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Abstract 

Though viruses may be the most abundant biological entities on the planet, very little is known 

about phage-host interaction in the wild due to the absence of proper experimental tools. In the 

present work we report of a method to pair environmental phages with their bacterial hosts at the 

single-cell level without having to culture either host or virus. The method utilizes microfluidic 

digital PCR in conjunction with a metagenome data mining tool that was developed to find a 

viral marker gene in an unknown environment. We implemented this technique on the microbial 

community residing in the hindgut of termites. Consequently, we discovered genus-wide 

infection patterns displaying remarkable intra-genus selectivity, with viral alleles displaying 

limited lateral gene transfer and/or host switching despite host proximity. To try and explain 

phage-host interactions from a theoretical perspective, we formulated a simple biophysical model 

describing the interaction of bacteria and viruses in aqueous environments. We predict that the 

radius r of a bacterium is the most critical parameter determining its fixed point concentration, 

which scales as r-4

 

. Given the hypothesis that there is no selection pressure on bacterial radii, our 

model predicts that the size spectrum of marine bacteria follows a power law with slope -1, close 

to the observed average spectrum. Moreover, given the total concentration of bacteria in the 

ocean, our model enables us to estimate the total number of bacterial “species” per volume of 

water providing a lower and upper bound on the total number of species in the oceans.  To 

elucidate the concept of a “species”, we consider a bacterial-viral co-speciation model, which is 

consistent with the observed narrow host range of phages. Our model hints that the bacterial-

viral “arms race” may be a critical component in the process of co-speciation. We suggest further 

experiments to test both models. Finally, we consider a recent high resolution measurement of 

the force as a function of time generated by stress fibers within a single fibroblast cell and 

suggest a stochastic model that is capable of accounting for the observed data. 
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Chapter 1 

Introduction 

1.0 Preface  

In the following introduction we begin with a brief overview of some basic facts known about 

phages and their interaction with bacterial hosts. Our purpose is not to exhaustively review the 

topic, but to introduce certain concepts that will be useful for the remaining chapters, especially 

Chapters 2, 4, and 5. We then highlight for each chapter the most interesting or promising 

findings. The remaining chapters of the thesis are organized as follows: Chapter 2 describes an 

experiment to co-localize phages with their hosts directly from the environment using single cell 

microfluidic technology. Chapter 3 describes a bioinformatic tool for metagenome analysis that 

was used in Chapter 2 to identify the must abundant viral genes in the metagenome of a higher 

Costa Rican termite. Chapter 4 analyzes the problem of phage-host interaction from a theoretical 

perspective. We first consider a biophysical model describing phage-host interaction of a single 

isolated phage-host system. We then make the leap to a distribution of phage-host systems in the 

environment, allowing us to calculate, for example, bounds on the total diversity in the ocean 

water column. Then, in Chapter 5, we consider the beginnings of an evolutionary model for 

phage-host co-speciation that we believe has much potential. The key feature of this model is 

that it is consistent with a “world” where phages have evolved to have a narrow host range. 

Presently, this model suggests how bacterial “species” and viral “species” are related (thus 

defining both terms), and hints that the arms race that bacteria and viruses are locked in is 

perhaps the engine driving bacterial and viral co-speciation, and thus perhaps bacterial evolution 
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itself (a hypothesis). Finally in Chapter 6 we present an analysis of experimental data collected 

by Dr. Blake W. Axelrod, a research engineer in the Roukes lab, who measured with the highest 

resolution to date the force as a function of time of a stress fiber in a single fibroblast cell as this 

stress fiber is artificially disrupted and then allowed to naturally reassemble. Blake observed 

quantized steps in the force exhibiting exponential like temporal profiles that we can explain by a 

simple stochastic model, where each sarcomere perfectly obeys a law of exponentially 

distributed time delays. 

1.1 Some facts phages in nature 

1.1.1 Abundance and activity 

Viruses may very well be the most abundant biological entities on the planet. In offshore surface 

waters viral concentrations are typically in the range of 105
–106 ml-1, whereas in coastal 

environments, viral concentrations can reach 106
–107 ml-1 [1]. High viral concentrations were 

also found in sea ice (107
–108 ml-1 [1]), marine sediments (107

–1010 g-1) [1,2], in soil (~108 g-1) 

[1] as well as in the rumen gut (108
–1010 ml-1) [3,4]. Viral concentrations are typically correlated 

with bacterial concentrations. A variable often used by environmental virologists to gauge this 

correlation is the virus to bacterium ratio (VBR). The VBR for marine systems is consistently 

measured to be on the order of 10 [1,5,6,7], making viruses the most abundant life-forms in the 

oceans. The VBR can also reach as high as ~70 in sea ice [1] or could be as low as 0.04 in soil 

[1].  A VBR of ~6 is also observed when zooming 

 

in on a particular phage-host system. For 

example, Synechococcus cells from the Gulf of Mexico have been shown to be infected by an 

average of ~6 viral-like particles per bacterium [8].  
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Virions are also extremely active in the environment. It has been estimated that ~20% of all 

marine microbial cells, which constitute over 90% of the viable biomass in the Earth’s oceans, 

are turned over daily by viral predation [6]. In the deep-sea, viruses are thought to be responsible 

for at least 80% of prokaryote mortality (calculated by taking the ratio of viral production and 

prokaryotic burst size) [9]. The same is true for low-oxygen lake waters (in which grazers do not 

thrive) where viruses are thought to be responsible for 50–100% of bacterial mortality [5]. Such 

high viral-induced mortality suggests that many if not most bacteria die from viral infection. For 

example, in environments where viral lysis accounts for  50–

 

100% of the bacterial mortality, 

either every bacterial cell or every second cell will be lysed by a virus in order to maintain a 

steady state population of bacteria.  

In terms of their life expectancy in the wild, marine viruses can survive only about 1 to 10 days 

without having to “feed”. Viral decay rates of ~0.1 to ~2 day-1

1.1.2 Lytic or lysogenic? 

 have been measured for inshore 

and offshore regions, respectively [8], with comparable decay rates in deep-sea sediments [2].  

Viruses are also very abundant in the form of lysogenic viruses, with an estimated ~60% of  

sequenced bacterial genomes encoding at least one integrated viral element [10,11]. However, 

one might expect that with viruses being so abundant in nature and having such a major 

contribution to bacterial mortality, that the observed viral-like particles are lytic viruses. If these 

viruses were lysogenic, they would probably need to be continuously induced in order to reach 

the observed levels of abundance, obviating the need to integrate or to encode a genetic switch. 

Indeed, growth experiments with native bacterial communities in freshly filtered sea water 

indicated that  under typical natural conditions, induction of lysogens was rare, with the vast 
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majority of the observed viruses probably the result of successive lytic infection [5,12]. 

Furthermore, attempts to induce lysogens with bright continuous sunlight or pulsed sunlight did 

not result in increased viral concentrations [5,12] suggesting that lysogens are not easily 

inducible. Therefore, it appears that lysogenic induction may be occurring at low levels either 

continuously or sporadically [5] (possibly occasionally on larger scales [1]), with the vast 

majority of viruses in the sea probably the result of lytic infection [5].  

1.2 Phage-host interaction 

1.2.1 Predator-prey dynamics 

Phages have effect on bacteria in many different levels and vice versa. Our intention here is not 

to give a comprehensive review of all mechanism of interaction between phages and bacteria, but 

to highlight a few important concepts used in later chapters. The most basic level that viruses 

affect bacteria is through concentration control. In a classic case of a predator-prey dynamical 

system (one predator-one prey), the fixed point concentration of the prey is determined by the 

predator. Therefore the fixed point concentration of the prey does not depend on its growth rate. 

As long as there is positive growth of the prey, its final concentration will be the same. 

Therefore, if a bacterial species has a very low growth rate, the concentration of viruses infecting 

it will be low. Conversely, if the bacterium grows very fast, the concentration of the viruses 

infecting it will be very high. 

1.2.2 Population control versus species control 

It is generally accepted that bacterial host mortality is primarily due to either grazing by protists 

or lysis by viruses [5,13,14,15]. The fundamental difference between these two predators is that 

protists, to a first-order approximation, are omnivores, i.e., they are not host specific [15,16], 
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while phages display a species- or strain-level host range [1,17,18]. Protist therefore either 

control the total bacterial concentration (sum of all species), or — if they are themselves prey —  

do not exert control over bacteria [15] and simply reduce the bacterial production rate (with 

bacterial concentration being determined by competition for nutrients [15]). Viruses on the other 

hand exert control at the species level. Therefore, through predator-prey dynamics, viruses 

directly control the genetic diversity of bacteria in the environment.  

1.2.3 Kill the winner hypothesis 

In nature, every environment contains many species of bacteria. Given the narrow host range of 

phages, to a first-order approximation, we can think of this environment as comprised of a 

collection of non-interacting phage-hosts systems1

1.2.4 The bacterial-viral “arms race”  

. Given the individual predator-prey dynamics, 

based on our explanation above, we expect the concentration of each bacterial species to be 

controlled separately and be independent of the growth rate of the bacteria. By having viruses 

control the population in this way, fast growing cells will not be “allowed” to take over the 

population. If a bacterium’s growth rate increases, the concentration of the viruses infecting it 

will also increase, thus keeping the (fixed point) concentration of that bacterium in check. Thus 

the equilibrium diversity in these networks is maintained by mechanisms that are selectively 

‘‘killing the winner.’’ (i.e., a superior competitor) [16,19,20].  

Recently it has been discovered that bacteria have a primitive immune system in the form of 

CRISPRs — clustered regularly interspaced short palindromic repeats — arrays found in nearly 

half of all sequenced bacterial genomes [21]. Short (26–72bps [21]) “spacer” sequences derived 

                                                           
1 In Chapter 4 we show that the situation of more than one virus controlling the same bacterial species leads to 
extinction events. 
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from viral genes, present between the CRISPRs, are transcribed and interfere with viral gene 

expression in a mechanism thought to be similar to RNA silencing [21,22]. Bacteria 

continuously acquire CRISPR spacer sequences from viruses to evade these viruses. To evade 

new acquired spacers, the viruses rapidly evolve their genes though mutation, homologous 

recombination and deletion [23]. Conversely, CRISPR repeats and their associated proteins 

undergo evolution to escape a shut-down mechanism for the CRISPR system encoded by the 

phage [21]. Thus, bacteria and viruses are locked in an arms race [21]. This arms race may have 

long term evolutionary consequences on the bacterial population. From inspection of the history 

of spacers  stored on the bacterial genomes of many individuals in a population it has been 

observed that all individuals can have essentially the same older spacers, with the new diverse set 

of spacers at the tip of the array, where new spacers are added [23]. One explanation for this 

observation could be a recent strong selection event caused by an unusually virulent virus to 

which potentially only one cell in the population was immune [23].  

1.3 A coarse-grained view of phage-host interaction 

1.3.1 The biophysics of a single phage-host system 

Two perspectives: biophysical versus dynamical 

From a dynamical point of view phage-host systems can be analyzed as a classic predator-prey 

problem. This type of problem has been studied extensively and is considered a textbook 

problem. From a biophysical perspective, the problem of phage-host interaction is that of viral 

transport. While this problem seems difficult to address in environments like soil or sediment, in 

aqueous environments the problem of viral transport can be reduced to solving the diffusion 

equation. This intuition did not escaped biophysicists who worked with viruses in the early days, 

and the first solution to this problem appeared in the book of Stent “Molecular Biology of 
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Bacterial Viruses” in 1963.  Although both perspectives are known and are made use of, we have 

not seen in the literature an attempt to merge these two perspectives in one package, obtaining 

expressions for the concentrations of bacteria and viruses in terms of basic biophysical 

parameters such as temperature, viscosity, radii, and so on. We have also not seen any model 

attempting to exploit the empirical correlation between burst size and the volume of the 

bacterium and the inverse correlation between burst size and the volume of the virion (with 

empirical correlations measured up to 1 μm) [1,24,25]. Such correlations can have great 

implications on the scaling laws of these systems, and may be critical when attempting to draw 

conclusions on an entire community. 

Combining the two perspectives leads to new insight  

In Sections 4.1–4.3 we construct a new biophysical model describing the interaction of a single 

isolated phage-host system and obtain interesting scaling laws for the steady-state concentration 

of bacteria and viruses. We find that the most critical parameter determining the fixed point 

concentration of a phage-host pair in the environment is the radius of the bacterium (Fig. 1.1). 

We found that the fixed point (i.e., steady state) concentration of bacteria scales as r-4 with r 

being the radius of the bacterium. Since in nature, the radii of bacteria vary by over three orders 

of magnitude, our model predicts that the concentration of bacteria can change by over 13 orders 

of magnitude! Furthermore, our model predicts that large bacteria will be exceedingly rare, with 

the largest known bacterium (Thiomargarita namibiensis having a diameter of 750 μm) predicted 

to have one cell in ~103 liters of water. On the other hand, we predict that the concentration of 

the viruses infecting large bacteria will be high enough so that, using molecular techniques, these 

viruses should be detectable in one ml of water.  
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Figure 1.1. Scaling of the virus concentration, the bacterium concentration and the VBR 
with the radius of the bacterium for a single phage-host system. This figure shows that the 
radius of a bacterium is a critical parameter determining the fixed point concentration of the 
bacterium. 
 

1.3.2 The biophysics of many phage-host systems 

How many is many? 

Thus far we have dealt with an artificial problem of a single phage-host system. In nature there 

are many such systems and in Section 4.4 we deal with the question of how to make the 

transition from a single phage-host system, to many such systems in the environment. How many 

is many? In the Venter expedition to the Sargasso Sea, every sample containing several hundreds 

of liters of ocean water was found to have at least 300 bacterial species (using a cutoff equivalent 

to a small subunit rRNA cutoff of 3%) [26]. Therefore, we expect that a natural environment will 

contain at least hundreds (probably thousands) of phage-host systems. Since the host range of 

phages is narrow, these phage-host systems can be treated, to a first-order approximation, as 

independent. Our realization from Section 1.3.1 that bacterial radii span such a wide range of 
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values, and that the fixed point concentration of bacteria is extremely sensitive to this parameter, 

suggested to us that one cannot simply replace this parameter with an average value. One 

actually needs to calculate this average using the probability density function of bacterial radii 

for the given environment.  

A simple evolutionary scenario 

The difficulty in making the transition between a single phage-host system and many phage-host 

systems in the environment, is figuring out what is the a priori probability density of radii in a 

given environment, i.e., the probability per radius that a given environment a priori would 

contain a bacterial species with this radius. This function (which we denoted by ( )
R

f r ) has 

evolutionary significance and can be interpreted as the density of bacterial species, perhaps 

analogous to the density of states in statistical mechanics, and reflects the evolutionary history of 

bacteria in the given environment. If the radii of all bacterial species that have adapted to survive 

in the given environment were known, one could calculate this function. Since we cannot 

calculate this function from first principles, we considered the simplest evolutionary scenario 

where this function is a constant, which means there is no selection pressure on bacterial radii, 

i.e., all radii are a priori equally probable. Given this assumption we were able to obtain 

expressions for basic quantities, such as, the total concentration of bacteria in a given 

environment, the total concentration of viruses in a given environment, the VBR, and the total 

bacterial biomass in a given environment. These results are especially interesting given that they 

are calculated from basic physical parameters such as temperature, viscosity, radii, and so on.  
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The size spectra of bacteria in the ocean 

One additional quantity that we can calculate given ( )
R

f r  is the distribution of radii in a given 

environment, and from this function we can easily calculate the probability that a bacterium of 

random volume V, is greater than or equal to a given volume, v, or ( )V v≥Prob . This function is 

called the size spectra of radii and has been of interest to marine biologists for decades, with 

measurements dating back to the work of Sheldon in 1972 [27]. In 2001 the Chisholm lab from 

MIT measured the size spectra of microbes in the western north Atlantic Ocean. They found that 

the size spectra obeyed a power law with a slope between -1 and -1.4. The ensemble average of 

all environments was well described by a power law of slope -1.2. When expanding their dataset 

to include microzooplankton the slope was corrected to a value close to -1. Our calculation, 

given our simple evolutionary scenario, predicted a power law with a slope of -1, hopefully 

indicating that we are on the right track. 

Species richness 

In section 1.2.2 we mentioned that the total concentration of bacteria is determined either by the 

protists or by the availability of nutrients [15]. Thus, given the total concentration of bacteria in 

an environment, one can in fact calculate the number of predicted species. By considering two 

extreme models of spatial distribution of diversity — complete homogeneity and maximal 

heterogeneity — we were able to calculate bounds on the total diversity in the ocean water 

column. In Section 4.4 we also explore how the number of species scales with basic parameters 

and found that, quite intuitively, warm, nutrient-rich environments where viruses have a long 

lifetime will sustain the greatest diversity of species. Finally we compared estimates of diversity 

with observations from metagenome studies. 
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What is a species? 

When applying our model to data we realized that there is something strange about our 

biophysical model. No where did we define what a “species” is! How different do two genomes 

(bacterial or viral) need to be in order to be considered different “species”? It is this question that 

we tried to address in Chapter 5.  

1.4 The evolutionary perspective 

1.4.1 A model for co-speciation of viruses and bacteria 

In order to answer what a bacterial or viral species are, one needs to go to a higher theory that 

takes into account the genetic aspect of these entities, and not just parameterize them with a 

radius, decay rate, and so on. We therefore sought to formulate an evolutionary model that could 

hopefully supply us with a definition of what is a species. This model needed to respect a few 

basic rules so that it would be equivalent to our biophysical model. These rules were basically 

that: (1) each bacterial species was associated with a single viral species and vice versa (i.e., 

there is no cross interaction between phage-host systems) and (2) each species (bacterial or viral) 

was unique and distinguishable from all other species. We then asked ourselves the following 

question: if we start from a state of a single bacterial species interacting with a single viral 

species, how would this state evolve so that after some time we obtained a state comprised of 

two bacterial species and two viral species, where the new species were independent of the old 

species.  Such an evolutionary model would create a “world” with single viral species paired 

with single bacterial species, and vice versa, and where each bacteria-viral species pair was 

independent of all other pairs. We found that in order for these strains to evolve we needed to (1) 

define the concept of a “strain”, which is like a species, only there is no restriction on whom this 

strain can or cannot interact with, and (2) assume that whenever a new bacterial strain emerges, a 
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corresponding viral strain co-emerges so that the symmetry between bacteria and viruses is 

conserved. By considering how a species evolved through generation of strains, into a new 

species, a qualitative picture of what a species is, within the context of this model, emerged (Fig. 

1.2; see also Fig. 5.1 that illustrates the process of co-speciation). How this complex structure 

was obtained is discussed in detail in Chapter 5. When this structure is viewed in a genetic 

coarse-grained way we recover the simple picture of our biophysical model: species interacting 

uniquely with species. Therefore we argue that this model can be used to interpret the results of 

the biophysical model. Such a situation is often encountered in physics, where one theory is the 

limiting case of another (such as nuclear physics’ versus particle physics’ description of a 

proton). Such limits are related to scale transformations in renormalization group theory, 

possibly suggesting a deeper connection between the two models. 
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Figure 1.2 Schematic depiction of bacterial and viral species and strains. The relation 
between bacterial and viral species and strains according to a postulated evolutionary model 
considered in Chapter 5. Each bacterial species interacts with a single viral species. Bacterial 
strains on the other hand (that are simply emerging bacterial species) are initially part of a mesh 
of interactions with other strains. The interaction of the bacterial strain with the co-evolving viral 
strain is critical in order for both strains to evolve away from this state into a state of mutual 
independence (emerging as new species).  

1.4.2 Is positive feedback driving co-speciation? 

Perhaps the most interesting finding of this model was that in order for a new bacterial species 

and new viral species to co-emerge, the emerging bacterial and viral strains may be driving each 

other’s evolution, through a positive feedback evolution mechanism. This positive feedback 

causes the strains to evolve as fast as possible from their initial state in order to sever the bonds 

with their parental strains and become independent (Fig. 1.3). This positive feedback evolution 

mechanism is the arms race between bacteria and viruses. The logic behind our suggestion is the 

following: 



1-14 
 

1. Phages for some reason have converged to an evolutionary solution where they have a narrow 

host range. This is not the most beneficial solution for a parasitic element, as a wide host 

range, such as that of a grazer, would be much more effective. Therefore, there appears to be 

some evolutionary advantage to this solution. 

2. In the process of the arms race, viruses cause selective sweeps in the bacterial population. 

Such bottlenecks are known to accelerate evolution as traits in small populations can be fixed 

quickly. Thus, the phage is driving bacterial evolution, distancing the new bacterial strain as 

fast as possible from the bacterial strain from which is was born (Fig. 5.1). This evolution is 

necessary for the emerging bacterial species since this will lead the emerging viral species to 

lose its affinity to the parental bacterial strain and gain control over it. As it gains control, the 

concentration of the emerging bacterial species increases (Fig. 1.4). The concentration of the 

emerging bacterial species is maximal when the new viral species has total control over it. 

Thus, this process allows the emerging bacterial species in the end to “take up” its own 

concentration.  

3. As the new viral species is emerging, it is controlling two populations, the parental bacterial 

species and the new bacterial strain (Fig. 5.1). In order for this phage to form a unique 

association with the new bacterial species (i.e., control only it) it must evolve away from its 

current state as far as possible until it can no longer infect the parental bacterial strain. This 

process appears to be achieved through the bacterial-viral arms race, since the new bacterial 

strain is forcing the virus to keep muting in order to track the new bacterial strain and the 

virus is causing the new bacterial strain to evolve.  

4. Combining 2+3 we conclude that perhaps through positive feedback the bacterial and viral 

species are moving at the greatest possible pace from an initial state of one species to a final 
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state of two species (Fig. 5.1). Thus, viruses are the tool of evolution to generate species, and 

the narrow host range of phages is necessary to achieve this goal.  

Chaotic evolution? 

Since a positive feedback mechanism amplifies noise exponentially (like the shrill of a 

microphone in front of a speaker), the process of bacterial speciation may be simply a process of 

“amplifying noise”. This may open the door to quantitative analysis via chaos theory. For 

example, it would be interesting to see if phylogenic trees of bacteria spanning many orders 

(strain, species, genus, family, order, etc.) display any features of self similarity, the hallmark of 

fractals generated by chaos theory. Further quantities that may be tractable are the rate speciation 

and the number of strains per species. 

 

An experimental system to test the predictions of this theory would be Lenski-type evolution 

experiments with E. coli + a lytic phage.  Specific experiments are suggested in section 5.4. In 

section 4.5 we suggest a series of experiments to test our biophysical model.  
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Figure 1.3 Positive feedback evolution model for emerging bacterial and viral “species”. 
The arms race between bacteria and viruses may be a critical step in the formation of a new 
bacterial and viral “species”. This process is critical in order to allow viral strain B to relinquish 
its control of its parental bacterial strain (strain 1) while at the same time gaining control over the 
new bacterial strain (strain 2). Therefore this “arms race” may allow the two emerging “species” 
to form a one-to-one association, leading to the result that vial species have a narrow (“species”) 
host range. This process may also be critical for the bacterium, where by selective sweeps, the 
controlling child viral strain drives the bacterial strain to evolve away from its original parental 
strain. This positive feedback model may be initially amplifying “noise”. Thus the process of co-
speciation is perhaps equivalent to “amplification of noise” and thus may be a chaotic effect. 
Covering the genome space at such an exponential rate may be required in order to converge to a 
solution on a practical timescale, especially given the fact that bacteria are much less efficient 
and exploring this space than diploid organisms. Thus, the arms race may be an equivalent 
solution of bacteria to sexual reproduction (possibly a good enough solution for a smaller 
genome size).  
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Figure 1.4. Total concentration “taken up” by the evolving bacterial strain and its parental strain. 
Initially, the total concentration of the parental bacterial species (B1) and the just-emerging 
bacterial species (B2), in normalized units, is 1 and is determined by the controlling viral species. 
As the new bacterial strain is emerging, it is driving the evolution of the emerging viral strain, 
causing its affinity to the parental bacterial strain to drop (i.e., κ, which is a measure of the 
affinity of the emerging viral species to the parental bacterial species, decreases). This causes the 
emerging viral species to gain more control over the emerging bacterial species, and so its 
concentration increases. When co-speciation is completed, the new viral species has total control 
of the new bacterial species and has lost its affinity to the parental bacterial species (i.e., it has a 
species host range). This allows the total concentration to double (i.e., B1=B2

 

=1). See also Fig. 
5.4. 
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1.5 The experimental frontier 

1.5.1 Phage-host co-localization methodology 

Thus far, phage-host interaction in the wild could only be investigated for certain systems such 

as cyanophages [28,29,30,31]. The challenge lays in the fact that traditional techniques in 

microbiology necessitate that hosts be culturable in order to isolate their phage. Yet when  >99% 

of bacteria cannot be cultured [32] other methods need to be sought.  In Chapter 2 we describe a 

method using digital microfluidic PCR array to pair phages with their bacterial host without 

having any prior assumptions regarding the host.  The experimental scheme for a new 

environment is shown in Fig. 1.5.  

 

The first stage involves obtaining a metagenome for the environment of interest. Once gene 

objects have been assembled and translated, one can run a bioinformatic tool called MetaCAT 

(Chapter 3) that was written for this purpose. MetaCAT (metagenome cluster analysis tool) is 

used to find the most abundant viral genes in a given metagenome by clustering together similar 

genes in the metagenome that are expected to be related (Fig. 1.6). This tool is used to find 

candidate viral marker genes. The idea behind using this tool for viral genes is that viral genes 

tend to have many mutations, and therefore are not collapsed by the assembler. Therefore we 

expect that the abundance of the genes in the metagenome reflects their abundance in the sample. 

Thus abundant viral genes found by MetaCAT would correspond to abundant and thus dominant 

genes in the sample. Furthermore, the more alleles one has for primer design, the more general 

the primers will be, and the more diversity they will recover. 
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Figure 1.5 Workflow using the microfluidic digital PCR array for host-virus co-localization 
in a novel environmental sample 

 

After degenerate primers have been designed, one can load an environmental sample onto a 

digital PCR microfluidic array panel, which distributes the sample evenly among 765 6 nl 

chambers. Samples are titered such that a small fraction of chambers contain a single cell that is 

probed for a universal small subunit rRNA gene and a viral marker gene. In Fig. 1.7 we show a 

typical digital PCR panel after PCR cycling. Each chamber that contains both colours (red for a 

viral marker gene and green for the small subunit rRNA gene) is a potential co-localization 

signal. Chambers displaying co-localization are retrieved and sequenced allowing later 
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phylogenetic analysis. The great challenge with this experiment was that the phage gene 

displayed many mutations from cell to cell of the same host species. Therefore we needed to 

devise a statistical criterion and sampling strategy to separate repeated co-localizations due to 

chance from genuine co-localization.  

 

Figure 1.6 Ideal clustering of gene objects in a metagenome. Each dot represents a gene 
object in a metagenome, with the entire metagenome depicted by the blue oval. Similar genes are 
grouped into clusters (circles of different colors) and each cluster is represented by a single gene 
from a known reference database. In this schematic description, the distance between dots is 
interpreted in an abstract manner and does not correspond to a rigorous metric. 

 

1.5.2 The case of the termite hindgut 

The co-localization experiment described in Chapter 2 was performed for samples from the gut 

of a termite. Our analysis of the termite hindgut began by analyzing the metagenome of a higher 

termite collected from Costa Rica. This analysis detected several highly abundant unique viral 

genes. We then BLASTed these genes against the genomes of two spirochetes that were isolated 

from a lower termite collected from northern California. We found that two genes had very close 
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homologs: a portal protein and a terminase protein. These two genes were part of larger 

prophage-like elements (two elements in each genome). We then proceeded to uncover the entire 

 

Figure 1.7. End-point fluorescence measured in a panel of a microfluidic digital PCR array. 
A. The measured end-point fluorescence from the rRNA channel (right half of each chamber) 
and the terminase channel (left half of each chamber) in a microfluidic array panel. B. 
Normalized amplification curves of all chambers (red/viral, green/rRNA). C. Specific physical 
associations between a bacterial cell and the viral marker gene resulting in co-localization 
include for example: an attached or assembling virion, injected DNA, an integrated prophage or 
a plasmid containing the viral marker gene. 
 

prophage-like element in each genome (Fig. 1.8). To show that these prophage-like elements 

were also abundant in the metagenome we BLASTed each gene from in the prophage-like 

element against the metagenome. The result, shown in Fig. 1.8, indicated that these prophage-

like elements were indeed abundant in both termites. We chose the terminase gene to be our viral 

marker gene and designed degenerate primers to amplify a large portion of this gene (~820 bp). 

To test the hypothesis that the prophage-like element that we found is ubiquitous in termites, we 
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tested these primers against nine termite species belonging to seven families collected from five 

different geographical locations. Fig. 1.9 shows that indeed we obtained positive hits for all these 

termites confirming that this prophage-like element is ubiquitous to termites (at least of north and 

central America). We also obtained a positive hit for a wood feeding roach, raising the 

possibility that this prophage-like element has infected a common ancestor of termites and wood 

feeding roaches and has been transformed since. In Chapter 2 we describe the results of our co-

localization experiment gut samples extracted from Reticulitermes hesperus using the same viral 

primers. 

 

 
Figure 1.8 Map of viral cassettes in ZAS2 and ZAS9 highlighting gene frequency in the 
higher termite metagenome. Blue arrows represent abundance in the metagenome.  
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Figure 1.9. Agarose gel electrophoresis analysis of terminase PCR product amplified from 
termite and related insect species.  PCR product using degenerate primers ter.7F and ter.5eR 
targeting the large terminase subunit gene.  Specimens included were: Nasutitermes sp. 
(cost003), Rhynchotermes sp. (cost004), Microcerotermes sp. (cost008), Amitermes sp. 
(cost010), Periplaneta americana (croach), Cryptocercus punctulatus (wfroach),  Reticulitermes 
hesperus (retic), Incisitermes minor (incis), Gnathiamitermes sp. JT5 (JT).  ZAS9 was used as a 
positive control. Also shown are two negative PCR controls.   
 

1.6 Stress fibers in single fibroblast cells 

Dr. Blake W. Axelrod, a research engineer in the Roukes lab, built a microfluidic NEMS device 

allowing him to measure the force as a function of time of a stress fiber in a single fibroblast cell, 

performing the highest resolution measurement to date. In this experiment, a single fibroblast 

cell (Fig. 1.10A insert) contacts a NEMS force sensor. When the cell is placed in a recovery 

medium it exerts a force on the force sensor (Fig. 1.10A, blue region) corresponding to the force 

generated by an assembled stress fiber (about 20nN). Once a substance called cytochalasin D is 

flowed in, the stress fiber undergoes disassembly and consequently the force declines (Fig. 

1.10A, red region). The process of disassembly is a reversible one, since when flowing the 

recovery medium back again, the stress fiber assembles again and the force is regenerated. When 
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examined more closely, each assembly/disassembly profile appears to be comprised of steps that 

appear to, on average, increase in duration (Fig. 1.10B). These steps were remarkably uniform in 

the force amplitude and it was postulated that they are the result of individual sarcomeres failing 

or contracting.  

At the time the data was presented it was not clear what the origin of the temporal dynamics is, 

what the mechanism leading to exponential-like “charging” and “discharging” curves is, and 

why the steps are increasing with time. In Chapter 6 we present our analysis of Blake’s dataset. 

We proposed a simple stochastic model for stress fiber assembly and disassembly, whereby 

individual sarcomeres assemble or dissemble (a) abruptly, (b) irreversibly, (c) independently, (d) 

with the time to the event of assembly or disassembly exponentially distributed with a fixed time 

constant (Fig. 1.11). With this model it is simple to explain why, for example, steps increase in 

time. According to this model, in the case of stress fiber disassembly for example, the time from 

the perturbation (t=0) until a sarcomere fails is exponentially distributed. If there are N 

sarcomeres, then at t=0 there are N independent sarcomeres that can fail. Thus one needs to wait 

a short period of time to observe a step. As more steps fail, one needs to wait longer until one 

sees a step because there are less remaining sarcomeres. In Chapter 6 we show that the inverse 

duration times of each step increase linearly with time. In Fig. 1.12 we show the inverse duration 

times versus the linear prediction of the model (where parameters were estimated from the data 

based on the model). The data appears to be behaving qualitatively as predicted. In Chapter 6 we 

present more rigorous tests to check our model. We show the (a) sarcomeres appear to be failing 

or assembling statistically as exponential variables.  (b) When data was rescaled using model 

parameters estimated from the data, all profiles collapsed to the predicted ensemble average. 
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Figure 1.10 Typical force-time response to Cytochalasin D perturbation. A. Typical 
measured force response to the force disruptor Cytochalasin D (red region) and recovery medium 
(blue region).  Cytochalasin D belongs to a class of substances called Cytochalasins that are fast 
acting and reversible disruptors of contractile force. When Cytochalasin D is flowed in, the force 
decays due to stress fiber disassembly. When recovery medium is flowed in, the stress fiber 
reassembles and the force increases with time. Inset shows fluorescent image of the cell attached 
to the beam taken immediately before data acquisition, scale bar is 10 μm. B. Steps during CD-
induced force collapse (upper) or force recovery (lower). The average step size is 1.08 nN ± 0.18 
nN (n=96).  Figure and caption courtesy of Blake Axelrod (Roukes lab, Caltech). 
  

 

Figure 1.11. Schematic model for stress fiber relaxation. (1) Each sarcomere assembles or 
disassembles abruptly and irreversibly.  (2) Sarcomeres assemble or disassemble independently 
of each other. (3) The time until a sarcomere assembles or disassembles is exponentially 
distributed (reflecting a certain constant probability rate for this event to occur). (4) The time 
constant for assembly is the same for all sarcomeres. Similarly, the time constant for disassembly 
is the same for all sarcomeres. 

A 
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Figure 1.12. Stochastic model prediction of force step durations versus experimental data. 
The stochastic model prediction for the inverse of the force step durations (red curve) versus 
experimental data points (blue dots). ρ is the Pearson correlation coefficient measuring the 
strength of the correlation. The red line is not a fit, as these lines were predicted based on 
parameters that were estimated from the data according to our stochastic model. Note that we 
anticipate a high level of noise since the standard deviation equals the predicted rates. 
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Chapter 2 

Probing Individual Environmental Bacteria for 

Viruses Using Microfluidic Digital PCR 

2.1 Abstract 

Viruses may very well be the most abundant biological entities on the 

planet. Yet neither metagenomic studies nor classical phage isolation techniques have 

shed much light on the identity of the hosts of most viruses. We used a microfluidic digital 

PCR approach to physically link single bacterial cells harvested from a natural 

environment with a viral marker gene. When we implemented this technique on the 

microbial community residing in the termite hindgut, we found genus-wide infection 

patterns displaying remarkable intra-genus selectivity. Viral marker allelic diversity 

revealed restricted mixing of alleles between hosts indicating limited lateral gene transfer 

of these alleles despite host proximity. Our approach does not require culturing hosts or 

viruses and provides a method for examining virus-bacterium interactions in many 

environments. 
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2.2 Introduction 

Despite the pervasiveness of bacteriophages in nature and their postulated impact on 

diverse ecosystems (1), we have a poor grasp of the biology of these viruses and their host 

specificity in the wild. Though significant progress has been made with certain host-virus 

systems such as cyanophages (2-5), this is the exception rather than the rule. Conventional 

plaque assays used to isolate environmental viruses are not applicable to >99% of 

microbes in nature since the vast preponderance of the microbial diversity on Earth has yet 

to be cultured in vitro (6). Given the magnitude of the problem, the development of high-

throughput, massively-parallel sequencing approaches that do not rely on cultivation to 

identify specific virus-host relationships are required. While m

2.3 Proposed method for phage-host co-localization 

etagenomics has 

revolutionized our understanding of viral diversity on Earth (7-9), that approach has as yet 

done little to shed light on the nature of specific viral-host interactions, except in restricted 

cases (10). 

Recent advances in microfluidic technology have enabled the isolation and analysis of 

single cells from nature (11-13). Here we present an alternative to the classical phage 

enrichment technique where we propose to use an uncultured virus to capture its hosts 

from the environment using a microfluidic PCR approach called digital multiplex PCR 

(12, 14). To this end, microbial cells were harvested directly from the environment, 

diluted and loaded onto a digital PCR array panel containing 765 PCR chambers operating 

at single-molecule sensitivity. Samples were diluted such that the majority of chambers 

were ideally either empty or contained a single bacterium (Fig. 2.1), achieving a Poisson 

distribution (15). Because there is no universally conserved gene in viruses (7, 16), 
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degenerate primers (17) were designed to target a subgroup of diverse phage-like elements 

(18).

2.4 Hunting for phages in the termite hindgut 

 Concurrently, the small subunit ribosomal RNA (SSU rRNA) gene encoded by each 

bacterial cell was amplified using universal “all bacterial” primers (see Fig. 2.4 for 

experimental design). Possible genuine host-virus associations detectable by this assay are 

depicted in Fig. 2.1C. Free phages may also co-localize with hosts, however these events 

are not expected to lead to statistically significant co-localizations due to the random 

nature of these associations (19). 

The system we chose to investigate was the termite hindgut. This microliter-in-scale 

environment contains ~107 prokaryotic cells per μl (20) with over 250 different species of 

bacteria (21), making it ideally suited to explore many potential, diverse phage-host 

interactions. To find a viral marker gene relevant to such an environment, the more 

abundant candidate viral marker genes present in the sequenced metagenome from a 

hindgut of a higher termite from Costa Rica collected in 2005 (22) were examined (Table 

2.2; search algorithm described in the Materials and methods section). We then checked if 

any of these viral genes had homologous counterparts in the sequenced genomes of two 

spirochetes isolated in 1997 from a laboratory colony of a genetically and geographically 

distant termite originally collected in 1986 from Northern California (23-24). We 

identified two such genes encoding a large terminase subunit protein (homologous to the 

T4 associated pfam03237 Terminase_6) and a portal protein (homologous to pfam04860 

Phage_portal) exhibiting about 70–78% amino acid identity to their closest homologs in 

the higher termite gut metagenome (Table 2.3). This finding is surprising given that 

typically, across biology, portal proteins and terminase proteins from different phages 
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exhibit little overall sequence similarity (25-28). Further analysis revealed that the 

spirochete viral genes were part of a larger prophage-like element, with the majority of 

recognizable genes most closely related to Siphoviridae phage genes (19). The association 

of these genes with prophage-like elements is consistent with the fact that both the 

Terminase_6 pfam and the Phage_portal pfam describe proteins in known lysogenic and 

lytic phages. 

 

As a viral marker gene for this prophage-like element we chose the large terminase 

subunit gene. This gene is a component of the DNA packaging and cleaving mechanism 

present in numerous double-stranded DNA phages (26) and is considered to be a signature 

of phages (29). We consequently designed degenerate primers based on the collection of 

fifty metagenome and treponeme-isolate alleles of this gene. The ~820bp amplicon 

spanned by these primers covered about two thirds of this gene and approximately 77% of 

the predicted N-terminal domain containing the conserved ATPase center (26, 30), the 

“engine” of this DNA packaging motor (31) (see alignments in Figs. 2.5 and 2.6). Testing 

these primers against the RefSeq viral database (32) did not yield any hits (Fig. 2.5). 

Indeed, the closest homolog of this gene in the RefSeq viral database displayed only 25% 

amino acid identity (Table 2.3). Thus, while this terminase gene was clearly associated 

with the Terminase_6 pfam, the termite related alleles appear to be part of a novel 

assemblage of terminase genes in this environment and not closely related to previously 

sequenced phages (Fig. 2.5).  
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Figure 2.1. End-point fluorescence measured in a panel of a microfluidic digital PCR 
array. A. The measured end-point fluorescence from the rRNA channel (right half of each 
chamber) and the terminase channel (left half of each chamber) in a microfluidic array 
panel. Each panel in the array (one of twelve) consists of 765 150 x 150 x 270μm3

 

 (6 nL) 
reaction chambers. Retrieved co-localizations are outlined in orange and positive rRNA 
chambers randomly selected for retrieval are outlined in gray. FA indicates false alarm (a 
probable terminase primer-dimer). B. Normalized amplification curves of all chambers in 
(A) after linear derivative baseline correction (red/viral, green/rRNA). C. Specific 
physical associations between a bacterial cell and the viral marker gene resulting in co-
localization include for example: an attached or assembling virion, injected DNA, an 
integrated prophage or a plasmid containing the viral marker gene. 

Given that terminase genes of different phages often exhibit less sequence similarity (see 

above), the fact that we found such closely related terminase genes from such distantly 

related termites collected from well separated geographical locations (California and Costa 

Rica) and from specimens collected almost two decades apart led us to speculate that this 

family of viral genes and prophage-like elements might be ubiquitous in termites. Indeed, 

to date we have identified close homologs of the large terminase subunit gene in the gut 

communities of nine termite species belonging to seven families collected from five 
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different geographical locations. We therefore wished to identify the bacterial hosts 

associated with this viral marker gene. To this end, we made collections of representatives 

of a third previously unexamined termite family (Rhinotermitidae; Reticulitermes 

hesperus, from a third geographical location in Southern California) over a span of six 

months (Table 2.4). We then performed seven independent experiments, where in each 

case the hindgut contents of three worker termites were pooled, diluted, and loaded onto a 

digital PCR array, screening in total ~3000 individual hindgut particles (i.e., individual 

cells or possibly clumps of cells positive for the SSU rRNA gene).  

2.5 Identification of novel uncultured bacterial hosts  

Of the 41 retrieved co-localizations, 28 were associated with just four phylotypes 

designated “Phage Hosts I, II, III and IV” (see Fig. 2.2, Table 2.1 and the phylogenetic 

analysis in Fig. 2.7 and Tables 2.5 and 2.6). Statistically, the reproducible co-

amplifications were significant and cannot be explained by random co-localization of two 

unassociated genes (Table 2.1). Furthermore, these associations were independently 

reproduced in specimens from different colonies collected six months apart (Fig. 2.2), 

indicative that relationships between specific host bacteria and viral markers were being 

revealed. 

 

All four of the phylotypes were members of the spirochetal genus Treponema and 

exhibited significant diversity within this genus (Table 2.5). No reproducible or 

statistically robust associations involving other bacteria were observed. The terminase 

alleles that associated with these cells shared ≥69.8% identity (average 81.9 ± 8.3% 

standard deviation, SD)(33) and were divergent from other currently known terminases 
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(Fig. 2.5), suggesting that the primer set amplifies elements exclusively found associated 

with termite gut treponemes. Analysis of the retrieved terminase gene sequences reveal 

that they are under substantial negative selection pressure with ω=β/α=0.079, where ω is 

the relative rate of non-synonymous, β, and synonymous, α, substitutions (18)(see Table 

2.7 for additional estimates for individual hosts). Furthermore, none of the terminase 

sequences in Fig. 2.2 appeared to encode either errant stop codons or obvious frame shift 

mutations, and functional motifs appeared to be conserved (Fig. 2.5). Together, the 

sequence data suggest that these genes have been active in recent evolutionary history and  

are not degenerating pseudogenes (19).  

 

 

 

 

 

 

   *Based on the DOTUR analysis described in Table 2.5 

†Based on the DOTUR analysis described in Table 2.6. Reference library frequencies 
are roughly 1/3 of the co-localization frequencies indicating that sampling was 
unbiased. 
‡

 
The statistical test to determine the P value is explained in the supporting text. 

Since the viral marker gene was present in hosts spanning a swath of species of termite gut 

treponemes, we were interested to see if this viral marker exhibited any selectivity within 

this genus. The relative frequency of free-living Treponema phylotypes was determined 

by randomly sampling chambers positive for the rRNA gene (18) (Fig. 2.3, Fig. 2.7). We 

found that Hosts I through IV were relatively infrequent, comprising 1.3% to 6.4% of the 

sampled Treponema cells (Table 2.1) and collectively about 9.8% of the sampled bacterial 

cells (correcting for reagent contaminants). Interestingly, the three most abundant 

Table 2.1 | Statistics of repeatedly co-localized SSU rRNA genes 
 

Host 
No. of repeated 
co-localizations*

(n=41) 
  

Occurrence in 
reference library†

(n=118)  
  

P value
 (one tailed, n=41)

  
‡ 

    Host I  13 5 5.4x10-18 
    Host II 8 2 7.6x10
    Host III 

-13 
4 1 5.7x10

    Host IV 
-7 

3 1 3.8x10-5 
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Treponema phylotypes in the survey constituting ~30, 10 and 9% of the free-swimming 

spirochetal cells (REPs 1, 2 and 3 in Fig. 2.3; see also Fig. 2.7 and Table 2.6) were never 

co-retrieved with the viral marker gene, to the extent that this target was spanned by our 

degenerate primers. Given that the degenerate core region (17) of each primer targets 

residues that were strictly conserved in gut microbes of highly divergent termite 

specimens (Fig. 2.5), and that these primers successfully amplified this gene from the guts 

of many different termite species (see above), it appears that these strains are most likely 

either insensitive to this virus or that only a small percentage are infected (19). Therefore 

we conclude that ~50% of the free-swimming spirochetal cells in the gut were likely not 

infected with an element encoding the targeted viral marker gene, whereas ~12% were 

hosts potentially infected (Fig. 2.3). 
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Figure 2.2. Phylogenetic relationship between cultured and uncultured bacterial host 
rRNA genes and their associated viral DNA packaging genes. Left: Maximum 
Likelihood (ML) tree of 898 unambiguous nucleotides of the SSU rRNA gene of ribotypes 
that repeatedly co-localized with the terminase gene, including the two isolated 
spirochetes Treponema primitia and Treponema azotonutricium. Shorter sequences (A7, 
780bp and A9, 806bp) were added by parsimony (dashed branches). Right: ML tree of 
705 unambiguous nucleotides of the large terminase subunit gene. Connecting lines 
represent co-localized pairs, revealing restricted mixing of terminase alleles between 
different bacterial hosts. For association of three additional recombinant sequences (boxed 
on the left) see Fig. 2.8. Statistically we estimate that an average of 0.6 co-localizations 
are false (~2% error (19)). The sequence error rate (40) for the rRNA and terminase genes 
was measured to be 0 (n=8) and <0.6±0.3% SD (n=9), respectively (18). Alleles are 
named by array (A–G) and retrieval index followed by an underscore and the colony 
number (colony 1 being sampled six months prior to colonies 2 and 3). Lower-case 
Roman numerals indicate multiple terminases per chromosome. Scale bars represent 
substitutions per alignment. For interpretation of node support refer to (18) and for 
accession numbers Table 2.11. 

 

2.6 Phage-host cophylogeny 

To elucidate the evolutionary relationship between the terminase alleles and their hosts we 

examined the phylogeny of the terminase genes associated with each bacterial host. 

Terminase alleles from R. hesperus formed separate clades from the clades of the two 

other termite species investigated in this study (Clades V2 and V5 in Fig. 2.2). Within R. 
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hesperus, different bacterial hosts exhibited different patterns of viral allelic diversity. 

Terminase sequences associated with Host I, for example, were highly clonal, with 11 out 

of 13 terminase alleles sharing 96.7 ± 1.7% SD identity (n=11, Clade V1) (33). 

Conversely, terminase alleles associated with Host II displayed marked diversity (79.1 ± 

6.2% identity, n=11) (33), deep branches and divergent multiple alleles per bacterium for 

3 out of 8 repetitions (with 15–31% divergence). The unique features of the terminase 

alleles associated with Host II compared with Host I may reflect a more ancient infection 

or possibly an infection by a phage replicating with a lower fidelity. Alternatively, Host II 

may be a more sensitive bacterial host susceptible to a wider range of phages. Overall, 

phage terminase alleles associated with different bacterial hosts were significantly 

divergent with only three exceptions (Table 2.8). 

 

The tandem trees in Fig. 2.2 reveal multiple possible relations between bacterial hosts and 

terminase alleles: while Host I was associated almost exclusively with a single terminase 

clade (V1), Host II was associated with multiple terminase clades (primarily V3 and V4). 

Conversely, terminase Clade V1 was associated almost exclusively with Host I, while 

terminase Clade V4 was associated with all bacterial hosts. Overall, the terminase tree was 

highly structured and displayed specific bacterial host associated clades (e.g., Clades V1 

and V3, see Fig. 2.8A). Applying the P Test (34) implemented in Fast UniFrac (35) to 

terminase alleles grouped by bacterial host indeed revealed significant differences between 

alleles associated with most pairs of hosts (Table 2.9). Grouping terminase alleles by 

colony, however, did not reveal significant differences between alleles (Table 2.10), 

indicating that sampling was not a factor in determining the observed host associated 
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heterogeneity in terminase alleles. The highly non-random distribution of host associated 

terminase alleles therefore suggest that lateral gene transfer and/or host switching is 

limited in this system. This result, however, could also reflect the fact that the terminase 

gene does not appear to shuffle randomly among phages, possibly indicating a connection 

between DNA packaging and other characteristics of the phage (36). It remains to be seen 

whether other viral genes follow similar patterns.  

 

Figure 2.3. Rank abundance curve of free living Treponema spirochetes in R. 
hesperus termites identifying putative phage hosts. A library of 118 random chambers 
positive for the rRNA gene were retrieved, post-amplified, and sequenced. Of these, n=78 
were related to the Treponema genus, corresponding to 28 different phylotypes using an 
operational taxonomical unit, OTU, cut-off set by DOTUR (41) at 3.1%. Here we show 
these 28 phylotypes, designated as Reticulitermes Environmental Phylotypes (REPs), 
ordered by their abundance. Phylotype abundance is expected to reflect true relative 
abundances in the gut, since single-cell amplification is not susceptible to primer bias or 
rRNA copy number bias. Phylotypes identified as phage hosts are marked by red bars 
(with the highly clonal marker associated with Host I depicted by green viruses and the 
divergent marker associated with Host II depicted by colored viruses). The most abundant 
free living Treponema in the gut — REPs 1, 2, and 3 (blue bars) were not associated with 
the viral marker. Remaining bars are gray. Error bars are estimated by the binomial SD. 
See Table 2.6 for OTU assignment. Note that the isolated spirochetes were not spanned by 
these REPs (see Fig. 2.7). 
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The fact that there was little mixing between terminase alleles associated with Host I (V1) 

and the more distantly related Hosts II (V3 and V4) and III (V4), whereas alleles of the 

more closely related Hosts II and III (Table 2.5) exhibited a certain degree of mixing (V4), 

supports the notion that the probability of cross-species transmission or lateral gene 

transfer decreases with the phylogenetic distance of the hosts (37). The rRNA gene of 

Hosts I through IV also exhibited patterns of microdiversity that may have physiological 

relevance (38-39), however, mirrored only by the terminase alleles of Host III. Host I and 

II terminase alleles appeared to be indifferent to the bacterial host at the sub-species level. 

2.7 Conclusions  

Our results show that, in a marked departure from classical phage enrichment techniques, 

specific viral-host relationships can be revealed in uncultivated cells harvested straight 

from the environment. We found that variants of a viral packaging gene appear to have 

infected bacterial hosts across an entire genus of bacteria. Furthermore, despite the 

significant potential for lateral gene transfer and/or host switching in this well-mixed, 

small-volume system, the terminase tree was highly structured and displayed specific 

bacterial host associated clades. It will be interesting to continue to monitor the host-virus 

interactions within this ecosystem as a function of space and time and across the termite 

community at large, shedding further light on host-virus co-evolution in this unique 

ecosystem. More broadly, the method we have developed enables a highly parallel 

analysis of host-virus interactions in environmental samples from

 

 virtually any 

environment in nature.  
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2.9.1 Materials and methods 

Termite collection  

Reticulitermes hesperus specimens were collected from Chilao Flats Campground in the Angeles 

National Forest (Table 2.4). Throughout the experiment, starting in the field, different colonies were 

kept in separate tip boxes and never came in contact with each other. Colonies thereafter were 

maintained in the laboratory (S1). Microfluidic array experiments were carried out days to weeks (<4 

weeks) thereafter. 

 

PCR on the microfluidic array 

Microfluidic array multiplex PCR reactions contained Perfecta multiplex qPCR master mix (Quanta 

Biosciences), 0.1% Tween 20 (Sigma Aldrich Incorporated), 100nM ROX (Quanta Biosciences). 

Universal 16S SSU rRNA primers and probes used were (S1): forward 357F 5’-

CTCCTACGGGAGGCAGCAG-3’ (300nM), reverse 1492RL2D 5’-

TACGGYTACCTTGTTACGACTT-3’ (300nM), 1389 probe HEX-GTGCCAGCMGCCGCGGTAA-

BHQ1 HPLC purified (300nM). Unprobed terminase primers used were: forward ter7F 5’-

CATTTGATTTGCCGTTACCGIGCYAARGAYGC-3’ (200nM) and reverse ter5eR 5’-

CICCWCCAGCCGGATCRCARTAMAC-3’ (100nM). The probed terminase reverse primer used 

was: ter5eR.L 5'- CAGCCACACICCWCCAGCCGGATCRCARTAMAC-3' (100nM). The universal 

probe used for the terminase primer set was: Roche Universal Probe #5 (250 nM). The primers and the 

rRNA probe were ordered from Integrated DNA Technologies and resuspended in sterile TE buffer 

(10 mM Tris-HCl, 1 mM EDTA, pH 8) filtered with a 0.02 μm sterile Anotop syringe filter 

(Whatman). Primers and probes were diluted in DEPC-treated sterile filtered water (Sigma) and then 

sterile filtered again (prior to dilution) with a 0.02 μm syringe filter.  
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Preparation of termite hindguts 

In each experiment three Reticulitermes hesperus worker termites from the same colony (and same tip 

box) were incubated for several minutes at 4°C to immobilize the specimens and whole guts were 

subsequently extracted using sterilized forceps on a disposable sterile petri dish. Guts were 

resuspended in 897 μL of 4°C “synthetic gut fluid” (SGF) salt solution (S2) pre-filtered with a 0.02 μm 

sterile syringe filter containing 0.5 μg/mL final concentration of DNase free RNase (Roche) to prevent 

inhibition by ribosomal RNA. Guts were repeatedly disrupted with a sterile 1 ml filter pipette tip and 

suspensions were briefly vortexed and allowed to settle for 30 seconds to sediment large particles. 

Samples were then diluted to working concentrations using the SGF diluent. For microfluidic arrays C 

through G the resuspended gut fluid was further filtered with an Acrodisc 5 µm sterile syringe filter 

(Pall Life Sciences) to remove inhibiting large particles such as wood fragments and protists. Samples 

were then mixed 1:10 with the PCR reaction mix (above) for immediate loading onto the primed 

microfluidic array once the dilutions were completed. Termite bodies were frozen for later analysis of 

their COII sequences (see below). 

 

Microfluidic array thermocycling and fluorescence analysis 

BioMark 12.765P peelable microfluidic arrays from Fluidigm were loaded with the samples described 

above and PCR was performed using the BioMark system (Fluidigm Corporation) as recommended by 

Fluidigm. The cycling protocol was 95ºC 5 min, (95ºC 15 s, 60ºC 90 s) x 45, 10 min at 60ºC, 20ºC 10 

sec. Amplification curves were evaluated using BioMark Digital PCR analysis software (Fluidigm, 

v.2.0.6) applying ROX normalization and a linear baseline correction. FAM fluorescence threshold 

was set to detect any increase in fluorescence, while the HEX threshold was set above the fluorescence 

leakage of the FAM channel into the HEX channel, detectable in both a no-16S rRNA-primer control 
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panel (dedicated for this purpose) and the no-template-control panel. Both panels were included in 

every microfluidic array. To minimize diffusion from neighboring chambers after pressure release, 

only chambers displaying fluorescence in both channels that were flanked by chambers displaying no 

fluorescence in both channels were selected for retrieval. An example of end-point fluorescence of an 

array panel is shown in Fig. 2.1A. In this figure only fluorescence from within chambers is shown, 

detected based on the reference dye fluorescence measurement. To illustrate the nature of co-

localizations, we mask the chambers in such a way that half of each chamber shows one fluorescence 

channel and the other half shows the other. This way the left half of each chamber showed only the 

FAM/viral channel fluorescence and the right half of each chamber showed only the HEX/SSU rRNA 

channel fluorescence. Fluorescence is shown on a logarithmic scale with background subtracted. 

 

Sample retrieval 

Microfluidic arrays were peeled shortly after the end of the PCR run and pressure in the arrays was 

released by depressing the pressure valves. Samples were retrieved into 10μl TE buffer (that was pre-

filtered with a 0.02μm sterile Anotop syringe filter) using disposable sterile 30.5G needles (S1) (one 

disposable needle per chamber) and subsequently evaluated for the presence of target genes via 

conventional simplex PCR. In addition, for each array, with the exception of array B, at least five 

chambers were also retrieved from the no-template-control panel to test for possible cross-

contamination (all control retrievals were negative - see below). The PCR reaction mix consisted of 

perfecta qPCR multiplex master mix with the SSU rRNA primers at 300nM concentration and 

terminase primers at 200nM concentration. The SSU rRNA probe, the Universal Probe #5 and the 

probe binding primer ter5eR.L were omitted from these reactions. The cycling protocol for 

conventional PCR for the simplex terminase reaction was 95ºC 3 min, (95ºC 15 s, 60ºC 60 s, 72ºC 60 
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s) x 40, 72ºC 10 min and for the simplex SSU rRNA reaction was the same but with 32 cycles of 

amplification to prevent amplification of contaminates associated with the Taq master mix. The 

presence or absence of product was evaluated using agarose gel electrophoresis. Samples that 

displayed a band at the expected fragment size for both simplex reactions were deemed successful. 

 

The majority of successful retrievals from the microfluidic arrays were amplified for cloning and/or 

sequencing in two 30 μL reactions using 3.5 U of EXPAND high fidelity polymerase (Roche), Fail-

Safe PCR PreMix D (Epicentre), and primers and cycling conditions as above. In the case of 

microfluidic array A, terminase sequences were amplified with Perfecta qPCR multiplex master mix 

instead. For each reaction 1.5 μL of retrieved sample was used. PCR products were purified using the 

Qiagen PCR purification kit, and sequenced using the terminase ter7F and ter5eR primers and SSU 

rRNA gene internal primers 1100R (3’-AGGGTTGCGCTCGTTG-5’) and 533F (3’- 

GTGCCAGCMGCCGCGGTAA-5’). Sequencing reactions of microfluidic array amplicons were 

carried out by the USC DNA core facility (Los Angeles, CA) using an annealing temperature of 50 or 

55ºC.  

 

Sequences that contained a mixture of SSU rRNA sequences were discarded from further analysis. 

Sequences that contained a mixture of terminase sequences, or in which the trace quality was poor 

were cloned for sequencing using the TOPO TA cloning kit (Invitrogen). At least eight colonies from 

each cloning reaction were picked and used as templates for PCR reactions. PCR reaction mix 

included Fail-Safe PCR PreMix H (Epicentre), Taq polymerase (New England Biolabs) and standard 

T3/T7 primers at 250 nM. Cycling conditions were 95ºC 3 min, (95ºC 15 s, 55ºC 30 s, 72ºC 60 s) x 35, 

72ºC 10 min. Sequences with different restriction fragment length polymorphism (RFLP) patterns 
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were chosen for sequencing. For the RFLP analysis, 6 μl of each reaction was digested at 37ºC for 4 hr 

with 3 units HinPI1 from New England Biolabs followed by an inactivation step at 65ºC for 20 min. A 

representative of each RFLP type (with the correct product band) was sequenced with the high fidelity 

polymerase and standard T3 and T7 primers. PCR products were purified using the Qiagen PCR 

purification kit and sequenced with standard T3/T7 primers. Sequencing reactions for cloning were 

carried out by Laragen Inc. (Los Angeles, CA).  

 

Identification of termite species  

The mitochondrial cytochrome oxidase II (COII) gene was used to identify the termite specimens 

analyzed in this study (S3-S5). For each of the three colonies that were collected, either heads or 

bodies of three to five worker termites frozen on the day of the microfluidic array experiments were 

used as a template for a PCR amplification of the COII gene. Primers used were A-tLeu (5’- 

ATGGCAGATTAGTGCAATGG -3’) and B-tLys (5’-GTTTAAGAGACCAGTACTTG-3’)(S6-S7). 

For colonies 1 and 2 the PCR product was cloned and sequenced. For colony 3 the product was 

directly sequenced. Colonies 1, 2, and 3 shared 99.3% nt identity with 0 gaps (0.003% SD; n=3 over 

680 unambiguous nt) and 100% amino acid identity (over 226 residues) with the COII sequence of 

Reticulitermes hesperus isolate LBL2 (accession# AY623445.1).  

 

Sequence analysis  

Sequence traces were converted into a nucleotide sequence using Lasergene SeqMan Pro v8.1.2. 

Representatives of the SSU rRNA nucleotide sequence of Hosts I through IV were then screened for 

chimeras using Pintail (S8) and Bellerophon (S9), the latter implemented in Greengenes (S10), 

returning negative results. All terminase sequences from all 41 co-localizations were also tested for 
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amplification related chimeras using Bellerophon (S9). Cases where both chimera parents belonged to 

the same PCR batch (E2iii) were eliminated from further analysis.  

 

SSU rRNA sequences were aligned by SILVA (S11) incremental aligner SINA and subsequently 

analyzed in ARB (S12) version 07.12.07org using SILVA release 100 

(SSURef_100_SILVA_02_08_09_opt). jModelTest 0.1.1 (S13-S14) was used to find the optimal 

nucleotide substitution model for the rRNA sequences in Fig. 2.2, testing 40 different models on an 

alignment of 898 unambiguous nucleotides without gaps, estimating a maximum likelihood (ML) tree 

for each model. The optimal nucleotide substitution model (based on the AICc criterion with sample 

size set to the number of sites in the alignment) was a Tamura-Nei model (S15) +I+Γ with unequal 

base frequencies. A maximum likelihood tree was then computed for this alignment with PhyML 2.4.5 

(S14) implemented in ARB using the Tamura-Nei model +I+Γ (nCat=4), with all parameters estimated 

from the data and with 1000 non-parametric bootstrap iterations. Other treeing methods such as Phylip 

DNAPARS v3.6a3 (S16) and Fitch-Margoliash (S17) distance method implemented in ARB predicted 

very similar topologies (Fig. 2.2). In Fig. 2.2 solid circles represent significant nodes supported by 

ML, parsimony (Phylip DNAPARS v3.6a3 (S16)), and distance (Fitch-Margoliash (S17)) methods. 

Half circles represent nodes supported by ML and either parsimony or distance methods. Open circles 

represent nodes supported by only ML. In addition, support values greater than 50% for 1000 

bootstrap iterations are shown. We note that the topological relation between Phage Host clades I–IV 

appeared to be sensitive to the addition of other Treponema sequences from public databases, and to 

the particular outgroup chosen as well, and therefore the topology in Fig. 2.2, though robust, may not 

be definitive.  
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Nucleotide sequences of the large terminase subunit gene present in R. hesperus, Z. angusticollis and 

Nasutitermes sp. termites were translated in reading frame and aligned with ClustalW (S18) in 

MEGA4 (S19) (the alignment used in the analysis was straightforward and involved a single insertion 

event of a highly conserved five amino acid sequence in some of the sequences). Subsequently 705 

unambiguous aligned nucleotides without gaps were tested for the presence of recombination with 

RDP3 v3.44 (S20). Methods used to scan for recombinant sequences included Geneconv (S21), 

Maxchi (S22), and RDP (S23) (as recommended in the RDP3 manual and shown to be the preferable 

tests for non-redundant sequences (S24-S25)) as well as the Bootscan method (S26). Since each 

recombination detection method individually is error prone (S24-S25, S27) several methods are 

required to explore recombination (S24, S27). Similar sequences (≤3.3%) were removed prior to 

analysis as recommended in the RDP3 manual. The first two events found by RDP3 implicated by all 

four methods alleles A13ii and B1 as recombinants, confirmed by manual phylogenetic inspection in 

RDP3. A NeighborNet analysis with SplitsTree4 (S28) using optimal substitution parameters 

estimated by FindModel (S29) confirmed the reticulate nature of these alleles and consequently these 

alleles were excluded from the phylogenetic tree in Fig. 2.2 (see Fig. 2.8). The following two events 

detected by RDP3 (H5, B2) were only supported by Maxchi, however the NeighborNet network 

showed these putative recombinants were also associated with significant reticulate patterns, which 

were eliminated upon removal of these sequences. Consequently these two samples were also 

excluded from the phylogenetic tree. The remaining events detected by RDP3 with lower confidence 

exhibited either a small degree of local reticulate patterns or no reticulate patterns and were therefore 

kept in the analysis. Eliminating potential recombinant alleles resulted in a largely tree-like network 

suitable for phylogenetic analysis (Fig. 2.8B). A likelihood-mapping analysis (S30-S31) with TREE-

PUZZLE 5.0 using 10000 quartets and the optimal model found by jModelTest (see below) showed 
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that 95.7% percent of the quartets fell in the triangle corners (A1,A2,A3

 

) suggesting that a 

phylogenetic tree should fit the data (S31). 

After recombinant sequences were removed, jModelTest was used to find the optimal nucleotide 

substitution model testing 40 different models, estimating a ML tree for each model. The optimal 

model (based on the AICc criterion as described above) was a Tamura-Nei model (S15) +I+Γ with the 

base frequencies having little effect on the AICc score. A ML tree was then computed with PhyML 

2.4.5 implemented in ARB using the Tamura-Nei model with +I+Γ (nCat=4), with all parameters 

estimated from the data and with 1000 non-parametric bootstrap iterations. Other treeing methods such 

as DNAPARS v3.6a3 and Fitch-Margoliash distance method implemented in ARB predicted very 

similar topologies (Fig. 2.2). Tree topology was also similar to the ML estimated tree topology of the 

corresponding 235 amino acid residues, with the main differences being a slight repositioning of the 

higher termite clade and sequence A2. Since the terminase gene is comprised of two functional 

domains, an ATPase domain and a nuclease domain (see Fig. 2.6), we also compared the ML 

estimated topology of 495 unambiguous aligned nucleotides of the N-terminal domain of the gene (see 

Fig. 2.5 for alignment) with the nucleotide tree of the entire gene and found the topologies to be nearly 

identical. p-distances were measured in MEGA4 and standard deviations were calculated in Matlab. 

 

Survey of SSU rRNA ribotypes on the microfluidic array 

In order to assess the frequency of putative host ribotypes I through IV on the microfluidic array as 

well as the frequency of other rRNA ribotypes, we constructed a library of 118 randomly sampled 

rRNA hits from the microfluidic arrays. To this end, for two microfluidic arrays (F and G) and for 

every panel on these arrays (except the two control panels), 10 chambers for which the HEX (rRNA) 
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fluorescence exceeded the detection threshold (irrespective of florescence in the FAM/terminase 

channel) were randomly selected for retrieval. The identities of the chambers for retrieval were 

obtained by a random number generator implemented in Matlab 7.4. These sequences were then post-

amplified for sequencing using Perfecta multiplex qPCR master mix (Quanta Biosciences) as 

described in the Methods section. Sequencing was performed by the USC DNA core facility using 

internal SSU rRNA primers 533F and 1100R (see Methods). A total of 118 sequences were 

successfully sequenced and assembled using Lasergene SeqMan Pro v8.1.2. In Fig. 2.3 we plot the 

rank abundance curve of just Treponema phylotypes from the reference library. The frequency of each 

phylotype is given in Table 2.6. Each column in Fig. 2.3 can be thought of as a random variable 

sampled from a binomial distribution with mean n p⋅  and standard deviation (1 )SD n p p= ⋅ ⋅ − , where p 

is the probability to sample this phylotype and n is the total number of trials (here n=78 trials). The 

error bars in Fig. 2.3 are ±SD, with p estimated for each phylotype as the number of occurrences of 

that phylotype divided by n. 

 

Degenerate primer design and testing 

Terminase phage primers were designed to target several conserved regions of the large terminase 

subunit gene found in the four prophage-like elements in Treponema primitia (ZAS-2) (S32) and 

Treponema azotonutricium (ZAS-9) (S33), and in 46 contigs found in the metagenome of a 

Nasutitermes species termite (S5). The primers were designed with CODEHOP (S34), selecting 

candidates with melting temperatures matching the all-bacterial SSU rRNA primer set (primer 

candidates were required to be different by at least five base pairs to be considered different 

candidates). The primer sequences in both the degenerate core region and the clamp region were 

manually tweaked to offer the best coverage for the conserved region (matching the codon bias in 
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these sequences) and to minimize primer dimers. In addition, inosines were incorporated at certain 

positions instead of mixed bases to reduce primer degeneracy. Several forward and reverse primer 

candidates were chosen and the nucleotide regions were further adjusted to minimize forward/reverse 

primer-dimers and dimers with the all-bacterial primers and probe. Multiplex PCRs for various 

forward and reverse primers were performed on a dilution series of purified genomic DNA from ZAS-

2 and ZAS-9. PCR products were analyzed by agarose gel electrophoresis and primers yielding the 

strongest bands and having the lowest detection limit (<100 copies) were selected. The chosen primers 

were further screened on genomic DNA extracted from Zootermopsis nevadensis by agarose gel 

electrophoresis. 

 

To allow us to do quantitative PCR (qPCR) with these primers without having to design a degenerate 

probe we implemented a universal-template probe strategy first suggested by Zhang et al. (S35) and 

adapted for degenerate primers by Ottesen et al. (S2). In this method a short universal nondegenerate 

probe sequence is attached to the 5’ end of the forward and/or reverse primers. The probe-binding 

sequence is incorporated into the amplicon during the first round of amplification, allowing the probe 

to detect amplification of that product. A short nondegenerate 8 base probe incorporating locked 

nucleic acids (LNAs) then binds to the probe-binding sequence and is subsequently cleaved by the 

DNA polymerase like in a standard TaqMan chemistry. The locked nucleic acids increase the melting 

temperature of the probe allowing usage of a very short probe. A probe yielding the minimal 

interaction with the SSU rRNA amplicon and other oligos in the master mix was chosen for this task. 

A linker sequence was incorporated between the probe-binding sequence and the degenerate primer to 

further reduce dimers.  
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Multiplex qPCR standard curves were obtained for all probe binding sequence combinations (probe 

binding sequence on the forward primer, probe binding sequence on the reverse primer and probe 

binding sequence on both the forward and the reverse primers) and for all the candidate primer sets. In 

all cases, primers with LNA probe binding sequences were mixed 50% with primers lacking the probe 

binding sequence as this seemed to enhance the PCR reaction. Primer sets yielding the best standard 

curves, highest end-point amplification for positive templates and highest Cts for the no-template-

controls were selected. Primer sequences for the best candidates were fine tuned to further reduce 

dimers and then screened again using the same metric described above. The best candidates were then 

tested on ZAS DNA on the digital PCR microfluidic array. Primers yielding the best amplification 

curves, highest end-point amplification, and lowest number of no-template-control hits were selected. 

Finally, primer and probe concentrations were optimized on the microfluidic array for the chosen 

primer set. All benchtop qPCRs were performed on a Stratagene Mx3000P. Cycling conditions were 

as described in the Methods section. 

 

Measures to prevent and test for contamination 

To prevent contamination from the environment, from termites and from post-PCR products, several 

precautions were taken. Experiments were conducted in five different laboratories that were physically 

separated (different laboratories within the same building or different buildings). All PCR master 

mixes for dPCR runs, PCR master mixes for post-amplification of retrieved microfluidic array 

samples, and tubes loaded with 10 μl TE buffer for retrieved sample resuspension were prepared in 

laboratory #1 that never came in contact with termites or related samples thereafter. In addition, 

pipettes and benches were always thoroughly cleaned with EtOH or EtOH and bleach prior to setup. 

Termite handling and microfluidic array loading were conducted in laboratory #2, where each of these 
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two procedures took place in well-separated designated areas. Sample retrieval was performed in a 

separate room within laboratory #2 using disposable syringes. Sample loading for post-amplification 

was performed in laboratory #3. Master mixes for cloning related PCR reactions were prepared in 

laboratory #3 (which was designated as a PCR cloning “clean area”) and loading of samples for 

cloning-related PCR was performed in laboratory #4. All subsequent manipulations of samples or 

cloned PCR products (such as RFLP analysis, agarose gel electrophoresis, PCR purification, etc.) were 

performed in laboratory #5.  

 

To test that no contamination occurred, every microfluidic array contained a no-template control panel 

and for each array (except B) at least five chambers from the no-template-control panel on the array 

were retrieved and processed with the rest of the samples to insure there was no cross-contamination 

during the retrieval process. No-template-control chambers retrieved for this purpose were selected 

such that these chambers and their flanking chambers on either of their sides did not exhibit 

fluorescence in both the FAM and HEX channels (this was done to prevent possible diffusion of 

targets from adjacent chambers into the sampled chamber after pressure release). All no-template-

control samples that were retrieved from the microfluidic arrays were post-amplified with the rest of 

the retrievals and tested by agarose gel electrophoresis. All negative controls were always negative for 

both channels1

                                                 
1 One of the five SSU rRNA control chambers in array G was positive in a diagnostic post-amplification (not for 
sequencing), however this turned out to be an artifact of the diagnostic run as post-amplification of the same sample a 
second time was negative (with the positive control being positive). 

. Background amplification in the no-template-control-panels never exceeded 2.6% of 

positive chambers for both channels (1.25 ± 0.75% SD for the terminase channel and 1.35 ± 0.7% SD 

for the SSU rRNA channel). Some background amplification using all-bacterial SSU rRNA primers is 

expected (S1) and is commonly attributed to DNA fragments present in commercial enzyme 

preparations (S36). The positive hits for the FAM channel in the microfluidic panels are expected to be 
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a consequence of the modified TaqMan chemistry employed: since the universal LNA probe can 

spuriously bind to a terminase primer, primer-dimers will lead to amplification of a spurious product 

and fluorescence (similar to primer-dimers observed in SYBR Green assays), however no actual 

contaminating target is present, verified by agarose gel electrophoresis (see Fig. 2.10, Table 2.12, and 

supporting text for further discussion). Finally, every post-array amplification was always executed 

with several no-template-controls. 

 

Measurement of PCR and cloning error rates 

To measure the sequence error rate of samples retrieved from the microfluidic dPCR array, genomic 

DNA from ZAS-9 was used as a reference template in a microfluidic dPCR array. Vortexed genomic 

DNA from ZAS-9 was loaded onto a microfluidic dPCR array and cycled as described in the Methods 

section. Samples were then retrieved and the rRNA and terminase gene fragments were post-amplified 

using EXPAND high fidelity polymerase (Roche) as described in the Methods section. To measure the 

error rate, sequenced array retrievals were aligned against the known sequence of ZAS-9 rRNA and 

terminase genes. The error rate of the rRNA gene was 0 with 0 gaps (n=8, 905 ± 20bp SD) and the 

error rate of the terminase gene was 0 with 0 gaps (n=16, 711 ± 14bp SD). Post-amplification of the 

terminase gene fragment with the Quanta master mix resulted in a small number of ambiguous bases, 

however correcting these artifacts resulted in perfect matches. To test cloning associated errors, a 

retrieved ZAS-9 terminase sequence post-amplified with Roche high fidelity polymerase was cloned 

and several colonies were picked, amplified with the Roche high fidelity polymerase and sent for 

sequencing, as described in the Methods section. The measured error rate was 0.59 ± 0.29% SD (n=9, 

759 ± 4bp SD) with 1 gap for 1 out of 9 cases. A similar cloning error rate was found when comparing 

the nucleotide sequences of 12 terminase amplicons in Fig. 2.2 sequenced directly from retrieved 
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samples with their corresponding TOPO clones (0.55% ± 0.32% SD, n=12). In some cases single 

nucleotide deletions were also observed (see below). To check that clone errors were not sequencing 

related, five samples of the same terminase clone were amplified and sent for sequencing, however all 

sequences were found to be identical. To check that these errors are not introduced by E. coli during 

the growth phase, a single terminase colony was re-streaked and five colonies were amplified and sent 

for sequencing. All colonies yielded 100% identical sequences. Consequently, the origin of the 

terminase sequence errors appears to be the cloning step. 

 

Out of 31 terminase sequences in Fig. 2.2, 10 were sequenced from the original retrieval, 12 were 

sequenced from a combination of the original retrieval and a TOPO clone, and 9 were sequenced from 

the TOPO clone alone. When sequences from the original retrieval were available and unambiguous, 

to minimize cloning errors these sequences were used in the consensus sequence in overlapping 

regions. Therefore for these sequences the error rate is expected to be lower. TOPO clones A9ii and 

E2i initially contained a frame shift mutation and E2i contained in addition an errant stop codon. 

These mutations were suspected to be cloning-related errors, confirmed by sequencing additional 

TOPO clones for each sample and calling base pairs by majority consensus. TOPO clone A11 also 

contained a frame shift mutation outside the alignment region considered in Fig. 2.2. This frame shift 

mutation also appears to be a cloning artifact as similar (though not identical) clones from the same 

retrieval did not contain this frame shift mutation. Consequently an N was inserted at this position. In 

the absence of TOPO clones, if an ambiguous base was declared (one such case) the degeneracy was 

arbitrarily broken to facilitate translation. 
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Measurement of primer efficiency 

To measure SSU rRNA primer efficiency, five panels of a microfluidic dPCR array were loaded with 

ZAS-9 genomic DNA. Genomic DNA was titrated to achieve a final expected number of 400 (n=1), 

300 (n=2), and 200 (n=2) SSU rRNA targets that were uniformly distributed across a panel containing 

765 microfluidic chambers. Expected number of targets was estimated based on genomic DNA 

concentration measured using a Hoefer DynaQuant 200 fluorimeter. Digital PCR chemistry and 

cycling conditions were as described in the Methods section. The genomic DNA was vortexed upon 

extraction and therefore the genome is expected to be sheared to 10–20kb fragments. Since the two 

copies of the rRNA and terminase genes were located 689 kbs and 939 kbp apart, respectively, each 

genome was assumed to contribute two separate copies of each gene. After subtraction of noise, 

estimated from the no-template-control panels, the average rRNA and terminase primer efficiencies 

were calculated to be 59 ± 6% SD (n=5) and 74 ± 7% SD (n=5).  

 

Selection pressure analysis 

The program HyPhy 2.0 (S37) was used to estimate the relative rate of non-synonymous (β) and 

synonymous (α) substitutions (ω=β/α) for all 28 retrievals associated with Hosts I through IV using a 

maximum likelihood approach with a codon substitution model (S38). An alignment comprising 705 

unambiguous nucleotides without gaps was used to generate a maximum likelihood (ML) tree with 

phyml assuming a TN93 (S15) nucleotide substitution model +Γ(nCat=4)+I+F. Given the above 

alignment and ML tree, HyPhy was used to find an optimal nucleotide substitution model out of all 

possible time-reversible models using the AIC criterion for selection. Finally, HyPhy was used to 

obtain the ML estimates of the independent model parameters of an MG94(S39)xREV_3X4(S38) 

substitution model with the optimal constraints found above (012032) assuming global parameters, the 
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above ML tree, and the above in-frame alignment. Equilibrium frequencies were estimated from the 

partition. The global estimated ω was found to be 0.079. The 95% profile likelihood confidence 

interval was 0.071 to 0.088. This range is significantly lower than ω=1 (the case of neutral evolution) 

indicating that the terminase gene is under substantial negative selection pressure. A likelihood ratio 

test (LRT) comparing the null hypothesis model (ω=1) to the above alternative model strongly rejects 

the null hypothesis of neutral evolution with LR=754 and a P value (likelihood ratio test) predicted by 

HyPhy to be 0. In Table 2.7 the selection pressure was estimated for individual bacterial hosts using 

several additional methods and resulted in the same conclusion. 

 

Analysis of viral genes in the metagenome 

We were interested in finding the more abundant viral genes in the metagenome to identify a viral 

marker gene for this environment. In order to make this method widely accessible we designed an 

automated tool called MetaCAT that screens all gene objects in a metagenome and clusters them based 

on homology to genes in a reference database of known viral genes. The number of metagenome gene 

objects in a given cluster is then interpreted as the relative frequency of the corresponding known viral 

reference gene in the metagenome. This method is capable of assessing the relative frequency of viral-

related metagenome gene objects in an annotation independent way. We refer to the implementation of 

this algorithm as the Metagenome Cluster Analysis Tool (MetaCAT), available upon request. 

 

The MetaCAT algorithm is as follows: we first BLAST a list of known (viral) reference genes against 

all metagenome gene objects using BLAST v2.2.22+ (S40) (wrapped by Matlab) with a cutoff E value 

of 10-3. As a reference list of known viral genes we use NCBI’s viral RefSeq database v37 (S41). The 

number of metagenome gene objects homologous to each of the known reference genes is defined to be 



2-32 
 

the abundance of that known reference gene in the metagenome. Since the list of known reference genes 

is long (~80,000 genes) we wished to filter this list based on several criteria. First, we retain only known 

reference genes whose best E value score is ≤10 -7. This filtering step is performed to retain only known 

reference genes that yield reasonable alignments to metagenome gene objects. The second filtering step, 

implemented in Matlab, was designed to take out redundancy in the RefSeq database itself with respect 

to the metagenome using a dedicated clustering algorithm. For example, if two known reference genes 

are homologous to similar lists of metagenome gene objects, we would like to report only one of the two 

known reference genes, choosing the one with the lower E value. More generally, we wish to find for 

every known reference gene all the other known reference genes to which it is related (a known 

reference gene is always related to itself; see definition below). Therefore each known reference gene 

belongs to a group of related known reference genes. Finally, for each group of related known reference 

genes we only report the known reference gene with the lowest E value to represent that group. The 

combined list of reported known reference genes is then the final list of viral genes. The frequency of 

each reported viral gene is defined as the abundance of that known reference gene in the metagenome 

(see above). To complete the definitions: two known reference genes are said to be related if the 

signatures of both known reference genes is similar. A signature of a known reference gene is defined 

as the list of metagenome gene objects to which that known reference gene is homologous (E ≤ 10-3). 

Two signatures are then said to be similar if they share 50% of the elements in their lists. That is, if list 

A has Li elements and list B has Lj

( )50% 100 min ,i j i i j jL L L L L L≥ ⋅ ∩ ∩

 elements, lists A and B are said to be similar if 

, with the symbol ∩  denoting the intersection between the two lists.  

 

Note that the final reported known reference genes can still be related. Nevertheless, this filtering step is 

effective at removing a considerable amount of redundancy in the RefSeq database. A third manual 
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filtering step is applied to retain only viral genes related to building a virion. Such genes are considered 

to be virus-specific genes (S42). Examples of such genes include capsid proteins, portal proteins, 

terminase proteins, tail proteins, baseplate proteins, and so on (S42). The list of the most abundant viral 

genes in the metagenome (abundance ≥10) is given in Table 2.2. 
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2.9.2 Supporting text 

Origin of a random co-localization component 

2.9.2.1 Statistical analysis of co-localization in digital PCR microfluidic arrays 

We wish to see if k repeated co-localizations of a particular 16S rRNA ribotype with the 

terminase gene can be explained by chance co-localization on the microfluidic array (referred 

hereto as a “chip”). The reason there is a finite probability for chance co-localization is that 

typical array panels usually contain a certain fraction of FAM hits (the channel of the terminase 

marker) that are not co-localized with HEX hits (the channel of the 16S rRNA marker) as is 

shown in Fig. 2.9. If a fraction of these non-co-localized FAM hits contains the terminase target 

there is finite probability they may co-localize by random chance with a 16S rRNA gene and be 

mistaken for a true (host/terminase) co-localization. The number of these types of chance events 

determines the probability for false co-localization. Non co-localized FAM hits (which do not 

always contain an actual terminase product) can arise for several reasons: 

 

(1) Since the universal LNA probe binds to a terminase primer, primer-dimers can lead to 

amplification and spurious fluorescence, i.e., fluorescence in the absence of a terminase target. 

These types of hits are apparent in the no-template-control panel and can account for roughly half 

of the non co-localized hits on a typical panel (see Table 2.12 and Table 2.14 discussed below). 

To verify that FAM hits in the no-template-control panel do not contain a target and are not the 

result of a contamination, four positive FAM chambers were retrieved from a no-template-control 

panel, post amplified for the terminase gene and analyzed by agarose gel electrophoresis, however 

no bands were detected. In addition, for several panels for two chips all FAM hits (both co-

localized and non-co-localized) were retrieved, post amplified for the terminase gene and 
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analyzed by agarose gel electrophoresis (Table 2.12). For each panel there were several samples 

that did not display any band (see Fig. 2.10 for a representative example), a finding that is 

consistent with the presence of spurious products observed in the no-template-control (NTC) 

panel. Furthermore, the average number of samples that did not display a band agreed well with 

the number of FAM hits in the no-template-control panels for these chips (Table 2.12), 

confirming that there is a noise component of spurious amplification on the panels similar to the 

no-template-control panel. For the seven chips in this study the average number of FAM hits in 

the no-template-control panel was 9.6±5.7. These types of non-co-localized FAM hits will not 

lead to chance co-localization with a 16S rRNA gene since there is no actual terminase target 

present.  

 

(2) If the end-point fluorescence generated by a 16S rRNA target did not exceed the HEX 

threshold, this chamber would seemingly appear as a non-co-localized event (even though there is 

a 16S product present). Since the HEX threshold is set high enough to filter out cross-talk from 

the FAM channel into the HEX channel, some potential HEX hits may have been omitted. Indeed, 

when retrieving all FAM hits from a panel and amplifying all retrievals for the 16S rRNA gene, 

usually some wells whose HEX end point fluorescence did not pass the detection threshold did 

have a 16S rRNA band (data not shown). These types of non co-localized FAM hits should not 

contribute to false co-localization or contribute minimally because samples with mixed/chimera 

16S rRNA traces are discarded from analysis and the probability of repeatedly amplifying the 

same wrong 16S rRNA is negligibly small (see discussion below). 
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(3) The 16S rRNA qPCR efficiency was measured to be ~60% for ZAS-9 genomic DNA (see 

Materials and methods). These types of events could potentially lead to false co-localization if a 

16S rRNA amplification product is not generated (but the terminase gene in this cell was 

amplified) and this target co-localized by chance with another bacterial cell whose 16S rRNA 

gene was amplified. If an amplicon was generated (but for some reason fluorescence was 

inhibited) then these types of non-co-localized FAM hits will not contribute to false co-

localization because samples with mixed 16S rRNA traces are discarded. 

 

(4) Some cells may potentially prematurely lyse and their DNA may get sheared (for example 

when crushing the gut or during the loading process onto the chip). If this happens there is a 

possibility that free floating terminase targets are released into the mix. 

 

(5) There may be assembled viruses present or free floating viral DNA, which can be regarded as 

free floating terminase targets.  

 

As mentioned above, approximately half of the non co-localized FAM hits on a given panel can 

be explained by the spurious noise and do not contribute to random co-localization. Of the 

remaining non-co-localized FAM hits, the fraction relating to (2), if present, will not lead to false 

co-localization. Therefore the probability for false co-localization estimated below, which is 

based on fluorescence measurements alone, is an upper bound on the true probability for false co-

localization.  
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Statistical model of random co-localization (P value estimation) 

In Fig. 2.2 we see that certain 16S rRNA ribotypes are repeatedly co-localized, giving rise to 16S 

rRNA clades I–IV. The null hypothesis is that these 16S rRNA ribotypes are not true hosts and 

that the observed repeated co-localizations are due to chance associations, that is, these 16S rRNA 

ribotypes are simply co-localized many times by chance with free floating terminase targets. We 

therefore wish to estimate the probability (P value) that out of n=41 successful retrievals from the 

chip, i.e., retrievals that resulted in obtaining a 16S rRNA and terminase sequence after post-

amplification, we will retrieve k or more instances of a particular ribotype S co-localized with a 

terminase (any terminase). This probability is given by 
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where binocdf is the cumulative distribution function of the binomial distribution and pF is the 

probability that when we successfully retrieve a co-localized well from a panel it contains the 

particular ribotype S and any terminase gene by pure chance. Given k, n and pF (estimated below) 

the P value can be calculated. We find that the P values (n=41; one-tailed) for Hosts I–IV are all 

highly statistically significant (P < 10-4

 

; see Table 2.1 and Table 2.14) allowing us to reject the 

null hypothesis.  
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A model for a typical panel 

Each panel loaded with a template is assumed to have the following species: Y HEX hits (“blue” 

hits), X FAM hits (“red” hits) out of which “noise” FAM hits are due to spurious amplification 

(no actual target). We assume that out of the X FAM hits there is a fraction of FAM hits that are 

free floating targets, that is a DNA fragment coding for a terminase gene but not for a 16S rRNA 

gene. The number of free floating targets is defined to be TX noise− . These free floating targets 

would be the source of false co-localizations events. Thus co-localization events observed on the 

chip can be due to three possible causes: (1) genuine co-localization of a host SSU rRNA with its 

terminase, (2) chance co-localization of a free floating terminase gene with a 16S rRNA gene, (3) 

chance co-localization of a spurious FAM amplification (no actual terminase amplicon present) 

with an rRNA gene. See Table 2.13 for a definition of all the variables used in the model. 

 

Estimation of p

To calculate the P value above, one must estimate p

F 

F, i.e., the probability that a successful 

retrieval from a panel contains our particular ribotype S and any terminase gene by pure chance. 

This probability can be estimated as follows: let XT be defined as the sum of the total number of 

free floating terminase targets and spurious targets leading to spurious FAM amplification (i.e., 

noise). We will see how to estimate XT

IS

 later on but for the time being let’s assume it is given. The 

average number of free floating terminase targets to co-localize with a particular 16S rRNA 

ribotype S on a panel, defined as , is given by multiplying the number of wells on a panel (765) 

by (a) the probability that a given well will contain a free floating terminase target terp  and (b) 

the probability that that well will also contain ribotype S. The probability that a given well will 

contain a free floating terminase target is 
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(S1)     .
765

T
ter

X noisep − =  
 

 

 

where noise is the number of FAM hits that are due to spurious amplification and are not 

associated with an actual terminase target. Thus TX noise−  is the number of free floating terminase 

targets on the panel. Note that TX noise−  will lead to an upper bound on the number of free 

floating terminase targets (leading to an upper bound on pF TX noise−) since  may include wells 

with a genuine 16S rRNA amplicon that simply did not pass the HEX detection threshold and are 

thus wrongly labeled as free-floating terminase targets (as described above). The value for noise 

can be estimated from the no-template-control panel for a given chip (see for example Table 

2.12).  

 

The average number of free floating terminase targets to co-localize with a particular 16S rRNA 

ribotype S on a panel is therefore given by 

 

(S2a)    765 .
765ter ter
f YI p p f Y⋅ = ⋅ ⋅ = ⋅ ⋅ 

 
S

S S  

 

where Y is the total number of HEX hits on a panel, fS 

f YS

is the frequency of ribotype S on the chip 

so that is the number of ribotypes S on a given panel. IS is an estimate of the number of false 

co-localizations on a panel. This number is smaller than the number of observed co-localization 

on the panel, which we designate by I (=number of HEX and FAM intersections on a given 
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panel). The number actual co-localizations on a panel of any 16S rRNA target with any terminase 

target (i.e., the total pool from which we draw successful retrievals) would be on average  

 

 (S2b)      .
765

noise YI I ⋅
= −all 16S-ter  

 

taking out random co-localization of spurious FAM hits from I. The probability pF is therefore 

given by the ratio of the number of random co-localization on a panel, IS all 16S-terI, and , the number 

of actual co-localizations on the panel (i.e., of any 16S rRNA and any terminase target, both true 

and false co-localizations). Thus 

 

(S3)    .ter
F

I p Yp f
I I

⋅
= = ⋅S

S
all 16S-ter all 16S-ter

 

 

Since all 16S-terterp Y I⋅  can vary somewhat from panel to panel, to calculate Fp  we use Bayes' 

theorem: 

 

( ) ( ) ( ) ( )| | ...Fp P P P P= + +false panel A panel A false panel B panel B  

 

We therefore replace all 16S-terterp Y I⋅  in Eq. S3 by its panel averaged value, weighted by the number 

of times each panel was sampled (making at total of n=41 trials). The estimated values of pF

 

 per 

host type are given in Table 2.14. 
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Estimation of X

Let us assume that a given panel has X FAM hits, Y HEX hits, and I intersections. The number of 

non-co-localized terminase hits is then X

T 

f = X - I. XT is slightly larger than Xf 

(

 since some of the 

free floating targets or spurious targets may have co-localized with HEX hits. This difference  

T fX X− ) is estimated by multiplying the number of wells on a panel by (a) the probability that a 

well will contain a free floating target or a spurious target and (b) the probability that that well 

will contain any HEX hit. Thus ( )765
765 765

 wells T
T f

X YX X   − =   
  

, or  

 

( )765 .
765 765

T
T f

X YX X   = +   
  

 wells  

Solving for XT

(S4)    

 we find that 

( )
1 1

1 1 .
765 765T f
Y YX X X I

− −
   = − = − −   
   

 

 

Note that since typically Y~50, TX X I≈ − .   

 

Estimation of f

f

s 

s, the frequency of ribotypes S on the chip, is estimated based on the number of the particular 

REP ribotypes that grouped with the corresponding host S (e.g., five REP4 ribotypes out of 118 

grouped with Host I in Fig. 2.7, therefore fs

 

=5/118). Operational taxonomical units for REP/host 

clades were determined by a DOTUR analysis (Table 2.6 and Fig. 2.7).  
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Given fS and XT (Eq. S4) we can calculate pF (Eq. S3), and given k (Table 2.1) we can calculate 

the P value. Table 2.14 summarizes the frequencies fS, probabilities pF and P values for Hosts I 

though IV. As mentioned in the beginning of this section, the P values calculated for Hosts I 

through IV were very small (P < 10-4

 

) allowing us to reject the null hypothesis, i.e., the repeated 

ribotypes I–IV cannot be explained by random co-localization of these ribotypes with free 

floating terminase targets. 

Bound on false co-localization in the dataset 

We would like to estimate the average number of retrievals where one of the observed hosts co-

localized by chance with a terminase (resulting in either two terminases — the host’s and the free 

floating terminase, or, in the case the host’s terminase did not amplify or was not present, one 

wrong terminase). The probability that we retrieve from a given panel any of the host ribotypes 

with the wrong terminase is given by summing the individual false co-localization probabilities 

for each host - 

, all 16S-ter
host I-IV host I-IV

F tot F terp p p f Y I = = ⋅ ⋅ 
 

∑ ∑ S . The average number of false co-localizations in a 

dataset of n=41 retrievals would therefore be  

 

(S5)     , .false F totN p n= ⋅  

 

We find that falseN  =0.6. Thus out of 28 repeated co-localizations of our hosts, on average ~ 0.6

are expected to be false (an error of 2%). The fact that no co-localized pairs were retrieved with 

the most abundant phylotypes on the array (see Table 2.6 and Fig. 2.7) and that the three most 
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abundant phylotypes on the array comprising 49% of all treponemes in only one out of 38 cases 

co-localized with an rRNA gene (see discussion on non-hosts below) confirms that erroneous co-

localization was indeed very rare. 

 

Numerical simulation to test the statistical model  

To check our statistical analysis (Eq. S1-S7) we conducted a Monte Carlo simulation of retrieval 

from the microfluidic panels based on the model presented above (Fig. 2.11). The numerical 

simulation results were predicted precisely by the statistical model described above.   

 

Model for Monte Carlo simulation 

In the simulation Y rRNA templates were loaded randomly onto a panel of 765 chambers 

(Y~U[Ymin,Ymax]). Each panel was also randomly loaded with noise spurious FAM hits 

(noise~U[noisemin,noisemax]) and free free floating terminase targets (free~U[freemin, freemax]). A 

fraction f (i.e., probability) of the Y rRNA templates was assumed to be genuine hosts (i.e., hosts 

that genuinely harbor a terminase gene). The terminase gene within these hosts was assumed to be 

amplified with probability eter. Each retrieval trial consisted of loading a single panel of 765 

chambers with the above elements and retrieving one sample that contained both a 16S rRNA 

sequence and a terminase sequence. If the retrieval failed (i.e., the rRNA was co-localized with a 

spurious FAM target) a new retrieval trial would be attempted until successful (these mute trials 

would not be counted as successful iterations). For each successful retrieval trial it was registered 

if the retrieval was a false co-localization (i.e., a host 16S rRNA sequence was co-localized with a 

free floating terminase). In addition for each successful retrieval trial the probability of false co-

localization pF was calculated. This probability is given by the ratio of number of false-co-
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localizations on the panel (i.e., a 16S rRNA gene that co-localized with a free-floating terminase) 

and the total number of co-localization on the panel (any 16S and any terminase gene). A single 

Monte Carlo iteration ended when Nretrievals (=41) successful retrievals were obtained. At the end 

of each Monte Carlo iteration, the total number of false co-localizations (Nfalse) was tallied and the 

average value for pF

 

 was calculated. In total there were 1000 Monte Carlo iterations. 

To compare with the statistical model above, after each Monte Carlo iteration, pF and Nfalse were 

estimated based on Eq. S3 and Eq. S5 assuming f=fS and given the random values for X, Y, I and 

noise generated for each of the 41 panels in the simulation. At the end of the simulation the 

average value of pF and Nfalse (averaged over 1000 iterations) was compared to the predicted 

values of pF and Nfalse 

 

based on the statistical analysis. 

Simulation parameters 

Simulation parameters were chosen to mimic the experiments in this study as closely as possible: 

Nretrievals=41; all hosts were assumed to be indistinguishable so that fS was given as the sum of all 

the rates fS in Table 2.14 (i.e., fS=9/118, where 9 is the total number of occurrences of Hosts I–IV 

phylotypes in the reference library, and 118 is the size of the reference library — see Table 2.1). 

All other parameters followed the distributions in Table 2.14 with Y ~ U(20,80), noise ~ U(5,15), 

free ~ U(0,20) and eter

 

=0.74 (see Materials and Methods).  

Simulation results  

We found that the predictions for pF (Eq. S3) and Nfalse (Eq. S5) closely matched the numerical 

simulation:  
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((

ˆˆ ( (
falseF

F false

Np
p N

±± 
 ± ± 

simulation)=0.6 0.8simulation)=0.014 0.011
    

Eq. S3)=0.018 0.022 Eq. S5)=0.7 0.9
 

 

The errors are standard deviations. The simulation presented here shows that the statistical model 

presented above (Eq. S1-S7) is consistent with the numerical simulations. 

 

Chambers with multiple cells 

Since the average number of targets loaded per panel was small (~50), the chance of obtaining 

multiple cells in a given chamber was small (1.7 chambers out of 50 on average (S43)). However 

cells can also potentially “stick” together upon loading as well. If a chamber contains multiple 

16S rRNA genes and more than one gene is amplified then the sequence trace will be mixed. 

Such samples were automatically discarded in this study. If a 16S rRNA chimera is formed, 

chimera products are screened with Pintail (S8) and Bellerophon (S9) and discarded from further 

analysis (no such chimeras were found in this study). The chance however that the same ribotypes 

would repeatedly co-localize and either form a chimera or amplify the wrong rRNA gene are 

extremely small. To estimate the chance for such an event, we shall consider the case where the 

host 16S rRNA gene, S, repeatedly co-localized with the same rRNA gene S’, and that the foreign 

16S rRNA gene (S’) was amplified while the host 16S rRNA gene (S) was not amplified. The 

average number of such chance events per panel where the host terminase was also amplified is 

given by ( )( )' 16 16 '(1 ) / 765SS ter S S s sI f Y f Yε ε ε= − , where terε  and 16Sε  are the amplification 

efficiencies of the terminase gene and the 16S rRNA gene, respectively (see Materials and 

methods for an estimation of these efficiencies), 'sf  is the frequency of the S’ ribotype, and 

( )( )' / 765s sf Y f Y  is the number of chance co-localizations of S and S’ cell types on a given 
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panel. The probability therefore of retrieving such events is '
mixed
F SSp I I= all 16S-ter . Assuming 

' ~ 0.2sf  (corresponding to the worst case scenario of co-localizing with the most frequent 

ribotype on the chip, REP1) then based on Table 2.14 we have mixed
F Fp p<<  (where pF

 

 is given in 

Eq. S3) and therefore these events can be neglected (the P values for such events would be much 

smaller than those in Table 2.1). 

Uniformity of panel loading  

On a few occasions, panels were loaded by the NanoFlex somewhat nonuniformly. This has the 

consequence of reducing the effective number of wells available for the cells. The samples 

affected for Host I were C2 and G1. The terminases of samples C2 and G1 fell in the main clade 

of Host I of highly similar terminases (Clade V1 in Fig. 2.2) lending support for these co-

localizations. Sample G2 (Host III) was taken from a slightly nonuniform panel, however the 

terminase of sample G2 was 100% identical at the amino acid level (235 aa alignment) to F2 also 

associated with Host III, lending support for this co-localization. Samples affected for Host II 

were A4 and A7, however the terminase of A4 was 99.6% identical at the amino acids level (235 

aa alignment) to the terminase of A9i also of Host II, lending support for this sample. The 

terminase of A7 was 95.3% identical at the amino acids level to the terminase of A13i also of 

Host II, lending support for this sample. 

 

  



2-47 
 

Estimation of the P value for putative Treponema non-host (REPs1-3) 

The phylotypes REP1, REP2, and REP3 were highly repeated in the random rRNA reference 

library ( 23 118,8 118,7 118f =S , respectively) but were never sampled in the co-localization library 

(n=41). The null hypothesis is therefore that ribotype S is a genuine host but was not sampled 

n=41 times by chance. We wish to calculate the probability for this event. The fraction of co-

localizations in a given panel that contain host S is given on average by  

 

(S6)     .ter
S

f Yp
I
ε ⋅ ⋅

= S

all 16S-ter

 

 

where terε  is the efficiency of amplification for the terminase gene (see Materials and methods), 

fS  the frequency of host S on the chip, Y the number of 16S rRNA hits on a given panel, and 

all 16S-terI  is the number co-localizations on a panel of a 16S rRNA target with an actual terminase 

target (Eq. S2b). Therefore ter f Yε ⋅ ⋅S  is the number of expected genuine co-localizations for 

ribotype S, and all 16S-terter f Y Iε ⋅ ⋅S would be the probability to sample this co-localization. The 

probability (P value, one tailed, n=41) for not retrieving S (k=0) after n=41 trials is given by 

 

( )0 41 (1 )P value = Prob  successful retrievals n
Sk n p= = = − |  

 

where pS

0.8terε ≈

 is averaged using Bayes' theorem as described above (i.e., a panel-weighed average based 

on Table 2.14 for all 41 retrievals). For  (measured value) we find that the P value (one 
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tailed test with n=41) for not retrieving a host with a frequency of 7 118f ≥S    is ≤ 4.8∙10-20

terp n⋅

 allowing 

us to reject this hypothesis. If REPs-1, 2, and 3 are infected in only >5%, 14%, and 16% of the 

cases respectively, then the P value for not retrieving these infected strains is 0.01 (one tailed test 

with n=41). Therefore based on statistical grounds we conclude that the majority of REP1–3 cells 

are not infected. Furthermore 21 out of 23 REP-1 ribotypes, 8 out of 8 REP-2 ribotypes, and 7 out 

of 7 REP-3 ribotypes were not associated with a terminase hit on the microfluidic chips. Of the two 

positive hits for REP-1, post-amplification followed by agarose gel electrophoresis showed that just 

one of these samples contained a terminase target. Statistically, out of n=38 occurrences of REPs1-

3,  should randomly co-localize with a terminase target on the chip, or 0.4±0.2 random co-

localizations, as observed. This is consistent with the hypothesis that REPs1-3 are indeed non-hosts. 

 

Requirements for a viral marker gene 

2.9.2.2 The viral marker gene and its genetic context 

Since certain viral genes can be of bacterial origin, and some viral genes may not be associated 

with an actual functional virus, a genuine viral marker should satisfy certain requirements (S42). 

We were therefore interested in choosing as a viral marker a gene that (a) was unique to viruses, 

(b) was present in a larger viral context, (c) was prevalent in the ecosystem we were investigating, 

(d) contained multiple conserved regions that could be used to design degenerate primers, and (e) 

is active or has been active in recent evolutionary history in this system. The large terminase 

subunit chosen as a viral marker gene fulfilled all of the above requirements:  

 

(1) The large terminase subunit is considered to be one of the most universally conserved phage 

genes and best phage identifiers (S42), exhibiting certain conserved residues and motifs (see Figs. 
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2.5 and 2.6). Furthermore, since typically different phages exhibit little overall sequence similarly 

(see main text), the terminase gene also appears to be system specific (S44), thereby potentially 

serving as a good differentiating marker (S45). 

  

(2) Bioinformatic analysis of the ZAS-2 and ZAS-9 genomes revealed four prophage-like 

elements (two in each genome) that were related to tailed phages based on their sequence 

homology. The largest of these elements (ZAS-2A) spanned 43.5 kb, which is a typical size for 

tailed phages (S46). Furthermore, all four copies of the terminase gene in the ZAS genomes had 

homologs in the higher termite metagenome with 77–79% amino acid identity. The largest of 

these elements, ZAS-2A, appeared to be associated with the Caudovirales order: When BLASTing 

each of the 41 identified genes in this prophage-like element against NCBI’s viral RefSeq (v37) 

database, 16 genes had significant hits (E < 0.005), with 15 out of the 16 genes being associated 

with homologs present in viruses belonging to the Caudovirales order. The viral genes also follow 

a typical tailed-phage gene organization pattern (S47). For example genes ZA3, ZA4, ZA5, ZA7, 

ZA8 are the head related genes (homologous to the small and large terminase subunit genes, 

portal protein gene, prohead protease gene, and capsid protein gene, respectively), whereas genes 

ZA32 and ZA33 towards the end of the cassette exhibited a weak homology to a tail fiber gene 

and a tail tape measure protein gene, respectively (E = 0.16, 0.29, respectively). Among the 15 

hits above, 11 were associated with the Siphoviridae family, two with the Podoviridae and two 

with the Myoviridae family. The last four genes appear to be less diagnostic than the Siphoviridae 

related genes as they are not signature phage genes and the E value for three of these genes was 

low (E ≥ 0.001). Although it is possible that the prophage-like elements are mosaics of 
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Caudovirales families (S48), based on the above analysis it appears that these elements are mostly 

closely related to the Siphoviridae family. 

 

(3) Bioinfomratic analysis of the metagenome (Table 2.2) identified the large terminase subunit as 

one of the most abundant viral-unique genes in the metagenome (though this may not reflect 

absolute abundance in the sample due to assembler bias). In addition, more generally, the ZAS 

prophage-like elements appear to be ubiquitous to the termite environment as certain cassettes 

within the ZAS prophage-like elements were found to be abundant in the higher termite 

metagenome. For example, the large terminase subunit and its adjacent portal protein from ZAS-

2A had a maximum percent amino acid identity of 78% and 70%, respectively, when BLASTed 

against the metagenome (Table 2.3) and were homologous to 46 and 43 metagenome gene objects 

respectively, (E ≤ 1e-5). Furthermore, these two genes, that are adjacent to each other in the ZAS 

genomes (a typical organization in viruses (S42)) were also found to be next to each other in the 

metagenome contigs.  

 

(4) Alignment of the terminase alleles from the ZAS genomes and the higher termite metagenome 

revealed multiple conserved regions that could be used for primer design (Fig. 2.5).   

 

(5) Viral-specific genes encoded by ZAS-2 and ZAS-9 prophage-like elements (the portal protein, 

the capsid protein, the large terminase subunit and the prohead protease protein) exhibited 

substantial negative selection pressure (data not shown). In addition, the terminase genes retrieved 

from R. hesperus specimens also exhibited substantial negative selection pressure (see Materials 

and methods and Table 2.7). This evidence suggests that the terminase gene in the termite system 
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if not functional, has been functional in recent evolutionary history (see discussion below). In 

addition, there is some anecdotal evidence suggesting the terminase is part of an active viral 

entity. In one of the earlier experiments with the microfluidic arrays (prior to execution of arrays 

A through G from which samples were retrieved), where chilling of samples to 4°C was not 

strictly enforced, a dilution series of a Zootermopsis nevadensis termite hindgut fluid was loaded 

onto a microfluidic array. The panel on the array corresponding to the largest gut dilution 

exhibited 34.9 times the number of expected terminase hits (384 observed verus 11 expected), 

where the expected number of hits was estimated based on the number of hits from more 

concentrated dilutions loaded onto the same microfluidic array. At the same time, the rRNA 

channel displayed the expected number of hits (72 observed versus 74 expected) for this dilution. 

Since the degenerate terminase primers that were used in the qPCR chemistry were designed 

based on the terminase alleles in the ZAS-2 and ZAS-9 prophage-like elements (among other 

alleles), this induction event is specific to the terminase gene investigated in this study. This result 

indicates that a lytic event associated with the prophage-like element may have taken place in the 

tube containing the largest gut dilution, suggesting that this putative prophage is functional. We 

note that earlier experiments to induce the ZAS-2 and ZAS-9 cultures using mitomycin C were 

not successful, suggesting that mitomycin C may not be the inducing agent of this element.   

 

Functionality of the terminase gene 

Given the fact that the terminase gene is under negative selection pressure and in the absence of 

obvious frame shift mutations or errant stop codons in the alignment, there are several options 

regarding the nature of the prophage-like element in which it resides and the functionality of the 

terminase gene within these elements: (1) the terminase is part of an active prophage (for which 
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there is some evidence, as discussed in point 5 above) (2) the terminase is part of a defective 

prophage but it remained functional because there was not enough time for point mutations to 

have accumulated. This can happen because “prophage-debilitating deletions can accumulate 

more rapidly than gene-inactivating point mutations” (S42). (3) The prophage indeed decayed and 

the terminase gene degraded over time, but was subsequently repaired by a recombination event 

with another phage that was likely functional (since it infected the cell in the first place)(S42). 

Finally, (4) the terminase was recruited by the bacterium because it confers on the bacterium 

some competitive advantage and is therefore under negative selection pressure.  

 

To further elaborate on the last point (4), phage genes that are adopted by the cell are typically 

lysogenic conversion genes (S42) — genes that change the phenotype of the cell and confer some 

selective advantage to the cell. In this context, known possibilities may be (S42) tail-like 

bacteriocins and genetic transfer agents (GTAs). Bacteriocins are devices that kill other bacteria 

and some bacteria can produce bacteriocins that resemble phage tails (S42, S49). However since 

these entities do not have heads or package DNA it seems unlikely they would encode a terminase 

gene. For example, type F and type R tail-like bacteriocins of Pseudomonas aeruginosa PAO1 do 

not appear to encode a terminase gene or any other head related proteins (S50-S51). GTAs are 

tailed phage-like particles that encapsidate random fragments of the bacterial genome and can 

transfer them to other bacteria of the same species (S42). GTAs are thought to be adopted by the 

host cell to facilitate genetic exchange under the control of the host (S52-S54). The GTA coding 

region is typically short (~14–16 kb (S54)) and appears to contain the genes required for assembly 

of the GTA head and tail structures and the genes required for DNA packaging (including a 

terminase gene) (S52, S54). Phage DNA-specific replication functions and phage DNA-specific 
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integration or excision functions are in principle not required by the GTA (S52). Although it 

cannot be ruled out that the terminase genes retrieved from R. hesperus are part of a GTA, this 

possibility appears to be unlikely since the predicted prophage-like element identified in ZAS-2 

spans ~43.5 kb (a typical length for a functional phage), which is much longer than a typical GTA 

length (14–16 kb — see above). In addition, unlike GTAs, the ZAS-2 prophage-like element 

encodes both integration genes and several DNA replication machinery genes.  

 

To summarize, the fact that the R. hesperus terminase alleles are under substantial negative 

selection pressure suggests that this terminase is either active or has been active in recent 

evolutionary history and was the direct or indirect result of a viral infection (options 1, 2, or 3 

above). The possibility that the terminase was adopted by the cell and is part of a GTA appears to 

be unlikely. Thus the associations between the hosts and the terminase genes revealed by the 

microfluidic assay should be a valid proxy for interaction of these hosts with genuine infecting 

phages, reflecting either current or recent infections.  
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2.9.3 Supporting figures 

 

 
 
Figure 2.4. Workflow using the microfluidic digital PCR array for host-virus co-localization 
in a novel environmental sample. See Materials and methods for further details. 
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Figure 2.5. Multiple alignment of termite related terminase sequences and closest homologs. 
Here we show a multiple alignment of terminase genes of both termite and non-termite origin 
highlighting putative functional motifs. Terminase sequences included are (1) terminase 
sequences retrieved from R. hesperus termites using the digital PCR, (2) homologous terminases 
from the metagenome of a Nasutitermes sp. termite, (3) homologous terminases from Treponema 
isolates obtained from a Z. angusticollis termite, and (4) homologous terminases from non-termite 
related bacteria found in public databases (NCBI’s protein RefSeq database and the Joint Genome 
Institute database). Also highlighted are putative conserved functional motifs for the N-terminal 
ATPase center and the C-terminal nuclease center (see Fig. 2.6). When searching for homologs 
for the ZAS2-i terminase gene in public databases, the N-terminal ATPase domain of this gene 
(amino acids 1-234 — see Fig. 2.6) appeared to be much more conserved (47% identity) than the 
entire gene (29% identity). Consistent with this fact, the ATPase domain of the large terminase 
subunit has been shown to be conserved in a wide variety of dsDNA (S55) viruses and even 
shows certain conserved motifs with the putative herpesvirus terminase (S55-S56) suggesting it is 
an ancient viral domain (S55, S57-S58). We therefore show here only the N-terminal domain 
alignment of non-termite homologous terminases.  
 
N-terminal alignment: The boundary of the N-terminal domain for the terminase alleles was 
determined based on its location in T4 (residue 360)(S59) by aligning the amino acid sequences of 
the ZAS2-i terminase and all non-termite related terminases with RPS-BLAST against 
pfam03237 (S59) in the CDD (S60) (see Fig. 2.6 for ZAS2-i alignment). The N-terminal domain 
of other termite related sequences was then determined by a MUSCLE alignment to the ZAS2-i 
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terminase (S61). All N-terminal domains were then MUSCLE aligned. C-terminal alignment: 
maximum length termite related terminases were MUSCLE aligned and then only their C-
terminal regions were juxtaposed to the N-terminus alignment found above (the overlap with the 
N-terminus alignment was identical).  
 
Functional motifs were identified based on an RPS-BLAST alignment of ZAS-2i against 
pfam03237 (Fig. 2.6). This figure demonstrates that the termite related terminase sequences 
exhibit terminase-like functional motifs. Putative functional motifs include (1) Walker A motif 
G/A-XXXXGK(T/S) (purple) with a single residue X deletion, (2) Walker B ZZZZD motif with 
D replaced by N — a relatively common substitution for this residue (blue), (3) catalytic 
carboxylate group motif — E  (orange), (4) putative ATP coupling motif (green), and (5) catalytic 
Asp/Glu triad motif — here a conserved D (red)(S62-S63). Also highlighted is the putative 
flexible hinge motif (brown)(S63) based on the RPS-BLAST alignment. Numbers in brackets 
correspond to aligned residues not shown. Stars indicate conserved residues excluding T4. Dots 
indicate end of available sequence. X residues in the higher termite sequences are due to 
ambiguous base pairs in the nucleotide sequence. The RPS-BLAST ZAS2-i alignment with T4 
(Fig. 2.6) was superimposed to guide the eye and was not part of the MUSCLE alignment. Also 
shown are the primer binding sites. The degenerate core region of the CODEHOP primers (S34) 
that is required to be conserved consists of 4 amino acids at the 3’ end of the primer. Out of the 50 
ZAS and higher termite gut alleles, 31 alleles included the forward primer motif and 26 alleles 
included the reverse primer motif. In all cases, the degenerate core region of the primers was 
strictly conserved. In one additional allele, the sequence began from the center Asp residue in the 
conserved catalytic Asp/Glu triad motif. This residue was mutated in this allele from an Asp 
residue to a Gly residue suggesting this partial allele encodes a nonfunctional terminase. Thus, all 
functional alleles of the terminase gene exhibited a strictly conserved degenerate core region. 
Note that the Walker A motif was not chosen for a forward primer binding site due to the high 
degeneracy involved with this amino acid sequence.  
 
To check what diversity of terminase genes are expected to be amplified, we BLASTed the core 
region of the forward (ter7F) and reverse (ter5eR) terminase primers against all viral genes in 
NCBI’s viral RefSeq database v37. Only the core region of the primer was used in the BLAST 
analysis (a more general search) because the primers are CODEHOP primers and therefore while 
the degenerate core region (11–12 bases in the 3’ region of the primer) must base pair with the 
target, homology of the clamp region is less critical for initial amplification. We then crossed the 
list of hits for the forward and reverse primers searching for mutual hits present in the same gene 
within the same bacteriophages, however no such solutions were found. Based on this result we 
anticipate that the degenerate terminase primers target the unique diversity of terminase genes 
currently known to exist only in termite and possibly related insect species. 
 
Non-termite related terminases (Vic, Sino, Gluc, and Nov) are gram negative isolates belonging 
to the Lentisphaerae and Proteobacteria phyla. These bacteria grow in a variety of habitats 
(human gut, soil, fresh water, plants, etc.) and can either be free living or symbiotic, anaerobic or 
aerobic. Mat1, Mat2, and Mat3 were found to be present in the metagenome of a hypersaline 
microbial mat from Mexico (see Table 2.11 for accession numbers). 
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Figure 2.6. Multiple alignment of pfam03237 with a ZAS-associated terminase. Multiple 
sequence alignment of pfam03237 (Terminase_6) with the ZAS-2 terminase sequence (ZAS-2i) 
aligned with RPS-BLAST in the CDD (S60) (E value 1.2e-19). Conserved functional motifs (S62-
S63) are indicated as well as the boundary between the N-terminal ATPase domain (T4: amino 
acids 1–360 (S63)) and C-terminal nuclease domain (T4: amino acids 361–610 (S63)) based on 
T4 (S59, S62). Conserved functional motifs for the N terminal ATPase center include (S62-S63) a 
Walker A motif G/A-XXXXGK(T/S) (purple), a Walker B motif ZZZZD where Z represents a 
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hydrophobic amino acid (blue), a catalytic carboxylate group motif (usually) Glu (orange), and an 
ATPase coupling motif (T/S-G/A-T/S(N)) (green). The functional motif for the C-terminal 
nuclease center is a catalytic triad of Asp/Glu residues (red)(S62-S63). The forward primer (upper 
light blue box) targeted a conserved region between the putative Walker A and Walker B motifs 
in the ATPase domain and the reverse primer targeted a conserved region that included the central 
aspartic acid residue in the catalytic triad (lower light blue box). Also indicated is the 235 residue 
alignment region (without gaps) used for phylogenetic analysis. The alignment shows the 10 most 
diverse members (out of 43) of the pfam with the T4 large terminase subunit gene gp17 being the 
representative sequence. Numbers in brackets are unaligned residues. ZA2-2i was chosen for the 
alignment because this gene was found to be present in the largest (43.5 kb) prophoage-like 
element of the ZAS genome (see supporting text).  
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Figure 2.7. Phylogenetic analysis of 
retrieved Treponema SSU rRNA 
sequences and close relatives. Maximum 
likelihood tree of 39 retrieved Treponema 
SSU rRNA sequences from co-localized 
pairs (red), 78 reference library 
Treponema SSU rRNA sequences (black) 
and close relatives found in the SILVA 
(S11) database v100 (green). Also 
highlighted are Phage Hosts I through IV, 
Reticulitermes Environmental Phylotypes 
(REPs) 1 through 7 (comprising 67% of 
all treponemes found on the array; see 
Table 2.6), previously identified clades of 
traditional treponemes (known as 
subgroups 1 and 2)(S64-S66) and the so 
called “Termite Cluster” (S65). Many R. 
hesperus SSU rRNAs retrieved from the 
microfluidic array (including Phage Hosts 
I through IV) were similar to previously 
characterized SSU rRNAs from other 
Reticulitermes species. The overall 
diversity of R. hesperus treponeme SSU 
rRNAs was phylogenetically similar to 
that of other Reticulitermes species (S64). 
The tree was constructed based on 743 
aligned unambiguous nucleotides 
excluding gaps using PhyML 2.4.5 (S14) 
implemented in ARB (S67). An optimal 
substitution model was estimated with 
jModelTest 0.1.1 (S13-S14) using the 
AICc criterion and was found to be the 
Tamura-Nei model (S15) +I+Γ (nCat=4) 
with unequal base pair frequencies. 
Shorter sequences (A7, A9, rF79, rG41 
and rG53) were added by parsimony. 
Support values greater than 50% for 1000 
bootstrap iterations are shown. Scale bar 
represents 0.1 nucleotide changes per 
alignment position. See Table 2.11 for a 
list of all sequences. Note 
that reference library sequences 
begin with the letter “r”.  
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Figure 2.8. NeighborNet network of termite-related terminase alleles. (A) NeighborNet (S68) 
of (1) all terminase alleles that were retrieved with Phage Hosts I through IV, (2) terminases 
genes present in Z. angusticollis isolates, Treponema primitia (ZAS-2), and Treponema 
azotonutricium (ZAS-9), and (3) terminase alleles found in the metagenome of the hindgut of an 
Nasutitermes sp. termite. Boxed sequences are the first four events identified by RDP3 as 
recombinant (see Methods). (B) Same as (A) but excluding (1) RDP3 identified recombinant 
sequences, (2) ZAS terminases alleles associated with most likely defunct phage cassettes. ZAS-2 
and ZAS-9 both have two copies of the terminase gene. Each copy resides in a region coding for 



2-61 
 

other viral genes, however only a single one of these copies in each genome appears to be present 
in a large enough contiguous region of putative viral genes (~36–43 kbp) that could constitute a 
viable phage and therefore only this copy was included. After removal of recombinant sequences 
(B1, B2, A13ii, H5) there remains some residual reticulate patterns at the base of the network, 
however the network largely appears to be tree-like (confirmed by likelihood mapping; see 
Methods). These sequences were used to generate the terminase tree in Fig. 2.2. The network 
structure shown here is consistent with the topology shown in Fig. 2.2. The network was 
calculated using SplitsTree4 (S28) on 705 aligned unambiguous nucleotides without gaps using 
the optimal model found by FindModel (S29), a K80 substitution model (S69) +Γ with 0.5α  . 
The LSfit score for networks A and B was 99.97% and 99.94%, respectively. Note that sample B1 
associated with Host I in (A) was found by RDP3 to be a chimera of A1 (Host I) and A9ii (Host 
II), possibly indicating a lateral gene transfer event between these two distinct subpopulations of 
viruses. Alternatively, since only one such event was observed, it could also be due to an unlikely 
experimental artifact. Sample notation is as described in Fig. 2.2.  
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Figure 2.9. Example of microfluidic array panel readout after thresholding. Blue 
squares represent hits in the HEX/rRNA channel and red squares represent hits in the 
FAM/terminase channel. Co-localized hits are highlighted in green. In this example, 
spurious amplification is expected to account for ~50% of all non co-localized FAM hits 
based on the number of FAM hits in the no-template-control panel for this microfluidic 
array (7 hits).  
 
 

 
 
Figure 2.10. Agarose gel electrophoresis analysis of all FAM hits in a 
microfluidic array panel. All 38 FAM hits in panel #7 of chip B were post-
amplified and analyzed by agarose gel electrophoresis. Also shown are the five no-
template-control (NTC) samples for this PCR reaction. The expected amplicon size is 
~820 bp (compared to a 100 bp ladder). Out of 38 reactions, 13 were negative for the 
template. This value is consistent with the number of FAM hits in the no-template-
control panel for this microfluidic array, which was 16. The gel image was inverted, 
brightness was linearly scaled to maximize contrast and size was proportionally 
scaled to fit the figure. The microfluidic array was analyzed with the BioMark Digital 
PCR analysis software (Fluidigm, v.2.0.6) using a FAM threshold 0.2 and linear 
baseline correction.  
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Figure 2.11. Schematic diagram of a Monte Carlo simulation of microfluidic 
array loading and sampling. See supporting text for further details. 
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2.9.4 Supporting tables 

 

Table 2.2. Abundance of homologs of known viral genes in the higher termite metagenome. 
This table describes the number (or abundance, see definition in Materials and methods) of 
metagenome gene objects in the higher termite metagenome that were homologous to the 
indicated viral phage genes (E value ≤ 0.001, abundance ≥ 10 metagenome gene objects). This 
list constitutes the most abundant viral-specific genes in the metagenome (i.e., viral genes related 
to building a virion), using the viral RefSeq database v37 (S41) as a reference for known viral 
genes. The two highlighted rows are the portal protein and terminase protein that were found to 
have homologs in the ZAS prophage-like elements.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  

Phage Accession # Gene function

# of 
homologous 
metagenome 
gene objects

Enterobacteria  phage N15 NP_046908.1 major tail protein 56
Lactobacillus  phage phig1e NP_695158.1 minor capsid protein 49
Bacillus  phage 0305phi8-36 YP_001429638.1 baseplate hub protein 36
Salmonella  phage Fels-1 YP_001700571.1 putative bacteriophage major tail protein 27
Lactobacillus  prophage Lj965 NP_958579.1 putative terminase large subunit 25
Burkholderia  phage phi644-2 YP_001111083.1 portal protein, HK97 family 23
Streptococcus  phage P9 YP_001469206.1 terminase large subunit 22
Burkholderia  phage BcepMu YP_024702.1 putative portal protein 20
Clostridium  phage phiC2 YP_001110720.1 terminase large subunit 19
Lactobacillus  phage phiJL-1 YP_223885.1 large subunit terminase 18
Yersinia  phage PY54 NP_892049.1 capsid protein 16
Bacillus  phage B103 NP_690641.1 major head protein 14
Enterobacteria  phage WV8 YP_002922822.1 putative tail protein 13
Pseudomonas  phage MP22 YP_001469162.1 Mu-like prophage major head subunit 12
Enterobacteria  phage Mu YP_950582.1 major tail subunit 11
Streptococcus  phage SMP NP_050643.1 terminase large subunit 11
Burkholderia  phage phiE255 NP_599050.1 putative portal protein 10
Enterobacteria  phage SfV YP_001111202.1 tail protein 10
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Table 2.3. Similarity analysis of the termite-associated terminase gene and portal protein 
gene with close homologs. The following table describes the result of a BLAST analysis of the 
large terminase subunit gene (411 aa in length) and the portal protein gene (396 aa in length) 
found in T. primitia’s prophage-like element with close homologs. Close homologs were searched 
for in: (1) the larger prophage-like element present in the genome of T. azotonutricium, (2) the 
metagenome of the hindgut of a Nasutitermes sp. termite, and (3) the viral RefSeq database v37 
(S41). The table demonstrates that the alleles of the termite-associated phage genes were very 
similar to each other and highly divergent from their closest homologs found among all currently 
known viral genomes. Alignments were performed on the amino acid sequences. 
 
Large terminase subunit gene % identity * % similarity* Gaps* E value

T. azotonutricium
363/411 (89%) 385/411 (94%) 4/411 (0%) 0
Higher termite metagenome
317/407 (78%) 359/407 (89%) 5/407 (1%) 0
Viral RefSeq database (Lactobacillus johnsonii  prophage Lj771)
 107/415 (25%) 177/415 (42%) 64/415 (15%) 4.00E-19

Portal protein % identity % similarity Gaps E value
T. azotonutricium
309/382 (81%)  348/382 (92%) 3/382 (0%) 0
Higher termite metagenome
273/392 (70%) 324/392 (83%) 11/392 (2%) 1.00E-167
Viral RefSeq database (Streptomyces  phage mu1/6)
99/382 (25%) 156/382 (40%) 52/382 (13%) 6.00E-17  

*

 

Numbers divided by a forward slash correspond to the number of amino acids in each pair-wise alignment 
(“identity/total”, “similarity/total”, and “gaps/total”, depending on the column). 

 
 
Table 2.4. Sample collection and analysis information. Collection dates, collection sites, and 
dPCR execution dates for the R. hesperus specimens. The different colonies were on average 120 
meters apart. The microfluidic array and colony labels noted here were used to label the samples 
throughout this report.  
 

Chip ID
Chip designation 

in trees
Termite 

collection date
Date of chip 

execution Colony GPS coordinates

1151065015 A 11/13/2008 11/25/2008 1 34 19' 25.6''N/ 118 0' 17.9''W
1151065011 B 5/27/2009 5/29/2009 2 34 19' 31''N/118 00' 20.8''W
1151065010 C 5/27/2009 6/6/2009 2 "
1151065012 D 5/27/2009  6/7/2009 2 "
1151065017 E 5/27/2009  6/21/2009 3 34 19' 28''N/118 00' 17.5''W
1151065018 F 5/27/2009 6/22/2009 3 "
1151065019 G 5/27/2009 6/24/2009 3 "  
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Table 2.5. Estimated evolutionary distance between bacterial host SSU rRNA phylotypes. 
The number of base substitutions per site from averaging over all sequence pairs within and 
between host groups is shown. With the exception of samples A7 and A9 (that were composed of 
784 and 810 nucleotides respectively) the SILVA (S11) -based alignment contained 898 
unambiguous nucleotides. Distances were calculated using the Jukes-Cantor (S70) nucleotide 
substitution model in MEGA4 (S19). The number of repetitions appearing in Table 2.1 are based 
on an Operational Taxonomical Unit (OTU) cutoff of 2% assigned by DOTUR (S71) with the 
furthest neighbor sequence assignment method. The next significant OTU cutoff was 2.5%, 
adding a more divergent member (B4) to Host I, however due to the larger divergence and single 
instance of this event it cannot be statistically validated and therefore it was not included in this 
analysis. The distance matrix used by DOTUR was based on the above alignment and calculated 
in ARB (S67) using the Jukes-Cantor substitution model. Each bacterial host was less than 0.9% 
divergent on average. The maximum divergence was observed between Host III and ZAS-9 where 
the corrected evolutionary distance across their deduced rRNAs was measured to be 9.3%.  

 
Host I (n=13) Host II (n=8) Host III (n=4) Host IV (n=3) ZAS-2 (n=1) ZAS-9 (n=1)

Host I 0.0084
Host II 0.0822 0.0083
Host III 0.0685 0.0544 0.005
Host IV 0.0817 0.0841 0.087 0.0075
ZAS-2 0.0396 0.0678 0.06 0.0712  -
ZAS-9 0.073 0.086 0.0933 0.0865 0.0603  -  
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Table 2.6. Retrieved Treponema phylotypes from the microfluidic arrays 
 

 OTU 
(3.1%) 

# species 
(ref lib)

Reference library sequences Co-localization 
sequences

# species 
(co-loc)

REP1 23

16S_F13,16S_F22,16S_F29,16S_F43,16S_F56,16S_F77,16S
_F82,16S_F83,16S_F92,16S_F81,16S_G9,16S_G14,16S_G1
5,16S_G17,16S_G28,16S_G32,16S_G49,16S_G71,16S_G74,
16S_G78,16S_F69,16S_G86,16S_G88

 -  -

REP2 8
16S_F3,16S_F5,16S_F12,16S_F14,16S_F21,16S_F88,16S_G
60,16S_G73

 -  -

REP3 7
16S_F26,16S_F40,16S_F94,16S_F100,16S_G80,16S_G83,1
6S_G30

 -  -

REP4 5 16S_F39,16S_F63,16S_F71,16S_G42,16S_G50
A1_1,A3_1,A10_1,A11_1,A
14_1,B1_2,B4_2,C1_2,C2_2,
G1_3,E1_3,F1_3,G3_3,G5_3

14

REP5 4 16S_F33,16S_F47,16S_F61,16S_G91  -  -
REP6 3 16S_F68,16S_F79,16S_G29  -  -

REP7 2 16S_G3,16S_G24
A4_1,A5_1,A7_1,A9_1,A12
_1,A13_1,B2_2,E2_3

8

REP8 2 16S_F8,16S_G63  -  -
REP9 2 16S_F52,16S_G72 A15_1 1

REP10 2 16S_F75,16S_G81  -  -
REP11 2 16S_G16,16S_G11  -  -
REP12 2 16S_G25,16S_G35 D2_2 1
REP13 1 16S_G41 A6_1,F2_3,G2_3,G4_3 4
REP14 1 16S_F86 A2_1,A8_1,B3_2 3
REP15 1 16S_F16  -  -
REP16 1 16S_F24  -  -
REP17 1 16S_F28  -  -
REP18 1 16S_F84 A16_1 1
REP19 1 16S_F93  -  -
REP20 1 16S_F95  -  -
REP21 1 16S_F23 E3_3 1
REP22 1 16S_G20  -  -
REP23 1 16S_G31  -  -
REP24 1 16S_G43  -  -
REP25 1 16S_G53  -  -
REP26 1 16S_G55 A18_1,B5_2 2
REP27 1 16S_G95
REP28 1 16S_G36 G6_3 1
REP29  -  - C3_2 1
REP30  -  - C4_2 1
REP31  -  - G7_3 1

 -  -  - ZAS2 1
 -  -  - ZAS9 1

total 78 39  
 
All reference library sequences (n=118; 876 ± 71 bp SD) were initially classified with 
RDB (S72) and Treponema phylotypes (66.1%, n=78 with 99–100% confidence) were 
subsequently aligned by the SILVA incremental aligner SINA (S11). A distance matrix 
was calculated in ARB (S67) for the 78 reference library Treponema species, the 39 co-
localized Treponema species, and ZAS-2 and ZAS-9 (n=119). Note that REP4 was co-
localized 14 times, however one of these co-localizations, B4, was more divergent than 
the other ribotypes of this group (see Table 2.5) and was therefore not regarded as a 
repeated co-localization of Host I in Table 2.1 and Table 2.5. The distance matrix was 
calculated based on 780 unambiguous nucleotides (with the exception of A7, A9, rF79, 
rG41, rG53 that were in the range of 624–767 nucleotides) using the Jukes-Cantor (S70) 
method. Operational taxonomical units (OTUs) were then determined by DOTUR (S71) 
based on the furthest neighbor sequence assignment method using an OTU cutoff of 
3.1%. This cutoff is slightly higher than the OTU cutoff used to identify the repeated co-
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localizations (2%) in Fig. 2.2 in order to make the statistical test for repeated co-
localization more stringent. REPs corresponding to putative bacterial hosts are 
highlighted in gray. All Treponema sequences were also screened with Bellerophon v3 
(S9) on Greengenes (S10) for chimeras and were found to be negative. The remaining 
phyla indentified by RDB to be present in the reference library were Proteobacteria 
(13.6%, 100% confidence), Firmicutes (6.8%, Clostridia 53–100% confidence), 
Tenericutes (5.9%, Mycoplasmataceae with 77–90% confidence), Bacteroidetes (3.4%, 
100% confidence), Actinobacteria (3.4%, 100% confidence) and Planctomycetes (0.8%, 
100% confidence). All these phyla have been observed previously in SSU rRNA 
libraries of Reticulitermes speratus (S73). However, from the number of rRNA targets 
observe in the no-template-control panels we anticipate that background amplification 
(see Materials and methods) should contribute to 34.1 ± 18.4% SD of the reference 
library sequences due to sparse loading of the panels (increasing the fraction of 
background amplification products). Based on retrieval of rRNA sequences from the no-
template-control panel (not shown) we expect the major contributor to this fraction to be 
bacteria from the Proteobacteria phylum. The finding that free living prokaryotes in the 
termite hindgut are dominated by spirochetes is consistent with electron microscope 
observations showing that spirochetes can account for over 50% of the gut microbes in 
some termites (S74). The absence of bacteria belonging to the TG-1 phylum (S75) is an 
indication that large flagellates were successfully filtered out by the 5 μm pre-filter and 
did not lyse in this process (see Methods). 
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Table 2.7. Selection pressure analysis of the terminase gene. Codon-based test of purifying 
(negative) selection for Hosts I through IV excluding suspected recombinant sequences (B1, B2 
and A13ii). dS and dN are the number of synonymous and nonsynonymous substitutions per 
number of synonymous and nonsynonymous sites respectively obtained from averaging over all 
sequence pairs within a given group. dS and dN were calculated by various methods: NG86 — 
Nei-Gojobori method (S76) with the Jukes-Cantor (S70) nucleotide substitution model, Modified 
NG86 (S77) —  NG86 method with the Jukes-Cantor nucleotide substitution model, LWL85 — 
Li-Wu-Luo method (S78), PBL85 — Pamilo-Bianchi-Li method (S79), and Kumar — Kumar 
method (S80). For the modified NG86 method, the ratio of transitional to transversional distances 
per site (R) was calculated by averaging over all sequence pairs within each group using the 3rd 
codon position based on the Kimura 2-parameter method (S69). All results are based on the 
pairwise analysis of 235 unambiguous codon positions without gaps. Standard error estimates 
were obtained by a bootstrap procedure with 1000 replicates. The distribution of the test statistic 
(D) is approximated to be normal since the number of nucleotides contributing to dS and dN were 
sufficiently large (>10), allowing to test the null hypothesis using a one-tailed (Z > 0) Z test (S80). 
The P value (one-tailed Z test) for observing Z > 0 (dS > dN) by chance is shown in the table. Z is 
shown to be greater than zero in a statistically significant manner (P < 10-7

 

 for Hosts I–III and P < 
0.025 for Host IV) indicating negative selection was statistically significant. n/c denotes cases in 
which it was not possible to estimate evolutionary distances. All analyses were carried out with 
MEGA4 (S19).  

 
Host Method d S  (± S.E.) d N  (± S.E.) d N / d S D = d S  - d N  (± S.E.) Z = D/std(D) P value

I NG86 (R=0.5) 0.57 ± 0.08 0.04 ± 0.01 0.08 0.53 ± 0.07 7.58 1.7E-14
(n =12) Modified NG86 (R=2.02) 0.33 ± 0.03 0.05 ± 0.01 0.15 0.28 ± 0.03 8.94 0.0E+00

LWL85 0.49 ± 0.06 0.04 ± 0.01 0.09 0.45 ± 0.06 7.52 2.8E-14
PBL93 0.44 ± 0.05 0.04 ± 0.01 0.10 0.40 ± 0.05 7.42 5.7E-14
Kumar 0.37 ± 0.04 0.04 ± 0.01 0.12 0.32 ± 0.04 8.28 0.0E+00

II NG86 (R=0.5) 1.50 ± 0.12 0.17 ± 0.02 0.11 1.34 ± 0.12 11.18 0.0E+00
(n =9) Modified NG86 (R=1.44) 0.99 ± 0.07 0.18 ± 0.02 0.18 0.81 ± 0.07 11.32 0.0E+00

LWL85 1.48 ± 0.11 0.17 ± 0.02 0.11 1.31 ± 0.11 11.69 0.0E+00
PBL93 1.49 ± 0.10 0.17 ± 0.02 0.11 1.32 ± 0.10 13.33 0.0E+00
Kumar 1.14 ± 0.08 0.16 ± 0.02 0.14 0.97 ± 0.08 12.25 0.0E+00

III NG86 (R=0.5) 0.72 ± 0.13 0.06 ± 0.01 0.08 0.66 ± 0.12 5.35 4.3E-08
(n =4) Modified NG86 (R=1.80) 0.50 ± 0.06 0.06 ± 0.01 0.12 0.44 ± 0.06 6.92 2.2E-12

LWL85 0.70 ± 0.09 0.05 ± 0.01 0.08 0.64 ± 0.10 6.75 7.2E-12
PBL93 0.62 ± 0.09 0.06 ± 0.01 0.09 0.56 ± 0.09 6.26 1.9E-10
Kumar 0.55 ± 0.07 0.05 ± 0.01 0.10 0.50 ± 0.08 6.63 1.7E-11

IV NG86 (R=0.5) n/c ± n/c 0.19 ± 0.02 n/c n/c ± n/c n/c n/c
(n =3) Modified NG86 (R=1.97) 1.53 ± 0.20 0.21 ± 0.03 0.14 1.32 ± 0.19 6.76 6.8E-12

LWL85 2.30 ± 1.06 0.20 ± 0.09 0.09 2.10 ± 0.99 2.11 1.7E-02
PBL93 1.65 ± 0.82 0.20 ± 0.09 0.12 1.45 ± 0.73 1.98 2.4E-02
Kumar 1.94 ± 0.62 0.17 ± 0.07 0.09 1.76 ± 0.57 3.09 9.9E-04  
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Table 2.8. Similar terminase sequences associated with different bacterial 
hosts. Terminase alleles associated with different bacterial hosts having less than 
10% difference between their nucleotide sequences. 

Sequence 1 Sequence 2 % p-distance (705 bp) 

A1_1 (Host I) A8_1 (Host IV) 0 
G1_3 (Host I) A5_1 (Host II) 3 
B1_1* (Host I) A9ii_1 (Host II) 6.5 

*Identified by RDP3 as a recombination between A9ii_1 (Host II) and A1_1 (Host I). See     
  also Fig. 2.8.  

  
 

Table 2.9. P values for the P Test comparing 
terminase alleles by bacterial host. The P Test (S97) 
estimates the similarity between communities as the 
number of parsimony changes that would be required 
to explain the distribution of sequences between the 
different samples in the tree (samples here were 
grouped by bacterial host). The P value is the fraction 
of trials in which the true tree requires fewer changes 
than trees in which the sample assignments have been 
randomized (S98). The P test was implemented in Fast 
UniFrac (S99) selecting the “P Test Significance” 
option, comparing “Each pair of samples” using 
n=1000 random permutations. The analysis was 
performed on the phylogenetic tree in Fig. 2.2 
applying midpoint rooting. P values shown have been 
corrected for multiple comparisons using the 
Bonferroni correction. 
  Host II Host III Host IV 
Host I ≤0.001 ≤0.001 0.024 
Host II - 0.018 1 
Host III - - 0.204 
 
 
Table 2.10. P values for the P Test comparing 
terminase alleles by colonies. Samples here were 
grouped by termite colony. P values shown have been 
corrected for multiple comparisons using the 
Bonferroni correction.  n=1000 random permutations 
were used to calculate P Values. See Table 2.9 for 
further details. 

  Colony 2 Colony 3 
Colony 1 0.399 0.927 
Colony 2 - 0.537 
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Table 2.11. Sequences analyzed in this study. Accession numbers of the uncultured treponemes 
associated with Phage Host I through IV in Fig. 2.2 were AF068338, AB192197, AB192140, and 
AB192202, respectively. 

Clone ID Termite/bacterium species Location/Source Method Accession 
(NCBI/JGI) Figure Reference 

Terminase gene – isolates 

ZAS2i Z. angusticollis /T. primitia  California Isolate  2.2,2.5,2.6,2.8 this study 

ZAS2ii Z. angusticollis /T. primitia  California Isolate  2.5,,2.8 this study 

ZAS9i Z. angusticollis /T. azotonutricium  California Isolate  2.5,,2.8 this study 

ZAS9ii Z. angusticollis /T. azotonutricium  California Isolate  2.2,2.5,2.6 this study 

Terminase gene - co-localization 

A1_1 Reticulitermes hesperus   California Digital PCR HQ202808 2.2,2.5,2.6 this study 

A3_1 Reticulitermes hesperus   California Digital PCR HQ187752 2.2,2.5,2.6 this study 

A10_1 Reticulitermes hesperus   California Digital PCR HQ187760 2.2,2.5,2.6 this study 

A11_1 Reticulitermes hesperus   California Digital PCR HQ187761 2.2,2.5,2.6 this study 

A14_1 Reticulitermes hesperus   California Digital PCR HQ187765 2.2,2.5,2.6 this study 

B1_2 Reticulitermes hesperus   California Digital PCR HQ187766 2.5,,2.8 this study 

C1_2 Reticulitermes hesperus   California Digital PCR HQ187769 2.2,2.5,2.6 this study 

C2_2 Reticulitermes hesperus   California Digital PCR HQ187770 2.2,2.5,2.6 this study 

E1_3 Reticulitermes hesperus   California Digital PCR HQ187771 2.2,2.5,2.6 this study 

F1_3 Reticulitermes hesperus   California Digital PCR HQ187774 2.2,2.5,2.6 this study 

G1_3 Reticulitermes hesperus   California Digital PCR HQ187776 2.2,2.5,2.6 this study 

G3_3 Reticulitermes hesperus   California Digital PCR HQ187778 2.2,2.5,2.6 this study 

G5_3 Reticulitermes hesperus   California Digital PCR HQ187780 2.2,2.5,2.6 this study 

A4_1 Reticulitermes hesperus   California Digital PCR HQ187753 2.2,2.5,2.6 this study 

A5_1 Reticulitermes hesperus   California Digital PCR HQ187754 2.2,2.5,2.6 this study 

A7_1 Reticulitermes hesperus   California Digital PCR HQ187756 2.2,2.5,2.6 this study 

A9i_1 Reticulitermes hesperus   California Digital PCR HQ187758 2.2,2.5,2.6 this study 

A9ii_1 Reticulitermes hesperus   California Digital PCR HQ187759 2.2,2.5,2.6 this study 

A12_1 Reticulitermes hesperus   California Digital PCR HQ187762 2.2,2.5,2.6 this study 

A13i_1 Reticulitermes hesperus   California Digital PCR HQ187763 2.2,2.5,2.6 this study 

A13ii_1 Reticulitermes hesperus   California Digital PCR HQ187764 2.5,,2.8 this study 

B2_2 Reticulitermes hesperus   California Digital PCR HQ187767 2.5,,2.8 this study 

E2i_3 Reticulitermes hesperus   California Digital PCR HQ187772 2.2,2.5,2.6 this study 

E2ii_3 Reticulitermes hesperus   California Digital PCR HQ187773 2.2,2.5,2.6 this study 

A6_1 Reticulitermes hesperus   California Digital PCR HQ187755 2.2,2.5,2.6 this study 

F2_3 Reticulitermes hesperus   California Digital PCR HQ187775 2.2,2.5,2.6 this study 

G2_3 Reticulitermes hesperus   California Digital PCR HQ187777 2.2,2.5,2.6 this study 

G4_3 Reticulitermes hesperus   California Digital PCR HQ187779 2.2,2.5,2.6 this study 

A2_1 Reticulitermes hesperus   California Digital PCR HQ187751 2.5,,2.8 this study 
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A8_1 Reticulitermes hesperus   California Digital PCR HQ187757 2.5,,2.8 this study 

B3_2 Reticulitermes hesperus   California Digital PCR HQ187768 2.5,,2.8 this study 

Terminase gene - close relatives 

H1 Nasutitermes sp.  Costa Rica Metagenome 2004118157 2.2,2.5,2.8 (S5) 

H2 Nasutitermes sp.  Costa Rica Metagenome 2004126816 2.2,2.5,2.8 (S5) 

H3 Nasutitermes sp.  Costa Rica Metagenome 2004144277 2.2,2.5,2.8 (S5) 

H4 Nasutitermes sp.  Costa Rica Metagenome 2004144007 2.2,2.5,2.8 (S5) 

H5 Nasutitermes sp.  Costa Rica Metagenome 2004132071 2.5,,2.8 (S5) 

H6 Nasutitermes sp.  Costa Rica Metagenome 2004107522 2.2,2.5,2.8 (S5) 

H7 Nasutitermes sp.  Costa Rica Metagenome 2004111244 2.2,2.5,2.8 (S5) 

H8 Nasutitermes sp.  Costa Rica Metagenome 2004124547 2.2,2.5,2.8 (S5) 

H9 Nasutitermes sp.  Costa Rica Metagenome 2004134785 2.2,2.5,2.8 (S5) 

H10 Nasutitermes sp.  Costa Rica Metagenome 2004136622 2.5,,2.8 (S5) 

Terminase gene - non termite related 

T4 Phage isolate  Isolate NP_049776.1 2.5,2.6 (S81) 

Vic Victivallis vadensis ATCC BAA-548 Feces, human Isolate ZP_06243301.1 2.5 - 

Sino Sinorhizobium medicae WSM419  Plant root, Soil 
(Sardinia) Isolate YP_001327565.1 2.5 (S82) 

Gluc Gluconobacter oxydans 621H  Fruits, Plants, Wine 
(Germany) Isolate YP_191628.1 2.5 (S83) 

Nov  Novosphingobium aromaticivorans  
DSM 12444 

Fresh water, Soil         
(S. Carolina) Isolate YP_497986.1 2.5 - 

Mat1  Hypersaline mat  Mexico Metagenome 2004359243 2.5 (S84) 

Mat2 Hypersaline mat  Mexico Metagenome 2004346681 2.5 (S84) 

Mat3 Hypersaline mat  Mexico Metagenome 2004362568 2.5 (S84) 

SSU rRNA gene – isolates 

ZAS2 Z. angusticollis /T. primitia  California Isolate AF093252 2.2,2.7 (S32) 

ZAS9 Z. angusticollis /T. azotonutricium  California Isolate AF320287 2.2,2.7 (S33) 

SSU rRNA gene - co-localization and reference library 

A1_1 Reticulitermes hesperus   California Digital PCR HQ187712 2.2,2.7 this study 

A3_1 Reticulitermes hesperus   California Digital PCR HQ187722 2.2,2.7 this study 

A10_1 Reticulitermes hesperus   California Digital PCR HQ187713 2.2,2.7 this study 

A11_1 Reticulitermes hesperus   California Digital PCR HQ187714 2.2,2.7 this study 

A14_1 Reticulitermes hesperus   California Digital PCR HQ187717 2.2,2.7 this study 

B1_2 Reticulitermes hesperus   California Digital PCR HQ187729 2.2,2.7 this study 

C1_2 Reticulitermes hesperus   California Digital PCR HQ187734 2.2,2.7 this study 

C2_2 Reticulitermes hesperus   California Digital PCR HQ187735 2.2,2.7 this study 

E1_3 Reticulitermes hesperus   California Digital PCR HQ187739 2.2,2.7 this study 

F1_3 Reticulitermes hesperus   California Digital PCR HQ187742 2.2,2.7 this study 

G1_3 Reticulitermes hesperus   California Digital PCR HQ187744 2.2,2.7 this study 

G3_3 Reticulitermes hesperus   California Digital PCR HQ187746 2.2,2.7 this study 
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G5_3 Reticulitermes hesperus   California Digital PCR HQ187748 2.2,2.7 this study 

A4_1 Reticulitermes hesperus   California Digital PCR HQ187723 2.2,2.7 this study 

A5_1 Reticulitermes hesperus   California Digital PCR HQ187724 2.2,2.7 this study 

A7_1 Reticulitermes hesperus   California Digital PCR HQ187726 2.2,2.7 this study 

A9_1 Reticulitermes hesperus   California Digital PCR HQ187728 2.2,2.7 this study 

A12_1 Reticulitermes hesperus   California Digital PCR HQ187715 2.2,2.7 this study 

A13_1 Reticulitermes hesperus   California Digital PCR HQ187716 2.2,2.7 this study 

B2_2 Reticulitermes hesperus   California Digital PCR HQ187730 2.2,2.7 this study 

E2_3 Reticulitermes hesperus   California Digital PCR HQ187740 2.2,2.7 this study 

A6_1 Reticulitermes hesperus   California Digital PCR HQ187725 2.2,2.7 this study 

F2_3 Reticulitermes hesperus   California Digital PCR HQ187743 2.2,2.7 this study 

G2_3 Reticulitermes hesperus   California Digital PCR HQ187745 2.2,2.7 this study 

G4_3 Reticulitermes hesperus   California Digital PCR HQ187747 2.2,2.7 this study 

A2_1 Reticulitermes hesperus   California Digital PCR HQ187721 2.2,2.7 this study 

A8_1 Reticulitermes hesperus   California Digital PCR HQ187727 2.2,2.7 this study 

B3_2 Reticulitermes hesperus   California Digital PCR HQ187731 2.2,2.7 this study 

A15_1 Reticulitermes hesperus   California Digital PCR HQ187718 2.7 this study 

D2_2 Reticulitermes hesperus   California Digital PCR HQ187738 2.7 this study 

A16_1 Reticulitermes hesperus   California Digital PCR HQ187719 2.7 this study 

E3_3 Reticulitermes hesperus   California Digital PCR HQ187741 2.7 this study 

A18_1 Reticulitermes hesperus   California Digital PCR HQ187720 2.7 this study 

B5_2 Reticulitermes hesperus   California Digital PCR HQ187733 2.7 this study 

G6_3 Reticulitermes hesperus   California Digital PCR HQ187749 2.7 this study 

C3_2 Reticulitermes hesperus   California Digital PCR HQ187736 2.7 this study 

C4_2 Reticulitermes hesperus   California Digital PCR HQ187737 2.7 this study 

G7_3 Reticulitermes hesperus   California Digital PCR HQ187750 2.7 this study 

B4_1 Reticulitermes hesperus   California Digital PCR HQ187732 2.7 this study 

rF100 Reticulitermes hesperus   California Digital PCR HQ187634 2.7 this study 

rF12 Reticulitermes hesperus   California Digital PCR HQ187635 2.7 this study 

rF13 Reticulitermes hesperus   California Digital PCR HQ187636 2.7 this study 

rF14 Reticulitermes hesperus   California Digital PCR HQ187637 2.7 this study 

rF16 Reticulitermes hesperus   California Digital PCR HQ187638 2.7 this study 

rF21 Reticulitermes hesperus   California Digital PCR HQ187639 2.7 this study 

rF22 Reticulitermes hesperus   California Digital PCR HQ187640 2.7 this study 

rF23 Reticulitermes hesperus   California Digital PCR HQ187641 2.7 this study 

rF24 Reticulitermes hesperus   California Digital PCR HQ187642 2.7 this study 

rF26 Reticulitermes hesperus   California Digital PCR HQ187643 2.7 this study 

rF28 Reticulitermes hesperus   California Digital PCR HQ187644 2.7 this study 

rF29 Reticulitermes hesperus   California Digital PCR HQ187645 2.7 this study 

rF3 Reticulitermes hesperus   California Digital PCR HQ187646 2.7 this study 

rF33 Reticulitermes hesperus   California Digital PCR HQ187647 2.7 this study 



2-74 
 

rF39 Reticulitermes hesperus   California Digital PCR HQ187648 2.7 this study 

rF40 Reticulitermes hesperus   California Digital PCR HQ187649 2.7 this study 

rF43 Reticulitermes hesperus   California Digital PCR HQ187650 2.7 this study 

rF47 Reticulitermes hesperus   California Digital PCR HQ187651 2.7 this study 

rF5 Reticulitermes hesperus   California Digital PCR HQ187652 2.7 this study 

rF52 Reticulitermes hesperus   California Digital PCR HQ187653 2.7 this study 

rF56 Reticulitermes hesperus   California Digital PCR HQ187654 2.7 this study 

rF61 Reticulitermes hesperus   California Digital PCR HQ187655 2.7 this study 

rF63 Reticulitermes hesperus   California Digital PCR HQ187656 2.7 this study 

rF68 Reticulitermes hesperus   California Digital PCR HQ187657 2.7 this study 

rF69 Reticulitermes hesperus   California Digital PCR HQ187658 2.7 this study 

rF71 Reticulitermes hesperus   California Digital PCR HQ187659 2.7 this study 

rF75 Reticulitermes hesperus   California Digital PCR HQ187660 2.7 this study 

rF77 Reticulitermes hesperus   California Digital PCR HQ187661 2.7 this study 

rF79 Reticulitermes hesperus   California Digital PCR HQ187662 2.7 this study 

rF8 Reticulitermes hesperus   California Digital PCR HQ187663 2.7 this study 

rF81 Reticulitermes hesperus   California Digital PCR HQ187664 2.7 this study 

rF82 Reticulitermes hesperus   California Digital PCR HQ187665 2.7 this study 

rF83 Reticulitermes hesperus   California Digital PCR HQ187666 2.7 this study 

rF84 Reticulitermes hesperus   California Digital PCR HQ187667 2.7 this study 

rF86 Reticulitermes hesperus   California Digital PCR HQ187668 2.7 this study 

rF88 Reticulitermes hesperus   California Digital PCR HQ187669 2.7 this study 

rF92 Reticulitermes hesperus   California Digital PCR HQ187670 2.7 this study 

rF93 Reticulitermes hesperus   California Digital PCR HQ187671 2.7 this study 

rF94 Reticulitermes hesperus   California Digital PCR HQ187672 2.7 this study 

rF95 Reticulitermes hesperus   California Digital PCR HQ187673 2.7 this study 

rG11 Reticulitermes hesperus   California Digital PCR HQ187674 2.7 this study 

rG14 Reticulitermes hesperus   California Digital PCR HQ187675 2.7 this study 

rG15 Reticulitermes hesperus   California Digital PCR HQ187676 2.7 this study 

rG16 Reticulitermes hesperus   California Digital PCR HQ187677 2.7 this study 

rG17 Reticulitermes hesperus   California Digital PCR HQ187678 2.7 this study 

rG20 Reticulitermes hesperus   California Digital PCR HQ187679 2.7 this study 

rG24 Reticulitermes hesperus   California Digital PCR HQ187680 2.7 this study 

rG25 Reticulitermes hesperus   California Digital PCR HQ187681 2.7 this study 

rG28 Reticulitermes hesperus   California Digital PCR HQ187682 2.7 this study 

rG29 Reticulitermes hesperus   California Digital PCR HQ187683 2.7 this study 

rG3 Reticulitermes hesperus   California Digital PCR HQ187684 2.7 this study 

rG30 Reticulitermes hesperus   California Digital PCR HQ187685 2.7 this study 

rG31 Reticulitermes hesperus   California Digital PCR HQ187686 2.7 this study 

rG32 Reticulitermes hesperus   California Digital PCR HQ187687 2.7 this study 

rG35 Reticulitermes hesperus   California Digital PCR HQ187688 2.7 this study 



2-75 
 

rG36 Reticulitermes hesperus   California Digital PCR HQ187689 2.7 this study 

rG41 Reticulitermes hesperus   California Digital PCR HQ187690 2.7 this study 

rG42 Reticulitermes hesperus   California Digital PCR HQ187691 2.7 this study 

rG43 Reticulitermes hesperus   California Digital PCR HQ187692 2.7 this study 

rG49 Reticulitermes hesperus   California Digital PCR HQ187693 2.7 this study 

rG50 Reticulitermes hesperus   California Digital PCR HQ187694 2.7 this study 

rG53 Reticulitermes hesperus   California Digital PCR HQ187695 2.7 this study 

rG55 Reticulitermes hesperus   California Digital PCR HQ187696 2.7 this study 

rG60 Reticulitermes hesperus   California Digital PCR HQ187697 2.7 this study 

rG63 Reticulitermes hesperus   California Digital PCR HQ187698 2.7 this study 

rG71 Reticulitermes hesperus   California Digital PCR HQ187699 2.7 this study 

rG72 Reticulitermes hesperus   California Digital PCR HQ187700 2.7 this study 

rG73 Reticulitermes hesperus   California Digital PCR HQ187701 2.7 this study 

rG74 Reticulitermes hesperus   California Digital PCR HQ187702 2.7 this study 

rG78 Reticulitermes hesperus   California Digital PCR HQ187703 2.7 this study 

rG80 Reticulitermes hesperus   California Digital PCR HQ187704 2.7 this study 

rG81 Reticulitermes hesperus   California Digital PCR HQ187705 2.7 this study 

rG83 Reticulitermes hesperus   California Digital PCR HQ187706 2.7 this study 

rG86 Reticulitermes hesperus   California Digital PCR HQ187707 2.7 this study 

rG88 Reticulitermes hesperus   California Digital PCR HQ187708 2.7 this study 

rG9 Reticulitermes hesperus   California Digital PCR HQ187709 2.7 this study 

rG91 Reticulitermes hesperus   California Digital PCR HQ187710 2.7 this study 

rG95 Reticulitermes hesperus   California Digital PCR HQ187711 2.7 this study 

SSU rRNA gene - close relatives and other termite related 

unc Trep clone RFS84 Reticulitermes flavipes Michigan PCR AF068428 2.7 (S64) 

unc Trep clone RFS99 Reticulitermes flavipes Michigan PCR AF068424 2.7 (S64) 

unc Trep clone RFS94 Reticulitermes flavipes Michigan PCR AF068423 2.7 (S64) 

unc Trep clone RFS21 Reticulitermes flavipes Michigan PCR AF068338 2.7 (S64) 

unc Trep clone RFS12 Reticulitermes flavipes Michigan PCR AF068335 2.7 (S64) 

unc Trep clone RFS2 Reticulitermes flavipes Michigan PCR AF068429 2.7 (S64) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB192140 2.7 (S85) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB192197 2.7 (S85) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB192202 2.7 (S85) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB192142 2.7 (S85) 

unc Trep sp.  Reticulitermes sp. Asia PCR AB192251 2.7 (S85) 

unc Trep sp.  Reticulitermes sp. Asia PCR AB192248 2.7 (S85) 

unc Trep sp.  Reticulitermes sp. Asia PCR AB192247 2.7 (S85) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB088870 2.7 (S73) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB088896 2.7 (S73) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB088915 2.7 (S73) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB088876 2.7 (S73) 
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unc Trep sp.  Reticulitermes speratus Asia PCR AB088895 2.7 (S73) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB088866 2.7 (S73) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB088874 2.7 (S73) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB088890 2.7 (S73) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB088878 2.7 (S73) 

unc Trep sp.  Reticulitermes speratus Asia PCR AB088909 2.7 (S73) 
unc Trep clone 
HsDiSp314 Hodotermopsis sjoestedti Asia PCR AB032005 2.7 (S86) 

SSU rRNA gene - non termite related  

Treponema vincentii (D2A-2) Oral cavity isolate AY119690 2.7 (S87) 

Treponema denticola (ATCC 35405) 
  Oral cavity isolate AE017226 2.7 (S88) 

Treponema pallidum (Nichols) 
  Human genital tract isolate AE000520 2.7 (S89) 

Treponema zioleckii (kT) 
  Sheep rumen isolate DQ065758 2.7 (S90) 

Treponema socranskii (socranskii) 
  Oral cavity isolate AF033306 2.7 (S91)  

Treponema succinifaciens Pig colon isolate M57738 2.7 (S92) 

Brevinema andersonii Shrews and mice isolate L31543 2.7 (S93) 

Borrelia burgdorferi (DK7) 
  

Ticks, deer and 
humans isolate X85195 2.7 (S94) 

Spirochaeta  aurantia (M1) Fresh water isolate AY599019 2.7 (S95) 

Escherichia coli K-12 MG1655  - isolate U00096 2.7 (S96) 
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Table 2.12. Analysis of all FAM hits for a number of microfluidic array panels. For several 
microfluidic array panels, all chambers exhibiting amplification in the FAM fluorescence channel 
were retrieved, post-amplified and analyzed by agarose gel electrophoresis. In this table we show 
the total number of chambers that exhibited FAM fluorescence on the given panel (“Total FAM 
hits”), the number of false positives based on analysis by agarose gel electrophoresis (“# of false 
positives”), the mean number of false positives per array (“Mean # of false positives”), and the 
average number of chambers that exhibited FAM fluorescence in the no-template-control panel on 
the same array (“# of FAM hits in NTC panel”). The mean number of false positive hits agrees 
well with the number of hits in the corresponding no-template-control panel indicating the latter is 
a good predictor of the former. See supporting text for further details. 

 
Sampling all FAM hits - analysis 

Array ID Panel Total FAM 
hits

# of false 
positives (gel)

Mean # of false 
positives (gel)

# of FAM hits in 
NTC panel

B 7 38 13 12±1.4 16
10 38 11*

C 3 13 4 5.4±4 6
4 24 11
5 13 2

11 13 2
12 19 8

D 2 10 5 5.6±2.3 6
3 11 7
4 9 6
5 16 9
8 7 3
9 10 8

11 8 3
12 7 4

* 3 retrievals were not tested due to an experimental problem  
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Table 2.13. Definition of variables used in the microfluidic array statistical model. See 
supporting text for further details. 
 

Variable Definition Estimation 
method 

X Number of FAM hits per panel  Measured 
Y Number of HEX hits per panel Measured 

I Number of wells per panel with both a FAM hit and a HEX hit (i.e. co-
localization) Measured 

noise Number of FAM hits that are due to spurious amplification  Measured 
f Frequency of ribotype S on the chip  S Measured 

/16ter Sε  Terminase/16S primer efficiency Measured 

X Number of non co-localized FAM events f Xf = X - I 

terp  The probability that a given well will contain a free floating terminase target Eq. S1 

IS  Average number of free floating terminase targets to co-localize with a 
particular 16S rRNA ribotype S on a panel Eq. S2a 

all 16S-terI  
Average number of any terminase target to co-localize with any 16S rRNA 
target on a panel Eq. S2b 

p Probability that a successful retrieval from a panel contains a particular 
ribotype S and any terminase gene by chance F Eq. S3 

XT Sum of the total number of free floating terminase targets and spurious targets Eq. S4 

 falseN  Expected number of false co-localizations in the dataset Eq. S5 
pS Probability that a successful retrieval will contain host S Eq. S6 
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Table 2.14. Statistics for all sampled panels. This table lists for each ribotype in Fig. 2.2 the 
panel from which the ribotype was retrieved, the number of FAM hits X on that panel, the number 
of HEX hits Y on that panel, their intersection I, the number of FAM hits found in the no-target-
control-panel for the microfluidic array containing the given panel (noise), the frequency of this 
host in the reference rRNA library, fs (based on Table 2.6), the estimated probability for false co-
localization pF

 

 (Eq. S3), and the P value (one-tailed test, n=41) for each host for obtaining at least 
the number of observed co-localizations by chance (based on the data in Table 2.1). The statistical 
test to determine the P value is explained in the supporting text. Chip analysis was performed 
using the Fluidigm Digital PCR Analysis software v.2.1.1 with the linear baseline correction. See 
supporting text for further details. 

 # Retrieval  ID  
(n =41)

Host chip panel X (FAM) Y (HEX) I noise (FAM) XT-noise p ter I all16S-ter f S p F
P value 
(n =41)

1 A1_1 I A 3 22 38 2 15 6.0 7.9E-03 1.3 4.2% 7.77E-03 5.45E-18
2 A3_1 I A 5 33 66 8 15 12.4 1.6E-02 6.7
3 A10_1 I A 8 40 59 12 15 15.3 2.0E-02 10.8
4 A11_1 I A 9 34 46 9 15 11.6 1.5E-02 8.1
5 A14_1 I A 10 30 46 11 15 5.2 6.8E-03 10.1
6 B1_2 I B 10 42 52 5 20 19.7 2.6E-02 3.6
7 C1_2 I C 11 13 55 3 6 4.8 6.2E-03 2.6
8 C2_2 I C 5 13 69 4 6 3.9 5.1E-03 3.5
9 E1_3 I E 2 14 21 2 5 7.3 9.6E-03 1.9

10 F1_3 I F 3 22 32 2 7 13.9 1.8E-02 1.7
11 G1_3 I G 3 12 51 4 6 2.6 3.4E-03 3.6
12 G3_3 I G 8 17 33 2 6 9.7 1.3E-02 1.7
13 G5_3 I G 11 14 26 1 6 7.5 9.7E-03 0.8
14 A4_1 II A 6 54 79 10 15 34.1 4.5E-02 8.5 1.7% 3.11E-03 7.63E-13
15 A5_1 II A 6 54 79 10 15 34.1 4.5E-02 8.5
16 A7_1 II A 8 40 59 12 15 15.3 2.0E-02 10.8
17 A9_1 II A 8 40 59 12 15 15.3 2.0E-02 10.8
18 A12_1 II A 10 30 46 11 15 5.2 6.8E-03 10.1
19 A13_1 II A 10 30 46 11 15 5.2 6.8E-03 10.1
20 B2_2 II B 10 42 52 5 20 19.7 2.6E-02 3.6
21 E2_3 II E 2 14 21 2 5 7.3 9.6E-03 1.9
22 A6_1 III A 7 40 66 8 15 20.0 2.6E-02 6.7 0.9% 1.55E-03 5.65E-07
23 F2_3 III F 8 21 34 6 7 8.7 1.1E-02 5.7
24 G2_3 III G 4 20 53 3 6 12.3 1.6E-02 2.6
25 G4_3 III G 10 19 36 2 6 11.8 1.5E-02 1.7
26 A2_1 IV A 4 46 129 17 15 19.9 2.6E-02 14.5 0.9% 1.55E-03 3.83E-05
27 A8_1 IV A 8 40 59 12 15 15.3 2.0E-02 10.8
28 B3_2 IV B 10 42 52 5 20 19.7 2.6E-02 3.6
29 A15_1  - A 4 46 129 17 15 19.9 2.6E-02 14.5  -  -  -
30 A16_1  - A 5 33 66 8 15 12.4 1.6E-02 6.7  -  -  -
31 A17_1  - A 10 30 46 11 15 5.2 6.8E-03 10.1  -  -  -
32 A18_1  - A 11 27 84 7 15 7.5 9.8E-03 5.4  -  -  -
33 B5_2  - B 7 46 53 11 20 17.6 2.3E-02 9.6  -  -  -
34 B4_2  - B 7 46 53 11 20 17.6 2.3E-02 9.6  -  -  -
35 C3_2  - C 11 13 55 3 6 4.8 6.2E-03 2.6  -  -  -
36 C4_2  - C 11 13 55 3 6 4.8 6.2E-03 2.6  -  -  -
37 D1_2  - D 4 9 24 1 8 0.3 3.4E-04 0.7  -  -  -
38 D2_2  - D 3 11 26 1 8 2.4 3.1E-03 0.7  -  -  -
39 E3_3  - E 11 12 24 2 5 5.3 7.0E-03 1.8  -  -  -
40 G6_3  - G 4 20 53 3 6 12.3 1.6E-02 2.6  -  -  -
41 G7_3  - G 4 20 53 3 6 12.3 1.6E-02 2.6  -  -  -  
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Chapter 3 

MetaCAT — Metagenome Cluster Analysis Tool 

3.1 Introduction 
Much of what we know in biology today is the result of careful studies of cultivated pure 

cultures over decades. Yet today it is apparent that natural microbial communities look 

nothing like microbes cultivated in vitro. Microbial communities in nature can be vastly 

complex assemblies, often containing hundreds of species of bacteria or more, with many 

forming intricate associations. One example is the higher termite hindgut, which contains 

a complex microbial community that specialized in lignocellulose degradation [1]. A 

similar complex microbial community resides in the human gut, with every human 

harboring about 150 bacterial species, with most bacteria and genes shared among humans 

[2]. Similar levels of complexities were found in many other environments, from marine 

to soil to deep sea “whale fall” carcasses [3,4]. Thus, communities are far more complex 

that any single organism in a pure culture. However, traditional microbiological 

techniques are limited in their capability to study these communities since it has been 

estimated that  >99% of microbes in nature cannot be cultured in vitro [5]. As a result, the 

field of metagenomics came to the fore. Metagenomics is the study of genetic material 

recovered directly from environmental samples [6,7]. The field is also referred to as 

environmental genomics, or community genomics. With the advent of next-generation 

sequencing, metagenomics enables direct extraction, cloning and sequencing of DNA 

from their natural environment with protocols optimized to capture unexplored microbial 
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diversity [8,9]. Recently, the viral fraction of microbial communities has come into the 

spot light, revealing the vast complexity of viral diversity on Earth [10,11,12]. 

 

Today, researchers can, at a reasonable cost and effort, obtain a metagenome of the 

environment they are interested in. Thus, currently the problem has shifted from sampling 

the diversity in a given environment to developing the bioinformatic tools to analyze this 

complexity and the enormous amounts of data generated by such studies. Current 

metagenome analysis tools such as MEGAN [13], CAMERA [14], and MG-RAST [15] 

focus on the annotation and classification of the gene fragments present in metagenomes. 

While these tools are essential, they do not provide an annotation-independent census of 

the various genes present in a metagenome. Thus, there is no available tool that we are 

aware of that can produce a ranked list of the abundance of all genes in a metagenome 

automatically, grouping genes based on some similarity criterion without relying on 

annotation. Such a census can be useful in comparing relative abundances of genes in a 

given community in a way that does not rely on annotation. Current methods of achieving 

this goal involve searching for keywords and summing hits manually. Such methods are 

both not rigorous and depend on the quality of annotation. Furthermore, annotation-based 

methods do not group genes based on a similarity criterion (indicating homology), thus 

potentially significantly biasing results. Another use for an annotation-independent census 

of a metagenome is to collect a diversity of genes for primer design, especially for genes 

that exhibit significant diversity such as viral genes (see Chapter 2). 

Here we present a new tool called MetaCAT (metagenome cluster analysis tool) that is 

designed to calculate an “abundance spectrum” of known genes present in a given 
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metagenome. This spectrum can be used to quickly ascertain the “major players” in terms 

of genes present/genes being expressed in the given environment. 

 

The process of annotation of a metagenome involves BLASTing each metagenome gene 

object against a database of “known reference genes” and searching for the best hit. 

MetaCAT generates a census by reversing this procedure and BLASTing a database of 

“known reference genes” against the metagenome, counting the number of hits for each 

reference gene. The “known reference genes” that MetaCAT uses as a reference when 

constructing its spectrum can be in principle all currently known genes or a particular 

subset of these genes, such as all known viral genes, all known mammalian genes, all 

known plastid genes, and so on. Although there is no restriction on the library of known 

genes that MetaCAT can use, MetaCAT was designed with NCBI’s RefSeq database in 

mind. The RefSeq database is intended to be a “stable, consistent, comprehensive, non-

redundant database of genomes” [16] and can be downloaded in full or for certain major 

taxonomic or other logical groups. MetaCAT, in addition to specifying which known 

genes are present in the metagenome and their abundances, also gives additional 

information regarding the known genes. This additional information includes a detailed 

description of the genes and a description of the lineage of the source organism in which 

these genes appeared. In the cases of viruses for example, such information can be useful 

in obtaining a quick snapshot of the classes of viruses that may be abundant in the given 

environment (e.g., tailed phages versus filamentous phages).  
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The “abundance spectrum” for the metagenome is calculated by inverting the normal 

BLAST process. In this scheme every known reference gene is BLASTed against the 

metagenome (instead of vice versa) and the number of significant hits in the metagenome 

is counted. Thus in principle every gene in the reference library is given a score which is 

the number of significant hits that that gene received in the metagenome. This list is, in 

general, very long but can be significantly compressed with little loss of information by 

noticing that the reference library often contains many reference genes that yield similar 

“signatures” in the metagenome, making this list partly redundant. Furthermore, many 

genes in the reference library yield only tenuous homologies and can be discarded by 

placing an E value threshold for the best alignment of a given reference gene. MetaCAT 

therefore compresses the reference gene library for a given metagenome by taking 

advantage of both these factors, thus generating a spectrum containing a tractable list of 

genes.   

3.2 The MetaCAT algorithm 

3.2.1 Overview  

The objective of MetaCAT, loosely speaking, is the following: (1) given a metagenome, 

find in an annotation-independent manner all of the clusters of homologous genes within 

the metagenome, and (2) for each cluster that was found report the number of members 

(i.e., gene objects) within the cluster and in addition report the best mach to this cluster 

among all genes present in reference database, such as the RefSeq database. Fig. 3.1 

illustrates the end goal of a MetaCAT analysis of a metagenome.  

Typically when one executes a BLAST analysis one BLASTs an unknown gene, such as a 

gene object from a metagenome, against a reference database of known genes, such as the 
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RefSeq database (Fig. 3.2A). This procedure results in a list of known genes that pass a 

certain E value cutoff. If one is interested in mapping a metagenome, this process is 

repeated for every gene object in the metagenome. The key idea behind MetaCAT is that 

instead of BLASTing every gene object in the metagenome, MetaCAT BLASTs every 

known gene in reference database against the metagenome (Fig. 3.2B). 

 

Figure 3.1 Ideal clustering of gene objects in a metagenome. Each dot represents a 
gene object in a metagenome, with the entire metagenome depicted by the blue oval. 
Similar genes are grouped into clusters (circles of different colors) and each cluster is 
represented by a single gene from a known reference database. In this schematic 
description the distance between dots is interpreted in an abstract manner and does not 
correspond to a rigorous metric. 
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We refer to this “inverse” BLAST analysis as an iBLAST transformation. Each known 

gene that is iBLASTed results in a list of metagenome gene objects that pass a certain E 

value threshold. This list is referred to as the “coverage” of the particular known gene in 

the metagenome. The number of gene objects in this list is interpreted as the abundance of 

the particular known gene in the metagenome. This process is repeated for every known 

gene in the reference database. The result is a rather long table that describes for every 

gene in the reference database its abundance in the metagenome. 

 

 

Figure 3.2 An illustration of a BLAST and an iBLAST analysis. A. Typically when 
performing a BLAST analysis a novel gene object from the metagenome (blue oval) is 
BLASTed against a reference database of known genes, such as the RefSeq database 
(yellow oval). The result of the BLAST analysis is a list of “hits” that pass a certain E 
value threshold. B. In an inverse BLAST analysis (“iBLAST” for short) a gene from a 
known database is BLASTed against the metagenome. The corresponding list of “hits” 
that pass a certain E value threshold is defined as the “coverage” or “abundance” of the 
particular known gene in the metagenome. 
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The list of known genes can be quite long. For example, there are currently approximately 

80,000 known viral genes in the RefSeq viral database. MetaCAT compresses this list in 

two stages. The first filtering stage to impose an E value thresholds for the iBLAST: 

MetaCAT rejects a gene from the reference database if the lowest E value is not low 

enough. In this way known genes that are remote homologs of every metagenome gene 

object are automatically discarded from further analysis. The second filtering step has to 

do with removing redundancy from the reference database. Many genes in this reference 

database can be close homologs. Close homologs can correspond to very similar clusters 

of gene objects in the metagenome (Fig. 3.3). Ideally MetaCAT would report and reject all 

of the close homologs in the reference database and report a single gene, whose E value is 

the lowest with respect to the metagenome gene objects. MetaCAT identifies related genes 

in the reference database (red dots in yellow oval in Fig. 3.3) by comparing the overlap of 

the metagenome gene object (overlapping red circles in the blue oval in Fig. 3.3). If the 

overlap exceeds a certain threshold the genes in the reference database are said to be 

“related”. Once all related genes are found, only one gene is chosen to represent the group. 

Though the resulting list of genes from the reference library may still have residual 

redundancy (see below), this step significantly removes a great deal of redundancy from 

this database. Note that declaring that two known genes are related by comparing their 

overlap in the metagenome database is more general that comparing the homology of the 

genes directly, since in the latter case the reduction is performed independently of the 

metagenome, and therefore there is information loss. An illustration of a final clustering of 

genes by MetaCAT is given in Fig. 3.4. 
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The MetaCAT algorithm is described in detail in the following Section, and a guide for 

how to use this tool and interpret results is presented in Section 3.3. Installation 

instructions are given in Section 3.4. An example of a MetaCAT run is given in Chapter 2, 

Table 2.2. 

 

Figure 3.3 Coverage overlap in a metagenome. Similar genes in the reference database 
(e.g., closely related homologous genes) can have an overlapping coverage in the 
metagenome. MetaCAT can identify this overlap and will consequently report only one of 
the reference genes (the one with the lowest E value). 
 

 

Figure 3.4 Illustration of a final MetaCAT analysis. At the end of the analysis, 
MetaCAT has identified all known genes that result in overlapping coverage, reporting 
one representative for each such group. In this manner the apparent redundancy of the 
reference database is significantly compressed (though the current algorithm used by 
MetaCAT does not remove this redundancy totally — see discussion below). 
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3.2.2 The MetaCAT algorithm in detail 

MetaCAT analyzes a metagenome through the following sequence of steps: 

1. BLAST analysis. The amino acid sequence of every known gene from a reference 

database iK  (i=1..N) — which can be for example a RefSeq database [16] —  is BLASTed 

using NCBI’s blastp (v2.2.22+) [17] against the amino acid sequences of all gene objects 

in the metagenome jM (j=1..M). All BLAST hits must be lower than a maximal E value 

threshold of 10-3

 

. All alignment information is stored by blastp in a table. This step 

involves NXM alignments.  

2. Extracting best E value scores and abundances of known reference genes in 

metagenome. MetaCAT reads the resulting BLAST table and for each known reference 

gene (KRG) finds the lowest E value score min
iE  and the number of different metagenome 

gene objects (MGO) in (i=1..N) that were equal or lower than this E value score. in  is 

said to be the footprint of iK  in the metagenome. Each KRG, iK , is therefore homologous 

to in MGOs. The list of in  elements will hereafter be designated as the signature of iK  in 

the metagenome. A footprint is therefore defined as the number of elements in a signature. 

 

3. E value filtering of the known reference gene database. We wish to keep only the 

KRGs that yielded reasonable alignments to MGOs, since we do not want to be concerned 

with KRGs yielding tenuous similarities. We therefore discard all KRGs whose best E 

value exceeded a maximal E value threshold (with a default threshold of 10-7), i.e., we 
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require that min 710i thE E −≤ = . This filtering step will reduce the number of KRGs from N 

to N’. 

 

4. Clustering known reference genes. Two KRGs with similar signatures are said to be 

related (the measure of similarity will be defined below). Once we identify for given KRG 

all of the other KRGs to which it is related, instead of declaring the given KRG, 

MetaCAT will declare out of all the related KRGs, the KRG with the lowest E value. This 

filtering method is conservative in the sense that every KRG that is omitted from the final 

list of declared reference genes is represented by a different KRG that has a very similar 

metagenome signature but has a better E value score, thus there is essentially no loss of 

information. The outcome of this process is reduction of the number of reference genes 

that MetaCAT reports by one if the reported (or “declared”) KRG is different from the 

given KRG. 

 

More specifically: for each remaining KRG, iK  (i=1..N’), MetaCAT finds all related 

KRGs { }iK . Two KRGs are said to be related if their corresponding signatures in the 

metagenome share 50%thP =  of their elements, i.e., if iL  is the number of MGOs 

homologous to iK , and jL  is the number of MGOs homologous to jK , then iK  and 

jK are said to be related if and only if ( )100 min ,th i j i i j jP L L L L L L≤ ⋅ ∩ ∩  .  The 

stringent min function ensures that the overlap between MGOs is normalized by the length 

of the longer list of MGOs. This prevents relating two KRGs in situations for example 

where one signature list is very short and is included in a second, very long signature list 
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(which would yield 100% if the max function was used). This stringent definition of 

overlap ensures that all related genes have roughly similar footprints in the metagenome. 

 

Note that the group{ }iK  will always include iK  since iK  is always related to itself by 

definition. Each KRG of the remaining KRGs (i=1..N’) is then said to “declare” one 

element of the group { }iK  to represent this group. The element that is chosen to represent 

the group is the KRG with the lowest E value. In case more than one element has the same 

E value then the following criteria are tested sequentially: highest percent identity, highest 

number of identical amino acids, highest percent of gene length aligned. If all measures 

are equal (that can happen if the KRGs have identical amino acid sequences) then to 

prevent dependence on the order of the genes in the reference library, the KRGs are sorted 

by their FASTA gene name and the first one is selected.  

 

This clustering step involves N’ X N’ comparisons.  The group of KRGs that are 

“declared” iK  (i=1..N’’) are the final list of reference genes reported by MetaCAT that 

are said to be found in the metagenome. If two or more KRGs declare the same gene, then 

that gene appears only once in the final output (this is the compression stage). The total 

number of KRG declared by MetaCAT will therefore satisfy N’’<N’<N and typically 

N’’<<N. The abundance of each declared KRG iK  in the metagenome is then simply its 

footprint in . 
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Predictably of the algorithm to changing E value thresholds 

The algorithm behaves in a predictable fashion when changing thE . For example, if thE  is 

increased from E1 to, say, E2

1thE E=

, more KRGs are declared in the final list, however these 

additional KRGs will simply add to the previous declared list when . This is 

because while increasing thE  may add additional KRGs to the list of related genes { }iK  

of a given KRG, these additional related genes will (by definition) have lower best E 

value scores, and therefore will not be declared. Thus, increasing the E value threshold can 

only expand the set of declared KRGs. 

3.3 Future directions 

Redundancy in the final list of declared reference genes 

Note that the final list of declared KRGs can still be redundant. That is, two declared 

KRGs can still be related,  i.e., share thP>  of their signature elements. This can happen for 

example if iK  declares jK , but jK , which happens to be related also to kK , declares kK . 

jK and kK  are thus both declared, yet they are related. Therefore there may still be 

redundancy present in the final list of declared MGOs that needs to be removed. 

 

We have just seen that how MetaCAT generated a list of N’’ KRGs that can still be 

redundant, i.e., some KRGs can still have overlapping signatures. We will therefore repeat 

the clustering algorithm (step 4) until all redundancy is removed. As long as there is 

redundancy left the clustering will continue to remove nodes. The algorithm will therefore 

cease when all redundancy is removed (see proof below).   
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The iterative clustering algorithm discards KRGs at each step, however the KRGs that are 

discarded have an overlapping signature with one of the remaining KRGs, and therefore in 

principle no information is lost by this compression. 

 

When does the compression algorithm cease to remove KRGs? The compression 

algorithm will cease when every node declares itself, a state where by definition there are 

no more related KRGs and thus no more redundancy. In other words, all redundancy is 

removed when every node is a local minimum of E value. To see this we note the 

following: if there are any related KRGs in the final list of declared KRGs (Fig. 3.5) then 

some node Y will not be at a local E value minimum and will have to declare a node 

which isn’t itself (because if for example node X is a local E value minimum and declares 

itself, then any node connected to X, like Y, will certainly not declare itself since the E 

value of X is lower). There are two possibilities at this point. If no other node declares Y 

then Y will not be declared and the algorithm has compressed the list of KRGs by 1 (Y is 

not declared). The second possibility is that some other node Z with a higher E value than 

Y will declare Y. In this case the question would be, is there another node with a higher E 

value than Z that declares Z. If Z is not declared by any other node than the list has been 

compressed by 1 (Z is not declared). If there is a node with a higher E value that declares 

Z we can continue the chain, each time increasing the E value, however at some point we 

will reach a node which has the highest E value (i.e., a maximum) and therefore will never 

be declared, resulting in compression of the KRG list. Therefore, as long as there is 

connectivity in the KRG list, the KRG list will be compressed in the current iteration. 
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Compression will cease once all connectively is eliminated, that is when each KRG is at 

local minimum of E values and therefore declares itself. 

 

Figure 3.5 Example of list of connected KRGs at one of the clustering iterations 

 

Sample abundance versus metagenome abundance 

MetaCAT currently is written to work on the amino acid sequences of metagenome gene 

objects. These gene objects are the result of reads that have been assembled and translated. 

The true abundance of a gene object in nature is proportional to the number of reads found 

in the database and not the number of times this gene object appears in the metagenome. 

The reason for this discrepancy is that in principle, each gene object should appear only 

once in the metagenome, since the assembler should automatically remove identical gene 

objects. For this reason it would be advisable to incorporate into MetaCAT information 

regarding the abundance of reads. One way to accomplish this would be to use available 

programs to map reads to gene objects, and then count the number of hits per gene object. 

For the cases of viruses our prediction is that assembler collapse of contigs did not 

introduce significant bias to abundances  because the viral genes tend to naturally mutate 

X (local E value minimum) 

Y 

Z 
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(being part of quasi-species). These mutated gene objects are most likely not collapsed by 

the assembler, especially given horizontal gene transfer that can affect neighboring genes. 

This appeared to be the situation in the case of the higher termite metagenome. Terminase 

alleles in the metagenome were quite divergent (see for example Fig. 2.2). Nevertheless it 

would be interesting to compare MetaCAT’s report of abundances with the abundances 

corrected for assembler bias. 

3.4 Software operation 

3.4.1 First-time run on a metagenome  
 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Meta main interface.  
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Computing resources parameters: 

If the pull-down menu is activated this means you have the Matlab Parallel Processing 

Toolbox installed. The default number is set to the number of processors on your 

computer. It is recommended you utilize all cpus for faster execution, however you can 

use the pull-down menu to restrict the number of cpus used. 

 

BLAST input parameters: 

1. Enter the protein FASTA file for your known reference database. Any FASTA file can 

be used, however we recommend using NCBI’s RefSeq database. This database is a 

comprehensive, non-redundant database curated by NCBI. Each RefSeq FASTA file 

issued by NCBI is accompanied by a corresponding GenPept file that includes 

comprehensive information about the gene and its origin. This GenPept file can be 

parsed by MetaCAT (see description of output below). For demonstration purposes the 

“RefSeq_database” folder includes the file: 

“viral_release37_all_protein.faa” which is release 37 (Sep. 2009) of all 

RefSeq viral genes, spanning 2386 distinct species.  

2. Enter the FASTA protein file for the metagenome of interest. For demonstration 

purposes the file “demo_contigs.txt” is provided in the “data” folder. 

3. Enter the E value threshold for BLAST (the default is 0.001). 

4. Enter a name for the BLAST output file that will be generated in the “output” 

folder. 
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MetaCAT input parameters: 

5. Enter the GenPept file corresponding to FASTA file entered in option #2. If this file is 

not available use the FASTA file entered in option #2. For demonstration purposes the 

“RefSeq_database” folder contains the GenPept file  

“viral_release37_all_protein.gpff” that corresponds to the RefSeq 

FASTA file “viral_release37_all_protein.faa”. 

6. Enter the E value threshold for the MetaCAT algorithm (default is 1e-7). 

7. Enter a string that will be included in all MetaCAT output files for your reference. 

8. Click “Run BLAST & MetaCAT” to run MetaCAT. 

3.4.2 Output files generated 

MetaCAT generated files 

At the end of MetaCAT’s run six output files will be generated to the ‘output’ folder: 

- The BLAST output file 
- <blast file name><MetaCAT output string>_MetaCAT_output0_params.txt 
- <blast file name><MetaCAT output string>_MetaCAT_output1_AllGenes.txt 
- <blast file name><MetaCAT output 

string>_MetaCAT_output2_AllGenesFilt.txt 
- <blast file name><MetaCAT output 

string>_MetaCAT_output3_RelatedGenes.txt 
- <blast file name><MetaCAT output 

string>_MetaCAT_output4_ShortTable.txt 
 

These output files can be opened in EXCEL. The “Filter” option in EXCEL can be used to 

filter these output files. The last file, ‘…Output4_ShortTable’, is the final output of 

MetaCAT. See the Section 3.6 for a description of output files 0, 1, 2, 3 and 4. 
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The final output of MetaCAT: the *output4_ShortTable file 

This file lists all the RefSeq genes whose lowest E value was equal to or lower than the 

MetaCAT E value threshold, after removing related RefSeq genes. The list is sorted 

according to the number of metagenome gene objects (MGOs) that are homologous to the 

given RefSeq gene such that those with the largest number appear at the top of the list. 

Each line includes additional information about the given RefSeq gene and its alignment 

with the MGO that yielded the lowest E value. A detailed description of the fields 

included in this file is given in Section 3.6.4. 

3.4.3 Subsequent runs of MetaCAT 

The program can run in two modes — a BLAST analysis followed by MetaCAT analysis 

(the default mode) and just a MetaCAT analysis. The latter mode is useful for analyzing a 

previous BLAST run, for example with a different E value threshold. To toggle between 

the modes click the check box (option 10 in Fig. 3.6). This switch will inactivate all fields 

related to the BLAST run, and will allow the user to select a previous BLAST output file 

generated by MetaCAT. 

3.5 Installation instructions 

3.5.1 System requirements 

1. Operating system: Windows (32bit/64bit), Linux (32 bit/64 bit), Mac OS (32bit/64bit)  

2. Matlab 7.4 and higher   

3. To enable parallel processing Matlab Parallel Processing Toolbox v4.2 is required. 
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The program is computationally cpu intensive and is capable of utilizing multiple cpus 

using Matlab’s Parallel Processing Toolbox. For optimal performance we recommend 

computers with multiple fast processors. On a Dell Precision T3500 with Quad Core Xeon 

X5550 (eight 2.66 GHz processors) analysis of a metagenome of 80,000 gene objects with 

a reference viral library of 80,000 genes takes 3 hours. 

For best performance: 

3.5.2 Installation 

Note: On Linux/Mac systems you may need to have root privileges. It is recommended 

that you install this software as a root/administrator for these operating systems. 

Installation requires an internet connection. 

1. Download the compressed sources for MetaCAT and extract locally . 

2. Start Matlab. 

3. Change directory to the ‘bin’ folder of MetaCAT. 

4. Run MetaCAT by typing MetaCAT_EXE in the Matlab command prompt. 

5. Click “Automatic installation (recommended)”. 

6. The program automatically downloads and installs BLAST vs. 2.2.22+ from NCBI1

7. Once the main interface loads you may start using MetaCAT. 

. 

This process may take a few minutes. Once the installation of BLAST starts click 

“next” and accept all of the default entries. 

 

 

                                                 
1 If you already have blast 2.2.22+ installed in the default MetaCAT directory this step is automatically 
skipped. Other blast versions are ignored by MetaCAT. If you have blast 2.2.22+ installed in a different 
directory MetaCAT gives you the option to select the folder in which you previously installed this 
program. Simply select the “Please proceed to manually install blast 2.2.22+” option in the first menu. 
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3.5.3 Troubleshooting  

1. For Linux/Mac OS it is recommend you have root privileges. 

2. If there is a problem downloading BLAST make sure your firewall does not block the 

ftp port. Alternatively you can download blast v2.2.22+ manually from the NCBI 

website (choosing the appropriate software version appropriate for your OS): 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.22/. 

Installation instructions for blast can be found here 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.22/user_manual.pdf. 

Once blast is installed, start MetaCAT, click “Locate sources on computer” and locate 

the “bin” folder of blast installation. 

3. If there is a problem running blast there may be a previous installation of blast from 

another utility which is interfering with MetaCAT. If you are running Windows and 

Windows is not installed on the c:\ drive, check in the windows folder on your 

computer for a file called ‘ncbi.ini’. If this file exists, temporarily change its 

name. 

3.5.4. Downloading and combining RefSeq files 

The RefSeq database is continuously updated. The most up-to-date release of RefSeq files 

is available on the NCBI ftp server at ftp://ftp.ncbi.nih.gov/refseq/release/.  You can select 

to download the entire database or subsets of this database for particular taxonomic or 

other logical groups. FASTA files have an *.faa extension and GenPept files have a *.gpff 

extension. Since the RefSeq databases are large, these databases have been separated into 

numerous smaller files to facilitate downloading from the web and handling. These files 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.22/�
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.22/user_manual.pdf�
ftp://ftp.ncbi.nih.gov/refseq/release/�
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can be downloaded in-bulk using one of the many free ftp software programs available on 

the web. Simply log on to the ftp site ftp://ftp.ncbi.nih.gov  as an anonymous user and 

browse to the refseq/release/ directory. 

 

To combine all of the RefSeq files into one large FASTA/GenPept file one option is to use 

a MetaCAT utility: 

1. Make sure MetaCAT’s “Combine_RefSeq_files” folder contains only one file: 
util_concat_all_files_in_folder.m. 

2. Copy all the files you wish to combine into one file (and only these files) into the above 
folder.  

3. In Matlab change directories to the “Combine_RefSeq_files” folder. 
4. Type util_concat_all_files_in_folder at the prompt. 
 

This utility will combine all of the files in the given directory expect for the Matlab source 

into one file named “combined_all”. For large files this may take some time. After the 

run is finished change the name of this file to whatever name you choose.  

3.5.5 MetaCAT folders 

The following folders are installed with MetaCAT: 

 
 

bin location of MetaCAT Matlab execution source 
MetaCAT_EXE.m 

msrc folder with MetaCAT source code 
blast folder where blast is installed 
data folder to store metagenome files 
RefSeq_database folder to store the RefSeq FASTA/GenPept files 
output folder to which all output files are written 

Combine_RefSeq_files folder that contains a Matlab source code for 
concatenating all the files in this folder (see §6) 

ftp://ftp.ncbi.nih.gov/�
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3.5.6 Known bugs 

NCBI blast 2.2.22+ appears to have an intrinsic bug where BLASTing a single FASTA 

record against a large database in some rare cases can add/miss some hits compared to the 

case where this record is embedded in a very large FASTA file. This can lead to very 

small differences in the BLAST output depending on the number of cpus used, as the 

parallelization requires splitting the RefSeq FASTA file into n smaller files, n being the 

number of cpus used as defined by the user. This bug appears to be very rare and doesn’t 

affect results significantly, for example slightly affecting the number of hits (+/- 1 or 2) 

for 10 out of ~6500 records that passed the BLAST E value threshold. 

 

3.6 Description of additional output files 

Description of additional output files: 

Output0_params 

This file contains: 

- Statistics on the run such as execution time, date and time of run, version of MetaCAT 

used, etc. 

- The command line(s) used to run BLAST (if appropriate) 

- A summary of the parameters/file names used to run MetaCAT 

- The list of output files generated by this run. 

 

Output1_AllGenes 

Information parsed from the BLAST output file. The file lists all of the RefSeq genes that 

passed the BLAST E value threshold. Each RefSeq gene is followed by the list of all 
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metagenome gene objects (MGOs) that passed the BLAST E value threshold. The 

following additional information is provided for the MGO yielding the lowest E value:2

1. Index  

 

Counter of RefSeq gene in table. 

2. RefSeq gene 

RefSeq gene identification as it appears in the RefSeq FASTA file definition line 

(extracted by BLAST). 

3. RefSeq gene definition  

RefSeq gene definition as it appears in the RefSeq FASTA file definition line (N/A for the 

AllGenes output file). 

4. Metagenome gene object ID with lowest E value 

Identification of MGO that yielded the lowest E value for the given RefSeq gene. 

5. # of metagenome gene objects similar to this RefSeq gene  

Number of MGOs that yielded an E value equal or lower than the BLAST E value 

threshold when aligned against the given RefSeq gene. 

6. % identity  

Percent identity of the given RefSeq gene and the MGO. 

7. # of identical amino acids 

Number of identical amino acids between the given RefSeq gene and the MGO. 

8. E value  

E value for the alignment between the given RefSeq gene and the MGO. 

                                                 
2 To display the information for just the best MGOs use EXCEL and filter the first column by the 
string “table”. 
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9. Alignment length (amino acids)  

Number of amino acids in the alignment. 

10. RefSeq gene length (amino acids)   

Number of amino acids in the RefSeq gene (N/A for the AllGenes output file). 

11. % of RefSeq gene length aligned  

The percent of the RefSeq gene length that appears in the alignment — i.e., the ratio of (9) 

and (10) times 100 (N/A for the AllGenes output file). 

12. aa sequence 

The amino acids sequence of the RefSeq gene (N/A for the AllGenes output file). 

 

Output2_AllGenesFilt 

Same as the ‘Output1_AllGenes’ file but showing only RefSeq genes whose lowest E 

value was equal to or lower than the MetaCAT E value threshold. 

 

Output3_RelatedGenes 

List of RefSeq genes whose lowest E value was equal to or lower than the MetaCAT E 

value threshold, after removing related RefSeq genes (i.e., the list of group 

representatives)3

1. Index  

. Following each group representative is the list of related genes (i.e., 

group members). The list is sorted according to the number of MGOs homologous to the 

given RefSeq gene (highest number at the top of the list). The following additional 

information is given for every RefSeq gene: 

Counter of RefSeq gene in table. 
                                                 
3 To display just this list in EXCEL, filter the first column by the string “table1”.  
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2. RefSeq gene 

RefSeq gene ID as it appears in the RefSeq FASTA file definition line (extracted by 

BLAST). 

3. RefSeq gene definition  

RefSeq gene “Definition” field as it appears in the GenPept file (or if a RefSeq FASTA 

file was supplied, the RefSeq gene definition as it appears in the FASTA definition line). 

4. Min % of shared metagenome gene objects  

The overlap between the MGO list of the given RefSeq gene and the MGO list of the 

group representative in units of percent (i.e., the number of MGOs shared between both 

RefSeq genes divided by the larger number of MGOs of both genes, in units of percent). 

5. # of metagenome gene objects similar to this RefSeq gene   

Number of MGOs that had an E value equal to or lower than the BLAST E value 

threshold when BLASTed against the given RefSeq gene. 

6. % identity  

Percent identity between the MGO with the lowest E value and the given RefSeq gene. 

7. # of identical amino acids  

Number of identical amino acids in the alignment of the MGO with the lowest E value and 

the given RefSeq gene. 

8. E value  

E value in the alignment of the MGO with the lowest E value and the given RefSeq gene. 

9. Alignment length (amino acids)  

Length of alignment in amino acids between the MGO with the lowest E value and the 

given RefSeq gene. 
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10. RefSeq gene length (amino acids)   

Number of amino acids of the given RefSeq gene. 

11. % of RefSeq gene length aligned  

The percent of the RefSeq gene length that appears in the alignment — i.e., the ratio of (9) 

and (10) times 100. 

12. GenPept Features  

RefSeq gene Features field as it appears in the GenPept file. 

 

Output4_ShortTable 

This file is the main output of MetaCAT. This file contains the following fields: 

1. Index  

Counter of the RefSeq gene in the table. 

2.  RefSeq gene  

RefSeq gene identification as it appears in the RefSeq FASTA file definition line 

(extracted by BLAST). 

3.  Metagenome gene object ID with lowest E value 

Identification of the MGO that yielded the lowest E value for the given RefSeq gene. 

4.  # of metagenome gene objects similar to this RefSeq gene 

Number of MGOs that had an E value equal to or lower than the BLAST E value 

threshold when the given RefSeq gene was BLASTed against the metagenome. 

5.  tot # of metagenome gene objects associated with this RefSeq gene group 

Combined number of homologous MGOs of the given RefSeq gene and all its related 

RefSeq genes (i.e., group members). 
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6.  # of related RefSeq genes  

Number of RefSeq genes related to the given RefSeq gene, including the given RefSeq 

gene, i.e., number of group members including the group representative. 

7.  % identity  

Percent identity between the MGO with the lowest E value and the given RefSeq gene. 

8.  # of identical amino acids 

Number of identical amino acids in the alignment of the MGO with the lowest E value and 

the given RefSeq gene. 

9.  E value 

E value for the alignment of the MGO with the lowest E value and the given RefSeq gene. 

10. Alignment length (amino acids) 

Length of alignment in amino acids between the MGO with the lowest E value and the 

given RefSeq gene. 

11. RefSeq gene length (amino acids) 

Number of amino acids for the given RefSeq gene. 

12. % of RefSeq gene length aligned 

The percent of the RefSeq gene length that appears in the alignment — i.e., the ratio of 

(10) and (11) times 100. 

13. aa sequence 

Amino acid sequence of the given RefSeq gene. 

14. RefSeq gene definition 
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The “Definition” field for the given RefSeq gene as it appears in the GenPept file (or if a 

RefSeq FASTA file was supplied, the RefSeq gene definition as it appears in the FASTA 

definition line).  

Definition field — “Brief description of sequence; includes information such as 

source organism, gene name/protein name, or some description of the sequence's 

function (if the sequence is non-coding). If the sequence has a coding region 

(CDS), description may be followed by a completeness qualifier, such as 

‘complete cds’.” [18] 

 

15. GenPept GenBank division  

GenBank division field for the given RefSeq gene as it appears in the GenPept file. 

GenBank division field — “The GenBank division to which a record belongs is 

indicated with a three-letter abbreviation. The GenBank database is divided into 

18 divisions: 

 

  1. PRI — primate sequences 

  2. ROD — rodent sequences 

  3. MAM — other mammalian sequences 

  4. VRT — other vertebrate sequences 

  5. INV — invertebrate sequences 

  6. PLN — plant, fungal, and algal sequences 

  7. BCT — bacterial sequences 

  8. VRL — viral sequences 

  9. PHG — bacteriophage sequences 

10. SYN — synthetic sequences 

11. UNA — unannotated sequences 

12. EST — EST sequences (expressed sequence tags) 

13. PAT — patent sequences 

14. STS — STS sequences (sequence tagged sites) 
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15. GSS — GSS sequences (genome survey sequences) 

16. HTG — HTG sequences (high-throughput genomic sequences) 

17. HTC — unfinished high-throughput cDNA sequencing 

18. ENV — environmental sampling sequences” 

 

16. GenPept molecule type 

Molecule type field for the given RefSeq gene as it appears in the GenPept file.  

Molecule type field — “The type of molecule that was sequenced. Each 

GenBank record must contain contiguous sequence data from a single molecule 

type. The various molecule types are described in the Sequin documentation and 

can include genomic DNA, genomic RNA, precursor RNA, mRNA (cDNA), 

ribosomal RNA, transfer RNA, small nuclear RNA, and small cytoplasmic 

RNA.” [18] 

17. GenPept source 

Source field for the given RefSeq gene as it appears in the GenPept file. 

Source field — “Free-format information including an abbreviated form of the 

organism name, sometimes followed by a molecule type.” [18] 

18. GenPept classification  

Organism field for the given RefSeq gene as it appears in the GenPept file. 

Organism filed — “The formal scientific name for the source organism (genus 

and species, where appropriate) and its lineage, based on the phylogenetic 

classification scheme used in the NCBI Taxonomy Database. If the complete 

lineage of an organism is very long, an abbreviated lineage will be shown in the 

GenBank record and the complete lineage will be available in the Taxonomy 

Database.” [18] 

19. GenPept comments  

Comments field for the given RefSeq gene as it appears in the GenPept file. 

Comments field — “A COMMENT identifying the RefSeq Status is provided 

for the majority of the RefSeq records. This comment may include information 
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about the RefSeq status, collaborating groups, and the GenBank records(s) from 

which the RefSeq is derived. The RefSeq COMMENT is not provided 

comprehensively in this release… Additional COMMENTS are provided for 

some records to provide information about the sequence function, notes about 

the aspects of curation, or comments describing transcript variants.” [19] 

20. GenPept Features 

Features field for the given RefSeq gene as it appears in the GenPept file. 

Features field — “Information about genes and gene products, as well as 

regions of biological significance reported in the sequence. These can include 

regions of the sequence that code for proteins and RNA molecules, as well as a 

number of other features. 

 

Source: Mandatory feature in each record that summarizes the length of the 

sequence, scientific name of the source organism, and Taxon ID number. Can 

also include other information such as map location, strain, clone, tissue type, 

etc., if provided by submitter.  

 

Taxon: A stable unique identification number for the taxon of the source 

oganism. A taxonomy ID number is assigned to each taxon (species, genus, 

family, etc.) in the NCBI Taxonomy Database. 

 

CDS: “Coding sequence; region of nucleotides that corresponds with the 

sequence of amino acids in a protein (location includes start and stop codons).” 

[18] 

 

 Protein Names: Protein names may be provided by a collaborating group, may 

be based on the Gene Name, or for some records, the curation process may 

identify the preferred protein name based on that associated with a specific EC 

number or based on the literature. 
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Protein Products: Signal peptide and mature peptide annotation is provided by 

propagation from the GenBank submission that the RefSeq is based on, when 

provided by a collaborating group, or when determined by the curation process. 

Domains: “Domains are computed by alignment to the NCBI Conserved 

Domain Database database for human, mouse, rat, zebrafish, nematode, and 

cow.  The best hits are annotated on the RefSeq. For some records, additional 

functionally significant regions of the protein may be annotated by the curation 

staff. Domain annotation is not provided comprehensively at this time.” [19] 
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Chapter 4 

The Biophysics of Prokaryotic and Viral Diversity  

in Aqueous Environments  

4.1 Abstract  

Recent advances in techniques for enumerating viruses have led to a plethora of measurements of 

viral and bacterial abundances in nature that beckon for both qualitative and quantitative 

explanation. Here we propose a biophysical model that describes the interaction between bacteria 

and their lytic viruses in aqueous environments that combines both predator-prey relations and a 

diffusion-based transport model of viruses. In addition we postulate that the burst size is 

proportional to the volume ratio of the host cell and its infecting virion, for which there is 

empirical support for cell radii < ~1μm. We find that the concentration of a given bacterial 

species approximately scales with the radius of the cell r, as r-4, suggesting that, within the 

context of a predator-prey model, the size of a bacterium is the most critical parameter 

determining its fixed point concentration. To extend our model to the community level, we 

postulated that there is no selection pressure on bacterial radii, i.e., a priori, all bacterial radii are 

equally probable. Given this hypothesis we predict that the size spectrum of marine bacteria 

follows a power law with slope -1, close to the observed average spectrum. We proceed to derive 

expressions for the total concentration of bacteria and viruses in the environment, reproducing 

for typical marine systems a virus-to-bacterium ratio (VBR) of ~10. We show that the VBR is 

primarily determined by the average net growth rate of bacteria (growth minus predation), the 

average viral decay rate and, interestingly, the radius of the minimum viable bacterium. We next 
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derive a simple expression for the number of species in a given environment per unit volume, 

and predict that for offshore waters, where there are ~105 bacteria per ml, there should be ~102 to 

~103 prokaryotic species in at most ~102 to ~104 liters of water, consistent with current empirical 

estimates of species richness. Thus, any given marine environment can only pack a finite degree 

of diversity. We use this observation to calculate an absolute lower and upper bound on the total 

number of active bacterial species in the ocean water column (excluding sediment), by 

considering the case of completely homogenous oceans and maximally heterogeneous oceans. 

We find that the number of species in the ocean water column should lie in the range of 104–

1021

4.2 Introduction  

. We conclude by considering further experiments to test the validity of the proposed model.  

It was only in the late 1980s that the first quantitative estimates of viral abundance in the oceans 

using transmission electron microscopes revealed the existence of as many as millions of viral 

particles per milliliter of seawater [1]. Subsequently, more reliable counting methods based on 

epifluorescence imaging of stained nucleic acids came to the fore [1,2,3]. These methods were 

simple to execute even in field conditions and led to an explosion of measurements of viral and 

prokaryote concentrations in many environments

 

 [2,3]. In marine and fresh water ecosystems, 

these types of studies revealed that as a rule of thumb, viral concentrations typically exceed 

bacterial concentrations by one order-of-magnitude [1,2,4].  

We were interested in understanding the basic processes in play that determine phage-host 

interactions in aqueous environments, and how these processes affect the bacterial and viral 

community composition.  We therefore sought to identify the key variables that determine the 

virus and bacterium concentrations in the environment and to formulate a simple toy model that 
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is capable of making reasonable order of magnitude predictions and that can qualitatively explain 

the observed trends. Predator-prey models for host-virus interaction have earlier been examined 

by Campbell [5], Levin et al. [6], Lenski [7], Beretta et al. [8] and Thingstad et al. [9,10]. 

However, in these models the biophysical process of virus transport, which governs the contact 

rates between viruses and bacteria, was not considered. Stent [11] and Murray et al. [12] 

considered transport processes of viruses in aqueous environments but not in the context of a 

predator-prey model in an ecological setting. Our starting point is a simple toy model that 

incorporates virus transport within the context of a predator-prey model. We begin by examining 

the case of a particular isolated phage-host system with the goal of identifying the key variables 

that govern this system. We then extend our model to the community scale by hypothesizing the 

simplest evolutionary scenario that there is no selection pressure on bacterial radii, i.e., a priori, 

all bacterial radii are equally probable. We derive basic relations for the total concentration of 

bacteria and their viruses in the environment, and a basic relation for the total prokaryotic mass 

in the environment. Based on these results we explore questions such as, what are the critical 

parameters governing the system and how do variables scale with respect to these parameters? 

What determines the virus-to-bacterium ratio?  What determines the number of species in a given 

environment? In what volume of water should we find this diversity? What are the bounds on the 

total diversity of species in Earth’s oceans? Where possible we compare our predictions to 

observations and conclude with suggestions for experiments to further test our model. 

 

We will further claim that the precise definition of a species lies outside the scope of our 

biophysical model. Consequently in Chapter 5 we will consider an evolutionary model for the 

generation of bacterial and viral species consistent with the definition of a species used in this 
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chapter. The evolutionary model is a first step in connecting the predictions of the biophysical 

model described in this chapter with empirical observations of diversity in the environment. 

4.3. General assumptions 

4.3.1 Decoupling phage-host systems 

Typically a given environment will contain many species of bacteria and viruses. However, 

under certain assumptions, the microbial and viral communities can be treated as a set of 

decoupled phage-host systems [9]. Such an approximation will be valid if the following 

conditions are satisfied: (1) different bacterial species function independently of each other. Thus 

symbiotic relationships are prohibited. (2) Each viral species infects a single bacterial species 

and (3) each bacterial species is infected by a single viral species. The second assumption is a 

decent approximation given that phages characteristically exhibit species or subspecies   

[2,13,14] (although some exceptions, such as certain broad host range cyanophages, exist [2]). 

The third assumption may seem odd given that the most familiar example, E. coli, is known to be 

infected by many lytic viruses (e.g., the T-series). E. coli, however, is a commensal organism 

that lives in the intestines of animals and humans. Since the guts of animals/humans are 

physically separated, in principle at least, different species of phages that infect E. coli could 

have evolved in different guts. Aqueous environments on the other hand are diffusible and 

generally topologically connected and therefore of a different nature. Thus host range 

observations regarding E. coli, or any other gut bacterium, may not apply to marine ecosystems. 

That said, biogeography may play a role in marine ecosystems when considering very distant 

regions (e.g., the same cyanobacterium species in remote regions may be infected by different 

phages). Therefore both assumptions (2) and (3) may perhaps be relaxed by requiring them to be 

satisfied locally. 
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Assumption (3) is consistent with assumption (2) in the sense that two viruses cannot control the 

same bacterial species indefinitely, since such a system is unstable (Section 4.6). The opposite is 

also true, two bacterial species cannot be controlled by the same virus indefinitely, thus 

assumption (2) is consistent with assumption (3).  

 

As a result, we begin our discussion by considering a simple phage-host system consisting of a 

single phage species infecting a single bacterial species, henceforth denoted by the index i. In 

Section 4.4.2 we will consider multiple independent phage-host systems. 

4.3.2 Host mortality 

Causes of mortality 

It is generally accepted that bacterial host mortality is primarily due to either protist grazing or 

viral predation [4,15,16,17], both appearing to contribute about equally to microbial mortality 

[15,18,19].  In surface waters for example, viruses are thought to be responsible for ~10–50% of 

the total bacterial mortality, whereas in environments in which protists do not thrive, such as 

low-oxygen lake waters, viruses are thought to be responsible for 50–100% of bacterial mortality 

[4]. Thus it appears that the two likely fates of a bacterial cell in the ocean are either to be eaten 

by a protist or be lysed a virus. 

 

Lysogenic versus lytic viruses 

The process of viral predation can be mediated either through infection by lytic viruses or 

through induction of temperate viruses. In the case of temperate viruses, the infecting virus either 

enters a lytic phase and kills its host or is integrated into the genome of the host and may be 

induced at a later stage in response to an induction event (e.g., exposure to a mutagenic agent 
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[2]). In the oceans however it appears that lysogenic induction is rare [2,4,20], occurring either 

sporadically or at a low level [4]. Though this matter has still not been completely settled [2], it 

has been suggested that the majority of viruses observed in sea water are the result of successive 

lytic infections [4]. Other forms of infection such as chronic infection and pseudolysogeny [2] do 

not lead to host death and are therefore not considered to contribute to viral predation in this 

context. We shall therefore assume in our toy model that viral predation is exclusively the result 

of infection by lytic viruses. 

 

Protists versus viruses  

When comparing the effect of protist grazing to virus lysis on bacteria, there is a fundamental 

difference between these two predators that has to do with their host range. As a first-order 

approximation [10], protists can be regarded as omnivorous, i.e., they are not host selective  

[10,17]. On the other hand, viruses are known be highly selective, displaying species or 

subspecies (strain) specificity [2,13,14]. Therefore, protists would control the total concentration 

of bacteria while viruses would control the individual concentration of bacterial species [10,17]. 

In a resource rich environment, there is evidence to suggest that because protists themselves are 

preyed upon, bacterial growth is determined by competition for resources and not by protist 

grazing [17]. Regardless of the mechanism that controls the total concentration of bacteria, in our 

model we simply assume that the total concentration of bacteria is fixed by some process and 

refer to this limiting factor as the “carrying capacity” of the environment. 

 

Thus we will assume that every bacterial “species” is under viral control. Since grazing is 

thought to be complex non-passive hydrodynamical process owing to the currents induced by the 
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motion of the flagella drawing its prey in [17],  we account for this process by means of an 

effective grazing rate denoted by ( )i
non viralγ −  (see Table 4.1 for a list of notation). Another potential 

source for bacterial mortality is autolysis or programmed cell death in response to, for example, 

radiation damage [17]. Here all non-viral mediated mortality can be included effectively in 

( )i
non viralγ − .  

 

What is a bacterial species? 

Note that we have not precisely defined what a bacterial “species” is or what a viral “species” is.  

What is the definition of a bacterial species? Similarly, what is the definition of the viral 

“species” that infects this bacterial “species”? We will argue that the precise definition of these 

concepts lies outside the scope of a biophysical model of phage-host interaction and requires a 

“higher” theory that probes the genetic complexity of these species (i.e., an evolutionary theory). 

In Chapter 5 we will propose an evolutionary mechanism that can be used to define a bacterial 

“species” and a viral “species”, and by which new bacterial and viral “species” co-emerge 

through a process of co-speciation. We will also show that when this evolutionary model is 

viewed in a genetic coarse-grained way, the evolutionary model converges to our current 

biophysical model. Our conclusion will be that while a bacterial species interacts with just one 

viral species, and vice versa, each of these species is comprised of strains (which are emerging 

new species) that are part of interaction networks with more than one viral strain. The key result 

that we derive is that although the species are independent, we need to multiply their 

concentration by (roughly) the number of strains per species to get the total concentration of a 

species (with a strain defined as an entity distinguishable in a consistent and clear way from all 

other strains). Thus, while a “strain” would have been our intuitive definition a priori for a 
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“species”, we find that strains are not independent elements (they are part of networks), and one 

needs to consider a more complex structure called a “species” to achieve independent phage-host 

systems.   

4.3.3 Virus decay  

Viral decay is thought to be mainly due to environmental damage from sunlight, temperature 

effects, and interaction with certain substances such as heat-labile colloidal dissolved organic 

matter [2,4,21]. These events lead to a certain rate of viral decay which we denote by ( )
 

i
virus decayγ . 

Though protists can also potentially lead to viral removal by ingestion [21], grazing is generally 

not considered to be a significant factor leading to loss of viruses [2]. 

4.3.4 The physiological state of the host 

The physiological state of bacteria in nature is generally unknown and is the subject of current 

research [2]. Generally speaking, bacteria appear to be growing slowly in marine environments. 

For example, in the cold waters of the Barents Sea in the Arctic ocean, growth rates were 

estimated to lie between 0.05 and 0.25 day-1 [22] whereas in the warmer coastal seawater near 

Santa Monica growth rates were measured to be higher, ~1–3 day-1 [18]. In our simple toy model 

we will assume that the environment is ideal in the sense that the bacteria are in a state of 

exponential growth. Though many environments are most likely not ideal, the notion of an “ideal 

environment” can be a useful construct that can at the very least serve as a null hypothesis for a 

given environment. In the context of our model, the growth rate of the ith

( )iα  =

 bacterial species is 

denoted by  (doubling rate)∙ln2. This growth rate is thus species specific and is determined 

by the availability of nutrients required by the given species. 
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4.3.5 Bacterial and viral abundance distribution 

The virus-to-bacterium ratio (VBR) in marine systems is typically measured to be in the range of 

5–25 [1,2,4,19] and in the deep waters of the Atlantic Ocean this ratio often exceeds 100 [1]. 

Particular phage-host systems have also been shown to exhibit VBRs as high as 8 (and locally 

even as high as 30 — see example discussed later on) [23]. We shall therefore assume in our 

model that the VBR for the ith ( ) 1iVBR >> bacterial species satisfies . We will also assume that 

local spatial inhomogeneities in free virion concentration due to, for example, burst events [24], 

diffuse over time without inducing lysis in neighboring hosts. Thus, 

4.4 A biophysical model of phage-host interaction 

synchronized lysing (a 

possible mechanism for bloom termination [1,13,25]) is not accounted for by our model. Since 

blooms appear to be the exception rather than the rule [13], we do not expect this to affect the 

applicability our model to most ecological settings. The spatial nonuniformity of viruses will be 

further discussed below. 

4.4.1 Model development part I:  A single phage-host system 

4.4.1.1 Viral diffusion and infection rate 

We begin by estimating the infection rate of a certain bacterial species given that its viruses are 

freely diffusing in the medium. Let ( )i
bacteriaN  and ( )i

virusN  be the number of bacteria and viruses 

respectively associated with the ith

( )i
virusI

 bacterial species in a given volume V. We wish to estimate the 

absorption rate of the viruses to their hosts, denoted by  (in units of s-1

( ) ( )i i
virus bacteriaN N>>

), given that 

. We will assume the bacterium is stationary and is described by a simple 

spherical geometry with an effective radius ( )i
bactR . The approximation that the bacterium is 

stationary is supported by the following facts: Based on the Stokes-Einstein relation (see below), 
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the diffusion constant of a typical E. coli-like bacterium is expected to be roughly 30 times 

smaller than the diffusion constant of a typical phage particle in the same environment, thus 

bacteria are diffusing very slowly in comparison to their viruses. Even if a bacterium is engaged 

in swimming, its contact rate with viruses is relatively unaffected by the swimming motion of the 

bacterium [12]. Bacteria attached to marine snow may encounter enhanced viral contact rates due 

to the fast motion of the sinking particles [12], however these are thought to constitute a small 

fraction of the overall population of bacteria and should therefore not contribute much to the 

overall number of bacterium-viral contacts [12]. 
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Table 4.1. Variables and parameters used in the discrete phage-host interaction model 
Variables Definition Units 

( )i
bacteriac  Concentration of bacteria belonging to the ith (number)/m bacterial species  3 

( )i
bacteriaN  Number of bacteria belonging to the ith dimensionless  bacterial species in volume V 

( )i
virusc

 
Concentration of viruses infecting the ith (number)/m bacterial species   3 

( )i
virusN

 
Number of viruses infecting the ith dimensionless  bacterial species in volume V 

( )i
virusI

 
Absorption rate of viruses onto the ith s bacterium  -1 

VBR Virus-to-bacterium ratio of the i(i) th ( ) ( )i i
virus bacteriac c phage-host system =  dimensionless 

Parameters   

   i 
Index of the ith Dimensionless  bacterial species. Parameters that depend on i  can be interpreted as 
random variables drawn from a certain distribution 

( )  iα  
Specific growth rate= μ(i)ln 2, where μ(i) s is the doubling rate  -1 

( )   i
non viralγ −

 
Bacterial mortality rate due to non-viral mediated processes such as grazing  s-1 

( )i
viral decayγ     Viral decay rate  s-1 
( )i
virusR  Effective radius of the virus m 
( )i
bactR  Effective radius of the bacterium m 

( )ib  
Burst size  Dimensionless 

( )iβ  Volume fraction of host cell occupied by virions  Dimensionless 
( )i
virusD  Diffusion constant of the virus m2/s 

η  Viscosity of the environment kg∙m-1s-1 
τ Latency period s 
η  Viscosity of the environment kg∙m-1s-1 
k Boltzmann constant  B kg∙m2 s-2K-1 
T Temperature of the environment K 
 

To estimate the infection rate we assume that viruses anchor to the cell surface, and that 

consequently the bacterium can be regarded as a perfect absorber. We then solve the diffusion 

equation for the virions at steady-state. We assume the bacterium is placed at the origin and that 

the boundary conditions are given by ( ) ( )( ) 0i i
virus bactc r R= =  and ( )( ) ( )( )i i

virus virusc r c= ∞ = ∞ , where 

( )( )i
virusc ∞  (

( )i
virusN V= ) is the far-field concentration of the ith

( )i
virusI

 viral species. Solving the diffusion 

equation at steady-state and calculating the transport flux across the boundary of the sphere gives 

us the steady-state absorption rate of viruses onto the bacterium ( ) [11,26] 
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 (1)           ( )( ) ( ) ( ) ( )4 .i i i i
virus virus bact virusI D R cπ= ∞  

 

where ( )i
virusD  is the diffusion constant of the ith viral species. Thus the average time until the ith

( )1/ i
virusI

 

bacterial species is infected is . The assumption of a perfect absorber means that once 

viruses make contact with the cell, they are “absorbed” (i.e., infect the cell). Berg and Purcell 

[26] showed that the net flux to a cell with a small number of receptors is almost as large as the 

net flux into a perfectly absorbing cell. For example, fewer than 500 phage receptors are 

necessary for λ phage to attain half the maximum absorption rate [26,27] where E. coli typically 

has between 30 to 10,000 receptors per cell depending on the growth medium [27]. Therefore the 

assumption of a perfect absorber requires a small correction factor that we shall ignore in our 

simple toy model. 

 

Because the perfect absorber leads to a steady-state gradient in viral concentration, the 

distribution of viruses is spatially nonuniform. For the case of a single absorber at the origin, the 

steady-state concentration of viruses is given by ( )( ) ( ) ( )( ) ( ) 1i i i
virus virus bactc r c R r= ∞ −  [26], where 

( ) ( )i
virusc ∞  is the far field concentration of the viruses infecting the ith

( )i
bactR

 bacterial species. Thus, if we 

assume that the mean spacing between cells of a given bacterial species is significantly larger 

than  (i.e., ( )
1
3( ) ( )i i

bact bactc R
−
>> ), then any given bacterial host of this species will lie in the far-

field range of adjacent hosts of the same species. Thus under these conditions, to a first-order 

approximation, each bacterium can effectively be thought of as an isolated perfect absorber. 

These conditions are typically satisfied for marine ecosystems. For example, for typical marine 

ecosystems 610bactc ≤  ml-1 ( )
1
3 100bactc − ≤ , or μm. In the extreme (and unlikely) scenario where 
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the entire bacterial population consists of a single species, then as long as the radius of this 

species is <~10 μm this condition is satisfied. Since we will see that larger bacteria are rarer 

(Section 4.4.2), the error incurred for larger radii will be weighted down when integrating over 

all radii. 

4.4.1.2 Predator-prey relations 

We next wish to calculate the total rate of virus infection in the population. The fraction of 

bacteria ( ) ( )/i i
bacteriaN N∆ infected  that are infected during the time Δt , where Δt satisfies ( )1 i

virust I∆ <<  is 

given by ( )/(1/ )i
virust I∆ . Therefore the fraction of infected cells during Δt is given by 

( ) ( ) ( )/ /(1/ )i i i
bacteria virusN N t I∆ = ∆infected , or 

 

( )
( ) ( ) .

i
i i

virus bacteria
dN I N

dt
=infected  

 

In principle, not every virion absorption event will lead to successful infection and host lysis. 

However, at least in the case of T4 infecting E. coli this fraction appears to be close to one [11]. 

We will therefore assume in our toy model that each absorption event leads to host lysis. 

Building upon this result, we take into account bacterial growth and bacterial death due to non-

viral mediated processes and obtain the following bacterial rate equation 

 

         
( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ).
i

i i i i i ibacteria
bacteria non viral bacteria virus bacteria

dN t N t N t I t N t
dt

α γ −= − −  
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where the first term is due to bacterial growth, the second term is due to non-viral mediated cell 

mortality, and the third term is due to viral predation leading to host mortality. Dividing by the 

system volume V and inserting Eq. 1 we obtain the following rate equation for the bacterium 

 

(2)      ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 4 ( ) ( ).
i

i i i i i i ibacteria
non viral bacteria virus bact virus bacteria

dc t c t D R c t c t
dt

α γ π−= − −  

 

The corresponding rate equation for the ith

 

 viral species is given by 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ).

i
i i i i i i ivirus

virus bacteria virus decay virus virus bacteria
dN t b I t N t N t I t N t

dt
τ τ γ= ⋅ − − − −  

 

where the first term is due to viral production (with τ being the latency period and ( )ib being the 

average burst size of the ith

( )ib

 viral species, i.e., the number of virions released per cell into the 

extracellular environment), the second term is due to virion decay, and the third term is due to 

viral loss upon absorption (which is negligible since typically >>1) [5]. Dividing by the 

system volume V and inserting Eq. 1 we obtain the following rate equation for the viruses 

 

(3)     

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) 4 ( ) ( ) ( )

4 ( ) ( ).

i
i i i i i i ivirus

virus bact virus bacteria virus decay virus

i i i i
virus bact virus bacteria

dc t b D R c t c t c t
dt

D R c t c t

π τ τ γ

π

= ⋅ − − − +

−

 

                     

 

Equations 2 and 3 together form a predator-prey dynamical system. In the simple case where 

τ=0, Eq. 2 and Eq. 3 form an ideal Lotka-Volterra model. This system exhibits small oscillations 
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with a period of ( )
1
2

 ~non viral virus decayα γ γ
−

−
 −  hours to days around the non-trivial fixed point 

determined below (see Table 4.3 for typical parameters). Since the steady-state of the viral 

diffusion equation is achieved on the order of  2
bact virust R D>> <<~1sec, Eqs. 2 and 3 can be 

interpreted as describing the slow dynamics of the far-field viral concentration with the viral 

diffusion equation at pseudo steady-state. 

 

We are interested in the non-trivial fixed point solutions for this system obtained by setting 

0d dt = . Since the steady-state solutions are time invariant we have ( ) ( )( ) ( )i i
virus virusc t c t τ= − = const   

and ( ) ( )( ) ( )i i
bacteria bacteriac t c t τ= − = const . Solving for these two constants we find that the non-trivial 

fixed point solutions for this system are given by  

 

(4)     

( )

( ) ( )
( )

( ) ( )

( )
( )

( ) ( ) ( )

.
4

.
1 4

i i
i non viral

virus i i
virus bact

i
viral decayi

bacteria i i i
virus bact

c
D R

c
b D R

α γ
π

γ
π

−−
=

=
− ⋅

 

 

 
 

 

where we implicitly assume that ( ) ( ) >i i
non viralα γ − . Note that equating the rate equation for bacteria 

to zero leads to the following condition:  

 

( ) ( ) ( ) .i i i
virus non viralIα γ −≡ +  

 

i.e., total bacterial production equals total bacterial mortality. Though solutions to predator-prey 

models are typically time dependent, here we are mainly concerned with understanding the 
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scaling of the fixed point solutions, which we take as a proxy for the time averaged response of 

the system.   

4.4.1.3 The virus diffusion constant  

Since the shape of the virus appears to have little effect on the expected viral transport rate to the 

bacterium [12] we will follow Murray and Jackson and model the viruses as spheres. For a 

sphere of radius ( )i
virusR  (the effective radius for the virus) the Stokes-Einstein relation for the 

diffusion constant is given by  

 

( )( ) ( )6i i
virus B virusD k T Rπη=

 

 

where Bk  is the Boltzmann coefficient, T the temperature, and η  the viscosity of the medium. 

Substituting this expression into the fixed point solution given in Eq. 4 we find that 

 

(5A)    ( )
( )

( ) ( ) ( )3
2 ( ) .

i
i i ivirus

virus non virali
B bact

Rc
k T R
η α γ −

 
= − 

 
 

 
(5B)    ( )

( )( )
( ) 3

2 ( ) ( )
.

1

ii
viral decayi virus

bacteria i i
B bact

Rc
k T R b

γη  
=  

− 

    

 

Eq. 5A makes the prediction that the larger the factor ( ) ( )i i
virus bactD R  in Eq. 2 (resulting in a larger 

viral infection rate – Eq. 1), the lower the concentration of viruses needs to be in order for the 

overall lysis rate (second term in Eq. 2) to match the net bacterial production rate (first term in 

Eq. 2). This explains the dependence of Eq. 5A on viscosity, temperature, and the virus-to-
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bacterium radii ratio. Eq. 5A also predicts that the fixed point concentration of viruses does not 

depend on their decay rate or burst size. This paradoxical behavior is explained by the fact that 

viruses need to keep the net bacterial growth in check (leading to the dependence on the growth 

rate; first term in Eq. 2) irrespective of the viral decay rate or burst size. 

 

Similarly, Eq. 5B predicts that the higher the factor ( ) ( ) ( )i i i
virus bactb D R  in the viral production rate 

term (Eq. 3), the lower the fixed point concentration of bacteria needs to be in order to match 

viral production (first term in Eq. 3) with viral decay (second term in Eq. 3), explaining the 

dependence on viscosity, temperature, the virus-to-bacterium radii ratio, and the burst size. Eq. 

5B also makes the intuitive prediction that the faster viruses decay, the higher the concentration 

of bacteria will be. This result holds because the faster viruses degrade (second term in Eq. 3) the 

more viruses are required to be produced (first term in Eq. 3) to sustain this degradation, and 

therefore more bacteria are required for viral production (since bacteria are the sources of 

viruses). Here too we find the paradoxical situation where the fixed point concentration of 

bacteria does not depend on their net growth rate. The reason for this paradoxical behavior is that 

as long as bacteria grow — no matter how fast — their fixed point concentration need only be 

high enough so that viral production (which is proportional to the bacterium concentration — 

first term in Eq. 3) matches viral decay (second term in Eq. 3).  

4.4.1.4 The virus-to-bacterium ratio for a given phage-host system 

To obtain the virus-to-bacterium ratio for the ith ( )i
virusc species we divide  by ( )i

bacteriac  obtaining the 

simple relation 
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(6)    
( ) ( ) ( )

( ) ( )
( ) ( ) .

i i i
i ivirus non viral

i i
bacteria virus decay

cVBR b
c

α γ
γ

−−
= ≅

 

 
 

 

where for simplicity we use the approximation ( ) ( )1i ib b− ≅  since typically ( ) 1ib >> . Below we 

shall derive the expression for the VBR for the entire community in a given environment, i.e., for 

all phage-host systems. 

4.4.1.5 Correlation between burst size and host/virus dimensions  

Since we are interested in average scaling laws, it is worthwhile to consider the relation between 

burst size and the dimensions of the host and its virus, as these two quantities may be statistically 

highly correlated. Lytic viruses typically pack the host cytoplasm with virions upon replication, 

suggesting that perhaps one can make the assumption that the number of virus progeny per cell is 

correlated with cell volume and inversely correlated with the volume of the infecting virus. 

Indeed, Weinbauer et al. found that in ~50% of the visibly infected rods and spirillae and in more 

than 80% of the cocci found in the northern Adriatic Sea, the entire cell was occupied by mature 

phages (as opposed to displaying a non-uniform distribution)  with the difference between cocci 

and other morphologies possibly explained by a shorter time span between the appearance of the 

first mature phages and lysis in cocci cells due to their smaller burst size [28]. Weinbauer et al. 

also note that almost all bacteria observed in the disruption stage were completely filled with 

phages [29]. That said, in 18% of the infected bacteria the phage was concentrated in two or 

three defined areas of the host and did not occupy the entire cell [28]. Furthermore, some 

bacteria may lyse prematurely [2]. Nevertheless, it has been found empirically that burst size is 

approximately linearly correlated with cell size for cells with a radius of ~0.2μm to ~1 μm, and 

larger phages have been found to produce less progeny [2,19]. For example, Weinbauer et al. 
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[29] found a linear correlation between burst size and host cell volume, with the cell size being 

the only measured parameter that could account for the distribution of burst sizes [29]. In 

addition, Weinbauer et al. also found an inverse correlation between burst size and capsid size 

[28].  

 

We will therefore assume in our toy model that to a first-order approximation the burst size is 

proportional to the volume ratio of the bacterium and its virus, namely, ( )3( ) ( ) ( ) ( )i i i i
bact virusb R Rβ= ⋅ , 

where ( )iβ  is a positive proportionally factor  ≤ 1. Note that ( )iβ  can be interpreted as the 

volume fraction of the cell occupied by viruses since: ( )3( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i i
virus bact virus bactb R R b V Vβ = ⋅ = ⋅ .   

 

Inserting this correlation into Eq. 5B and approximating ( ) ( )1i ib b− ≅  we obtain  

 

 (7)    
4( )

( ) ( )3
2 ( ) ( )

1 .
i

i ivirus
bacteria viral decayi i

B bact

Rc
k T R
η γ

β
 

=  
 

   

 

Further implications of the model and Eq. 7 are discussed in the following section.  

 

We wish to estimate ( )iβ  based on experimental observations. In Fig. 4.1 we reproduce the data 

of Weinbauer et al. [28], who measured in the northern Adriatic sea the burst size ( )ib  as a 

function of the cell volume ( )i
bactV  for bacterial radii ranging from ~0.2 to ~0.9μm and for two 

groups of capsid diameters: 30-60nm (group A; blue) and 60-110nm (group B; red). Note that in 

Fig. 4.1 the y-axis is plotted as the burst size times the average volume of a capsid for that group. 
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Therefore, if indeed ( ) ( ) ( ) ( )i i i i
virus bactb V Vβ=   with ( )iβ β≡ ≡ const , we would expect the slope in Fig. 

4.1 to be the same for both size classes. Indeed we estimate very similar values for β  for both 

size classes: 0.005β ≈ . Furthermore, when consolidating both size groups and assuming an 

average capsid diameter of 60nm (the peak value found in nature) we obtain 0.0049β ≈ , in 

agreement with the previous results. We therefore find that over a wide range of bacterial sizes, 

0.5% of the cell volume is occupied with viruses upon lysis. Closer inspection of the correlation 

suggests however that for small cell volumes (< ~1 μm3

β

, corresponding to a radius < ~0.6μm), 

the burst size is underestimated based on our simple linear formula given the above estimate for 

. In a different work, Weinbauer et al. [29] studied the correlation between burst size and cell 

volume for small cells (<0.3 μm3) in Lake Plußsee. Based on this correlation we find that cells 

with a volume of ~0.3 μm3 had a burst size of ~90 while cells with a cell volume of ~0.05 μm3

β

 

had a burst size of ~35. Assuming a typical capsid diameter of 60nm, this corresponds to 

~0.03 for the former case and β ~0.08 for the latter case. Since we will find however that small 

cells tend to be much more abundant than large cells, an underestimation of the burst size at 

small volumes may bias results. We will therefore assume that β   is bounded in the range of  

~0.5% to ~5%. It is less certain how well this relation will hold for bacterial radii >~1μm. For 

unicellular eukaryotes with radii in the range of ≈2 to ≈7μm we indeed estimate values of β in the 

range of 0.1% to 3.4% (Table 4.2), consistent with the above bounds, suggesting that our 

empirical correlation may hold for larger cells as well.  Below we will discuss the case of 

extremely large bacteria that have massive cell inclusions that reduce the effective cytoplasm 

volume (and thus the value for β ). Thus, for very large cells β may behave anomalously. 
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Figure 4.1. Correlation between burst size and cell volume. Here we reproduce the data from 
Weinbauer et al. [28] for the correlation between burst size and cell volume for two capsid 
diameter classes; 30-60nm (group A) and 60-110nm (group B). The y-axis was plotted as the 
burst size times the average capsid volume for that group. The average volume of a capsid for 
group A was calculated assuming a capsid diameter of (30+60)/2 = 45nm, while for group B the 
average capsid diameter was assumed to be (60+110)/2 = 85nm. The straight line is a least 
squares fit a line with a zero constant. The Pearson correlation coefficient for data points of 
group A was ρ=0.79, and for data points of group B was ρ=0.71.  
 

Table 4.2. Estimation of virus volume fraction, β, for unicellular eukaryotes.  
Eukaryote Approx. radius Burst size Virus diameter Ref. β 
E. huxleyi  ≈2.3μm 400-1000 (mean 620) ≈170nm [30] ≈3.1% 
H. akashiwo  ~5-7 μm* ~105 ≈30nm [30,31] ~0.1-0.3% 
C. ericina ~7 μm* 1800-4100 ≈155nm [30,32] ~3.4% 

*

4.4.1.6 Dependence of host concentration on bacterium size  

Size estimated based on different strain of this species 

The most striking feature of Eq. 7 is the dependence of the concentration of the bacteria on the 

fourth power of the ratio ( ) ( )i i
virus bactR R . Thus a bacterium that is twice as large is predicted 

according to this model to be (1/2)4=1/16 times less abundant. This effect is both because larger 
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bacteria have a larger cross section for diffusing viruses and because larger viruses produce more 

virions, thus for larger cells, fewer bacteria are needed for viral production to match viral decay.   

 

Comparing the radii of viruses and their hosts, it appears that the radii of bacteria are much more 

variable in natural environments. The range of the dimensions of prokaryotes in nature is 

tremendous, ranging from a diameter of 0.2 to 750 μm [33,34] spanning over three orders of 

magnitude. When raised to the power of four this variable spans an astonishing 14 orders of 

magnitude. On the other hand, the diameter range of heads of tailed phages (that constitute about 

96% of all phages examined to date via electron microscope [35]) is very narrow and lies 

between 34 and 160 nm, peaking sharply at 60 nm [36]. If we use the simple rule of thumb that 

the dimensions of viruses  is fixed at 60 nm, then for a given environment defined by η  and T  

we can plot the fixed point concentration of bacteria as a function of the size of the bacterium 

(Fig. 4.2). Since a priori we have no reason to believe there is a correlation between ( )i
viral decayγ   

and ( )i
bactR , we will regard ( )i

viral decayγ   as a constant. We will further approximate ( )iβ  as a constant 

that is uncorrelated with ( )i
bactR , though we are less certain how well this assumption will hold for 

larger  bacteria (further discussed below). From Fig. 4.2 we see that small bacteria are predicted 

to achieve significantly higher concentrations and lower VBRs. Thus, according to this model, 

the size of a bacterium appears to be the most important factor determining its fixed point 

concentration.  
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Figure 4.2. Scaling of the virus concentration, the bacterium concentration and the VBR 
with the radius of the bacterium for a single phage-host system. Virus concentration was 
calculated based on Eq. 5A and bacterium concentration was calculated based on Eq. 7. 
Parameters used for these equations, which are typical for marine systems, are given in Table 
4.3, with 

 

2viral decayγ = day-1

 

 chosen to represent an offshore marine environment [23]. Solid lines 
are for β=0.005 while dotted lines are for β=0.05. 

4.4.1.7 Large bacteria are rare 

Fig. 4.2 demonstrates that very large bacteria should exist at extremely low concentrations in the 

ocean. The largest bacterium known to date, Thiomargarita namibiensis, with a diameter of up to 

750 μm, found in marine sediments [37], is predicted to occur at a frequency of 1 cell per 

~1.5∙104

( )iβ

 liters of water (Fig. 4.2). For very large bacteria however, our assumption of a constant 

β most likely breaks down. Many of the large bacteria harbor massive cell inclusions that reduce 

the volume of the metabolically active cytoplasm [38]. In the case of  T. namibiensis for 

example, its cytoplasm is restricted to a thin ~1 μm outer layer that surrounds a large central 

vacuole [37]. This inclusion therefore leads to a reduction in  by two orders of magnitude: 
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( )( )3( ) ( ) 2 ( )1 374 375 10i i im mβ β µ µ β−→ − ≅ . Thus, the effective concentration of this 

bacterium would be predicted to be higher by two orders of magnitude. Consequently, inclusions 

have the beneficial effect of increasing the abundance of the host by reducing its effective burst 

size. However, even with this large inclusion, assuming ( ) 55 10iβ −≈ ⋅ , the host cell will still be 

very rare, with only one cell per ~100 liters of ocean water. Thus free-floating large cells can 

easily go undetected. It is therefore not surprising that T. namibiensis was discovered in 

sediments where it was found to be highly enriched [37] and not free floating in the ocean. Since 

large bacteria are predicted to be very rare in the open ocean and easily missed, it is worth noting 

that the viruses infecting such large cells are predicted to be relatively abundant, with several 

hundreds of virions per ml. Thus marine phages, according to this model, may be very sensitive 

proxies to rare, large bacterial cells. 

 

Table 4.3. Typical parameters for phage-host systems in aquatic environments 
Parameter Value Aquatic region Reference 
Rvirus ≈30 nm Many environments [36] 
Rbact  ≈0.1-0.2 μm Open ocean [34] 
α ~2 day-1  Coastal [18] 
γnon-viral ~1 day-1  Coastal Inferred 
γviral decay ~0.1 to ~10 day-1 Various marine [19] 
β ~0.5% to ~5% Marine and lake [28,29] (Inferred) 
η ≈10-3 kg/(m∙s) -  
kBT (T=24°C) 4.1∙10-21 m2∙kg∙s-2 -  
rmax 375 μm Sediments [34,38] 
rmin 0.1 μm Open ocean [34,38] 
Dvirus ≈5 (μm)2/s  λ phage [39] [39] 
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4.4.1.8 Application of the model to environmental systems 

The Synechococcus phage-host system in the Gulf of Mexico 

Eqs. 5A and 5B are very powerful in the sense that they predict the absolute equilibrium 

concentration of hosts and their viruses from basic parameters describing the environment, the 

bacterium, and the virus that infects it. We wish to see how the model predictions of the 

concentration of particular phage-host systems compare with measurements of specific phage-

host systems in nature. One particular system of interest is cyanobacteria, which has been studied 

extensively. The concentration of cyanophages in coastal waters and off shore waters in the Gulf 

of Mexico infecting Synechococcus (1.5 μm in diameter) peaked at 4∙10 5 ml-1 

 

at the ocean 

surface [23] with a VBR for this phage-host system measured to be as high as 8 [23]. Based on 

the depth profiles in this study we computed the average concentration of Synechococcus, the 

average concentration of cyanophages infecting Synechococcus strain DC2 and the average VBR 

(Table 4.4). We wish to compare these observations to model predictions. 

Virus concentration 

For the Synechococcus case study ( ) 0.75i
bactR = μm. In a related study, capsid diameters of virions 

infecting a Synechococcus host were found to be in the range of 50–65 nm [40]. Thus we 

assumed that ( ) 30i
virusR ≈ nm [36]. The average growth rate of bacteria in coastal waters is on the 

order of ( ) ~iα 2 day-1

( ) ~i
non viralγ −

 [18] (Table 4.3). At steady-state this growth rate equals the sum of the 

lysis rate and non-viral mediated mortality rate (see above). There is evidence to suggest that 

grazing and lysis contribute equally to microbial mortality [15,18,19], though this matter is still 

the subject of debate [19]. Nevertheless, as a first-order approximation we will assume that 

bacterial production is roughly halved by grazing so that 1 day-1. Thus, given that for 
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water at 24°C 310η −≈ Pa∙s, Eq. 5A predicts that ( ) 5 11.7 10i
virusc ml−≈ ⋅ .  This prediction is of the 

same order of magnitude as the measurements described above (see Table 4.4). 

 

Alternatively, using the Stokes-Einstein relation we can calculate that a virus with an effective 

sphere diameter of 60 nm in water at 24°C should have a diffusion constant of 7.25 (μm)2/s. This 

value is close to the measured diffusion constant of λ phage at the same temperature, which is 

4.97 (μm)2

 

/s [39]. Using the diffusion constant of the virus, one can also calculate the fixed point 

concentration of viruses using Eq. 4 and obtain the same solution.  

Host concentration 

To calculate the concentration of the bacteria one needs to know the viral decay rate and the 

burst size. The viral decay rate was measured in this study to be 0.1 day-1 inshore and 2 day-1

3( )
( )

( ) 80.
i

i bact
i

virus

Rb
R

β
 

= ≅ 
 

 

offshore [23]. Given our earlier estimate of β=0.005 we find a burst size of 

 In a one-step growth experiment for a different strain of Synechococcus, 

the burst size was measured to be 250, in rough agreement with our simple linear model 

prediction. The one-step growth experiment burst size is most likely an overestimate since burst 

sizes of isolated phage-host systems are known to be consistently higher than those found in the 

environment since cells growing in culture are larger and thus produce more progeny and/or are 

better adapted to high nutrient concentrations [2]. Thus, assuming β=0.005,  ( )i
virus decayγ  ~0.1 – 2 

day-1 ( )i
virusR and ~30 nm (see above) with the remaining parameters taken from Table 4.3, then 

based on Eq. 7 (or 5B) we find that ( ) ~i
bacteriac  200 ml-1 to 4.3∙103 ml-1. These predictions are 

consistent with the range of observed concentrations of Synechococcus cells (Table 4.4). Note 
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however that a true test of the model predictions would require comparing with seasonal 

averages and not with one time measurements. 

  

Table 4.4. Measured concentration of Synechococcus and the cyanobacteria infecting it in 
the Gulf of Mexico versus model predictions 
Variable Observed (n=21)a Predictionb 
 Mean ± S.D. Range  
cvirus  (cyanophages) (5.6±8.6)∙104  ml-1 150 ml-1 to 2.5∙105 ml-1 1.7∙105 ml-1 
cbacteria (Synechococcus) (1.8±2.9)∙104 ml-1 3.0 ml-1  to 9.2∙104 ml-1 200 ml-1 to 4.3∙103 ml-1 
VBR 6.3±8.1 0.2 to 30.7 40 to 780c 

aMeasurements based on depth profiles measured by Suttle and Chan [23]. Virus concentration corresponds 
to viruses infecting Synechococcus strain DC2. 

bPredictions were made based on Eq. 5 and 7. See text for further details. 
c

 

A better prediction could be made if the data for each station was analyzed separately as there were 
significant differences between stations.  

4.4.2 Model development part II: Non-interacting phage-host systems 

4.4.2.1 A stochastic interpretation of bacterial and viral parameters  

Thus far we have considered the case of an isolated phage-host system and have treated 

quantities that depend on the species index i as deterministic quantities, i.e., every index i 

corresponds to a different phage-host system with a different set of parameters. When 

considering a natural environment, many different species – i.e., phage-host systems – co-exist. 

One can therefore imagine a hypothetical “species sample space” comprised of many phage-host 

systems, where each time we draw a phage-host system with index i we obtain a set of values for 

all model parameters based on some joint density function. Hence, all parameters can be thought 

of as random variables drawn from some joint distribution. Since the concentration of viruses 

and bacteria are functions of these parameters, these variables can be thought of as random 

variables themselves. 
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Of all the parameters that ( )i
bacteriac  depends on, ( )i

bactR  has the widest range of values, spanning over 

three orders of magnitude. Furthermore, given that ( )i
bactR  is raised to the fourth power, it is by far 

the most sensitive parameter in Eq. 7 (see above). For comparison, the distribution of phage 

capsid diameters ( )2 i
virusR  peaks sharply at 60 nm (see above).  ( )i

viral decayγ   varies by about two orders 

of magnitude across environments [19], however, we expect that for a given environment, where 

all phages are subject to the same conditions, the range of ( )i
viral decayγ   will be more restricted. In 

addition, ( )i
bacteriac 

 
 is only linearly dependent on ( )i

viral decayγ  . Finally, ( )iβ  also appears to display 

limited variability (see above).  

 

Therefore, if we assume, to a first-order approximation, that the random variables

( ) ( )
 ,  ,i i

virus virus decayR γ   and ( )iβ  are statistically independent of the random variable ( )i
bactR , then we can 

average out these parameters by taking their expected value. If these parameters are also 

statistically independent of each other then we have 

 

 
(8)                       1 4 4 43

2( )bacteria bact virus viral decay
B

c R r E ER E r r
k T
η β γ− − −= ≈ = ⋅ const .  

 

 

where E denotes the expectation operator. Thus, our hypothetical species sample space reduces 

to a single random variable, ( )i
bacteriaR , drawn from some distribution ( )Rf r , the functional form of 

which we do not know. Eq. 8 predicts what would be the average concentration of a particular 

bacterial species with radius r were it to exist in a given environment. In practice, the number of 

bacteria of a given radius present per ml of water in a given environment per radius, 
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( )environment rρ  (in units of (number)/m4 see Table 4.5), depends on which bacteria happen to be in 

the given environment to begin with. Let’s assume that a given environment contains Nspecies 

different bacterial species i=1...Nspecies
( )i
bacteriaR, with each species characterized by its own radius , 

where the subscript i labels the species. Thus, for a given realization of this environment, the 

distribution of observed bacterial radii would be given by 

 

(9)
     

( )

1
( ) ( ) ( ).

N
i

environment bacteria bacteria
i

r c r r Rρ δ
=

= −∑  

 

where ( )rδ  denotes the Dirac delta function (in units of m-1 ( )i
bacteriaR) and where  are Nspecies i.i.d.1

( )Rf r

 

random variables drawn from a distribution . Note that ( )Rf r  is the probability density 

that a bacterium with radius bactR r=
 
a priori exists in the environment, whereas ( )environment rρ  is 

the actual concentration of bacteria observed in the environment per bacterial radius.  Thus 

( )environment rρ  is one realization of the distribution of bacteria in the given environment. To obtain 

the ensemble average of ( )environment rρ , averaging over many realizations of the given 

environment (making the simplifying assumption that in each realization there are always Nspecies

( )environment rρ

 

different species) one should calculate the expectation value of  with respect to the 

Nspecies
( )i
bacteriaR random variables . In Section 4.7 we show that this ensemble average is given by 

 

 (10)    ( ) ( ) ( )environment species bact Rr N c r f rρ =   

  

                                                 
1 Independent and identically distributed 
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Table 4.5. Variables and parameters used in the continuous phage-host interaction model 
Variables Definition Units 

( )environment rρ
 

Concentration of bacteria with radius r per radius, predicted to exist in a given 
environment  (number)/m4 

N Total number of prokaryote species that exist in any given realization of the 
environment species dimensionless 

envV  
Volume to find one cell of the largest bacterium (r=rmax m), defining the effective size 
of the environment 

3 

speciesρ  Concentration of species (bacterial and viral) in the environment ( species envN V= ) (number)/m3 

( )Rf r  
Probability density function from which the radius r of a bacterial species is drawn 
(also defined as the density of bacterial species) (probability)/m 

( )f rρ  
Probability density function of radii measured in a given environment (empirically, 
the histogram of measured bacterial radii in a given environment) (probability)/m 

tot
bactc

 
Concentration of all prokaryotes in a given environment (number)/m3 

tot
virusc

 
Concentration of all phages in a given environment (number)/m3 

( )bactm r
 

Wet mass of bacterium of radius r  kg 

( )bactM r
 

Wet mass density of prokaryotes of radius r per radius in a given environment  kg/m4 
tot
bactM

 
Wet mass density of all prokaryotes in the environment  kg/m3 

VBR Virus-to-bacterium ratio in the environment = tot tot
virus bactc c  Dimensionless 

Parameters   
ρ Wet mass density of a cell  cell kg/m3 
rmin /r Minimum/maximum radius of viable bacterium in nature max m 
mmin /m Minimum/maximum wet mass of viable bacterium in nature max kg 
 

4.4.2.2 A simple evolutionary scenario 

In the simplest evolutionary scenario we assume that there is no selection pressure on bacterial 

radii, i.e., bacteria of all sizes are equally adapted to survive and therefore can all have equal 

probability to exist a priori in a given environment. Consequently evolution did not evolve more 

small bacterial species than large bacterial species, and hence the density of bacterial species per 

radii is constant. This hypothesis therefore implies that all bacterial radii are equally probable to 

exist and therefore the random variables ( )i
bacteriaR  should be drawn from a uniform distribution: 

( )( )
min max~ ,i

bacteriaR U r r , where minr  and maxr  are the minimum and maximum radii for a viable 

bacterium, respectively, and where ( ),U a b  denotes a uniform continuous distribution in the 

range [a, b], thus  
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 (11)                 ( ) 1
max min max min( ) .

0R

r r r r rf r
− − ≤ ≤= 

                   otherwise    
  

 

Thus ( )
R

f r  can be interpreted as the density of bacterial species, perhaps analogous to the 

density of states in statistical mechanics, and reflects the evolutionary history of bacteria in the 

given environment. If the radii of all bacterial species that have adapted to survive in the given 

environment were known, one could, in principle, calculate ( )
R

f r  directly. Given this scenario, 

using Eq. 8 and Eq. 10, we find that the ensemble average of the concentration of bacteria 

expected to exist in a given environment is given by   

 

 (12)        1 4 1 4 43
 max2( ) constenvironment species virus virus decay

B

r N E ER E r r r
k T
ηρ β γ− − − −≈ = ⋅  

 

where we have assumed that min maxr r<< .  

4.4.2.3 The size spectra of bacteria in aqueous environments 

To calculate the size spectra of bacteria in the environment we first derive the probability density 

function (pdf) of observed radii in the environment. This function is obtained by normalizing 

( )environment rρ
 
given in Eq. 12:  

 

(13)   

 
( )

max

min

13 3 4 3 4
min max min

( )
( ) 3 3

( )
environment

r

environmentr

r
f r r r r r r

r dr
ρ

ρ

ρ

−− − − −= − ≈
∫

=  
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where min maxr r r≤ ≤  and where we assumed that maxr r<< . Note that ( )f rρ  is the pdf of  

environmentρ  where as ( )Rf r  is the pdf of bactR . Thus 3 4
min( ) 3f r dr r r drρ

−≈  is the probability of 

observing bacteria with radii between r and r+dr in a given environment. The probability that a 

bacterium of random volume V is greater than or equal to a given volume, v, would then be given 

by 

 

(14)       
( )

( )

max 13 3 4
min max

3 3
3min min min

max
max

( ) ( ) ( ) 3

1 .

R

r r

V v R r f r dr r r r dr

r r vr r
r r v

ρ

∞
−− − −′ ′ ′ ′≥ = ≥ = −

    = − ≈ =        

∫ ∫Prob Prob =

 

 

assuming that maxr r<<  (see Section 4.7 for further details). When plotting log(Prob(V≥v)) 

against log(v) one obtains a power law with slope -1. In 2001 Cavender-Bares et al. [41] 

measured the size spectra of microbes up to a diameter of ~5 μm (i.e., from bacteria to 

nanophytoplankton) in the western north Atlantic Ocean. The researchers found that when 

plotting log(Prob(V≥v)) versus log(v), measurements fell on a straight line with a slope ranging 

between -1 and -1.4. The ensemble average of all environments was well described by a power 

law of slope -1.2. When expanding their dataset to include microzooplankton the slope was 

corrected to a value close to -1. A slope of -1 was also found earlier by Sheldon et al. [42].  

 

Eq. 14 also predicts that the power law behavior with slope -1 is an intrinsic scaling property of 

the biophysical/biological dynamics of phages and their hosts and of ( )Rf r , and therefore should 

remain unchanged under perturbations (irrespective of the functional form of ( )Rf r ). Thus 
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perturbations increasing the viral decay rate or increasing bacterial growth rate, etc., should not 

have an effect on this power law. This prediction was validated in IronEx II [41], an iron 

enrichment experiment in the equatorial Pacific, where it was shown that the slope of the power 

law for samples taken from outside and inside fertilized waters over the course of the experiment 

differed by little  [41]. In both cases the power law was measured to be in the range of -1.1 to -

1.2 [41].   

4.4.2.4 Possible deviation from a uniform distribution 

If we take into account that β  tends to decrease with r, we would expect a weaker slope for the 

size spectra. This result may indicate that a more realistic evolutionary scenario would be one in 

which larger bacteria are less probable, i.e., the density of bacterial species is higher for small 

radii. Indeed, small cells may have certain advantages over larger cells. For example, since small 

cells are more numerous, their population explores collectively more mutations allowing them to 

adapt more quickly to changing environments and allows them to more easily exploit new 

habitats  [34]. In addition, the high surface-to-volume ratio of cells with smaller radii allows 

them more efficient exchange of nutrients and higher specific metabolic rates [34,38] possibly 

giving them a selective advantage. 

4.4.2.5 Total bacterial concentration  

To obtain the total concentration of bacteria in a given environment we integrate ( )environment rρ  

(Eq. 10) over the range of viable bacteria sizes 

 

(15)               max max

min min

( ) ( ) ( ) .
r rtot

bact environment species bacteria Rr r
c r dr N c r f r drρ= = ⋅∫ ∫  
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Note that Eq. 15 can also be rewritten as tot
bact species bacteriac N Ec= ⋅ , that is the total concentration of 

bacteria in a given environment equals the total number of species in a given environment, 

Nspecies

( )i
bacteriac 

, times the mean concentration of a single bacterial species.  Inserting the population 

average of  given in Eq. 8, and assuming again a uniform distribution 

( ) 1
max min( )

R
f r r r −= −   for min maxr r r≤ ≤  we find that 

 

(16A)   1 4 1 31
max min2 .tot

bact species virus viral decay
B

c N E ER E r r
k T
η β γ− − −≅           

 

4.4.2.6 Species richness 

Given a known total concentration of bacteria (determined either by protist grazing or nutrient 

availability), Eq. 16A can be reversed to predict the number of species in the given environment: 

 

(16B)     
3

max min4 1

12 .totB
species bact

viral decay virus

k TN c r r
E ER Eη γ β −≅

 
 

 

The largest bacterium found to date has a diameter of 750 μm (see above) and the smallest 

bacterium has a diameter of 0.2 μm (Table 4.3), close to the theoretical lower limit thought to be 

0.14 μm [43]. Thus, given a typical marine scenario (such as the open ocean) in which direct 

observation reveals ~105 5 1~ 10tot
bactc − ml bacterial cells per ml [44] (i.e., ), then based on the 

parameters in Table 4.3, which are typical for marine systems, and assuming a viral decay rate of 

viral decayγ  ~ 2 day-1 for offshore ecosystems [23], we find via Eq. 16B that the total number of 
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bacterial species in any given realization of the environment is Nspecies = 82 to 820, thus Nspecies 

~102 to ~103.   Nspecies

 

 is thus the number of species (i.e., phage-host systems) that any realization 

of the environment must contain in order to reach the observed total bacterial concentration. 

Thingstad & Lignell [10] also calculated the number of species in the environment given a fixed 

total concentration of bacteria, however in their model the authors assumed that all hosts were 

identical, ignoring their distribution in the environment. Eq. 16B is expected to be a more 

realistic estimate since we take into account the distribution of species in the environment. 

Because many species can be very rare (i.e., have a low concentration due to a large radius — 

Fig. 4.2) the total predicted diversity is expected to be much higher. 

4.4.2.7 What is a species?  

Since our model is capable of predicting the number of species in a given environment, we 

should ask ourselves, what precisely are we counting? What is the definition of a “species” 

according to our model? This question has practical meaning because we would like to test our 

prediction against observation. However, there are many “cutoff” values for genetic diversity. 

For example, is a “species” equivalent to a “species” in biology? Is it equivalent to a “strain”? 

Does one mutation constitute a new “species”? 

 

In the context of our model here, a “species” of a bacterium is defined by (a) a set of random 

variables (e.g., the size of the bacterium, its growth rate, etc.)  (b) having a unique association 

with a “viral species” independent of all other phage-host systems, and finally, (c) there is an 

equal number of “bacterial species” as “viral species”. However, this definition is not sufficient. 

If, for example, two hosts have exactly the same parameters, they could still have totally 



4-36 
 

 
 

different genomes, and thus constitute distinguishable entities that should be counted separately. 

Thus, to say that two hosts with the same parameters are identical would be wrong. All that our 

biophysical model predicts is the number of independent phage-host systems that can be 

accommodated in a given environment. It does not define how these phage-host systems are 

different. Therefore a more detailed definition of what a “species” is lies outside the scope of the 

present model, necessitating us to dig deeper. 

 

An analogy to physics. This paradoxical situation is often encountered in physics. To draw on a 

physics analogy, our biophysical model’s description of a species is analogous to nuclear 

physics’ description of a nucleus, which makes the abstraction that the nucleolus is comprised of 

protons and neutrons. In nuclear physics, protons and neutrons are regarded as point particles 

defined by certain quantum numbers (like our random variables describing a “species”). Within 

the framework of this theory though, it is meaningless to ask what is the internal structure of 

these particles. Likewise, within the context of this biophysical model it doesn’t make sense to 

ask what the structure of a “species” is. To better understand what a proton and neutron is, a 

more sophisticated model was required, called the standard model, which showed that protons 

and neutrons are made out of quarks held together by gluons. In Chapter 5 we propose the 

“standard model” of phage-host interaction, which allowed us to probe the “internal” structure of 

a “species”. The model proposed in Chapter 5 is a speciation model describing how new species 

of both bacteria and viruses are generated in nature, leading to a “world” of non-interacting 

phage-host systems, consistent with the present biophysical model.   Drawing on evolution, the 

new model adds another metric to our description of these organisms, which is the evolutionary 

distance metric. Therefore in Chapter 5 we will be able to describe a model where a species is 
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comprised of many strains, and explain how strains evolve into species. Again, drawing on our 

physics analogy, our strains will be the “quarks and the gluons” that comprise our species. We 

will therefore revisit the question of “what is a species” in Section 5.2.3 after developing our 

evolutionary model. The final answer we will arrive at is that Nspecies

 

 is (to within a small 

correction factor between) the total number of consistently distinguishable genomes (termed 

strains), a very intuitive result, with the twist that the “species” defined in our coarse-grained 

model are actually comprised of a collection of strains.  

A second question that arises from our calculation is in what volume, according to our model, 

should we find these species? We will answer this question in the next section, and by answering 

this question we will be able to calculate the density of species in the ocean, from which we will 

be able to calculate an upper bound on the total bacterial diversity in the oceans.  

4.4.2.8 Volume of diversity 

The minimum volume that needs to be sampled to detect the Nspecies

14(max)
(max)3

 2 (max)
max

1 .virus
env viral decay

B

RV
k T r
η γ

β

−
  
 =  
   

 species is determined by the 

lowest predicted concentration of bacteria, namely the concentration of the largest bacteria. This 

volume is given by 

 

 

where the index “max” corresponds to the bacterial species with the largest diameter. Taking the 

model at face value, given (max)β =0.005, (max)
 viral decayγ =2 day-1 (offshore waters) and with the 

remaining parameters taken from Table 4.3 we find that at least ~15,000 liters of water are 

required to detect the largest known bacterium (see above). In other words, ~1.5∙104 liters of 
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water must contain ~102–103 species of bacteria in order to account for ~105

β

 cells per ml. In 

practice this volume may be two orders of magnitude smaller due to an uncertainly in  for very 

large cells (see Section 4.4.1.7). Thus, anywhere between ~102 liters to ~104

4.4.2.9 Species density 

 liters of water are 

required to be sampled in order to observe the predicted number of prokaryotic species.  

Dividing Nspecies envV from Eq. 16B by  we obtain the following expression for the “species 

density”: 

 

3
9min

1 (max)
max

1 13 5 10 .species tot tot
species bact bact

env

N rc c
V E r

ρ
β β

−
−

 
= ≈ ⋅ 

 
  

. 

where we have assumed that ( )4(max) (max) 4,viral decay viral decay virus virusE R ERγ γ≈ ≈  , max min 3750r r =  (Table 

4.3), and, based on T. namibiensis, ( ) 1(max) 1 2~ 10Eβ β
−− −  (see above).  

4.4.2.10 Observed species diversity in nature 

4.4.2.10.1 Estimates of microbial diversity  

How do these predictions compare with the measured prokaryotic diversity in marine systems? 

In a metagenome study of the Sargasso Sea, where the concentration of bacteria was indeed 

measured to be ~105 ml-1 [45], it was estimated that each sample, consisting of  170–340 liters of 

ocean water, contained a minimum of 300 species per sample [45]. A model based on assembly 

depth coverage estimated between 1800 and 48,000 species [45]. A “species” in this study is 

defined as “a clustering of assemblies or unassembled reads more than 94% identical on the 

nucleotide level”, which is “roughly comparable to the 97% cutoff traditionally used for the 
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rRNA” [45]. In terms of rRNA diversity, in the combined study there were 1412 distinct small 

rRNA sequences spanning different prokaryotic phyla.  Applying a similarity cutoff of 99% 

reduced this number to 643 strains and applying a 97% similarity cutoff  reduced his number 

further to 148 phylotypes [45]. Given a bacterial concentration of ~105 ml-1 for the open sea 

observed in this study [45] and an offshore viral decay rate of 2 day-1 [23], our model predicts 

Nspecies~102-103 species (see above). Although the predicted value for Nspecies is in agreement 

with the observed rRNA diversity/microdiversity and in rough agreement with the observed 

number of species, it is not entirely obvious how to compare Nspecies with the observed diversity. 

If a species is defined as a “distinguishable” genetic entity, it is not clear that the rRNA is the 

correct indictor for the number of species, as in principle two genomes can be “distinguishable” 

but have identical rRNAs. However, it is not clear that the number of “distinguishable” genetic 

entities is the correct measure to compare Nspecies

4.4.2.10.2 Viral diversity  

 with, since in Section 5.2.3 we will see that 

“strains”, which are defined to be “distinguishable” genetic elements, may not be under the sole 

control of a single viral species, and therefore “take up” less concentration. Thus, a certain 

similarity cutoff seems to be required. However, it is currently not clear how to translate this 

observation into an effective cutoff. 

Our model is constructed so that the number of viral species equals the number of bacterial 

species. Therefore we can also compare this estimate to estimate of viral diversity in the oceans. 

In another metagenome study, a viral metagenome was obtained from 200 liters collected from 

the surface seawater from Scripps Pier and a second sample was collected from Mission May, 

San Diego [46]. From these samples marine viruses were isolated using a combination of 

differential filtering and density-dependent gradient centrifugation. Several mathematical models 
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based on the observed number of contigs predicted between 374 and 7114 viral types. Assuming 

a concentration of ~106 ml-1 for coastal waters and a decay rate of 0.1 day-1 for inshore waters 

[23], our model predicts that Nspecies = ~104  to ~105

4.4.2.11 Bounds on global marine diversity 

, within rough agreement of these estimates. 

Here too, it is not clear what should be the correct “species” cutoff and an overestimation of 

diversity is not necessarily incorrect (see Section 4.4.2.10.1).  

Given the expression for speciesN and speciesρ  we can attempt to estimate the minimum and 

maximum number of species in the Earth’s oceans.   

 

Lower bound on diversity — the case of a homogeneous ocean 

To estimate the minimum bound on diversity we will assume the ocean is completely 

homogenous, and therefore extrapolate from one region in the ocean (of the highest diversity) to 

the entire ocean (Fig. 4.3B). Assuming a low (onshore) decay rate for viruses of ~0.1 day-1, and a 

concentration of ~106 ml-1 4 5~ 10 ~ 10speciesN − we obtain an estimate of . Though the sediment 

contains ~103

 

 more cells per ml, and viral decay rates are comparable to the surface of the ocean 

[47,48], the particles in this region are probably  not modeled well by free diffusion and therefore 

we will not use this region of the ocean to calculate our lower bound. The actual number of 

species must be higher than this since the ocean contains different regions with unique species 

adapted only to that region. 
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Upper bound on diversity — the case of a maximally heterogeneous ocean 

An upper bound can be obtained by assuming that every volume envV  in the ocean contains a 

different sample of species, assuming each volume envV  contains the typical diversity found in the 

ocean (Fig. 4.3C). Thus 8~ ~ 10 tot
species species ocean bact oceanN V c Vρ −  . Given that oceanV ~1024

510tot
bactc 

 ml [44], 

and for the open sea ml-1

speciesN

,  the maximum number of species in the ocean would be 

~ 8 5 24 2110 10 10 10− ⋅ ⋅ = . Note that speciesρ  scales as ( )3
min max

tot
bactc r r . Thus, the upper bound 

on the total diversity in the oceans essentially depends only on the “carrying capacity” of the 

ocean and on the size of the smallest and largest viable bacteria. 

 

Thus the total number of actively replicating prokaryotic cells with a distinguishable genome  in 

Earth’s oceans is predicted to lie somewhere between 104 to 1021. Although 1021 is a large 

number, it is exceedingly smaller than the total number of possible bacterial strains, and 7 orders 

of magnitude lower than the total number of bacterial cells in the ocean, estimated to be ~1029 

[44]. This upper bound is of course a gross overestimate since adjacent volumes of water 

exchange cells constantly, and therefore the overlap in species between adjacent “volumes of 

diversity” will be very large. Note that using this approach one could obtain much tighter bounds 

on species diversity for smaller volume ecosystems such as lakes. 
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Figure 4.3. Illustration of lower and upper bounds on Nspecies. A. Each volume of diversity, 
Venv,  contains Nspecies

 

 species given by Eq. 16B. The concentration of each species is controlled 
by its lytic virus. B.  In the case of a homogenous ocean scenario, all volumes of diversity 
contain the same species, resulting in a lower bound on the total diversity in the oceans C. In the 
case of a maximally heterogeneous ocean, every volume of diversity contains a different set of 
species, resulting in an upper bound on the total diversity in the oceans. 

Current observed diversity in public databases 

How do these values compare with the current estimates of diversity? If one uses the small 

subunit rRNA gene as a proxy for genetic diversity, then one can compare our range estimates 

for the total number of species in the oceans’ water column with the total number of rRNA 

sequences that are >1% divergent. The Silva SSU Ref NR 106 [49] released in April 2011 is a 

non-redundant SSU rRNA  database with an operational taxonomical unit (OTU) cutoff of 1%. 

According to this database there are 2.9∙10 5 bacterial and archeal non-redundant SSU rRNA 

sequences. While an OTU of 1% will give us a lower bound on the number of “distinguishable” 
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genomes (see Chapter 5), taken at face value, this comparison suggests that the ocean appears to 

be more homogenous than heterogeneous.   

4.4.2.12 Factors determining species richness 

Nutrient availability 

Eq. 16B leads to some interesting predictions regarding the diversity of species in different 

environments. An eutrophic environment for example, which can sustain a higher concentration 

of bacteria (assuming total bacterial concentration is not determined by grazers [17]), is predicted 

via Eq. 16B to harbor a larger number of species. Increasing the total concentration of bacteria 

by a factor of ten will lead via Eq. 16B to ten times the number of species and, as will be 

discussed below, also ten times the concentration of viruses. In fact, the increase in species 

diversity can even be significantly higher than a factor of ten since Nspecies

3
min maxr r

 is proportional to 

, and cell size often increases with growth rate, which in turn increases with nutrient 

availability. Thus, an increase in nutrient availability may lead to an explosion in species 

diversity (and also, possibility a significant increase in the VBR, discussed below). Conversely, 

oligotrophic environments, where the concentration of bacteria can be lower, are predicted to 

harbor fewer species. Thus, a direct prediction of our model is that eutrophic environments 

harbor a larger diversity of species compared with oligotrophic environments, given similar 

temperature conditions and similar viral decay rates. 

 

Viral decay rate 

Another interesting parameter that comes into play is the virus decay rate. The more viruses are 

allowed to thrive (i.e., decay more slowly, thus having a lower viral decayγ  ), the lower the 

concentration of any phage-host system will be (Eq. 8), thus requiring more species to reach a 
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given carrying capacity (Eq. 16B). Thus viruses directly contribute to bacterial species diversity, 

and so “what’s good for the virus is good for the bacterium”. Since the number of bacterial 

species must equal the number of viral species, generating bacterial diversity also means 

generating viral diversity. In Section 4.5 we prose closed and open mesocosm experiments, 

where we show that in both cases, increasing the viral decay rate should lead to a decrease in the 

number of species. 

The reciprocal relationship between bacterial diversify and viruses has been proposed in the past 

[9,10], however here we have expanded this concept by combing several ideas: (a) we have 

taken into account the biophysical nature of phage-host interaction, which allowed us to describe 

quantities in terms of physical parameters such as temperature, viscosity, the size of the virus, 

and the size of the host. (b) We have taken into account the observed correlation between burst 

size and the physical dimensions of the host and its virus. Finally, (c) we have introduced the 

notion of the “density of bacterial species” that was used in a statistical fashion to make the 

transition from a single isolated phage-host system to a community distribution. These concepts 

have led us to derive a realistic prediction for the number of species given in terms of physical 

measurable parameters and also define a physical volume associated with the predicted diversity. 

 

Temperature  

Eq. 16B predicts that given the same carrying capacity, warmer environments will contain more 

species. Overall this effect is not very large however. The difference between an environment 

just above freezing and 40°C will lead to only a 15% increase is species diversity ( (273 + 

40)/273=1.15), unless temperature will have an effect on rmin and rmax through its effect on 

growth rates (see above). The quantitative predictions of Eq. 16B may however be biased for 



4-45 
 

 
 

extreme temperature environments since the selection pressure in such environments may skew 

the bacterial radius density function, violating our assumption of uniformity. 

 

Extreme bacteria 

We have already noted that above that 3
min max .speciesN r r∝ Thus, halving the size of the minimum 

viable bacterium would lead to decreasing the total diversity in the environment by about one 

order of magnitude (23), due to the great abundance of small bacteria (thus reaching the carrying 

capacity more quickly).  On the other hand, doubling the size of a largest bacterium would only 

lead to a modest doubling of the total bacterial diversity in the given environment since we are 

adding rare species with low concentrations that do not contribute much to the total 

concentration, thus necessitating more species to reach a given carrying capacity. One possible 

way rmin and rmax

4.4.2.13 The total concentration of viruses and the VBR in the environment 

 may be influenced is through nutrient availability, as discussed above.  

Total concentration viruses 

In a similar fashion we can calculate the predicted total concentration of viruses in the 

environment. Since the average concentration of viral species is ( )i
virusEc , the total concentration of 

viruses is simply ( )( )tot i
virus species virusc r N Ec= . Inserting Eq. 5 we find that  

 

(17) ( )( ) ( ) ( ) ( )3
2 ( )

1( )tot i i i i
virus species virus species virus non viral i

B bact

c r N Ec N ER E E E
k T R
η α γ −

 
= = −  

 
.  

 

Assuming once again a uniform distribution for the bacteria (Eq. 11) we find that  
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 (18)   max max

min min

1 1 1 1 max
max max( )

min

1 ( ) ln
r r

Ri r r
bact

rE r f r dr r r dr r
R r

− − − −   
= ≅ =   

  
∫ ∫ .   

thus  

(19)   ( )( ) ( ) ( ) 1 max3
max2

min

lntot i i i
virus species virus non viral

B

rc N ER E E r
k T r
η α γ −

−

 
= −  

 
.   

 

The concentration of viruses in the ocean 

For an offshore ecosystem with viral decayγ  ~ 2 day-1 5 1~ 10tot
bactc ml− and  we previously found that 

Nspecies ~102 to ~103

tot
virusc =

 species. To calculate the total concentration of viruses in the environment 

we use the above estimates and the remaining parameters from Table 4.3 and find that 

~2∙105 to ~2∙106 ml-1, or ~105 to ~106 ml-1. This prediction falls exactly in the range of observed 

concentrations: virus concentrations in offshore surface waters are typically in the range of 105–

106 ml-1

 

 [2].   

The VBR in a given environment 

With the total concentration of bacteria at hand we can now calculate using Eq. 16A and Eq. 19 

the VBR in the environment: 

 

(20)   
( ) 3( ) ( )

maxmin
1

min

3 ln
i itot

non viralvirus
tot
bact viral decay virus

E Ec rrVBR
c E E R r

α γ

β γ
−

−

−    
= =    

   

 

 

where we have assumed that ( )44 ( )i
virus virus virusER ER R≈ ≈ . Given the parameters in Table 4.3 for a 

typical marine system, with an offshore viral decay rate of 2 day-1 [23],  Eq. 20 predicts that VBR 
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~2 to ~20, precisely as observed for typical marine systems [1]. The key observation predicted 

by this formula is that VBR is essentially controlled by the following parameters: (1) the net 

average growth of bacteria (growth minus predation), (2) the decay rate of viruses, and (3) the 

minimum viable bacteria (which may be related to nutrient availability). β and Rvirus have a 

relatively narrow distribution and the effect of rmax

 

 is subdued due to the log. Thus, this basic 

equation can be used to predict both qualitatively and quantitatively the VBR in any aqueous 

environment. 

Examples for environmental VBRs 

VBR in nutrient-rich versus nutrient-poor environments 

It has been observed that the VBR is higher for nutrient-rich, productive environments compared 

with nutrient-poor environments [19]. This has been attributed to the fact that “bacterioplankton 

host populations produce greater numbers of viruses under environmental conditions favoring 

fast growth and high productivity” [19]. Eq. 5 indeed predicts that — all things being equal — 

the higher the average growth rate of the bacterium, the higher the concentration of viruses will 

be, and consequently the higher the VBR. This prediction is also apparent from Eq. 20 for the 

VBR, where it is shown that the VBR is directly proportional to the average net growth rate of 

bacteria in the environment. In addition, cell size often increases with growth rate, which 

increases with the availability of nutrients. Since based in Eq. 20 the VBR is proportional to 3
minr , 

even a modest increase in rmin

 

 would lead to a significant increase in the VBR.  
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VBR in oceans versus lakes 

In a recent study it has been shown that the VBR is higher in marine systems than in freshwater 

systems [1,50]. In the surface waters of the Pacific and Arctic oceans for example, the VBRs are 

~40 and ~10 respectively, while in lakes the average VBR was measured to be less than 5 [50]. 

Though the reasons for these differences are unknown, it has been suggested that this is related 

to possible higher loss rates of virus particles in freshwater environments that may be related to 

the presence of clays and chemicals from the terrestrial environment, which are known to 

contribute to viral decay [1,50]. This hypothesis is consistent with the prediction of Eq. 20, 

namely that the VBR should decrease with increased viral decay rate. 

4.4.2.14 Total prokaryotic biomass concentration 

The predicted slope of -1 (Eq. 14) for the size spectra of bacteria suggests that on average there 

is a tendency toward a uniform distribution of mass among size classes in aquatic ecosystems 

[41,42]. This result follows from Eq. 13: let 34
3( )bact cellm r rπ ρ=

 
be the mass of a bacterium of 

radius r having a cellular mass density of cellρ . The total mass concentration per cell radius, 

given Eq. 12 for ( )environment rρ , scales as 1( ) ( ) ( ) ~bact environment bactM r r m r rρ −= . Therefore the 

total mass concentration between radius r1 and r2

 

 is given by 

(21)
   

2 2

1 1

1 2
1 2

1

( ) ( ) ln
r r

bact
r r

rr r r M r dr r dr
r

−  
< < ∝ =  

 
∫ ∫Mass = .      

       
 

 

Thus the total mass of prokaryotes between r and 10r equals the total mass of prokaryotes 

between 10r and 100r and so on. Integrating over all viable bacterial radii (using Eq. 12) we 

obtain the total mass of prokaryotes per unit volume  
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 (22A)     
max

min

1 4 1 max
max

min

( ) 2 ln .
rtot

bact bact cell species virus viral decayr
B

rM M r dr N E ER E r
k T r
ηπρ β γ− −  

= ≅  
 

∫  
 

 

where we have assumed again that min maxr r<< . Combining Eq. 16A and Eq. 22A we find that 

 

(22B)       max
min

min

lntot tot
bact bact

mM c m
m

 
≅  

 
 

 

where minm  and minm  are the mass of minimum and maximum viable bacteria. Thus Eq. 22A 

predicts the total prokaryotes mass concentration in the ocean in terms of basic parameters such 

as: environmental parameters (viscosity and temperature of the water), viral parameters (average 

radius, average decay rate, and volume fraction within host cell) and host parameters (mass — or 

water — density, number of bacterial species, and minimum and maximum radii of viable 

bacteria). Assuming cellρ ≈ 1 g/ml then 3 154
min min3 4.2 10cellm r gπρ −= = ⋅ , and the total mass density 

of prokaryotes is  tot
bactM = 10 mg/m3 (including cytoplasmic water). This mass can be compared 

with the following simple order-of-magnitude estimate. The typical radii of bacteria in the open 

ocean is 0.1–0.2 μm (Table 4.3). The mass of such a bacterium is given by mbact

34
3 cellrπ ρ

(r ≈ 0.2 μm) = 

~10-11 mg. Assuming that all 105 cells per ml have a radius of 0.2 μm, then the total 

mass of cells in 1 m3 would be 10-11 mg × (1011 cells per m3) = 1 mg. Thus, most of the mass 

contribution, according to Eq. 22, comes from the larger, rarer bacteria, and not the more 

abundant small bacteria. This can also be appreciated by noting that, whereas the total number of 
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prokaryotes up to radius r scales as ~ r-3

~ ln( )r

 (Eq. 14), thus decaying very fast, the total mass of 

prokaryotes up to radius r scales much more slowly as . 

4.5 Conclusions and further experiments 
We developed a simple biophysical model that describes the interaction of an isolated phage-host 

system leading us to conclude that the single most important parameter determining the 

abundance of bacteria in the ocean is their size. We then extended our model to an ecological 

scale by making the assumption that the a priori distribution of bacterial radii in the environment 

is uniform, i.e., there is no selection pressure shaping this distribution. Given these basic 

ingredients we derive a model that makes reasonable predictions for the size spectra of bacteria, 

the VBR and the number of bacterial/viral species in the environment that largely seem to be 

consistent with observations. To further test our model we propose the following experiments:  

4.5.1 In vitro investigation of phage-host systems 

By choosing a particular phage-host system such as T4 and E. coli, one can analyze infected 

cultures in vitro as different model parameters are perturbed. To prevent total lysis of the hosts 

one should include an ecological factor leading to virus degradation (perhaps by introducing 

some organic substance that is innocuous to bacteria but would inactivate virions). Alternatively, 

a chemostat may be sufficient. Once a sustainable infection can be established, one can vary 

parameters such as growth rate, viral decay rate, temperature, and viscosity, thus testing 

predictions of Eqs. 5–7. Other phage-host systems can be chosen as well. Of particular interest 

are hosts of significantly different size. Alternatively, the growth medium of E. coli can be 

changed, thus affecting its size. The timescale of this experiment needs to be shorter than the 

timescale for E. coli and/or T4 to start evolving in a way that affects their interaction (see Section 
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5.4). Since the small oscillations of this system around the fixed point occur with a period of 

1
2

 ~ ( )non viral virus decayτ α γ γ
−

− −   (assuming the latent period=0), the viral decay rate needs to be 

high enough to prevent large fluctuations from steady state. In addition, a high viral decay rate 

will prevent the fixed point bacterial concentration from becoming too low, circumventing 

possible bottle neck affects that can lead to in vitro evolution. 

4.5.2 Investigating phage-host systems in nature 

Our model makes many assumptions regarding viruses and their hosts. For example, we assume 

that bacteria are in a state of exponential growth, that radii are uniformly distributed, that the 

virus-host systems are independent and so on. It is therefore crucial to test our model in natural 

environments. One way to do this is to analyze culturable phage-host systems directly in nature, 

where hosts are selected to cover a wide spectrum of sizes. Of particular interest are phage-host 

systems involving giant bacteria. Giant bacteria are predicted by our model to have a very low 

density (Eq. 7), even when correcting for massive cell inclusions. However, viruses of giant 

bacteria are predicted by the model to be quite numerous (Eq. 5A), with as many as hundreds of 

virions per ml of water (see above). By designing primers against phages of giant bacteria and 

using quantitative assays such as quantitative PCR and/or digital PCR, one can test a direct and 

extreme prediction of this model, namely that phages of giant bacteria are numerous in nature 

(with their density predicted by Eq. 5A) and should be detected even in the absence of the host. 

The absence of the host can be confirmed with SSU rRNA sequencing.  If the genome of a lytic 

phage infecting the giant bacteria cannot be obtained and the host has been sequenced, CRISPR 

sequences can be crossed with a viral metagenome from the environment of interest to detect 

phage genes for primer design.  
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4.5.3 Closed mesocosm experiments  

Decay rate perturbation 

Closed mesocosm experiments can be used to test total bacterial and viral abundances when 

perturbing parameters such as viral decay rate, growth rate (through nutrient availability), 

temperature, and viscosity. These types of experiments can be used to test the predictions of total 

bacterial concentration and total viral concentration (Eqs. 16 and 19). Note that in closed system 

experiments, the total number of species speciesN  cannot increase since we cannot create species 

de novo. As a control, speciesN  can be measured under every perturbation via a SSU rRNA library 

to check this assumption. 

 

One can also test the ratio between quantities. For example, if the decay rate is changed without 

affecting bacterial growth (e.g., by introducing some organic chemical that decreases viral 

lifetime but does not affect bacterial growth or by filtering out UV bands that damage phages, 

assuming growth rate is not affected) then Eq. 16A makes the simple prediction that  

 

(23A)   
 

( )
( )

( )
( )

( )
( )

.
tot

species viral decaybact
tot
bact species viral decay

N Ec
c N E

γ
γ

=  

 

UV UVUV
no UV no UV no UV      

 

 

where for concreteness we designate high decay rate as UV and low decay rate as no UV. If we 

constrain that speciesN = const  then we obtain the result that ( ) ( )tot tot
bact bactc c>UV no UV . Although 

this result on the one hand makes intuitive sense (viruses that degrading faster lead to more 

bacteria) it is counterintuitive in the sense that if the environment has the capacity to sustain a 

higher concentration of bacteria, then why wasn’t this capacity utilized by species 1speciesi N= + ? 
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Thus a more logical alternative would be that as the viral decay rate increases, the number of 

species decreases, as some species die, allowing other species to increase in concentration (via 

Eq. 7) such that tot
bactc =const . Thus, increasing the rate of virus degradation leads to a decrease in 

the diversity of the mesocosm by a factor of ( ) ( )viral decay viral decayE Eγ γ  no UV UV . This solution is 

pleasing in the sense that there are no undetermined degrees of freedom left. In addition, from 

Eq. 19 we predict that  

 

(23B)     ( )
( )

( )
( )

.
tot

speciesvirus
tot
virus species

Nc
c N

=
UVUV

no UV no UV
 

 

If species die in the mesocosm, then when increasing the decay rate of viruses the total 

concentration of viruses should decrease. The VBR is predicted to decrease when increasing the 

decay rate of viruses: 

 

    

( )( ) 1.
( ) ( )

viral decay

viral decay

EVBR
VBR E

γ
γ

= < 

 

no UVUV
no UV UV

 

 

Nutrient perturbation 

Another critical test of the model would be an enrichment experiment on a nutrient-limited 

closed mesocosm. Based on Eq. 16A we have 

 

(24)  ( ) ( ) ( ) ( ) 3

max min

max min

.
( ) ( ) ( ) ( )

tot
speciesbact

tot
bact species

Nc r r
c N r r

 
=  

 

enrichedenriched poor poor
poor poor enriched enriched
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When adding nutrients to our mesocosm we do not expect species to die since there are more 

resources present in the environment. However, since speciesN  also cannot grow (since there is no 

available reservoir for species) we conclude that speciesN = const . Since bacterial size is expected 

to increase with nutrients, we anticipate that the total concentration of bacteria upon enrichment 

will decrease. The explanation for this paradoxical behavior is apparent from Eq. 3: as nutrients 

are added and the growth rate of bacteria increases, so does their radius (and thus burst size). 

Thus the viral production term in Eq. 3 (first term) increases, necessitating the bacterial density 

to decrease owing to a constant viral decay rate (second term in Eq. 3). We will see that in an 

open mesocosm experiment exactly the opposite response is anticipated. 

 

Spiking approach 

In another approach, a non-indigenous culturable host can be “released” into the mesocosm with 

its lytic virus allowing one to track host and virus concentrations upon various perturbations. The 

concentration of the bacterium can be monitored by a quantitative PCR (qPCR) assay targeting 

the SSU rRNA gene of the organism. The virus concentration can also be monitored via qPCR if 

there is genetic information on the virus. The advantage of this method is that one can use 

molecular techniques to precisely gauge the abundance of the host and its virus (instead of 

measuring pfus or cfus). This approach assumes however that in the time course of the 

experiment, primer binding sites have not mutated in the evolving viral quasispecies. This 

assumption can be checked by attempting to amplify plaques with the viral primers and 

analyzing the success rate statistically. 
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4.5.4 Open mesocosm experiments  

Decay rate perturbation 

In open mesocosm experiments the number of species is not constrained as new species can 

diffuse or swim into our mesocosm and existing species can diffuse or swim out. Repeating the 

perturbation experiment for the viral decay rate in an open mesocosm system we would predict 

once more Eq. 23A and 23B and, as before, there is an undetermined degree of freedom. 

Increasing the viral degradation rate should lead an increase in the concentration of each 

bacterial species (Eq. 7). However, the total concentration of bacteria should not be allowed to 

increase upon perturbation, since if the mesocosm could have sustained a higher concentration of 

bacteria, some new species would have taken advantage of this and stayed in this volume by 

means of chemotaxis. Thus, we conclude that upon an increase in viral decay rate the number of 

species will decrease, as some species will die allowing other species to increase in concentration 

to sustain a constant total concentration of bacteria. Thus, either in an open or closed mesocosm, 

it appears that increasing the decay rate of viruses should lead to a decrease in species diversity.  

 

Note that when testing predictions of diversity, it is not sufficient to change the viral load, as this 

will only affect the transient response of the system. In order to observe a steady-state effect one 

should change the fundamental parameters governing the system, such as the viral decay rate. 

 

Nutrient perturbation 

Repeating the enrichment experiment in a nutrient limited open mesocosm Eq. 24 still holds. 

Here again, the concentration of any given species will decrease due to the increase in radii (Eq. 

7), thus there is room for more species. Since new species entering this region can stay in the 
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region by means of chemotaxis, we expect the total number of species to significantly increase 

and with the total number of bacteria either constant or increasing. 

 

Size spectra perturbation 

Our model predicts that the size spectra of bacteria is the result of viral predation and that the 

slope of the resulting power law should be independent of, for example, nutrient availability, 

viral decay rate, temperature, medium viscosity, and so on. These predictions can be directly 

tested in a mesocosm, similar to the IronEx II perturbation experiments. Furthermore, removal of 

the lytic viral fraction should result in a certain decrease in the slope of the spectrum (more 

positive), with the new slope being determined presumably by nutrient availably. 

 

Systematic mapping of prokaryotic species diversity in different aquatic zones  
 
One of the interesting predictions of the model deals with species diversity (Eq. 16B).  Species 

diversity changes in a very predictable manner dictated by the total bacterial concentration, viral 

decay rate, temperature, and so on. By systemically sampling different environments on Earth 

(e.g., eutrophic versus oligotrophic zones, photic versus the aphotic zones, epipelagic zones in 

tropical versus polar regions, marine versus freshwater ecosystems, etc.) and measuring the 

concentration of bacteria, the temperature, the viral decay rate, and the number of species (via 

SSU rRNA libraries) one can directly test the predicted number of species (Eq. 16B).  

4.5.5 Investigate host range in nature 

To test our assumption that a host in a given region is infected with a single viral species one can 

isolate different phages infecting the same host species using conventional plaque assays. Phages 

that appear to be morphologically different via EM can be sequenced and their genomes 
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compared. To test our assumption that phages have a species or subspecies host range, one can 

perform host-independent co-localization experiments (via, for example, digital PCR – see 

Chapter 2) using as a viral marker a gene of a lytic virus from the environment. 

 
 

4.6 Relation between number of bacterial species and number of viral 
species 

 
We would like to show that a system of n bacterial species must be associated with exactly n 

viral species or else the system will be overdetermined, driving excess species into extinction. 

The proof is the following: Let’s assume there are n bacterial species infected by n viral species. 

There are therefore 2n rate equations, n for n bacteria and n for n viruses: 

 

(A1)            

1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

... ...

: :

... ...

n n n n

n n
n n n n n n n n n n n n n n n n n n

dB dVB k BV k BV V b k BV b k B V
dt dt

dB dVB k B V k B V V b k BV b k B V
dt dt

α γ

α γ

 = − − − = − + + + 
 
 
 
 = − − − = − + + +
 

 

  

where we have allowed the most general interaction network between the viruses and the 

bacteria. At steady-state we obtain the following 2n linear relations: 

 

(A2)                       
1 11 1 1

1 1

... 0
bacterial rate equations :

... 0

n n

n n nn n

k V k V

k V k V

α

α

− − − =
→ 
 − − − =

.     
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(A3)                       
1 1 11 11 1 1 1

1 1

... 0
viral rate equations :

... 0

n n

nn n n n n nn nn

b k B b k B

b k B b k B

γ

γ

− + + + =
→ 
− + + + =

.  

 

Now let’s assume we introduce bacterium n+1. If we write the rate equation for this bacterium, 

then at steady-state we will obtain the n+1 equation for (A2), however there are only n variables 

Vi i=1..n. The system is therefore overdetermined and therefore some species will become 

extinct in the transient solution. The same rational applies if we add the n+1 viral species. In this 

case we will have n+1 steady-state equations for the viruses (A3), yet we have only n variables 

for Bi

 

 i=1..n, again obtaining an overdetermined set of equations. If we remove one bacterial 

species or one viral species, we again find the same situation: the reciprocal variable will be 

overdetermined. Thus, the only solution which is not overdetermined is if we have n bacterial 

species being infected by n viral species. 

For the special case of one virus species with a wide host range infecting two bacterial species 

the proof is the following: Let’s imagine we have a closed system containing two different 

distinguishable hosts of concentration (1)
bacteriac  and (2)

bacteriac , both infected with the same virus of 

concentration virusc .  According to Eq. A2 and Eq. A3 the set of differential equations governing 

the interaction of these three species is
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(A4)    

(1) (1) (1) (2) (2) (2)

(1)
(1) (1) (1) (1)

(2)
(2) (2) (2) (2)

virus
bacteria virus bacteria virus virus decay virus

bacteria
bacteria virus bacteria

bacteria
bacteria virus bacteria

dc b k c c b k c c c
dt

dc c k c c
dt

dc c k c c
dt

γ

α

α


≅ + −




= −

= −






 





 

 

where ( ) ( )4i i
virus bactk D Rπ= . At steady-state, this system is, however, overdetermined since the 

solutions (1) (1)
virusc kα=   and (2) (2)

virusc kα=   cannot be mutually satisfied. The only consistent 

steady-state solutions would be (1) 0bacteriac ≡  or (2) 0bacteriac ≡  or (1) (2) 0bacteria bacteriac c= ≡ , unless the two 

hosts have precisely the same radius and growth rate. Thus, only bacteria with the same radius 

and same growth rate can be infected with the same virus and sustain a population. The slightest 

difference and, with enough time, one species will be driven to extinction.  

 

Similarly, if we have two viral species with a specific host range, infecting the same bacteria, we 

would again run into an overdetermined system of equations: 

 

(A5)   

(1)
(1) (1) (1) (1) (1)

 

(2)
(2) (2) (2) (2) (2)

 

                      

                      

virus
bacteria virus virus decay virus

virus
bacteria virus virus decay virus

bacteria
bacteria virus

dc b k c c c
dt

dc b k c c c
dt

dc c
dt

γ

γ

α

≅ −

≅ −

≅ (1) (1) (1) (2) (2)
bacteria virus bacteria virusk c c k c c









− −


.  
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Thus at steady-state we would find that from the first equation 
(1)

 
(1) (1)  virus decay

bacteriac
b k
γ

= while from the 

second equation  
(2)

 
(2) (2)  virus decay

bacteriac
b k
γ

= , thus the system is overdetermined. It is intuitively clear 

that two viruses cannot control the same species. 
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4.7 Power law derivation  

4.7.1 The distribution of bacteria in the environment  

According to Eq. 9, the concentration of bacteria of a given radius r per radius in a given 

realization of an environment containing Nspecies

 

 bacterial species is given: 

(B1)    ( )

1
( ) ( ) ( ).

speciesN
i

environment bacteria bacteria
i

r c r r Rρ δ
=

= −∑
 

 

where ( )i
bacteriaR  are Nspecies ( )Rf r i.i.d. random variables drawn from a distribution and where ( )rδ  

is the Dirac delta function. To obtain the ensemble average of ( )environment rρ , averaging over 

many realizations of a given environment one should calculate the expectation value of 

( )environment rρ  with respect to the N random variables ( )i
bacteriaR : 

 

( )( )(1)
( )

( )(1) ( ) (1) ( )

,...,
1

( ) ( ) ... ,..., ( ).
species

species
Nspecies

i

N
NN i

environment bacteria bacteria bacteria bacteria bacteria bacteriaR R
i R

r c r dR dR f R R r Rρ δ
=

= −∑ ∫  

 

Since ( )i
bacteriaR  are i.i.d. we have 
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( ) ( ) ... ( )

( ) (
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i
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N
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i R

i i i
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δ
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Thus the average distribution of bacterium sizes in a given environment is given by Eq. B2: 

 

(B2)    ( ) ( ) ( ).environment species bacteria R
r N c r f rρ = ⋅ ⋅

 

 

To test this equation we performed the following Monte Carlo simulation: We draw Nspecies

iR

=100 

radii  (i=1.. 100) for bacteria according to a specified probability density function (pdf) ( )Rf r . 

The concentration of each bacterial species as a function of its radius is given by the hypothetical 

distribution ( ) .bacteriumc r r=  We then construct an empirical discrete distribution function for 

( )environment rρ  such that ( ) ( )environment i bacterium i ir r c r rρ = = =  for i=1..100. Finally we average this 

distribution over many Monte Carlo simulations (M=10000), simulating many realizations of this 

environment to obtain ( )environment rρ . The ensemble average that we compute, ( )environment rρ , 

should converge according to Eq. B2 to ( ) ( ).environment species R
r N r f rρ = ⋅ ⋅ . Examples of two pdfs 

for ( )Rf r  are shown in Fig. 4.4. 
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Figure 4.4. Monte Carlo simulation of a hypothetical distribution of bacteria in a given 
environment. In each of M=104 Monte Carlo iterations, Nspecies=100 bacterial radii were drawn 
such that in (A) R was exponentially distributed with rate λ=1 and in (B) R was uniformly 
distributed between rmin=1 and rmax ( )environment rρ=10. The empirical distribution of bacteria  in 
both cases was calculated assuming the hypothetical relation ( )bacteriumc r r= . That is, for each 
radius iR  drawn in a given iteration we update the empirical distribution function in the following 
way: ( ) ( )environment i bacterium i ir r c r rρ = = =  (see Eq. B1). Then finally we average M=104

( )environment rρ
 calculated 

empirical distribution functions  to obtain the ensemble average of ( )environment rρ , 
which we denote by ( )environment rρ . Based on Eq. B2 we expect that for (A) 

( ) r
environment speciesr N r e λρ λ −= ⋅ ⋅ ⋅   and for (B) ( )max min( )environment speciesr N r r rρ = ⋅ − . The figure 

demonstrates that in both cases the calculated value for ( )environment rρ  based on the Monte Carlo 
simulation (blue) converged precisely to the theoretical prediction (red) describe above.  
 

4.7.2 The predicted size spectra of bacteria in the environment 

In the main text we derived the probability that a bacterium of random volume V, is greater than 

or equal to a given volume, v (Eq. 14). Here we test Eq. 14 in the following Monte Carlo 

simulation: We assumed that 4( )bacteriumc r r−= , min max~ ( , )R U r r  and we computed ( )environment rρ  

as explained above (see Fig. 4.4). We then normalized the computed function ( )environment rρ  to 
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obtain the empirical pdf ( )f rρ  
and calculated Prob(V≥v). The Monte Carlo simulations should 

converge to ( )4
max min( )environment speciesr N r r rρ −= ⋅ −  (following Eq. B2) and ( )V v≥Prob  should 

converge to ( )
3

3min
max

max

( ) 1rV v r r
r

   ≥ = −     
Prob   (Eq. 14). Results are shown in Fig. 4.5 and 

demonstrate that the simulation converged precisely to the theoretical predictions. 

 

Figure 4.5. Monte Carlo simulation of the predicted size spectra of bacteria in a given 
environment. Monte Carlo simulation assuming the predicted concentration of a bacterium with 
radius r obeys 4( )bacteriumc r r−=  and that bacteria radii are drawn from the uniform distribution. 
(A) Theoretical prediction (red) for the ensemble average of the distribution of bacteria in the 
given environment ( )4

max min( )environment speciesr N r r rρ −= ⋅ −  (Eq. B2) versus Monte Carlo 
simulation (blue) with M=104

( )environment rρ
 iterations (see caption of Fig. 4.4 for simulation details). (B) The 

numerical estimate of  was normalized to obtain an empirical pdf, which was used 
to calculate ( )V v≥Prob . The result of the Monte Carlo simulation (blue) was compared with the 
theoretical prediction for ( )V v≥Prob  (Eq. B1; red in A, green in B). The figure demonstrates 
that the numerical simulation converged precisely to the theoretical prediction for both (A) and 
(B). 
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Chapter 5 

An evolutionary model of phage-host interaction 
 

5.1 Introduction 

In Section 4.4.2.6 we predicted the total number of “species” in a given environment. It is 

therefore of interest to define what a “species” is. In the biophysical model a “species” of 

bacterium or virus is defined by a set of random variables drawn from some distribution. 

However, as explained previously, two “species” with the same parameters can be totally 

different organisms and should be counted separately. Therefore the biophysical model described 

in Section 4.4 cannot provide us with an adequate definition of a “species” that would be useful 

for testing the predictions of our model. The problem lies in the fact that at that level of 

abstraction, bacteria and viruses are the equivalent of “point particles” without internal structure. 

In the present section we will attempt to go one step further and define an evolutionary model, 

which when viewed at a coarse-grained level, would be equivalent to the description of the 

biophysical model in Section 4.4. 

 

In order to understand what a species is in the context of our biophysical model, we propose 

definitions for both bacterial and viral species that ensure that the assumptions of the biophysical 

model are respected. These assumptions include:  (1) each bacterial species was associated with 

a single viral species and vice versa (i.e., there is no cross interaction between phage-host 

systems), and (2) each species (bacterial or viral) was unique and distinguishable from all other 

species. Based on these definitions, we will construct an evolutionary model for the emergence 
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of new bacterial and viral “species” in nature. While this model is equivalent to our biophysical 

model when viewed in a genetic coarse-grained way, the evolutionary model leads to the 

prediction that bacterial “strains” are part of interaction networks with viral “strains”, whereas 

bacterial “species” form a unique association with a single viral “species” and vice versa.  

Furthermore, in order for new bacterial and viral species to emerge as independent elements, the 

emerging viral species needs to abandon the parental bacterial strain that it previously controlled 

in favor of the new emerging species. We propose that the “arms race” between bacteria and 

viruses may lead to a “positive feedback” mode of evolution, that both enables the emerging 

viral species to switch hosts, and enables the emerging bacterial strain to evolve at an accelerated 

pace through selection sweeps to form a new species. Thus, the arms race that bacteria and 

viruses are locked in is perhaps the engine driving bacterial and viral co-speciation, with 

selection pressure arising from the environment biasing the direction of evolution. In addition we 

show that for the simple case of a “butterfly” 2x2 strain interaction network the total 

concentration of the parental and emerging strains doubles when speciation is complete.  We 

then generalize this result the case of Nstrains 2x2 interaction networks, with Nstrains

 

 defined as the 

number of strains per species. Finally we conclude by suggesting an experiment to test our 

hypothesis regarding “positive feedback evolution”. 

Summary of findings: Our biophysical model is consistent with an evolutionary model where 

(1) a bacterial “species” is comprised of bacterial “strains” and where a viral “species” is 

comprised of viral “strains” (with a “strain” = a quasispecies). (2) New bacterial “species” co-

emerge with new viral “species” and vice versa. (2) A bacterial “species” interacts with just one 

viral “species”, however a bacterial “strain” generally interacts with many viral “strains” as it is 
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part of a network of bacterial-viral interactions. (3) The host range of viruses should be (mostly) 

species or strain specific. (4) The evolutionary arms-race between phages and hosts (such as the 

CRISPR warfare) may be a critical part of the stage where bacterial and viral “species” co-

emerge out of their parental “strains” by (a) accelerating the evolution of the bacterial strain 

through selective sweeps and at the same time (b) accelerating the evolution of the virus to 

switch hosts. 

 

The road map: We will begin by describing the critical features of the biophysical model 

described in Section 4.4, which our evolutionary model must reproduce when viewed at a coarse-

grained level. We will then define the concept of a “strain” and a “species” in such a way that 

when placed in an evolutionary context produces a “bacterial and phage world” that when 

coarse-grained is equivalent to the description of our biophysical model. Thus we will use the 

biophysical model to guide us in selecting a good evolutionary model.  

5.2 Definition of a bacterial and viral strain and species  

Critical features of the biophysical phage-host model 

The following are the critical features of the biophysical phage-host model described in Section 

4.4: 

1. Growth: All bacteria and viruses are actively replicating in the environment. 

2. Viral control: Each bacterium is associated with a lytic virus that controls its concentration. 

3. Uniqueness: Each phage-host system is comprised of a bacterium and a virus that can be 

distinguished (in some measurable way) from all other bacteria and viruses in the 

environment. We therefore say that each bacterium belongs to a unique “species” denoted 

by the index i, and each virus belongs to a unique “species”, denoted by the same index. 
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4. Symmetry: There are equal numbers of bacterial and viral “species” (both denoted with the 

index i) . 

5. Independence: All phage-host systems in a given environment are independent of each 

other, i.e., there is no cross interaction between one system and another.  

An evolutionary model that satisfies these five conditions will be consistent with our biophysical 

model. We can then use the evolutionary definitions of a bacterial species and a viral species to 

interpret the meaning of the species in our biophysical model. 

 

Bacteria “take up” concentration: Bacterial “species” in the biophysical model have one 

additional consequence. A bacterial “species” has the property that it “takes up” concentration in 

the environment, with the concentration being given by Eq. 7. The reason we say it “takes up” 

concentration is that any environment has finite resources that can accommodate a finite 

concentration of cellular organisms (this is how we obtained the number of species in the 

environment, Nspecies). Thus, only elements that “take up” concentration contribute to the 

diversity of the system. A viral “species” also has a concentration, however viruses are not 

limited by resources and therefore there is no upper bound on the number of viral “species” in a 

given environment. Therefore viral “species” do not “take up” concentration. Drawing again on 

an analogy to physics, in this respect, bacteria are like fermions and viruses are like bosons — 

one can pack an infinite number of bosons into a negligibly small volume, whereas fermions take 

up volume due to their quantum charges. This is why Nspecies
tot
bactc was obtained from   and not 

tot
virusc , the former has an upper bound whereas the latter does not. 
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Definition of a bacterial and viral strains 

We seek to define a bacterial species1

Definition of a strain: A genetic element (bacterium or virus) is considered a new 
strain if and only if this genetic element is distinguishable from all other strains (the 
first cell is by default a strain). To be distinguishable, a genetic element needs to 
have a measurable property that sets that element apart from all other existing 
strains. This measurable property should give consistent results over time despite 
the mutation load of the genetic element.  

 and a viral species in such a way that, when placed in an 

evolutionary context, we are able to reproduce the essential characteristic of the biophysical 

model described above. To define a species we first need to define an auxiliary term, which is a 

strain.  

 

This definition of a strain is consistent with the biologically intuitive definition of a “strain”. 

Here we have also defined a viral strain. A viral strain can also be interpreted as a viral 

quasispecies [1]  since each genome in the quasispecies is not distinguishable from other 

elements comprising the quasispecies.  

 

Definition of a bacterial species 

A bacterial species: A bacterial cell constitutes a new species if and only if (1) it is 
actively replicating in the environment; (2) It can be classified as a new strain in the 
environment; (3) It forms a stable association with a virus that can be classified as a 
new strain in the environment. 

 

Criterion 1 is necessary in order to distinguish actively replicating cells that have a finite growth 

rate from spore cells or inactive (possibly dead) cells [2]. The latter, although possibly alive, 

cannot be part of a phage-host system since they are not actively growing. Criterion 2 simply 

                                                 
1 We use italics to distinguish the terms defined in the current model from the colloquial use of these words or from 
the terms used in the biophysical model.  
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ensures that the new bacterial strain is distinguishable from other pre-existing bacterial strains in 

the environment, and thus should receive a new index. Criteria 1+2 define an active strain in the 

intuitive sense, not a species in the intuitive sense. Why is it that to complete the definition of a 

bacterial species one must talk about its viruses (criterion 3)?  The reason is the following: If an 

environment contains n bacterial strains with n infecting viral strains, adding a new bacterial 

strain (strain # n+1) without a new viral strain will lead to an overdetermined system of 

equations in which one or more bacterial strains will become extinct (Section 4.6). Thus, to add 

a new bacterial species one must also introduce a new viral strain into the system. This rule can 

be stated in a more general way (Section 4.6): 

 

A system of n bacterial species must be associated with exactly n viral 
species otherwise the system will be overdetermined, driving excess 
species to extinction. 

 

This definition of a bacterial “species” satisfies the properties of: bacterial growth (the bacterial 

species must be growing); viral control (each bacterial species is associated with a virus); and 

bacterial uniqueness (each bacterial species is a new strain).  

 

Definition of a viral species 

The definition of a viral species is analogous to the definition of a bacterial species: 

Definition of a viral species: A virus constitutes a new species if and only if (1) it is 
actively replicating in the environment; (2) It can be classified as a new strain in the 
environment; (3) It forms a stable association with a host that can be classified as a 
new strain in the environment. 

 

Criterion 1 is to ensure that we are considering a virus that is active and not a decayed or an 

inactivated virus. Criterion 2 ensures that the new viral strain is distinguishable from other pre-
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existing viral strains in the environment, and thus should receive a new index. Criterion 3 is, as 

before, required because the system should always have equal number of bacterial and viral 

species otherwise excess species will be driven to extinction (Section 4.6).  

 

This definition of a viral “species” satisfies the properties of: viral growth (the viral species 

must be replicating); viral uniqueness (each viral species is a new strain); and symmetry (if 

each bacterial species is associated with a viral species and each viral species is associated with a 

bacterial species, there should be equal number of bacterial and viral species). The only property 

that has yet to be satisfied is independence. By constructing an evolutionary model that satisfies 

this property we will be able to understand the relation between species and strains. 

 

Note that the definitions of a bacterial and viral species suggest that the formation of a new 

bacterial species is linked to the formation of a new viral species and vice versa. In the next 

section we will explain an evolutionary mechanism for this process.   

5.3 A model for bacterial-viral co-speciation  

5.3.1 Description of the evolutionary model 

Stage 1: One bacterial strain, one viral strain (Fig. 5.1A). Let’s assume our environment 

contains a bacterial species (species 1) comprised of a single strain (strain 1), and that this 

bacterial species is under the control of a viral species (species A), comprised of a single viral 

strain (strain A) (Fig. 5.1A). The concentration of bacterial strain 1 is dictated by Eq. 7, thus 

viral species A controls bacterial species 1 (the arrow in Fig. 5.1A). Bacterial strain 1 is said to 

“take up” concentration in the environment. 
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Stage 2: An incipient bacterial strain emerges (Fig. 5.1B). Now let’s assume that through 

some genetic event (e.g., a transposon, a deletion/insertion/inversion event, a recombination 

event, a new plasmid, etc.), bacterial strain 1 begins to evolve a new bacterial strain that is on the 

verge of becoming distinguishable from strain 1 (Fig. 5.1B). The incipient bacterial strain 2 is 

under the growth control of viral strain A, and will not be “allowed” to take up concentration on 

its own, independent of bacterial strain 1 — i.e., it will not be allotted a status of a species and 

therefore will not contribute to the diversity of the system (i.e., increase Nspecies

 

). Bacterial strain 

2 will continue to undergo evolution with time and accumulate more mutations in its process of 

maturing into a new strain. During all this time bacterial strain 1 is under the control of viral 

strain A (Fig. 5.1B).  

Stage 3: An incipient viral strain emerges (Fig. 5.1C). As the incipient bacterial strain 2 

evolves, so does the viral strain that infects it (initially viral strain A). This viral strain (i.e., viral 

quasispecies) will begin to form a new cluster that will eventually mature into viral strain B. The 

incipient viral strain B (not yet distinguishable from viral strain A) both tracks the evolution of 

bacterial strain 2 and also drives the evolution of bacterial strain 2. This hypothesis is supported 

by the following observations. It has been suggested that viruses and bacteria are in a constant 

state of an “arms race” [3]. Perhaps the best example of this arms race is the CRISPR bacterial 

defense system. Bacteria continuously acquire CRISPR spacer sequences from viruses to evade 

these viruses, while viruses rapidly evolve by mutation, homologous recombination, and deletion 

of the target sequences to evade new acquired spacers [4]. Conversely, CRISPR repeats and their 

associated proteins undergo evolution to escape shut-down mechanism for the CRISPR system 

encoded by the phage [3]. There is also evidence that the bacterial population undergoes 
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sweeping selection events, where potentially only one cell survives (the only cell that had the 

right spacer) [4]. Such bottlenecks will accelerate the evolution of the emerging bacterial strain, 

driving its evolution forward. This example illustrates how by a process of positive feedback 

between the new bacterial strain (strain 2) and the new viral strain (strain B) both elements track 

each other and push each other to further evolve (Fig. 5.2). The bacterial-viral “arms race” 

may therefore be a critical step in forming (or at least accelerating) the formation of new 

bacterial species and new viral species from the parental strains. Indeed, CRISPR sequences 

have been found in nearly half of all sequenced bacterial genomes [3]. While the CRISPR 

mechanism may contribute to the arms race, it may not be an essential component. Luria and 

Delbrück have shown that a bacterial strain grown from a single cell will mutates naturally 

(without interaction with the phage) so that a subpopulation of bacteria will become immune to 

the virus [5]. Thus, even without a CRISPR system the bacterium can evade the virus.  

Therefore, this “arms race” may be a fundamental mechanism of evolution to generate new 

bacterial and viral species. Given our interpretation, these events are not a disadvantage in terms 

of reduction in diversity, as previously proposed [4], since they may provide the mechanism for 

new strains to emerge. Thus ultimately these mechanisms generate diversity. 

 

Stage 4: New bacterial and viral strains emerge (Fig. 5.1D).  The incipient bacterial strain 2 is 

now distinguishable from strain 1 and can be defined as a new strain. The incipient viral strain B 

emerged as a new viral strain (strain B) that initially infects both bacterial strains 1 and 2 (Fig. 

5.1C). At this stage, a 2x2 network like interaction emerges. This network can, in principle, 

persist indefinitely, and as the evolutionary distance between strain 1 and strain 2 grows, this 

could lead to the formation of viruses with a wide host range. If the system is stable over time, 
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the two bacterial strains would be under control of two viral strains and both would “take up” 

concentration, thus increasing the diversity of the system (Nspecies in Eq. 16B increases).  

However, it seems more plausible that as the distance between strain 1 and strain 2 grows, the 

cross affinity (B→1 and A→2) will decrease , leading to the emergence of two independent 

associations (A→1 and B→2). This is because the bacterial strain 2 is driving the evolution of 

viral strain 2, and it is expected that at some point this virus will lose its ability to infect the 

parental bacterial strain 1 (Fig. 5.2). Furthermore, it would seem that a 2x2 network of 

interacting strains would not be stable in an open environment for long, since if one of the viral 

strains drifts off, leaving bacterial strains 1+2 under the control of the remaining viral strain, one 

or both bacterial strains will be driven into extinction over time (Section 4.6). Numerical 

simulations would be required to see if a network of 2x2 interacting strains (nxn in the more 

general case) are indeed less stable than two 1x1 associations (or generally n 1x1 associations) 

under loss of a viral strain. The fact that in nature, phages typically display a narrow “species” or 

“strain” level host range [6,7,8] favors the interpretation that indeed independent phage-host 

system arise. That said, there are a few exceptions and some phages have been found to display a 

wide host range [8], however this does not seem to be the general case.  Therefore we 

hypothesize that over time, as bacterial strain 2 and viral strain B continue to evolve, the cross 

infectivity B-1 and A-2 naturally fades, and we will define

 

 strains 2 and B as new species when 

this cross affinity disappears. Note that this hypothesis ensures that the last property of 

independence is satisfied since we require that emerging phage-host systems lose their 

dependence on the parental strains to which they were linked initially (discussed further below).  
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 Stage 5: New bacterial species and viral species emerge (Fig. 5.1E).  Bacterial strain 2 and 

viral strain B have evolved sufficiently that cross infectivity has completely faded. At this point 

bacterial strain 2 is under the exclusive control of viral strain B via Eq. 7 and can “take up” 

concentration. The association between bacterial strain 2 and viral strain B is stable and lasting. 

Bacterial strain 2 now answers the definition of a species (it is a replicating strain stably 

associated with a viral strain) and can be regarded as a new species (species 2). Viral strain B 

now also answers the definition of a species (it is a replicating strain stably associated with a 

bacterial strain).  At this stage the process can begin again and a new species can emerge.  

 

The conclusion from this model is that new bacterial species must emerge with a new viral 

species and vice versa. While it has been shown in many experiments that bacteria can evolve in 

the absence of viruses, this model proposes that in the presence of lytic viruses, the process of 

evolution may be accelerated. 
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Figure 5.1. A possible evolutionary process of bacterial and viral co-speciation. If species 1 
and species 2 have the same size and growth rate, then stage E “takes up” twice the concentration 
as stage A, with the intermediate states somewhere in between. 
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Figure 5.2 Positive feedback evolution model for emerging bacterial and viral species. We 
propose that the arms race between bacteria and viruses may be a critical step in the formation of 
a new bacterial and viral species. This process is critical in order to allow viral strain B to 
relinquish its control of its parental bacterial strain (strain 1) while at the same time gaining 
control over the new bacterial strain (strain 2). Therefore this “arms race” may allow the two 
emerging species to form a one-to-one association, leading to the result that viral species have a 
narrow (species) host range. This process may also be critical for the bacterium, where by 
selective sweeps it drives the bacterium to evolve away from its original parental strain. This 
positive feedback model may amplify initially “noise”. Thus, the process of co-speciation is 
perhaps equivalent to “amplification of noise” and therefore potentially a chaotic effect. The 
random trajectory in the genome space may be biased by selection pressure due to environmental 
factors such as available nutrients, competition and so on. Consequently, phylogenetic trees may 
have a fractal quality to them, though branches may be biased by selection pressure. Covering 
the genome space at such an exponential rate may be required in order to converge to a solution 
on a practical timescale, especially given the fact that bacteria are much less efficient at 
exploring this space than diploid organisms. Thus, the arms race may be an equivalent solution 
of bacteria to sexual reproduction (possibly a good enough solution for a smaller genome size).  
 
 

5.3.2 A coarse-grained view of the evolutionary model satisfies all the properties of 
the biophysical model 

We have seen that all the properties of the biophysical model except for independence were 

satisfied by the definition of strains and species that we use. The key point of this model is how 

the property of independence arises. According to Fig. 5.1, a bacterial species is born out of a 

single parental bacterial strain.  Initially the new bacterial strain is under the control of both a 
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parental viral strain and a new viral strain (the latter also born out of a parental viral strain). 

Once the new bacterial strain has evolved sufficiently from its parental strain, it loses its 

association with the parental viral strain. At the same time, the new viral strain loses its control 

over the parental bacterial strain (the transition from Fig. 2D to Fig. 2E). Thus, once both 

bacterial and viral species become an independent pair they are defined to be a new species. 

Therefore, the model described in Fig. 5.1 leads to a “world” where every bacterial species is 

controlled by just one viral species, and vice versa. If we view our evolutionary model in a 

coarse-grained way, and ignore the “structure” within each species (shown in Fig. 5.3 and 

discussed below), we obtain a model where each pair of interacting bacterial and viral species are 

independent of all other pairs (the condition of independence is satisfied). Therefore the two 

models become equivalent in the limit of describing organisms at a low genetic resolution, where 

the subtle differences between different strains within species (be it bacterial or viral) are lost. 

By interpreting the properties of the species defined in the current model, we can now answer the 

question raised in Section 4.4 of what is a “species”? 

5.3.3 Revisiting the question of what is a “species”?  

5.3.3.1 “Quark-gluon” model of a species 

In one of the intermediate stages in the formation of a new bacterial species there is a state where 

a 2x2 network of interactions forms between the new and parental bacterial strains and the new 

and parental viral strains (Fig. 5.1D). In the general case, bacterial strains are continuously 

emerging from parental strains. Thus in the general case (applying our conservation rule that the 

number of bacterial strains must always equal the number of viral strains) we obtain a network 

of n bacterial strains infecting n viral strains (Fig. 5.3). These n bacterial strains are defined to 

be a bacterial species.  Therefore, at any given point in time, a bacterial species in nature is 
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comprised of strains that are in the process of maturing into new species (Fig. 5.1D).  Likewise, 

the n viral strains can be technically classified as a viral species. Thus, a viral species is in 

essence a collection of viral strains, i.e., a collection of viral quasispecies, infecting the strains of 

a given bacterial species in a network-like fashion (Fig. 5.3).  

 

 

Figure 5.3 The “Quark and gluon” model of a species.  Hypothetical phylogenetic tree of a 
conserved bacterial gene (left), revealing two bacterial species, paired with a phylogenetic tree of 
a conserved viral gene (right), revealing two corresponding viral species. Each clade of a species 
is comprised of the strains of that species. Yellow boxes highlight bacterial-viral strains in 
different stages of maturation.  The arrows show which bacterial strain is infected (i.e., 
controlled) by which viral strain. Solid lines represent primary targets, whereas dashed lines 
represent secondary, weaker targets. The biophysical model that we propose lumps all strains 
within each species clade into one class.  
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5.3.3.2 The meaning of Nspecies

The case of a species comprised of one parental strain  

  

To understand which entities contribute to Nspecies

11 22k k α= =

 we need to ask ourselves who “takes up” 

concentration in the model presented in Fig. 5.1 (or the more realistic view in Fig. 5.2). Let’s 

begin by considering Fig. 5.1 again. Let’s assume stage 1 “takes up” concentration x. Stage 2 is 

still under the control of one virus, so it “takes up” a concentration x as well. We will skip stage 

3 for a moment. Stage 4 however is different. In this stage we have two strains in a 2x2 

“butterfly” network configuration (Fig. 5.4). For simplicity let’s assume that the coupling 

constants (i.e., infection rates) are  and 12 12k k β= = . Initially when bacterial strain 

2 just emerges (the “child” strain), we have β α= . This is because the child viral strain B also 

has just emerged and it is barely distinguishable from its parent viral strain A. At this stage we 

anticipate that both bacterial strains (parent 1 + child 2) will contribute together a concentration 

of x because both are under the control of one viral strain (parent A + child B). As the child 

bacterial strain 2 and child viral strain B evolve, the parent-child coupling constants are 

hypothesized to fade, and so 0β → . When 0β =  a new species of bacteria and viruses has 

emerged. At this stage, we expect both new bacterial strains (species) to contribute together 2x 

to the concentration.  

 

This effect can be readily appreciated by solving the butterfly network: Let Bi be the 

concentration of bacterial strain i, and Vi

 

 the concentration of the viral strain i , where i=1 are 

the parental strains and i=2 are the child strains (Fig. 5.4). The rate equations for the viral strains 

are given in the general case by 
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1
1 1 1 2 1

2
2 1 2 2 2

dV bV B bV B V
dt

dV bV B bV B V
dt

α β γ

β α γ

= + −

= + −





 

 

where b is the burst size (assumed to be equal for the two strains). Assuming steady-state 

conditions (to obtain the fixed point concentrations), after some algebra (defining bγ γ ), we 

find that  

 

1 2
2 2 1 2 1

1 1totB B B γ γ γ
α β α β α α κ

= + = = =
+ + +

. 

 

where we have defined the normalized parent-child coupling constant κ β α .  

Thus, initially, when 1κ =  we have totB γ
α

= , and when 0κ =  we have  2
totB γ

α
= .  Thus, 

exactly as we predicted, the total concentration “taken up” by bacterial strains 1+2 increases 

from γ
α

 to 2 γ
α

 during the maturation process of the new species. We can parameterize this 

uncertainty with a “maturation factor” µ : 

 

species ,    where    1 2totB Bµ µ= ≤ ≤  

 

where speciesB   is the concentration one would obtain if one were to coarse grain the system to a  

species level ignoring strains. Therefore, in the case of a 2x2 network, if we were to coarse grain 

bacteria to a species level (say an OTU of 3%), we would be underestimating the concentration 
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taken up by the species by a factor anywhere from μ=1 to μ=2 (Fig. 5.5). Now let’s see what 

happens in a more realistic scenario when a species is comprised of n strain (where in reality n 

can be very large since it probes the microdiversity of a species). 

 

 

Figure 5.4 A 2x2 phage-host interaction network with event timeline. This diagram is a 
general 2x2 interaction network  between two viral strains — a parental viral strain (strain A) 
and the emerging viral species (strain B), that are controlling the parental bacterial strain (strain 
1) and the emerging bacterial species (strain 2). The timeline shows the hypothesized 
evolutionary trajectory of these four strains. Initially, as the new (child) strains have just 
emerged, the coupling constants are equal. As the child strains evolve, the parent-child coupling 
constants decrease (dashed lines). Finally the child strains have evolved enough so that the 
parent-child coupling constants are 0 and new species of bacteria and viruses have emerged.  
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Figure 5.5 Total concentration “taken up” by parent and child bacterial strains as child 
bacterial strain evolves towards a new species. Here we show how the sum concentration of 
both parent and child bacterial strains changes with time, as the parent-child coupling constant κ 
goes to 0. Initially, when the bacterial child strain is born, it is under the control of the parental 
viral strain and the parent-child coupling constant is maximal (κ=1). The total concentration at 
this point is that of a single bacteria strain (=1 in normalized units). When the bacterial child 
strain is fully evolved, the parent-child coupling constant equals 0 and a new bacterial species 
under the control of a new viral species has emerged. The total concentration at this point has 
doubled because the new bacterial species is allowed by its controlling virus to “take up” a 
concentration =1 (in normalized units).   
 

The case of a species comprised of n parental strains  

In the general case (Fig. 5.3) a bacterial species will be comprised of strainN  parental strains. 

Each of these parental strains is anywhere in the stage between emerging a new strain to having 

a fully emerged species (thus the total number of strains will be anywhere between strainN  and

2 strainN ). We make the approximation that each one of these parental strains is part of a butterfly 



5-20 
 

 
 

network with coupling constant β , which is anywhere between β α=  to 0β = . If all strains 

were in a state of β α=  then the total concentration “taken up” by this species would be  

( ) ( )
1 2

1

strainN
i i

tot strain
i

B B B Nγ
α=

= + =∑ . 

 

If all strains were in a state of 0β =  the total concentration “taken up” by this species would be 

 

( ) ( )
1 2

1

2strainN
i i

tot strain
i

B B B Nγ
α=

= + =∑ . 

 

Therefore,  

species ,      where 1 2tot strainB N Bµ µ= ≤ ≤  

 

where speciesB  , once again, is the concentration one would obtain if one were to coarse grain the 

system to a  species level ignoring strains. Therefore the number of “species” in Eq. 16B is given 

by   

 

"species" strain strainN N Nµ= ≈ . 

 

Thus, our conclusion from this analysis is very simple and logical. Even though the total number 

of actual independent phage-host systems is equal to the number of species we need to multiply 

each species by a factor which approximately equals the number of strains in that species.  Thus 

by probing the “structure” of a species (which is the assumed construct in the biophysical model) 
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we came to the conclusion that one needs to weigh each species approximately by the number of 

strains in that species. Since strains are distinguishable, indeed each strain should contribute to 

the total concentration between ×1 and ×2.  

5.3.3.3 The dynamics of speciation 

The process of speciation (i.e., co-formation of new bacterial and viral species) is inherently 

stochastic since a bacterial strain can easily become extinct if a viral strain is lost, as the system 

becomes unstable (Section 4.6). We therefore envision the process of speciation as one in which 

new bacterial strains continually emerge from extant strains (the microclades in Fig. 5.3), with 

some strains evolving to become species, and with other strains being lost (Fig. 5.6).  In 

principle, one should be able to calculate the rate at which bacterial species are formed in the 

oceans, possibly yielding better bounds on the total diversity in the oceans. 

5.3.3.4 Analogy to the conventional concepts of a “species” and “strain” 

The intuitive notion of a bacterial “strain” has been familiar to biologists for many years. Indeed 

genetic microdiversity below the species level has been observed in nature [9,10]. We too have 

observed such microdiversity in treponeme cells found in the termite hindgut (“Host I” and 

“Host III” in Fig. 2.2). The concept of a bacterial “species” comprised of “strains” is also well 

known and widely used by biologists, though the empirical identity thresholds used for 

classification of new species are somewhat questionable given the lack of a rigorous definition of 

a species. The concept of a strain of viruses is also familiar, this is the well-known quasispecies 

proposed by Eigen [1]. The definition of viral “species” on the other hand has been quite elusive 

[11]. If the model we propose proves to be valid, then it would seem that a host-range-based 

taxonomy [11] should lead to a meaningful organization of viral species, at least for marine 
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ecosystems. In principle, according to our model, the true classification of marine life-forms 

(bacteria + viruses) requires both to be classified simultaneously. For example, when two marine 

bacterial “species” seem very similar (using “species” in the colloquial meaning), then according 

to our proposed model, if these “species” are infected with different non-overlapping viruses 

they should be classified as different species.  

5.3.3.5 The insight for the coarse-grained model 

When considering the coarse-grained biophysical model, the most natural definition for a 

“species” would be “a cell that can be distinguished reproducibly from all other cells”, i.e., the 

definition of a strain. The evolutionary model has shown that this is not the case, as one needs a 

more complex structure, defined here as a species, in order to obtain a “world” of non-interacting 

phage-host systems. Thus, the “species” in the biophysical model are equivalent to the species 

defined in our evolutionary model, however, the concentration of each species needs to be 

multiplied by a weight of ~Nstrain

 

, which is the number of strains in each species. This 

conclusion also leads to a clear distinction between the concept of a bacterial strain and a 

bacterial species. While a bacterial species interacts with just one viral species and vice versa, a 

bacterial strain interacts with several viral strains and is not an independent entity. 
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Figure 5.6. Flux of strains in the process of bacterial speciation. According to our 
evolutionary model, bacterial strains of a given species are cells that are distinguishable for all 
other cells in the population, but do not form a stable (i.e., unique) association with viral strain 
(see Fig. 5.1D). A bacterial strain matures into a species if it forms a one-to-one association with 
a viral strain. The pool in this figure is the sum of all bacterial strains comprising a species. The 
flux into this pool comes from new emerging strains (Fig. 5.1B & D).  The flux out of this pool 
is due to either strains that have gone extinct (e.g., since the viral network in which they were in 
became destabilized), or strains that have matured into species (Fig. 5.1E). 
 

5.3 Why do phages typically have a narrow host range?  

It is a known fact that most phages are species or strain specific (although a few exceptions have 

been found) [6,7,8]. Naïvely, this observation seems peculiar given that all cellular life forms 

encode and read information in virtually the same manner (e.g., human genes can be expressed in 

bacteria). Generally speaking, the genome of phage A could be expressed in many very divergent 

species, yet phages tend to infect a single species. Why is this the case? 

 

The evolutionary scheme we propose here in fact predicts that phages should have (in the 

majority of cases at least) a species- or strain-level host range. According to our model, any 

given viral species is expected to infect a single bacterial species (Fig. 5.1 and Fig. 5.3). Thus, 

the viral strains associated with a given viral species will infect some (or all) of the bacterial 
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strains within a given bacterial species (Fig. 5.3). Our model therefore predicts that viruses will 

have either a “species”-specific host range (infecting all strains of a given bacterial species) or a 

“strain”-specific host range, infecting a subset of bacterial strains (or at the very minimum a 

single bacterial strain).  

 

Mechanisms to generate a wide host range. A viral species could in principle evolve to infect 

another bacterial species in addition to its original host (and thus the former bacterial species will 

be susceptible to more than one viral species). As long as the viral species is part of an nxn 

network of associations, the dynamics are stable (see Section 4.6). However, such a scenario 

seems to be the exception since in open systems at least, species are not spatially constrained. 

Therefore, if a species drifts off, the network will become imbalanced (i.e., nxm where n≠m) 

leading to unstable dynamics and, over time, extinction events. This leads to a prediction that in 

closed systems (for example the gut) there will be more viruses with a wide host range than in 

open systems. Indeed, phages isolated from sewage appear to display a wide host range [12]. 

 

Another possibility for a wide host range is the following: if the cross-species infection in Fig. 

2D does not fade away with time as we hypothesized, then in a closed system it is possible to 

have a lytic viral species with a wide host range if it is part of an nxn network of hosts and 

viruses. However, in an open environment, where species are not spatially constrained, again the 

system may become unstable as described above. Thus, unless the environment is constrained to 

a closed volume, it seems that generally a more robust and stable solution (and therefore more 

likely scenario) would be for phages to have a narrow host range. That said, the scheme we have 

presented here does not preclude the possibility that a given viral species happens to be 



5-25 
 

 
 

successful in infecting many bacterial species that are not present in the given environment (e.g., 

they happen to have the same membrane receptor). Such coincidental events should also be kept 

in mind.   

5.4 Testing the evolutionary model: evolution experiment of a phage-
host system 

One possible way to test our model is to perform a Lenski-type evolution experiment of a phage-

host system (similar to the evolution experiments of Rainey [13]).  One choice would be T4 and 

E. coli . To prevent total annihilation of the bacteria, we should add a degradation factor for the 

phages (or perhaps a chemostat would be sufficient?). E. coli is a good choice since its CRISPR 

system has been investigated [14]. After n generations would expect at least two new bacterial 

strains to co-emerge with an equal number of viral strains. After enough generations the n 

emerging strains should be distinguishable (measurable by sequencing). Furthermore, we should 

observe a decrease in parent-child cross affinity between the new evolving viral strain(s) and the 

original viral strain.  In a different experiment, one can evolve a strain of E. coli with a mutation 

in one of the cas proteins inactivating the CRISPR array defense mechanism. We expect that 

either we will not observe the emergence of new strains, or that it will take a much longer time to 

obtain the same evolutionary distance between strains. 
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Chapter 6 

A Kinetic Model for Stress Fiber Contraction 

and Relaxation 

6.1 Abstract 

High-resolution measurement of the force generated by a single fibroblast cell during 

perturbation with Cytochalasin D (CD) or recovery reveals that the force is quantized. 

The origin of the force is thought to be a ventral stress fiber in the fibroblast. The 

magnitude of the quantized jumps in the force (~1 nN) appears to be consistent with a 

model where individual sarcomeres abruptly assemble or disassemble. Here we consider 

the dynamics of this process: the measured temporal profile for stress fiber contraction 

and relaxation and the duration of the force steps. We show that the observed dynamics 

are consistent with a simple stochastic model in which the time it takes for an individual 

sarcomere to abruptly assemble or disassemble is exponentially distributed with some 

characteristic constant rate 1/τ. The model is based on three parameters: the number of 

sarcomeres in the stress fiber NS, the force step size f0, and the above timescale τ. The 

stochastic model makes the following predictions: (1) the total force generated by a stress 

fiber should follow on average an exponential temporal profile, (2) the length of time 

between two subsequent force steps should be on average inversely proportional to the 

number of remaining sarcomeres (yet to assemble/disassemble) and therefore increases 

with time. The above three parameters (NS, τ, f0) were estimated for each measured 
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profile. Model predictions appear to be in good quantitative agreement with the fibroblast 

dataset and transition times were found to be statistically consistent with an exponential 

distribution (applying the Pearson’s chi-square test statistic). These findings support the 

proposed interpretation that sarcomeres assemble abruptly upon polymerization and 

disassemble abruptly upon depolymerization of actomyosin complexes. 
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6.2 Introduction 

Actin filaments in association with myosin filaments form contractile structures in both 

muscle and non-muscle cells. One type of actin filament structure found in many types of 

non-muscle cells involved in adhesion, motility, and morphogenesis, are known as 

contractile actin stress fibers (1-2). Structurally, stress fibers are bundles of actin 

filaments containing bipolar periodic arrays of myosin II between consecutive α-actinin-

foci (1) (a schematic diagram of a stress fiber is shown in Fig. 6.1). Stress fibers are thus 

structurally similar to muscle myofibrils and can also similarly produce contractile force, 

however unlike myofibrils, these structures are less organized (1). Furthermore, despite 

the similarity to myofibrils, stress fibers typically do not display repeatable contraction 

and relaxation on relatively short time scales but rather contract continuously with 

occasional relaxing or stretching (1).  

 

There are three types of stress fiber that are known to exist: dorsal stress fibers, ventral 

stress fibers, and transverse arcs (1-2). Dorsal stress fibers, which typically attach to focal 

adhesions only at one end, are known to display uniform polarity and therefore may not 

be contractile structures at all (2). Indeed, these structures have never been observed to 

contract (1). Transverse arcs are curved acto-myosin bundles that do not directly attach to 

focal adhesions. Since these structures are not anchored to the plasma membrane, it is 

unclear if they can transmit force (2), although this may perhaps be achieved indirectly, 

as these fibers are often observed to interact with dorsal stress fibers, which in turn 

anchor them to the substrate (1). Finally the most commonly observed type of stress 

fibers are ventral stress fibers. These contractile structures are tethered at both ends to 
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focal adhesions and are thus capable of generating tension under constant length (1-2). 

Indeed, the majority of the contractile force that a fibroblast applies to the substrate is 

aligned with the direction of ventral stress fibers (2). Thus ventral stress fibers may be the 

most effective generators of contractile force in these cell types. These type of stress 

fibers are thought to be responsible for tail retraction as well as other cell shape changes 

occurring due to increased contraction (1). In addition these fibers are thought to work 

against membrane tension at cell borders (1). 

 

 

Figure 6.1. Cartoon model of a ventral stress fiber. A. Each stress fiber is thought to 
be composed of a serial sequence of sarcomeres where each sarcomere is composed of 
approximately 50 minifilaments in parallel, and each minifilament is composed of a 
bipolar myosin filament and opposing actin filaments held together by α-actinin and titin.  
B. Cartoon of unperturbed (closed) minifilament, actin polymerization pressure is 
highlighted in red. In the proposed model we assume that each closed sarcomere 
generates a discrete unit of force f0. C. Cartoon of minifilament after initial exposure to 
CD (orange) has stopped actin polymerization. D. Cartoon of “open” minifilament after 
actomyosin complexes have disassembled due to CD exposure. Figure courtesy of Blake 
Axelrod (Roukes lab, Caltech). 
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Here we analyze data collected by Blake Axelrod at Caltech, a member of the Roukes 

group, who measured with the highest resolution to date the force as a function of time of 

a single fibroblast cell. For this purpose, Blake constructed an instrument that utilizes a 

polymer Nano-Electro-Mechanical Systems (NEMS) force sensor with integrated 

piezoresistive strain sensing to measure the force generated by adherent cells (see 

experimental setup in Fig. 6.2). To precisely control the aqueous media surrounding the 

cell, the NEMS chips are encapsulated in multi-layer PDMS microfluidics with 

pneumatically actuated valves. This device allows the experimenter to change the growth 

medium of cell while it is attached to the force sensor. 

 

In the actual experiment, a single NIH-3T3 fibroblast cell attached itself to a platform 

adjacent to the force sensor, making contact with the force sensor. An image of this cell 

in contact with the NEMS device is shown in Fig. 6.3. While in the recovery medium, the 

calibrated force sensor registered a force of about 20 nN (see force profile in Fig. 6.3). To 

perturb the cell, Cytochalasin D (CD) was flowed in. CD forms stronger bonds to the 

barbed ends of the actin filaments than to the pointed ends (3-4) leading to 

depolymerization of the actin filaments, disassembly of the actomyosin complex, and loss 

of contraction. CD belongs to a class of substances called cytochalasins, that are fast-

acting and reversible disruptors of contractile force that have been used extensively over 

the past 40 years to study the role of actin and contractile forces in various cellular 

processes (5). Despite extensive use and study, how the known molecular mechanisms of 

CD cause the reversible disruption of stress fiber force generation without dismantling 

stress fibers remains unclear. Upon exposure to CD, Blake indeed observed a decrease in 
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force, following an exponential-like profile (Fig. 6.3). Indeed when flowing the recovery 

medium the force was generated again, presumably owing to repolymerization of the 

actomyosin complex. This process was repeated for several iterations (Fig. 6.8). 

 

 

Figure 6.2. NEMS force sensor. a) At left, diagram of the cell on the platform adjacent 
to the force sensor, cell is spread and attached to the sensor which is coated with 
fibronectin. At center, contraction generates tensile (green) and compressive (red) strains 
in the beam. At right, the piezoresistor (yellow) is patterned across the beam to couple 
only to the tensile strains. b) Colorized SEM image of two force sensors, the left one is 2 
μm wide, the right is 4 μm wide, both are 100 μm long. The stable platform for the cell is 
between them. Scale bar is 100 μm. c) Colorized SEM image showing close up of two 
force sensors and platform, gold surface pads and the gold piezoresistors are visible in 
yellow. Scale bar is 20 μm. d) Microfluidics encapsulated chip held between thumb and 
forefinger. Figure and caption courtesy of Blake Axelrod (Roukes lab, Caltech). 
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Figure 6.3. Force time time response to CD perturbation. Typical force response to 
500 nM CD: switch from conditioned media to CD at 400 sec results in initial 
contraction. Following the initial contraction, the force drops as expected. At 1400 sec 
the flow is switched back to conditioned media and the cell re-establishes normal 
contractile force. The black line is a 1 sec running average, the grey line is the raw data 
(100 ms integration time, ~200 pN force noise). The background color depicts the CD 
concentration as estimated using finite elements simulations (COMSOL). There is transit 
time for the CD solution to reach the cell through the microfluidics after actuating the 
microfluidic valves at 400 sec and the ~1 nL/sec flow rate takes additional time to 
displace the conditioned media from the 150 nL chamber. Inset shows fluorescent image 
of the cell attached to the beam taken immediately before data acquisition, scale bar is 10 
μm. Figure and caption courtesy of Blake Axelrod (Roukes lab, Caltech). 
 

When examining the temporal profiles closely, these profiles revealed quantized steps in 

force during both CD induced relaxation and the post-CD contraction. A close up of the 

force profiles is shown in Fig. 6.4. When a step-fitting algorithm was applied (6), a 

histogram of the computed step sizes revealed that these steps were remarkably uniform 

with average step size 1.08 nN ± 0.18 nN (N=96, S.D.). In the following chapter we 

present our analysis of Blake’s experimental data and present a stochastic kinetic model 

for stress fiber assembly and disassembly that is capable of accounting for the observed 

temporal dynamics. 
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Figure 6.4. Close up of force steps. a) Steps during CD induced force collapse, red is 
output from step fitting algorithm. Inset is step size histogram for 3 force collapse and 
recovery cycles. The average step size is 1.08 nN ± 0.18 nN (N=96, error is standard 
deviation). b) Steps during force recovery following return to conditioned media, red is 
output from step fitting algorithm. Figure and caption courtesy of Blake Axelrod (Roukes 
lab, Caltech). 
 
 

6.3 Model development 

We assume that each stress fiber is composed of NS sarcomeres, with each individual 

sarcomere capable of generating a unit of force f0, as depicted in Fig. 6.1. The fact that 

the total force changes in quantized steps suggests that generation of a unit of force by a 

sarcomere can be approximated by an all-or-none event. Assuming that the quantized 

steps reflect dynamics of individual sarcomeres it follows that the assembly or 
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disassembly (i.e., failure) of an individual sarcomere is an all-or-none event with 

amplitude f0

 

. Our model is based on the following assumptions: (1) Each sarcomere 

assembles or disassembles abruptly and irreversibly (i.e., the rate for the reverse reaction 

to occur is negligible). (2) Sarcomeres assemble or disassemble independently of each 

other. (3) The time until a sarcomere assembles or disassembles is exponentially 

distributed (reflecting a certain constant probability rate for this event to occur). (4) The 

time constant for assembly is the same for all sarcomeres. Similarly, the time constant for 

disassembly is the same for all sarcomeres. The model is illustrated for the case of 

disassembly in Fig. 6.5. 

Figure 6.5. Schematic model for stress fiber relaxation 

 

According to our model, we assume that the probability distribution for the time it takes a 

single sarcomere to assemble or disassemble is given by the exponential distribution 

 (1)      ( ) .tf t e λλ −=  
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where (henceforth) 1
A Aλ λ τ −= =  for assembly and 1

D Dλ λ τ −= =  for disassembly. The 

probability that a single sarcomere will assemble or disassemble in the interval 0<t’<t is 

therefore given by: 

 (2)     ( )
0

1 .
t

t t

t

p t e dt eλ λλ ′− −

′=

′= = −∫  

Hence the average number of sarcomeres to assemble or dissemble by time t is 

 (3)           ( ) ( ) ( )1 .t
S SE t N p t N e λ−= = −n  

where ( )tn  is the number of sarcomeres that have assembled by time t ( )( )0 St N≤ ≤n

and where E represents the expectation value. The standard deviation of ( )tn  is given by 

the binomial standard deviation  

     ( )( ) ( )var 1 .t t
S St N pq N e eλ λ− −= = −n  

Considering the case of assembly first, if one assumes that each sarcomere contributes a 

unit force of f0

 (4)     

 to the total force generated by the stress fiber, then the stochastic force as 

a function of time would be given by 

( ) ( )0 .t f t=SFF n  

Taking the expectation value of ( )tSFF  and using Eq. 3 we obtain the expressions for the 

average and standard deviation of the force of a stress fiber as a function of time: 

 

 (5)   ( ) ( ) ( ) ( )0 0 max1 1A At t
SE t f E t f N e f eλ λ− −= = − = −SFF n  

( ) ( ) ( )0 0var var 1 .t t
St f t f N e eλ λ− −= = −SFF n  



6-11 
 

where SNff 0max ≡  is the maximum force generated by the stress fiber. Alternatively, the 

stochastic force can be written as a sum of NS steps with an amplitude of f0

sτ

, where each 

step occurs at random times denoted by  (s=1..NS

(6)                    

): 

( ) ( )0
1

.
SN

s
s

f u t
=

= −∑SFF tτ  

where ~ exp( )s λτ  and ( )u t  is a step function ( ( 0) 1,  ( 0) 0u t u t≥ = < = ). Note that Eq. 5 

can be derived directly from Eq. 6 by taking the expectation value of ( )SFF t . The proof 

is as follows: let’s rewrite ( )su t − τ  in the following form: 

                                ( ) ( ) ( ).s st
u t d tu t t tδ

∞

′=−∞
′ ′ ′− = − −∫τ τ  

Taking the expectation value ( )su t − τ  we find that 

( ) ( ) ( )

( ) ( )
( )     0( ) ( )

0               0s

s st

t t

s s s s

Eu t d tu t E t t

e t tE t t d f t t f t t
t t

λ

τ

δ

λδ τ τ δ

∞

′=−∞

′− −
∞

=−∞

′ ′ ′− = − −

 ′− ≥′ ′ ′− − = − − = − = 
′− <

∫

∫ τ τ

τ τ

τ τ
 

where ( )f tτ  is the probability density function of sτ : ( 0) , ( 0) 0tf t e f tλλ −≥ = < =τ τ . Thus 

the integrand in ( )sEu t − τ  is nonzero in the range 0 t t′≤ ≤ : 

( ) ( ) ( ) ( )

00
( ) =1

t tt t t t t
s tt t

Eu t dt u t f t t dt e e eλ λ λ
τ λ

∞ ′ ′− − − − −

′′ ′ ==−∞ =
′ ′ ′ ′− = − = = −∫ ∫τ  

and thus 

( ) ( ) ( ) ( ) ( )0 0 0 0
1 1 1

1 1
S S SN N N

t t
s s S

s s s
E E f u t f Eu t f e f N eλ λ− −

= = =

= − = − = − = − ∴∑ ∑ ∑SFF tτ τ   

For sarcomere disassembly we have  

(7)     ( ) ( )max 0 .t f f t= −SFF n  

Taking the expectation value of ( )tSFF  and using Eq. 3 we find that  
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(8)    ( ) ( )max 0 max .DtE t f f E t f e λ−= − =SFF n  

In Fig. 6.6A we plot the average stochastic force (Eq. 5) for 20SN =  and λA=1/200 sec-1

20SN =

. 

Fig. 6.6A also shows a simulation of the stochastic force (Eq. 6). To simulate the 

stochastic force, the assembly times for  sarcomeres were drawn from an 

exponential distribution with λA=1/200 sec-1
. 

 

From Fig. 6.6A we see that even though the 

average time until an individual sarcomere to assemble is long (200 sec), multiple 

independent sarcomeres will generate steps that can be much shorter than 200 sec, on 

average following the exponential distribution above. Note that the stochastic model 

predicts that the waiting time between assembly events generally increases with time. 

This is shown in Fig. 6.6A for the case of assembly and in Fig. 6.6B for the case of 

disassembly. Such increasing step times are also observed in the experimental data (e.g., 

Fig. 6.4). This effect will be discussed in more detail in section 6.7. In Fig. 6.6C we 

compare the model prediction of the expectation value and standard deviation for the 

stochastic force with a Monte Carlo simulation in which we averaged 1000 numerical 

time traces of the stochastic force. The figure shows that the Monte Carlo simulation 

converged precisely to the analytical expression in Eq. 5. 
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Figure 6.6. Model predictions for stress fiber contraction and relaxation. Analytical 
predictions are compared with five numerical simulations of stress fiber contraction (A) 
and relaxation (B). Each numerical simulation consisted of drawing NS=20 exponentially 
distributed variables with rate parameter λA/D=1/200 sec-1

 

 corresponding to the times that 
individual sarcomeres assemble (A) or disassemble (B). The analytical predictions for the 
average force during stress fiber contraction and relaxation are given in Eq. 5 and Eq. 8, 
respectively. C. Monte Carlo simulation of stress fiber contraction, averaging 1000 
numerical time traces of the stochastic force (Eq. 6). This ensemble average is compared 
with the analytical prediction given in Eq. 5. The error bars are standard deviations (both 
analytical and from the simulation). Analytical predictions and simulation overlap. 

A B 

C 
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6.4 Estimation of stress fiber assembly/disassembly rate 

Let it  be the time for the i-th sarcomere to assemble/dissemble (i=1..NS

1λ τ −=

), where t=0 is the 

time of perturbation. We wish to estimate the rate constant . According to our 

model, ( )λexp~it , therefore iEt=τ . The maximum likelihood estimator of τ for a given 

profile is therefore ∑
=

=
SN

i
i

S

t
N 1

1τ̂  (see proof in section 6.10). However, since the exact 

time of perturbation is not known due to the gradual increase in CD concentration (and 

there can also be an intrinsic unknown delay in the response of the cell) we cannot 

estimate the times it  accurately. Alternatively, if we time order the transition times such 

that 
SNttt <<< 21  then it follows that k k mT t t= −  for k>m are independent and 

exponentially distributed random variables with the same rate λ (see proof in section 

6.10). The maximum likelihood estimator of τ for m=1 is therefore given by 

(9A)     
2

1ˆ .
1

SN

ML k
kS

T
N

τ
=

=
− ∑  

and standard error in the estimation of the mean is given by 

(9B)   
2

1. . var .
1 1 1

SN
T

k
kS S S

S E T
N N N

σ τ
=

 
= = = − − − 

∑
 

where for an exponential distribution Tσ τ= . A Monte Carlo simulation of Eq. 9 is 

presented in Fig. 6.12 (section 6.10). 
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6.5 A statistical test for the distribution of step times 

We wish to test the hypothesis that the times 1k kT t t= −  for a given profile are 

exponentially distributed with rate MLτλ ˆ/1ˆ =  (estimated for each profile independently). 

We divide the time axis into three equiprobable regions: [0,0.4τ], (0.4 τ,1.1τ],(1.1τ,∞). 

The probability for each region is given by: 

3329.0
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3297.01
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∫
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We then calculate the Pearson’s chi-square statistic ( )∑
=

−
=

3

1

2
2

i i

ii

E
EO

X , where iO  and 

iE  represent the number of observed and expected counts for each bin, respectively, and 

where for each curve the rate constant was estimated based on Eq. 9. 2X  has a 2χ  

distribution with m-k-1=3-1-1=1 degrees of freedom, where in this case m=3 bins were 

used and k=1 parameters were estimated. Table 6.1 shows the results for three curves, 

two post-CD contraction events (C1, C2), and one C- induced relaxation (R1)1

                                                 
1 The cell was cycled between CD and conditioned media 3 times, producing 3 relaxation curves (labeled R1–3) 
and 3 contraction curves (labeled C1–3). However, due to experimental errors, the CD concentration on one of 
the cycles was less by an unknown amount; those two cycles were omitted from all of the kinetic model 
analysis. The Pearson test requires at least 15 step events, thus the Pearson test could be applied to only 3 of 
the 4 remaining curves (C1, C2, and R1). Curves C1–C3 and R1, R3 are presented in Fig. 6.10 and Fig. 6.11. 

. We see 

that the p-values are high suggesting that statistically the transition times are consistent 

with an exponential distribution. Other test statistics such as the likelihood ratio test 
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statistic ∑
=









=Λ−

3

1
log2log2

i i

i
i E

O
O  and the Power divergence test statistic with 

∑
= 















−








=

3

1

3
2

1
5
9:3/2

i i

i
i E

O
Oλ  (expected to give good results for small sample sizes), 

yield p-values identical to the Pearson p-value to within 3% (7) .  

 

Table 6.1. The Pearson’s chi-square test statistic for the step times Ti

 

 given a null 
hypothesis of an exponential distribution 

6.6 Comparing the stochastic model to experimental data  

Here we compare the measured force traces C1, C2 and R1, R3 with the stochastic model 

predictions. For each of these four profiles, τ, f0, and NS were estimated and the average 

force was calculated based on Eq. 5 or Eq. 8 depending on the scenario. In Fig. 6.7 we 

plot the measured force traces and compare them with the profiles predicted by the 

model. Note that NS

 

 was allowed to change from profile to profile since the number of 

disassembled or assembled sarcomeres at the beginning of the perturbation is uncertain, 

and in some cases (curve R3) the profile is given from the middle. Fig. 6.7 shows that the 

measured traces follow the predicted ensemble averages and are contained within two 

Contraction curve C1 
(n=16) 

τ̂  =106.53±33.91 S.E. 

Contraction curve C2 
(n=18) 

τ̂ =77.47 ±16.73  S.E. 

Relaxation curve R1 
(n=18) 

τ̂  =231.15±44.94 S.E. 
Interval Observed Expected Observed Expected Observed Expected 
[0,0.4τ] 7 5.27 5 5.93 5 5.93 
(0.4 τ,1.1τ] 4 5.4 8 6.07 6 6.07 
(1.1τ,∞) 5 5.33 5 5.99 7 5.99 

2X  0.947 0.922 0.318 
p-value 0.331 0.337 0.573 
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standard deviations. Note that the model predicts that any single trace of the force is not 

exponential (e.g., Fig. 6.6), however the ensemble average of many traces does follow an 

exponential profile. For this reason deviations between the measured force traces and the 

predicted ensemble average are expected. In Fig. 6.8 we collapse the transition times for 

all contraction (or relaxation curves) by scaling the time axis t t τ→  and scaling the 

force axis max .F F f→  Both contraction curves and both relaxation curves appear to 

collapse to the same corresponding profiles, as predicted by the model. 

6.7 Analysis of step durations 

We wish to find the waiting time for the n-th sarcomere to assemble (or disassemble) 

given that n-1 sarcomeres have already assembled (or disassembled). For concreteness 

we will examine the case of assembly. The case for disassembly is analogous. After n-1 

sarcomeres have assembled, there are 1SN n− +  sarcomeres remaining to assemble. The 

next event will therefore occur after a time nΔt , which is the minimum time of NS

nΔt

-n+1 

i.i.d. exponential variables. Since it is known that the minimum of N i.i.d. exponentially 

distributed random variables with rate λ is also exponentially distributed with rate Nλ, 

then the time the next event will occur, , will be exponentially distributed with a rate 

( )1SN nλ − + . Intuitively, the larger the pool of remaining assembled sarcomeres, the 

less time one needs to wait until one of the sarcomeres from this pool will fail. Thus 

initially, when the pool of remaining assembled sarcomeres is large, steps occur in rapid 

succession, and, with time, as the pool of assembled sarcomeres diminishes, steps also 

increase in duration. 
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Figure 6.7. Force/time relations predicted by the stochastic model versus 
experimental data. Model predictions for the average force versus time measurement of 
a fibroblast perturbed by CD (Eq. 8) (A & B) or incubated in the recovery medium (Eq. 
5) (C & D). Data is blue, output from step fitting algorithm is red, the discrete step events 
used to count NS and calculate f0 and τ for the kinetic model are yellow. For each profile, 
τ was estimated based on Eq. 9, f0 was estimated by averaging the step size of the force 
predicted by the step fitting algorithm and the number of sarcomeres, Nsar

1S sarN N= −

, was estimated 
by the step fitting algorithm as the number of detected steps (note that since the origin 
was set at the first transition, ). Based on these three parameters the 
expected mean of the force versus time was calculated (dashed curve). This theoretical 
curve represents the average of many individual stochastic profiles. The shaded area 
represents the area bounded by the mean plus and minus two standard deviations. C1 and 
C2 are two contraction profiles with well defined initial conditions and R1 and R3 are 
two relaxation profiles with well defined initial conditions (see section 6.9). 
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Figure 6.8. Rescaled force/time traces for contraction and relaxation profiles. Force 
versus step times for contraction (A) and relaxation (B) scenarios were collapsed by 
scaling the time axis t→t/τ and the force axis max/F F f→  (where SNff 0max = ) for each 
profile. For Methods see caption of Fig. 6.7. The shaded area represents area bounded by 
the mean plus and minus two standard deviations assuming NS

 

=18 (giving a lower bound 
on deviations). 

Another way to see this is the following: the probability that a single sarcomere will 

assemble in the next t  seconds is (see Eq. 2) (0 ' ) 1 Atp t t e λ−< < = − . The probability that 

it will not assemble is therefore 1 (0 ' ) Atp t t e λ−− < < = . The probability that none of the 

remaining NS 0 't t< <-n+1 sarcomeres assemble during the interval  is ( ) 1S
A

N nte λ − +− . 

Therefore the probability that at least one sarcomere will assemble during the interval 

0 't t< <  is ( )1( ) 1 A St N nF t e λ− − += − . Hence the probability density function for the time to 

wait until at least one sarcomere assembles after n-1 sarcomeres have already assembled 

is ( ) ( )1'( ) 1 A SN n t
A SF t N n e λλ − − += − + , or ( )( )~ exp 1A SN nλ − +nΔt .  
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The average waiting time for the n-th sarcomere to assemble/disassemble given that n-1 

sarcomeres have already assembled (or disassembled) is therefore just the expectation 

value of an exponential distribution with a rate ( )1A SN nλ − + : 

 

(10)    ( ) 1
1 .SE N nλ

−
= − +  nΔt  

 

where n=1..NS nΔt. The standard deviation of  is given by the exponential standard 

deviation: ( ) 1
var( ) 1SN nλ

−
= − +  nΔt . Note that the inverse of E nΔt  is linear in n. In 

Fig. 6.9 we plot Eq. 10, as well as a Monte Carlo simulation for the waiting times. As can 

be seen from this figure, the numerical simulation converges to the analytically derived 

expectations value. Standard deviations converge as well (data not shown). 

 

Testing prediction of duration of force steps against experimental data 

Waiting times between force steps were estimated for each of the contraction and 

relaxation experimental curves based on the times extracted by the step-fitting algorithm. 

In Fig 6.10 we plot the inverse of the experimental waiting times versus the prediction of 

the stochastic model for these rates (Eq. 10). τ in Eq. 10 was estimated for each profile 

based on Eq. 9 and NS was estimated for each profile as the number of steps detected by 

the step-fitting algorithm. The correlation between the data points and the model 

prediction was measured by Pearson correlation coefficient to be ρ= 0.72 to 0.95, 

suggesting that the model predictions were strongly reflected in the data. Note that we 
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anticipate a high level of noise since the standard deviation equals the predicted rates (see 

above).  

 

      A      B 

 

 

 

 

 

 

 
Figure 6.9. Force step durations predicted by the stochastic model compared with a 
Monte Carlo simulation. A. Each bar represents the average time E nΔt  until the next 
sarcomere fails, given that n sarcomeres have already failed, thus resulting in n failed 
sarcomeres. B. Predictions for 1 E nΔt . Blue bars show analytical predictions based on 
Eq. 10. Red bars show Monte Carlo simulation results averaging 104 repetitions. Each 
iteration in the Monte Carlo simulation consisted of drawing NS

-11/ 200 secλ =
=20 exponentially 

distributed times with  and calculating the waiting times between 
temporally adjacent events. Times were then averaged for all 104

 
 iterations.  
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Figure 6.10. Stochastic model prediction of force step durations versus experimental 
data. The stochastic model prediction for the inverse of the force step durations (red 
curve) was calculated based on Eq. 10 with τ estimated based on Eq. 9. The experimental 
data points (blue dots) were calculated as the inverse of the time difference between 
adjacent steps extracted by the step-fitting algorithm. NS

 

, the number of observed steps, 
was determined by the step-fitting algorithm. ρ is the Pearson correlation coefficient 
measuring the strength of the correlation. C1 and C2 are two contraction profiles with 
well defined initial conditions and R1 and R3 are two relaxation profiles with well 
defined initial conditions (see section 6.9). 
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6.8 Conclusions 

We have suggested a simple stochastic model for stress fiber contraction and relaxation 

that is capable or explaining both qualitatively and quantitatively the response of a single 

fibroblast cell that was subjected to cyclic perturbation of CD and recovery medium. The 

model we propose predicts stochastic force/time profiles that are qualitatively similar to 

the curves observed in the experiment: both predicted and observed curves exhibit an 

exponential-like profile with step times of increasing length. When rescaled, observed 

profiles collapse to similar curves that qualitatively follow the ensemble average 

predicted by the model. Finally, the step onset times are statistically consistent with an 

exponential distribution and the inverse of the step durations exhibit a high degree of 

correlation with the linear response predicted by the model. To further substantiate the 

proposed model it is recommended to repeat this experiment at least one more time, as 

currently, all data was taken from a single session observing a single cell. An effort to 

reproduce this data is currently underway. 
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6.9 Appendix A — Selection criteria of profiles 

Figure 6.11 shows the complete measurement of force versus time for the fibroblast cell 

under investigation, subject to various perturbations. In our analysis we choose to focus 

on profiles that have the following characteristics: (1) the cell was subject to well-defined 

perturbations: growth medium (blue) or cytochalasin D (pink), and (2) the initial 

condition of the cell was well defined, approximating either full contraction or full 

relaxation of the stress fiber. The profiles that conform to these conditions are: relaxation 

profiles R3 and R1, which are preceded by contraction profiles C4 and C2, respectively, 

that leave the stress fibers in a fully contracted condition; contraction profiles C3, C2, and 

C1, which are preceded by relaxation profiles R3, R2, R1, respectively, that leave the 

stress fibers in a fully relaxed condition. Profile R2 was not considered for analysis 

because the CD perturbation was achieved here passively via diffusion, attaining an 

unknown, yet lower concentration of CD. Profile C3 was rejected due to the back-

stepping (this curve is cut short by the step-fitting algorithm, leaving only ~150 sec of 

data). Since the curve is cut short, estimation of τ using Eq. 9 would be biased. Profile C4 

is not considered for analysis because the cell did not appear to respond to the CD 

perturbation in the preceding period, and therefore the condition of the cell at the onset of 

C4 was not well defined.  

 



6-25 
 

 

Figure 6.11. Complete force versus time measurement of a single cell. Blue areas 
represent exposure to growth media, pink areas represent exposure to cytochalasin D, 
white dots indicate where flow was stopped.  
 

 

6.10 Appendix B — Time-ordered exponential variables 

 
Lemma 1 
Let Xi

(1) ( ),..., mT T

 be N iid exponential random variables (RVs) with rate λ (1≤i≤N). We define 

 to be the first m time-ordered RVs (m<N). We wish to show that for Xi ( )mT> ,  

Zj=Xi ( )mT-  (j=m+1.. NS

1 2
1( ,..., ) ...  m m Nz z z

m Nf z z e e eλ λ λλ λ λ+ +− − −
+ = ⋅ ⋅ ⋅

) are also iid exponential RVs with rate λ, that is  

. 

Proof: 

We define Yi i m> ( ) to be the N-m RVs that satisfy ( )  i mX T>  

0                  t(1)           …                           t(m)                  ym+1     …         yN

|------------|---------------------------|------------|----------------|-----› . 

  

                 dt(1)      …                          dt(m)              dym+1   …              dy

The joint pdf of 

N  

( )iT  and Yi is given by 
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( )

( ) ( )(1) ( ) 1

(1) ( ) 1

(1) ( ) 1

(1) ( ) 1

( ,..., , ,..., )

  ,...,  ,  ,...,  

1! ... ...
( )!

m m N

m m N

i i m i m i N

t t y y
m m N

N mm

P t t y y

P one X dt one X dt one X dy one X dy

N e dt e dt e dy e dy
N m

λ λ λ λλ λ λ λ+

+

+

− − − −
+

−

=

= ∈ ∈ ∈ ∈ =

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−

 





  

where the normalization factor stems from the fact that there are N! ways of ordering N 

variables, however since the Yi

( )!N m−

’s are not time ordered we need to remove the degeneracy 

of . Thus 

( ) ( )(1) ( ) 1
(1) ( ) 1( ,..., , ,..., ) ( 1) ... ( 1) ... ...m m Nt t y y

m m N
m

f t t y y N N m e e e eλ λ λ λλ λ λ λ+− − − −
+ = − ⋅ ⋅ − + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅



. 

Now, 

( ) ( ) ( )( )1 ( ) ( )(1) ( )

(1)

(1) ( ) 1

(1) ( ) 1 1 ( ) ( )

( ,..., , ,..., )

( ,..., , ,..., )

... ( 1) ... ...

... ( 1) ...

m m N mm

m m N

m m m m N N m

z t z tt t

N m

t

f t t y y
f t t y z t y z t

N N m e e e e

N N m e e

λ λλ λ

λ λ

λ λ λ λ

λ λ

+

+

+ +

− + − +− −

−

− −

=

= = + = + =

= ⋅ ⋅ − + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ − + ⋅ ⋅ ⋅



( )( ) ( )( 1) ( ) 11 ... .m m m Nt t N m z ze e eλ λ λλ λ λ− +− − + − −⋅ ⋅ ⋅ ⋅

 

Intergrating out t(m)

( ) ( ) ( )

( 1)

(1) ( 1) ( )1

( ) ( 1)

(1) ( 1) 1 ( ) (1) ( ) 1

1
( )

1

1

( ,..., , ,..., ) ( ,..., , ,..., )

... ( 1) ... ...

... ( 2)

m

m mm N

m m

m m N m m m N
t

t t t N mz z
m

t t
m

m

f t t z z d t f t t z z

N N m e e e e dt e

N N m

λ λ λλ λλ λ λ λ λ

−

− +

−

∞

− + +

∞
− − − − +− −

=
−

−

= =

= ⋅ ⋅ − + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ − +

∫

∫


 

( ) ( )(1) ( 1) 1( 2)

1

... ... .m m Nt t N m z z

m

e e e eλ λ λ λλ λ λ λ− +− − − + − −

−

⋅ ⋅ ⋅ ⋅ ⋅ ⋅




: 

 

We can now recursively integrate out ( 1)mt −  and so on: 
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( ) ( )(1) ( 2) ( 1)1

( 1) ( 2)

(1) (

(1) ( 2) 1

( 2)
( 1)

2

2

( ,..., , ,..., )

... ( 2) ... ...

... ( 3) ...

m mm N

m m

m

m m N

t t t N mz z
m

t t
m

t t

m

f t t z z

N N m e e e e dt e

N N m e e

λ λ λλ λ

λ λ

λ λ λ λ λ

λ λ

− −+

− −

−

− +

∞
− − − − +− −

−
=

−

− −

−

=

= ⋅ ⋅ − + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ − + ⋅ ⋅ ⋅

∫




( ) ( )2) 1( 3)

2

... .m NN m z z

m

e eλ λλ λ+− + − −

−

⋅ ⋅ ⋅


 

Repeating this process m-2 more times, (integrating (1)t  from 0 to ∞ ) for ( 2) (1)...mt t− , we 

obtain 1
1( ,..., ) ...    m Nz z

m Nf z z e eλ λλ λ+− −
+ = ⋅ ⋅ ∴ 

 

Simulations supporting theory  

In Fig. 6.12 we show the results of a Monte Carlo simulation for the case of N=20 and 

m=15, showing that { } 16..20i i
Z

=
 have properties of an exponential distribution (mean, 

standard deviation, and probability density function). In Fig. 6.13 we calculate the 

average “force” step profile and standard deviation of N=20 exponential independent 

RVs when taking into account only the last fifteen RVs measured with respect to the fifth 

time-ordered RV. This simulation is a precise test of the way in which the experimental 

data is analyzed. We see that simulations perfectly agree with theory. 
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Figure 6.12. Monte Carlo simulation demonstrating lemma 1. This Monte Carlo 
simulation consisted of 107 iterations where in each iteration we drew N=20 exponentially 
distributed numbers (τ=200 sec) and time ordered them to obtain ti

15i iz t t= −
. We then calculated 

 
for 16 ≤ i ≤ 20 (five RVs in total, corresponding to the case where m=15) and 

wished to see if iz  indeed behave as i.i.d. exponential RVs with a rate parameter 1/200 

sec-1 .We therefore calculated the sample mean of zi 

20
1
5

16

ˆ i
i

zµ
=

= ∑for each iteration: 
 
and 

estimated the mean and standard deviation of µ̂  over all iterations. Based on Eq. 9A and 
9B (generalizing these equations to an arbitrary m: 

1

1

ˆ ˆ, . . var( )
S

S

N

ML k ML SN m
k m

T S E N mτ τ τ−
= +

= = = −∑ ) we should find that µ̂  converges to τ  

with a S.E. of 5τ , i.e.: ˆ 200 200 5 200 89.4427Eµ = ± = ± . The simulation yielded 
199.98±89.4457 in precise agreement with theory. We also estimated the pdf of zi by 
collecting all zi

 

 (16 ≤ i ≤ 20) and calculating the empirical pdf (red) versus the theoretical 
pdf (blue). Both curves indeed overlapped. 
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Figure 6.13. Monte Carlo simulation of stress fiber contraction. In each iteration 
NS=20 exponentially distributed RVs Xi with λ =1/200 sec-1

(5)X
 are drawn. We then time 

order these 20 RVs, find the fifth time ordered RV, , and form 15 new RVs: 

( ) (5) , 5j jT X X j= − > . Thus jT
 
represent the times until sarcomeres assemble, measured 

with respect to the time that the fifth sarcomere assembled (thereby generalizing the case 
discussed in Fig. 6.6C for m > 0). We then construct the stochastic force time trace (Eq. 
6), where the step functions occur at times jt T= . Finally we average 5000 of these force 
traces. We superimpose the theoretical prediction based on Eq. 5 (assuming 15 steps). 
The error bars are the theoretical and simulated standard deviations. We see that 
analytical predictions and simulation overlap.
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Lemma 2 

Let Ti

1

1

ˆ
N

ML iN
i

tτ
=

= ∑

 be N i.i.d. exponential RVs with rate λ (1≤i≤N). The ML estimator of τ=1/ λ is 

. 

Proof: 

( )

( )

11 2 ( ... )
1 2

1 2 1 1

1 2
12

12

1
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