of the

circuit elements. q(t) ∈ Q, where our configuration space Q will be called the

charge space.

L = diag(L1, . . . , Ln) and C = diag
(

1
C1
, . . . , 1

Cn

)
are matrices that correspond

to all inductors and capacitors. In the case where no inductor (resp. no capacitor)

is on branch i, the corresponding entry Li (resp. 1
Ci

) in the matrix L (resp. C)

is zero. In the presence of mutual inductors rather than self inductors, the matrix

L is not diagonal anymore, but always positive semi-definite. If not explicitly

mentioned the following theory and construction is also valid for mutual inductors.

The Legendre transform FL : TQ→ T ∗Q is defined by

FL(q, v) = (q, ∂L/∂v) = (q, Lv). (7.2)

Note that the Lagrangian can be degenerate if the Legendre transform is not

invertible, i.e., L is singular.

The Lagrangian force of the system consists of a damping force that results

from the resistors and an external force being the voltage sources

fL(q, v, t) = −diag(R)v + diag(E)u (7.3)

with R = (R1, . . . , Rn)T and E = (ε1, . . . , εn)T respectively corresponding to resis-

tors and voltage sources. If no resistor is on branch i, the corresponding entry Ri

in the vector R is zero. Similarly, for the entries of the vector E , it holds εi = 0 if

no voltage source is on branch i, and here we assume that the time evolution of

the voltage sources is given as a time-dependent function us(t).
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The constraint flux linkage subspace1 is defined by the Legendre transformation

as

P = FL(∆Q) ⊂ T ∗Q,

where ∆Q ⊂ TQ (i.e., ∆Q(q) ⊂ TqQ for all q) is a distribution that forms the Kirch-

hoff Current Law (KCL) constraint submanifold, which coincides with ker(KT )

for a Kirchhoff Constraint matrix K ∈ MR(n,m) that represents the topology of

the circuit.

∆0
Q (the annihilator of ∆Q) can be expressed by the image of K. Choosing

another matrix K2 ∈ MR(n, n−m) such that ker(KT
2 ) = im(K), this annihilator

describes the Kirchhoff Voltage Law (KVL) constraint submanifold by

∆0
Q(q) = {u ∈ T ∗qQ |KT

2 u = 0} ⊂ T ∗qQ

To derive the equations of motion for the circuit system, we make use of the

Lagrange-d’Alembert-Pontryagin principle, i.e., search for curves q(t), v(t) and

p(t) fulfilling

δ

∫ T

0
L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉 dt+

∫ T

0
fL(q(t), v(t), t) · δq(t) dt = 0 (7.4)

with fixed initial and final variations δq(0) = δq(T ) = 0 and constrained variations

δq ∈ ∆Q(q).

Taking variations gives us

∫ T

0

[〈
∂L
∂q

+ fL, δq

〉
− 〈ṗ, δq〉+ 〈δp, q̇ − v〉+

〈(
∂L
∂v

)
− p, δv

〉]
dt = 0 (7.5)

for arbitrary variations δv and δp, KT v = 0 and constrained variations δq ∈ ∆Q(q).

1also denoted by the set of primary constraints
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This leads to the constrained Euler-Lagrange equations

∂L
∂q
− ṗ+ fL ∈ ∆0

Q(q) (7.6a)

q̇ = v (7.6b)

∂L
∂v
− p = 0 (7.6c)

KT v = 0. (7.6d)

For the Lagrangian (7.1) and the forces (7.3), the constrained Euler-Lagrange

equations are

ṗ = −Cq − diag(R)v + us +Kλ (7.7a)

q̇ = v (7.7b)

p = Lv (7.7c)

KT v = 0, (7.7d)

where λ ∈ Rm is a Lagrange multiplier.

7.1.2 Reduced variational formulation

Now we perform a reduction to project onto the constrained manifold and get

rid of the Lagrange multiplier. Specifically, instead of treating the KCL as extra

constraint in the form KT v = 0, we directly involve the KCL form K2ṽ = v with

ṽ ∈ TqM ⊆ Rn−m for the definition of the new Lagrangian system.

Since K is constant, the constraints are integrable, i.e., the configurations q

are constrained to be in the submanifold

C = {q ∈ Q |KT q = 0}

for consistent initial values q0 ∈ C.

For a subclass of circuits, the degeneracy of the Lagrangian will be canceled

in the reduced Lagrangian. Moreover, the reduction is geometrically intrinsic
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in the sense that there will be a reduced Lagrangian defined on a mesh space

TM ⊆ R2(n−m). More precisely, it holds that TqC = ∆Q(q) and the branch

charges q can be expressed by the mesh charges q̃ ∈M ⊆ Rn−m as q = K2q̃.

We define the constrained Lagrangian LM : TM → R via pullback as LM :=

K∗2L : TM → R with

LM (q̃, ṽ) = L(K2q̃, K2ṽ) =
1

2
ṽTKT

2 LK2ṽ −
1

2
q̃TKT

2 CK2q̃ (7.8)

with the Legendre transformation FLM : TM → T ∗M being

FLM (q̃, ṽ) = (q̃, ∂LM/∂ṽ) = (q̃, KT
2 LK2ṽ).

Depending on the inductor matrix L and the circuit topology, the matrix KT
2 LK2

can still be singular, i.e., the Lagrangian system can still be degenerate. We refer

to Proposition 1 in [218] for more details.

The cotangent bundle T ∗M is given by

T ∗M = {(q̃, p̃) ∈ Rn−m,n−m | (q̃, p̃) = FLM (q̃, ṽ) with (q̃, ṽ) ∈ TM}

= {(q̃, p̃) ∈ Rn−m,n−m | (q̃, p̃) = (q̃, KT
2 p) with p ∈ P}.

Thus, the constrained force fML in T ∗M is defined as

fML (q̃, ṽ, t) = KT
2 fL(K2q̃, K2ṽ, t) = −KT

2 diag(R)K2ṽ +KT
2 us(t). (7.9)

With p̃ ∈ T ∗q̃M ⊂ Rn−m given as p̃ = KT
2 p we obtain the following reduced

Lagrange-d’Alembert-Pontryagin principle:

δ

∫ T

0
LM (q̃(t), ṽ(t)) +

〈
p̃(t), ˙̃q(t)− ṽ(t)

〉
dt+

∫ T

0
fML (q̃(t), ṽ(t), t) · δq̃(t) dt = 0

(7.10)

with fixed initial and final variations δq̃(0) = δq̃(T ) = 0. Taking variations gives
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us

∫ T

0

[〈
∂LM

∂q̃
+ fML , δq̃

〉
− 〈 ˙̃p, δq̃〉+

〈
δp̃, ˙̃q − ṽ

〉
+

〈(
∂LM

∂ṽ

)
− p̃, δṽ

〉]
dt = 0

(7.11)

for arbitrary variations δṽ and δp̃ and δq̃. This results in the reduced Euler-

Lagrange equations

∂LM

∂q̃
− ˙̃p+ fML = 0 (7.12a)

˙̃q = ṽ (7.12b)

∂LM

∂ṽ
− p̃ = 0. (7.12c)

For the Lagrangian (7.8) and the forces (7.9), the constrained Euler-Lagrange

equations are

˙̃p = KT
2 (−CK2q̃ − diag(R)K2ṽ + us) (7.13a)

˙̃q = ṽ (7.13b)

p̃ = KT
2 LK2ṽ. (7.13c)

where KVL and KCL are intrinsically satisfied. System (7.13) is a DAE system

with differential variables q̃ and p̃ and algebraic variables ṽ. The algebraic equation

(7.13c) is the Legendre transformation of the system. If this is invertible (i.e., the

matrix KT
2 LK2 is regular), the algebraic variable v can be eliminated. In this

case, the Euler-Lagrange equations (7.13) represent a non-degenerate Lagrangian

system.

The equivalency between the original system (7.6) and the reduced system

(7.12) is shown by Theorem 1 in [218].
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7.1.3 Discrete variational principles

Due to the equivalency between the original system (7.6) and the reduced system

(7.12), we can directly discretize the reduced variational principle to simulate the

full circuit. For instance, replace the reduced Lagrange-d’Alembert-Pontryagin

principle (7.10) by a discrete version

δ

{
h

N−1∑
k=0

(
LM (q̃k, ṽk) +

〈
p̃k,

q̃k+1 − q̃k
h

− ṽk
〉)}

+ h

N−1∑
k=0

fML (q̃k, ṽk, tk)δq̃k = 0,

(7.14)

After plotting in the Lagrangian defined in (7.8) and the Lagrangian forces defined

in (7.9), we obtain the updating rule (for each k-th step):



p̃k − p̃k−1

h
= KT

2 (−CK2q̃k − diag(R)K2ṽk + us(tk))

q̃k − q̃k−1

h
= ṽk−1

KT
2 LK2ṽk = p̃k

(7.15)

with

p̃0 = KT
2 LK2ṽ0 (7.16)

It can be easily shown that this implicit updating rule has a unique solution

if KT
2 (L + hdiag(R))K2 is regular. In other words, the intrinsic degeneracy of

KT
2 LK2 being singular could be bypassed by the numerical integrator in many

cases.

More discretization schemes and corresponding integrators can be found in

[218].

7.1.4 Preservation of frequency spectrum and other structures

A peculiar observation that was not mentioned about symplectic integration else-

where (to our knowledge) is that the frequency spectrum of the discrete solu-

tions is much better numerically preserved by variational integrators than by non-

symplectic integrators (see experiments in Section 7 in [218]). We provide a first
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step in an analytical demonstration of this phenomenon:

Consider a one-degree-of-freedom oscillatory linear system (which can be shown

must be a harmonic oscillator). We demonstrate that a symplectic method pre-

serves the frequency spectrum of this system by two steps: (i) We show that for

a convergent scheme the update matrix A has two eigenvalues both of norm 1 if

and only if the update scheme is symplectic. (ii) We show that methods defined

by matrices with norm 1 eigenvalues preserve the frequency spectrum defined on

different time spans.

(i) “⇐”: Assume the scheme defined by A is symplectic, then det(A) = 1

(see, e.g., [194]). It follows with λ1 complex conjugate to λ2 (λ2 = λ∗1):

1 = det(Q) · det(V ) · det(Q−1) = λ1 · λ2 = |λ1|2 = |λ2|2 and thus |λi| = 1,

i = 1, 2. “⇒”: Assume A has two complex conjugate eigenvalues λ1 = λ∗2

with |λ1| = |λ2| = 1, i.e., we write λ1 = eiθ and λ2 = e−iθ with θ ∈ R and

V = diag(eiθ, e−iθ). Note that θ depends on the constant time step h that is

used for the discretization. Let J =

 0 1

−1 0

 be the canonical symplectic

form and introduce the non-canonical symplectic form J̃ = QTJQ. We show

that V preserves J̃ , and therefore A preserves J , i.e., A is symplectic. Since

J is skew-symmetric with zero diagonal, J̃ is of the form

 0 4

−4 0

 with

4 ∈ R. It follows

V T J̃V =

 eiθ 0

0 e−iθ

 0 4

−4 0

 eiθ 0

0 e−iθ


=

 0 eiθe−iθ4

−e−iθeiθ4 0

 =

 0 4

−4 0

 = J̃

(ii) Suppose that the discrete values x1, x2, . . . , xN determined by the update

scheme A are known, and admit the following discrete inverse Fourier trans-

formation
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xk =
1

N

N∑
n=1

x̃n exp

(
2πi

N
kn

)
, k = 1, . . . , N.

Consider a sequence of discrete points {Xk}Nk=1 that is shifted by one time

step such that Xk = xk+1 = λ1xk, k = 1, . . . , N , i.e., {Xk}Nk=1 approximates

the solution on a later time interval than {xk}Nk=1. This admits the following

discrete inverse Fourier transformation

Xk =
1

N

N∑
n=1

λ1x̃n exp

(
2πi

N
kn

)
, k = 1, . . . , N,

i.e., X̃n = λ1x̃n. By the definition of the frequency spectrum, it holds

X̃∗nX̃n = x̃∗nλ
∗
1λ1x̃n = x̃∗n|λ1|2x̃n = x̃∗nx̃n, where the last equality relies on the

symplecticity. Shifting the discrete solution arbitrary times, we see that the

spectrum will be preserved using different time intervals for the frequency

analysis. This means that, in particular for long-time integration, a frequency

analysis on a later time interval yields the same results as on an earlier time

interval, which we denote by preservation of the frequency spectrum. The

analysis for y follows analogously, and with the linear transformation Q the

same holds for q and p. On the other hand, if |λi,j | 6= 1, i, j = 1, 2 (such as

for non-symplectic or non-convergent methods), the frequency spectrum will

either shrink or grow unbounded.

Although the analysis was only performed for the simple case of a 1D harmonic

oscillator (in particular statement (i) is restricted to this case), we believe that for

higher-dimensional systems, a similar statement can also be shown, which is left

for future work.

In addition to frequency spectrum, the proposed integrators (e.g., (7.15)) pre-

serve many other structures due to their variational nature, such as symplecticity

and momentum maps. Consequently, the correct rate of energy change due to

external sources and resistors will be numerically captured, and the sum of all

inductor fluxes will be conserved. See [218] for both theoretical theorems and
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numerical results.

7.1.5 Noisy circuits

In this section, we extend to simulate noisy circuits, in which noise is added to

each branch of the circuit.

Following the description in [40], in the stochastic setting, the constrained

stochastic variational principle is

δ

∫ T

0
L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉 dt+

∫ T

0
fL(q(t), v(t), t) · δq(t) dt

+

∫ T

0
δq(t) · (Σ ◦ dWt) = 0 (7.17)

with constrained variations δq ∈ ∆Q(q), where Σ is a n × n matrix, usually con-

stant and diagonal, indicating the amplitude of noise at each branch, Wt is a

n-dimensional Brownian motion, and the last stochastic integral is in the sense of

Stratonovich. This principle leads to the constrained stochastic differential equa-

tion

∂L
∂q
− ṗ+ fL + Σ ◦ dWt

dt
∈ ∆0

Q(q) (7.18a)

dq = vdt (7.18b)

∂L
∂v
− p = 0 (7.18c)

KT v = 0, (7.18d)

where by (7.18a) we mean that it holds

∫ T

0

(
∂L
∂q
dt− dp+ fLdt+ Σ ◦ dWt

)
=∫ T

0
X (q) dt for a vector field X (q) ∈ ∆0

Q(q) for any T . Correspondingly, the

reduced stochastic variational principle reads

δ

∫ T

0
LM (q̃(t), ṽ(t)) +

〈
p̃(t), ˙̃q(t)− ṽ(t)

〉
dt+

∫ T

0
fML (q̃(t), ṽ(t), t) · δq̃(t) dt

+

∫ T

0
δq̃(t) · (KT

2 Σ ◦ dWt) = 0. (7.19)
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This results in the reduced stochastic Euler-Lagrange equations

∂LM

∂q̃
dt− dp̃+ fML dt+KT

2 Σ ◦ dWt = 0 (7.20a)

dq̃ = ṽdt (7.20b)

∂LM

∂ṽ
− p̃ = 0. (7.20c)

To derive the discrete equations with noise, the Stratonovich integral is approx-

imated by a discrete version. For simplicity, we present the equations based on

left-point discretization only. On the interval [tk, tk+1] the integral
∫ tk+1

tk
δq̃(t) ·

(KT
2 Σ ◦ dWt) is approximated by the discrete expression δq̃k · (KT

2 Σ)Bk with

Bk ∼ N (0, h), k = 0, . . . , N−1 (see also [40]). In this way, we obtain the following

reduced stochastic discrete variational principle

δ

{
h
N−1∑
k=0

(
LM (q̃k, ṽk) +

〈
p̃k,

q̃k+1 − q̃k
h

− ṽk
〉)}

+ h
N−1∑
k=0

fML (q̃k, ṽk, tk)δq̃k

+
√
h

N−1∑
k=0

KT
2 Σξk · δq̃k = 0, (7.21)

where for each k = 0, . . . , N − 1, ξk is a n-dimensional vector with entries being

independent standard normal random variables. The discrete reduced stochastic

Euler-Lagrange equations that give the symplectic forward Euler iteration scheme

is then given by

∂LM

∂q̃
(q̃k, ṽk)−

1

h
(p̃k − p̃k−1) + fML (q̃k, vk, tk) + 1√

h
KT

2 Σξk = 0

q̃k − q̃k−1

h
= ṽk−1

∂LM

∂v
(q̃k, ṽk) = p̃k

In [40], it is shown that the stochastic flow of a stochastic mechanical system on

T ∗Q preserves the canonical symplectic form almost surely (i.e., with probability

one with respect to the noise). Furthermore, an extension of Noether’s theorem
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says that in presence of symmetries of the Lagrangian, the corresponding momen-

tum map is preserved almost surely.

7.1.6 Numerical example: High-order LC circuit, stochastic inte-

grator, and multiscale integration

The circuit: Consider a high-order LC circuit given in Figure 7.1. The Kirchhoff

Constraint matrix K ∈ Rn,m and the Fundamental Loop matrix K2 ∈ Rn,n−m are

(with the third node assumed to be grounded):

K =


1 0

0 −1

0 −1

−1 1

 , K2 =


1 0

0 1

1 −1

1 0

 . (7.22)

L1

L2
C1

C2

1

2

3

Figure 7.1: Oscillating LC

circuit.

Two inductors have inductance L1 = 1 and L2 =

1, and two capacitors have capacitance C1 = 1 and

C2 = 10. There are n = 4 branches and m + 1 = 3

nodes.

With nC = 2 and KC =

 0 −1

−1 1

 having full

rank, we can see that the reduced Lagrangian system

is non-degenerate, and variational integrator (7.15)

can be applied.

Various numerical results in support of the advan-

tage of variational integrators can be found in [218].

Validation on the stochastic variational integrator: A general approach for

numerically validating a stochastic variational integrator is the following: consider

the stochastic differential equation

dx = Axdt+ Σ̄dWt, (7.23)
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where Σ̄ is a n-by-m matrix, not necessarily full rank, x = (x1, x2, . . . , xn) ∈ Rn,

A ∈ Rn,n and Wt is an m-dimensional Brownian motion (with independent com-

ponents). The quality of numerical solutions can be evaluated by comparing

the empirical statistical moments of the solution to the analytical results. For

instance, we can focus on the expectation and the variance, i.e., E(x(t)) and

D(x(t)) = E(x(t))2 − (E(x(t)))2.

On the analytical side, by Ito’s formula (see, e.g., [219]) we have with B(t) =

exp(At) and

E(x(t)) = B(t)x(0) (7.24a)

D(x(t)) =

∫ t

0
B(τ)Σ̄Σ̄TB(τ)Tdτ. (7.24b)

The expectation and the variance can always be computed if A and Σ̄ are given.

On the numerical side, we run an ensemble of simulations (of total number

M), all starting from the same initial condition but for each simulation an in-

dependent set of noise (i.e., different ξk) is used. The ensemble is indicated by

x1(t), x2(t), . . . , xM (t) where for any j, xj(t) = (xj1(t), xj2(t), . . . , xjn(t)) is a vector.

We compute the empirical moments by

Ē(x(t)) ≈ 1

M

M∑
j=1

xj(t) (7.25a)

D̄(x(t)) ≈ 1

M

M∑
j=1

(xj(t))2 − 1

M2

 M∑
j=1

xj(t)

2

. (7.25b)

The numerical method is validated if for large enough M the empirical moments

(7.25) are close to the analytical ones (7.24).

In our setting, we can rewrite the reduced stochastic Euler-Lagrange equations

(7.20) in the form of (7.23) with x = (q̃, p̃) ∈ R2(n−m), Σ̄ =

 0 0

0 KT
2 Σ

 ∈
R2(n−m),2n, and the obvious definition of A ∈ R2(n−m),2(n−m) with Σ ∈ Rn,n and

K2 ∈ Rn,n−m. The analytical variance matrix D((q̃(t), p̃(t)) ∈ R2(n−m),2(n−m) for
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the reduced system can now be calculated using equation (7.24b). The correspond-

ing variance matrix for the full system can then be calculated as

D(q(t), p(t)) =

 K2 0

0 K2

D(q̃(t), p̃(t))

 KT
2 0

0 KT
2

 ∈ R2n,2n.

As a demonstration, we calculate the empirical and analytical moments for the

high-order LC circuit. For the experiments throughout this section, we defined Σ

as 4-by-4 diagonal matrix with diagonal entries Σjj = 0.01, j = 1, . . . 4. The step

size is h = 0.1, the integration time for each simulation is T = 30, and we start

with the initial conditions q̃0 = (1, 0), ṽ0 = (0, 0), and p̃0 = (0, 0). The empirical

averages are calculated over an ensemble of M = 100000 independent simulations.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10−3

t

Va
ria

nc
e 

of
 p

L1

 

 

exact
VI

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10−3

t

Va
ria

nc
e 

of
 p

L2

 

 

exact
VI

(a) (b)

Figure 7.2: Benchmark of variances as functions of time according to (7.24b) (red)

and variances as functions of time computed numerically by averaging over an

ensemble according to (7.25b) (blue). a) Dp1 b) Dp2.

The analytical variance of pL1 and pL2 , i.e., the fifth and sixth diagonal elements

of the variance matrix in the full system, are plotted as functions of time (see Figure

7.2, red dotted line). Notice, that pL1 and pL2 in our case are just the currents

through inductor branch 1 and 2, the inductances are L1 = L2 = 1. The result

using the stochastic variational integrator is also shown in Figure 7.2 (blue solid

line). Both function shapes and ranges agree very well. In particular, all the
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little bumps in the variance that are subtly different are approximated correctly.

Similarly, empirical expectations well agree with the analytical results too (results

not shown).

This classical test serves as evidence that the stochastic integration works well.

7.1.7 Multiscale integration based on FLAVORization

When the circuit exhibits behavior in two time scales, our integrators can be

FLAVORized (Chapter 2) to capture the slow time scale without resolving the

fast time scale to greatly reduce integration time. For instance, if we regard the

capacitance C2 in the high-order LC circuit as a parameter ε, when it has a very

small value, there will be a wide separation of timescales, the slow one of which

will be strongly captured by FLAVOR.
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Figure 7.3: Simulations of a multiscale system: a) Benchmark solution computed

with a variational integrator (h = 10−4) b) FLAVOR with τ = 10−4, δ = 10−3 and

ε = 10−3.

Specifically, FLAVORize our variational circuit integator (7.15) by the rule

(2.8). C2 = ε = 10−3, τ = 0.1ε = 10−4, H = 0.1 and M = 100. The charges

and currents as functions of time are plotted in Figure 7.3. Notice that the slow

components in the solution are captured strongly, but the fast components may

have altered wave shapes: for instance, Figure 7.4 shows a zoomed-in investigation

of the current through the second branch, which is a superposition of a slow global
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oscillation and a fast local oscillation; the slow one is obviously well-captured in

the usual sense, and the fast one is captured in the less-commonly-used sense of

averaging.
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Figure 7.4: Simulations of a multiscale system: a) Benchmark solution computed

with a variational integrator (h = 10−4) b) FLAVOR with τ = 10−4, δ = 10−3 and

ε = 10−3.

7.2 Frequency domain method for nonlinear wave prop-

agation

By going to the frequency domain, the propagation of acoustic wave in a nonlinear

homogeneous medium (originally modeled by a nonlinear wave equation) could be

represented by a system of ODEs. These ODEs could be efficiently integrated by

techniques analogous to those used by the impulse methods (Chapter 4).

Many results in this section are excerpts or paraphrases of the content of a

published paper [160]. Only the part on numerical integration will be included

in this thesis, and the original paper is referred to for modeling and acoustical

applications.
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7.2.1 The formulation in frequency domain

Consider time-domain Westervelt equation in a homogeneous medium

∇2p(r, t)− 1

c2
0

∂2

∂t2
p(r, t) +

δ

c4
0

∂3

∂t3
p(r, t) +

β

ρ0c4
0

∂2

∂t2
p2(r, t) = 0, (7.26)

where r ∈ R3 is the spatial variable, t ∈ R is the temporal variable, p is the sound

pressure, c0 is the sound speed, δ is the sound diffusivity, β is the nonlinearity

coefficient, and ρ0 is the ambient density.

By Fourier transforming the temporal dimension as well as the Cartesian x−

and y−dimensions, we obtain a system of ODEs:

∂2

∂z2
P (kx, ky, z, ω) +K2P (kx, ky, z, ω)− βω2

ρ0c4
0

P (kx, ky, z, ω)⊗ P (kx, ky, z, ω) = 0

(7.27)

where

P (kx, ky, z, ω) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

p(x, y, z, t) exp(−i(kxx+kyy−ωt) dx dy dt, (7.28)

P (kx, ky, z, ω)⊗ P (kx, ky, z, ω) =∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

P (k′x, k
′
y, z, ω

′)P (kx − k′x, ky − k′y, z, ω − ω′) dk′x dk′y dω′,

(7.29)

K2 =
ω2

c2
0

− k2
x − k2

y −
δω3

c4
0

(7.30)

Define M = βω2

ρ0c40
and a nonlinear force to be

F (P (z′)) := P (kx, ky, z
′, ω)⊗ P (kx, ky, z

′, ω), (7.31)
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and schematically suppress kx, ky and ω, then (7.27) can be rewritten as

∂2

∂z2
P (z) +K2P (z)−MF (P (z)) = 0 (7.32)

Since we are interested in how the wave propagates from z = 0, this is a well

defined initial value problem: for each z, obviously K2P (z)−MF (P (z)) is known,

and P at a larger z can be thenceforth obtained.

7.2.2 Integration by uniform macroscopic steps

Due to underlying acoustic reasons, in the region of interests, M is always O(1),

but K could be � 1. Since the nonlinear force (based on a convolution) involves

all degrees of freedom (indexed by kx, ky and ω), to numerically integrate (7.27), a

uniform integration step (on z) is needed. Consequently, constrained by the stiffest

K, a single-scale ODE solver requires a microscopic step on z.

However, since (7.27) is nothing but a forced mechanical system with a quadratic

stiff potential (this could be better seen in the form of (7.32)), we could use the idea

explained in Chapter 4 to numerically integrate the system using a macroscopic

step ∆z (independent of the stiff K):

Following the language of [160], the solution to (7.32) is

P (z) = P (0)eiKz +
MeiKz

2iK

∫ z

0
e−iKz

′
F (P (z′)) dz′ (7.33)

To obtain its numerical solution, approximate the integral by using the propagator

of the stiff linear force:

∫ ∆z

0
e−iKz

′
F (P (z′)) dz′ ≈ F (P (0))∆z∫ 2∆z

0
e−iKz

′
F (P (z′)) dz′ ≈ F (P (0))∆z + e−iK∆zF (P (∆z))∆z

· · · (7.34)

Naturally, this is equivalent to a 1st-order impulse method (see Remark 4.2.1). As a
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consequence, we have both guaranteed accuracy and accelerated the computation.

Again, [160] is referred to for numerical illustrations, as well as this method’s

acoustic implications. Good results are, of course, obtained.

7.3 Optimization of Freidlin-Wentzell theory and mass

effect

In a SDE, the probability of transiting from one state to another state could

be characterized by Freidlin-Wentzell large deviation theory [107] in the weak

noise limit. By optimizing the transition rate functional in a trajectory space, the

optimal transition pathway between two states could be obtained.

Two approaches for this optimization in a Langevin setting are presented in this

section, the first is an analytical method that works for any two states in a linear

system, and the second is based on the time reparameterization of the transition

pathway given by an inertial version of the String method [90, 91], which uses

a gradient algorithm to compute the path between two metastable states in an

arbitrary potential landscape.

This study is motivated by the observation of mass effects in molecular dynam-

ics [300], and we show that significant mass effects can be quantified by different

rates of optimal transitions for different masses. This also suggests that the use

of overdamped Langevin c dq = −∇V (q) dt − dWt in molecular dynamics is not

always justified.

7.3.1 Rate functional for Langevin equations

Being a large deviation theory [80], Freidlin-Wentzell theory [107] works in path

space as follows:

Given a stochastic dynamical system

dXε(t) = b(Xε)dt+ ε1/2σ(Xε)dW (t), (7.35)



234

there is a rate functional over Cn[0, T ] defined as follows:

I(φ) =

∫ T

0
J(φ(t), φ̇(t))dt, (7.36)

where φ(0) = x, and assuming diffusion matrix A = σσT is uniformly positive

definite,

J(x,y) =
1

2
(y − b(x))TA−1(x)(y − b(x)) (7.37)

The rate functional describes the asymptotic behavior of large deviation, in

the sense that, given Xε(t) being the solution to (7.35) with initial condition

Xε(0) = x, we have

P ( sup
0≤t≤T

|Xε(t)− φ(t)| < δ) ∼ exp(−ε−1I(φ)), ε→ 0 (7.38)

for any small δ > 0.

Therefore, one seeks for a φ(t) in certain path space which minimizes the rate

functional as the most probable path. If one is interested in transition between

configurations, the path space could be {φ ∈ C[0, T ]|φ(0) = A, φ(T ) = B} or⋃
T>0{φ ∈ C[0, T ]|φ(0) = A, φ(T ) = B}.

When the system is Langevin, in which the noise is degenerate, i.e.,


dq = M−1p dt

dp = −∇V (q) dt− cp dt+ ε1/2σ dW

, (7.39)

where the temperature T of this system satisfies 2c
εσ2 = 1

T , the corresponding

integrand of the rate functional I could be shown by large deviation theory as


J(q,p) = 1

2(ṗ+ cp+∇V (q))2 if p = Mq̇

=∞ otherwise

(7.40)

Therefore we can study the following constrained variational problem for the

most probable transition from A to B:
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

δI = 0

I =
∫ T

0
1
2(ṗ+ cp+∇V (q))2dt

p = Mq̇

q(0) = A,

q(T ) = B

In molecular dynamics, one is actually more interested in an alternative version

which takes the Gibbs-Boltzmann distribution of kinetic energy into account, be-

cause otherwise the solution will always be a Newtonian path with a big enough ini-

tial velocity to overcome all energy barrier along its way, and this path will render

I(·) zero. Therefore, instead of minimizing I, we minimize A = I
2ckT + p(0)TM−1p(0)

2kT

under same constraints. Notice that the probability will change as the temperature

changes, but the optimal path will not.

7.3.2 An analytical solver

The approach is: first, fix p(0) and solve the variational problem without the end

point constraint q(T ) = B; then, optimize among solutions that satisfy q(T ) =

B; finally, optimize with respect to p(0). More precisely, introduce a Lagrange

multiplier λ on the cotangent space and use Hamilton-Pontryagin principle:

0 = δ

∫ T

0

1

2
‖ṗ+∇V (q) + cp‖22 + λ(p−Mq̇)dt (7.41)

Taking the variation leads to the following ODE system, whose solution is the

solution to the variational problem:


−(p̈+ cṗ+∇∇V (q)q̇) + (ṗ+ cp+∇V (q))c+ λ = 0

(ṗ+ cp+∇V (q))∇∇V (q) +Mλ̇ = 0

p = Mq̇

(7.42)

One set of sufficient initial conditions is q(0), q̇(0), q̈(0),
...
q (0); q(t) will be a
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function of (only) them. q(0) = A is known, and we first assume q̇(0) is known

and fixed as well. Then, we optimize I with respect to values of q̈(0) and
...
q (0)

under the constraint of q(T ) = B, and the optimal I is a function of q̇(0). Finally,

we allow q̇(0) to change and minimize A as a function of q̇(0). This way, the

optimal transition path, represented by q̇(0), q̈(0),
...
q (0) and (7.42), is obtained.

When the potential is quadratic, the ODE system (7.42) is linear, and an

exact solution exists. In this situation, the constrained minimization could be

solved analytically. Details are omitted.

When the potential is non-quadratic, the entire procedure described above is

still valid, but the satisfaction of q(T ) = B is a shooting problem that is numerically

difficult to solve.

7.3.3 A numerical solver

The numerical solver contains two steps; the first step is known and could be

extracted from the literature on the String method, and the second step is our

new contribution.

String method for inertial Langevin: One important observation that the

String method [90, 91] made use of is that the optimal transition path between

two minima of V (·) in a system

dx = −∇V (x) dt+ σ dWt (7.43)

must satisfy

(∇V )⊥(x) = 0, (7.44)

where (∇V )⊥(x) indicates for each t the vector value corresponding to ∇V pro-

jected in the direction perpendicular to the tangent of the path x (i.e., ẋ).

This observation could be generalized to systems of the form (see [189, 190] for

similar examples):

dx = K∇H(x) dt+ Σ dWt, (7.45)
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and the optimal path will analogously satisfy

(K∇H)⊥(x) = 0 (7.46)

Therefore, the String method (with a small modification described below) will work

for Langevin equations, because under the notation x = (q, p), K =

 0 I

−I −c

,

H(x) = V (q) + 1
2p
TM−1p and Σ =

0 0

0 I

, (7.45) rewrites to be Langevin:


dq = M−1dp

dp = −∇V (q) dt− cp dt+ σ dWt

(7.47)

Recall that the String method is an iteration of two half steps, the first one being

an evolution of sample points on the string, and the second being a resampling,

which ensures that sample points are uniformly distributed on the string [91].

Without quoting further details of the String method, we just point out that the

modification for (7.45) is to use K∇H instead of ∇H as the drift in the evolution

(i.e., in the first half step), and the second half step remains unchanged.

Time reparameterization: (7.46) is a necessary condition for the minimization

of the rate functional (7.36) (with integrand (7.40)), but not sufficient. This is

because there can be multiple paths with different time parameterizations that

satisfy (7.46). In fact, the path produced by the inertial String method (the

previous step) is most likely not the minimizer. Therefore, we propose the following

(a second step) to find the minimizer:

Having String method’s result at hand, we further minimize I (or A in the

context of molecular dynamics) with respect to a time reparameterization. More

precisely, suppose the String method yields a path x(τ), τ ∈ [0, L], we look for

an increasing function T : t 7→ τ with T (0) = 0 and T (T ) = L, such that

I(x(T (·))) (or A(x(T (·)))) is optimized (with respect to all possible T . This
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optimization is easy because T is 1-dimensional ([0, T ]→ [0, L]), and the objective

function depends on the reparameterization in a weakly nonlinear fashion (the

reparameterization does not enter q, hence not V (q)).

For numerical implementations, piece-wise linear interpolations are always used.

7.3.4 A molecular example of mass effect

As an example to illustrate mass effects in molecular dynamics, consider the

Langevin dynamics of three atoms with a pair-wise Morse potential, i.e., (7.47)

with

V (q) = e−2(d12−d0)−2e−(d12−d0)+e−2(d13−d0)−2e−(d13−d0)+e−2(d23−d0)−2e−(d23−d0),

(7.48)

where q ∈ R6 represents the positions of three atoms in a plane, and dij =√
(q2i−1 − q2j−1)2 + (q2i − q2j)2 is the pair-wise distance between atoms.
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Figure 7.5: Optimal transition paths illustrated by q4 (y-coordinate of the second atom) for

different masses of the second atom. The second atom mass is respectively 0.1 (left), 1 (middle)

and 10 (right), and the other two masses are both 1 and always fixed. The friction coefficient

c = 10, and the temperature σ2

2c
= 1, both fixed. Total transition time T = 2 is also fixed. More

technical parameters are: the number of sample points on the string N = 100, the string evolution

timestep h = 0.01, and the time reparameterization interpolation step size h̃ = 0.1.

Consider d0 = 6 and the optimal transition from q(0) = [−3,−
√

3, 0, 2
√

3, 3,−
√

3]

to q(T ) = [−3,
√

3, 0,−2
√

3, 3,
√

3], both of which are local minima of the potential.

The transition between these two metastable states corresponds to a reaction of

isomerization, and a movie of this reaction is available at http://www.youtube.

com/watch?v=MqZ1_t9z1Uw .

http://www.youtube.com/watch?v=MqZ1_t9z1Uw
http://www.youtube.com/watch?v=MqZ1_t9z1Uw
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Figure 7.5 compares the optimal transition paths for different mass values of the

second atom. Results are computed by the numerical solver proposed in Section

7.3.3 (the analytical solver in Section 7.3.2 does not apply here, and its results,

when applicable, are less interesting). Significant difference can be seen, not only

on the trajectory, but also on the associated rate (which is negative of the reaction

rate; hence, a bigger value indicates a less possible reaction). The results are very

natural, because it is more difficult for a heavier mass to move.

This provides a probabilistic confirmation of the mass effects in this system,

which was illustrated numerically and explained in a framework of differential

geometry in [300].

Of course, other parameters in the system, such as the temperature or the

friction coefficient, affect the transition significantly as well. The investigation on

their effects will be analogous.
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Chapter 8

Future directions

Along the line of multiscale integration, there are at least three unsolved problems.

The first is the case in which the scale separation is due to nonlinearity but not

stiffness. An illustrative example is a Hamiltonian system with H = p2
1/2 +p2

2/2 +

q2
1/2 + (q2 − q1)10, where in the nonlinear regime q2 − q1 acts like a stiff spring.

A more realistic example is shown in [301], where the dynamics of a cluster of

inert atoms with pair-wise Morse potential (which models van der Waals forces)

exhibits clear separation of timescales. Similar phenomena will happen in a lot of

complicated systems, such as proteins. One possible approach to this problem is to

use an extension of artificial FLAVORs (Section 2.2.6), in which the nonlinearity

is frozen over mesoscopic (with size δ − τ) substeps.

The second problem is how to treat a broad yet not well-separated spectrum

of timescales (if adjacent timescales are well-separated, FLAVORs can be used

in a nested way). Protein dynamics will be a typical example, in which bond

oscillations have a characteristic frequency around 1014Hz, bond-angle oscillations

at 1013Hz, torsion dynamics at 1012Hz, and non-covalence effects (due to van der

Waals forces, electrostatic forces, and so on) are even slower. The investigation of

this problem possibly requires a significant extension of the mathematical notion

of ergodic measure.

The third open question is, can numerical methods respect the symmetry be-

tween the space and time in multiscale PDEs? At least according to numerical
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experiments, PDE-FLAVORs (Chapter 3) are able to handle stiffness in both space

and time, but its current error analysis relies on introductions of semi-discrete sys-

tems, in which the space is discrete but the time is continuous, and slow and fast

variables are both defined in terms of the semi-discrete systems. Whether the inte-

grator itself intrinsically breaks the space-time symmetry is not clear at this stage,

and it is possible that a more symmetric proof is yet to be found. One possibility

is to look for a generalized averaging theorem (analogous to (2.5)) using a local

ergodic measure on fields ([32] might be a relevant reference).

At the same time, possible interplays between different methods proposed in

this thesis should be explored. For instance, the temperature and friction accel-

erated sampling approach (Chapter 6) could employ a FLAVOR (Chapter 2) as

its base Langevin integrator. Whether this results in an ergodic scheme is worth

a mathematical investigation, and if it does, the next question would be on the

form of the corresponding ergodic measure. By answering these two questions, we

might be able to justify the multiscale nature of the resulting sampling algorithm.

Another possibility is to combine FLAVORs (Chapter 2) with Freidlin-Wentzell op-

timizers (Section 7.3) to probe optimal transition pathways in multiscale systems.

A third potential subject would be to propose multiscale geometric integrators for

stochastic partial differential equations (SPDEs).

Moreover, many interesting applications are unexplored. We will not enumer-

ate direct applications, such as important multiscale systems that our generic inte-

grators could simulate. Instead, we wish to point out that the analytical results in

Section 4.3 provide a way to take the derivative of a parameter-dependent matrix

exponential. This way, the result will be in a closed-form, which is a significant

improvement from the current theory based on Magnus expansion, which is a sum

of an infinite series of matrix commutators [187].

A relevant topic is the phenomenon of parametric resonance. A classical ex-

ample is the system:

ẍ+ β(t)ẋ+ ω2x = 0 (8.1)
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In this system, if β(t) is chosen to be cos(2ωt) or sin(2ωt), the oscillation amplitude

will grow exponentially in time. The mathematical theory (especially in the case

of nonlinear systems) of this phenomenon needs development, and its real-life

applications need to be carefully designed.

To put parametric resonance in a more general framework, an interesting future

direction would be the temporal homogenization of (controlled) mechanical sys-

tems. Classical literature that stimulates this topic could date back to Mathieu’s

equation [196], Hill’s equation [142], Floquet theory [105], etc.
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Appendix A

Appendix: Additional proofs

A.1 Proof of Theorems 2.1.1 and 2.1.2

Define the process t 7→ (x̄t, ȳt) by

(x̄t, ȳt) := η(ūt). (A.1)

It follows from the regularity of η that it is sufficient to prove the F -convergence of

(x̄t, ȳt) towards δXt ⊗µ(Xt, dy). Moreover, it is also sufficient to prove inequalities

(A.2) and (A.3) in order to obtain inequalities (2.24) and (2.25)

|xεt − x̄t| ≤ CeCtψ1(u0, ε, δ, τ) (A.2)

and

∣∣∣ 1

T

∫ t+T

t
ϕ(x̄s, ȳs) ds−

∫
Rp
ϕ(Xt, y)µ(Xt, dy)

∣∣∣ ≤ ψ2(u0, ε, δ, τ, T, t)(‖ϕ‖L∞ + ‖∇ϕ‖L∞)

(A.3)

Now define ψετ by

ψετ (x, y) := η ◦ θετ ◦ η−1(x, y) (A.4)

Define ψgh by

ψgh(x, y) := η ◦ θGh ◦ η−1(x, y) (A.5)
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Proposition A.1.1. The vector fields f and g associated with the system (2.2)

are Lipschitz continuous. We also have

(x̄t, ȳt) =
(
ψgδ−τ ◦ ψ

ε
τ

)k
(x0, y0) for kδ ≤ t < (k + 1)δ. (A.6)

Moreover, there exists C > 0 such that for h ≤ h0 and τ
ε ≤ τ0 we have

∣∣ψετ (x, y)− (x, y)− τ
(
g(x, y), 0

)
− τ

ε

(
0, f(x, y)

)∣∣ ≤ C(τ
ε

)2
(A.7)

and ∣∣ψgh(x, y)− (x, y)− h
(
g(x, y), 0

)∣∣ ≤ Ch2. (A.8)

Furthermore, given x0, y0, the trajectories of (xεt, y
ε
t) and (x̄t, ȳt) are uniformly

bounded in ε, δ ≤ h0, τ ≤ min(τ0ε, δ).

Proof. Since (x, y) = η(u), we have

ẋ = (G+
1

ε
F )∇ηx ◦ η−1(x, y) (A.9)

ẏ = (G+
1

ε
F )∇ηy ◦ η−1(x, y). (A.10)

Hence, we deduce from (2.2) in Condition 2.1.1 that

g(x, y) = G∇ηx ◦ η−1(x, y) (A.11)

f(x, y) = F∇ηy ◦ η−1(x, y). (A.12)

We deduce the regularity of f and g from the regularity of G, F and η. (A.6) is a

direct consequence of the definition of ψετ and ψgh and (2.27) (we write (x0, y0) :=

η(u0)). Observe that (2.2) in Condition 2.1.1 also requires that

F∇ηx = 0, G∇ηy = 0. (A.13)
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Now observe that

ψετ (x, y)− (x, y)−
(
g(x, y), 0

)
τ −

(
0, f(x, y)

)τ
ε

=(
η ◦ θετ − η − τ

(
G∇ηx, 0

)
− τ

ε

(
0, F∇ηy

))
◦ η−1(x, y).

(A.14)

Using (A.13), (2.29), Taylor expansion, and the regularity of η, we obtain (A.7).

Similarly

ψgh(x, y)−(x, y)−h
(
g(x, y), 0

)
:=
(
η◦θGh −η(x, y)−h

(
G∇ηx, 0

))
◦η−1(x, y). (A.15)

Using (A.13), (2.28), Taylor expansion and the regularity of η we obtain (A.8). The

uniform bound (depending on x0, y0) on the trajectories of (xεt, y
ε
t) and (x̄t, ȳt) is a

consequence of the uniform bound (given u0) on the trajectories of uεt and ūt.

It follows from Proposition A.1.1 that it is sufficient to prove Theorems 2.1.1

and 2.1.2 in the situation where η is the identity diffeomorphism. More precisely,

the F -convergence of ūt is a consequence of the F -convergence of (x̄t, ȳt) and the

regularity of η. Furthermore, from the uniform bound (depending on (x0, y0))

on the trajectories of (xεt, y
ε
t) and (x̄t, ȳt) we deduce that g and f are uniformly

bounded and Lipschitz continuous (in ε, δ ≤ h0, τ ≤ min(τ0ε, δ)) over those

trajectories.

Define

ḡ :=

∫
g(x, y)µ(x, dy)

where µ is the family of measures introduced in Condition 2.1.2. Let us prove the

following lemma:

Lemma A.1.1.

|xεnδ − x̄nδ| ≤CeCnδ
(
δ +

(τ
ε

)2 1

δ
+ sup

1≤l≤n
|J(l)|

)
(A.16)
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with J(k) = J1(k) + J2(k),

J1(k) :=

k−1∑
n=0

( ∫ (n+1)δ

nδ
g(xεnδ, y

ε
s) ds− δḡ(xεnδ)

)
(A.17)

and

J2(k) :=
k−1∑
n=0

δ
(
ḡ(x̄nδ)− g(x̄nδ, ȳnδ)

)
(A.18)

Proof. Observe that

xε(n+1)δ = xεnδ +

∫ (n+1)δ

nδ
g(xεnδ, y

ε
s) ds+

∫ (n+1)δ

nδ
(g(xεs, y

ε
s)− g(xεnδ, y

ε
s)) ds (A.19)

Hence,

xε(n+1)δ − x̄(n+1)δ = xεnδ − x̄nδ + I1 + I2(n) + I3 + I4(n) + I5 (A.20)

with

I1 :=

∫ (n+1)δ

nδ
(g(xεs, y

ε
s)− g(xεnδ, y

ε
s))ds (A.21)

I2(n) :=

∫ (n+1)δ

nδ
g(xεnδ, y

ε
s) ds− δḡ(xεnδ) (A.22)

I3 := δ
(
ḡ(xεnδ)− ḡ(x̄nδ)

)
(A.23)

I4(n) := δ
(
ḡ(x̄nδ)− g(x̄nδ, ȳnδ)

)
(A.24)

I5 := δg(x̄nδ, ȳnδ)− (x̄(n+1)δ − x̄nδ) (A.25)

Now observe that

|I1| ≤ ‖∇xg‖L∞δ2 (A.26)

and

|I3| ≤ δ‖∇xg‖L∞ |xεnδ − x̄nδ|. (A.27)
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Using (A.7) and (A.8) we obtain that

|I5| ≤ C
(
δ2 +

(τ
ε

)2)
(A.28)

Combining the previous equations, we obtain

xε(n+1)δ − x̄(n+1)δ ≤ xεnδ − x̄nδ + C
(
δ2 +

(τ
ε

)2)
+ Cδ|xεnδ − x̄nδ|+ (I2 + I4)(n)

(A.29)

and

xε(n+1)δ − x̄(n+1)δ ≥ xεnδ − x̄nδ − C
(
δ2 +

(τ
ε

)2)− Cδ|xεnδ − x̄nδ|+ (I2 + I4)(n)

(A.30)

Write

J(n) :=
n−1∑
k=0

(I2 + I4)(k) (A.31)

Summing the first n inequalities (A.29) and (A.30), we obtain

xεnδ − x̄nδ ≤ C
(
δ2 +

(τ
ε

)2)
n+ Cδ

n−1∑
k=0

|xεkδ − x̄kδ|+ J(n) (A.32)

xεnδ − x̄nδ ≥ −C
(
δ2 +

(τ
ε

)2)
n− Cδ

n−1∑
k=0

|xεkδ − x̄kδ|+ J(n) (A.33)

Hence

|xεnδ − x̄nδ| ≤ C
(
δ2 +

(τ
ε

)2)
n+ Cδ

n−1∑
k=0

|xεkδ − x̄kδ|+ |J(n)| (A.34)
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And we obtain by induction

|xεnδ − x̄nδ| ≤C
(
δ2 +

(τ
ε

)2)(
n+ Cδ

n∑
k=1

(n− k)(1 + Cδ)k−1
)

+ |J(n)|+ Cδ
n∑
l=2

(1 + Cδ)l−2|J(n− l + 1)|
(A.35)

Equation (A.35) concludes the proof of Lemma A.1.1.

We now need to control J1(k) and J2(k). First, let us prove the following

lemma.

Lemma A.1.2. For N ∈ N∗, we have

|J1(k)| ≤ (δk)C
(
δeC

δ
Nε + E

( δ
Nε

))
(A.36)

Proof. Define ŷεt such that ŷεt = yεt for t = (n+ j/N)δ, j ∈ N∗, and

dŷεt
dt

=
1

ε
f(xεnδ, ŷ

ε
t) for (n+ j/N)δ ≤ t < (n+ (j + 1)/N)δ. (A.37)

Using the regularity of f and g, we obtain

|ŷεt − yεt | ≤ CδeC
δ
Nε . (A.38)

First, observe that

1

δ

∫ (n+1)δ

nδ
g(xεnδ, y

ε
s) ds− ḡ(xεnδ) = K1 +K2 (A.39)

with

K1 :=
1

δ

N−1∑
j=0

∫ (n+(j+1)/N)δ

(n+j/N)δ

(
g(xεnδ, y

ε
s)− g(xεnδ, ŷ

ε
s)
)
ds (A.40)
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and

K2 :=
1

N

N−1∑
j=0

(N
δ

∫ (n+(j+1)/N)δ

(n+j/N)δ
g(xεnδ, ŷ

ε
s) ds− ḡ(xεnδ)

)
. (A.41)

We have

|K1| ≤ ‖∇yg‖L∞
1

N

N−1∑
j=0

sup
(n+j/N)δ≤s≤(n+(j+1)/N)δ

|yεs − ŷεs|. (A.42)

Hence, we obtain from (A.38) that

|K1| ≤ CδeC
δ
Nε (A.43)

Moreover, we obtain from Conditions 2.1.2 and 2.1.3 that

|K2| ≤ CE
( δ
Nε

)
(A.44)

This concludes the proof of Lemma A.1.2.

Lemma A.1.3. We have for m ∈ N∗

∣∣J2(k)
∣∣ ≤ Cδk(mδ + E(

mτ

ε
) +

(τ
ε

+mδ +m(
τ

ε
)2
)
eC

mτ
ε

)
. (A.45)

Proof. Let m ∈ N∗. Define (x̃s, ỹs) such that for j ∈ N∗, n ∈ N∗,



dx̃s
dt = g(x̃s, ỹs) for jmδ ≤ s < (j + 1)mδ

dỹs
dt = 1

εf(x̃s, ỹs) for nδ ≤ s < nδ + τ

ỹs = ỹnδ+τ for nδ + τ ≤ s < (n+ 1)δ

ỹ(n+1)δ = ỹnδ+τ for n+ 1 6= jm

(x̃jm, ỹjm) = (x̄jmδ, ȳjmδ)

. (A.46)
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Define ỹas by


dỹat
dt = 1

εf(x̄jmδ, ỹ
a
t ) for jmτ ≤ t < (j + 1)mτ

ỹajmτ = ȳjmδ

, (A.47)

and define x̃an by

x̃an = x̄jmδ for jm ≤ n < (j + 1)m. (A.48)

Observe that

J2(k) = K3 +K4 +K5 +K6 +K7 (A.49)

with

K3 :=

k−1∑
n=0

( ∫ (n+1)δ

nδ
g(x̃s, ỹs) ds− δg(x̄nδ, ȳnδ)

)
, (A.50)

K4 :=
k−1∑
n=0

δ
(1

τ

∫ (n+1)τ

nτ
g(x̃an, ỹ

a
s ) ds− 1

δ

∫ (n+1)δ

nδ
g(x̃s, ỹs) ds

)
, (A.51)

K5 :=
δ

τ

k−1∑
n=0

(
τ ḡ(x̃an)−

∫ (n+1)τ

nτ
g(x̃an, ỹ

a
s ) ds

)
, (A.52)

K6 := δ

k−1∑
n=0

(
ḡ(x̄nδ)− ḡ(x̃an)

)
. (A.53)

Using the regularity of g we obtain

|K6| ≤ δkCδm. (A.54)

Arranging the right hand side of (A.51) into groups of m terms corresponding to

the intervals of (A.47) we obtain, from Condition 2.1.2 and Condition 2.1.3, that

|K5| ≤ CkδE(
mτ

ε
). (A.55)

Using (A.48) and the regularity of f and g we obtain the following inequality

|ỹaδ
τ
t
− ỹt| ≤ CmδeC

mτ
ε . (A.56)
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It follows that

|K4| ≤ CδkmδeC
mτ
ε . (A.57)

Similarly, using (A.7) and (A.8), we obtain the following inequalities

|ỹnδ − ȳnδ| ≤ C(
τ

ε
+mδ +m(

τ

ε
)2)

mτ

ε
eC

mτ
ε , (A.58)

|x̃nδ − x̄nδ| ≤ Cm
(
δ + (

τ

ε
)2
)
. (A.59)

It follows that

|K3| ≤ Cδk
(τ
ε

+mδ +m(
τ

ε
)2
)
eC

mτ
ε . (A.60)

This concludes the proof of Lemma A.1.3.

Combining Lemma A.1.1, A.1.2 and A.1.3 we have obtained that

|xεnδ − x̄nδ| ≤CeCδn
(
δ +

(τ
ε

)2 1

δ
+ δeC

δ
Nε + E

( δ
Nε

)
+ E(

mτ

ε
)

+
(τ
ε

+mδ +m(
τ

ε
)2
)
eC

mτ
ε

) (A.61)

Choosing N such that eC
δ
Nε ∼ δ−

1
2 (observe that we need ε ≤ δ/(−C ln δ)) and m

such that mτ
ε e

Cmτ
ε ∼

(
δε
τ + τ

ε

)− 1
2 we obtain for δε

τ + τ
ε ≤ 1 that

|xεnδ − x̄nδ| ≤CeCδn
(
√
δ +

(τ
ε

)2 1

δ
+ E

( 1

C
ln

1

δ

)
+
(δε
τ

) 1
2 +

(τ
ε

) 1
2 + E

( 1

C
ln
((δε

τ
+
τ

ε

)−1
))) (A.62)

This concludes the proof of inequality (A.2). The proof of (A.3) is similar and is

also a consequence of (A.2).

A.2 Proof of Theorem 2.3.1

Define the process t 7→ (x̄t, ȳt) by

(x̄t, ȳt) := η(ūt). (A.63)
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It follows from the regularity of η that it is sufficient to prove the F -convergence

of (x̄t, ȳt) towards δXt ⊗ µ(Xt, dy). Now define ψετ by

ψετ (x, y, ω) := η ◦ θετ (., ω) ◦ η−1(x, y), (A.64)

Define ψgh by

ψgh(x, y, ω) := η ◦ θGh (., ω) ◦ η−1(x, y). (A.65)

Proposition A.2.1. The vector fields f , g and matrix fields σ, Q associated with

the system (2.60) are uniformly bounded and Lipschitz continuous. We also have


(x̄0, ȳ0) = η(u0)

(x̄(k+1)δ, ȳ(k+1)δ) = ψgδ−τ (., ω′k) ◦ ψετ
(
(x̄kδ, ȳkδ), ωk

)
(x̄t, ȳt) = (x̄kδ, ȳkδ) for kδ ≤ t < (k + 1)δ

(A.66)

where ωk, ω
′
k are i.i.d. samples from the probability space (Ω,F ,P). Moreover,

there exists C > 0 and and d-dimensional centered Gaussian vectors ξ′(ω), ξ′′(ω)

with identity covariance matrices such that for h ≤ h0 and τ
ε ≤ τ0 we have

(
E
[∣∣ψgh(x, y, ω)−(x, y)−h

(
g(x, y), 0

)
−
√
h
(
σ(x, y)ξ′(ω), 0

)∣∣2]) 1
2

≤ Ch
3
2 , (A.67)

(
E
[∣∣ψετ (x, y, ω)− (x, y)− τ

(
g(x, y), 0

)
− τ

ε

(
0, f(x, y)

)
−
√
τ
(
σ(x, y)ξ′′(ω), 0

)
−
√
τ

ε

(
0, Q(x, y)ξ′′(ω)

)∣∣2]) 1
2

≤ C
(τ
ε

) 3
2 .

(A.68)
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Proof. Since (x, y) = η(u), we obtain from (2.59) and Itô’s formula

dx =
(
(G+

1

ε
F )∇ηx ◦ η−1(x, y)

)
dt+

(
∇ηx(H +

1√
ε
K)
)
◦ η−1(x, y) dWt

+
1

2

∑
ij

∂i∂jη
x
(
(H +

1√
ε
K)(H +

1√
ε
K)T

)
ij
dts

(A.69)

dy =
(
(G+

1

ε
F )∇ηy ◦ η−1(x, y)

)
dt+

(
∇ηy(H +

1√
ε
K)
)
◦ η−1(x, y) dWt

+
(1

2

∑
ij

∂i∂jη
y
(
(H +

1√
ε
K)(H +

1√
ε
K)T

)
ij

)
◦ η−1 dt.

(A.70)

Hence we deduce from (2.60) in Condition 2.3.1 that

g(x, y) =
(
G∇ηx +

1

2

∑
ij

∂i∂jη
x(HHT )ij

)
◦ η−1(x, y) (A.71)

σ(x, y) =
(
∇ηxH

)
◦ η−1(x, y) (A.72)

f(x, y) =
(
F∇ηy +

1

2

∑
ij

∂i∂jη
y(KKT )ij

)
◦ η−1(x, y) (A.73)

Q(x, y) =
(
∇ηyK

)
◦ η−1(x, y). (A.74)

Remark A.2.1. Observe that (2.60) in Condition 2.3.1 requires that

F∇ηx = 0, G∇ηy = 0, (A.75)

∑
ij

∂i∂jη
x
(
KKT

)
ij

= 0, (A.76)

∑
ij

∂i∂jη
y
(
HHT

)
ij

= 0, (A.77)

∑
ij

∂i∂jη
x
(
KHT +HKT

)
ij

= 0, (A.78)

and ∑
ij

∂i∂jη
y
(
KHT +HKT

)
ij

= 0. (A.79)

(A.78) and (A.79) are satisfied if KHT is skew-symmetric. One particular case
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could be, of course, KHT = 0, which translates into the fact that for all u the

ranges of H(u) and K(u) are orthogonal, i.e., the noise with amplitude 1/
√
ε is

applied to degrees of freedom orthogonal to those with O(1) noise.

We deduce the regularity of f , g, σ and Q from the regularity of G, F , H, K

and η. (A.6) is a direct consequence of the definition of ψετ and ψgh and (A.66).

Now observe that

ψετ (x, y, ω)− (x, y)− τ
(
g(x, y), 0

)
− τ

ε

(
0, f(x, y)

)
−
√
τ
(
σ(x, y)ξ′(ω), 0

)
−
√
τ

ε

(
0, Q(x, y)ξ′(ω)

)
=
(
η ◦ θετ − η − τ

(
G∇ηx +

1

2

∑
ij

∂i∂jη
x(HHT )ij , 0

)
− τ

ε

(
0, F∇ηy +

1

2

∑
ij

∂i∂jη
y(KKT )ij

)
−
√
τ
(
∇ηxHξ′(ω), 0

)
−
√
τ

ε

(
0,∇ηyKξ′(ω)

))
◦ η−1(x, y).

(A.80)

Using (A.75), (A.76), (A.77), (A.78) and (A.79), the Taylor-Ito expansion of η◦θετ ,

the regularity of η, and setting ξ′ equal to ξ defined in (2.72), we obtain (A.68).

The proof of (A.67) is similar.

It follows from Proposition A.2.1 that it is sufficient to prove Theorem 2.3.1

in the situation where η is the identity diffeomorphism. More precisely the F -

convergence of ūt is a consequence of the F -convergence of (x̄t, ȳt) and the regu-

larity of η.

Let x 7→ ϕ(x) be a function with continuous and bounded derivatives up to

order 3. Let us prove the following lemma.

Lemma A.2.1. We have

E
[
ϕ(x̄(n+1)δ)

]
− E

[
ϕ(x̄nδ)

]
=

δE
[
g(x̄nδ, ȳnδ)∇ϕ(x̄nδ) + σσT (x̄nδ, ȳnδ) : Hessϕ(x̄nδ)

]
+ I0

(A.81)
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with

|I0| ≤ C
(
δ

3
2 +

(τ
ε

) 3
2

)
. (A.82)

Proof. Write (x̄nδ+τ , ȳnδ+τ ) := ψετ (x̄nδ, ȳnδ, ωn). Using (A.68), we obtain that

there exists an N (0, 1) random vector ξn, independent from (x̄nδ, ȳnδ), such that

x̄nδ+τ − x̄nδ = g(x̄nδ)τ +
√
τσ(x̄nδ, ȳnδ)ξn + I1 (A.83)

with

(
E[(I1)2]

) 1
2 ≤ C

(τ
ε

) 3
2 . (A.84)

Hence ∣∣∣∣∣E[ϕ(x̄nδ+τ )
]
− E

[
ϕ(x̄nδ)

]
− τE

[
g(x̄nδ, ȳnδ)∇ϕ(x̄nδ)

+ σσT (x̄nδ, ȳnδ) : Hessϕ(x̄nδ)
]∣∣∣∣∣ ≤ C(τε ) 3

2

(A.85)

Similarly, using (A.67), we obtain that there exists an N (0, 1) random vector ξ′n,

independent from (x̄nδ+τ , ȳnδ+τ ), such that

x̄(n+1)δ − x̄nδ+τ = g(x̄nδ+τ , ȳnδ+τ )(δ − τ) + σ(x̄nδ+τ , ȳnδ+τ )
√
δ − τξ′n + I2

(A.86)

with

(
E[(I2)2]

) 1
2 ≤ C(δ − τ)

3
2 . (A.87)
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Whence∣∣∣∣∣E[ϕ(x̄(n+1)δ)
]
− E

[
ϕ(x̄nδ+τ )

]
− (δ − τ)E

[
g(x̄nδ+τ , ȳnδ+τ )∇ϕ(x̄nδ+τ )

+ σσT (x̄nδ+τ , ȳnδ+τ ) : Hessϕ(x̄nδ+τ )
]∣∣∣∣∣ ≤ C(δ − τ) 3

2 .

(A.88)

Using the regularity of σ, we obtain that

(
E
[∣∣σ(x̄nδ+τ , ȳ(n+1)δ)− σ(x̄nδ, ȳnδ)

∣∣2]) 1
2 ≤ C

(
δ

1
2 +

√
τ

ε

)
. (A.89)

The proof of (A.81) follows from (A.68), (A.85), (A.88), (A.89) and the regularity

of g and ϕ.

Lemma A.2.2. We have

∣∣∣E[ϕ(x̄nδ)
]
− ϕ(x0)

nδ
− Lϕ(x0)

∣∣∣ ≤ J5 (A.90)

with (for δ ≤ Cτ/ε)

|J5| ≤ C
((δε

τ

) 1
4 +

(τ
ε

) 3
2

1

δ
+

√
τ

ε

)
+ CE

( 1

C
ln
τ

δε

)
. (A.91)

Proof. Define B̂t by B̂0 = 0 and

B̂t − B̂nτ = Bnδ+t −Bnδ for nτ ≤ t ≤ (n+ 1)τ. (A.92)

Define ỹs by ỹ0 = y0 and

dỹt =
1

ε
f(x0, ỹt) dt+

1√
ε
Q(x0, ỹt)dB̂t. (A.93)

Write

ḡ(x0) :=

∫
g(x0, y)µ(x0, dy). (A.94)
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Using Lemma A.2.1 we obtain

E
[
ϕ(x̄nδ)

]
− ϕ(x0)

nδ
= Lϕ(x0) + J1 + J2 + J3 + J4, (A.95)

with

Lϕ(x0) := ḡ(x0)∇ϕ(x0) + σ̄σ̄T (x0) : Hessϕ(x0), (A.96)

J1 =
1

n

n−1∑
k=0

E
[
g(x̄kδ, ȳkδ)∇ϕ(x̄kδ) + σσT (x̄kδ, ȳkδ) : Hessϕ(x̄kδ)

]
− 1

n

n−1∑
k=0

E
[
g(x̄0, ȳkδ)∇ϕ(x̄0) + σσT (x̄0, ȳkδ) : Hessϕ(x̄0)

]
,

(A.97)

J2 =
1

n

n−1∑
k=0

(
E
[
g(x̄0, ȳkδ)∇ϕ(x̄0) + σσT (x̄0, ȳkδ) : Hessϕ(x̄0)

]
− 1

τ

∫ (k+1)τ

kτ
E
[
g(x0, ỹs)∇ϕ(x0) + σσT (x0, ỹs) : Hessϕ(x0)

]
ds
)
,

(A.98)

J3 =
1

nτ

∫ nτ

0
E
[
g(x0, ỹs)∇ϕ(x0) + σσT (x0, ỹs) : Hessϕ(x0)

]
ds− Lϕ(x0),

(A.99)

|J4| ≤ C
(
δ

1
2 +

(τ
ε

) 3
2

1

δ

)
. (A.100)

Using the regularity of σ, g, ϕ, (A.6) and (A.7) we obtain

|J1| ≤ C
(

(nδ)
1
2 + nδ + n

(τ
ε

) 3
2

)
. (A.101)

Using Property 3 of Condition 2.3.1 and Property 3 of Condition 2.3.2 we obtain

|J3| ≤ CE(
nτ

ε
). (A.102)
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Using (A.67) and (A.68), we obtain the following inequality

(
E
[∣∣ȳnδ − ỹnτ ∣∣2]) 1

2 ≤ C
(√τ

ε
+ (nδ)

1
2 + nδ + n

(τ
ε

) 3
2

)nτ
ε
eC

nτ
ε , (A.103)

which leads to

|J2| ≤ C
(√τ

ε
+ (nδ)

1
2 + nδ + n

(τ
ε

) 3
2

)
eC

nτ
ε . (A.104)

Hence, we have obtained

∣∣∣E[ϕ(x̄nδ)
]
− ϕ(x0)

nδ
− Lϕ(x0)

∣∣∣ ≤ J5, (A.105)

with

|J5| ≤ C
(√τ

ε
+ (nδ)

1
2 + nδ + n

(τ
ε

) 3
2

)
eC

nτ
ε + E(

nτ

ε
) + C

(τ
ε

) 3
2

1

δ
. (A.106)

Choosing n such that
√

nτ
ε e

C nτ
ε ∼

(
τ
εδ

) 1
4 we obtain (A.91) for δ ≤ Cτ/ε.

We now combine Lemma A.2.2 with Theorem 1 of Chapter 2 of [258] which

states that the uniform convergence (in x0, y0) of E[ϕ(x̄nδ)]−ϕ(x0)
nδ to Lϕ(x0) as ε ↓ 0,

τ ≤ δ, τ
ε ↓ 0, δε

τ ↓ 0 and
(
τ
ε

) 3
2 1
δ ↓ 0 implies the convergence in distribution of x̄nδ

to the Markov process generated by L.

The F -convergence of (x̄t, ȳt) can be deduced from the convergence in distri-

bution of x̄t and (2.62) of Condition 2.3.1. The proof follows the same lines as

above, which will not be repeated here.

A.3 Proof of Theorem 4.2.1

Throughout this section Condition 4.2.1 is assumed. For concise writing, we also

abuse the notation O(xn), which indicates some entity whose norm ≤ Cxn, where

C is a constant that does not depend on ε−1.
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Since ε is very small, the following inequalities for converting between scaled

energy norm and two-norm can be easily obtained:

Proposition A.3.1. Let x =

q
p

 be any vector, then

ε1/2‖
√
K‖−1

2 ‖x‖2 = ‖Ω‖−1
2 ‖x‖2 ≤ ‖x‖E ≤ ‖x‖2 (A.107)

‖

0

p

 ‖E ≤ ‖Ω−1‖2‖

0

p

 ‖2 = ε1/2‖
√
K
−1
‖2‖x‖2 (A.108)

Also, vector-norm-induced matrix norms satisfy

‖

M11 M12

M21 M22

 ‖E , sup
‖Mx‖E
‖x‖E

= ‖

 M11 M12Ω

Ω−1M21 Ω−1M22Ω

 ‖2 (A.109)

Lemma A.3.1. Let B(s) =

B11(s) B12(s)

B21(s) B22(s)

 = exp(s

 0 I

−ε−1K c

), and Rq(s)

be the Rqk(H) defined in Integrator 4.2.2 with H = s and arbitrary k, then

‖B11(s)‖2 ≤ 1 (A.110)

‖B22(s)‖2 ≤ 1 (A.111)

‖B12(s)‖2 ≤ |s| (A.112)

ε‖B21(s)‖2 ≤ CK |s| (A.113)

ε1/2‖B11(s)− I‖2 ≤ CK |s| (A.114)

ε1/2‖B22(s)− I‖2 ≤ Cc|s| (A.115)

E‖Rq(s)‖22 ≤ 1

3
‖σ‖22|s|3 (A.116)

ε1/2‖B(s)− I‖2 ≤ CKc|s| (A.117)

ε1/2‖B(s)− I‖E ≤ CKc|s| (A.118)

where CK , Cc and CKc are some positive real constants (may indicate different

values in different inequalities), respectively dependent on K,
√
εc, K and

√
εc but

independent of ε−1.
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Proof. Since c and K commute, they can be diagonalized simultaneously (see for

instance [145]). By the theory of linear ordinary differential equations (see for

instance [228]), one can hence diagonalize B11, B12, B21, B22 simultaneously. Since

each diagonal element can be investigated individually, assume without loss of

generality that Ω = [ω]ij = ε−1/2
√
K and c are both scalars, and use the notation

of scalar ω and scalar c thereafter.

Denote the damping ratio by ζ = c
ω . The solution to damped harmonic os-

cillator can be analytically obtained, and hence components of the flow operator

B11,B12,B21,B22 as well.

When ζ < 1 i.e., underdamping, which is usually the case since ω is large

B11(s) = e−ωζs(cos(ω
√

1− ζ2s) +
ζ√

1− ζ2
sin(

√
1− ζ2s)) (A.119)

B12(s) =
e−ωζssin(ω

√
1− ζ2s)

ω
√

1− ζ2
(A.120)

B21(s) = −ωe
−ωζssin(ω

√
1− ζ2s)√

1− ζ2
(A.121)

B22(s) = e−ωζs(cos(ω
√

1− ζ2s)− ζ√
1− ζ2

sin(
√

1− ζ2s)) (A.122)

When ζ = 1 i.e., critical damping,

B11(s) = e−ωs(1 + ωs) (A.123)

B12(s) = e−ωss (A.124)

B21(s) = −ω2e−ωtt (A.125)

B22(s) = e−ωs(1− ωs) (A.126)
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When ζ > 1 i.e., over damping,

A(s) , eωs(−ζ−
√
ζ2−1) (A.127)

B(s) , eωs(−ζ+
√
ζ2−1) (A.128)

B11(s) =
ζ(B −A) +

√
ζ2 − 1(A+B)

2
√
ζ2 − 1

(A.129)

B12(s) =
−A+B

2ω
√
ζ2 − 1

(A.130)

B21(s) =
ω(A−B)

2
√
ζ2 − 1

(A.131)

B22(s) =
ζ(A−B) +

√
ζ2 − 1(A+B)

2
√
ζ2 − 1

(A.132)

(A.133)

By routine investigations on local extremes using calculus, it can be shown in

all three cases that

‖B11(s)‖2 ≤ 1 (A.134)

‖B22(s)‖2 ≤ 1 (A.135)

‖B12(s)‖2 ≤ s (A.136)

‖B21(s)‖2 ≤ ω2s (A.137)

‖B11(s)− I‖2 ≤ ωs (A.138)

‖B22(s)− I‖2 ≤

 ωs ζ ≤ 1

2ζωs ζ > 1
(A.139)

When ζ > 1, since c = O(ε−1/2) (Condition 4.2.1), 2ζωs = O(ε−1/2)s. There-

fore ε1/2‖B22(s)− I‖2 ≤ Cc|s| always holds.
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Also,

E‖Rq(s)‖22 = E‖
∫ s

0
B12(t)σdWt‖22

=

∫ s

0
‖σB12(t)‖22dt ≤

1

3
‖σ‖22|s|3 (A.140)

For a proof on norm bounds of the entire matrice we use only bounds of di-

mensionless block elements:

‖B − I‖2 = ‖

B11 − I B12

B21 B22 − I

 ‖2 (A.141)

≤ ‖

Ω 0

0 Ω

 ‖2‖
Ω−1(B11 − I) Ω−1B12

Ω−1B21 Ω−1(B22 − I)

 ‖2 (A.142)

= ε−1/2‖

 O(s) ε1/2O(s)

ε−1/2O(s) O(s)

 ‖2 (A.143)

It’s easy to prove that for any scalar a

‖

M11 aM12

M21 M22

 ‖2 = ‖

M11 M12

aM21 M22

 ‖2 (A.144)

Therefore

‖B − I‖2 = ε−1/2‖

O(s) O(s)

O(s) O(s)

 ‖2 = ε−1/2O(s) (A.145)



263

Similarly,

‖B − I‖E = ε−1/2‖

B11 − I B12Ω

Ω−1B21 Ω−1B22Ω− I

 ‖2
≤ ε−1/2‖

 O(s) ε1/2ε−1/2O(s)

ε−1/2ε1/2O(s) ε1/2O(s)ε−1/2

 ‖2
= ε−1/2‖

O(s) O(s)

O(s) O(s)

 ‖2
= ε−1/2O(s) (A.146)

Remark A.3.1. In the special case of c = 0, bounds of block elements can be

easily obtained since

|cos(ωs)| ≤ 1

εK−1| − ωsin(ωs)| = |−ωsin(ωs)

ω2
| ≤ |s|

ε1/2
√
K
−1
|cos(ωs)− 1| = | − 2sin2(ωs/2)/ω| ≤ | − 2sin(ωs/2)/ω| ≤ |s|

Lemma A.3.2. The solution to the SDE

dX = AXdt+ f(X)dt+ ΣdWt

can be written in the following integral form:

X(t) = eAtX(0) +

∫ t

0
eA(t−s)f(X(s))ds+

∫ t

0
eA(t−s)ΣdWs (A.147)

Proof. Let Y (t) = e−AtX(t), then by Ito’s formula and dX = AXdt + f(X)dt +

ΣdWt

dY = e−Atf(X(t))dt+ e−AtΣdWt (A.148)
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This in the integral form is

Y (t) = Y (0) +

∫ t

0
e−Asf(X(s))ds+

∫ t

0
e−AsΣdWs (A.149)

Hence

X(t) = eAtX(0) +

∫ t

0
eA(t−s)f(X(s))ds+

∫ t

0
eA(t−s)ΣdWs (A.150)

Lemma A.3.3. Consider two continuous stochastic dynamical systems, the orig-

inal dynamics and the bridge dynamics:



dq = pdt

dp = −ε−1Kqdt−∇V (q)dt− cpdt+ σdWt

q(0) = q0

p(0) = p0

(A.151)



dq̃ = p̃dt

dp̃ = −ε−1Kq̃dt−∇V (q0)dt− cp̃dt+ σdWt

q̃(0) = q0

p̃(0) = p0

(A.152)

Then (E‖

q̃(H)

p̃(H)

−
q(h)

p(h)

 ‖2E)1/2 ≤ C|H|3/2, where C is a positive constant inde-

pendent of ε−1 but dependent on the scaleless elasticity matrix K, scaled damping

coefficient
√
εc, amplitude of noise σ, and slow potential V (·).
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Proof. Rewrite the original dynamics (A.151) as



dq = pdt

dp = ε−1Kqdt−∇V (q0)dt+ (∇V (q0)−∇V (q))dt− cpdt+ σdWt

q(0) = q0

p(0) = p0

(A.153)

Let x(t) =

q(t)
p(t)

, x̃(t) =

q̃(t)
p̃(t)

, B(t) = exp(t

 0 I

−ε−1K −c

), b =

 0

−∇V (q0)

,

g(q, p) = g(x) =

 0

∇V (q0)−∇V (q)

, and Σ =

0

σ

. Then by Lemma A.3.2 so-

lutions to the original dynamics and bridge dynamics can be respectively written

as:

x(t) = B(t)x(0) +

∫ t

0
B(t− s)bds+

∫ t

0
B(t− s)ΣdWs +

∫ t

0
B(t− s)g(x(s))ds

x̃(t) = B(t)x(0) +

∫ t

0
B(t− s)bds+

∫ t

0
B(t− s)ΣdWs (A.154)

Notice for any vector y and positive t that ‖B(t)y‖E ≤ ‖y‖E , because energy

is decaying in the system q̈ + cq̇ + ε−1Kq = 0. Together with Cauchy-Schwarz we

have

E‖x̃(t)− x(t)‖2E = E‖
∫ t

0
B(t− s)g(x(s))ds‖2E

≤ t

∫ t

0
E‖B(t− s)g(x(s))‖2Eds

≤ t

∫ t

0
E‖g(x(s))‖2Eds (A.155)

By Condition 4.2.1, assume ∇V (·) is Lipschitz continuous with coefficient L,
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then almost surely

‖g(x(s))‖E = ‖

 0

∇V (q0)−∇V (q(s))

 ‖E
≤
√
ε‖
√
K
−1
‖2‖∇V (q0)−∇V (q(s))‖2

≤ L
√
ε‖
√
K
−1
‖2‖q(s)− q0‖2 (A.156)

Similarly, since

x(t) = B(t)x(0) +

∫ t

0
B(t− s)

 0

−∇V (q(s))

 ds+

∫ t

0
B(t− s)ΣdWs (A.157)

we have

‖x(s)−B(s)x0 −
∫ s

0
B(s− t)ΣdWt‖2 ≤

∫ s

0
‖∇V (q(t))‖2dt (A.158)

By Condition 4.2.1, ∇V (·) is bounded, and hence the above is O(s).

We now can bound (A.156) and therefore (A.155) with the aid of (A.158) and

Lemma A.3.1:

E‖q(s)− q0‖22

≤ E‖x(s)− x0‖22

≤ E
(
‖x(s)−B(s)x0 −

∫ s

0
B(t− s)ΣdWs‖2 + ‖B(s)x0 − x0‖2 + ‖

∫ s

0
B(t− s)ΣdWs‖2

)2

≤ 3E
(
‖x(s)−B(s)x0 −

∫ s

0
B(t− s)ΣdWs‖22 + ‖B(s)x0 − x0‖22 + ‖

∫ s

0
B(t− s)ΣdWs‖22

)
= 3

(
O(s2) + ε−1O(s2)E‖x0‖22 +

∫ s

0
σ2(B12(t− s)2 +B22(t− s)2)dt

)
= O(s2) + ε−1O(s2)E‖x0‖22 +O(s3) +O(s) (A.159)

By Condition 4.2.1, E‖x0‖22 = O(1). Therefore, the above expression is ε−1O(s2)+

O(s).

This gives E‖g(x̃(s))‖2E = O(s) independent of ε−1, and eventually E‖x̃(h) −
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x(h)‖2E = O(h3).

Lemma A.3.4. Consider the discrete stochastic dynamical system given by 1st-

order SIM (Integrator 4.2.2):

 qH = B11(H)q0 +B12(H)p0 +Rq(H)

pH = B21(H)q0 +B22(H)p0 +Rp(H)−H∇V (B11(H)q0 +B12(H)p0 +Rq(H))

(A.160)

Then a comparison with bridge dynamics (A.152) gives E‖qH − q̃(H)‖22 ≤ CH4

and E‖Ω−1(pH − p̃(H))‖22 ≤ CH4, and therefore

(E‖

qH
pH

−
q̃(H)

p̃(H)

 ‖2E)1/2 ≤ CH2 (A.161)

where C’s are positive constants independent of ε−1 but dependent on scaleless

elasticity matrix K, scaled damping coefficient
√
εc, amplitude of noise σ, and

slow potential V (·).

Proof. The exact solution to the bridge dynamics is q̃(H) = B11(H)q0 +B12(H)p0 +
∫ H

0 B12(s)(−∇V (q0))ds+Rq(H)

p̃(H) = B21(H)q0 +B22(H)p0 +
∫ H

0 B22(s)(−∇V (q0))ds+Rp(H)

(A.162)

Hence almost surely q̃(H)− qH =
∫ H

0 B12(s)(−∇V (q0))ds.

Since B12(s) = O(s) by Lemma A.3.1, and E‖ − ∇V (q0)‖22 is bounded by

Condition (4.2.1), one gets

E‖q̃(H)− qH‖22 ≤ H

∫ H

0
E‖B12(s)(−∇V (q0))‖22ds

≤ H

∫ H

0
E(‖B12(s)‖2‖ − ∇V (q0)‖2)2ds

= H

∫ H

0
O(s2)E‖ − ∇V (q0)‖22ds

= O(H4) (A.163)
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Investigation on p by applying Lemma A.3.1 and Condition 4.2.1 gives:

E‖Ω−1(p̃(H)− pH)‖22

= E‖Ω−1(

∫ H

0
B22(s)ds(−∇V (q0)) +H∇V (B11(H)q0 +B12(H)p0 +Rq(H)))‖22

= E‖
∫ H

0
Ω−1(B22(s)− I)ds(−∇V (q0)) +HΩ−1(∇V (B11(H)q0 +B12(H)p0

+Rq(H))−∇V (q0))‖22

≤ 2E[‖
∫ H

0
Ω−1(B22(s)− I)ds(−∇V (q0))‖22 + ‖HΩ−1(∇V (B11(H)q0 +B12(H)p0

+Rq(H))−∇V (q0))‖22]

≤ 2[H

∫ H

0
E‖Ω−1(B22(s)− I)(−∇V (q0))‖22ds+ E‖HΩ−1(∇V (B11(H)q0

+B12(H)p0 +Rq(H))−∇V (q0))‖22]

≤ 2H[

∫ H

0
‖Ω−1(B22(s)− I)‖22dsE‖(−∇V (q0))‖22 +HE‖Ω−1(∇V (B11(H)q0

+B12(H)p0 +Rq(H))−∇V (q0))‖2]

≤ 2H[O(H3) + L2HE‖Ω−1(B11(H)q0 +B12(H)p0 +Rq(H)− q0)‖22]

≤ 2H[O(H3) + 3L2H(E‖Ω−1(B11(H)− I)q0‖22 + ‖Ω−1B12(H)p0‖22

+E‖Ω−1Rq(H)‖22)]

≤ 2H[O(H3) + 3L2H(‖Ω−1(B11(H)− I)‖22E‖q0‖22 + ‖B12(H)‖22E‖p0‖22

+E‖Rq(H)‖22)]

≤ 2H[O(H3) + 3L2H(O(H)2E‖q0‖22 +O(H)2E‖p0‖22 +O(H3))]

= O(H4) (A.164)

Therefore E‖

qH
pH

−
q̃(H)

p̃(H)

 ‖2E = O(H4) independent of ε−1.

Lemma A.3.5. Consider evolutions of different local initial conditions under the

bridge dynamics: dq̃1 = p̃1dt

dp̃1 = −ε−1Kq̃1dt−∇V (q̃1(0))dt− cp̃1dt+ σdWt

(A.165)
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 dq̃2 = p̃2dt

dp̃2 = −ε−1Kq̃2dt−∇V (q̃2(0))dt− cp̃2dt+ σdWt

(A.166)

Denote by L the Lipschitz coefficient of ∇V (·) (i.e., ‖∇V (a)−∇V (b)‖2 ≤ L‖a−

b‖2), then almost surely

‖

q̃1(H)− q̃2(H)

p̃1(H)− p̃2(H)

 ‖E ≤ (1 +HL)‖

q̃1(0)− q̃2(0)

p̃1(0)− p̃2(0)

 ‖E (A.167)

Proof. Write out the solution to the bridge dynamics in integral form:

q̃1(H)

p̃1(H)

 = B(H)

q̃1(0)

p̃1(0)

+

∫ H

0
B(H − s)

 0

−∇V (q̃1(0))

 ds+

∫ H

0
B(H − s)ΣdWs

q̃2(H)

p̃2(H)

 = B(H)

q̃2(0)

p̃2(0)

+

∫ H

0
B(H − s)

 0

−∇V (q̃2(0))

 ds+

∫ H

0
B(H − s)ΣdWs

(A.168)
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Hence almost surely

‖

q̃1(H)− q̃2(H)

p̃1(H)− p̃2(H)

 ‖E
≤ ‖B(H)

q̃1(0)− q̃2(0)

p̃1(0)− p̃2(0)

 ‖E +

∫ H

0
‖B(H − s)

 0

∇V (q̃2(0))−∇V (q̃1(0))

 ‖Eds
≤ ‖

q̃1(0)− q̃2(0)

p̃1(0)− p̃2(0)

 ‖E +H‖

 0

∇V (q̃2(0))−∇V (q̃1(0))

 ‖E
≤ ‖

q̃1(0)− q̃2(0)

p̃1(0)− p̃2(0)

 ‖E +HL‖

 0

q̃2(0)− q̃1(0)

 ‖E
≤ ‖

q̃1(0)− q̃2(0)

p̃1(0)− p̃2(0)

 ‖E +HL‖

q̃2(0)− q̃1(0)

0

 ‖E
≤ (1 +HL)‖

q̃1(0)− q̃2(0)

p̃1(0)− p̃2(0)

 ‖E (A.169)

Remark A.3.2. If the traditional method of investigating the Lipschitz coefficient

of the vector field is employed to evolve the separation of local initial conditions,

ε−1 will exhibit in the bound of separation. Instead we only looked at the soft part

of the vector field and thence obtained a uniform bound.

Theorem 4.2.1 (global error bound in energy norm).

Proof. Atlas of error propagation:

x(NH)
O(H3/2)

root mean square
α̃

eN−1(1+HL)

almost surely
β̃

O(H2)

root mean square
xNH

x((N − 1)H) eN−1

original dynamics

``

bridge dynamics

OO

x(N−1)H

bridge dynamics

OO

1st order SIM

AA
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Let eN = (E‖x(NH)− xNH‖2E)1/2. Let α̃ and β̃ be respectively the evolution

of the real solution x((N − 1)H) and the numerical solution x(N−1)H by time H

under the bridge dynamics (A.152).

Then by Lemma A.3.3 and A.3.4, there exist constants C1 and C2 independent

of ε−1 such that

(E‖X(NH)− α̃‖2E)1/2 ≤ C1H
3/2

(E‖β̃ −XNh‖2E)1/2 ≤ C2H
2 (A.170)

Also since ‖α̃−β̃‖E ≤ (1+HL)‖x((N−1)h)−x(N−1)h‖E almost surely (Lemma

A.3.5), we have:

(E‖α̃− β̃‖2E)1/2 ≤ (1 +HL)eN−1 (A.171)

All in all,

eN ≤ (E‖x(NH)− α̃‖2E)1/2 + (E‖α̃− β̃‖2E)1/2 + (E‖β̃ −XNH)‖2E)1/2

≤ (1 +HL)eN−1 + (C1 + C2)H3/2

= (1 +HL)Ne0 + (C1 + C2)H3/2 (1 +HL)N − 1

(1 +HL)− 1

≤ (C1 + C2)H1/2 e
NHL − 1

L
=

(C1 + C2)(eTL − 1)

L
H1/2 (A.172)

Therefore letting C = (C1+C2)(eTL−1)
L we have

(E‖q(T )− qT ‖22)1/2 ≤ eN ≤ CH1/2 (A.173)

(E‖p(T )− pT ‖22)1/2 ≤ ε−1/2‖
√
K‖2eN ≤ ε−1/2‖

√
K‖2CH1/2 (A.174)
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[20] I. Babuška and R. Lipton. Optimal local approximation spaces for general-

ized finite element methods with application to multiscale problems. Multi-

scale Model. Simul., 9:373–406, 2011.
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[22] Ivo Babuška, Gabriel Caloz, and John E. Osborn. Special finite element

methods for a class of second order elliptic problems with rough coefficients.

SIAM J. Numer. Anal., 31(4):945–981, 1994.

[23] N. Bakhvalov and G. Panasenko. Homogenization: averaging processes in pe-

riodic media. In Mathematics and its applications, vol. 36. Kluwer Academic

Publishers, Dordrecht, 1990.

[24] Eric J. Barth, Brian B. Laird, and Benedict J. Leimkuhler. Generat-

ing generalized distributions from dynamical simulation. J. Chem. Phys.,

118(13):5759–5768, 2003.

[25] Federico Bassetti and Persi Diaconis. Examples comparing importance sam-

pling and the metropolis algorithm. Illinois J. of Math., 50(1):67–91, 2005.

[26] Oren M. Becker, Alexander D. MacKerell, Jr., Benoit Roux, and Masakatsu

Watanabe. Computational Biochemistry and Biophysics. Marcel Dekker

Ltd., 2001.

[27] A. Bensoussan, J. L. Lions, and G. Papanicolaou. Asymptotic analysis for

periodic structure. North Holland, Amsterdam, 1978.



275

[28] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and

J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem.

Phys., 81(8):3684–3690, 1984.

[29] L. Berlyand and H. Owhadi. Flux norm approach to finite dimensional ho-

mogenization approximations with non-separated scales and high contrast.

Archives for Rational Mechanics and Analysis, 198(2):677–721, 2010.

[30] C. Bernardi and R. Verfürth. Adaptive finite element methods for elliptic

equations with non-smooth coefficients. Numer. Math., 85(4):579–608, 2000.

[31] Bruce J Berne and John E Straub. Novel methods of sampling phase space in

the simulation of biological systems. Curr. Opin. Struct. Biol., 7(2):181–189,

1997.

[32] Alexandros Beskos, F.J. Pinski, J. M. Sanz-Serna, and Andrew Stuart. Hy-

brid Monte-Carlo on Hilbert spaces. Submitted, 2011.
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darstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1946.

[37] Folkmar A. Bornemann and Christof Schütte. A mathematical approach to
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[218] Sina Ober-Blöbaum, Molei Tao, Mulin Cheng, Houman Owhadi, and Jer-

rold E. Marsden. Variational integrators for electric circuits. arXiv:1103.1859.

Submitted, 2011.

[219] Bernt Karsten Øksendal. Stochastic Differential Equations: An Introduction

with Applications. Springer, 5th edition, 2002.

[220] H. Owhadi and L. Zhang. Metric-based upscaling. Comm. Pure Appl. Math.,

60(5):675–723, 2007.

[221] H. Owhadi and L. Zhang. Localized bases for finite dimensional homoge-

nization approximations with non-separated scales and high-contrast. 2010.

arXiv:1011.0986.

[222] G.C. Papanicolaou and W. Kohler. Asymptotic theory of mixing stochastic

ordinary differential equations. Comm. Pure Appl. Math., 27:641–668, 1974.

[223] George C. Papanicolaou and S. R. S. Varadhan. Diffusions with random

coefficients. In Statistics and probability: essays in honor of C. R. Rao, pages

547–552. North-Holland, Amsterdam, 1982.

[224] E. Pardoux and A. Yu. Veretennikov. On the Poisson equation and diffusion

approximation. I. Ann. Probab., 29(3):pp. 1061–1085, 2001.

[225] E. Pardoux and A. Yu. Veretennikov. On Poisson equation and diffusion

approximation 2. Ann. Probab., 31(3):pp. 1166–1192, 2003.

[226] Grigorios A. Pavliotis and Andrew M. Stuart. Multiscale methods, volume 53



295

of Texts in Applied Mathematics. Springer, New York, 2008. Averaging and

homogenization.

[227] Dennis Perchak, J. Skolnick, and Robert Yaris. Dynamics of rigid and flexible

constraints for polymers. Effect of the Fixman potential. Macromolecules,

18(3):519–525, 1985.

[228] L Perko. Differential equations and dynamical systems. Springer, 2001.

[229] L.R. Petzold, L.O. Jay, and J. Yen. Problems with different time scales. Acta

Numer., 6:437–483, 1997.

[230] John C. Platt and Alan H. Barr. Constraints methods for flexible models.

SIGGRAPH Comput. Graph., 22:279–288, June 1988.

[231] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-

terling. Numerical Recipes in C: The Art of Scientific Computing. Cambridge

University Press, 2nd edition, 1992.

[232] Sebastian Reich. Smoothed langevin dynamics of highly oscillatory systems.

Phys. D, 138(3-4):210–224, 2000.

[233] P. H. Richter and H.-J. Scholz. Stochastic phenomena and chaotic behaviour

in complex systems. Springer-Verlag, Berlin and New York, 1984.

[234] Gareth O. Roberts and Richard L. Tweedie. Exponential convergence

of langevin distributions and their discrete approximations. Bernoulli,

2(4):341–363, 1996.

[235] R.O. Rosenberg, B.J. Berne, and D. Chandler. Isomerization dynamics in

liquids by molecular dynamics. Chem. Phys. Lett., 75:162, 1980.

[236] J. Ryckaert, G. Ciccotti, and H. Berendsen. Numerical integration of the

cartesian equations of motion of a system with constraints: Molecular dy-

namics of n-alkanes. J. Comput. Phys., 23:327–341, 1977.



296

[237] Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman J. C. Berendsen. Nu-

merical integration of the cartesian equations of motion of a system with

constraints: molecular dynamics of n-alkanes. J. Comput. Phys, 23(3):327–

341, 1977.

[238] J.P. Ryckaert and A. Bellemans. Molecular dynamics of liquid n-butane near

its boiling point. Chem. Phys. Lett., 30:123, 1975.

[239] J. A. Sanders and F. Verhulst. Averaging methods in nonlinear dynamical

systems, volume 59 of Applied Mathematical Sciences. Springer-Verlag, New

York, 1985.

[240] J. M. Sanz-Serna. Mollified impulse methods for highly oscillatory differential

equations. SIAM J. Numer. Anal., 46 (2):1040–1059, 2008.

[241] J. M. Sanz-Serna. Stabilizing with a hammer. Stoch. Dyn., 8(1):47–57, 2008.

[242] J. M. Sanz-Serna. Modulated Fourier expansions and heterogeneous multi-

scale methods. IMA J. Numer. Anal., 29(3):595–605, 2009.

[243] J. M. Sanz-Serna, G. Ariel, and Y.-H.R. Tsai. Multiscale methods for stiff

and constrained mechanical systems. preprint, 2009.

[244] J. M. Sanz-Serna, Gil Ariel, and Richard Tsai. Multiscale methods for stiff

and constrained mechanical systems. 2010. Submitted to J. Comput. Phys.;

preprint at ftp://ftp.math.ucla.edu/pub/camreport/cam09-08.pdf.

[245] Jesus M. Sanz-Serna. Symplectic integrators for hamiltonian problems: an

overview. Acta Numer., 1:243–286, 1992.

[246] R.E. Scheid. The accurate numerical solution of highly oscillatory ordinary

differential equations. Math. Comp., 41(164):487–509, 1983.

[247] Tamar Schlick. Molecular Modeling and Simulation. Springer, New York,

2002.



297

[248] T. Schneider and E. Stoll. Molecular-dynamics study of a three-dimensional

one-component model for distortive phase transitions. Phys. Rev. B,

17(3):1302–1322, Feb 1978.
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