Chapter 5

An evolutionary model of phage-host interaction

5.1 Introduction

In Section 4.4.2.6 we predicted the total number of “species” in a given environment. It is therefore of interest to define what a “species” is. In the biophysical model a “species” of bacterium or virus is defined by a set of random variables drawn from some distribution. However, as explained previously, two “species” with the same parameters can be totally different organisms and should be counted separately. Therefore the biophysical model described in Section 4.4 cannot provide us with an adequate definition of a “species” that would be useful for testing the predictions of our model. The problem lies in the fact that at that level of abstraction, bacteria and viruses are the equivalent of “point particles” without internal structure. In the present section we will attempt to go one step further and define an evolutionary model, which when viewed at a coarse-grained level, would be equivalent to the description of the biophysical model in Section 4.4.

In order to understand what a species is in the context of our biophysical model, we propose definitions for both bacterial and viral species that ensure that the assumptions of the biophysical model are respected. These assumptions include: (1) each bacterial species was associated with a single viral species and vice versa (i.e., there is no cross interaction between phage-host systems), and (2) each species (bacterial or viral) was unique and distinguishable from all other species. Based on these definitions, we will construct an evolutionary model for the emergence
of new bacterial and viral “species” in nature. While this model is equivalent to our biophysical model when viewed in a genetic coarse-grained way, the evolutionary model leads to the prediction that bacterial “strains” are part of interaction networks with viral “strains”, whereas bacterial “species” form a unique association with a single viral “species” and vice versa. Furthermore, in order for new bacterial and viral species to emerge as independent elements, the emerging viral species needs to abandon the parental bacterial strain that it previously controlled in favor of the new emerging species. We propose that the “arms race” between bacteria and viruses may lead to a “positive feedback” mode of evolution, that both enables the emerging viral species to switch hosts, and enables the emerging bacterial strain to evolve at an accelerated pace through selection sweeps to form a new species. Thus, the arms race that bacteria and viruses are locked in is perhaps the engine driving bacterial and viral co-speciation, with selection pressure arising from the environment biasing the direction of evolution. In addition we show that for the simple case of a “butterfly” 2x2 strain interaction network the total concentration of the parental and emerging strains doubles when speciation is complete. We then generalize this result the case of $N_{strains}$ 2x2 interaction networks, with $N_{strains}$ defined as the number of strains per species. Finally we conclude by suggesting an experiment to test our hypothesis regarding “positive feedback evolution”.

Summary of findings: Our biophysical model is consistent with an evolutionary model where (1) a bacterial “species” is comprised of bacterial “strains” and where a viral “species” is comprised of viral “strains” (with a “strain” = a quasispecies). (2) New bacterial “species” co-emerge with new viral “species” and vice versa. (2) A bacterial “species” interacts with just one viral “species”, however a bacterial “strain” generally interacts with many viral “strains” as it is
part of a network of bacterial-viral interactions. (3) The host range of viruses should be (mostly) species or strain specific. (4) The evolutionary arms-race between phages and hosts (such as the CRISPR warfare) may be a critical part of the stage where bacterial and viral “species” co-emerge out of their parental “strains” by (a) accelerating the evolution of the bacterial strain through selective sweeps and at the same time (b) accelerating the evolution of the virus to switch hosts.

The road map: We will begin by describing the critical features of the biophysical model described in Section 4.4, which our evolutionary model must reproduce when viewed at a coarse-grained level. We will then define the concept of a “strain” and a “species” in such a way that when placed in an evolutionary context produces a “bacterial and phage world” that when coarse-grained is equivalent to the description of our biophysical model. Thus we will use the biophysical model to guide us in selecting a good evolutionary model.

5.2 Definition of a bacterial and viral strain and species

Critical features of the biophysical phage-host model

The following are the critical features of the biophysical phage-host model described in Section 4.4:

1. **Growth:** All bacteria and viruses are actively replicating in the environment.
2. **Viral control:** Each bacterium is associated with a lytic virus that controls its concentration.
3. **Uniqueness:** Each phage-host system is comprised of a bacterium and a virus that can be distinguished (in some measurable way) from all other bacteria and viruses in the environment. We therefore say that each bacterium belongs to a unique “species” denoted by the index i, and each virus belongs to a unique “species”, denoted by the same index.
4. **Symmetry:** There are equal numbers of bacterial and viral “species” (both denoted with the index \(i \)).

5. **Independence:** All phage-host systems in a given environment are independent of each other, i.e., there is no cross interaction between one system and another.

An evolutionary model that satisfies these five conditions will be consistent with our biophysical model. We can then use the evolutionary definitions of a bacterial species and a viral species to interpret the meaning of the species in our biophysical model.

Bacteria “take up” concentration: Bacterial “species” in the biophysical model have one additional consequence. A bacterial “species” has the property that it “takes up” concentration in the environment, with the concentration being given by Eq. 7. The reason we say it “takes up” concentration is that any environment has finite resources that can accommodate a finite concentration of cellular organisms (this is how we obtained the number of species in the environment, \(N_{\text{species}} \)). Thus, only elements that “take up” concentration contribute to the diversity of the system. A viral “species” also has a concentration, however viruses are not limited by resources and therefore there is no upper bound on the number of viral “species” in a given environment. Therefore viral “species” do not “take up” concentration. Drawing again on an analogy to physics, in this respect, bacteria are like fermions and viruses are like bosons — one can pack an infinite number of bosons into a negligibly small volume, whereas fermions take up volume due to their quantum charges. This is why \(N_{\text{species}} \) was obtained from \(c_{\text{tot}}^{\text{bact}} \) and not \(c_{\text{tot}}^{\text{virus}} \), the former has an upper bound whereas the latter does not.
Definition of a bacterial and viral strains

We seek to define a bacterial *species*\(^1\) and a viral *species* in such a way that, when placed in an evolutionary context, we are able to reproduce the essential characteristic of the biophysical model described above. To define a *species* we first need to define an auxiliary term, which is a *strain*.

Definition of a strain: A genetic element (bacterium or virus) is considered a new *strain* if and only if this genetic element is *distinguishable* from all other *strains* (the first cell is by default a *strain*). To be *distinguishable*, a genetic element needs to have a measurable property that sets that element apart from all other existing *strains*. This measurable property should give consistent results over time despite the mutation load of the genetic element.

This definition of a *strain* is consistent with the biologically intuitive definition of a “strain”.

Here we have also defined a viral *strain*. A viral *strain* can also be interpreted as a viral quasispecies [1] since each genome in the quasispecies is not *distinguishable* from other elements comprising the quasispecies.

Definition of a bacterial species

A *bacterial species*: A bacterial cell constitutes a new *species* if and only if (1) it is actively replicating in the environment; (2) It can be classified as a new *strain* in the environment; (3) It forms a stable association with a virus that can be classified as a new *strain* in the environment.

Criterion 1 is necessary in order to distinguish actively replicating cells that have a finite growth rate from spore cells or inactive (possibly dead) cells [2]. The latter, although possibly alive, cannot be part of a phage-host system since they are not actively growing. Criterion 2 simply

\(^1\) We use italics to distinguish the terms defined in the current model from the colloquial use of these words or from the terms used in the biophysical model.
ensures that the new bacterial strain is distinguishable from other pre-existing bacterial strains in the environment, and thus should receive a new index. Criteria 1+2 define an active strain in the intuitive sense, not a species in the intuitive sense. Why is it that to complete the definition of a bacterial species one must talk about its viruses (criterion 3)? The reason is the following: If an environment contains \(n \) bacterial strains with \(n \) infecting viral strains, adding a new bacterial strain (strain \(\# \ n+1 \)) without a new viral strain will lead to an overdetermined system of equations in which one or more bacterial strains will become extinct (Section 4.6). Thus, to add a new bacterial species one must also introduce a new viral strain into the system. This rule can be stated in a more general way (Section 4.6):

A system of \(n \) bacterial species must be associated with exactly \(n \) viral species otherwise the system will be overdetermined, driving excess species to extinction.

This definition of a bacterial “species” satisfies the properties of: bacterial growth (the bacterial species must be growing); viral control (each bacterial species is associated with a virus); and bacterial uniqueness (each bacterial species is a new strain).

Definition of a viral species

The definition of a viral species is analogous to the definition of a bacterial species:

Definition of a viral species: A virus constitutes a new species if and only if (1) it is actively replicating in the environment; (2) it can be classified as a new strain in the environment; (3) it forms a stable association with a host that can be classified as a new strain in the environment.

Criterion 1 is to ensure that we are considering a virus that is active and not a decayed or an inactivated virus. Criterion 2 ensures that the new viral strain is distinguishable from other pre-
existing viral strains in the environment, and thus should receive a new index. Criterion 3 is, as before, required because the system should always have equal number of bacterial and viral species otherwise excess species will be driven to extinction (Section 4.6).

This definition of a viral “species” satisfies the properties of: viral growth (the viral species must be replicating); viral uniqueness (each viral species is a new strain); and symmetry (if each bacterial species is associated with a viral species and each viral species is associated with a bacterial species, there should be equal number of bacterial and viral species). The only property that has yet to be satisfied is independence. By constructing an evolutionary model that satisfies this property we will be able to understand the relation between species and strains.

Note that the definitions of a bacterial and viral species suggest that the formation of a new bacterial species is linked to the formation of a new viral species and vice versa. In the next section we will explain an evolutionary mechanism for this process.

5.3 A model for bacterial-viral co-speciation

5.3.1 Description of the evolutionary model

Stage 1: One bacterial strain, one viral strain (Fig. 5.1A). Let’s assume our environment contains a bacterial species (species 1) comprised of a single strain (strain 1), and that this bacterial species is under the control of a viral species (species A), comprised of a single viral strain (strain A) (Fig. 5.1A). The concentration of bacterial strain 1 is dictated by Eq. 7, thus viral species A controls bacterial species 1 (the arrow in Fig. 5.1A). Bacterial strain 1 is said to “take up” concentration in the environment.
Stage 2: An incipient bacterial *strain* emerges (Fig. 5.1B). Now let’s assume that through some genetic event (e.g., a transposon, a deletion/insertion/inversion event, a recombination event, a new plasmid, etc.), bacterial strain 1 begins to evolve a new bacterial strain that is on the verge of becoming *distinguishable* from strain 1 (Fig. 5.1B). The incipient bacterial strain 2 is under the growth control of viral strain A, and will not be “allowed” to take up concentration on its own, independent of bacterial strain 1 — i.e., it will not be allotted a status of a *species* and therefore will not contribute to the diversity of the system (i.e., increase $N_{species}$). Bacterial strain 2 will continue to undergo evolution with time and accumulate more mutations in its process of maturing into a new strain. During all this time bacterial strain 1 is under the control of viral strain A (Fig. 5.1B).

Stage 3: An incipient viral *strain* emerges (Fig. 5.1C). As the incipient bacterial strain 2 evolves, so does the viral strain that infects it (initially viral strain A). This viral strain (i.e., viral quasispecies) will begin to form a new cluster that will eventually mature into viral strain B. The incipient viral strain B (not yet distinguishable from viral strain A) both tracks the evolution of bacterial strain 2 and also drives the evolution of bacterial strain 2. This hypothesis is supported by the following observations. It has been suggested that viruses and bacteria are in a constant state of an “arms race” [3]. Perhaps the best example of this arms race is the CRISPR bacterial defense system. Bacteria continuously acquire CRISPR spacer sequences from viruses to evade these viruses, while viruses rapidly evolve by mutation, homologous recombination, and deletion of the target sequences to evade new acquired spacers [4]. Conversely, CRISPR repeats and their associated proteins undergo evolution to escape shut-down mechanism for the CRISPR system encoded by the phage [3]. There is also evidence that the bacterial population undergoes
sweeping selection events, where potentially only one cell survives (the only cell that had the right spacer) [4]. Such bottlenecks will accelerate the evolution of the emerging bacterial strain, driving its evolution forward. This example illustrates how by a process of positive feedback between the new bacterial strain (strain 2) and the new viral strain (strain B) both elements track each other and push each other to further evolve (Fig. 5.2). The bacterial-viral “arms race” may therefore be a critical step in forming (or at least accelerating) the formation of new bacterial species and new viral species from the parental strains. Indeed, CRISPR sequences have been found in nearly half of all sequenced bacterial genomes [3]. While the CRISPR mechanism may contribute to the arms race, it may not be an essential component. Luria and Delbrück have shown that a bacterial strain grown from a single cell will mutate naturally (without interaction with the phage) so that a subpopulation of bacteria will become immune to the virus [5]. Thus, even without a CRISPR system the bacterium can evade the virus. Therefore, this “arms race” may be a fundamental mechanism of evolution to generate new bacterial and viral species. Given our interpretation, these events are not a disadvantage in terms of reduction in diversity, as previously proposed [4], since they may provide the mechanism for new strains to emerge. Thus ultimately these mechanisms generate diversity.

Stage 4: New bacterial and viral strains emerge (Fig. 5.1D). The incipient bacterial strain 2 is now distinguishable from strain 1 and can be defined as a new strain. The incipient viral strain B emerged as a new viral strain (strain B) that initially infects both bacterial strains 1 and 2 (Fig. 5.1C). At this stage, a 2x2 network like interaction emerges. This network can, in principle, persist indefinitely, and as the evolutionary distance between strain 1 and strain 2 grows, this could lead to the formation of viruses with a wide host range. If the system is stable over time,
the two bacterial strains would be under control of two viral strains and both would “take up” concentration, thus increasing the diversity of the system (N_{species} in Eq. 16B increases). However, it seems more plausible that as the distance between strain 1 and strain 2 grows, the cross affinity (B→1 and A→2) will decrease, leading to the emergence of two independent associations (A→1 and B→2). This is because the bacterial strain 2 is driving the evolution of viral strain 2, and it is expected that at some point this virus will lose its ability to infect the parental bacterial strain 1 (Fig. 5.2). Furthermore, it would seem that a 2x2 network of interacting strains would not be stable in an open environment for long, since if one of the viral strains drifts off, leaving bacterial strains 1+2 under the control of the remaining viral strain, one or both bacterial strains will be driven into extinction over time (Section 4.6). Numerical simulations would be required to see if a network of 2x2 interacting strains ($n \times n$ in the more general case) are indeed less stable than two 1x1 associations (or generally $n \times 1$ associations) under loss of a viral strain. The fact that in nature, phages typically display a narrow “species” or “strain” level host range [6,7,8] favors the interpretation that indeed independent phage-host system arise. That said, there are a few exceptions and some phages have been found to display a wide host range [8], however this does not seem to be the general case. Therefore we hypothesize that over time, as bacterial strain 2 and viral strain B continue to evolve, the cross infectivity B-1 and A-2 naturally fades, and we will define strains 2 and B as new species when this cross affinity disappears. Note that this hypothesis ensures that the last property of independence is satisfied since we require that emerging phage-host systems lose their dependence on the parental strains to which they were linked initially (discussed further below).
Stage 5: New bacterial species and viral species emerge (Fig. 5.1E). Bacterial strain 2 and viral strain B have evolved sufficiently that cross infectivity has completely faded. At this point bacterial strain 2 is under the exclusive control of viral strain B via Eq. 7 and can “take up” concentration. The association between bacterial strain 2 and viral strain B is stable and lasting. Bacterial strain 2 now answers the definition of a species (it is a replicating strain stably associated with a viral strain) and can be regarded as a new species (species 2). Viral strain B now also answers the definition of a species (it is a replicating strain stably associated with a bacterial strain). At this stage the process can begin again and a new species can emerge.

The conclusion from this model is that new bacterial species must emerge with a new viral species and vice versa. While it has been shown in many experiments that bacteria can evolve in the absence of viruses, this model proposes that in the presence of lytic viruses, the process of evolution may be accelerated.
Figure 5.1. A possible evolutionary process of bacterial and viral co-speciation. If species 1 and species 2 have the same size and growth rate, then stage E “takes up” twice the concentration as stage A, with the intermediate states somewhere in between.
5.3.2 A coarse-grained view of the evolutionary model satisfies all the properties of the biophysical model

We have seen that all the properties of the biophysical model except for independence were satisfied by the definition of strains and species that we use. The key point of this model is how the property of independence arises. According to Fig. 5.1, a bacterial species is born out of a single parental bacterial strain. Initially the new bacterial strain is under the control of both a
parental viral *strain* and a new viral *strain* (the latter also born out of a parental viral *strain*). Once the new bacterial *strain* has evolved sufficiently from its parental *strain*, it loses its association with the parental viral *strain*. At the same time, the new viral *strain* loses its control over the parental bacterial *strain* (the transition from Fig. 2D to Fig. 2E). Thus, once both bacterial and viral *species* become an independent pair they are defined to be a new *species*. Therefore, the model described in Fig. 5.1 leads to a “world” where every bacterial *species* is controlled by just one viral *species*, and vice versa. If we view our evolutionary model in a coarse-grained way, and ignore the “structure” within each *species* (shown in Fig. 5.3 and discussed below), we obtain a model where each pair of interacting bacterial and viral *species* are independent of all other pairs (the condition of independence is satisfied). Therefore the two models become equivalent in the limit of describing organisms at a low genetic resolution, where the subtle differences between different *strains* within *species* (be it bacterial or viral) are lost. By interpreting the properties of the *species* defined in the current model, we can now answer the question raised in Section 4.4 of what is a “species”?

5.3.3 Revisiting the question of what is a “species”?

5.3.3.1 “Quark-gluon” model of a species

In one of the intermediate stages in the formation of a new bacterial *species* there is a state where a 2x2 network of interactions forms between the new and parental bacterial *strains* and the new and parental viral *strains* (Fig. 5.1D). In the general case, bacterial *strains* are continuously emerging from parental *strains*. Thus in the general case (applying our conservation rule that the number of bacterial *strains* must always equal the number of viral *strains*) we obtain a network of *n* bacterial *strains* infecting *n* viral *strains* (Fig. 5.3). These *n* bacterial *strains* are defined to be a bacterial *species*. Therefore, at any given point in time, a bacterial *species* in nature is
comprised of *strains* that are in the process of maturing into new *species* (Fig. 5.1D). Likewise, the *n* viral *strains* can be technically classified as a viral *species*. Thus, a viral *species* is in essence a collection of viral strains, i.e., a collection of viral quasispecies, infecting the *strains* of a given bacterial *species* in a network-like fashion (Fig. 5.3).

Figure 5.3 The “Quark and gluon” model of a species. Hypothetical phylogenetic tree of a conserved bacterial gene (left), revealing two bacterial *species*, paired with a phylogenetic tree of a conserved viral gene (right), revealing two corresponding viral *species*. Each clade of a *species* is comprised of the *strains* of that *species*. Yellow boxes highlight bacterial-viral *strains* in different stages of maturation. The arrows show which bacterial *strain* is infected (i.e., controlled) by which viral *strain*. Solid lines represent primary targets, whereas dashed lines represent secondary, weaker targets. The biophysical model that we propose lumps all *strains* within each *species* clade into one class.
5.3.3.2 The meaning of N_{species}

The case of a species comprised of one parental strain

To understand which entities contribute to N_{species} we need to ask ourselves who “takes up” concentration in the model presented in Fig. 5.1 (or the more realistic view in Fig. 5.2). Let’s begin by considering Fig. 5.1 again. Let’s assume stage 1 “takes up” concentration x. Stage 2 is still under the control of one virus, so it “takes up” a concentration x as well. We will skip stage 3 for a moment. Stage 4 however is different. In this stage we have two strains in a 2x2 “butterfly” network configuration (Fig. 5.4). For simplicity let’s assume that the coupling constants (i.e., infection rates) are $k_{11} = k_{22} = \alpha$ and $k_{12} = k_{21} = \beta$. Initially when bacterial strain 2 just emerges (the “child” strain), we have $\beta = \alpha$. This is because the child viral strain B also has just emerged and it is barely distinguishable from its parent viral strain A. At this stage we anticipate that both bacterial strains (parent 1 + child 2) will contribute together a concentration of x because both are under the control of one viral strain (parent A + child B). As the child bacterial strain 2 and child viral strain B evolve, the parent-child coupling constants are hypothesized to fade, and so $\beta \rightarrow 0$. When $\beta = 0$ a new species of bacteria and viruses has emerged. At this stage, we expect both new bacterial strains (species) to contribute together $2x$ to the concentration.

This effect can be readily appreciated by solving the butterfly network: Let B_i be the concentration of bacterial strain i, and V_i the concentration of the viral strain i, where $i=1$ are the parental strains and $i=2$ are the child strains (Fig. 5.4). The rate equations for the viral strains are given in the general case by
\[
\frac{dV_1}{dt} = \alpha b V_1 B_1 + \beta b V_1 B_2 - \gamma V_1 \\
\frac{dV_2}{dt} = \beta b V_2 B_1 + \alpha b V_2 B_2 - \gamma V_2
\]

where \(b \) is the burst size (assumed to be equal for the two strains). Assuming steady-state conditions (to obtain the fixed point concentrations), after some algebra (defining \(\gamma \equiv \gamma / b \)), we find that

\[
B_{\text{tot}} = B_1 + B_2 = \frac{2\gamma}{\alpha + \beta} = \frac{2\gamma}{\alpha} \left(1 + \frac{\beta}{\alpha}\right) = \frac{2\gamma}{\alpha} \cdot \frac{1}{1 + \kappa}.
\]

where we have defined the normalized parent-child coupling constant \(\kappa \equiv \beta / \alpha \).

Thus, initially, when \(\kappa = 1 \) we have \(B_{\text{tot}} = \frac{\gamma}{\alpha} \), and when \(\kappa = 0 \) we have \(B_{\text{tot}} = \frac{2\gamma}{\alpha} \). Thus, exactly as we predicted, the total concentration “taken up” by bacterial strains 1+2 increases from \(\frac{\gamma}{\alpha} \) to \(\frac{2\gamma}{\alpha} \) during the maturation process of the new species. We can parameterize this uncertainty with a “maturation factor” \(\mu \):

\[
B_{\text{tot}} = \mu B_{\text{species}}, \quad \text{where} \quad 1 \leq \mu \leq 2
\]

where \(B_{\text{species}} \) is the concentration one would obtain if one were to coarse grain the system to a species level ignoring strains. Therefore, in the case of a 2x2 network, if we were to coarse grain bacteria to a species level (say an OTU of 3%), we would be underestimating the concentration...
taken up by the species by a factor anywhere from $\mu=1$ to $\mu=2$ (Fig. 5.5). Now let’s see what happens in a more realistic scenario when a species is comprised of n strain (where in reality n can be very large since it probes the microdiversity of a species).

General 2x2 phage-host interaction network

![Diagram of a general 2x2 interaction network between two viral strains (strain A) and the emerging viral species (strain B), that are controlling the parental bacterial strain (strain 1) and the emerging bacterial species (strain 2). The timeline shows the hypothesized evolutionary trajectory of these four strains. Initially, as the new (child) strains have just emerged, the coupling constants are equal. As the child strains evolve, the parent-child coupling constants decrease (dashed lines). Finally the child strains have evolved enough so that the parent-child coupling constants are 0 and new species of bacteria and viruses have emerged.]

Figure 5.4 A 2x2 phage-host interaction network with event timeline. This diagram is a general 2x2 interaction network between two viral strains — a parental viral strain (strain A) and the emerging viral species (strain B), that are controlling the parental bacterial strain (strain 1) and the emerging bacterial species (strain 2). The timeline shows the hypothesized evolutionary trajectory of these four strains. Initially, as the new (child) strains have just emerged, the coupling constants are equal. As the child strains evolve, the parent-child coupling constants decrease (dashed lines). Finally the child strains have evolved enough so that the parent-child coupling constants are 0 and new species of bacteria and viruses have emerged.
Figure 5.5 Total concentration “taken up” by parent and child bacterial strains as child bacterial strain evolves towards a new species. Here we show how the sum concentration of both parent and child bacterial strains changes with time, as the parent-child coupling constant κ goes to 0. Initially, when the bacterial child strain is born, it is under the control of the parental viral strain and the parent-child coupling constant is maximal ($\kappa=1$). The total concentration at this point is that of a single bacteria strain (=1 in normalized units). When the bacterial child strain is fully evolved, the parent-child coupling constant equals 0 and a new bacterial species under the control of a new viral species has emerged. The total concentration at this point has doubled because the new bacterial species is allowed by its controlling virus to “take up” a concentration =1 (in normalized units).

The case of a species comprised of n parental strains

In the general case (Fig. 5.3) a bacterial species will be comprised of N_{strain} parental strains. Each of these parental strains is anywhere in the stage between emerging a new strain to having a fully emerged species (thus the total number of strains will be anywhere between N_{strain} and $2N_{\text{strain}}$). We make the approximation that each one of these parental strains is part of a butterfly
network with coupling constant β, which is anywhere between $\beta = \alpha$ to $\beta = 0$. If all strains were in a state of $\beta = \alpha$ then the total concentration “taken up” by this species would be

$$B_{tot} = \sum_{i=1}^{N_{\text{strain}}} B_1^{(i)} + B_2^{(i)} = \frac{\gamma}{\alpha} N_{\text{strain}}.$$

If all strains were in a state of $\beta = 0$ the total concentration “taken up” by this species would be

$$B_{tot} = \sum_{i=1}^{N_{\text{strain}}} B_1^{(i)} + B_2^{(i)} = \frac{2\gamma}{\alpha} N_{\text{strain}}.$$

Therefore,

$$B_{tot} = \mu N_{\text{strain}} B_{\text{species}}, \quad \text{where } 1 \leq \mu \leq 2$$

where B_{species}, once again, is the concentration one would obtain if one were to coarse grain the system to a species level ignoring strains. Therefore the number of “species” in Eq. 16B is given by

$$N_{\text{species}} = \mu N_{\text{strain}} \approx N_{\text{strain}}.$$

Thus, our conclusion from this analysis is very simple and logical. Even though the total number of actual independent phage-host systems is equal to the number of species we need to multiply each species by a factor which approximately equals the number of strains in that species. Thus by probing the “structure” of a species (which is the assumed construct in the biophysical model)
we came to the conclusion that one needs to weigh each species approximately by the number of strains in that species. Since strains are distinguishable, indeed each strain should contribute to the total concentration between $\times 1$ and $\times 2$.

5.3.3.3 The dynamics of speciation

The process of speciation (i.e., co-formation of new bacterial and viral species) is inherently stochastic since a bacterial strain can easily become extinct if a viral strain is lost, as the system becomes unstable (Section 4.6). We therefore envision the process of speciation as one in which new bacterial strains continually emerge from extant strains (the microclades in Fig. 5.3), with some strains evolving to become species, and with other strains being lost (Fig. 5.6). In principle, one should be able to calculate the rate at which bacterial species are formed in the oceans, possibly yielding better bounds on the total diversity in the oceans.

5.3.3.4 Analogy to the conventional concepts of a “species” and “strain”

The intuitive notion of a bacterial “strain” has been familiar to biologists for many years. Indeed genetic microdiversity below the species level has been observed in nature [9,10]. We too have observed such microdiversity in treponeme cells found in the termite hindgut (“Host I” and “Host III” in Fig. 2.2). The concept of a bacterial “species” comprised of “strains” is also well known and widely used by biologists, though the empirical identity thresholds used for classification of new species are somewhat questionable given the lack of a rigorous definition of a species. The concept of a strain of viruses is also familiar, this is the well-known quasispecies proposed by Eigen [1]. The definition of viral “species” on the other hand has been quite elusive [11]. If the model we propose proves to be valid, then it would seem that a host-range-based taxonomy [11] should lead to a meaningful organization of viral species, at least for marine
ecosystems. In principle, according to our model, the true classification of marine life-forms (bacteria + viruses) requires both to be classified simultaneously. For example, when two marine bacterial “species” seem very similar (using “species” in the colloquial meaning), then according to our proposed model, if these “species” are infected with different non-overlapping viruses they should be classified as different species.

5.3.3.5 The insight for the coarse-grained model

When considering the coarse-grained biophysical model, the most natural definition for a “species” would be “a cell that can be distinguished reproducibly from all other cells”, i.e., the definition of a strain. The evolutionary model has shown that this is not the case, as one needs a more complex structure, defined here as a species, in order to obtain a “world” of non-interacting phage-host systems. Thus, the “species” in the biophysical model are equivalent to the species defined in our evolutionary model, however, the concentration of each species needs to be multiplied by a weight of \(\sim N_{\text{strain}} \), which is the number of strains in each species. This conclusion also leads to a clear distinction between the concept of a bacterial strain and a bacterial species. While a bacterial species interacts with just one viral species and vice versa, a bacterial strain interacts with several viral strains and is not an independent entity.
Figure 5.6. **Flux of strains in the process of bacterial speciation.** According to our evolutionary model, bacterial strains of a given species are cells that are distinguishable for all other cells in the population, but do not form a stable (i.e., unique) association with viral strain (see Fig. 5.1D). A bacterial strain matures into a species if it forms a one-to-one association with a viral strain. The pool in this figure is the sum of all bacterial strains comprising a species. The flux into this pool comes from new emerging strains (Fig. 5.1B & D). The flux out of this pool is due to either strains that have gone extinct (e.g., since the viral network in which they were in became destabilized), or strains that have matured into species (Fig. 5.1E).

5.3 Why do phages typically have a narrow host range?

It is a known fact that most phages are species or strain specific (although a few exceptions have been found) [6,7,8]. Naïvely, this observation seems peculiar given that all cellular life forms encode and read information in virtually the same manner (e.g., human genes can be expressed in bacteria). Generally speaking, the genome of phage A could be expressed in many very divergent species, yet phages tend to infect a single species. Why is this the case?

The evolutionary scheme we propose here in fact predicts that phages should have (in the majority of cases at least) a species- or strain-level host range. According to our model, any given viral species is expected to infect a single bacterial species (Fig. 5.1 and Fig. 5.3). Thus, the viral strains associated with a given viral species will infect some (or all) of the bacterial
strains within a given bacterial species (Fig. 5.3). Our model therefore predicts that viruses will have either a “species”-specific host range (infecting all strains of a given bacterial species) or a “strain”-specific host range, infecting a subset of bacterial strains (or at the very minimum a single bacterial strain).

Mechanisms to generate a wide host range. A viral species could in principle evolve to infect another bacterial species in addition to its original host (and thus the former bacterial species will be susceptible to more than one viral species). As long as the viral species is part of an nxn network of associations, the dynamics are stable (see Section 4.6). However, such a scenario seems to be the exception since in open systems at least, species are not spatially constrained. Therefore, if a species drifts off, the network will become imbalanced (i.e., nxm where n≠m) leading to unstable dynamics and, over time, extinction events. This leads to a prediction that in closed systems (for example the gut) there will be more viruses with a wide host range than in open systems. Indeed, phages isolated from sewage appear to display a wide host range [12].

Another possibility for a wide host range is the following: if the cross-species infection in Fig. 2D does not fade away with time as we hypothesized, then in a closed system it is possible to have a lytic viral species with a wide host range if it is part of an nxn network of hosts and viruses. However, in an open environment, where species are not spatially constrained, again the system may become unstable as described above. Thus, unless the environment is constrained to a closed volume, it seems that generally a more robust and stable solution (and therefore more likely scenario) would be for phages to have a narrow host range. That said, the scheme we have presented here does not preclude the possibility that a given viral species happens to be
successful in infecting many bacterial species that are not present in the given environment (e.g., they happen to have the same membrane receptor). Such coincidental events should also be kept in mind.

5.4 Testing the evolutionary model: evolution experiment of a phage-host system

One possible way to test our model is to perform a Lenski-type evolution experiment of a phage-host system (similar to the evolution experiments of Rainey [13]). One choice would be T4 and *E. coli*. To prevent total annihilation of the bacteria, we should add a degradation factor for the phages (or perhaps a chemostat would be sufficient?). *E. coli* is a good choice since its CRISPR system has been investigated [14]. After n generations would expect at least two new bacterial strains to co-emerge with an equal number of viral strains. After enough generations the n emerging strains should be distinguishable (measurable by sequencing). Furthermore, we should observe a decrease in parent-child cross affinity between the new evolving viral strain(s) and the original viral strain. In a different experiment, one can evolve a strain of *E. coli* with a mutation in one of the *cas* proteins inactivating the CRISPR array defense mechanism. We expect that either we will not observe the emergence of new strains, or that it will take a much longer time to obtain the same evolutionary distance between strains.
5.5 References