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Abstract

Vertically aligned carbon nanotubes (VACNTs) serve as integral components in a variety

of applications including MEMS devices, energy absorbing materials, dry adhesives, light

absorbing coatings, and electron emitters, all of which require structural robustness. It

is only through an understanding of VACNT’s structural mechanical response and local

constitutive stress-strain relationship that future advancements through rational design may

take place. Even for applications in which the structural response is not central to de-

vice performance, VACNTs must be sufficiently robust and therefore knowledge of their

microstructure-property relationship is essential. This thesis first describes the results of in

situ uniaxial compression experiments of 50 micron diameter cylindrical bundles of these

complex, hierarchical materials as they undergo unusual deformation behavior. Most no-

tably they deform via a series of localized folding events, originating near the bundle base,

which propagate laterally and collapse sequentially from bottom to top. This deforma-

tion mechanism accompanies an overall foam-like stress-strain response having elastic,

plateau, and densification regimes with the addition of undulations in the stress throughout

the plateau regime that correspond to the sequential folding events. Microstructural obser-

vations indicate the presence of a strength gradient, due to a gradient in both tube density

and alignment along the bundle height, which is found to play a key role in both the se-

quential deformation process and the overall stress-strain response. Using the complicated

structural response as both motivation and confirmation, a finite element model based on

a viscoplastic solid is proposed. This model is characterized by a flow stress relation that

contains an initial peak followed by strong softening and successive hardening. Analysis

of this constitutive relation results in capture of the sequential buckling phenomenon and a

strength gradient effect. This combination of experimental and modeling approaches moti-

vates discussion of the particular microstructural mechanisms and local material behavior
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that govern the non-trivial energy absorption via sequential, localized buckle formation in

the VACNT bundles.
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Chapter 1

Introduction

The study of materials science is typified by the relationships between a material’s struc-

ture, properties, and processing. Characterization of these relationships yields a full de-

scription of the material of interest. This thesis focuses largely on the first two aspects,

structure and properties, for a structure composed of vertically aligned carbon nanotubes

(VACNTs) while bearing in mind the influence of processing on the samples tested and the

information reported in the literature. VACNTs can be grown in macroscopic, continuous

films and have become materials of interest due to both their relative ease of growth with

respect to other fullerene-based structures and the unique properties of their carbon nan-

otube building blocks. In addition, they have shown promise in a wide array of applications

many of which take advantage of their inherently multifunctional nature. The focus in the

following study has been on the mechanical response of these materials, particularly under

compression, in which they show an unusual structural response that is explored through

in situ experiments and finite element analysis. These observations of VACNT structure

and microstructure lead to increased understanding of the mechanisms responsible for and

constitutive stress-strain relationship of their complex, local material behavior.

1.1 Definition and General Characteristics of Vertically

Aligned Carbon Nanotubes

VACNTs can be thought of as both standalone materials and structures of CNT struts.

They are remarkable not only for their structure, but for the unique characteristics of these
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struts. Promising thermal, electrical, and mechanical properties have made carbon nan-

otubes (CNTs) the subject of study in fields ranging from medicine to electronics [1–4]. A

single walled CNT (SWCNT) generally has a diameter close to 1 nm and is composed of a

single sheet of graphene, a monolayer of carbon atoms in a hexagonal arrangement, in the

shape of a cylinder (see Fig. 1.1(a)). Multiwalled carbon nanotubes (MWCNTs) consist of

multiple concentric layers of graphene-like sheets ranging from two (double-walled CNTs)

to several, with a sheet to sheet spacing of 3.4 Å [5] and diameters typically less than 100

nm [6]. Experiments have demonstrated thermal conductivities on the order of 200 W m−1

K−1 for bulk single-walled CNTs and 3000 W m−1 K−1 for an individual MWCNT [7] with

theoretical predictions for the single-walled tube as high as 2980 W m−1 K−1 [8]. These

numbers are 10 times those of conventional materials, i.e., metals. CNTs are also unique

in that they can display both metallic and semiconducting electrical properties depending

on their chirality (Fig. 1.1(a)). In their metallic configuration, they have a high electrical

conductivity, comparable to that of Cu [9]. Most relevant to this work, MWCNTs have

been shown to be one of the strongest materials tested, having a tensile modulus on the

armchair zig-zag helical

0.36 nm

0.34 nm

a)

b)

c)

Figure 1.1: Pictorial definition of single- and multiwalled carbon nanotubes [5]. a) Illus-
tration of the possible chirality configurations leading to differing electronic behavior. b)
Diagram showing the layout of concentric graphene layers within a double walled CNT. c)
Transmission electron micrographs of single and multiwalled CNTs. (Reprinted from [5]
with permission from Elsevier.)
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order of 1 TPa and a strength of tens of GPa [9]. However, due to their high aspect ratio

(length/radius), MWCNTs bend or buckle readily when subject to compressive loads, do-

ing so at much lower loads than those required for yield in tension. They have been shown

to bend as much as 120◦ without breaking atomic bonds [10], enabling them to recover

almost completely after such deformation. It is for all of these features that CNTs are a

vast and prominent area of study. When combined to create a VACNT material they form

a complex, hierarchical structure that bridges the gap between the nano and macro scales

while maintaining many of the promising mechanical, thermal, and electrical properties of

individual tubes and displaying new aspects of each arising from the collective interactions

of the tubes.

Generally, VACNTs are nominally vertically aligned arrays of carbon nanotubes grown

perpendicularly from a stiff substrate, typically Si or Quartz. The term vertically aligned

carbon nanotubes comes from the fact that at relatively low magnifications, 1000×, the

tubes appear highly aligned as illustrated in Fig. 1.2. It is because of this that they have

also been referred to as CNT turfs, forests, brushes, mats, and foams. At 100× higher

magnifications (center image in Fig. 1.2), the CNTs are found to be intertwined with and

adhered to each other. At this lengthscale, the anisotropy that was so obvious at lower

magnification now begins to disappear in favor of isotropy. Magnifying 100× more (right

image in Fig. 1.2), the transmission electron microscopy (TEM) image individual structure

10 μm 200 nm 10 nm

Anisotropic
aligned tubes

Isotropic
foam-like network

Discrete
individual tube

Figure 1.2: A series of micrographs illustrating the hierarchical nature of the VACNTs stud-
ied in this thesis. The left and center images are taken with a scanning electron microscope
(SEM). The right image is a transmission electron microscope (TEM) image courtesy of
A. T. Jennings showing the multiwall nature of the CNTs.
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of the MWCNTs. This specific geometry differs from shorter forests in which tubes are

either less tightly packed or shorter, preventing in complex tube entanglement that is one of

the defining characteristics of VACNTs. The microstructure is also unlike CNT conglom-

erates or CNT composite materials in that there is typically no anisotropy due to nominal

alignment in either of these examples.

VACNTs are relatively easy to grow and pattern. A typical synthesis technique is that

of chemical vapor deposition (CVD) at atmospheric pressure and temperatures around 750
◦C [11]. A precursor gas (e.g., ethylene) is flowed across a thin layer of catalyst (e.g., Fe)

supported by a wafer substrate (e.g., Si or quartz). There are many issues with and studies

on the growth mechanisms of VACNTs including efforts to control density, alignment, tube

diameter, wall number, and chirality [12] that are beyond the scope of this thesis. Using the

CVD technique, samples nearly 2 cm tall have been grown [6]. Typically the tubes in these

materials are MWCNTs, as high purity SWCNTs are more difficult to obtain. Creation of

a continuous film versus a patterned VACNT structure is often achieved through selective

catalyst deposition, with photolithographic patterning of the catalyst leading to patterned

VACNTs. Alternative growth techniques include simultaneous flow of both the precursor

gas and the catalyst during CVD [13] and high temperature vacuum decomposition [14],

which only results in very short arrays of less than 1 µm tall, to mention a few. The specifics

of the growth process utilized for this thesis, based on the typical CVD techniques discussed

first, are given in detail in Section 2.2.1.1.

1.2 Applications

Inspired by the many uses for the unique electrical and extraordinary mechanical proper-

ties of individual CNTs, as well the relative ease of production of VACNTs, researchers

have begun to explore their possible role in a variety of technologies. A thorough review

of all of these applications is not the primary aim of this thesis, though a remarkable, al-

beit incomplete, list of those in which the mechanical properties of VACNTs are central to

design and function includes: components of highly compliant thermal contacts for micro-

electro-mechanical-systems (MEMS) and microelectronics [15, 16], dry adhesives [17, 18],
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thermally robust energy dissipating rubber [14, 19, 20], and energy absorption or impact

mitigation [13, 21, 22]. Even in applications where the mechanical behavior is not central

to design or implementation, an understanding of the mechanisms of deformation and fa-

tigue behavior is essential for analysis of the life-in-use of the device. Several properties

unique to VACNTs make them desirable candidates for these applications. First, VACNTs

are unique in that they are both soft materials, due to the reduced load capacity of the CNT

struts as they bend, and highly conductive materials, both electrically and thermally, while

being thermally robust and non-oxidizing. Thermal contacts for MEMS and other micro-

electronic systems look to take advantage of their simultaneous thermal conductivity, or

ability as a heat sink, and their compliance, in order to avoid damaging delicate features.

Additionally, VACNT’s hierarchical structure allows them to conformally contact surfaces,

which is necessary both in maximizing thermal transfer and for increasing bonding between

surfaces in the case of dry adhesives. In the case of dry adhesives, also called CNT tapes,

the large contact area combined with the properties of the tubes themselves enable the ma-

terial to withstand shear stresses of 36 N/cm2, nearly four times higher than the gecko foot,

as well as to stick to a variety of surfaces, including Teflon [17].

The interconnected, network-like structure of VACNTs closely resembles foams or

other fibrous structures which traditionally find use as energy absorbers. In this application,

the CNTs serve as the struts supporting the open structure of the material. A stress-strain

curve for a characteristic elastic-plastic foam is shown in Figure 1.3. This response in-

Figure 1.3: A typical stress strain curve for an elastic-plastic foam undergoing uniaxial
compression [23]. Note the three distinct regimes: elastic, plateau, and densification.
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cludes three distinct regimes: elastic loading, a stress plateau, and densification. The open

structure allows for accommodation of large deformation for minimal changes in applied

load throughout the plateau regime during which the struts bend and buckle. The result is a

large area under the stress-strain curve that translates to a large amount of energy absorbed.

When viewed in this framework, the CNTs, connected through their intertube interactions,

serve as the struts supporting the open structure of the material. By nature, these struts are

both strong and lightweight, making them ideal candidates. In fact, VACNTs have been ob-

served to undergo an overall foam-like response [24], but do so in a highly localized manner

that is very different from traditional foams as will be discussed in detail in Chapter 4.

Additionally, experiments have shown VACNTs to exhibit highly viscoelastic behavior.

Researchers have surmised that energy dissipation in these materials arises from sliding and

reorganization between tubes [19, 20] though detailed studies of the mechanism have not

been reported at the time of this writing. This viscoelastic response, combined with their

thermal robustness, enables VACNTs to act as energy dissipators or dampers at tempera-

tures where traditional damping materials, i.e., polymers, become brittle (low temperatures)

or ineffective (high temperatures).

1.3 Objectives and Scope

The objective of this thesis is to explore the mechanical deformation behavior of a class of

materials known as vertically aligned carbon nanotubes. Specifically, the focus is on a rela-

tively new, unusual, and largely unstudied phenomenon recently observed in VACNTs, that

of sequential periodic buckling in VACNTs under uniaxial loading. This rich mechanical

behavior is characterized in situ and used to motivate a constitutive relation for these com-

plex, multiscale materials that may one day be utilized for capturing the structural response

of these materials in any geometry.

Notably, we observe, during deformation, the sequential buckling phenomena and re-

port on the nucleation and propagation behavior while uniquely correlating that phenomena

to the stress–strain response as discussed in Chapter 4. The proposed constitutive model

(Chapter 5), captures the qualitative structural response of uniaxially compressed VACNTs
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in more than one dimension. This work is not intended to be the end of the story, but to pro-

vide the groundwork for understanding the deformation mechanisms in VACNTs with the

hope that the understanding will allow future researchers to eventually tailor these unique

structures to their needs.
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Chapter 2

Experimental Procedure

2.1 Introduction

Mechanical properties are extracted from materials in a wide variety of methods including

notched fracture testing, nanoindentation, bending tests, tension, plane strain or stress, and

the list goes on. In this thesis, uniaxial compression tests are the chosen testing method

for several reasons. First, nanoindentation, while simple in setup because it requires little

specialized sample preparation and therefore can be performed quickly, is difficult to an-

alyze. Stress concentrations occur at the indenter’s tip or its edge (depending on indenter

geometry) and corresponding strain gradients can make characterization of non-elastic or

non-monolithic materials behavior non-trivial, particularly when deformation mechanisms

are poorly understood as with VACNTs. Additionally, geometry independent mechanical

variables like stress and strain are difficult or impossible to calculate. Second, energy ab-

sorption and dissipation applications motivate this work. Since these applications would

utilize VACNTs in compression, fracture, bending, and tension tests are less applicable.

Plus, uniaxial compressions enable straightforward analysis in terms of engineering stress

and strain, as will be discussed in Section 2.4. Finally, experiments are performed on small

scale samples via microcompression (in a nanoindenter) as opposed to macrocompressions

in order to resolve load–displacement features occuring at low loads as well as conduct

in situ studies of the deformation. As will be shown in Chapter 4, these low loads allow

resolution of the localized response, which enables extraction of a complex and detailed

load versus deformation responses for analysis, discussed in Chapter 5.
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In order to extract the sample’s load–displacement response from the raw load and

displacement data gathered during an experiment, the complete description and characteri-

zation of the indenter system must be obtained. This description and procedure is described

in Section 2.3. A model of the indenter-plus-sample system is discussed in Section 2.4in

order to correctly deconvolute the sample and testing system responses. In Section 2.5 a

method for dynamic mechanical analysis that allows the viscoelastic response of a material

can be characterized is described. This method measures the storage and loss stiffnesses of

a material, which can be functions of the frequency of excitation. Finally, a description of

the in situ micromechanical testing setup, SEMentor, is given in Section 2.6.

2.2 Sample and Nanoindenter Tip Fabrication for Uniax-

ial Testing

In order to obtain the desired uniaxial testing geometry specialized sample geometries,

circular cylinders, as well as two flat punch nanoindenter tips for in situ and ex situ testing

are produced.

2.2.1 VACNT sample preparation

Cylindrical samples of VACNTs, which will be referred to interchangeably as both pillars

and bundles, were created using the two methods described below. Cylindrical samples

were initially prepared using a focused ion beam (FIB) to mill CNT material out of a

continuous CNT film. Poor sample quality with this method lead to acquiring prepatterned

cylindrical samples through a collaboration with Lee J. Hall and Harish Manohara at the

Jet Propulsion laboratory.

2.2.1.1 Photolithographically patterned VACNT pillars

Pillars of VACNTs, also called CNT bundles, are grown on a generic Si wafer (with ∼300-

–400 nm thermal oxide) patterned using contact photolithography, then cleaned with O2

plasma. Al is then evaporated onto the substrate in a ∼3.0–3.5 nm layer after which the
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chamber is vented to atmosphere to allow the Al to oxidize, forming an Al2O3 barrier layer.

This layer performs the function of reducing diffusion of the Fe catalyst into the substrate

which can interfere with CNT growth. Next, a ∼2.5–3.0 nm layer of active catalyst Fe is

evaporated. The lift-off process removes the photoresist leaving only the patterned catalyst,

and the wafer is placed in a 2 inch diameter quartz tube, single zone furnace outfitted with

vacuum exhaust and an automated throttle valve. The quartz tube is purged and filled with

Ar (99.999% pure Ar, ‘UHP’ grade from Airgas) 3 times, then pressure is held at 200

Torr while flowing Ar at 500 sccm and simultaneously ramping the temperature to 675
◦C. When the temperature is stable at 675 ◦C, Ar is quickly switched out and a flow of 500

sccm of ethylene (99.995% C2H4, ‘Research Grade’ from Airgas) is begun in order to grow

the multiwall CNTs. Run times are typically between 15 and 30 minutes. To end growth,

the Ar and ethylene are quickly switched again and the furnace is allowed to cool to near

room temp under flowing Ar. This method is discussed in further depth in Manohara et. al.

[25] and references therein. These samples, whose mechanical deformation is described in

this thesis, were grown by Lee J. Hall at the Jet Propulsion Laboratory. Samples are chosen

from the array of grown pillars using an SEM according to three criteria: They adhere to

the desired cylindrical shape (no missing parts, few stray tubes), they are perpendicular to

the substrate (see Fig. 2.1), and their aspect ratio is between 1 and 1.5.

10 m50 m

a) b)

Figure 2.1: An array of 50 µm diameter pillars (left) and an individual pillar (right) as
grown via CVD with photolithographically defined catalyst.
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2.2.1.2 Focused Ion Beam Milled VACNT pillars

VACNTs are most easily and more commonly grown in continuous films. Therefore, it

is of some interest to develop a method for small scale testing of the properties of these

continuous films in uniaxial compression. Following methods utilized for creating uniaxial

compression samples for small scale metallic samples, annuli were milled in the VACNT

material, resulting in pillars. The continuous, VACNT films were grown via CVD and

obtained through a collaboration with Chiara Daraio of Caltech. The milling was done

under the focused ion beam (FIB) of a dual beam system (FEI Nova 200). FIB milling

10 m

10 m

10 m

20 m

a) b)

d)

1 m

400 nm

c)

Figure 2.2: Summary of issues facing FIB milled pillars. a) A FIB milled pillar before com-
pression. b) The same pillar in a) post-uniaxial compression. c) Close up of compressed
pillar base showing interaction with redeposition and redeposition fracture. d) An uncom-
pressed FIB milled pillar after attempt at redeposition removal using an oxygen plasma.
The inset reveals that the redeopsition walls remain standing while the VACNT material
that had been surrounding them was etched away.
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was enhanced through the use of the selective carbon mill, which is essentially a needle

that injects water vapor close to the area being milled in order to increase the oxidation of

carbonaceous materials into CO2 [26]. The milling was performed at a series of ion beam

currents starting at 7 nA for removal of large regions of material and gradually decreasing

to 3 nA for cleaner results toward the end. Sample geometries created typically had a radius

of 20 µm or 50 µm with an aspect ratio (height/radius) of 2.5. Images of the pre- and post-

compression FIB milled pillars illustrate the results achieved with this process (Figs. 2.2(a)

and (b)). The milling process was prone to the accumulation of redeposition in the milled

region around the pillar and on the outer edge of the pillar itself (see Figure 2.2). Attempts

were made to minimize these anomalies by careful milling in sequentially smaller annuli,

but their reduction to an acceptable level was never realized. An attempt to remove the

redeposition was made using an oxygen plasma etcher. Unfortunately, this treatment results

in removal of the VACNTs themselves, a deformed pre-compression pillar, and almost

no removal of the redeposition (Fig. 2.2(d)). Post-compression images of FIB milled

microcompression samples showed fracture in the difficult to remove redeposition (Fig.

2.2(c)). Additionally, the pillar and the flat punch interact with the remaining redeposition

structures that surround it, as evidenced by the inset in Fig. 2.2(c). Thus, the mechanical

response of the VACNT material was certainly convoluted with the mechanical response of

the FIB redeposition and this sample preparation method was deemed unacceptable. The

milling schedule for a 50 µm diameter pillar is given in Appendix C.

2.2.1.3 Diamond Indenter Tip Fabrication

Nanomechanical instrumentation typically utilizes diamond for the mechanical probe in

direct contact with a sample due to its high stiffness and yield strength. However, the ge-

ometry of the mechanical probe is traditionally sharp, i.e., a Berkovitch, cube corner, or

conical shape. In order to perform uniaxial compressions of the VACNT micropillar sam-

ples described in Section 2.2.1, flat punch tip geometries were fabricated for both testing

instruments, the Agilent Nano Indenter G200 and the SEMentor. Both indenter tips were

milled using the focused ion beam of an FEI Nova200 dual beam system in combination

with the selective carbon mill (described in the previous section). The large, circular flat
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punch (Fig. 2.3) took over 550 hours to mill at 20 nA current and was designed to be

mounted in the G200 system. The final geometry has a diameter of approximately 100 µm

and a length of approximately 90 µm. The smaller, rectangular flat punch (Fig. 2.4) has

a width of 80 µm and a depth of 60 µm with a miniature flat punch (effectively 5 µm ×

5 µm) attached to the side for compression of smaller bundles of CNTs. Its height is only

30 µm because displacement in the SEMentor is limited to 30 µm so any further height

increase is unusable.

100 m 50 m

Figure 2.3: Top (left) and side (right) views of the diamond flat punch indenter tip after
focused ion beam milling from a Berkovitch tip geometry.

20 m

Figure 2.4: SEM image of the diamond flat punch indenter tip used during in situ micro-
compression testing after focused ion beam milling from a conical tip geometry.
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2.3 Characterization of Micromechanical Testing System

An understanding of the testing instrumentation is a necessary precursor to performing ex-

periments, as knowledge of the measurement limitations guides experimental design and

enables proper data collection. Compression tests were mostly carried out in an Agilent

Nanoindenter G200 system using the XP head (comes from ‘explorer’). The XP head was

used as opposed to the DCM (dynamic contact module), which is also available on the

testing instrument. While the DCM head is characterized by superior load resolution and

displacement control, because the DCM it is limited to a maximum travel distance of 30 µm

(and is really only intended for half of that) full compression of the samples is impossible

and it is not used in testing. The XP head essentially consists of a electromagnetic load-

ing cell, loading column, leaf springs, capacitive displacement gauge, and indenter tip all

mounted within a stiff loading frame. A schematic of the relationship between these parts

is shown in Figure 2.5. The leaf springs support the column while load is applied through

the inductive coil/magnet assembly, making the system inherently load controlled. Dis-

placement is measured via the capacitor with a zero raw displacement, uraw, position being

defined at the center of the capacitive range. Raw displacement can vary between −700

and +700 µm and is determined with a claimed resolution of 0.01 nm. (This claimed res-

olution is actually the nanometer per volt resolution of the capacitive displacement gauges

for the most restrictive gain value. Actual displacement resolution, due to noise, is around

Load application coil/magnet

support springs, k
s

capacitive 
displacement gauge

indenter column, m

indenter tip

Load frame, k
f

Figure 2.5: Schematic of the Agilent Nanoindenter G200 XP head.
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Figure 2.6: Simple harmonic oscillator model of the Agilent Nanoindenter G200 XP head

1 nm.) Load can be applied up to 500 mN with a claimed resolution of 50 nN, far beyond

the capabilities needed for these experiments.

By design, the XP head can be modeled as a simple harmonic oscillator as shown in

Figure 2.6. In this illustration, ks refers to the spring constant associated with the loading

column and attributable to the leaf springs, Dm is the damping constant of the machine,

largely due to air resistance, and m is the mass of the loading column plus the indenter

tip (mostly the column). With the assistance of with a SURF student, Pearl Fung, ks,

Ds, and m were calculated for our system following the procedure in Hay et al. [27].

Briefly, this involves oscillating the indenter head with a constant amplitude sinusoidal

load and measuring amplitude and phase shift, φ, associated with the resulting sinusoidal

displacement, all while holding the indenter head at a fixed uraw. The magnitude of the

load and displacement oscillations are referred to as the harmonic load, ph, and harmonic

displacement, uh, respectively. We gathered uh and the φ for a series of frequencies, f ,

from 1 to 40 Hz and at a series of uraw from −30 µm to +90 µm. From this the dynamic

stiffness, Ch = ph/uh is calculated. Finally, ks, Ds, and m are used as fit parameters for

the Ch versus f data in the simple harmonic oscillator relation [27].

C2
h = (ks −mω2)2 + (Dmω)2. (2.1)

Here, ω = 2πf , is the angular frequency in radians. Figure 2.7 shows a typical fit taken
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Figure 2.7: Characterization of the XP head using the simple harmonic oscillator model
described by Eq. (2.1) for uraw = 0. Error bars (from four measurements) lie within the
markers. The fit is denoted by the solid line.

at uraw = 0 µm, which illustrates the validity of the simple harmonic oscillator assump-

tion. In order to fully understand the system, this test was repeated for a series of raw

displacements. A summary of the variation in fit parameters obtained as a function of po-

sition, uraw, are given in Figs. 2.8, 2.9, and 2.10. Our results reveal that the system is

most consistently behaved in the range of 0–60 µm raw displacement. Thus, experiments

are performed within this region in order to obtain the cleanest testing results. Significant

changes in the spring constant within this region point to the need to fully account for the

machine response, particularly when testing requires a large amount of travel by the inden-

ter head and/or when the stiffness of the sample being characterized is on the same order of

magnitude as the machine stiffness, ks. These changes arise from the inherent non-linearity

of a real spring. It is for this reason the test methods described in Sections 2.4 and 2.5

perform characterizations in air along with testing the sample.

The frequency range of 1–40 Hz used to characterize the XP head was motivated by

the determination of the cut-off frequency for our system. The cutoff frequency, defined by

Herbert et. al. [28] is the frequency beyond which crosstalk and/or phase rotations from

other modes of vibration contribute to the measured response in a manner that is no longer

effectively modeled by a simple harmonic oscillator. The frequency at which this occurs
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can be determined through a plot of the phase angle, φ, the degree by which the oscillatory

displacement response lags the load excitation, versus frequency, f . The cutoff frequency

is defined at the point where a discontinuity in the phase angle occurs. A plot of φ(f) (Fig.

2.11) reveals that the cutoff frequency for our system is approximately 50 Hz. Thus, in

performing any viscoelastic characterization of our materials, as through the methodology

described in Section 2.5, we only utilize frequencies that adhere to the assumption of a

simple harmonic oscillator, i.e., those below 50 Hz.

2.4 Microcompression Testing Methods

One of the major reasons for performing uniaxial compression tests is that the load-displacement

data gathered during testing can be readily converted into nominal stress and strain in the

axial direction. However, before this simple calculation can be performed, the praw and

uraw must be separated into sample and machine contributions. In this section, the micro-

compression experimental procedure is described for performing testing in the XP module

of an Agilent Nanoindenter G200 and how the corrected load versus displacement response

for the sample only is extracted from the raw data. These procedures are unusually impor-
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Figure 2.8: Indenter head mass, m, as a function of raw displacement, uraw obtained from
the fit of a simple harmonic oscillator model. Error bars were generated from the fit of four
separate frequency sweeps at each uraw.
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Figure 2.9: Machine stiffness, ks, as a function of raw displacement, uraw obtained from
the fit of a simple harmonic oscillator model. Error bars were generated from the fit of four
separate frequency sweeps at each uraw.
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Figure 2.10: Machine damping, Dm, as a function of raw displacement, uraw obtained from
the fit of a simple harmonic oscillator model. Error bars were generated from the fit of 4
separate frequency sweeps at each uraw.

tant for soft materials like VACNTs as the testing apparatus’ contribution to the overall

response is significant. Other experimental hurdles, also related to VACNT’s high compli-

ance, were also overcome and are described in this section. Testing methods are discussed

with respect to the software accompanying the G200 which is called Testworks.
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2.4.1 Setting the Sample Up for Testing

Once an array of VACNT pillars has been grown using the methods described in Section

2.2.1.1 or milled using the FIB as described in Section 2.2.1.2, the pillar plus substrate is

mounted on a stiff ‘sample puck’ using carbon paint (PELCO Colloidal Graphite, Ted Pella,

Inc.) and loaded into the G200 sample tray. Typical microscope to indenter calibration,

microscope focal length/sample height, and surface find techniques as described in the

G200 user’s manual and applied in the default testing methods are not applicable here due

the stickiness and compliance of VACNTs and the geometry of the diamond flat punch

indenter tip.

The procedure for bringing the sample to the appropriate height for testing differs from

the manual as follows. To get the sample at a height suitable for mechanical testing (i.e.,

such that testing occurs within the well-behaved range of raw displacement values deter-

mined in Section 2.3), a soft polymer sample is first mounted on either a separate puck or

the same puck as the VACNT sample. Both PDMS and nail polish were used for this other

sample which will subsequently be refered to as the calibration sample. The calibration

sample must be soft so that during a microscope to indenter calibration, the large flat punch

makes a discernible mark to calibrate against. In the case where the calibration sample is

Cut-off frequency: 50 Hz 

Figure 2.11: A plot of the phase angle versus the frequency of load excitation indicating
the location of the cutoff frequency.
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mounted on the same puck as the VACNT sample, the surface of both sample and cali-

bration sample must be as close as possible to the same height. In the case that they are

mounted separately, the microscope is brought into focus over the fused silica reference

sample as described in the G200 user’s manual [29] before moving the calibration sample

under the microscope. The sample is brought into focus manually (without using the mi-

croscope motor). A Microscope to indenter calibration reveals the ‘Raw Displacement’ of

the surface of the calibration sample. If this is a large number (>100 µm) the calibration

sample must be raised ‘Microscope to Indenter Calibration’ and the process repeated until

the ‘Raw Displacement’ when the surface is found is under 100 µm but greater than 20

µm. (The first calibration is likely to occur at a very large raw displacement if the flat

punch described in Section 2.2.1.3 is used, as it is much shorter than a standard tip.) Now

the calibration sample is near zero ‘Raw Displacement’, the correct height for testing. The

microscope focus motor is used to bring the microscope into fine focus on the calibration

sample before moving the test sample under the microscope. With the test sample visible

under the microscope, the sample puck is raised and lowered manually until it is in focus.

Now the sample is at approximately the correct height for performing mechanical tests.

The reasons for this procedure are that the calibration sample and the test sample must be

at the same height in order for the calibration to be sufficiently accurate and both must be

near zero ‘Raw Displacement.’

Now that the sample is in place, we perform an accurate identification of the surface of

the pillar. Without this point, there is no reference for determining the correct load on the

sample or displacement into the sample. Traditional Testworks surface find test segments

do not work with VACNTs due to their high compliance (surface is ‘found’ much later than

physical contact is made with the surface due to lack of sensitivity) and stickiness (VACNTs

can be transfered onto the indenter tip when in contact and can be carried along from the

rough initial surface find to interfere with the actual testing position of interest). From the

procedure in the preceedign paragraph, it is known that the surface of the sample to be

tested is in the ‘Raw Displacement’ range between 0 and 100 µm. A series of tests is begun

by manually seting a surface approach displacement of 0 µm. The surface is approached

at a slow to intermediate speed (on the order of 100 nm/s). As the surface is approached, a
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small oscillation is applied to the indenter column (ph = 10 µN) and the harmonic contact

stiffness is monitored by the software. The harmonic contact stiffness measures the elastic

part of the dynamic stiffness, Ch, and is corrected within the software for the machine

contribution using a set of tables determined during calibration and setup. Therefore, it

hovers near 0 ± 15 N/m typically and depending on the amplitude of the oscillation can

easily detect changes on the order of 50 N/m, which is the threshold we used for surface

determination in these experiments. Because of the relatively high speed of the first test, it

must be discarded. However, now the ‘Raw Displacement’ of the VACNT sample is known

and is entered as the surface approach starting point along with a slow surface approach

speed for all subsequent tests. Note that if the ‘Raw Displacement’ is > 100 µm both

the test and calibration samples are raised and the ‘Microscope to Indenter Calibration’

process is repeated to avoid misalignment between the tip and pillar. Further details of the

test method are given in Appendix A.

2.4.2 Decoupling Material and Instrumental Response

As the raw load versus raw displacement data collected during nanoindentation experi-

ments combines both the material and instrumental responses, careful measures have to be

taken in order to accurately decouple the sample-only response and the machine response.

This is accomplished through properly modeling the mechanical equivalent of the entire

sample-instrument system [30–32]. The equivalent mechanical model of the nanoindenter

plus sample for the system of relevance is shown in Fig 2.12. Raw load data (praw), de-

termined by the inductive loading coil, and raw displacement data (uraw), gathered by the

capacitive displacement gauge (see 2.3), are gathered continuously (250–500 Hz) through-

out the test. After a successful surface find, the test of interest is performed, typically a

constant displacement rate loading followed by unloading. After compressing the pillar,

the indenter is held in the air at several characterization points within the raw displacement

range accessed during compression to accurately determine the spring force and machine

damping constant throughout the range of displacement in which data was gathered (see

Appendix A for detailed method implementation). The load required to maintain these

displacements is the column spring force, ps, (a result of the load necessary to deform the
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leaf springs of stiffness, ks, shown in Fig. 2.12), which is slightly position dependent over

large distances (enough to result in a 0.05 mN force difference over some regions of raw

displacement, which is around 0.1% of the total load obtained). Post-processing (not in

Testworks) interpolates between the values of ps taken at 10 locations within the displace-

ment regime and uses this information to remove ps from praw at every time point. Finally,

there is a small contribution to the force by the machine damping (Dm), which is calculated

during the post-test characterization in air. However, this latter contribution is marginally

important for only the highest strain rates, ε̇n, tested (displacement rates, u̇) of 0.1 and

0.5 s−1 where the force, Dmu̇, is on the order of 0.05 mN. The resulting equation for the

corrected load on the indenter tip/load frame/sample assembly (solid boxed region of Fig.

2.12), pcorr, is therefore

pcorr = praw − ps +Dmu̇. (2.2)

It follows that the load on the sample is simply the load on this assembly due to the fact

that these three elements are in series. The corrected displacement (ucorr), i.e., the actual

displacement applied to the sample, accounts for the deformation in the load frame (frame

stiffness, kf) and the diamond indenter head (stiffness, ki). Again, since the sample, frame,
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Figure 2.12: Viscoelastic model of the nanoindenter plus sample system utilized to obtain
the correct load on the sample from the measured load, praw. For most calculations, the
sample (inside the dashed box) can be treated as a black box. The standard linear solid
model for the sample is only utilized in the application of the method of Wright, et al. [31]
for determining storage and loss stiffnesses to be discussed in Section 2.5.
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and indenter head are in series (Fig. 2.12), the corrected displacement can be written as

ucorr = u− pcorr

kf

− pcorr

ki

, (2.3)

where kf for our system is 5.92× 106 N/m (calculated during instrument setup and calibra-

tion) and ki is calculated from the known elastic modulus, ED, and Poisson’s ratio, νD, of

diamond. The relationship for determining ki is [30]:

ki =
2ED

(1− ν2
D)
√
Ai/π

, (2.4)

where Ai is the cross-sectional area of the indenter area in contact with the sample. Both

corrections turn out to be inconsequential (∼ 0.01 nm) for such a compliant material under

such large deformation. Additional corrections could be imagined for the compliance of

the Si wafer on which the pillar sample is mounted or the carbon paint attaching the wafer

to the puck, but, as is evident from the corrections for frame and indenter tip compliance,

these would be minor, on the scale of random noise in the displacement signal.

As discussed in detail in the previous section, surface contact is marked by attaining a

50 N/m threshold in the harmonic contact stiffness, as a threshold any lower than that has

been found to result in a significant number of false positives for surface contact due to the

mechanical and electrical noise. It is important to recognize that crossing this threshold

represents the initial contact, likely caused by several stray tubes or a slight misalignment

between the flat pillar surface and flat punch rather than by full cross-sectional contact; full

contact usually occurs within 0.5 µm of raw displacement from that point. Upon establish-

ing contact, the harmonic measurement option can be turned off before proceeding with the

compression. For the results in Section 4.2 this was done due to the fact that the indenter

head cannot be oscillated fast enough to provide meaningful data at the faster displacement

rate used. We identify the first attainment of full contact in post-processing by locating the

first occurrence of a tangent slope in the pcorr versus ucorr data of 10 N/m in order to have

a consistent surface threshold for all tests. This value corresponds to a marked increase in

pcorr relative to the maximum load attained in the quasi-static tests. Utilizing the correct

location of the sample surface, the actual load and displacement felt by the pillar is tared at
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that point for a zero stress zero strain initial value. It should be noted that, pcorr is already

approximately zero at this point, being less than 0.04 mN while the maximum pcorr ap-

proaches 40 times this value providing verification that our surface find and data correction

procedures are accurate.

In the experiments described in this thesis, the nanoindenter compresses the samples at

a constant, prescribed raw displacement rate (u̇raw), and therefore a constant nominal sam-

ple strain rate, throughout the entire experiment (loading and unloading). Examples of the

instrument’s response to the prescribed displacement rate schedules are shown in Fig 2.13.

lo
ad

in
g

67 nm/s

32.85 µm/s6.67 µm/s

unloading

loss of 
surface
contact

Figure 2.13: Typical loading schedules for 67 nm/s and 667 nm/s (not shown but identical)
(top), 6.67 µm/s(bottom left), and 32.85 µm/s(bottom right) constant displacement rate
compressions. The loading schedule for the slowest rates (top) illustrates the near ideality
of control. Loading schedules for the fastest rates used (bottom) show nominal rate control,
but illustrate the rate-limited control of the equipment. The unloading segment in all curves
is short due to early loss of contact with the surface of the deformed sample.
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Recall from Section 2.3 that the G200 is inherently load controlled, which means that con-

stant displacement rate tests invoke the use of proportional control with limits on maximum

and minimum loading rates. During a constant displacement rate uniaxial compression, the

loading schedule, ucorr(t), where t is time, is ideally a straight line with slope equal to

the prescribed rate. The displacement schedules for the two slowest rates we utilized have

nearly perfect control (straight lines), while the two fastest rates show a progressive de-

crease in control, illustrating the limitations of the inherently load controlled nanoindenter.

The maximum percent errors associated with the prescribed displacement rates used were

2×10−3% for the slowest rate and 0.25% (up to 0.4% for beginning of unload) for the

fastest rate. These are very minor errors and the tests can be assumed to be constant strain

rate.

2.4.2.1 Compression Method Details

The complete method utilized in the microcompression of VACNT pillars is given in Ap-

pendix A. General highlights and features of note from that method are as follows. The

top surface of the pillar is detected by setting the initial approach speed to ∼50 nm/s while

oscillating the indenter head at a fixed harmonic load (resulting in∼30 nm amplitude) at 25

Hz while waiting for the harmonic stiffness to exceed the 50 N/m threshold. The oscillation

is then turned off, and the test begins by loading at the prescribed strain rate to a prescribed

depth. At the peak load, a short hold (on the order of three time constants of the capacitive

displacement gauge, ∼0.003 ms) allows the displacement gauge to recover from any offset

that may have occured between the real-time and reported raw displacement position, if

necessary. The pillar is then unloaded at the same prescribed displacement rate until the

displacement becomes less than the displacement at the surface. Surface contact is gener-

ally lost before this point is reached. After compressing the pillar, the test method runs the

series of holds in air starting at the raw displacement of the pillar surface and going to the

full compression depth.
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2.5 Microscale Dynamic Testing Methods

Dynamic testing methods, in which samples are subjected to oscillatory loads or displace-

ments, are typically used in the characterization of viscoelastic materials. These materi-

als exhibit both viscous/ energy-dissipating and elastic/energy-storing characteristics when

subjected to load. Viscoelastic behavior is generally quantified in terms of the storage,

E ′, and loss, E ′′, moduli which are the real and complex parts, respectively, of the com-

plex modulus (or by the ratio, tanφ, of these two moduli). The modulus, however, is

not the most fundamental measurement of the viscoelastic response. It is calculated from

the harmonic stiffness, Ch, which is the ratio of the harmonic load and displacement am-

plitudes, ph/uh. Conversion between harmonic stiffness and complex modulus is accom-

plished through the well known Sneddon relation, [33]

E = Ch

√
π

2β

1− ν2

√
A

, (2.5)

and requires knowledge of a material’s Poisson’s ratio, ν; unmeasured for VACNTs. It is for

this reason I calculate only storage and loss stiffnesses rather than storage and loss moduli

in characterizing the viscoelastic properties of VACNTs. In Eq. (2.5), β is a constant that

depends on the indenter geometry (1 for a flat punch) and A is the contact area (∼2,500

µm2).

In a typical dynamic testing experiment, the material is loaded to a desired strain and

the mechanical probe is oscillated across a range of frequencies. By measuring the resultant

load amplitude, displacement amplitude, and the phase lag during the test (following the

methods outlined in Herbert et al. [28] and Wright et al. [32]), the values of loss stiffness

(kloss) , storage stiffness (kstorage), and tanφ are determined. This method is identical to

the dynamic mechanical analysis (DMA) of polymers, but occurs at a much smaller scale

in terms of both oscillation amplitude and sample size. Specifically, I gather the storage

and loss stiffnesses by oscillating the indenter head at ∼8 nm amplitude while sweeping

the frequency from 1 to 45 Hz while holding the nominal strain constant at 10 values: from

0.01 to 0.8.

Briefly, the procedures and calculations described in Herbert et al. [28] and Wright
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et al. [32] prescribe removal of the machine contribution by performing a second set of

measurements in air (at the same raw displacement). Therefore, the storage and loss moduli

for the sample/frame assembly are written

kstorage =

∣∣∣∣ph

uh

∣∣∣∣ cosφ−
∣∣∣∣ph

uh

∣∣∣∣
air

cosφair, (2.6)

kloss =

∣∣∣∣ph

uh

∣∣∣∣ sinφ− ∣∣∣∣ph

uh

∣∣∣∣
air

sinφair. (2.7)

Here the subscript ‘air’ refers to the measurements taken while the head oscillated in air

(i.e., not in contact with the sample). While this method treats the entire sample/frame

assembly as a black box, a positive aspect of this treatment is that these stiffnesses remain

independent of the indenter mass. This is important as values calculated for the indenter

head mass utilize several assumptions and can be somewhat variable as shown in Section

2.3. It is reasonable to assume that stiffnesses calculated via Eqs. (2.6) and (2.7) correspond

to those of the sample since both the frame and the indenter head stiffnesses are several

orders of magnitude higher than those of the sample and thus can be assumed to be infinite

[28]. It should be noted that a channel in Testworks referred to as the ‘Harmonic Contact

Stiffness’ is essentially equivalent to kstorage. The only difference in this instance is that

I characterize the behavior of the indenter head in air each time I perform a test and the

‘Harmonic Contact Stiffness’ channel uses tabulated values for the stiffness in air used in

Eqs. (2.6) and (2.7). For highly compliant materials, characterization after each test yields

more accurate results. The Testworks method utilized in this thesis for dynamic mechanical

analysis is detailed in Appendix B.

2.6 In Situ Testing Setup

In this instance, an in situ testing setup is one in which the quantitative response of a sam-

ple is gathered simultaneously with a morphological response, in this case micrographs.

The Greer group in situ instrument, SEMentor [34], performs this task through a combina-

tion scanning electron microscope (SEM) and nanomechanical testing arm (nanoindenter).

From it we can learn, by observation, what deformation events correspond to unique signals
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in the data, thus it is our ‘mentor.’

Samples to be tested are mounted on a 90 degree SEM stub and loaded into the SEM

chamber at a tilt of 4 degrees from vertical. The mechanical testing arm is mounted on a

side port of the SEM (FEI Quanta 200) at an angle of 4 degrees from the horizon. The

geometry is illustrated in the schematic in Figure 2.14 with photos of the actual system

given in Figure 2.15. The mechanical arm is a derivative of the technology in the DCM

head of the Agilent Nanoindenter G200 and is therefore subject to the same limitations.

The first limitation is in the raw displacement which ranges from −15 to +15 µm. Also,

maximum attainable load is 10 mN with a resolution of 50 nN. The maximum load is

sufficient for our tests, but because of the limited raw displacement, in situ testing of 60

µm tall VACNT pillars is limited to nominal strains of only 50%.
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Figure 2.14: Schematic of the in situ testing instrument, SEMentor.

Load versus displacement data obtained in the SEMentor is analyzed slightly differently

from that gathered in the G200. This is for two reasons. First, characterization of the

DCM head is more difficult due to the proprietary nature of its exact geometry. Second,

an accurate quantitative measurement is unnecessary as SEMentor is most beneficial as

a visualization instrument. Therefore, raw load and displacement are corrected using the
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Figure 2.15: Photo of the in situ testing instrument, SEMentor [34]. The image on the
left is the complete system with the mechanical testing arm shielded from environmental
influences. The image on the upper right is a few inside the SEM chamber. The image on
the lower right is the nanomechanical testing arm before shielding has been installed.

‘Support Spring Stiffness’ channel, which is a table of leaf spring stiffness values as a

function of raw displacement, ks,table(uraw), obtained during a calibration run. This data

is quite noisy, so the channel must be collected during the in situ compression, smoothed,

then removed from the applied load yielding an approximate load on sample,

pcorr = praw(uraw)− praw,surf − (uraw − uraw,surf)ks,table(uraw), (2.8)

where the subscript ‘surf’ refers to value at the point of surface contact. This correction

is necessary because of the large position dependence of ks,table, which would otherwise

overwhelm the sample response.
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Chapter 3

Characterization of VACNT Morphology

3.1 Introduction

The specific microstructure of VACNT structures plays a key role in their mechanical re-

sponse. This has been found qualitatively for a range of structures obtained through slight

variations in growth by McCarter et al. [16] as well as being evident in the range of mod-

uli reported in the literature (see Table 4.1). This chapter overviews some characteristic

morphological aspects of the CNT bundles tested as well as the methodologies used to

obtain these properties. Several key features set VACNTs apart from other materials. As

stated earlier, the structures are hierarchical. That is, under lower magnification (∼1,000×),

the tubes in the bundles appear vertically aligned, i.e., perpendicular to the substrate (Fig.

1.2, left). However, under larger magnifications (> 30,000×), it becomes evident that the

CNTs are randomly oriented in a very porous network, forming a fibrous, interconnected

web of support structures, where individual tubes interact with one another (Fig. 3.1, left

and right). The presence of these interactions is the distinguishing attribute of this type of

VACNT material in contrast to vertically aligned CNT ‘forests,’ in which individual tubes

are far enough apart (and short enough) to grow perpendicularly to the substrate without

interacting with their neighbors. Second, there exists a height-dependent inhomogeneity in

the bundle structure due to its growth mechanism [35]. Visual inspection indicates there is

a lower density of tubes with less vertical alignment at the bottom. This, in turn, results

in fewer and weaker load bearing members at the bottom and therefore a more compliant

material in this region of the pillar. These microstructural gradients are illustrated in the
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high magnification SEM images taken of the pillar surface at evenly spaced heights along

the pillar axis in Fig. 3.1. Quantification of this gradient has only been reported for high

energy synchrotron measurements of bulk CNT films as they grow [35], a method that is

both expensive and inapplicable to our sample geometry. For this reason, in Section 3.2

I discuss the image analysis techniques developed to analyze this relative density gradient

directly from the SEM micrographs. These techniques are developed in collaboration with

Peter Capak of the Spitzer Science Center at Caltech.

500 nm 10 µm

Figure 3.1: Cylindrical pillar with 32, 000×magnification insets, revealing the highly inho-
mogeneous CNT microstructure from bottom to top. The lower leftmost image corresponds
to the bottom of the pillar and illustrates the sparser (less dense) and less vertically aligned
CNTs when compared to the top of the pillar (upper rightmost image). Note that the surface
tubes appear brightest because they return more signal to the electron detector, but these
tubes are not indicative of the internal pillar microstructure and should be looked beyond
in order to observe the density and alignment variation discussed.

Other important microstructural elements are the makeup of the individual CNTs them-

selves and the average density or porosity of the structure. Presently, there appears to

be some link between tube diameter (number of walls) and/or the surface roughness of

CNTs on the presence of irrecoverable versus recoverable deformation behavior [36], but

this connection remains to be rigorously proven. In the present work, individual CNTs



32

were characterized by transmission electron microscope (TEM) (see Fig. 3.2). Diameters

are found to vary between 15 and 30 nm with 22 nm being the average value. The tubes

themselves are multiwalled, typically comprised of 4–5 walls per tube. Average density is

clearly an important feature in comparing the mechanical response of any foam-like mate-

rial. For example, the elastic modulus of a foam scales with the relative density squared for

foamed metals and polymers [23], where relative density is the foam density divided by the

density of a single, monolithic strut. Similar relationships exist for energy dissipation and

plateau stress. Unfortunately, determining either the average tube number density or mass

density has proven challenging due to the small size of individual pillars (lack of material

for bulk measurement) and the large amount of open space (small surface area per gram of

sample). Attempts to determine the density of the samples tested are discussed in Section

3.3.

20 nm 10 nm

Figure 3.2: TEM images illustrating the typical multiwall CNTs making up the VACNT
bundles tested. There are typically 4–5 walls per tube. Images taken by A. T. Jennings.

3.2 Density Gradient

VACNTs grown via CVD are suspected to have a tube number density gradient in the di-

rection perpendicular to their growth substrate. This gradient is supported by in situ small

angle x-ray scattering (SAXS) experiments during growth [35] as well as qualitatively by

the visual inspection of several series of high magnification SEM images taken along the

height of the VACNT film (see Fig. 3.3). As described by Bedewy et al. [35], the density

gradient arises from the fact that the CNTs are formed via base growth. This means that as
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catalyst is lost during the growth process (carried away by the tubes themselves or diffused

into the substrate) less CNTs are being produced. The CNTs that have already been grown,

however, are carried/pushed away from the substrate as new CNTs continue to form and

grow. Knowing the gradient in number density that arises from this growth process is cen-
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3 4
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200 nm

Figure 3.3: A series of SEM images at distances of 1) 5 µm 2) 15 µm 2) 25 µm 2) 35
µm and 2) 45 µm away from the growth substrate captured from the side of a 50 µm tall
VACNT pillar.
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tral to understanding the overall structural material response of the VACNTs under load. It

is also necessary in order to separate that overall response from the local material response.

SEM images are relatively easy data to acquire for any VACNT system regardless of

density, tube diameter, or size of the film. For this reason, I have made efforts to analyze

several series of images (a single series corresponds to a set of images along the height of

the CNT pillar) in order to quantify the relative density differences between them. Note that

an absolute density cannot be obtained from an SEM image in this case as the interaction

volume is unknown. In fact, calculation of the interaction volume is extremely complicated

due to the porous nature of VACNTs. In attempting to differentiate the number of tubes

between two micrographs, the issue of image normalization becomes apparent. Thresh-

olding, in which all pixels above a given saturation value are made white and all those

below are made black, appears at first to be the most straightforward way to determine the

number of tubes in an image [37]. However, the images do not have the same contrast

or brightness values as these values were manually tuned along the height of the pillar in

order to retain information (i.e., the same brightness and contrast settings at the bottom of

the pillar would result in a completely black image at the top). Therefore, the threshold

must be set for each individual image, a non-trivial task in which it is difficult to deconvo-

lute the brightness and contrast of an image’s histogram from the tube density contribution

to the histogram. Briefly, brightness is defined as overall saturation of an image or where

it falls on the grayscale from 0 to 255. Contrast is roughly defined as the breadth of the

image histogram; approximately the maximum pixel value less the minimum pixel value.

A typical SEM micrograph with its corresponding histogram are given in Figs. 3.4(a) and

(c). Based on the wide variation in brightness and contrast observed between experimental

images, it can be concluded that the images must be either normalized with respect to both

or a method must be found that is insensitive to these image properties while still being

sensitive to the structure found within an image.

Image analysis utilizing the methods discussed here is heavily used in the astronomical

sciences (e.g., [38] and [39]), biological sciences (e.g., [40]) and medical sciences (e.g.,

[41]). The knowledge and methods developed in these fields is utilized to customize a

method for quantifying grayscale images of fibrous materials. In order to check the va-
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lidity of a method throughout its development, A series of simulated tube images having

characteristics analagous to the experimental images is generated. Once these simulation

c)

a) b)

d)

e)

Figure 3.4: Typical experimental and simulated CNT microstructure images with their cor-
responding histograms and power spectra a) SEM image b) Simulated image c) Histogram
for the image in a) d) Histogram for the image in b) e) Radially averaged power spectra for
a) (blue) and b) (green).
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images produce meaningful trends for a given method, limitations of the image analysis

technique can be explored through controlled deviations from the experimental character-

istics. Subsequently, a figure of merit corresponding to the relative increase in tube number

can be developed. For this reason, key features of the experimental SEM images must be

measured.

3.2.1 Experimental Image Characterization

Careful measurement of the tube diameter, image noise, and relative tube and image satu-

ration values is performed. Tube diameters are measured by hand/eye using the software

ImageJ. The resulting distribution of diameters is given in Fig. 3.5(a). The data is more

reasonably fit with a log-normal distribution than a Gaussian. The average tube diameter is

a)

b)

Figure 3.5: a) Distribution of tube diameters with superposed log-normal fit. b) Distribu-
tion of tube saturation values with superposed Gaussian fit.
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22.3 nm with a mode of 21.1 nm and log-normal standard deviation of 0.31. Analagously,

tube saturation data is gathered by taking the average value from a region of each of the tube

encountered while progressing horizontally across an image. This data is presented in Fig.

3.5(b) and fit with a Gaussian distribution having a mean of 162 and standard deviation of

22 (out of a scale from 0 to 255). As each of these data analyses are tedious and many data

points were collected, they were performed for only one experimental image. It is reason-

able to assume that tube diameter is not changing significantly (and indeed does not appear

to do so) between images. The standard deviation of tube intensity or saturation value will

certainly change with image contrast, but, as stated earlier, that must be accounted for in

the method deveoped. The most important attribute to bear in mind for tube intensity is that

it has a Gaussian distribution and thus this will be a key feature of the simulated images.

Image noise is measured by calculating the standard deviation of pixel values within

a relatively homogeneous subregion of the image. It is found to increase slightly with

increasing local intensity which is expected. This is because the noise can likely be char-

acterized as shot noise, i.e., due to the finite nature of the electrons interacting with the

detector, which is proportional to the square root of the mean saturation or intensity of a

pixel. The average noise (taken as the standard deviation of the pixel saturation values) for

the SEM images is 0.02 ± 0.005. This value is not a function of the height at which the

image is taken. Implementation of the characteristic tube diameter, brightness distribution,

and noise in a series of simulated images is given in Appendix D. A typical simulated

image and its corresponding histogram are shown in Figs. 3.4(b) and (d).

3.2.2 Pattern Extraction with the Power Spectrum

One measure of spatial variation in an image can be determined by taking its Fourier trans-

form. When the Fourier spectrum is averaged radially (with the center of the image corre-

sponding to zero frequency and the outermost corresponding to the single pixel frequency)

the result is a measurement of the average variation in the image between any two pixels at

any given spacing known as the radially averaged power spectrum. The radially averaged

power spectrum has several notable properties. First, the overall brightness of an image

has no effect on it. Only the relative variation affects the power (i.e., contrast). Second, it
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contains no absolute position information, only relative position information. Thus, it can

be used to measure the presence of structure at a certain lengthscale in the image. Typical

power spectra obtained for experimental and simulated images are shown in Fig. 3.4(e).

By convention, small wavelength or spatial scale is on the right and corresponds to pixel to

pixel variation. The power at this lengthscale generally reflects the contrast of the image.

However, I have found that it is also convolved with the tube number density and there-

fore cannot be used to normalize the power spectra between multiple images. Note that

the power signal rises sharply around a wavelength of 10 pixels, which corresponds to the

approximate diameter of an average CNT.

Using the power spectra, one can explore changes in power response to changes in the

image’s characteristics. Two series of simulated images (having characteristics similar to

the experimental images as determined by the data presented in Section 3.2.1) are generated

such that the contrast (and brightness, though it has no effect on the power spectrum) of

each image was identical:

S1: 10 sets of 11 images - linear variation in line number from 50 to 150

S2: 10 sets of 11 images - no variation in line number, 100 lines in each

As hoped, the first series of images shows an increase in power at the wavelengths corre-

sponding to average line width (10 pixels in this case) while series S2 shows no increase in

power. The increased response in power is demonstrated in Figure 3.6(a) through a plot of

the ratios of the power spectra. Each ratio is calculated with respect to the average spectra

for the images with the lowest line number (50 lines). Therefore, large deviations from one

indicate areas in which more structure is present. Note the largest change occurs between

approximately 7 and 11 pixels. Taking the average power between 7 and 11 pixels for each

set of images having a given number of lines results in the plot in Figure 3.6(c). The graded

set shows an increase in power with image number while the non-graded set remains con-

stant. Note that the error bars taken from the variation in response between the 10 sets of

images demonstrate that the increased response is minimal and, in fact, appears to saturate

at line numbers that are most representative of the experimental images (∼100). There-

fore, I conclude that the power spectrum alone is unlikely to provide us with the sensitivity
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required to measure changes in the amount of fibrous structure within these experimental

images, particularly within the tube number range of interest.

Additionally, when the same methods are used on a series of images in which the bright-

ness and contrast of the simulated images is varied randomly, all correlation is lost. This

Image 1: 50 lines
Image 11: 150 lines

(linearly increasing 
numbers of lines)

Images 1-11: 
100 lines

50 lines 50 lines 150 lines

60 lines

150 lines
a)

b)

c)

Figure 3.6: Summary of results obtained from using the radially averaged power spectra
alone to quantify the number of lines in simulated images. a) Ratio of radially averaged
power spectra to the average spectra for an image with 50 lines for a series of simulated
images. b) Example simulated images having (from left to right) 50, 100, and 150 lines.
c) Average power values as a function of image number for graded and non-graded sets of
simulated images.
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is because the contrast in the images has not been normalized. As a result, several contrast

regularizing techniques were attempted: normalizing by the shortest wavelength, normaliz-

ing by the gain, and normalizing by the contrast as determined by the image histogram. At

this time, a correct or experimentally feasible normalizing procedure has not been found.

a) b)

c)

d)

200 nm100 pixels

Figure 3.7: a) Original micrograph image. b) Filtered micrograph after histogram equal-
ization. c) Filtered micrograph rescaled to high contrast for viewing. d) Radially averaged
power spectra for images in a), b), and c).
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3.2.3 Edge Detection

Another typical image analysis method generically known as ‘segmentation’ involves lo-

cating edges or objects of interest within an image. One issue with a typical edge find

technique can be finding edges at lengthscales that are not of interest or missing edges due

to changes in contrast either locally or between images when a threshold is set inappro-

priately. Since the region of the power spectrum corresponding to signal from the tubes is

known, we can mitigate these issues by first filtering the image in the frequency domain

with respect to this lengthscale. This results in an image in which the structure of interest is

brought to the forefront. An example of a Gaussian bandpass filtered image in which a his-

togram normalization procedure has been performed to highlight the remaining structure

is shown in Fig. 3.7(b). For reference the high contrast, but otherwise unaltered filtered

result is shown in Fig. 3.7(c). Corresponding radially averaged power spectra in Fig. 3.7(d)

verify the emphasis on the tube-scale structure present in the filtered image. Future efforts

will be focused on the appropriate selection of filter and subsequent edge detection method

in order to develop a method that is robust under changes in both contrast and brightness

between images while giving resolution in line number density.

3.3 Material Density

It is generally taken for granted that a material’s density and volume fraction, in the case of

porous materials, can be easily obtained. For nanoscale and nanostructured materials how-

ever, this is not always true. Our VACNT pillars are both. In bulk specimens of VACNTs

the density, ρVACNT, and volume fraction of tubes, φCNT, can be readily measured using a

mass balance, the volume of the weighed sample, Vtotal, and the known density of graphite,

ρgraphite = 2.2 g/cm3, via the relations,

ρVACNT =
m

Vtotal

φCNT =
m/ρgraphite

Vtotal

= ρVACNT/ρgraphite. (3.1)

Measurements of other VACNT samples grown via CVD methods (not the samples grown

for and tested in this thesis) put these values around 0.1 g/cm3 and 0.05, respectively. How-
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ever, the size of our VACNT pillars does not allow for such simple techniques. A 1 cm × 1

cm continuous film of VACNT having a height similar to that of the VACNT pillars tested

here (60 µm) weighs only 0.66 mg. This is not feasibly measurable on a typical lab scale

and requires measurement using a high sensitivity mass balance, such as that used in ther-

mogravimetric analysis (claimed resolution of ∼1 µg). To complicate things, the weight

of the Si substrate on which the samples are grown is several orders of magnitude larger,

making the sample’s removal from the substrate necessary for measurement. Practical lim-

itations make this undesirable: The sample is destroyed and brittle flaking occurs to such

an extent that the VACNTs cannot be completely harvested. For this reason, we attempted

to utilize a technique commonly applied to highly porous materials, nitrogen adsorption,

following the Brunauer-Emmett-Teller (BET) theory for analysis of the results.

Briefly, BET theory is a multilayer extension of Langmuir theory, which is itself a

theory for monolayer molecular adsorption of gas onto a surface. Measurements of the

amount of gas adsorbed onto the sample surface at a given supersaturation combined with

known quantities of the size of the gas molecule result in the ability to perform a calculation

of the surface area of a sample. Systems capable of BET measurements typically require

samples having a surface area of 0.1 m2 to∼300 m2, e.g., catalyst materials like zeolites or

adsorbants like activated carbon. Once a surface area measurement is obtained, an estimate

of the porosity, given average values for the average inner, di ≈ 7 nm, and outer, do ≈ 20

nm, radii of the CNTs (combined with the assumption that N2 adsorption occurs on both

the inner and outer surfaces), can be calculated via the relation

φ =
d2
o − d2

i

do + di

Asurface

4Vtotal

. (3.2)

This estimate is still sensitive to measurements of the sample volume, but determination of

the mass has been eliminated. Unfortunately, for a 1 cm × 1 cm × 60 µm sample with an

estimated volume fraction of 0.05 (from bulk), one can only expect surface areas of ∼0.1,

which are at the low end of the measurement capabilities for the N2 adsorption instrument

available. Even loading the BET instrument with 3 times this sample volume, we found

that fits of adsorption data to the BET theory were poor. Thus, estimates of the surface area

of our samples obtained in this way were unreliable. Due to the challenges associated with
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determining the density of these highly porous and microscopic structures, very few reports

contain these quantitative measurements, particularly as a function of specific location on

the sample. Most reports in the literature estimate the density based on tube counting in

samples cleaved from the surface or mass density measurements of bulk samples. Density

measurement remains an unresolved issue.
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Chapter 4

Deformation Under Uniaxial
Compressive Loading

4.1 Introduction

While much work has been done to study the unique properties of individual CNTs and

CNT-composite materials, only a few reports addressing the mechanical deformation of

VACNTs, as defined in this thesis (see Chap. 1), exist. These published studies have mea-

sured the mechanical properties of VACNTs through nanoindentation [14, 16, 42, 43], uni-

axial compression [13, 15, 20, 24, 44, 45], impact testing [21, 22], and across a wide range

of temperatures [19]. Variations in observed behavior and quantitative results in these

publications illustrate the wide variety of growth conditions that can, in turn, result in sig-

nificant dissimilarities in the mechanical properties including deformation morphology, the

amount of post-deformation recovery, the elastic modulus, and the amount of energy ab-

sorption and dissipation. Table 4.1 summarizes the variation in elastic moduli that have

been reported from a variety of testing geometries. Some of this variability has been ad-

dressed qualitatively in terms of the visible differences in tube morphology by McCarter,

et al. [16]. Despite the quantitative property differences, VACNTs have been observed to

exhibit a common and intriguing structural behavior. Post-compression SEM images indi-

cate sequential, coordinated buckling, evidenced by wavy surface morphology. In previous

reports buckling appeared to initiate preferentially from the substrate side of the struc-

ture, regardless of whether the CNTs are attached to it during the course of deformation

[24]. This sequential, coordinated buckling was observed by Yaglioglu for VACNT bun-
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dles compressed in an SEM using an Omniprobe [46]. Many of the qualitative descriptions

we observe here were reported, however, the mechanical probe had no load or displacement

sensors such as characterize our in situ testing setup. Some of these materials display a high

recoverability after significant strain, even after cyclic loading [24], while others have been

observed to deform permanently [15, 44, 46]. This thesis explores the largely irrecoverable

deformation we observed upon uniaxial compression of the VACNT bundles. The results

presented within this chapter were first published in Hutchens et al. [44].

Uniaxial microcompression experiments were selected as the mechanism for studying

the mechanical properties of VACNTs for reasons of simplified analysis as well as for the

fact that a free surface allows for observation of the rich morphological response charac-

terized by sequential, periodic folds or buckles as we will refer to them hereafter. While

nanoindentation tests on VACNT films [14, 42] and on photolithographically defined fea-

tures [15, 16] have provided tangent and elastic moduli, they cannot explore this wrinkle-

like morphology due to its highly localized nature and the limited overall strain that can

be analyzed in this testing geometry. In this chapter, we present our observations of the

morphological evolution and corresponding mechanical response seen in cylindrical, 50

µm diameter CNT foam bundles subjected to uniaxial compression at different strain rates.

We chose to test 50 µm diameter pillars with an aspect ratio of 2.4–2.8 (height/radius)

because they are large enough to produce multiple surface undulations, as observed previ-

ously [15, 24], while being small enough to capture the local deformation events that occur

during compression in our custom-built in situ mechanical deformation system, SEMen-

tor [34] (see Section 2.6). Fortuitously, testing such small samples also enables resolution

of the local buckling events within the overall stress-strain response, as will be shown in

Section 4.2.

In addition to the quasi-static response of the VACNTs, we also characterize their vis-

coelastic response as a function of excitation frequency. Several studies have characterized

the energy dispersive capabilities of these materials [14, 19, 20, 24, 47]. They find that,

after multiple loading/unloading cycles (not including the initial few cycles), the energy

dissipation and recovery remain approximately constant (up to 5× 105 cycles [20]). Most

notably, studies presented in a recent article by Xu et. al. [19] found that some VACNTs
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dissipate energy at twice the amount of silicone rubber and do so at a wide range of temper-

atures (−196–1000 ◦C) over which typical viscoelastic materials, such as polymers, either

harden or degrade. The specific VACNT materials we tested do not undergo the kind of

reversible deformation that would allow them to act as an alternative to rubber. However,

in Section 4.3 we present the results of a viscoelastic characterization of the VACNT pillars

under increasing amounts of strain as part of an effort to understand the overall deformation

mechanism.
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Table 4.1: Table of Published Values for the Elastic Modulus of VACNTs

E (MPa)
Measurement

Method
Density Reference

50 Uniaxial compression 0.3 g/cm3 a Cao, et al., 2005 [24].

∼ 50 DMA NG
Mesarovic, et al., 2007

[42].

< 2 Uniaxial compression NG Suhr, et al., 2007 [20].

0.25
Uniaxial compression

- loading
1010 cm−2 b Tong, et al., 2008 [45].

15

Nanoindentation

(Berkovich) -

unloading

NG Zbib, et al., 2008 [15].

18,000
Nanoindentation (flat

punch) - loading
0.95 g/cm3

Pathak, et al., 2009

[14].

∼ 1 DMA 0.009 g/cm3 Xu, et al., 2010 [19].

58

Nanoindentation

(Berkovich) -

unloading

NG
Zhang, et al., 2010

[47].

50± 25 b

Nanoindentation

(Berkovich) -

unloading

NG* Qiu, et al., 2011 [43].

a Reported as an 87% porosity estimate, converted to approximate density using the

density of graphite.
b Tube areal number density (20–30 nm diameter CNTs).
b Reported as a reduced modulus. Indentation was performed with a diamond tip, so

difference from actual sample modulus is small.
* NG = not given
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4.2 Uniaxial Results and Discussion

The mechanical response of individual pillars is analyzed through uniaxial stress-strain

curves, post-mortem morphology, and in situ deformation videos. Four different nominal

displacement rates were used: ∼ 65 nm/s, ∼ 0.65 µm/s, ∼ 6.5 µm/s and ∼ 32 µm/s,

spanning just over three orders of magnitude of strain rate: 0.001 s−1, 0.01 s−1, 0.1 s−1,

and 0.5 s−1. (The actual displacement rates varied with slight differences in initial pillar

height, H , in order to keep the strain rate constant between tests.)

Nominal, or engineering, stress, σn, and strain, εn, were calculated using the initial

radius and height of the pillar, R and H , respectively, along with the corrected load and

displacement given in Eqs. (2.2) and (2.3) in Sec. 2.4.2.

σn =
pcorr

πR2
, (4.1)

εn =
ucorr

H
. (4.2)

A representative stress-strain curve (Fig. 4.1(a)) corresponding to the compression of a

single CNT pillar at a rate of 0.001 s−1 illustrates the common features found at any of the

measured strain rates. Utilizing a foam-like analogy, we first note three distinctive regimes:

a short elastic region, followed by a plateau-like segment where the deformation is char-

acterized by periodic ‘humps’ at a relatively constant overall applied stress, followed by

stiffening indicating the onset of densification. While occurrence of these distinct types of

mechanical behavior is typical for foams and other cellular materials [23], certain features

are notable in the CNT bundle response: (1) the large initial buckling event marked by a

significant load drop following the initial elastic deformation regime and (2) the series of

distinct humps in the plateau-like segment that we will show correspond to the initiation

and propagation of folding/buckling events that occur in the accomodation of deforma-

tion. A typical post-mortem image showing the multiple buckles or folds that form during

compression is shown Figure 4.2(b).

Through in situ experiments, we discover that sequential (bottom - to - top), localized,

periodic buckling governs bundle deformation. This is illustrated by the panels taken from
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a)

b)

plateau densification

elastic

buckle initiation

buckle propagation

unloadinginitial
buckle

Figure 4.1: a) Typical stress-strain curve for uniaxial compression of a single bundle illus-
trating key features: i) the regions of elastic, plateau, and densification regimes (top ribbon),
ii) the initial collapse peak, and iii) the characteristic humps throughout the plateau region
and into densification corresponding to buckle initiation and propagation. b) A combined
nominal stress-nominal strain plot for typical data taken at all four strain rates: 0.001 s−1

(thick solid), 0.01 s−1 (thick dashed), 0.1 s−1 (thin solid), and 0.5 s−1 (thin dashed). Hump
magnitude increases with increased strain rate.

an in situ video (Fig. 4.3) at six regularly spaced strain/time intervals along the deformation

curve and the embedded video in Fig. 4.4 (electronic version only). Cao et al. [24] hypoth-

esized that the bottom-first buckling, hinted at by their observations of more compressed

buckles at the bottom of the deformed samples than the top, was due to an inhomogeneity

in material properties along the vertical axis. In particular, it has been shown that similarly

grown VACNT materials exhibit a the density gradient (lower density at the bottom) and

variation in the tubes relative vertical alignment (more aligned at the top) [35], which would

lead to a much more compliant material near the substrate as compared to the top. Through
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a)

100 μm

b)

10 µm

Figure 4.2: a) Array of compressed and uncompressed 50 µm pillars with inset showing
a 1000× magnified image of a single pillar. b) Typical buckled morphology present in a
pillar after compression to > 80% strain and recovery to > 30% of its initial height (∼ 67
µm).

1 2 3

4 5 6

1

20 µm

indenter 
head

2
3

4

5

6

Figure 4.3: Frames from an in situ video illustrating the bottom-to-top sequential buckling.
Each frame corresponds to the numbered six points denoted in the stress-strain curve (top),
taken simultaneously with the images.
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In situ video viewable in 
Adobe Acrobat 6 or later

Figure 4.4: In situ video of a VACNT micropillar compression (electronic version only).

our in situ testing results we unequivocally demonstrate the deformation proceeding in a

sequential manner. Specifically, we observe that, after the initial buckling, all subsequent

buckled layers form in the following fashion: (1) buckles start as a localized fold or a bulge

in the circumferential pillar surface, then propagate laterally (or possibly in a spiral) across

the pillar diameter (Fig. 4.5), (2) buckles always form in succession, with each previous

(lower) buckle fully completing before the initiation of the next buckle. As illustrated in

Fig. 4.5, buckle initiaion corresponds to a sudden softening event, or drop in load, while

propagation is characterized by local hardening in the stress-strain response. In addition,

the entire pillar region above the buckles shows no signs of deformation, relegating all the

strain accommodation to this buckling mechanism. We also observe that the wavelength of

the post-compression undulations does not vary with changes in the strain rate. Instead, it

remains at a relatively constant value of ∼ 2 µm in all compressed pillars. As each 2 µm

fold accommodates around 6 µm of unbuckled material, the final number of folds is simply

a function of the total deformation only and thus also remains approximately constant over

the strain rates tested.

We find that initial buckling is always more pronounced than all successive ones. It
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10 µm

indenter 
head
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1

2

3
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4

6

Figure 4.5: Frames from an in situ video illustrating the formation and propagation of a
single buckle. Each of the frames aligns with the points on the accompanying stressstrain
inset illustrating how a single hump corresponds to buckle initiation and propagation. The
direction and magnitude of buckle propagation follow the overlaid arrows.



53

occurs at significantly higher loads (Figs. 4.1b), and its formation can be dramatically

different even at the same loading conditions, sometimes initiating an abrupt shortening of

the pillar. This causes the indenter head to momentarily lose contact with the pillar top (Fig.

4.6), resulting in a rapid load removal, and therefore a much lower stress immediately after

20 µm

0.8 s

gap

initial buckle

Figure 4.6: Frames from an in situ video illustrating the sudden initial buckle formation and
momentary loss of contact with 0.8 s passing between the two images. Details of the initial
buckle formation are difficult to see as they occur faster than the electron beam scan rate
(0.3 µs per pixel on a 512 × 442 image, which is averaged over several scans to improve
image quality). Note the gap formed between the collapsed pillar and the displacement-
rate-constrained (300 nm s−1) indenter head.

buckling. This loss of pillar-indenter contact is due to the pillar ‘collapsing’ faster than

the prescribed rate of the indenter head motion. We observed this phenomenon in several

experiments at each strain rate and during compression in both the nanoindenter and the

SEMentor, suggesting a physically driven mechanism for this initial collapse rather than an

experimental artifact. The inset in Fig. 4.1b shows a zoomed-in region in the stress-strain

curves at each strain rate containing three examples where the pillar ‘jumps’ away from the

indenter tip at strain rates of 0.001 s−1, 0.1 s−1, and 0.5 s−1, and one example where it does

not at the strain rate of 0.01 s−1. The artificial loops in the stress-strain data are indicative

of this loss of contact. Several samples, however, do not exhibit any discrete behavior

and proceed at the prescribed nominal displacement rate, as shown in Figs. 4.3 and 4.5.

Since these materials are highly inhomogeneous, sample variation among the pillars may

be responsible for these differences.

We hypothesize that these discrete buckling events that result in a momentary loss of

contact with the nanoindenter are caused by the coalescence or zipping up of the bottom-

most layer of material. The driving force for coalescence is possibly due to the attractive
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In situ video viewable in 
Adobe Acrobat 6 or later

Figure 4.7: In situ video of several initial buckling events in which loss of contact between
the indenter head and pillar top occured (electronic version only).

van der Waals forces between individual tubes, pulling them towards one another. This

‘zipping’ layer is initiated by crossing some threshold force at the weakest point within the

layer, after which it becomes more energetically favorable for the adjacent CNTs to coa-

lesce together and buckle, propagating the condensation/buckle reaction through the entire

layer. In the cases where the zipping does not occur and the indenter head stays in contact

with the bundle throughout the compression, it is possible that either the applied force never

reaches that needed to ‘zip up’ a critical number of CNTs or that the critical concentration

of tubes necessary for coalescence is not in place. Several factors could contribute to the

marked difference in behavior between the initial buckle and all subsequent buckles; the

catalyst-anchored CNTs can be pulled out and/or the microstructural network required for

the ‘zipping’ behavior is only possible at the base (i.e., the network may be too ordered or

too dense elsewhere). Gravity cannot be responsible for causing the undeformed region of

the pillar to ‘fall’ upon the buckled first layer, as I have observed that even just a few tubes

can easily bear the load of the entire pillar. Also, gravity acts in two different directions in

the nanoindenter (parallel to the cylinder axis) and SEMentor (perpendicular to the cylin-
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der axis). Additionally, CNTs within each fold do not appear to be broken (Fig. 4.8(b)),

indicating energetic favorability for reconfiguration rather than structural failure during the

‘zipping’ process. The increased load required for the first buckling event is likely affected

1 µm

a)

2 µm

b)

4 µm

4 µm 2 µm

Figure 4.8: a) An SEM image of a post-mortem pillar base clearly showing several in-
dividual CNTs pulled away from the substrate surface. The initial anchor point of these
tubes (the darker-to-lighter transition of the substrate) is indicated by the arrow. b) Sev-
eral high-magnification SEM images reveal details of buckled regions. Within each buckle,
CNTs appear to bend and twist without fracturing. The bottom left image shows a series of
buckles of approximately the same size.
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by a rigid boundary condition at the substrate, as first explored by Zbib, et al. [15] and

subsequently in Chapter 5. It should be noted that here the boundary conditions are not

constant throughout the initial buckling event as individual CNTs are observed to pull off

of the substrate as illustrated in Fig. 4.8(a).

While the stress-strain curves at all strain rates share foam-like features, the humps that

occur within the plateau region, corresponding to individual buckling events, are noticeably

dependent on strain rate. There are distinct differences in the shape of these humps, with

the slower strain rates producing smooth, sinusoidal undulations and the faster rates show-

ing waves of significantly larger amplitude, as evident from the typical stress-strain curves

for four different strain rates plotted in Fig. 4.1(b). For all strain rates, each undulation

occurs at a progressively higher stress, rather than at a true plateau stress, typical of cellu-

lar solids, because each buckling sequence must nucleate and propagate through a stiffer,

denser material than the previous one due to the axial tube density gradient discussed ear-

lier. Although the curves chosen for Fig. 4.1(b) appear to reach higher stresses with higher

strain rate, this trend does not hold true for all sets of data, and the maximum attained

stress depends on the accuracy of the initial pillar-indenter alignment and microstructural

variation between individual pillars.

4.3 Viscoelastic Response

Viscoelastic materials are commonly characterized by their storage and loss moduli, where

the former represents the stored energy, or elastic response, and the latter corresponds to

the amount of energy dissipated as heat. As mentioned in Section 2.5, I calculate the

storage and loss stiffnesses, kstorage and kloss, rather than moduli, E, because the latter

requires knowledge of Poisson’s ratio, ν, which is unknown for VACNTs though is likely

close to zero, similar to that of a typical foam. Using Sneddon’s relation (Eq. (2.5)),

the conversion between stiffness and modulus is approximately E[kPa] ≈ 20 × k[N/m]

(assuming ν ≈ 0). The storage and loss stiffnesses are measured and calculated through

the procedure described in Section 2.5. Results are summarized in Figures 4.9 and 4.10

where closed and open symbols denote the measured values for storage and loss stiffnesses,
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respectively. An alternate procedure for sample storage and loss determination reported

by Wright et al. [31] models the sample as a standard linear solid (SLS). If applicable,

this method enables calculation of the sample storage and loss stiffnesses for a continuous

range of frequencies while accounting directly for the indenter head and frame stiffness.

Following their approach, we used the frequencies of 8, 15, and 35 Hz to obtain the SLS

model parameters (two spring constants and a damping constant). We find that while of the

same order of magnitude, these SLS-based predictions do not follow the trends of the ‘black

box’ analyses from Section 4.3, strongly suggesting that CNT foams do not behave as a

standard linear solid and require the development of a more complex mechanical model.

a)

b)

Figure 4.9: a) Storage and loss stiffnesses as a function of frequency for three εn. Closed
symbols correspond to storage stiffness (elastic response), and open symbols represent
loss stiffness (energy dissipation). b) Continuous stiffness measurement gathered during
a quasi-static (ε̇n, 0.001 s−1) test. Gray arrows illustrate the one-to-one correspondence
between the features in the stress-strain and stiffness-strain curves.
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a) b)

Figure 4.10: a) Storage stiffness as a function of frequency and strain showing high strain
dependence, but little frequency dependence. b) Loss stiffness as a function of frequency
and strain showing approximately equal dependence on strain and frequency.

We find that the storage stiffness is frequency independent over the range of frequencies

tested, indicating a single energy storage mechanism operating over this range. It is also 10

times larger than the loss stiffness, indicating that more energy is being stored, rather than

dissipated, in these materials. This relative ratio of storage to loss behavior is in approx-

imate agreement with previous viscoelastic measurements [14, 19]. The storage stiffness

increases with increasing strain (Fig. 4.10(b)) and is corroborated by quasi-static compres-

sion testing utilizing simultaneous continuous stiffness measurement (CSM) (Fig. 4.9(b)),

which resolves drops in the elastic response corresponding to buckling events. These lo-

cal fluctuations are averaged out in the storage stiffness data which is taken across several

samples and not necessarily within a peak or trough of the stiffness curve. The transi-

tion between plateau and densification is clearly visible in both CSM and frequency varied

storage stiffness data. The overall change in the stiffnesses is less pronounced in the loss

stiffness (factor of 3) when compared with storage stiffness (factor of 5). Unlike the stor-

age stiffness, the loss stiffness is a strong function of frequency, and is generally lower at

higher frequencies, though it appears to be slightly bowl shaped. Unfortunately the cutoff

frequency for our instrument prevents study of higher frequencies to study the extent of this

apparent trend. This frequency dependence seems to be a reasonable observation since loss
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mechanisms are typically deformation rate dependent. Thus, over the range of frequencies

studied, the energy dissipation mechanisms appear to require a timescale longer than is af-

forded by a 35 Hz oscillation, with this trend being most evident at larger strains. Because

attaining larger strains implies that a higher fraction of the pillar has buckled, we surmise

that more energy is dissipated in the buckled portion of the pillar than in the remaining

undeformed portion, and this dissipative process corresponds to a time constant of ∼ 0.1 s.

Simultaneously, the storage modulus indicates that even more energy is being stored in the

buckled region. Both hypotheses are in line with observations in Xu et al. [19] in which

they see 5 and 10-fold increases in the storage and loss moduli of VACNTs for a 4-fold

increase in density.

4.4 Summary

We show that the deformation of CNT bundles in uniaxial compression is accommodated

by sequential nucleation of local buckles followed by their lateral propagation across the

bundle, gradually collapsing a horizontal slice of the entire structure in a periodic fashion.

Buckles occur successively, from bottom to top. We hypothesize that this is due to a com-

bination of the density and accompanying stiffness/strength gradient of the material and

the constraint of the substrate. Stress-strain behavior is foam-like, but the stress does not

remain constant in the plateau regime, and oscillations correspond to coordinated buckle

nucleation and propagation rather than to individual cell collapse. In addition, we hypoth-

esize that the significant slope within the ‘plateau’ region of the stress-strain response is

dependent on the axial property gradient within the VACNT structure. Strain rate depen-

dence is marked by the oscillations’ magnitude: smaller for slower rates, sharper and larger

for faster rates. Frequency dependence of the loss modulus indicates a timescale sensitive

energy dissipation mechanism, largely contained within the buckled region of deformed

pillars.
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Chapter 5

Finite Element Analyses

5.1 Introduction

This chapter aims to provide insight into the largely irrecoverable deformation observed

after uniaxial compression of the VACNT bundles observed in Chapter 4 (Ref. [44]) and

by others [15, 47] as opposed to highly recoverable and/or viscoelastic behavior [13, 14,

19, 24, 47, 48], though many similarities exist between the two. In particular, we attempt to

capture the localization of deformation via buckling observed under uniaxial compression

[13, 15, 24, 44]. This work was carried out in collaboration with Prof. Alan Needleman of

the University of North Texas.

We begin by briefly restating the key features observed in Chapter 4. As illustrated

in Figure 5.1, this rich behavior is characterized by the accommodation of strain through

the creation of a series of vertically localized folds or buckles, which form sequentially

starting from the base (where CNTs grow from the substrate) and proceed toward the top

[15, 24, 44, 46] (see Fig. 5.1(c)), and the initiation of buckles followed by their lateral

propagation as revealed through in situ deformation of micron-sized cylindrical bundles,

or pillars in Chapter 4 [44, 46] (see Fig. 5.1(b)). Figure 5.1a shows the overall foam-like

stress-strain response gathered during testing. The response consists of elastic, plateau,

and densification regimes typical of these materials [24]. The plateau possesses a small

hardening slope. Here, we plot nominal stress, σn = P/A, versus nominal strain, εn =

uz/H , where P is the applied load, A is the initial area of the top of the pillar, H is the

initial pillar height, and uz is the vertical displacement of the top. We find that immediately
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following the elastic loading the load drops sharply before reaching the sloped plateau,

which is characterized by periodic softening events shown to correspond to the appearance

and evolution of individual buckling events [44]. This correspondence is illustrated in the

image series in Fig. 5.1(b) for strains denoted by the blue circles in Fig. 5.1(a).

10 μm

a) b)

c)

10 μm

Figure 5.1: In situ mechanical compression results using methods presented in Hutchens et
al. [44]. a) Nominal stress-strain response. Blue circles and red squares denote the strains
at which the images in b) and c) were taken. b) Illustrates buckle initiation and evolution.
c) Illustrates bottom-to-top sequential buckling.

While there are several experimental studies showing this highly localized commence-

ment of structural collapse, models describing the mechanical response of VACNTs are few

and past efforts have focused on capturing only the one dimensional stress-strain or load-

displacement response. For example, the load-displacement response has been modeled

energetically as well as in a standard linear solid framework and compared with nanoin-

dentation testing results by Mesarovic et al. [42]. In addition, Euler buckling criteria were

applied to uniaxial compression tests [15, 24, 45, 49] as well as nanoindentation testing

[14, 42] in order to predict a threshold stress corresponding to the onset of buckling of the
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CNT struts. The most detailed of these models by Zbib et al. [15] predicts a functional rela-

tionship between the sample height and this transition stress. These predictions are limited

to capturing the behavior at relatively small overall strains. More recently, compressions

of large VACNT mats were modeled as a one dimensional series of mesoscopic springs

that are themselves limiting cases of infinite bi-stable springs in series [50]. This model

captures the elastic recoverability and energy dissipation seen in many VACNTs. Bi-stable

springs are characterized by a hardening-softening-hardening behavior that we also utilize

here, as will be presented in Section 5.2. Our model attempts to capture the permanent,

rather than the recoverable, deformation and includes the two dimensional deformational

changes associated with the overall pillar stress-strain response through an axisymmetric

finite element formulation, thereby enabling the analysis of buckle evolution and morpho-

logical characteristics.

We begin by discussing the physical foundation for our choice of constitutive law. We

then outline the well-established finite element framework and specify the parameters used

in the simulations. We compare results from our simulations with experimentally obtained

uniaxial microcompression results from 50 µm diameter VACNT pillars and examine the

influence of model parameters on buckle evolution and morphology. An examination of the

parameter space of our model indicates the roles of various experimental factors affecting

the mechanical response. Finally, we show the effect of prescribing a gradient in strength

(along the pillar height) on both buckle evolution and the overall stress-strain response. In

particular, we show that the presence of such a gradient, for example a lower yield stress at

the bottom as compared with the top, is not needed for bottom-to-top sequential periodic

buckling as initially thought.

5.2 Model Formulation

The complex, hierarchical nature of VACNTs makes the choice of scale in modeling their

behavior non-trivial. At magnifications of 1000× they appear as arrays of vertically aligned

tubes, markedly anisotropic. Magnifying one hundred times more reveals their highly inter-

connected, foam-like structure and the network of CNTs begins to appear nearly isotropic.
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Magnifying another hundred times one obtains a view of the individual CNTs themselves.

In this work, we propose a model that smooths over the discrete nature of the individ-

ual tubes and approximates the overall material behavior through an isotropic continuum

constitutive relation in the same spirit as, for example, in the Deshpande-Fleck constitu-

tive relation for foams [51]. Our model differs from others for VACNTs that focus on the

scale at which the material appears to be a nominally aligned array of tubes [14, 15, 24].

The complex deformation and stress-strain behavior observed in Chapter 4 (Hutchens et al.

[44]) serves as both motivation and validation for the choice of constitutive relation.

We use a finite deformation formulation and express the constitutive relation in terms of

the rate of deformation tensor, d, the symmetric part of Ḟ ·F−1, where F is the deformation

gradient, and the Kirchhoff stress τ = Jσ, with σ being the Cauchy stress and J =

det(F). A superposed dot denotes the partial derivative with respect to time. The rate

of deformation tensor is taken to be the sum of elastic, de, and plastic, dp, parts. Elastic

strains are assumed to be small and are given by

de =
1 + ν

E
τ̂ − ν

E
tr(τ̂ )I, (5.1)

where E is Young’s modulus, ν is Poisson’s ratio, tr(·) denotes the trace, I is the identity

tensor and τ̂ is the Jaumann rate of Kirchhoff stress.

In the experiments in Chapter 4 (Hutchens et al. [44], summarized in Fig. 5.1), little

recovery of deformation was observed so that a material model framework allowing for

permanent deformation was used. Also, material rate dependence is taken into account

both for numerical reasons as well as in accordance with the observations by Zhang et al.

[47]. We model the irrecoverable deformation response by a modification of the relation for

an isotropic, hardening viscoplastic solid to account for the compressibility of the VACNTs.

We write

dp =
3

2

ε̇p
σe

[s +B tr(τ )I] (5.2)

with

ε̇p = ε̇0

(
σe

g

)1/m

. (5.3)

Here, ε̇0 is a reference strain rate, m is the rate hardening exponent, s is the deviatoric
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Kirchhoff stress tensor, s = τ − tr(τ )I/3, and σe is the equivalent stress, σe =
√

3/2 s : s.

The compressibility parameter B is specified in terms of a plastic Poisson’s ratio, νp, by

B =
1

3

[
1− 2νp

1 + νp

]
. (5.4)

h3
h2

h1

Figure 5.2: A plot of the hardening function, g(εp), for ε1 = 0.005, ε2 = 0.1, h1 = 5.0,
h2 = −5.0, and h3 = 1.5 illustrating its general shape as defined in Eq.(5.5).

Motivated by structural load-deflection responses that give rise to periodic folds (e.g.,

[52–54]), we characterize the flow strength or hardening function, g(εp), as consisting of

a hardening range followed by softening and then subsequent rehardening. A simple form

that embodies these features is

g (εp)

σ0

=


1 + h1εp εp < ε1

1 + h1ε1 + h2 (εp − ε1) ε1 < εp < ε2

1 + h1ε1 + h2 (ε2 − ε1) + h3 (εp − ε2) εp > ε2

, (5.5)

and is depicted in Fig. 5.2. Parameters h1, h2, and h3 determine the hardening and soft-

ening slopes and ε1 and ε2 are the strains at which the hardening-softening and softening-

hardening transitions occur, respectively, and σ0 is a reference stress. The simplified, piece-

wise nature of the flow strength curve lends itself well to a systematic study of changes in

behavior with variations in its shape as discussed in Section 5.3. It is worth noting that
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the presence of a material rate dependence acts to regularize the governing equations in the

softening regime [55]. A similarly shaped stress-strain relation, that of a bi-stable spring,

was used by Fraternali et al. [50] as a microscale element of a 1-D model that captured the

quantitative aspects of a reversible deformation response in uniaxially loaded bulk VACNT

samples [24]. Attention is restricted to axisymmetric deformations, which eliminates the

ability of the model to capture the nucleation and lateral buckle propagation seen in exper-

iments (Fig. 5.1(b)), but still allows for local sequential buckling and significantly reduces

the computational time.

The finite element formulation is based on the dynamic principle of virtual work, which

can be written as ∫
V

τ : δd dV =

∫
S

T · δu̇ dS −
∫
V

ρüδu dV, (5.6)

where V and S are, respectively, the volume and surface of the body in the initial configu-

ration, T is the traction vector, and u is the displacement vector.

We perform calculations for a cylinder of height H and radius R. With the assumption

of axisymmetric conditions in a cylindrical coordinate system (r, θ, z) all field quantities

are independent of θ. A velocity u̇z(t) is imposed at the top of the pillar, z = H , with

u̇z(r,H, t) =

 −vz t
trise

for t < trise

−vz for t > trise
, (5.7)

and Tr(r,H) = 0. Here, trise is the time interval over which the velocity is ramped up to

avoid shock loading the system. The bottom of the pillar is presumed fixed to the substrate

so u̇r(r, 0, t) = u̇z(r, 0, t) = 0. The outer surface of the pillar is taken to be traction free,

Tr(R, z) = 0. We do not account for possible contact between the folds that develop due

to buckling. The calculations are terminated prior to any material contact.

The finite element discretization of Eq. (5.6) is based on a convected coordinate rep-

resentation of the governing equations with linear displacement crossed triangles as in a

number of previous analyses, e.g., Tvergaard et al. [56] and Tvergaard and Needleman

[57]. Time integration is carried out by the explicit Newmark β-method [58] using lumped

masses. The rate tangent method of [59] is used for the constitutive update.
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5.2.1 Simulation Parameters

The calculations are carried out with E/σ0 = 100, m = 0.02 (on the order of experimen-

tally measured values of rate sensitivity in VACNTs [47]), ε̇0 = ε̇ref , ν = 0.25, νp = 0.25.

The mesh geometry is that of a circular cylindrical pillar with an aspect ratio, H/R, of 3.

The imposed velocity, vz, in Eq. (5.7) is fixed at κε̇refH with κ = 0.004 and the ramp time

trise = 5/ε̇ref . The initial hardening portion of Eq. (5.5) was fixed at ε1 = 0.005, h1 = 5

throughout this study. Results are presented for variations in ε2, h2, h3.

The finite element mesh in all calculations consists of a uniform 80 × 240 mesh of

quadrilateral “crossed triangle” elements each of which is H/240×H/240.

If the analyses were quasi-static, these dimensionless parameters would be sufficient

to characterize the formulation. However, dynamic, rather than quasi-static, analyses are

carried out because, even though the response is generally quasi-static, dynamic snapping

can occur due to the up-down-up shape of g(εp) (see Fig. 5.2). Hence, a density needs to

be specified and is taken to be ρ = 10−14 σ0(ε̇ref/H)2 in non-dimensional form.

For σ0 = 0.1 MPa, H = 75 µm and ε̇ref = 25 s−1, we have E = 10 MPa and

ρ = 1.11 × 10−4 MPa/(m s)2 (ρ = 111 kg/m3). Also, vz = 7.5 µm/s and trise = 0.2,

which corresponds to the applied displacement achieving its constant value when the over-

all strain, uz(r,H, t)/H , reaches 0.01. All of these values are of a similar order to those in

the experiments.

Axial gradients in E and σ0 are incorporated into the material through multiplication

of these variables by a dimensionless function Q(z), where Q(z) ≡ 1 corresponds to the

case in which there is no gradient with z evaluated at the center of the element for which

the rescaled E and σ0 values are being calculated.

5.3 Results and Discussion

Implementation of the model, outlined in Section 5.2, and subsequent exploration of the

parameter space resulted in capturing many of the qualitative features of CNT pillar de-

formation seen in experiments (Fig. 5.1). Interpretation of the parameters that lead to

sequential periodic buckling in axisymmetric pillars enables the generation of hypotheses
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regarding buckle characteristics (e.g., wavelength and amplitude) given a relationship be-

tween the CNT microstructure and the hardening function. The qualitative results from an

example set of parameters are summarized by Fig. 5.3 in which an experimental nominal

stress, σn = P/A0, versus true strain, εt = ln (1 + εn), response from a uniaxial compres-

sion experiment [44] is shown in Fig. 5.3a for reference. We plot the analogous response

from a simulation (Fig. 5.3(b)) in terms of the nominal stress, σn = P/[πR2], and true

strain, εt = − ln [(H + uz(r,H, t))/H], where P is the sum of the nodal forces in the z

direction at the top of the pillar. In both the experiment and the simulation, the area of the

b)a)

c)

Figure 5.3: Summary of buckle formation phenomena captured by simulations utilizing
the proposed constitutive relation. a) Experimental data from a pillar microcompression
[44]. Inset shows a closeup of the strain region from 0 to 0.3. b) The overall nominal
stress, force/original area, and true stress, force/current area, versus true strain response
from a simulated pillar undergoing periodic sequential buckling. Arrows mark the strains
at which the outer displacement profiles are plotted in c). c) Outer displacement profiles
corresponding to strains directly following a softening event and illustrating simultaneous
buckle emergence.
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top of the pillar is nearly constant during the process of sequential buckling so that the dif-

ference between nominal and true stress is negligible over the majority of the range during

which buckling occurs.

In both stress-strain responses in Fig. 5.3 there is a noticeable transition from the linear

elastic region to the (sloped) plateau region. An inset of the experimental data is given

in Fig. 5.3(a) in order to facilitate comparison with Fig. 5.3(b). The model gives similar

behavior as illustrated by a comparison of the ratio of the stress at a strain of 0.2 to the

stress at the beginning of the buckling regime (εt = 0.05) in Fig. 5.3(a) to the same ratio for

strains of 0.2 and 0.015 in Fig. 5.3(b). These ratios are around 1.3 in both cases. Periodic,

local softening events occur within the plateaus and each corresponds to the formation of a

new buckle. For the simulations, this finding is illustrated by a collection of curves showing

the evolution of the outer surface, ur(R, z)/R versus z/H , (Fig. 5.3(c)) at several discrete

values of the overall pillar strain, εt, that immediately follow a softening event. These strain

values are indicated by arrows in Fig. 5.3(b) where both nominal and true (force/current

area) stress values are shown. The outer displacement profiles clearly identify sequential

buckle formation beginning at the bottom and progressing to the top. As in experiments,

nearly all of the deformation is accommodated through the formation and evolution of

localized buckles with the topmost region of the pillar remaining undeformed throughout,

as evidenced in the strain contour plots in Fig. 5.3(c). All the simulation results in Fig.

5.3 correspond to the parameters defined in the caption to Fig. 5.2 and include a linear

gradient, Q(z), that gives values of σ0 and E at z = H that are of 40% of their values

at z = 0. Subsequently, we discuss the effect of an applied gradient on the overall pillar

hardening.

The responses shown in Fig. 5.3 are approximately quasi-static since the total kinetic

energy of the system remains around 2% of the input work throughout the short rise time

discussed in Eq. (5.7), during which the structural response is largely elastic, and then

drops to less than 1% for the remainder of the calculation.

A parameter study on the effect of strain rate is not carried out here. However, we

have carried out calculations in which the strain rate is increased from the imposed value

in Fig. 5.3 by a factor of 2 and decreased from that value by a factor of 1/2 (with all other
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parameters fixed). As expected with a strain rate exponent of m = 0.02, the effect of

changes in strain rate on the stress magnitude is small. The main effect is that the average

stress drop that occurs with each buckling event is somewhat greater when the strain rate

is doubled and somewhat less for the case when the strain rate is halved. This trend is in

agreement with experiments carried out over 3.5 orders of magnitude in strain rate [44]

where it was observed that the magnitude of the stress undulations during buckling was

greater at larger strain rates.

 = 0.03  = 0.09  = 0.18  = 0.25


t t t t

r r r r
zzzz

p

Figure 5.4: Series of strain contour plots and deformed meshes clearly showing sequential
deformation and the relatively undeformed upper region of the pillar.

In exploring the model’s parameter space, we found that the range in which buckle for-

mation occurs, and where energy absorption is most effective, is limited. Within that buck-

ling domain, we explore the separate contributions of the flow strength function’s ‘well’

width, formed by the intersection of the softening and rehardening slopes, and magnitude

of the softening slope, h2, to changes in buckle morphology. Some calculations are carried

out for a homogeneous pillar. However, based on images taken along the VACNT pillar

height, there is reason to believe that there is an axial density gradient. Therefore, we in-

vestigate the effect of gradients in the onset of plastic flow, σ0, and elastic modulus, E, for

a single set of parameters. In order to illustrate the range of and reason for the limited buck-

ling domain, a typical series of responses corresponding to selected flow strength functions,

g(εp), are shown in Fig. 5.5. All have fixed hardening slopes, h1 = 5 and h3 = 1.5, with

ε1 = 0.005, but vary in the location of their minima, marked by the symbols in Fig. 5.5(a).
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For example, a hardening function corresponding to a minimum at ε2 = 0.1 and 55% of

a) b)

d)

f)

c)

e)

Figure 5.5: Influence of the ‘well’ minimum position on the formation and morphology of
buckles. (h1 = 5, h3 = 1.5,ε1 = 0.005) a) Minima locations tested. Domains are denoted
by (closed circles) buckling, (pluses) base-only buckling, (open circles) instability domi-
nated, (diamond) base flow, and (squares) bulk flow. (b)–(f) Representative displacement
profiles at r = R for overall strain levels of εt = 0.05, 0.10, 0.15, and 0.20 for each of the
domains.
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h/σ0 (h2 = 5.0) exemplifies the buckling domain (filled circles) through the series of outer

displacement profiles given for overall pillar strains of εt = 0.05, 0.10, 0.15, and 0.20 (Fig.

5.5(a)). Outside of this buckling regime there are several types of behavior that can be

roughly categorized into four groups. First, the instability domain (open circles), occurs

where minima are located at similar strains but at a greater depth than that for the buck-

ling domain, i.e., they possess a large softening slope h2. Here, periodicity is completely

lost and the deformation is dominated by local instability arising from the large magnitude

of h2. Diagonally upward, at greater strain from the buckling domain, lies the base-only

buckle domain (pluses). Here, the local instability due to softening is somewhat preserved,

as evidenced by the small waves localized at the pillar base, however, the depth of the min-

imum has decreased so much that the behavior begins to approach that of a typical foam,

i.e., a hardening function in which the softening region is replaced by a flat line, h2 = 0.

Continuing toward minima at larger strain but similar depth, there is a bulk flow domain

(open squares) where the the magnitude of (|h2|) has considerably decreased to the point

that the presence of a local minimum has no noticeable contribution. Here, local flow is

large and, as a result, the pillar undergoes extensive flow in a manner that is nearly identical

to that seen for typical foam-like simulations (h2 = 0). Finally, holding the magnitude of

h2 approximately constant while extending minima to greater strains we enter what we call

the base flow domain (open diamonds). In this domain, a large strain occurs only at the

base of the pillar. Periodic buckles do not form as the extensive deformation, due to the

large strain position of the minima, damps out any surface fluctuations that would form. It

is noteworthy that all of the simulations shown in Fig. 5.5 were generated with no gradient,

Q(z) ≡ 1.

As a result of these observations of the different morphological domains and their de-

pendence on the character of the flow strength, g(εp), it becomes clear that a balance be-

tween the magnitude of h2 and the size of the ‘well’ in g(εp) must exist in order to obtain

the experimentally observed buckle morphology. In particular, it is evident that the local

flow due to the ‘well’ size (i.e., width) must be limited enough that it does not wash out

the undulations that form. Another way to state this is that the material must be strain con-

strained. We interpret this within the known morphology of VACNTs by noting that the
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intertube interactions (entanglement, van der Waals, etc.) limit the local strain that can be

experienced by the material. The local softening captured by h2 arises from the high aspect

ratio of the CNT struts which individually undergo a large drop in stiffness by buckling in

uniaxial compression. We propose then that local strain constraint, combined with the high

aspect ratio of the CNT struts, gives rise to the complex buckling behavior seen in so many

VACNT compression experiments. It should be noted that only a variation in the extent of

these domains is seen for changes in the value of the hardening coefficient h3 in Eq. (5.5)

as variations in h3 give rise to similar domains that have the same relative positions with

respect to each other.

Within the buckling domain, variations in buckle wavelength and amplitude can be

decoupled from one another through control of specific characteristics of the hardening

function. These findings are summarized in Fig. 5.6. We define ∆εw as the plastic strain

range from the value of εp at which the function g(εp) in Eq. (5.5) first attains a maximum

to the value of εp at which g(εp) attains that value again as as illustrated in Fig. 5.6(a). ∆εw

characterizes the width of the ‘well’ in the flow strength function, g(εp). We find that with

the depth of the minimum in g(εp) and the value of h2 held constant while varying ∆εw,

the wavelength of the buckles remains the same and the amplitude increases (Fig. 5.6(b)).

We quantify the changes in amplitude through a sine wave fit of the buckling region and

define the relative change in amplitude, ∆a, as

∆a =
a∆ − a0
a∆+a0

2

. (5.8)

where a0 and a∆ are the amplitudes determined from fits of the results from the reference

parameters and from ±25% changes in ∆εw, respectively. An analogous expression was

used to quantify the relative changes in wavelength, ∆λ. A relative change in amplitude of

−16% was obtained for a 25% decrease in ∆εw and a relative change of 12% was obtained

for a 25% increase. The respective variations in wavelength of the buckles, ∆λ, were

−2% and 3%. Analogously, holding the depth of the minimum of g(εp) and ∆εw constant

while varying h2, the amplitude of the buckles is much less affected while the wavelength

decreases (Fig. 5.6(d)). A sine wave fit revealed relative changes in ∆λ of 7% and−4% for

a 25% decrease and a 25% increase in h2 with ∆s varying by −2% and 0.5% respectively.
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Figure 5.6: Variation in buckle wavelength and amplitude as a function of changes in ∆εw
and in the magnitude of h2. a) Schematic indicating the variations in the hardening func-
tion, g(εp), considered for 25% changes in ∆εw. (red/squares = decreased, blue/circles
= increased) b) A series of displacement profiles at r = R corresponding to the harden-
ing functions in a). An increased value of ∆εw leads to increased buckle amplitude. c)
Schematic indicating the variations in the hardening function for 25% changes in the mag-
nitude of h2. (red/squares = decreased, blue/circles = increased) d) A series of displacement
profiles at r = R corresponding to the hardening functions in c). An increased magnitude
of h2 leads to decreased buckle wavelength.

If h2 is fixed and ∆εw varied (or vice versa), while the depth of the minimum in g(εp)

is allowed to change, the wavelength and amplitude variations are much more strongly

coupled, and the buckle morphology varies in a way that precludes extracting a simple

trend.

These correlations between the changes in h2 and ∆εw and the resulting variations in

buckle wavelength and amplitude can be qualitatively related to real VACNT materials
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as follows. If we presume that the ability of a VACNT material to flow is constrained

by the tube-to-tube interactions, we expect that a more dense (number of tubes per unit

volume) material would produce smaller amplitude buckles due to its increased number of

interactions and therefore decreased deformability. If the magnitude of the negative slope,

h2, is correlated with CNT strength in compression (i.e., smaller diameter tubes soften with

a greater slope than larger diameter tubes), we expect that a material made with smaller

tubes would have shorter wavelength buckles.

It has been speculated that the initiation of the sequential buckling phenomena observed

experimentally by several research groups was due to an axial density gradient in the mate-

rial [24, 44]. This is motivated by the observations of a lower CNT number density base of

similarly grown VACNTs as discussed in Chapter 3 and Ref. [35]. An axial gradient in the

number of load bearing members is expected to give rise to a corresponding inhomogene-

ity in stiffness and yield stress. Since the precise correlation between the stiffness and the

tube number density remains to be determined, we refer to it hereafter as a property gra-

dient. We explore the effects of such a property gradient within the simulation framework

by multiplication of E and σ0 by the function Q(z), where Q(z) = 1 corresponds to the

case in which there is no gradient. We find that changes in Young’s modulus, E, have very

little effect on the shape of the stress-strain curve or the overall buckle morphology, but are

included for completeness. We present the results of simulations with no gradient (black),

20% and 200% linear increases (blue/circles, red/squares), and a 10% linear decrease

(green/triangles) in Q(z) in Fig. 5.7. Here, in Fig. 5.7(b) we plot curves of true stress,

σt = P/[π(R + ur(R,H, t))
2] versus true strain, εt = − ln [(H + uz(r,H, t))/H]. Sim-

ulations with no property gradient give rise to sequential periodic buckling (Fig. 5.7(b)),

implying that buckle formation is robust against local density variations. The fixed con-

straint of the rigid substrate, as is the case for as-grown CNT bundles, we model by the

fixed displacement boundary conditions at z = 0. This constraint induces non-uniform

deformation, which promotes buckle initiation at the base of the pillar. The gradient in σ0

has a marked effect on the hardening slope of the plateau region in the overall pillar stress-

strain response as illustrated by the curves corresponding to 20 and 200% increases (Fig.

5.7(a)). Here, it is clear that the property gradient directly correlates with the overall pillar
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hardening as a 10× increase in property gradient yields an approximately 5× increase in

overall strain hardening. For property gradients that are sufficiently large, ∼ 400%, peri-

odic buckling is no longer obtained. In our calculations, even a small reverse gradient can

cause the sequential buckling to occur in the reverse direction (Fig. 5.7(c)), suggesting that

a plausible explanation for variation in top-first vs. bottom-first buckling [43, 60] is the

difference in the spatial location of the least number of load-bearing members within the

sample.

Although our model captures some of the key qualitative features of VACNT pillar

buckling, there are also some discrepancies between the model predictions and the exper-

imental observations. One marked difference concerns the number and size of buckles.

This could be due to a number of idealizations including, for example: isotropy and the

simple characterization of compressibility, such as the assumption of a constant value of

the compressibility parameter, B, in Eq. (5.4). In addition, contact between buckles is not

modeled.
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5.4 Summary

We report that a dynamic finite element implementation of an isotropic, viscoplastic solid

combined with a piecewise positive-negative-positive hardening function within an axisym-

metric pillar mesh geometry captures the main qualitative features seen in experimental mi-

crocompression tests on 50 µm VACNT pillars. These include sequential, periodic buckling

initiated at the base of the pillar and progressing to its top, strain accommodation nearly

entirely through the formation of localized buckles, a stress-strain response characterized

by an elastic loading followed by a low-hardening plateau, local softening events within

the plateau corresponding to buckle formation, and strain hardening within the buckle re-

gion due to an axial property gradient. We explore the parameter space that we use to

define a window in which buckle formation occurs, thereby providing understanding of the

microstructural mechanism behind buckle formation. Through this exploration, we find

that the buckle wavelength decreases with an increased magnitude of the negative hard-

ening slope and its amplitude increases with an increased width of the ‘well’ in the flow

strength function. Agreement with multiple experimental observations provides evidence

that the proposed constitutive relation is a reasonable starting point for developing a full

three dimensional, anisotropic constitutive relation for VACNTs. In addition, exploration

of the parameter space within the simple, isotropic model provides insight into the mech-

anisms governing VACNT deformation. Specifically, it is the strain-constrained nature of

VACNTs combined with the loss of load carry capacity accompanying the buckling of the

CNT struts that gives rise to the sequential periodic buckling that characterizes these ma-

terials in uniaxial compression. The model also reveals bottom-to-top buckling, even in

the case of homogeneity (no axial property gradient). However, we find that this buckling

sequence can be reversed (top-to-bottom) with a small inverse property gradient (having

lower strength at the top). Finally, we show that the value of the slope of this property

gradient directly correlates with a post-buckling increase in the overall pillar stress level.
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Figure 5.7: The effects of a gradient in σ0 and E on the pillar’s true stress-true strain
response. a) Input axial gradients, Q(z), applied to σ0 and E to give the responses in
b). b) Stress-strain responses from simulations having no (red/diamond), 20% and 200%
linear increasing (blue/circle, orange/square), and 10% linear decreasing (green/triangle).
c) Displacement profiles at r = R at four strain levels (εt = 0.05, 0.10, 0.15, and 0.20) for
the calculation with no gradient in σ0 and E. d) As in c) but for a 10% linearly decreasing
gradient. e) As in c) but for a 20% linearly increasing gradient. f) As in c) but for a 200%
linearly increasing gradient.
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Chapter 6

Summary and outlook

This work has been an early study on VACNTs. I have performed unique mechanical

experiments that have corroborated the bottom-first buckling sequence of VACNTs under

uniaxial loading. Additionally, I observe that these buckles form by initiating at a local in-

stability before propagating laterally across the pillar rather than collapsing as a single layer

all at once. I propose a constitutive relation implemented in a finite deformation, finite ele-

ment model that captures the sequential periodic nature of the buckles for an axisymmetric

cylindrical structure having similar boundary conditions and under uniaxial compression.

Interpretation of the behavior of this model and its dependence on parameters governing

the local flow of a material element indicates that the formation of sequential periodic

buckles is due to local flow constraint of the material, which demands the formation of

surface undulations in order to accomodate the overall applied strain. With these results as

motivation, several avenues of further research are apparent.

Several questions directly follow the work begun in this thesis. They include, first and

foremost, accounting for the material anisotropy in the constitutive relation of the finite

element model. With this included, I would expect to achieve much closer agreement with

experimental observations, particularly in terms of buckle wavelength. Additionally, in

order to capture and understand the initiation/propagation behavior observed in experiment,

a fully 3-D model is necessary. Both experimentally and theoretically, it would be useful

to perform a systematic look at the effect of aspect ratio and height as the latter has been

indicated to have an effect on buckle size [15]. All of these efforts would further the

development of the consitutive relation for VACNTs.
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Though not as rigorously addressed within this thesis, several other avenues of future

study have become apparent throughout the discussion. Foremost, a quick, robust, and ac-

curate method for measurement of VACNTs density or porosity in small quantities is essen-

tial for the cross-comparison of results. Even in macroscale samples, these measurements

are imprecise due to the low density of VACNTs. Additionally, control of the CNT growth

process will enable more systematic study of the microstructure-property relationship. In

particular, it will lead to an understanding of why some materials show near full recovery

while similar structures remain largely permanently deformed. These developments must

proceed simultaneously with microstructure characterization techniques to determine tube

number density gradients within structures and accurately measure the tortuosity of the

tubes.

With respect to their application as energy dissipative materials, development of either

growth techniques that increase CNT density or additives that strengthen the tube- to-tube

interactions are necessary to give these structures increased strength in macroscale appli-

cations. VACNT composite materials are one example of this application which stands to

benefit from understanding the tube-only response as begun in this thesis.
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Chapter 7

Nucleation of Charged Macromolecule
Solutions

The results presented in this chapter are a departure from the previous chapters and come

from work performed under the guidance of Prof. Zhen-Gang Wang during the first few

years of my graduate studies. They are included here for my own record as well as for the

fact that it is work that I performed and feel contributed significantly to my education as a

researcher.

As a whole, this initial work can be summarized as a mean field study of charged

macromolecule solutions in spherical geometries. The work presented in the next few

sections relates to homogeneous nucleation in this general type of solutions. Nucleation is

an important mechanism of first-order phase transitions in which discontinuities occur in

the order parameter(s) that characterize the two phases of a system. The initial phase may

exist in a metastable state near its coexistence value (stable with respect to infinitesimal

changes [1]) until a free energy barrier is overcome, allowing new phase formation. The

transition is made possible by the lower free energy of the new phase. A homogeneous

first-order phase transition takes place when a fluctuation in the order parameter(s) creates

a nucleus large enough to overcome this barrier and grow into the more stable phase. These

fluctuations are thermally induced, and the rate of nucleation varies depending on the height

of the free energy barrier [2].

Nucleation phenomena have significance in a variety of areas of modern science, such

as characterization of atmospheric nanoparticles [3], synthesis of zeolites [4], dewetting in

thin films [5], and creation of high quality protein crystals [6], which all utilize homoge-
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neous or heterogeneous nucleation mechanisms.

Classical and non-classical nucleation theories provide the means for gaining insight

into these phenomena. Classical nucleation can be summarized as the formation of a uni-

form drop of the more stable phase within the uniform metastable phase. The lower free

energy of the more stable phases encourages drop formation and growth, while formation

of a surface limits this growth and formation up to some critical nucleus size. This chapter

will discuss a proposed two-step mechanism based on the superposition of classical theory

with more complex, long-range Coulomb interactions.

Additionally, the density functional theory based framework developed to treat the two-

step nucleation mechanism can be adapted to a variety of charged macromolecule systems.

One example that I began study on is a calculation of the osmotic pressure of a charged

macomolecule confined to a sphere inspired by DNA in a viral capsid. Unfinished work

toward this purpose is given in Appendix F.

7.1 Introduction

Weakly charged polyelectrolytes and colloidal particles are of great interest due to their

rich phase behavior and relevance to biopolymers. For example, weakly charged polymer

solutions below the coil/globule transition and charged colloidal suspensions share many

properties with proteins in solution. Because protein structural determination still largely

relies on X-ray diffraction from high quality protein crystals, protein crystallization from

solution has been an area of active study. Recent work by Vekilov and co-workers on sev-

eral protein solution systems [7–10] suggests a two-step nucleation mechanism, whereby

the nucleation of the crystalline phase is preceded by the formation of a dense liquid-like

precursor. This two-barrier scenario predicts different features than implied by the more

common single-barrier model, such as the temperature dependence of the nucleation rate

[6, 8]. The nature of the dense liquid-like clusters is not clear. However, in order for there

to be two nucleation barriers in the formation of the bulk crystal phase, these clusters must

correspond to a local free energy minimum with respect to the size (which is one of the key

reaction coordinates). In this paper we explore one physical scenario due to long-ranged
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Coulomb repulsion, which can give rise to metastable cluster intermediates in the transition

between a dilute solution of monomers and a bulk, condensed phase.

The existence of large equilibrium clusters stabilized by charge has been demonstrated

previously for a charged colloidal system in the absence of excess ions by Groenewold and

Kegel [11]. In this case, the driving force for condensation due to short-range van der Waals

interactions is checked by the unfavorable long-range electrostatic repulsion between the

particles that increases superlinearly with the number of particles in a cluster, thus prevent-

ing the formation of a bulk condensed phase. In contrast, we are interested in clusters that

can further nucleate a bulk condensed phase. We propose that the presence of excess ions

that neutralize and screen charges on the monomers in solution provides the needed mecha-

nism for allowing the formation of a bulk liquid phase. We find that for some combinations

of parameters, a bulk condensation transition proceeds by going through a metastable clus-

ter state with a well-defined cluster size, and that the metastable cluster itself is formed

through nucleation, i.e., the overall process involves two nucleation barriers. While our

model may not be directly applicable to the crystallization of proteins from solution, we

believe the mechanism for condensation via metastable cluster intermediates to be quite

general, though possibly confined to a small region of the phase diagram, in systems hav-

ing short-range attraction and long-range repulsion, such as solutions of polyelectrolytes

[12], charged colloids [13], and globular proteins [14], which can exhibit both micro and

macro phase separations [15], with the former involving clusters of finite sizes.

Conditions giving rise to the metastable intermediate cluster behavior as well as the

nature of cluster formation are analyzed in the following sections. Our analysis employs

a simple capillarity model for the cluster that is commonly used in classical nucleation

theory, combined with the Poisson-Boltzmann equation for treating the electrostatic inter-

actions. In Sec. 7.2.1, we briefly review the classical nucleation theory and describe its

application to our system. In Sec. 7.2.2, the electrostatic contribution to the cluster free

energy is calculated using the Poisson-Boltzmann approach. We present the results of our

calculation in Sec. 7.3: We show the free energy of cluster formation as a function of size

and demonstrate several scenarios with respect to the stability of the intermediate clusters

for a specific set of parameters. The formation of clusters with preferred size is shown to
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be similar to the formation of micelles and a concentration similar to the critical micelle

concentration can be identified. Section 7.4 provides a summary of our results with some

concluding remarks.

7.2 Model Formulation

We consider a dilute solution of weakly charged particles (henceforth called unimers in

their unclustered state), which can be globular proteins, polyelectrolyte globules, or col-

loidal particles, each carrying an electric charge q. Without loss of generality, we take

the charge on the unimers to be positive. The system is maintained electrically neutral by

counter-ions that we assume to be monovalent for simplicity. In addition, the system con-

tains ions from salt, also assumed to be monovalent. Short-range attractions, e.g., van der

Waals or hydrophobic interactions, provide the driving force for the formation of clusters

and for potential condensation into a bulk phase; a schematic is shown in Fig. 1. As the fo-

cus of this work is on the metastable liquid-like clusters, we will not address issues directly

related to the formation of a crystal phase.

We study the formation of clusters and the eventual condensation into a bulk phase by

taking a nucleation perspective, i.e., by constructing the appropriate free energy of forma-

tion as a function of the size of the clusters. Since a cluster is formed from the surrounding

solution of unimers and in the presence of small mobile co-ions and counter-ions, it is

convenient to treat the volume enclosing the cluster as an open system, with chemical po-

tentials µ, µ+, and µ−, respectively for the unimers, the co-ions and the counter-ions. The

appropriate free energy is the change in the grand potential upon the formation of a cluster

from a uniform solution, defined as

∆W = Wc(m;µ, µ+, µ−, V )−Ws(µ, µ+, µ−, V )

= Fc(m,n+, n−, V )−mµ− n+µ+ − n−µ− + (ps + p+ + p−)V. (7.1)

In this expression, Fc(m,n+, n−, V ) is the Helmholtz free energy of a charged cluster of

size m, with n+ co-ions and n− counter-ions, and Ws(µ, µ+, µ−, V ) = −(ps + p+ +
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p−)V , with ps, p+, p−, the (osmotic) pressure of the unassociated unimers, the co-ions and

counter-ions, respectively; we have implicitly assumed that these pressures are additive for

the purpose of calculating Ws, which amounts to making an ideal solution (in the sense

of Henry’s law) approximation for these species. Since we do not explicitly consider the

solvent, for simplicity of terminology, we will often refer to the dilute solution as the vapor,

and the osmotic pressure as just the pressure.

We treat the cluster using a simple capillary model, i.e., taking it as a spherical of liquid

of uniform density with a sharp interface. While this is clearly a crude approximation and

there are many recognized pitfalls in its application to nucleation, for our present purpose,

the model is sufficient to capture most of the essential physics of interest without com-

plications that would be introduced in a more realistic but mathematically more involved

representation and solution.

With the use of the capillary model, it is convenient to separate the free energy change

into two parts: a contribution due to the short-range interactions in a hypothetical un-

charged system and a contribution due to the electrostatic effects. Hereafter we will use the

word “uncharged” when referring to the hypothetical uncharged system lacking co-ions

and counter-ions. We write Eq. (7.1) as

∆W = ∆W (0) + ∆W (e)

= [F (0)
c (m,V )−mµ(0) + psV ]

+ [F (e)
c (m,n+, n−, V )− n+µ+ − n−µ− + (p+ + p−)V −mµ(e)], (7.2)

where F (0)
c and F (e)

c are, respectively, the uncharged and electrostatic parts of the Helmholtz

free energy of the cluster (the translational entropy of the cluster is not included), and µ(0)

and µ(e), are respectively the uncharged and electrostatic parts of the chemical potential of

the unimers (µ(0) + µ(e) = µ), with the translational contribution contained in µ(0).

We now proceed to calculate these two free energy changes separately. We treat the

uncharged part using the classical nucleation theory and the electrostatic part using the

Poisson-Boltzmann approach.
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Figure 7.1: Schematic of a cluster of charge +Q within a monovalent co-ion and counter-
ion reservoir.

7.2.1 Free Energy without Electrostatic Interaction

We calculate the free energy of formation for an m-sized, uncharged cluster using classical

nucleation theory. The classical nucleation theory makes the simplistic assumption that the

free energy of a cluster can be dissected into a negative bulk free energy and a positive

interfacial free energy. Thus the grand free energy of a dense cluster of volume Vc having

interfacial area Ac is

Wc = −pc(µ(0))Vc + Acγ,

where pc is the pressure (the negative of the grand potential density) inside the cluster and

γ is the interfacial tension. The grand potential change upon creating a cluster of volume

Vc in an observational volume V from a homogeneous solution of unimers with pressure ps

is then

∆W (0) = −Vcpc(µ(0)) + Acγ − (V − Vc)ps(µ(0)) + V ps(µ
(0))

= −Vc
[
pc(µ

(0))− ps(µ(0))
]

+ Acγ. (7.3)

We now write the pressure difference in terms of the supersaturation relative to the phase

coexistence pressure of the hypothetical uncharged system.

To do so, we utilize the thermodynamic relation ∂µ/∂p|T = 1/ρ, where ρ is the den-

sity. It follows that the pressure difference is related to the difference in chemical potential

through pc−ps = (ρc−ρs)(µ(0)−µ(0)
coex) ≈ ρc(µ

(0)−µ(0)
coex) where µ(0)

coex is the chemical po-
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tential of the hypothetical uncharged system at vapor-liquid coexistence at which pc = ps.

Finally, assuming ideal gas behavior for the vapor phase, the chemical potential difference

can be written as µ(0) − µ(0)
coex = kT ln(ps/pcoex) ≡ kT ln(S). The resulting free energy of

formation is

∆W (0) = −kTρcV ln(S) + Acγ

= −mkT ln(S) + Acγ. (7.4)

To use Eq. (7.4) for the free energy of formation for a cluster of m unimers, the de-

pendence of the surface area on m needs to be specified. In the case of coalescing globular

polyeletrolytes, if we assume that the globules are uniform spheres of radius R1 and that

there is no change in the monomer density (as the polymers can deform and interpenetrate)

upon the formation of a cluster of radius Rc, then clearly

m = (Rc/R1)3 . (7.5)

On the other hand, hard spherical colloids pack less densely and therefore this expression

would need to be modified by inclusion of a packing factor. Throughout the rest of the

paper, we assume the former so that

Ac(m) = 4πR2
1m

2/3. (7.6)

The expression for ∆W (m) as given by Eq. (7.4) and Eq. (7.6) contains one of the

well-known inconsistencies of classical nucleation theory: the existence of a finite free

energy of formation for a cluster of one monomer. Resolution of this inconsistency is

subtle and has been discussed intensely by Lothe and Pound [16], Reiss and Katz [17, 18],

and more recently by Kusaka [19]. Rather than make use of these more rigorous methods,

which are unnecessary given the nature of the approximations we are making, we utilize a

simple corrected form that has been artificially shifted by taking the free energy relative to
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a cluster of size one,

∆W (0) = −kT ln(S) (m− 1) + 4πR2
1γ
(
m2/3 − 1

)
. (7.7)

We note that this shift has no consequence on the main results of this study.

Equation (7.7) is the expression for the free energy of formation of a cluster of m

unimers for an uncharged system. For S > 1, this expression predicts the well-known

behavior for nucleation of a dense liquid phase through a single nucleation barrier. No

metastable cluster is allowed. We next discuss the electrostatic interaction that provides the

necessary balancing force that makes the metastable clusters possible.

7.2.2 Free Energy of Electrostatic Interactions

It is easy to see how Coulomb repulsion can lead to a preferred cluster size. We first

consider the case of no counter-ions and no added salt.

In a cluster of m unimers each having a point charge q, the total Coulomb interaction is

given by

Ec =
1

2

∑
i,j 6=i

q2

4πε0εRij

,

whereRij is the distance between charges i and j, ε is the dielectric constant of the medium

(assumed uniform throughout V here), and ε0 is the vacuum permittivity. Since the average

distance between the charges scales as the size of the clusterRc, the electrostatic interaction

in a cluster of m charged unimers scales as

Ec ∼
q2

8πε0εRc

m(m− 1) ∼ q2

8πε0εR1

m5/3, (7.8)

where the second part follows from the relationship between the size of the cluster and the

size of the unimer, Eq. (7.5), and we have assumed m to be much larger than one.

When combined with the neutral part of the free energy ∆W (0) from Eq. (7.4), we see

that as the cluster size (number of unimers) increases, the free energy first increases due

to the positive surface free energy term, then decreases because of the negative bulk free

energy term, but increases again due to the positive superlinear electrostatic energy term,
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creating a free energy minimum at some intermediate size

∆W ∼ 4πR2
1γm

2/3 −mkT ln(S) +
q2

8π ε0εR1

m5/3;

this is in fact the same argument as given by Groenewold and Kegel [11].

While this simple scaling analysis predicts the existence of clusters with a preferred

size, the superlinear dependence of the free energy on m for large clusters excludes the

possibility of a dense bulk phase. Thus these mesoscopic clusters are fully stable. A dense

bulk phase is made possible by the combined neutralization and screening by the co-ions

and counter-ions. It is expected that bare Coulomb repulsion is dominant when the cluster

size is small, while neutralization and screening become effective when the cluster size

becomes sufficiently large, making the electrostatic free energy extensive again. Figure

7.2 shows the crossover from the m5/3 scaling to the linear scaling of the electrostatic free

energy as a function the cluster size. We now proceed with a more detailed description of

the calculation for the electrostatic part of the free energy of cluster formation.
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Figure 7.2: An example of the size dependence of the free energy of electrostatic interaction
(∆′W (e)) depicting m5/3 and m behavior for small and large clusters respectively. This
curve was obtained using cluster charge density, ρ0l

3
B = 0.08, Debye screening length,

λ/lB = 0.15, and dielectric constant ratio, ε1/ε2 = 0.2.

Consistent with our use of the uniform liquid model for the cluster, we assume the

charge distribution due to the clustering unimers to be continuous and uniform inside the

cluster with a constant charge density ρ0. This jellium model is similar to that used by
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Sear and Warren [20] in their calculation of the electrostatic contribution to planar sur-

face tension. We then include co-ions and counter-ions that equilibrate with the charged

cluster with ion density profiles c+ and c−. (We make the simplifying but inconsequen-

tial assumption that the cations from the salt are the same as the counter-ions for the

charged clusters of interest.) Superposition of these charge density profiles with the step-

function charge density profile of the cluster results in an overall charge density profile

ρ(r) = ρ0e θ(Rc − r) + ec+(r) − ec−(r), where θ(Rc − r) is a step function equal to one

inside the cluster and zero outside and e is the elementary unit of charge. Re-expressing

Coulomb’s law in terms of a variational integral by introducing the electrostatic potential

ψ(r) leads to the following expression for the electrostatic energy:

Ec[ρ(r), ψ(r)] =

∫
dr
{
ρ(r)ψ(r)− ε0ε

2
[∇ψ(r)]2

}
. (7.9)

The total electrostatic free energy must include the translational entropy of the mobile free

ions. Since the volume surrounding the cluster is semi-open: closed with respect to the

condensed cluster unimers, but open with respect to the co-ions and counter-ions, we add

the grand free energy due to these mobile ions. Treating the ions as volumeless, non-

interacting particles in contact with a reservoir of chemical potential µ2, we have the total

electrostatic free energy of the cluster as:

W (e) =

∫
V

dr
{
ρ(r)ψ(r)− ε0ε

2
[∇ψ(r)]2

}
+ kT

∫
V

dr
{
c+ ln(c+a

3)− c+ − c+βµ2

}
+ kT

∫
V

dr
{
c− ln(c−a

3)− c− − c−βµ2

}
.

(7.10)

The system volume (V ) is taken to be large enough to include the cluster and any variations

in ion concentration. The lengthscale, a, assumed to be the same for both types of ions, is

of no consequence in the results because of cancellation with its appearance in the reservoir

chemical potential, µ2 = kT ln(c∞a
3).

The spherically symmetric equilibrium ion concentration profiles c+ and c− and the

electrostatic potential are obtained by extremization of the free energy in Eq. (7.10) with
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respect to these variables. Variation with respect to the ion concentrations yields

c+(r) = c∞ exp [−βeψ(r)]

c−(r) = c∞ exp [βeψ(r)] ,

where β is the inverse thermodynamic temperature 1/kT . Substitution of these relations

back into the free energy Eq. (7.10) and subsequent variation with respect to ψ(r) results

in the Poisson-Boltzmann equation,

ε0ε∇2ψ(r) = −ρ0e θ(Rc − r) + 2kTc∞ sinh [βeψ(r)] . (7.11)

To reduce the number of independent parameters and gain better insight into the rela-

tive importance of the various physical effects, it is convenient to non-dimensionalize the

equations. To this end, we introduce the Debye screening length, λ = (8πbc∞)−1/2, and

the Bjerrum length, lB = βe2/(4πε0ε). We elect to express the length r in units of lB as

opposed to λ to avoid the complication of an ion concentration dependent length. Similarly,

the charge density ρ0 is non-dimensionalized as ρ0l
3
B. Finally, βeψ is the resulting dimen-

sionless electrostatic potential, ξ. The free energy of a charged cluster in an ion reservoir

expressed in terms of the above dimensionless variables is

W (e) = −kT
∫
V

r2dr

{
1

2
[∇rξ]2 +

(
lB
λ

)2

cosh [ξ(r)]− 4πρ0l
3
Bξ(r) θ(Rc − r)

}
. (7.12)

The corresponding non-dimensionalized Poisson-Boltzmann equation is

−∇2ξ +

(
lB
λ

)2

sinh [ξ(r)] = 4πρ0l
3
B θ(Rc − r). (7.13)

The ratio lB/λ is seen to be a natural parameter measuring the importance of screening.

It can be easily verified that in the limit of lB/λ = 0 or λ/lB → ∞, we recover the

electrostatic energy of a uniformly charged sphere.

For simplicity of presentation, thus far we have considered the dielectric constant to be

uniform. In reality, the two regions inside and outside the cluster will have different di-
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electric constants, ε1 and ε2, respectively. Apart from modifying the energy due to change

in the electrostatic potential, the difference in dielectric constant also results in a preferred

solubility of the ions within the region of higher dielectric constant due to difference in

the reference chemical potential in the two different media. This difference may be ap-

proximated using the Born solvation energy. The Born solvation energy is the free energy

change in transferring an ion with charge q and radius a from a medium with dielectric

constant ε to a medium with dielectric ε0 and is written

− q2

8πaε0

(
1

ε0
− 1

ε

)
.

Thus the difference in chemical chemical potential between an ion in dielectric medium

one versus an ion in dielectric medium two is given by

∆µ∗ = µ1 − µ2 = − q2

8πaε0

(
1

ε2
− 1

ε1

)

= − q2

8πaε0ε2

(
ε2
ε1
− 1

)
. (7.14)

In our case, ε1/ε2 is always less than one. Therefore, ∆µ∗ is always positive and it is ener-

getically unfavorable for the co-ions and counter-ions to enter the lower dielectric medium

within the cluster.

An analogous derivation to that just described can be performed in which the effect

of a difference in the dielectric constant between the cluster and the solvent is taken into

account. It requires two additional dimensionless groups, the ratio of the dielectric con-

stants ε1/ε2, and the difference in reference chemical potentials, β∆µ∗ = βµ∗1 − βµ∗2. The

expressions for this derivation are given in E. It is the solutions to these equations that are

presented in this section and Sec. 7.3.

The Poisson-Boltzmann equation is solved numerically using the Runge-Kutta method.

Boundary conditions arise from neutrality at an infinite distance from the cluster, ξ →

0 as r → ∞, and spherical symmetry, ∂ξ/∂r → 0 as r → 0. Additionally, across the

cluster boundary, we have the continuity of the electric potential, ξ(R−c ) = ξ(R+
c ), and the

electric displacement field, −ε1∇ξ(R−c ) = −ε2∇ξ(R+
c ).
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Solution of the differential equation that includes the dielectric constant discontinuity

(Eq. (E.2)) results in potential profiles and corresponding total charge density profiles like

those shown in Fig. 7.3 for clusters of different sizes, m. It is clear from these figures

that for small cluster sizes, e.g., m = 10, the charge of the cluster is essentially the bare

charge carried by the aggregating molecules, and the corresponding electrostatic potential

is barely distinguishable from that obtained from solving the simple unscreened Poisson

equation (with an inverted parabolic potential profile). For m = 100, we find that there is

now appreciable neutralization of the charge by the counter-ions in the center of the cluster

and the potential in the center nearly reaches the bulk asymptotic value. For the larger

clusters, m = 103 and m = 104, the neutralization of charge in the interior of the cluster

is almost complete. The charge that is not neutralized is distributed primarily near the

edge of the cluster with an oppositely charged region in the immediate vicinity outside the

cluster. The potential profile becomes essentially flat inside the cluster for these larger sized

clusters and decays to zero with a lengthscale on the order of the Debye screening length.

For clusters whose radii are much larger than the Debye screening length, it is possible to

write the electrostatic free energy of the cluster as a volume term and an interfacial term,

with a negative interfacial tension [20, 21].

The crossover from the small cluster to the large cluster behavior in the electrostatic

potential and charge density is consistent with the crossover in the free energy shown in

Fig. 2. It is this crossover that is largely responsible for the two-barrier nucleation scenario

in the condensation of the molecules.

7.2.3 Total Free Energy

By construction, we have written the total free energy of cluster formation as composed of

an uncharged part and an electrostatic part. Referring to Eq. (7.2), the free energy expres-

sion derived in Sec. 7.2.1 accounts for the terms in the first bracket of the second equality

in Eq. (7.2), while the electrostatic free energy described in the last section corresponds

to the first three terms in the second bracket. It is straightforward to include the remaining

bulk osmotic pressure terms due to the co-ions and counter-ions in a uniform solution by
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Figure 7.3: The electrostatic potential profiles (a) and total charge density profiles (b) ob-
tained from the Poisson-Boltzmann equation (Eq. (E.2)) for cluster radii of increasing
radius.

defining a free energy difference ∆
′
W (e) using W (e) from Eq. (7.10) yielding

∆
′
W (e) = W (e) − kT

∫
V

dr 2c∞, (7.15)

which has no effect on solution of the governing differential equations. To complete our

total free energy, we need to account for the last term in the second bracket of Eq. (7.2).

By our definition, µ(e) is the excess chemical potential of the unassociated unimers due

to the electrostatic self interaction within the globular cluster. We treat the unimer in a

manner identical to that for the cluster, i.e., regarding it as a uniformly charged sphere

surrounded by mobile co-ions and counter-ions. The excess chemical potential is then

logically identified as the special case of Eq. (7.15) when m = 1. The total electrostatic
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free energy that accounts for all the terms in the second equality of Eq. (7.1) is then

∆W (e) = ∆
′
W (e)(m)−m∆

′
W (e)(1). (7.16)

and the total free energy of cluster formation is

∆W = ∆W (0) + ∆W (e). (7.17)

This expression yields the free energy of formation of an m-sized cluster for a given set of

parameters: λ/lB, R1/lB, ρ0l
3
B, ε1/ε2, the interfacial tension γ, and the supersaturation S.

Its behavior as a function of m provides information about the thermodynamic stability of

the clusters, their size distribution, and their role in the formation of a dense bulk phase.

7.2.4 Bulk Phase Coexistence

In Sec. 7.2.1, the supersaturation S is introduced with reference to the coexistence vapor

pressure of a hypothetical uncharged system. For this hypothetical system, a bulk conden-

sation occurs at S = 1. The addition of electrostatic interactions shifts the value of the

coexistence supersaturation from one, for an uncharged system, to a value greater than one,

for the charged system. Its new value is determined by the condition that the extensive

terms (∝ m) in the total free energy of cluster formation must sum to zero in the limit

of m → ∞; this is equivalent to the equality of the grand potential between the dilute

solution of unimers and the condensed phase (within the same volume), i.e, the equality

of (osmotic) pressure. From our expression for the total free energy, it is straightforward

to show that the coexistence “supersaturation” (that is the supersaturation relative to the

coexistence pressure of a hypothetical uncharged system) is given by:

Scoex = exp

[
1

kT

(
w

(e)
bulk −∆

′
W (e)(1)

)]
,

where w(e)
bulk = limm→∞∆

′
W (e)(m)/m. The full algebraic expression for w(e)

bulk is somewhat

cumbersome and is given by the following expression where, in the limit of cluster size ap-
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proaching infinity, ξ is constant
(

= sinh−1

[
4πρ0b

3
(
λ
lB

)2

e−β∆µ∗
])

, and the free energy

becomes

w
(e)
bulk

m
= −kT

(
lB
λ

)2
R3

1

3

[
e−β∆µ∗

√√√√1 +

(
4πρ0l3B

(
λ

lB

)2

eβ∆µ∗

)2

− 4πρ0l
3
B

(
λ

lB

)2

sinh−1

(
4πρ0l

3
B

(
λ

lB

)2

e−β∆µ∗

)]
.

Note that while there exists an algebraic form for w(e)
bulk, we still must solve the Poisson-

Boltzmann equation to obtain the electrostatic energy of a unimer, W (e)(1).

We now have a reference with which to judge whether any clusters formed are metastable

with respect to the dense-liquid phase, and therefore can take part as an intermediate in bulk

phase formation.

7.3 Results and Discussion

Before presenting and discussing the main results of this study, we first revisit the physics

leading to cluster formation and discuss the limits of their existence and their relation to

bulk phases. As discussed in Sec. 7.2.2 and illustrated in Fig. 7.2, there are two main

regimes associated with the electrostatic part of the free energy of formation, the superlinear

(m5/3) and the linear (m) regimes, corresponding to highly charged and largely neutralized

clusters, respectively. The interplay between the location and magnitude of these regimes,

the surface tension, and the solution supersaturation gives rise to several possible behaviors

involving preferred-size clusters.

In order to obtain the two-barrier free energy curve we discuss here, the electrostatic

and the uncharged free energies must be of the same order of magnitude. This results in rich

phase behavior, but limited cluster sizes. The size of clusters is limited by the size range

of the m5/3 region in Fig. 7.2. In other words, clusters acting as metastable intermediates

can be no larger than the size (m) at which the ∆W (e) dependence changes from m5/3 to

linear. While very large clusters (m > 104) are predicted under certain conditions, we find

that these clusters do not exist in a state metastable to the bulk liquid, i.e, the bulk liquid
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state does not exist for these conditions. It may be possible that these large clusters are

metastable with respect to a more stable crystalline state; this possibility will be examined

in future work.

We now briefly discuss the parameters used in our model. An ion concentration c∞

in the range of 0.8 M–8 mM in water (physiological salt concentration = 0.2 M) with a

dielectric constant of 80 (ε2 in our notation) results in the parameter λ/lB ranging from

0.25 to 25, the Bjerrum length being 7 Å. We choose λ/lB = 15 for our representative

calculations. The dielectric constant within proteins, ε1, is difficult to estimate; however

values from 4 to 20 [22] have been theoretically estimated and used, resulting in corre-

sponding ε1/ε2 values of 0.05–0.25. In our representative calculations, we set ε1/ε2 = 0.2.

Decreasing ε1/ε2 increases the electrostatic free energy W (e) as well as results in a slight

increase in the cluster size at which crossover between the m5/3 and m behavior occurs.

For the interfacial tension, we use γ = 0.95 kT/l2B = 8 mN/m, which is intermediate

between a clean oil/water interface (50 mN/m) and tensions measured in colloidal phases

(1–20 µN/m) [20]. We use a low charge density ρ0l
3
B = 0.08. This charge density is on the

same order of magnitude as many globular proteins. Low charge density is necessary in

order to still allow for a bulk condensation. In the case of polyelectrolytes, the low charge

density is also necessary to ensure that the collapsed polymer is in the globular regime, not

in the necklace regime [23]. Finally, we choose R1/lB = 1 for the unimer size. We choose

this size because it most clearly illustrates the behavior we wish to highlight. This size is

on the smaller end even for proteins. For larger unimer size, the range of the superlinear

dependence of the free energy electrostatic interaction decreases, thus decreasing the ag-

gregation number of the metastable clusters, other conditions being equal. On the other

hand, smaller sizes for charged unimers are relevant for other systems, e.g., in zeolite or

nanoparticle synthesis [24, 25].

The main result of this study is summarized in Fig. 7.4, which shows the free energy

of formation as a function of the cluster size for increasing values of the supersaturation

(or equivalently the unimer concentration). At small supersaturation, the only minimum of

the free energy curve occurs at m = 1. As supersaturation increases beyond some critical

value (curve A), a local minimum in the free energy for a finite-sized cluster first begins
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to develop. As the concentration of unimers increases, the free energy of the finite-sized

cluster decreases, with an attendant shift in the location of the minimum to larger cluster

size. When the supersaturation exceeds that corresponding to the vapor-liquid coexistence

(curve B, indicated by Coex.), the global free energy minimum is that of the bulk liquid

phase (i.e., infinite cluster size) and the vapor phase becomes metastable with respect to the

stable bulk liquid. However, the formation of the bulk liquid phase requires overcoming two

barriers, the first for the formation of the finite-sized clusters and the second for the clusters

at the free energy minimum to grow into the bulk liquid phase. We thus have the scenario of

a two-step nucleation process with the clusters of finite sizes acting as long lived metastable

intermediates. The lifetime of these metastable clusters is determined by the barriers on the

two sides of the minimum. For the range of parameters we use in our study, the typical free

energy barrier for the dissolution of the clusters is on the order of 10 kT , depending on the

supersaturation. The barrier to the formation of the bulk liquid phase can be quite large

(which also implies large critical nuclei), again depending on the supersaturation, due to

the strong electrostatic interactions. In reality, these large clusters are more likely to take

other shapes, such as disks or rods [11], to decrease the electrostatic repulsions; this would

lead to a decrease in the second nucleation barrier. For sufficiently large supersaturation,

the second nucleation barrier disappears (curve F) and the condensation into a liquid bulk

phase proceeds through a simple single-barrier scenario.

In addition to the metastable liquid-like clusters that can be intermediates in the bulk

phase transition, in other words, that result in two nucleation barriers like those shown in

Fig. 7.4, our model also predicts the existence of clusters that are metastable or stable with

respect to the dilute solution, with no possibility for bulk liquid formation. [We clarify

that the terms “stable” and “metastable” are used in the sense of Fig. 7.4: The clusters are

considered stable with respect to the solution phase if the minimum in their free energy

of formation from the solution phase is negative (curve E for example), and metastable if

the minimum of the free energy of formation is positive (curve C). Curve D denotes the

limit of this stability.] The case of metastable clusters with respect to the unimer solution

phase, whether a bulk liquid exists or not, may be reasonably described by our model, as the

number density of the clusters formed will be small due to the positive free energy required
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for their formation. In the case where the clusters are more stable than the solution of

unimers, we expect that the clusters will appear in large numbers; cluster-cluster as well as

unimer-cluster interactions become important and our picture of non-interacting clusters is

no longer valid. In all likelihood this latter case would correspond to microphase separation,

which is beyond the scope of this work.
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Figure 7.4: Total free energy of cluster formation for six increasing values of supersatura-
tion (S).

Figure 7.4 demonstrates that several phase transition scenarios are possible as the su-

persaturation varies. Clearly the transition scenarios will depend significantly on the extent

of screening. Since the unimer concentration is proportional to S, and the reservoir ion

concentration is proportional to (lB/λ)2, these serve as the natural controlling parameters

in experiments. We thus present in Fig. 7.5 a generalized “phase diagram” in S and λ/lB

that illustrates the different phase transition scenarios. In this “phase diagram,” the dash

line designates the vapor-liquid coexistence. Region II corresponds to stable dilute solu-

tions, while in region I a supersaturated dilute solution phase will turn into the bulk liquid

phase via the normal one barrier nucleation. Note that region I corresponds to high screen-

ing and/or high supersaturation. The region bounded by the two dotted lines is the region

where finite-sized clusters have a free energy minimum. With reference to Fig. 7.4, the

lower dotted line corresponds to the first appearance of a shoulder on the left (curve A),

while the upper dotted line corresponds to the disappearance of the barrier on the right

(curve F). The dash-dot line denotes the supersaturation at which the free energy of forma-
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tion of the clusters becomes zero (curve D). Thus, regions III and VI correspond to clusters

that have lower free energy than the unimers. As alluded to in the last paragraph, the ener-

getic favorability for forming the clusters will lead to a high concentration of clusters which

is outside the regime of validity of this study. Regions IV and V are the most interesting

from the perspective of this work. Region IV corresponds to metastable preferred-size

clusters that cannot grow into bulk liquid, while in region V the metastable clusters serve

as intermediates to the formation of the bulk liquid. A two-barrier nucleation mechanism

operates in region V.
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Figure 7.5: The “phase diagram” for a unimer radius of 1 lB, dielectric ratio, ε1/ε2, of 0.2,
charge density, ρ0l

3
B, of 0.08, and surface tension, γ = 0.95 kT/l2B.

The formation of the metastable clusters with preferred sizes is akin to the formation

of micelles in surfactant solutions. To explore this connection, we calculate the cluster size

distribution and the partitioning of the molecules between unimers and clusters. Assuming

no cluster-cluster and unimer-cluster interactions, the cluster size distribution, i.e, the num-

ber density of m-sized clusters is directly related to the free energy of formation, ∆W (m)

[26]:

ρm ∝ e−β∆W (m) (7.18)

The proportionality involves a volume scale that arises from evaluation of the full partition

function of the clusters, including shape fluctuations. As such fluctuations are not included

in our mean-field calculation, we simply set the volume to be the volume of a unimer

4πR3
1/3. As the size distribution is dominated by the exponential term, uncertainties in this
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Figure 7.6: Cluster density profiles for varying supersaturations. The lower figure is ob-
tained by dividing the cluster density as obtained by Eq. (7.18) at a given cluster size by the
total number of clusters, obtained by integrating the profile generated by Eq. (7.18) over
the entire cluster size range, in other words from barrier to barrier in the energy profiles
shown in the upper figure.

volume factor should have little consequence on the results.

Figure 7.6 shows an example of the cluster size distribution (normalized by the total

number of clusters) for several values of the supersaturation (unimer concentration). The

bimodal nature of the distribution, with one peak for the unimers and one at some preferred

size, is very similar to the behavior of micellar solutions. However, the width of the dis-

tribution is fairly broad and also the cluster peak shifts significantly to larger sizes as the

supersaturation increases, in contrast to micellar solutions. In the case of micelles, the size

is determined primarily by local packing constraints [27], which severely limit the range of

size variations.

A quantity similar to the critical micelle concentration (CMC) can be defined for the

cluster formation by examining the partitioning of molecules between the unimers and clus-

ters. Because of the broad nature of the size distribution, we include the entire distribution

of clusters between the two free energy barriers. A typical plot is shown in Fig. 7.7.

In the case of surfactant solutions, CMC is usually defined to correspond to the condi-

tion at which the surfactant molecules are equally distributed as unimers and micelles. In

Fig. 7.7, this occurs at a scaled density ρ/ρcoex ≈ 1.15. [Here, ρcoex is the unimer density

at which coexistence occurs for the hypothetical uncharged system.] In our case, however,

a more dramatic change of behavior occurs at ρ/ρcoex ≈ 0.16. This condition corresponds
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Figure 7.7: An illustration of the critical micelle-like behavior of cluster formation. The
micellar (cluster) dissolution concentration (MDC) is denoted here by the dotted line.

to the first appearance of a local minimum in the free energy (curve A). Since the con-

dition corresponding to curve A sets the limit of metastability for clusters of finite sizes,

i.e., clusters with finite sizes can exist as entities with finite lifetime only beyond this su-

persaturation, it should be logically termed the micellar (cluster) dissolution concentration

(MDC), following a similar concept (the micellar dissolution temperature) introduced in

Ref. [28] in the study of micellar formation in diblock copolymer melts. For our current

system, the MDC is a theoretically more meaningful concept than the CMC.

For concentrations beyond the MDC, adding more molecules to the system essentially

only increases the number of clusters, with only small increases in the unimer density, simi-

lar to the behavior seen in micelles. Thus, once the clusters form, they provide a regulating

mechanism for the unimer concentration and hence for the value of the supersaturation,

thus limiting the driving force for nucleation of the bulk liquid phase. Therefore, for the

same nominal relative supersaturation, condensation through metastable cluster intermedi-

ates will take much longer than the simple vapor-liquid nucleation.

7.4 Summary

In this paper we have examined a simple model of liquid-like clusters with preferred sizes

that act as intermediates in the formation of a bulk liquid phase in solutions of charged
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macromolecules. Such clusters arise as a consequence of competition between the short-

range attractions that cause condensation and the long-range Coulomb interactions. The

presence of these clusters can lead to a two-barrier nucleation scenario, with the first barrier

associated with the formation of these clusters and the second associated with the growth

of these preferred-sized clusters into the bulk liquid phase. However, in order that these

clusters are only metastable and will eventually grow into a bulk liquid phase, charge neu-

tralization by counter-ions and screening by both co-ions and counter-ions are crucial. The

size of the clusters and the nucleation barrier from these clusters to the bulk liquid phase

are determined by a combination of these effects.

While this study is motivated by the experimental work of Vekilov and co-workers on

protein crystallization, direct application of our results does not explain the experimental

observations. Their more recent work reveals that the clusters that are involved in the

protein nucleation contain on the order of 105 or more protein molecules per cluster [9, 10].

This size is much too large to explain with our electrostatic model: The size in our case

is limited by the Debye screening length, which under our sub-physiological conditions is

100 Å, corresponding to 102–103 protein molecules. Experiments on protein solutions and

charged colloidal particles with depletion attraction show stable clusters with aggregation

number of order 10 [29]. Also, the typical charge on proteins is larger than the small charge

necessary to make the clusters metastable with respect to a bulk liquid (however, they can be

metastable to the crystalline phase). Therefore, our study seems to suggest that the clusters

in the protein nucleation are not due to electrostatic interactions. At present, the nature

of the intermediate clusters in the protein crystallization is still unclear, although Vekilov

and co-workers have recently suggested that the clusters are purely kinetic in nature as a

result of slow dynamics [9]. Kumar and co-workers suggest that patchiness is an important

feature in protein-protein interactions [30] and can give rise to slow relaxation dynamics

at high densities [31], leading to a delay in the crystal formation. In these scenarios, the

cluster intermediates observed in the work of Vekilov and co-workers would be some long-

lived amorphous dense regions in the protein solution. However if that is the case, it is

difficult to envision a two-barrier scenario for nucleation, which necessarily implies a free

energy minimum between two barriers.
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Although our results appear to exclude electrostatic interaction as the explanation be-

hind the intermediate dense-liquid clusters in protein crystallization, the behavior predicted

in this paper should be relevant and observable for many weakly charged macromolecular

and colloidal systems, based on our estimates of the parameter ranges for this type of be-

havior. It is therefore desirable to refine and extend this initial study using more realistic

models and more sophisticated approaches. For example, the use of molecular density

functional theory that properly accounts for the excluded volume, short-range attractions,

as well as electrostatic effects beyond the simple Poisson-Boltzmann approach, avoids the

capillary approximations and also allows the inclusion of a crystalline phase.

At the phenomenological level, our model shares many common features with several

systems that exhibit both macroscopic phase separation and aggregation into finite-size

clusters, such as diblock copolymer–homopolymer mixtures [32], and solutions of am-

phiphilic copolymers [33]. For example, Wu and co-workers have reported stable aggre-

gates with aggregation number ranging from 10 to several thousands (depending on tem-

perature and concentration) in aqueous solutions of the non-ionic hydrophobically modified

poly (N-isopropylacrylamide), between single-chain globules and macroscopic precipita-

tion [34, 35]. It is quite probable that these mesoglobules can also exist in a metastable state

relative to the dilute single-globule solution phase and macroscopically condensed phase,

in which case condensation will occur through a two-step mechanism similar to the one

proposed in our work.

Another interesting phenomenon that is hinted at by our results but cannot be addressed

due to our use of the single cluster picture, is the relationship between microphase separa-

tion and macroscopic condensation. In particular, the existence of a metastable microphase

separated state and its effects on the nucleation of a bulk dense liquid phase from a dilute

solution phase appears to be a problem worthy of investigation.
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Appendix A

Testworks Compression Method

The list of test segments comprising the compression method utilized in this thesis is given

in Figure A.1. I will briefly describe the purpose of each segment or group of test seg-

ments along with relevant details so that this method can be easily reproduced from the

information in this appendix.

Testing the Sample:

1–9 Prepare the indenter head for loading by placing it above the sample testing position

at a surface approach start position (usually uraw = 0 for the first test as discussed

previously) and turning on the CSM (25 Hz, 10 µN).

10–11 Perform the surface find by approaching at a sufficiently slow loading rate, 0.005

mN/s, and stores its position in ‘Raw Displacement at the Surface.’

12–16 Pull the indenter 1 µm away from the surface and turns off the harmonic oscillations.

17–25 Returns the indenter head to the surface of the pillar and waits for it to stabilize to

within 20 nm of that value before changing to a constant load hold during with the

drift is monitored until falling below a threshold of 0.5 nm/s. This new position is

marked with ‘Surface Marker.’

26 & 42 The loading loop which allows for multiple load-unload cycles, though only one was

used in this thesis.
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27–32 Calculates the displacement limit and loads at a constant prescribed displacement

rate until it is reached. The details of segment 30 are shown in Figure A.2.

33 A short hold at the maximum displacement to eliminate any lag between the indenter

position and values reported by the electronics (only really necessary for very fast

strain rates). Holds for 0.003 s.

34–39 Calculates the unload limit (10% of the maximum load) and unloads at a constant

prescribed displacement rate until it is reached. The details of segment 37 are similar

to those in Figure A.2, but with the loading direction being ‘Unloading’ and the rate

being a value set to the negative of the ‘Prescribed Displacement Rate.’

40 Another hold segment identical to 33.

41 Augmenting the load counter to determine if reloading is necessary.

43–44 Unloading the pillar completely (until the indenter reaches the surface location posi-

tion) and ending the sample test.

Characterizing the Machine:

45 Moving the sample tray out of the way so that the indenter head can be characterized

in air unimpeded.

46 & 74 A ‘Cycles Method’ loop for characterizing the machine response in air at ‘Num-

berOfCharPoints’ = 10.

47–48 Calculate the raw displacement position at which characterization should occur and

move to it.

49–52 If this is the first point characterized run the ‘NanoConfig’ segment to find the offset

and set the Gain to 3.

53–57 Turn on the CSM and allow it to reach a steady state.

58–67 Measure and monitor the phase angle until it reaches a constant value (changes of

less than 0.2 degrees over a 10 second hold).
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68–73 Take data and augment cycle (including store data acquired during the hold in seg-

ment 70.)

Figure A.1: List of test segments used for compression of VACNT pillars.
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Figure A.2: Screen capture of the Testworks PID parameters used for loading.
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Appendix B

Testworks Compression Method

The list of test segments comprising the DMA method utilized in this thesis is given in

Figure B.1. As in Appendix A, I briefly describe the purpose of each segment or group of

test segments along with relevant details so that this method can be easily reproduced from

the information in this appendix.

Testing the Sample:

1–15 Accomplish the same task as in 1.-11. in the compression test method in Appendix

A.

16 & 61 The loop for scanning through the displacement values to be characterized. (A ‘cy-

cles method’ loop.)

17–21 Calculate and go to the desired displacement for characterization.

22–23 Find the offset and set the gain to 5.

24–29 Wait for sample drift to be <1 nm/s while correcting drift so that characterization

occurs at the desired raw displacement.

30 Choose how many frequencies to test.

31 & 59 Loop over the series of frequencies to test.

32–35 Select and set the test frequency and oscillation amplitude allowing for a short stabi-

lization hold.
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36–38 Capture and use the harmonic load value that corresponds to that oscillation ampli-

tude. Another short hold for stabilization.

39–48 Wait for phase angle to reach a constant value. (1 degree change over a 5 second

hold.)

49–51 Gather data.

52–53 Turn off CSM.

54–58 Store gathered data.

60 Increment cycle number and store gathered data in cycles variables.

62–65 Reset system for similar characterization in air.

Characterizing the Machine:

Segments 66–106 perform the same overall task as the first loop in this test, i.e., holding

at several different raw displacements and running a series of steady-state frequency holds

at each. The only difference lies in segments 75 through 84 in which oscillation ampli-

tudes (harmonic load targets) are set in two different ways depending on if the frequency is

greater than 30 Hz or less than 30 Hz. These thresholds are based on some trial and error

values enabling measurement of the cleanest data possible.
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Figure B.1: List of test segments used for viscoelastic measurement of VACNT pillars.
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Appendix C

FIB Procedure for VACNT pillar

VACNT pillar geometries were milled using a FEI Nova 200 Dual Beam system in combi-

nation with the Selective Carbon Mill (MgSO4-7H2O) gas injection needle. The first step is

milling a 30 µm× 60 µm rectangluar viewing window. This window is necessary to obtain

tilted views of the milled pillar. The window must be milled first to minimize redeposition

on milled pillars. The is accomplished with a 7 nA current for 6.5 minutes (for 4 windows).

Following the large viewing window and small rectangular area at the end of the window

(30 µm × 5 µm) was milled to reduce redeposition that might interefere with the window.

A 5 nA current for 40 seconds was used on each individual window. Following the creation

of the series of windows, a series of decreasing annuli were milled at one end of following

the procedure outlined in Table C.1.
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Table C.1: Procedure for FIB milling 20 µm diameter VACNT pillars from a

continuous film

Outer Diameter [µm] Inner Diameter [µm] Current [nA] Time [s]

50 35 7 180

35 30 5 66

31 25 5 68

26 23 3 50

24 21 3 46

21.5 20.5 3 16

21 20 3 14

* After the first annulus, subsequent annuli were milled at a magnification of

2400×.
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Appendix D

Simulated CNT Images

Simulated VACNT microstructure images for image analysis verification are constructed

using the following series of steps.

1. A Gaussian distribution (µsat ≈ 128, σsat ≈ 20) of line intensity values is generated

for the number of lines desired in an image.

2. A 1400 × 1400 constant background of intensity µsat − 2σsat is generated.

3. Lines are drawn on the background image in order of increasing intensity. Lines that

would have intensity less than the background disappear. Each line has thickness

generated by a log-normal distribution having the same characteristics as those mea-

sured in the experimental images (Section 3.2.1). Lines are uniformly distributed on

the background with a Gaussian distribution of angles having a mean of 0 (vertical)

and standard deviation of π/32.

4. Gaussian noise with a mean of 0 and standard deviation of 0.02 is added to the lined

image.
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Appendix E

Free Energy Expressions for Differing
Dielectric Constants

Defining the Bjerrum length using the dielectric constant of the solvent, ε2, the free energy

expression for a cluster with dielectric constant ε1 within a reservoir with dielectric constant

ε2 is

W (e) = −kT
∫ ∞

0

r2dr

{
1

2

(
1 +

[
ε1
ε2
− 1

]
θ(Rc − r)

)
[∇rξ]2

+

(
lB
λ

)2 (
1 +

[
e−β∆µ∗ − 1

]
θ(Rc − r)

)
cosh [ξ(r)]− 4πρ0l

3
Bξ(r) θ(Rc − r)

}
.

(E.1)

The corresponding Poisson-Boltzmann equation is

−
(

1 +

[
ε1
ε2
− 1

]
θ(Rc − r)

)
∇2
r ξ

+

(
lB
λ

)2 (
1 +

[
e−β∆µ∗ − 1

]
θ(Rc − r)

)
sinh [ξ(r)] = 4πρ0l

3
B θ(Rc − r).

(E.2)
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Appendix F

Toward a DFT Approach to
Polyelectrolyte Behavior in Small
Systems

F.1 Introduction

The osmotic pressure of a solution is generally understood in terms of macroscopic, homo-

geneous systems. The following notes address the idea of osmotic pressure as defined for

small systems.

F.2 Theoretical Framework

In this section we obtain the appropriate free energy for a semi-open system employing an

implicit solvent model through the application of McMillan-Meyer solution theory. We be-

gin with the variational formulation for the free energy of a semi-open system including the

solvent. First, imagine a volume of interest, V , enclosed by a semi-permeable membrane

within a much larger system, Vtot. nm macromolecules (or monomers if the macromolecule

is a polymer) are trapped within V . Solvent and small ion molecules move freely accross

the membrane. Due to its size, the reservoir, Vtot−V , has a constant pressure, p0, and chem-

ical potentials µs and µi for the solvent and small ions, respectively. The total Hemlholtz

free energy for this system is
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Ftot(nm, Ns, Ni, V ;ns, ni) = F (nm, ns, ni, V ) + Fres(Ns − ns, Ni − ni, Vtot − V )

≈ F (nm, ns, ni, V ) + p0V − nsµs − niµi + Fres(Ns, Ni, Vtot).

The equilibrium number of solvent and ion molecules, ns and ni, are obtained from

minimizing Ftot with respect to these variables. In the limit of an infinite reservoir, the

approximation in the second line becomes exact, with the last term being a constant which

can be used to define the following thermodynamic potential

W (nm, µs, µi, V ;ns, ni) = Ftot(nm, Ns, Ni, V ;nsni)− Fres(Ns, Ni, Vtot)

= F (nm, ns, ni, V ) + p0V − nsµs − niµi (F.1)

with equilibrium conditions

∂W

∂ns
= 0 or

∂F

∂ns
= µs

∂W

∂ni
= 0 or

∂F

∂ni
= µi.

Pressure is given by the negative of the derivative of the Helmholtz free energy with respect

to volume at fixed number of molecules for all species. In this case, because of the variation

conditions with respect to ns and ni, this derivative, when applied to W , is at fixed nm, µi,

and µs. Thus we obtain

− ∂W

∂V

∣∣∣∣
np,µs,µi

= − ∂F

∂V

∣∣∣∣
np,ns,ni

− p0

= p− p0 = Π.

Therefore, if we obtain the potential W , its derivative with respect to V will yield the
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excess pressure of the macromolecule system with respect to a solvent and ion only system,

Π. This is the osmotic pressure by definition, i.e., the difference in pressure required to

equilibrate the macromolecule subsystem with the reservoir. The potential obtained in Eq.

(F.1) includes degrees of freedom from all molecules, but applying ideas from McMillan-

Meyer theory, we can eliminate the degrees of freedom of either the solvent, ion or both,

resulting in a simpler potential function, W ′.

While the W in Eq. (F.1) is technically for a closed system (given the minimization

of Ftot), in the thermodynamic limit it is equivalent to the maximum term of an analagous

semi-open system which we will also call W . This semi-open potential of the form given

by Eq. (F.1) suggests the following statistical mechanical expression:

W = −kT log Ψ(nm, µs, µi, V ) + p0V

= −kT log

[
Ψ(nm, µs, µi, V )

Ξ(µs, µi, V )

]
(F.2)

where Ψ(np, µs, µi, V )is a semi-grand partition function open with respect to the solvent

and ions, but closed with respect to the macromolecule and Ξ(µs, µi, V ) is the grand parti-

tion function in the absence of the macromolecule, k is the Boltzmann constant, and T is

the temperature. Next, we manipulate Eq. (F.2) into an expression involving the potential

of mean force for the macromolecules so that we may eliminate explicit reference to the

solvent.

Ψ(nm, µs, µi, V ) =
1

nm!Λ3nm
m

∑
ns≥0

∑
ni≥0

exp(βnsµs + βniµi)

ni!Λ
3ni
i ns!Λ3ns

s

×
∫
d{rnm}

∫
d{rns}

∫
d{rni

} exp [−βU({rnm}, {rns}, {rni
})]

Ξ(µs, µi, V ) =
∑
ns≥0

∑
ni≥0

exp(βnsµs + βniµi)

ni!Λ
3ni
i ns!Λ3ns

s

×
∫
d{rns}

∫
d{rni

} exp [−βU({rns}, {rni
})]
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β is 1/kT , and Λm, Λs, and Λi are the thermal de Broglie wavelengths of the macro-

molecule (the monomer if it is a polymer), solvent, and ion molecules respectively. {rnj
}

represents the set of of njposition vectors, r, corresponding to molecules of type j. Divi-

sion of Ψ(np, µs, µi, V ) by Ξ(µs, µi, V ) amounts to an averaging over the solvent degrees

of freedom, which defines an effective potential

exp [−βUeff({rnm})] =
∑
ns≥0

∑
ni≥0

exp(βnsµs + βniµi)

ni!Λ
3ni
i ns!Λ3ns

s

×
∫
d{rns}

∫
d{rni

} exp [−βU({rnm}, {rns}, {rni
})

+βU0({rns}, {rni
})]

×exp [−βU0({rns}, {rni
})]

Ξ(µs, µi, V )

≡ 〈exp [−βU({rnm}, {rns}, {rni
}) + βU0({rns}, {rni

})]〉0 .(F.3)

where the average is taken with respect to the probability of finding solvent and ion molecules

in a solvent-ion only solution. In order to have a meaningful, finite-valued potential for a

single macromolecule or monomer we define an effective one-body potential, U1,eff , for an

isolated macromolecule or monomer in the solvent.

exp [−βU1,eff ] =
Ψ(1, µs, µi, V )

Ξ0(µs, µi, V ) V
Λ3

m

, (F.4)

where Ψ/Ξ is an average over the degrees of freedom analagous to that inUeff and V/Λ3
maccounts

for the translational freedom of the molecule in V . Subtracting Eq. (F.4) from Eq. (F.3)

amounts to a redefinition of the reference point for the potential, resulting in the potential

of mean force, UPMF({rnm}) = Ueff({rnm}) − nmU1,eff , the average potential the macro-

molecules in solution feel due to all interactions of and with the solvent. Now Eq. F.2 can

be written as

exp[−βW ] =
exp(−βnmU1,eff)

nm!Λ3nm
m

∫
d{rnm} exp [−βUPMF({rnm})] , (F.5)

which has the same appearance as a canonical partition function for a one-component sys-
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tem with interaction potential UPMF. Later on in our example calculation for a semi-dilute

polyelectrolyte confined within a semi-permeable shell, it becomes desirable to explicitly

keep the degrees of freedom for the ions. In this case we will have a potential of mean

force for the ions in solvent as well as inbetween the polymer and ions. By multiplying and

dividing the ratio of partition functions within the logarithm of (F.2) by the grand partition

function Ξs(µs, V ) corresponding to a pure solvent and going through similar steps as those

leading to (F.5), we obtain

exp[−βW ] = exp[−βnmU1,eff ]
ΨPMF(nm, µi, V )

ΞPMF(µi, V )
. (F.6)

ΨPMF is a semi-grand partition function (closed for macromolecule, but open for ions)

with macromolecules and ions interacting with potential of mean force and ΞPMF is the

grand partition function for the ions interacting with potential of mean force .

Because the effective one-body potential is independent of volume, it can be lumped

into the definition of W . Doing this, taking the logarithm of both sides of Eq. (F.6), and

multiplying by −kT yields

W (nm, µi, V ) = −kT log(ΨPMF ) + kT log(ΞPMF ). (F.7)

The first term defines the free energy a semi-open system interacting through potential

of mean force, FPMF (nm, ni, V ) − niµi. The second term is the free energy of an open

solvent mediated ion system, Π0V . Thus averaging over the solvent degrees of freedom

has allowed (F.1) to be rewritten in terms of implicit solvent interactions

W (nm, µi, V ;ni) = F (nm, ni, V ) + Π0V − niµi (F.8)

where Π0 can also be viewed as the osmotic pressure of the reservoir due to the ions in

solution.
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F.3 Osmotic Pressure for Small Systems

In this section, we adapt the general derivation in Section F.2 to the specific case of a

polyelectrolyte in the semi-dilute regime confined within a spherical capsule that is per-

meable to point-charge-like ions and solvent, which will be accounted for implicitly. The

general discussion above applies to macroscopic systems where the boundary between the

system and reservoir can be ignored. In other words, they are sufficiently uncoupled that

the reservoir is homogeneous. In small systems, long-ranged interactions of the system

with the reservoir leads to coupling between them that cannot be ignored and the additivity

assumed in the derivation of Eq. (F.1) does not apply. Thus, we need to modify the way we

look at the system in order to calculate osmotic pressure in these small systems.

F.3.1 Derivation of Osmotic Pressure

If we draw a sufficiently large volume, V , around the capsule, the reservoir becomes ho-

mogeneous, we may apply Eq. (F.8) in which the free energy, F (nm, ni, V ), includes

contributions from both inside and outside the capsule of volume VR = 4
3
πR3, and W be-

comes independent of V . To illustrate the latter, we increase the volume from V to V +∆V .

Because the boundary for V is far from the capsule, the composition in any volume outside

it is homogeneous. If ∆ni is the number of ions in ∆V , the change in W is

∆W = F (∆ni,∆V ) + Π0∆V −∆niµi. (F.9)

Since F (∆ni,∆V )−∆niµi = Π0∆V for a uniform system, ∆W equals zero, and W is an

excess free energy that is independent of V in the limit of sufficiently large V .

While W does not depend on V , it does depend strongly on VR through the dependence

of ni and F (nm, ni, V ) on VR. We now illustrate how the negative of the derivative of W

with respect to VR is the osmotic stress applied by the capsule wall. First, imagine the

capsule is an elastic shell with an unstressed area A0. For small expansion or contraction

to a new area, AR, the free energy cost is

Felastic =
1

2
κA−1

0 (AR − A0)2 . (F.10)
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So for the total free energy of the system consisting of the encapsulated solution, the lo-

cal reservoir to the encapsulated solution, and the elastic capsule is Ω = W + Felastic.

At equilibrium we have ∂Ω/∂ni = 0 from the variational condition for W in (F.8) and

∂Ω/∂VR = 0 from Felastic. From the second equilibrium condition we have

∂W

∂VR
+
∂Felastic

∂AR

∂AR
∂VR

= 0. (F.11)

From (F.10), ∂Felastic/∂AR = κA−1
0 (AR − A0) ≡ σ, where σ is the tension of the shell.

Therefore, the variation condition for VR yields

−∂W
∂VR

=
2σ

R
. (F.12)

By the Laplace-Young equation, the right hand side of the expression is naturally inter-

preted as a pressure difference between the inside and outside of the capsule shell.

F.4 Confined Polyelectrolyte in a Semi-Open System

The particular system to which we apply the previous arguments for the use of an implicit

free energy and definition of osmotic stress is that of a polyelectrolyte confined within a

spherical capsule permeable to the solvent and small ions, but impermeable to the polyelec-

trolyte. The free energy of this system may be constructed in parts. First, the free energy

of a polymer in the semi-dilute regime is given by Flory-Huggins and self-consistent field

theory. (The Flory-Huggins interaction parameter is zero because we are not interested in

phase change of the confined polymer.)

Fpoly =

∫
v

dr
1

v

{
(1− φ) ln(1− φ) +

b2

6

[
∇(φ1/2)

]2}
. (F.13)

Volumeless, free ions with varying number density c+ and c− and reservoir density c+|∞ =

c−|∞ = c∞ have free energy

Fions =

∫
v

dr {c+ ln c+ − c+ + c+ − (c∞βµ∞ − c∞)
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+c− ln c− − c− + c− − (c∞βµ∞ − c∞)} .

Finally, the electrostatic interaction should accounted for by the variational form of the

Poisson-Boltzmann equation.


