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Chapter 6 
Summary and Conclusions 
 

Two fabrication techniques were investigated as they pertain to the assembly of 

advanced solid oxide fuel cells. 

Polymer sphere lithography has been utilized to create two-dimensional metallic 

networks on fuel cell electrolyte materials. Although the fabrication process involves 

somewhat imprecise, random elements, the experimental variation from the expected 

geometries is extremely small. Under fuel cell operating conditions, the structures, and, 

hence, the 3PB and 2PB area fraction values, exhibit remarkable high temperature 

stability. These well-defined and well-behaved electrode structures access a wide range 

of 3PB regimes, lending themselves to future mechanistic studies on electrolyte-electrode 

material systems, as well as providing a strong experimentally correlated basis for 

computational modeling. Beyond mechanistic studies, these anti-dot structures have 

served as platforms for fabrication of three-dimensional electrodes. 

The cathodic electrochemical deposition of undoped and Sm-doped ceria has been 

developed in templated and template-free configurations to produce a variety of tunable 

anode microstructures. The strictly chemical nature of the deposition step allows these 

electronically insulating coatings to deposit onto non-conducting areas of substrates, 

insofar as they are close enough to an exposed metal surface. The end result is ubiquitous 

CeO2 coatings on thin, porous metallic networks overlaid onto YSZ/porous metal 

substrates, with quality metal|CeO2 and YSZ|CeO2 interfaces, which are morphologically 
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stable at high temperatures and reducing atmospheres. Deposition was also definitively 

shown to occur on two MIEC, fuel cell cathode materials—BSCF and SCN. 

To probe the activity of CELD Sm-doped ceria anodes, detailed, morphologically-

driven ACIS analyses were conducted, revealing two co-dominant, resistive processes for 

metal network embedded configurations. The LF arc was determined to be surface-

related; the HF arc was determined to be configurationally related, in particular to the 

resistance of electron migration through the SDC deposit on top of the metal regions, and 

the resulting restriction of the field lines to the nominal 3PB region. The LF arc was 

therefore taken to represent the true measure of surface activity for CELD ceria. The 

lowest extrapolated ASR values for this arc were shown to be in the range of 1.3 – 6.8 

mΩ cm2 at 650 °C in 97% H2 and 3% H2O. 
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Appendix A 
ImageJ Analysis Details 
 

The following describes the analytical approach to identifying and characterizing the 

pores of the anti-dot networks using the ImageJ software described in Chapter 2. The 

process is briefly illustrated in Fig. A.1. First, an as-taken grayscale SEM image is 

imported into ImageJ (Fig. A.1a); then, the data bar region is cropped and the rest of the 

image is converted into a true black-and-white image (Fig. A.1b). The ImageJ user can 

define a grayscale threshold cutoff value, above which the associated pixels are converted 

to purely black, and below which the pixels are converted to purely white. Consequently, 

the ideal SEM image to be analyzed is one where there is significant grayscale contrast 

between the circular pores exposing the electrolyte surface, and the metal network lying 

on top. Secondary electron imaging mode was chosen owing to its inherent contrast 

associated with topographical features (recall that the metal network is 200-400 nm 

thick). Back-scattered mode, which provides elemental materials contrast, added 

anywhere from 5-15% areal error due to pore shading; and in-lens mode, known for its 

high contrast imaging ability, was found to provide inconsistencies related to charging 

effects from the non-conducting YSZ. Care was taken to provide qualitatively consistent 

contrast in the SEM images across the entirety of the substrate, to ensure accurate and 

uniform threshold application.  

The resulting image (Fig.A.1b) is now a mixture of connected and disconnected 

black objects, which ImageJ can identify automatically. Problems arise, however, due to 

dark pixels that are not pore-related. The smaller dark objects can be automatically 

removed, and the image consequently cleaned up, as in Fig. A.1c. However, the messy, 
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larger unwanted dark objects remain—these are originally void areas left uncovered 

during the PS deposition process and result in planar metal regions after the thermal 

evaporation step. Fortunately, these areas are never circular, so a “circularity” filter can 

be applied when identifying objects. This filter is applied between Fig. A.1c and d. 

ImageJ defines a circularity of 1 to be a perfect circle, and 0 to be a straight line. In this 

way, fractal objects like these metal regions can be removed from the counting. Fig. A.1d 

is the final pictorial output of the ImageJ process, and shows which objects have been 

identified. Pore area (2PB), perimeter (3PB), and total pore coverage are all automatically 

enumerated. Depending on the pore size to be evaluated, different magnification was 

necessary to ensure accuracy—it was found that no more than 1500 pores could be 

evaluated from one image and retain acceptable levels of accuracy. 
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(a) 

(c) 

(b) 

(d) 

Fig A.1. The ImageJ image analysis process: (a) an as-taken SEM image; (b) cropping and conversion 
to black-and-white; (c) image clean-up; and (d) final image identifying the pores. 
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Appendix B 
Additional Images 
 

B.1 Additional CELD Images 

 

Fig. B.1. Angled (45°) SEM images of the HSA microstructure deposited at 0.8 mA cm-2 with a 0.05 M 
doped electrolyte for 5 minutes (a through d); and a 0.1 M undoped electrolyte for 5 minutes  (e and f). 

(a) 

(c) 

(b) 

(d) 

(e) (f) 
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Fig. B.2. SEM images of CELD thin films of ceria deposited at -0.55 V vs. SCE with the doped + H2O2 
electrolyte on thin films of Ni on silicon substrates for different times: (a) – (d) 5 minutes; (e) and (f) 10 

minutes. (a) shows an as-deposited crack that forms for thicknesses greater than 300 nm ceria films. (b) – 
(f) are images taken after annealing in an Ar atmosphere at 600 °C for 10 hours. The white strips are crack 

areas that originally formed as-deposited as in (a), but the exposed Ni metal has oxidized to NiO and 
volume-expanded out of the crack. The higher degree of cracking for the thicker film in (e) and (f) is easily 

visualized. 

(a) 

(c) 

(b) 

(d) 

(e) (f) 
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The following TEM images are taken from the same sample shown in Fig. 3.24. (a) 

is a bright-field image, and (b) through (d) are corresponding dark-field images taken at 

different tilting angles to highlight various grain orientations, which consequently appear 

white. (e) is the selected-area diffraction pattern, labeled with approximate lattice 

parameters. (f) is a HRTEM view of the polycrystalline deposit.  

(a) 

(d) 

(b) 

(e) 

(c) 

(f) 

Fig. B.3. TEM images taken from the same sample as in Fig. 3.24. See description above. 
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B.2 Additional AAO Images 

  
Fig. B.4. Various AAO images: (a) optical image of thin film interference patterns resulting from the 
complete anodic oxidation of sputtered Al on a glass slide; (b) when the sputtered Al is sectioned off, 

complete anodic oxidation results in a transparent window, seen here on a YSZ single crystal substrate 
1 x 1 cm; (c) if Al metal is left in the oxalic acid electrolyte too long, crystallographic etching occurs; 

and (d) when the AAO template is etched in chromic and phosphoric acid, incomplete template removal 
results in peculiar structures. 

(a) 

(c) 

(b) 

(d) 
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Fig. B.5. CELD ceria nanowires from the same sample shown in Fig. 5.7. (a) – (c) are after etching in 3 M 
NaOH for 2.5 minutes. (d) is as-deposited, showing the scale-like overgrowth of ceria once deposition was 

complete in the entire pore lengths of the AAO template. 

(a) 

(c) 

(b) 

(d) 
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B.3 Additional Inverse Opal Images 

 

B.4 Additional MIEC Substrate Images 

 

 

Fig. B.7. SEM images of HSA ceria grown on BSCF at 0.8 mA cm-2 for: (a) 1 minute, showing a good 
interface between ceria and BSCF; and (b) 5 minutes, showing HSA bridging of a pore in the underlying 

BSCF filled with nail polish (dark area). 

  

Fig. B.6. Various SEM images of inverse opal structures from the same samples as in Fig. 5.9. 

(a) 

(c) 

(b) 

(d) 

(a) (b) 
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B.5 Additional Oxidation Protection Coating Images 

 

  

Fig. B.8. SEM images of the oxidative protection coating action of CELD ceria, as in Fig. 5.11: (a) and (b) 
are the Ni anti-dot areas uncovered by CELD; (c) is the area covered by CELD; (d) is the border between 

the covered and uncovered CELD regions; (e) and (f) are cross-sectional views of the CELD covered 
regions. All images have a PLD top coating. 

(a) 

(c) 

(b) 

(d) 

(e) (f) 
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Appendix C 
Alternate SOFC Microstructure 
Fabrication Routes 
 

C.1 Solution Impregnation into AAO Templates 

A straightforward solution-phase approach to filling the pores of AAO templates was 

reported in [124]. Briefly, an AAO template is immersed into a 2.5 M cerium nitrate bath 

for 4 hours, dried at 50 °C for 4 hours, and then thermally treated from 150 – 500 °C to 

solidify the nanowires/tubes. In an attempt to mimic this approach, an identical cerium 

nitrate solution was employed with unaided impregnation (Fig. C.1), sonication-assisted 

impregnation (Fig. C.2), stirring-assisted impregnation (Fig. C.3), and a combination of 

stirring- and sonication-assisted impregnation (Fig. C.4). The last approach worked best, 

in terms of filling fraction of the AAO pores. However, any solution-phase route to 

making nanowires suffers from a common drawback—there is no inherent attachment to 

an underlying substrate. Attempts were made to thermally sinter nanowires made from 

these methods to a YSZ underlying substrate while they were still held in place by the 

surrounding AAO matrix, but thermal treatment of the assembly has the undesirable side-

effect of crystallizing the alumina into an un-etchable form. Prolonged treatment in acids, 

e.g., chromic and phosphoric, and bases, e.g. NaOH, had zero effect, as can be seen in 

Fig. C.5. Accordingly, this method was abandoned. 
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Fig. C.1. Ceria nanowires partially filling the pore of an AAO template after unaided solution phase 
impregnation. 

Fig. C.2. Ceria nanowires partially filling the pore of an AAO template after sonicated solution phase 
impregnation. 

 

Fig. C.3. Ceria nanowires partially filling the pore of an AAO template after stirred solution phase 
impregnation. 

 

(a) (b) 

(a) (b) 

(a) (b) 
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Fig. C.4. Ceria nanowires partially filling the pore of an AAO template after sonicated/stirred solution 
phase impregnation. 

 

Fig. C.5. SEM image of an AAO template after thermal treatment at 1100°C for 5 hours in air, and after 
unsuccessful, repeated attempts to etch the template in chromic/phosphoric acid mixtures and NaOH. 

 

(a) 

(c) 

(b) 

(d) 



165 

 
 

 

C.2 Copper Nanowire Synthesis 

It has been known since the 1960’s that copper oxide nanowires form spontaneously on 

the outer surface of the oxide scale during thermal treatment of copper metal at 

temperatures exceeding 400 °C [125-129]. The aspect ratio and number density can be 

altered by changing the growth temperature and surrounding atmosphere. This approach 

works well with bulk copper foil substrates, and also works on copper thin films grown 

on a supporting substrate. However, the copper metal thin films must be greater than 500 

nm in order to produce an appreciable amount of CuO nanowires. The as-produced CuO 

nanowires can be subsequently reduced in a hydrogen plasma to copper metal [130]. 

Higher power density plasmas can significantly alter the original CuO morphology, but 

lower power density plasmas can completely reduce the CuO to Cu without much 

morphological evolution. Below are selected images from this approach. The 

combination of copper metal thin film thickness limitations and the inconsistencies of the 

process lead to its abandonment. 
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Fig. C.6. SEM images of CuO nanowires grown at ~500 °C for a couple of hours in ambient air from a 
0.25 mm Cu foil. 

 

(a) 

(c) 

(b) 

(d) 

(e) (f) 
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Fig. C.7. SEM images of CuO nanowires grown at ~500 °C for a couple of hours in ambient air from 
a thin film of Cu thermally evaporated onto polycrystalline SDC pellets (a) – (d); (e) and (f) show the 
highly evolved morphology of CuO nanowires to a porous Cu film after they have been reduced in a 

high power density hydrogen plasma for ~5 minutes. 

 

(a) 

(c) 

(b) 

(d) 

(e) (f) 
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Fig. C.8. SEM images of Cu nanowire structures resulting from a moderate power density hydrogen 
plasma reduction of the CuO nanowires picture in Fig. C.6. (a) and (b) are treated with the plasma for 
a couple of minutes; (c) – (f) have been treated for greater than 5 minutes, and show some texturing 

on the nanoscale as a result. 

 

(a) 

(c) 

(b) 

(d) 

(e) (f) 
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