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Abstract

Energy expenditure has become a significant fraction of data center operating costs. Recently,

“geographical load balancing” has been suggested to reduce energy cost by exploiting the electricity

price differences across regions. However, this reduction of cost can paradoxically increase total

energy use. This work explores whether the geographical diversity of internet-scale systems can

additionally be used to provide environmental gains.

We first focus on geographical load balancing, which is modeled as a convex optimization prob-

lem. We derive two distributed algorithms for achieving optimal geographical load balancing and

characterize the optimal solutions.

Then we continue to use the framework and algorithms to investigate whether geographical load

balancing can encourage use of “green” renewable energy and reduce use of “brown” fossil fuel

energy. Here we consider two approaches, namely, dynamic pricing and local renewables.

For the dynamic pricing case, our numeric results show that if electricity is dynamically priced

in proportion to the instantaneous fraction of the total energy that is brown, then geographical

load balancing provides significant reductions in brown energy use. However, the benefits depend

strongly on the degree to which systems accept dynamic energy pricing and the form of pricing used.

For the local renewables case, we perform a trace-based study to evaluate three issues related to

achieving this goal: the impact of geographical load balancing, the role of storage, and the optimal

mix of renewables. Our results highlight that geographical load balancing can significantly reduce

the required capacity of renewable energy by using the energy more efficiently with “follow the

renewables” routing. Further, our results show that small-scale storage can be useful, especially

in combination with geographical load balancing, and that an optimal mix of renewables includes

significantly more wind than photovoltaic solar.
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Chapter 1

Introduction

Increasingly, web services are provided by massive, geographically diverse “internet-scale” distributed

systems, some having several data centers each with hundreds of thousands of servers. Such data

centers require many megawatts of electricity and so companies like Google and Microsoft pay tens

of millions of dollars annually for electricity [45].

The enormous, and growing energy demands of data centers have motivated research both in

academia and industry on reducing energy usage, for both economic and environmental reasons.

Engineering advances in cooling, virtualization, multi-core servers, DC power, etc. have led to sig-

nificant improvements in the Power Usage Effectiveness (PUE) of data centers; see [8, 51, 26, 28].

Such work focuses on reducing the energy use of data centers and their components.

A different stream of research has focused on exploiting the geographical diversity of internet-

scale systems to reduce the energy cost. Specifically, a system with clusters at tens or hundreds of

locations around the world can dynamically route requests/jobs to clusters based on proximity to

the user, load, and local electricity price. Thus, dynamic geographical load balancing can balance

the revenue lost due to increased delay against the electricity costs at each location.

In recent years, many papers have illustrated the potential of geographical load balancing to

provide significant cost savings for data centers, e.g., [32, 42, 45, 46, 48, 53] and the references

therein. The goal of the current thesis is different. Our goal is to explore the social impact of

geographical load balancing systems. In particular, geographical load balancing aims to reduce

energy costs, but this can come at the expense of increased total energy usage: by routing to a data

center farther from the request source to use cheaper energy, the data center may need to complete

the job faster, and so use more service capacity, and thus energy, than if the request was served

closer to the source.

In contrast to this negative consequence, geographical load balancing also provides a huge op-

portunity for environmental benefit as the penetration of green, renewable energy sources increases.

Specifically, an enormous challenge facing the electric grid is that of incorporating intermittent, un-

predictable renewable sources such as wind and solar. Because generation supplied to the grid must
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be balanced by demand (i) instantaneously and (ii) locally (due to transmission losses), renewable

sources pose a significant challenge. A key technique for handling the unpredictability of renewable

sources is demand-response, which entails the grid adjusting the demand by changing the electric-

ity price [3]. However, demand response entails a local customer curtailing use. In contrast, the

demand of internet-scale systems is flexible geographically; thus traffic can be routed to different

regions to “follow the renewables”, providing demand-response without service interruption. Since

data centers represent a significant and growing fraction of total electricity consumption, and the

IT infrastructure is already in place, geographical load balancing has the potential to provide an

extremely inexpensive approach for enabling large scale, global demand-response.

The key to realizing the environmental benefits above is for data centers to move from the fixed

price contracts that are now typical toward some degree of dynamic pricing, with lower prices when

green energy is available. The demand response markets currently in place provide a natural way

for this transition to occur, and there is already evidence of some data centers participating in such

markets [3].

On the other hand, data centers are often powered by a “green” portfolio of energy already [30,

35, 37]. However, most studies of powering data centers entirely with renewable energy have focused

on powering individual data centers, e.g., [19, 20]. These have shown that it is challenging to

power a data center using only local wind and solar energy without large-scale storage, due to the

intermittency and unpredictability of these sources.

Our goal here is to illustrate that the geographical diversity of internet-scale services significantly

improves the efficiency of the usage of renewable energy. This numerical study complements testbeds

such as [40]. Further, we illustrate that algorithmic solutions can play a vital role in reducing the

necessary capacity of renewable energy installed.

Specifically, we perform numerical experiments using real traffic workloads and real data about

the availability of renewables combined with an analytic model for a geographically distributed

system. Using this setup, we investigate issues related to the feasibility of powering an internet-scale

system (nearly) completely with renewable energy.

We have three major contributions in this work. (1) We develop distributed algorithms for

geographical load balancing with provable optimality guarantees. (2) We use the proposed algorithms

to explore the feasibility and consequences of using geographical load balancing for demand response

in the grid. (3) We study the case where data center is (nearly) completely powered by local

renewables.

Contribution (1): To derive distributed geographical load balancing algorithms we use a simple

but general model, described in detail in Chapter 2.1. In it, each data center minimizes its cost,

which is a linear combination of an energy cost and the lost revenue due to the delay of requests

(which includes both network propagation delay and load-dependent queueing delay within a data
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center). The geographical load balancing algorithm must then dynamically define both how requests

should be routed to data centers and how to allocate capacity in each data center (i.e., how many

servers are kept in active/energy-saving states).

In Chapter 2.2, we characterize the optimal geographical load balancing solutions and show that

they have practically appealing properties, such as sparse routing tables. Then, in Chapter 2.3,

we use the previous characterization to give two distributed algorithms which provably compute

the optimal routing and provisioning decisions, and which require different types of coordination of

computation. Finally, we evaluate the distributed algorithms in a trace-driven numeric simulation

of a realistic, distributed, internet-scale system (Chapter 2.4). The results show that a cost saving

of over 40% during light-traffic periods is possible.

Contribution (2): In Chapter 3.1 we evaluate the feasibility and benefits of using geographical

load balancing to facilitate the integration of renewable sources into the grid. We do this using a

trace-driven numeric simulation of a realistic, distributed internet-scale system in combination with

models for the availability of wind and solar energy over time.

When the data center incentive is aligned with the social objective or reducing brown energy by

dynamically pricing electricity proportionally to the fraction of the total energy coming from brown

sources, we show that “follow the renewables” routing ensues (see Figure 3.1), causing significant

social benefit. In contrast, we also determine the wasted brown energy when prices are static, or are

dynamic but do not align data center and social objectives.

Contribution (3): Our study in Chapter 3.2 yields three key insights.

First, GLB significantly reduces the capacity of renewables needed to move toward a “green”

system, since GLB allows the system to use “follow the renewables” routing, which reduces both the

financial cost and the “brown” non-renewable energy usage. However, we also show the importance

of using a fast control time-scale for GLB. If routing and capacity decisions are made only once an

hour, then significantly more brown energy is consumed than if the adjustments are made every

ten minutes. Unfortunately, adjustments at this faster time-scale may not be feasible due to server

wear-and-tear and other concerns.

Second, we investigate the value of storage when using renewable energy. Often large-scale storage

is viewed as essential for moving toward a completely renewable energy portfolio. However, our study

shows that small-scale storage in combination with GLB is sufficient in moving to a portfolio of nearly

completely renewable energy sources. This is particularly exciting since the UPSs in use at data

centers today could be used to provide small-scale storage with few engineering changes.

Third, we find that wind is more valuable than solar for internet-scale systems, especially when

GLB is used, because wind has little correlation across locations, and is available during both

night and day. Thus, if one aggregates over many locations, there is much less variation in the

availability [7]. The optimal mix seems to be dominated by wind, but include some solar to handle
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the peak workload around noon. For the traces we consider, the optimal portfolio is 80% wind and

20% solar. This ratio may depend on the quality of the local wind resources; moreover, workloads

with higher (lower) diurnal peak-to-mean ratios may benefit from a higher (lower) solar component.



5

Chapter 2

Geographical Load Balancing

In this section, we introduce the geographical load balancing problem. We first model the problem

as a convex optimization problem, then characterize the optimal solutions and use the optimal

properties to design two distributed algorithms. We also provide numeric results for the performance

evaluation.

2.1 Model and Notation

We now introduce the workload and data center models, followed by the geographical load balancing

problem.

2.1.1 The workload model

We consider a discrete-time model whose timeslot matches the timescale at which routing decisions

and capacity provisioning decisions can be updated. There is a (possibly long) interval of interest

t ∈ {1, . . . , T}. There are |J | geographically concentrated sources of requests, i.e., “cities”, and the

mean arrival rate from source j at time t is Lj(t). Job interarrival times are assumed to be much

shorter than a timeslot, so that provisioning can be based on the average arrival rate during a slot.

In practice, T could be a month and a slot length could be 1 hour. Our analytic results make no

assumptions on Lj(t); however to provide realistic estimates we use real-world traces to define Lj(t)

in Chapters 2.4 and 3.

2.1.2 The data center cost model

We model an Internet-scale system as a collection of |N | geographically diverse data centers, where

data center i is modeled as a collection of Mi homogeneous servers. The model focuses on two key

control decisions of geographical load balancing: (i) determining λij(t), the amount of traffic routed

from source j to data center i; and (ii) determining mi(t) ∈ {0, . . . ,Mi}, the number of active servers



6

at data center i. The system seeks to choose λij(t) and mi(t) in order to minimize cost during [1, T ].

Depending on the system design these decisions may be centralized or decentralized. Algorithms for

these decisions are the focus of Chapter 2.3.

Our model for data center costs focuses on the server costs of the data center.1 We model

costs by combining the energy cost and the delay cost (in terms of lost revenue). Note that, to

simplify the model, we do not include the switching costs associated with cycling servers in and out

of power-saving modes; however the approach of [32] provides a natural way to incorporate such

costs if desired.

Energy cost. To capture the geographic diversity and variation over time of energy costs, we

let gi(t,mi, λi) denote the energy cost for data center i during timeslot t given mi active servers

and arrival rate λi. For every fixed t, we assume that gi(t,mi, λi) is continuously differentiable in

both mi and λi, strictly increasing in mi, non-decreasing in λi, and convex in mi. This formulation

is quite general, and captures, for example, the common charging plan of a fixed price per kWh

plus an additional “demand charge” for the peak of the average power used over a sliding 15 minute

window [41]. Additionally, it can capture a wide range of models for server power consumption, e.g.,

energy costs as an affine function of the load, see [16], or as a polynomial function of the speed, see

[54, 6].

Defining λi(t) =
∑
j∈J λij(t), the total energy cost of data center i during timeslot t, Ei(t), is

simply

Ei(t) = gi(t,mi(t), λi(t)). (2.1)

Delay cost. The delay cost captures the lost revenue incurred because of the delay experienced

by the requests. To model this, we define r(d) as the lost revenue associated with a job experiencing

delay d. We assume that r(d) is strictly increasing and convex in d.

To model the delay, we consider its two components: the network delay experienced while the

request is outside of the data center and the queueing delay experienced while the request is at the

data center.

To model the network delay, we let dij(t) denote the network delay experienced by a request

from source j to data center i during timeslot t. We make no requirements on the structure of the

dij(t).

To model the queueing delay, we let fi(mi, λi) denote the queueing delay at data center i given

mi active servers and an arrival rate of λi. We assume that fi is strictly decreasing in mi, strictly

increasing in λi, and strictly convex in both mi and λi. Further, for stability, we must have that

λi = 0 or λi < miµi, where µi is the service rate of a server at data center i. Thus, we define

1Minimizing server energy consumption also reduces cooling and power distribution costs.
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fi(mi, λi) =∞ for λi ≥ miµi. Elsewhere, we assume fi is finite, continuous and differentiable. Note

that these assumptions are satisfied by most standard queueing formulae, e.g., the mean delay under

M/GI/1 Processor Sharing (PS) queue and the 95th percentile of delay under the M/M/1. Further,

the convexity of fi in mi models the law of diminishing returns for parallelism.

Combining the above gives the following model for the total delay cost Di(t) at data center i

during timeslot t:

Di(t) =
∑

j∈J
λij(t)r (fi(mi(t), λi(t)) + dij(t)) . (2.2)

2.1.3 The geographical load balancing problem

Given the cost models above, the goal of geographical load balancing is to choose the routing policy

λij(t) and the number of active servers in each data center mi(t) at each time t in order minimize

the total cost during [1, T ]. This is captured by the following optimization problem:

min
m(t),λ(t)

∑T

t=1

∑
i∈N

(Ei(t) +Di(t)) (2.3a)

s.t.
∑

i∈N
λij(t) = Lj(t), ∀j ∈ J (2.3b)

λij(t) ≥ 0, ∀i ∈ N, ∀j ∈ J (2.3c)

0 ≤ mi(t) ≤Mi, ∀i ∈ N (2.3d)

mi(t) ∈ N, ∀i ∈ N (2.3e)

To simplify (2.3), note that Internet data centers typically contain thousands of active servers. So,

we can relax the integer constraint in (2.3) and round the resulting solution with minimal increase

in cost. Also, because this model neglects the cost of turning servers on or off, the optimization

decouples into independent sub-problems for each timeslot t. For the analysis we consider only a

single interval and omit the explicit time dependence.2 Thus (2.3) becomes

min
m,λ

∑
i∈N

gi(mi, λi) +
∑
i∈N

∑
j∈J

λijr(dij + fi(mi, λi)) (2.4a)

s.t.
∑

i∈N
λij = Lj , ∀j ∈ J (2.4b)

λij ≥ 0, ∀i ∈ N, ∀j ∈ J (2.4c)

0 ≤ mi ≤Mi, ∀i ∈ N, (2.4d)

We refer to this formulation as GLB. Note that GLB is jointly convex in λij and mi and can be

efficiently solved centrally. However, a distributed solution algorithm is usually required, such as

2Time-dependence of Lj and prices is re-introduced for, and central to, the numeric results in Chapters 2.4 and 3.1.
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those derived in Chapter 2.3.

In contrast to prior work studying geographical load balancing, it is important to observe that

this paper is the first, to our knowledge, to incorporate jointly optimizing the total energy cost and

the end-to-end user delay with consideration of both price diversity and network delay diversity.

GLB provides a general framework for studying geographical load balancing. However, the model

ignores many aspects of data center design, e.g., reliability and availability, which are central to data

center service level agreements. Such issues are beyond the scope of this paper; however our designs

merge nicely with proposals such as [50] for these goals.

The GLB model is too broad for some of our analytic results and thus we often use two restricted

versions.

Linear lost revenue. This model uses a lost revenue function r(d) = βd, for constant β.

Though it is difficult to choose a “universal” form for the lost revenue associated with delay, there

is evidence that it is linear within the range of interest for sites such as Google, Bing, and Shopzilla

[15]. GLB then simplifies to

min
m,λ

∑
i∈N

gi(mi, λi)+ β

∑
i∈N

λifi(mi, λi) +
∑
i∈N

∑
j∈J

dijλij

 (2.5)

subject to (3.4a)–(3.4c). We call this optimization GLB-LIN.

Queueing-based delay. We occasionally specify the form of f and g using queueing models.

This provides increased intuition about the distributed algorithms presented.

If the workload is perfectly parallelizable, and arrivals are Poisson, then fi(mi, λi) is the average

delay of mi parallel queues, each with arrival rate λi/mi. Moreover, if each queue is an M/GI/1

Processor Sharing (PS) queue, then fi(mi, λi) = 1/(µi−λi/mi). We also assume gi(mi, λi) = pimi,

which implies that the increase in energy cost per timeslot for being in an active state, rather than

a low-power state, is pi regardless of λi.

Under these restrictions, the GLB formulation becomes:

min
m,λ

∑
i∈N

pimi + β
∑
j∈J

∑
i∈N

λij

(
1

µi − λi/mi
+ dij

)
(2.6a)

subject to (3.4a)–(3.4c) and the additional constraint

λi ≤ miµi ∀i ∈ N. (2.6b)

We refer to this optimization as GLB-Q.

Additional Notation. Throughout the paper we use |S| to denote the cardinality of a set S

and bold symbols to denote vectors or tuples. In particular, λj = (λij)i∈N denotes the tuple of λij
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from source j, and λ−j = (λik)i∈N,k∈J\{j} denotes the tuples of the remaining λik, which forms a

matrix. Similarly m = (mi)i∈N and λ = (λij)i∈N,j∈J .

We also need the following in discussing the algorithms. Define Fi(mi, λi) = gi(mi, λi) +

βλifi(mi, λi), and define F (m,λ) =
∑
i∈N Fi(mi, λi) + Σijλijdij . Further, let m̂i(λi) be the uncon-

strained optimal mi at data center i given fixed λi, i.e., the unique solution to ∂Fi(mi, λi)/∂mi = 0.

2.1.4 Practical considerations

Our model assumes there exist mechanisms for dynamically (i) provisioning capacity of data centers,

and (ii) adapting the routing of requests from sources to data centers.

With respect to (i), many dynamic server provisioning techniques are being explored by both

academics and industry, e.g., [5, 13, 18, 52]. With respect to (ii), there are also a variety of protocol-

level mechanisms employed for data center selection today. They include, (a) dynamically generated

DNS responses, (b) HTTP redirection, and (c) using persistent HTTP proxies to tunnel requests.

Each of these has been evaluated thoroughly, e.g., [14, 34, 44], and though DNS has drawbacks

it remains the preferred mechanism for many industry leaders such as Akamai, possibly due to

the added latency due to HTTP redirection and tunneling [43]. Within the GLB model, we have

implicitly assumed that there exists a proxy/DNS server co-located with each source.

Our model also assumes that the network delays, dij can be estimated, which has been studied

extensively, including work on reducing the overhead of such measurements, e.g., [49], and mapping

and synthetic coordinate approaches, e.g., [29, 39]. We discuss the sensitivity of our algorithms to

error in these estimates in Chapter 2.4.

2.2 Characterizing the optima

We now provide characterizations of the optimal solutions to GLB, which are important for proving

convergence of the distributed algorithms of Chapter 2.3. They are also necessary because, a priori,

one might worry that the optimal solution requires a very complex routing structure, which would

be impractical; or that the set of optimal solutions is very fragmented, which would slow convergence

in practice. The results here show that such worries are unwarranted.

2.2.1 Uniqueness of optimal solution

To begin, note that GLB has at least one optimal solution. This can be seen by applying Weierstrass

theorem [9], since the objective function is continuous and the feasible set is compact subset of Rn.

Although the optimal solution is generally not unique, there are natural aggregate quantities unique

over the set of optimal solutions, which is a convex set. These are the focus of this section.
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A first result is that for the GLB-LIN formulation, under weak conditions on fi and gi, we have

that λi is common across all optimal solutions. Thus, the input to the data center provisioning

optimization is unique.

Theorem 1. Consider the GLB-LIN formulation. Suppose that for all i, Fi(mi, λi) is jointly convex

in λi and mi, and continuously differentiable in λi. Further, suppose that m̂i(λi) is strictly convex.

Then, for each i, λi is common for all optimal solutions.

The proof is in the Appendix. Theorem 1 implies that the server arrival rates at each data center,

i.e., λi/mi, are common among all optimal solutions.

Though the conditions on Fi and m̂i are weak, they do not hold for GLB-Q. In that case, m̂i(λi)

is linear, and thus not strictly convex. Although the λi are not common across all optimal solutions

in this setting, the server arrival rates remain common across all optimal solutions.

Theorem 2. For each data center i, the server arrival rates, λi/mi, are common across all optimal

solutions to GLB-Q.

2.2.2 Sparsity of routing

It would be impractical if the optimal solutions to GLB required that traffic from each source was

divided up among (nearly) all of the data centers. In general, each λij could be non-zero, yielding

|N | × |J | flows of traffic from sources to data centers, which would lead to significant scaling issues.

Luckily, there is guaranteed to exist an optimal solution with extremely sparse routing. Specifically:

Theorem 3. There exists an optimal solution to GLB with at most (|N |+ |J |−1) of the λij strictly

positive.

Though Theorem 3 does not guarantee that every optimal solution is sparse, the proof is con-

structive. Thus, it provides an approach which allows one to transform an optimal solution into a

sparse optimal solution.

The following result further highlights the sparsity of the routing: any source will route to at

most one data center that is not fully active, i.e., where there exists at least a server in power-saving

mode.

Theorem 4. Consider GLB-Q where power costs pi are drawn from an arbitrary continuous distri-

bution. If any source j ∈ J has its traffic split between multiple data centers N ′ ⊆ N in an optimal

solution, then, with probability 1, at most one data center i ∈ N ′ has mi < Mi.
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2.3 Algorithms

We now focus on GLB-Q and present two distributed algorithms that solve it, and prove their

convergence.

Since GLB-Q is convex, it can be efficiently solved centrally if all necessary information can

be collected at a single point, as may be possible if all the proxies and data centers were owned

by the same system. However there is a strong case for Internet-scale systems to outsource route

selection [53]. To meet this need, the algorithms presented below are decentralized and allow each

data center and proxy to optimize based on partial information.

These algorithms seek to fill a notable hole in the growing literature on algorithms for geographical

load balancing. Specifically, they have provable optimality guarantees for a performance objective

that includes both energy and delay, where route decisions are made using both energy price and

network propagation delay information. The most closely related work [46] investigates the total

electricity cost for data centers in a multi-electricity-market environment. It contains the queueing

delay inside the data center (assumed to be an M/M/1 queue) but neglects the end-to-end user delay.

Conversely, [53] uses a simple, efficient algorithm to coordinate the “replica-selection” decisions, but

assumes the capacity at each data center is fixed. Other related works, e.g., [46, 48, 42], either do

not provide provable guarantees or ignore diverse network delays and/or prices.

2.3.1 Algorithm 1: Gauss-Seidel iteration

Algorithm 1 is motivated by the observation that GLB-Q is separable in mi, and, less obviously,

also separable in λj := (λij , i ∈ N). This allows all data centers as a group and each proxy j to

iteratively solve for optimal m and λj in a distributed manner, and communicate their intermediate

results to each other. Though distributed, Algorithm 1 requires each proxy to solve an optimization

problem.

To highlight the separation between data centers and proxies, we reformulate GLB-Q as:

min
λj∈Λj

min
mi∈Mi

∑
i∈N

(
pimi +

βλi
µi − λi/mi

)
+ β

∑
i,j

λijdij (2.7)

Mi := [0,Mi] Λj := {λj | λj ≥ 0,
∑
i∈N

λij = Lj} (2.8)

Since the objective and constraintsMi and Λj are separable, this can be solved separately by data

centers i and proxies j.

The iterations of the algorithm are indexed by τ , and are assumed to be fast relative to the

timeslots t. Each iteration τ is divided into |J |+1 phases. In phase 0, all data centers i concurrently

calculate mi(τ + 1) based on their own arrival rates λi(τ), by minimizing (2.7) over their own
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variables mi:

min
mi∈Mi

(
pimi +

βλi(τ)

µi − λi(τ)/mi

)
(2.9)

In phase j of iteration τ , proxy j minimizes (2.7) over its own variable by setting λj(τ + 1) as the

best response to m(τ + 1) and the most recent values of λ−j := (λk, k 6= j). This works because

proxy j depends on λ−j only through their aggregate arrival rates at the data centers:

λi(τ, j) :=
∑
l<j

λil(τ + 1) +
∑
l>j

λil(τ) (2.10)

To compute λi(τ, j), proxy j need not obtain individual λil(τ) or λil(τ + 1) from other proxies l.

Instead, every data center i measures its local arrival rate λi(τ, j) + λij(τ) in every phase j of the

iteration τ and sends this to proxy j at the beginning of phase j. Then proxy j obtains λi(τ, j) by

subtracting its own λij(τ) from the value received from data center i. When there are fewer data

centers than proxies, this has less overhead than direct messaging.

In summary, the algorithm is as follows (noting that the minimization (2.9) has a closed form).

Here, [x]a := min{x, a}.

Algorithm 1. Starting from a feasible initial allocation λ(0) and the associated m(λ(0)), let

mi(τ + 1) :=

[(
1 +

1√
pi/β

)
· λi(τ)

µi

]Mi

(2.11)

λj(τ + 1) := arg min
λj∈Λj

∑
i∈N

λi(τ, j) + λij
µi − (λi(τ, j) + λij)/mi(τ + 1)

+
∑

i∈N
λijdij . (2.12)

Since GLB-Q generally has multiple optimal λ∗j , Algorithm 1 is not guaranteed to converge to one

optimal solution, i.e., for each proxy j, the allocation λij(τ) of job j to data centers i may oscillate

among multiple optimal allocations. However, both the optimal cost and the optimal per-server

arrival rates to data centers will converge.

Theorem 5. Let (m(τ),λ(τ)) be a sequence generated by Algorithm 1 when applied to GLB-Q.

Then

(i) Every limit point of (m(τ),λ(τ)) is optimal.

(ii) F (m(τ),λ(τ)) converges to the optimal value.

(iii) The per-server arrival rates (λi(τ)/mi(τ), i ∈ N) to data centers converge to their unique

optimal values.
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The proof of Theorem 5 follows from the fact that Algorithm 1 is a modified Gauss-Seidel

iteration. This is also the reason for the requirement that the proxies update sequentially. The

details of the proof are in Appendix B.

Algorithm 1 assumes that there is a common clock to synchronize all actions. In practice,

updates will likely be asynchronous, with data centers and proxies updating with different frequencies

using possibly outdated information. The algorithm generalizes easily to this setting, though the

convergence proof is more difficult.

The convergence rate of Algorithm 1 in a realistic scenario is illustrated numerically in Chap-

ter 2.4.

2.3.2 Algorithm 2: Distributed gradient projection

Algorithm 2 reduces the computational load on the proxies. In each iteration, instead of each proxy

solving a constrained minimization (2.12) as in Algorithm 1, Algorithm 2 takes a single step in a

descent direction. Also, while the proxies compute their λj(τ + 1) sequentially in |J | phases in

Algorithm 1, they perform their updates all at once in Algorithm 2.

To achieve this, rewrite GLB-Q as

min
λj∈Λj

∑
j∈J

Fj(λ) (2.13)

where F (λ) is the result of minimization of (2.7) over mi ∈ Mi given λi. As explained in the

definition of Algorithm 1, this minimization is easy: if we denote the solution by (cf. (2.11)):

mi(λi) :=

[(
1 +

1√
pi/β

)
· λi
µi

]Mi

(2.14)

then

F (λ) :=
∑
i∈N

(
pimi(λi) +

βλi
µi − λi/mi(λi)

)
+ β

∑
i,j

λijdij .

We now sketch the two key ideas behind Algorithm 2. The first is the standard gradient projection

idea: move in the steepest descent direction

−∇Fj(λ) := −
(
∂F (λ)

∂λ1j
, · · · , ∂F (λ)

∂λ|N |j

)

and then project the new point into the feasible set
∏
j Λj . The standard gradient projection

algorithm will converge if ∇F (λ) is Lipschitz over our feasible set
∏
j Λj . This condition, however,

does not hold for our F because of the term βλi/(µi − λi/mi). The second idea is to construct

a compact and convex subset Λ of the feasible set
∏
j Λj with the following properties: (i) if the
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algorithm starts in Λ, it stays in Λ; (ii) Λ contains all optimal allocations; (iii) ∇F (λ) is Lipschitz

over Λ. The algorithm then projects into Λ in each iteration instead of
∏
j Λj . This guarantees

convergence.

Specifically, fix a feasible initial allocation λ(0) ∈
∏
j Λj and let φ := F (λ(0)) be the initial

objective value. Define

Λ := Λ(φ) :=
∏
j

Λj ∩
{
λ

∣∣∣∣λi ≤ φMiµi
φ+ βMi

, ∀i
}
. (2.15)

Even though the Λ defined in (2.15) indeed has the desired properties (see Appendix B), the pro-

jection into Λ requires coordination of all proxies and is thus impractical. In order for each proxy j

to perform its update in a decentralized manner, we define proxy j’s own constraint subset:

Λ̂j(τ) := Λj ∩
{
λj

∣∣∣∣λi(τ,−j) + λij ≤
φMiµi
φ+ βMi

,∀i
}

where λi(τ,−j) :=
∑
l 6=j λil(τ) is the arrival rate to data center i, excluding arrivals from proxy j.

Even though Λ̂j(τ) involves λi(τ,−j) for all i, proxy j can easily calculate these quantities from the

measured arrival rates λi(τ) it is told by data centers i, as done in Algorithm 1 (cf. (2.10) and the

discussion thereafter), and does not need to communicate with other proxies. Hence, given λi(τ,−j)

from data centers i, each proxy can project into Λ̂j(τ) to compute the next iterate λj(τ +1) without

the need to coordinate with other proxies.3 Moreover, if λ(0) ∈ Λ then λ(τ) ∈ Λ for all iterations

τ . In summary, Algorithm 2 is as follows.

Algorithm 2. Starting from a feasible initial allocation λ(0) and the associated m(λ(0)), each

proxy j computes, in each iteration τ :

zj(τ + 1) := [λj(τ)− γj (∇Fj(λ(τ)))]Λ̂j(τ) (2.16)

λj(τ + 1) :=
|J | − 1

|J |
λj(τ) +

1

|J |
zj(τ + 1) (2.17)

where γj > 0 is a stepsize and ∇Fj(λ(τ)) is given by

∂F (λ(τ))

∂λij
= β

(
dij +

µi

(µi − λi(τ)/mi(λi(τ)))
2

)
.

Implicit in the description is the requirement that all data centers i compute mi(λi(τ)) according

to (2.14) in each iteration τ . Each data center i measures the local arrival rate λi(τ), calculates

mi(λi(τ)), and broadcasts these values to all proxies at the beginning of iteration τ + 1 for the

proxies to compute their λj(τ + 1).

3The projection to the nearest point in Λ̂j(τ) is defined by [λ]Λ̂j(τ) := arg miny∈Λ̂j(τ) ‖y − λ‖2.
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Algorithm 2 has the same convergence property as Algorithm 1, provided the stepsize is small

enough.

Theorem 6. Let (m(τ),λ(τ)) be a sequence generated by Algorithm 2 when applied to GLB-Q. If,

for all j, 0 < γj < mini∈N β
2µ2
iM

4
i /(|J |(φ+ βMi)

3), then

(i) Every limit point of (m(τ),λ(τ)) is optimal.

(ii) F (m(τ),λ(τ)) converges to the optimal value.

(iii) The per-server arrival rates (λi(τ)/mi(τ), i ∈ N) to data centers converge to their unique

optimal values.

Theorem 6 is proved in Appendix B. The key novelty of the proof is (i) handling the fact that

the objective is not Lipshitz and (ii) allowing distributed computation of the projection. The bound

on γj in Theorem 6 is more conservative than necessary for large systems. Hence, a larger stepsize

can be choosen to accelerate convergence. The convergence rate is illustrated in a realistic setting

in Chapter 2.4.

2.4 Case study

The remainder of the paper evaluates the algorithms presented in the previous section under a

realistic workload. This section considers the data center perspective (i.e., cost minimization) and

Chapter 3.1 considers the social perspective (i.e., brown energy usage).

2.4.1 Experimental setup

We aim to use realistic parameters in the experimental setup and provide conservative estimates of

the cost savings resulting from optimal geographical load balancing. The setup models an Internet-

scale system such as Google within the United States.

Workload description To build our workload, we start with a trace of traffic from Hotmail, a

large Internet service running on tens of thousands of servers. The trace represents the I/O activity

from 8 servers over a 48-hour period, starting at midnight (PDT) on August 4, 2008, averaged over

10 minute intervals. The trace has strong diurnal behavior and has a fairly small peak-to-mean

ratio of 1.64. Results for this small peak-to-mean ratio provide a lower bound on the cost savings

under workloads with larger peak-to-mean ratios. As illustrated in Figure 2.1(a), the Hotmail

trace contains significant nightly activity due to maintenance processes; however the data center is

provisioned for the peak foreground traffic. This creates a dilemma about whether to include the

maintenance activity or not. We have performed experiments with both, but report only the results
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Figure 2.1: Hotmail trace used in numerical results.

with the spike removed (as illustrated in Figure 2.1(b)) because this leads to a more conservative

estimate of the cost savings.

Building on this trace, we construct our workload by placing a source at the geographical center

of each mainland US state, co-located with a proxy or DNS server (as described in Chapter 2.1.4).

The trace is shifted according to the time-zone of each state, and scaled by the size of the population

in the state that has an Internet connection [1].

Data center description To model an Internet-scale system, we have 14 data centers, one at

the geographic center of each state known to have Google data centers [24]: California, Washington,

Oregon, Illinois, Georgia, Virginia, Texas, Florida, North Carolina, and South Carolina.

We merge the data centers in each state and set Mi proportional to the number of data centers

in that state, while keeping Σi∈NMiµi twice the total peak workload, maxt Σj∈JLj(t). The network

delays, dij , between sources and data centers are taken to be proportional to the distances between

the centers of the two states and comparable to queueing delays. This lower bound on the network

delay ignores delay due to congestion or indirect routes.

Cost function parameters To model the costs of the system, we use the GLB-Q formulation.

We set µi = 1 for all i, so that the servers at each location are equivalent. We assume the energy

consumption of an active server in one timeslot is normalized to 1. We set constant electricity prices

using the industrial electricity price of each state in May 2010 [25]. Specifically, the price (cents per

kWh) is 10.41 in California; 3.73 in Washington; 5.87 in Oregon, 7.48 in Illinois; 5.86 in Georgia;

6.67 in Virginia; 6.44 in Texas; 8.60 in Florida; 6.03 in North Carolina; and 5.49 in South Carolina.

In this section, we set β = 1; however Figure 2.3 illustrates the impact of varying β.
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Figure 2.2: Convergence of Algorithm 1 and 2.

Algorithm benchmarks To provide benchmarks for the performance of the algorithms presented

here, we consider three baselines, which are approximations of common approaches used in Internet-

scale systems. They also allow implicit comparisons with prior work such as [46]. The approaches

use different amounts of information to perform the cost minimization. Note that each approach

must use queueing delay (or capacity information); otherwise the routing may lead to instability.

Baseline 1 uses network delays but ignores energy price when minimizing its costs. This demon-

strates the impact of price-aware routing. It also shows the importance of dynamic capacity provi-

sioning, since without using energy cost in the optimization, every data center will keep every server

active.

Baseline 2 uses energy prices but ignores network delay. This illustrates the impact of location

aware routing on the data center costs. Further, it allows us to understand the performance im-

provement of Algorithms 1 and 2 compared to those such as [46, 48] that neglect network delays in

their formulations.

Baseline 3 uses neither network delay information nor energy price information when performing

its cost minimization. Thus, the traffic is routed so as to balance the delays within the data centers.

Though naive, designs such as this are still used by systems today; see [4].

2.4.2 Performance evaluation

The evaluation of our algorithms and the cost savings due to optimal geographic load balancing will

be organized around the following topics.
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Convergence We start by considering the convergence of each of the distributed algorithms.

Figure 2.2(a) illustrates the convergence of each of the algorithms in a static setting for t = 11am,

where load and electricity prices are fixed and each phase in Algorithm 1 is considered as an iteration.

It validates the convergence analysis for both algorithms. Note here Algorithm 2 used a step size

γ = 10; this is much larger than that used in the convergence analysis, which is quite conservative,

and there is no sign of causing lack of convergence.

To demonstrate the convergence in a dynamic setting, Figure 2.2(b) shows Algorithm 1’s response

to the first day of the Hotmail trace, with loads averaged over one-hour intervals for brevity. One

iteration (51 phases) is performed every 10 minutes. This figure shows that even the slower algorithm,

Algorithm 1, converges fast enough to provide near-optimal cost. Hence, the remaining plots show

only the optimal solution.

Energy versus delay tradeoff The optimization objective we have chosen to model the data

center costs imposes a particular tradeoff between the delay and the energy costs, β. It is important

to understand the impact of this factor. Figure 2.3 illustrates how the delay and energy cost trade

off under the optimal solution as β changes. Thus, the plot shows the Pareto frontier for the GLB-Q

formulation. The figure highlights that there is a smooth convex frontier with a mild ‘knee’.

Cost savings To evaluate the cost savings of geographical load balancing, Figure 2.4 compares

the optimal costs to those incurred under the three baseline strategies described in the experimental

setup. The overall cost, shown in Figures 2.4(a) and 2.4(b), is significantly lower under the optimal

solution than all of the baselines (nearly 40% during times of light traffic). Recall that Baseline 2 is
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the state of the art, studied in recent papers such as [46, 48].

To understand where the benefits are coming from, let us consider separately the two components

of cost: delay and energy. Figures 2.4(c) and 2.4(d) show that the optimal algorithm performs well

with respect to both delay and energy costs individually. In particular, Baseline 1 provides a lower

bound on the achievable delay costs, and the optimal algorithm nearly matches this lower bound.

Similarly, Baseline 2 provides a natural bar for comparing the achievable energy cost. At periods of

light traffic the optimal algorithm provides nearly the same energy cost as this baseline, and (perhaps

surprisingly) during periods of heavy-traffic the optimal algorithm provides significantly lower energy

costs. The explanation for this is that, when network delay is considered by the optimal algorithm,

if all the close data centers have all servers active, a proxy might still route to them; however when

network delay is not considered, a proxy is more likely to route to a data center that is not yet

running at full capacity, thereby adding to the energy cost.

Sensitivity analysis Given that the algorithms all rely on estimates of the Lj and dij it is

important to perform a sensitivity analysis to understand the impact of errors in these parameters

on the achieved cost. We have performed such a sensitivity analysis but omit the details for brevity.

The results show that even when the algorithms have very poor estimates of dij and Lj there is

little effect on cost. Baseline 2 can be thought of as applying the optimal algorithm to very poor

estimates of dij (namely dij = 0), and so the Figure 2.4(a) provides some illustration of the effect

of estimation error.
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Figure 2.4: Impact of information used on the cost incurred by geographical load balancing.
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Chapter 3

Exploring Renewables

We now shift focus from the cost savings of the data center operator to the social impact of geo-

graphical load balancing. We first focus on the impact of geographical load balancing on the usage of

“brown” non-renewable energy by Internet-scale systems, and how this impact depends on pricing.

Then we investigate the case of local renewable supply.

3.1 Dynamic pricing

Intuitively, geographical load balancing allows the traffic to “follow the renewables”; thus providing

increased usage of green energy and decreased brown energy usage. However, such benefits are only

possible if data centers forgo static energy contracts for dynamic energy pricing (either through

demand-response programs or real-time markets). The experiments in this section show that if

dynamic pricing is done optimally, then geographical load balancing can provide significant social

benefits.

3.1.1 Experimental setup

To explore the social impact of geographical load balancing, we use the setup described in Chap-

ter 2.4. However, we add models for the availability of renewable energy, the pricing of renewable

energy, and the social objective.

The availability of renewable energy To model the availability of renewable energy we use

standard models of wind and solar from [17, 27]. Though simple, these models capture the average

trends for both wind and solar accurately. Since these models are smoother than actual intermit-

tent renewable sources, especially wind, they conservatively estimate the benefit due to following

renewables.

We consider two settings (i) high wind penetration, where 90% of renewable energy comes from

wind and (ii) high solar penetration, where 90% of renewable energy comes from solar. The avail-
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ability given by these models is shown in Figure 3.1(a). Setting (i) is motivated by studies such

as [25]. Setting (ii) is motivated by the possibility of on-site or locally contracted solar, which is

increasingly common.

Building on these availability models, for each location we let αi(t) denote the fraction of the

energy that is from renewable sources at time t, and let ᾱ = (|N |T )−1
∑T
t=1

∑
i∈N αi(t) be the

“penetration” of renewable energy. We take ᾱ = 0.30, which is on the progressive side of the

renewable targets among US states [12].

Finally, when measuring the brown/green energy usage of a data center at time t, we use simply∑
i∈N αi(t)mi(t) as the green energy usage and

∑
i∈N (1 − αi(t))mi(t) as the brown energy usage.

This models the fact that the grid cannot differentiate the source of the electricity provided.

Demand response and dynamic pricing Internet-scale systems have flexibility in energy usage

that is not available to traditional energy consumers; thus they are well positioned to take advantage

of demand-response and real-time markets to reduce both their energy costs and their brown energy

consumption.

To provide a simple model of demand-response, we use time-varying prices pi(t) in each time-slot

that depend on the availability of renewable resources αi(t) in each location.

The way pi(t) is chosen as a function of αi(t) will be of fundamental importance to the social

impact of geographical load balancing. To highlight this, we consider a parameterized “differentiated

pricing” model that uses a price pb for brown energy and a price pg for green energy. Specifically,

pi(t) = pb(1− αi(t)) + pgαi(t).

Note that pg = pb corresponds to static pricing, and we show in the next section that pg = 0

corresponds to socially optimal pricing. Our experiments vary pg ∈ [0, pb].

The social objective To model the social impact of geographical load balancing we need to

formulate a social objective. Like the GLB formulation, this must include a tradeoff between the

energy usage and the delay users of the system experience, because purely minimizing brown energy

use requires all mi = 0. The key difference between the GLB formulation and the social formulation

is that the cost of energy is no longer relevant. Instead, the environmental impact is important, and

thus the brown energy usage should be minimized. This leads to the following simple model for the

social objective:

min
m(t),λ(t)

T∑
t=1

∑
i∈N

(
(1− αi(t))

Ei(t)
pi(t)

+ β̃Di(t)
)

(3.1)
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Figure 3.1: Geographical load balancing “following the renewables” under optimal pricing. (a)
Availability of wind and solar. (b)–(d) Capacity provisioning of east coast and west coast data
centers when there are renewables, high solar penetration, and high wind penetration, respectively.

where Di(t) is the delay cost defined in (2.2), Ei(t) is the energy cost defined in (2.1), and β̃ is the

relative valuation of delay versus energy. Further, we have imposed that the energy cost follows

from the pricing of pi(t) cents/kWh in timeslot t. Note that, though simple, our choice of Di(t) to

model the disutility of delay to users is reasonable because lost revenue captures the lack of use as

a function of increased delay.

An immediate observation about the above social objective is that to align the data center and

social goals, one needs to set pi(t) = (1 − αi(t))/β̃, which corresponds to choosing pb = 1/β̃ and

pg = 0 in the differentiated pricing model above. We refer to this as the “optimal” pricing model.
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Figure 3.2: Reduction in social cost from dynamic pricing compared to static pricing as a function
of the weight for brown energy usage, 1/β̃, under (a) high solar penetration and (b) high wind
penetration.

3.1.2 The importance of dynamic pricing

To begin our experiments, we illustrate that optimal pricing can lead geographical load balancing

to “follow the renewables.” Figure 3.1 shows this in the case of high solar penetration and high

wind penetration for β̃ = 0.1. By comparing Figures 3.1(b) and 3.1(c) to Figure 3.1(d), which uses

static pricing, the change in capacity provisioning, and thus energy usage, is evident. For example,

Figure 3.1(b) shows a clear shift of service capacity from the east coast to the west coast as solar

energy becomes highly available and then back when solar energy is less available. Similarly, Figure

3.1(c) shows a shift, though much smaller, of service capacity toward the evenings, when wind is

more available. Though not explicit in the figures, this “follow the renewables” routing has the

benefit of significantly reducing the brown energy usage since energy use is more correlated with the

availability of renewables. Thus, geographical load balancing provides the opportunity to aid the

incorporation of renewables into the grid.

Figure 3.1 assumed the optimal dynamic pricing, but currently data centers negotiate fixed price

contracts. Although there are many reasons why grid operators will encourage data center operators

to transfer to dynamic pricing over the coming years, this is likely to be a slow process. Thus, it is

important to consider the impact of partial adoption of dynamic pricing in addition to full, optimal

dynamic pricing.

Figure 3.2 focuses on this issue. To model the partial adoption of dynamic pricing, we can consider

pg ∈ [0, pb]. Figure 3.2(a) shows that the benefits provided by dynamic pricing are moderate but

significant, even at partial adoption (high pg), when there is high solar penetration. Figure 3.2(b)

suggests that there would be much less benefit if renewable sources were dominated by wind with
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only diurnal variation, because the availability of solar energy is much more correlated with the

traffic peaks. Specifically, the three hour gap in time zones means that solar on the west coast can

still help with the high traffic period of the east coast, but the peak average wind energy is at night.

However, wind is vastly more bursty than this model predicts, and a system which responds to these

bursts will still benefit significantly.

Another interesting observation about the Figure 3.2 is that the curves increase faster in the

range when β̃ is large, which highlights that the social benefit of geographical load balancing becomes

significant even when there is only moderate importance placed on energy. When pg is higher than

pb, which is common currently, the cost increases, but we omit the results for brevity.

3.2 Local renewables

Now we continue to investigate the case of the local renewable supply. Our numeric experiments

combine analytic models with real traces for workload and renewable availability, to allow controlled

experimentation but provide realistic findings. We now explain the setup, which extends that of [33].

3.2.1 Experimental setup

The workload Our workload model considers a set J of sources of requests, with one source at

the center of each of the 48 continental states in the US.

We consider one hour time slots for a week. At the start of each slot, the routing and capacity

of each data center are updated. We use a slot length of 1 hour so that servers are not turned on

and off too frequently given the significant wear-and-tear costs of power-cycling. Let Lj(t) denote

the mean arrival rate from source j at time t.

To provide realistic estimates, we use real-world traces to define Lj(t). The workload of each

source is scaled proportionally to the number of internet users in the corresponding state. The

workload is taken from a trace at Hewlett-Packard Labs [20] and is shifted in time to account for

time zone of each state. The workload per internet user used in this paper is shown in Figure 3.3.

The availability of renewable energy To capture the availability of wind and solar energy,

we use traces of wind speed and Global Horizontal Irradiance (GHI) obtained from [22, 23] that

have measurements every 10 minutes for a year. The traces of four states (CA, TX, IL, NC) are

illustrated in Figure 3.4 (GHI is normalized to have average of 1). Note that as “solar”, we only

consider photovoltaic generation and not solar thermal, because of the significant infrastructure

required for solar thermal plants. Since solar thermal plants typically incorporate a day’s thermal

storage [38], the results would be very different if solar thermal were considered.
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Figure 3.3: HP workload trace.
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Figure 3.4: Renewable generation for two days.

These figures illustrate two important features of renewable energy: spatial variation and tem-

poral variation. In particular, we see that wind energy does not exhibit a clearly predictable pattern

throughout the day and that there is little correlation across the locations considered. In contrast,

solar energy has a predictable peak during the day and is highly correlated across the locations.

In our investigation, we scale the “capacity” of wind and solar. When doing so, we scale the

availability of wind and solar linearly, which is suitable when considering scaling the size of the wind

farm or solar installation. Throughout, we measure the capacity of renewables as the ratio of the

average renewable generation to the minimal energy required to serve the average workload. Thus, a

capacity of c = 2 means that the average renewable generation is twice the minimal energy required

to serve the average workload. In the following we set capacity to c = 2 by default, but vary it in

Figures 3.8–3.9.
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Figure 3.5: Energy cost as a function of total energy consumption, when the average renewable
energy in a one-hour slot is 20.

The internet-scale system We model the internet-scale system as a set N of 10 data centers,

placed at the centers of states known to have Google data centers [36], namely California, Washing-

ton, Oregon, Illinois, Georgia, Virginia, Texas, Florida, North Carolina, and South Carolina. Data

center i ∈ N contains Mi homogeneous servers, where Mi is twice the minimal number of servers

required to serve the peak workload of i under a scheme which routes traffic to the nearest data

center. Further, the renewable availability at each data center is defined by the trace from a nearby

location; this was usually within the same state, but in five cases it was a different trace from a

nearby state.

The two key control decisions of geographical load balancing are (i) determining λij(t), the

amount of traffic routed from source j to data center i; and (ii) determining mi(t) ∈ {0, . . . ,Mi},

the number of active servers at data center i. The objective is to choose λij(t) and mi(t) to minimize

the “cost” of the system. The cost is the sum of the energy cost and the delay cost (lost revenue),

below. We neglect the cost of altering the number of active servers mi(t); this can be incorporated

using an approach similar to that of [32].

Delay cost The delay cost captures the lost revenue incurred because of the delay experienced

by the requests, where the delay includes both the network delay from source j to data center

i, dij , and the queueing delay at i. We model dij to be the distance between source and data

center, divided by the speed of 200 km/ms plus a constant (5 ms), resulting in delay ranging in

[5 ms, 56 ms]. We model the queueing delays using parallel M/G/1/Processor Sharing queues with

the total load λi(t) =
∑
j λij(t) divided equally among the mi(t) active servers, each having service

rate µi = 0.1(ms)−1. This parameter setting makes the average delay 20 ms when the utilization

is 0.5, which is reasonable. Note that this model is not new, and is referred to as the GLB-LIN-Q
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model in [33].

Energy cost To capture the effect of integrating renewable energy, we model the energy cost as

the number of active servers excluding those that can be powered by renewables. Note that this

assumes that data centers operate their own wind and solar generations and pay no marginal cost for

renewable energy. Further, it ignores the installation and maintenance costs of renewable generation.

Quantitatively, if the renewable energy available at data center i at time t is ri(t), measured in

terms of number of servers that can be powered, then the energy cost is

pi(mi(t)− ri(t))+ (3.2)

The pi for each data center is constant, and equals to the industrial electricity price of each state

in May 2010 [25]. This contrasts with the total power pimi used typically, e.g., in [33]. Although

data center could instead sell the renewable supply to the grid, this will have only a small effect on

pi in a future dominated by renewable energy; when the renewable supply is high at the data center

location, the local spot price of power is also likely to be low.

Storage The above formula for the energy cost is simplistic because it assumes the cost is zero

if fewer servers are provisioned than the average renewable generation in a time slot. While this is

true if one can do “perfect” smoothing of the renewables using storage, it is not necessarily true in

practice. Note that the fluctuations in available power are usually considerably less than the total

power draw. For our traces, “perfect” smoothing can be achieved using the amount of storage that

can support the whole data center for several minutes. This is feasible, since this amount of storage

is provided by currently deployed Uninterruptible Power Supplies (UPSs).

Without storage, there will be some cost incurred due to the variability of renewable availability

within a time slot. Here the actual energy cost becomes

Eτ

[
pi (mi(t)− ri(t, τ))

+
]

(3.3)

where (t, τ) is the sub-slot in time-slot t and Eτ (ri(t, τ)) = ri(t). Figure 3.5 shows several curves

for California. The lowest curve is (3.2), i.e., the price for a system with enough storage to smooth

renewable generation over one interval, and the upper ones for (3.3), i.e. the case of no storage,

which is derived directly from the renewable traces as described above. The figure illustrates the

curves in the case of an average renewable generation of 20 kW with pi = 1, τ = 10 min, and includes

different mixtures of solar and wind. Interestingly, the added cost for not having storage increases

as the percentage of solar increases in the renewable portfolio. The figures are almost the same for

different Eτ (ri(t, τ)).



29

Total cost Combining the discussions above, we can now write the total cost for an internet-

scale system. In particular, for the case where the data centers have small-scale storage, the cost

optimization that the system seeks to solve at time t becomes:

min
m(t),λ(t)

β
∑
i∈N

pi (mi(t)− ri(t))+
+
∑
j∈J

∑
i∈N

λij(t)

(
1

µi − λi(t)/mi(t)
+ dij

)

s.t.
∑
i∈N

λij(t) = Lj(t), ∀j ∈ J (3.4a)

λij(t) ≥ 0, ∀i ∈ N, j ∈ J (3.4b)

0 ≤ mi(t) ≤Mi, ∀i ∈ N (3.4c)

λi(t) ≤ mi(t)µi ∀i ∈ N. (3.4d)

Here β determines the relative importance of energy and delay to the system. In the simulations β

is set to 1 by default, but we also vary β ∈ [1, 10] in Figure 3.7 to show its impact. Measurements [2]

show that a 500 ms increase in delay reduces revenue by 20%, or 0.04%/ms. In a system where

energy expenditure is 10% of the revenue, β = 1 or 10 corresponds to the more conservative values

of 0.5 or 0.05%/ms, respectively.

When data center i can cheaply serve data from many sources, the upper bound mi(t) ≤Mi in

(3.4c) can become binding, then λij(t) is strictly between 0 and Lj(t).

When data centers have no energy storage, only the energy cost component of the optimization

changes from (3.2) to (3.3). However, we cannot write the optimization in closed form for that case

because the energy cost curves are determined by the renewable energy traces, as shown in Figure

3.5. To formulate and solve the optimization in this case we use a piecewise-linear approximation of

the curves in Figure 3.5.

Geographical load balancing The above sections describe the cost optimization that the internet-

scale system seeks to solve; however they do not describe how the system actually performs geo-

graphical load balancing to solve the optimization. In [33], decentralized algorithms are presented,

which can be used to achieve the optimal cost in the setting described above. Thus, in this paper

we present as “GLB” the routing and capacity provisioning decisions which solve the cost optimiza-

tion problem. Note that the results do not rely on the algorithms in [33]; they simply consider the

optimal allocation.

As a benchmark for comparison, we consider a system that does no geographical load balancing,

but instead routes all requests to the nearest data center and optimally adjusts the number of active

servers at each location. We call this system ‘LOCAL’ and use it to illustrate the benefits that come



30

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

solar capacity

w
in

d
 c

a
p
a
c
it
y

 

 

15%

20%

25%

30%

(a) LOCAL for different brown energy
targets

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

solar capacity

w
in

d
 c

a
p
a
c
it
y

 

 

LOCAL

GLB β=1

GLB β=10

(b) LOCAL and GLB for 15% brown
energy target

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

solar capacity

w
in

d
 c

a
p
a
c
it
y

 

 

3hours

2hours

1hour

10min

(c) GLB with different control time-
scales and 15% brown energy target

Figure 3.6: Wind and solar capacity required to reduce brown energy usage to 15–30% of the baseline,
as a function of solar capacity. The dashed line is the same setting except with storage.
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Figure 3.7: Comparison of GLB and LOCAL as a function of β. The renewable capacity is 2. The
dashed line is the same setting except with storage.

from using geographical load balancing.

3.2.2 Results

With the setup described in the previous section, we have performed a number of numerical exper-

iments to evaluate the feasibility of moving toward internet-scale systems powered (nearly) entirely

by renewable energy. We focus on three issues: (i) the impact of geographical load balancing, (ii)

the role of storage, and (iii) the optimal mix of wind and solar.

The impact of geographical load balancing Geographical load balancing is known to provide

internet-scale system operators significant energy cost savings, at the expense of small increases in

network delay due to the fact that requests can be routed to where energy is cheap or renewable

generation is high. This behavior is illustrated in Figure 3.7, which shows the average cost and

delay under GLB versus LOCAL as the cost (β) of brown energy relative to delay is increased. The

novelty of Figure 3.7 is in (a), which shows the reduction in consumption of brown energy. This
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Figure 3.8: Comparison of GLB and LOCAL with different renewable capacities and β = 10. The
dashed line is the same setting except with storage.

illustrates that the reduction in brown consumption is significantly larger even than the reduction

in cost, and that it is significant even when energy is cheap (β is small).

Next, we consider Figure 3.8, which illustrates the differences between LOCAL and GLB as a

function of the capacity of renewable energy. Interestingly, Figure 3.8 highlights that when there

is little capacity of renewables, both GLB and LOCAL can take advantage of it, but that as the

capacity of renewables increases GLB is much more efficient at using it. This is evident because of

the significantly lower brown energy consumption of GLB that emerges at capacities >1.5. Figure

3.8 also illustrates that increased capacity provides significant reductions in both the total cost and

the average delay under both GLB and LOCAL.

Finally, let us consider the effect that GLB has on capacity provisioning of renewable energy.

Figure 3.6 illustrates the capacity of solar and wind necessary to achieve certain brown energy

reduction targets. We see in (a) that, under LOCAL, the capacity of renewables necessary to hit an

85% reduction of brown energy is extreme. However, in (b) we see that the use of GLB can provide

significant reductions due to its more efficient use of the renewable capacity. If energy is expensive

(β = 10), then the required capacity is nearly viable.

The discussion above highlights that GLB can be extremely useful for the adoption of renewable

energy into internet-scale systems. However, there are certainly challenges that remain for the design

of GLB. One particularly important challenge is that of adjusting the routing and capacity decisions

at a fast enough time scale to react to the availability of renewable energy. In particular, the plots

we have described so far use a control time-scale of 1 hour. If this control time-scale is slower, or if

information about the availability of renewable energy is stale, then the benefits provided by GLB

degrade. This is illustrated in Figure 3.6(c). This highlights the importance of reducing the energy

and wear-and-tear costs of switching servers into and out of active mode, since it is the magnitude

of these costs that most often limits the control time-scale.
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The role of storage In addition to GLB, another important tool to aid the incorporation of

renewable energy into internet-scale systems is storage, such as UPSs. In this paper, we limit our

consideration to small-scale storage, which is only able to power the data center over the time-scale

of a few minutes. We consider small-scale storage due to the opportunity provided by the UPSs

already available in data centers today, and due to the fact that the cost of large scale storage is

prohibitive at this point.

Throughout Figures 3.7, 3.8, 3.6(a), 3.6(b), and 3.9, the impact of storage can be seen through

the difference between the corresponding dashed and solid lines. A few trends that are evident

in these plots are the following: (i) storage becomes more valuable with either higher capacities

of renewables, i.e., > 1.5, or larger β; and (ii) storage plays a more significant role under GLB

than under LOCAL. Both points are clearly illustrated in Figures 3.7 and 3.8, and Figure 3.8 also

highlights that storage allows brown energy consumption to be almost completely eliminated when

using GLB.

The optimal renewable portfolio We now move to the question of what mix of solar and wind

is most effective for internet-scale systems. A priori, it seems that solar may be the most effective,

since the peak of solar availability is closely aligned with that of the data center workload. However,

the fact that solar is not available during the night is a significant drawback. Also, once GLB is

used, it becomes possible to aggregate wind availability across geographical locations. This provides

significant benefits because wind availability is not correlated across large geographical distances,

and so when aggregated, the availability smoothes considerably, as illustrated in Figure 3.4(a). As

a result, it seems that wind should be quite valuable to internet-scale systems.

Our results lend support to the discussion above. As illustrated in Figures 3.6 and 3.9, the optimal

renewable portfolio for brown energy reduction is around 80% wind, and extra solar capacity provides

little benefit beyond that point, in keeping with the findings of [21]. More specifically, Figure 3.9

shows the brown energy usage as a function of the fraction of energy coming from wind, for three

values of total generating capacity, c. Keeping c fixed implicitly assumes that the cost per kWh of

solar and wind installation are equal.

Interestingly, this optimal portfolio is robust to many factors including storage, renewable capac-

ity, and even whether the system seeks to optimize brown energy consumption, total cost, or average

delay. This last point is important, since it highlights that the system operators’ goal is aligned with

both the users’ experience and society’s interest. However, the optimal portfolio is affected by the

workload, specifically, the peak-to-mean ratio. For large diurnal peak-to-mean ratios the optimal

portfolio can be expected to use a higher percentage of solar. Another interesting direction is to

include seasonal effect [21]. Here during summer the solar supply is higher and wind supply is lower,

and the power demand is higher due to cooling. Therefore the optimal mix will have higher ratio of
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solar supply.
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Chapter 4

Concluding remarks

This paper has focused on understanding algorithms for and the social impacts of geographical load

balancing in Internet-scaled systems. We have provided two distributed algorithms that provably

compute the optimal routing and provisioning decisions for Internet-scale systems and we have

evaluated these algorithms using trace-based numerical simulations. Further, we have studied the

feasibility and benefits of providing demand response for the grid via geographical load balancing.

Our experiments highlight that geographical load balancing can provide an effective tool for demand-

response: when pricing is done carefully electricity providers can motivate Internet-scale systems

to “follow the renewables” and route to areas where green energy is available. This both eases the

incorporation of renewables into the grid and reduces brown energy consumption of Internet-scale

systems. Last but not least, we study using local renewable to power data centers. Our numeric

results highlight the importance of geographical load balancing on better utilize the renewable supply.

There are a number of interesting directions for future work that are motivated by the studies

in this paper. With respect to the design of distributed algorithms, one aspect that our model

has ignored is the switching cost (in terms of delay and wear-and-tear) associated with switching

servers into and out of power-saving modes. Our model also ignores issues related to reliability and

availability, which are quite important in practice. With respect to the social impact of geographical

load balancing, our results highlight the opportunity provided by geographical load balancing for

demand response; however there are many issues left to be considered. For example, which demand

response market should Internet-scale systems participate in to minimize costs? How can policy

decisions such as cap-and-trade be used to provide the proper incentives for Internet-scale systems,

such as [31]? Can Internet-scale systems use energy storage at data centers in order to magnify

cost reductions when participating in demand response markets? How will the cost of renewables

change the optimal portfolio? Answering these questions will pave the way for greener geographic

load balancing.
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Appendix A

Proofs for Chapter 2.2

We now prove the results from Chapter 2.2, beginning with the illuminating Karush-Kuhn-Tucker

(KKT) conditions.

A.1 Optimality conditions

As GLB-Q is convex and satisfies Slater’s condition, the KKT conditions are necessary and sufficient

for optimality [11]; for the other models they are merely necessary.

GLB-Q: Let ωi ≥ 0 and ω̄i ≥ 0 be Lagrange multipliers corresponding to (3.4c), and δij ≥ 0,

νj and σi be those for (3.4b), (3.4a) and (3.4d). The Lagrangian is then

L =
∑
i∈N

mipi + β
∑
j∈J

∑
i∈N

(
λij

µi − λi/mi
+ λijdij

)

−
∑
i∈N

∑
j∈J

δijλij +
∑
j∈J

νj

(
Lj −

∑
i∈N

λij

)

+
∑
i∈N

(ω̄i(mi −Mi)− ωimi) +
∑
i∈N

σi (miµi − λi)
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The KKT conditions of stationarity, primal and dual feasibility and complementary slackness are:

β

(
µi

(µi − λi/mi)2
+ dij

)
− νj − δij − σi = 0 (A.1)

δijλij = 0; δij ≥ 0, λij ≥ 0 (A.2)

σi (miµi−λi) = 0; σi ≥ 0, miµi−λi ≥ 0 (A.3)∑
i∈N

λij = Lj (A.4)

pi − β
(

λi/mi

µi − λi/mi

)2

+ ω̄i − ωi + σiµi = 0 (A.5)

ω̄i(mi −Mi) = 0; ω̄i ≥ 0, mi ≤Mi (A.6)

ωimi = 0; ωi ≥ 0, mi ≥ 0. (A.7)

The conditions (A.1)–(A.4) determine the sources’ choice of λij , and we claim they imply that

source j will only send data to those data centers i which have minimum marginal cost dij + (1 +√
p∗i /β)2/µi, where p∗i = pi −ωi + ω̄i. To see this, let λ̄i = λi/mi. By (A.5), the marginal queueing

delay of data centre i with respect to load λij is µi/(µi − λ̄i)2 = (1 +
√
p∗i /β)2/µi. Thus, from (A.1),

at the optimal point,

dij +
(1 +

√
p∗i /β)2

µi
= dij +

µi
(µi − λ̄i)2

=
νj + δj
β

≥ νj
β

(A.8)

with equality if λij > 0 by (A.2), establishing the claim.

Note that the solution to (A.1)–(A.4) for source j depends on λik, k 6= j, only through mi. Given

λi, data center i findsmi as the projection onto [0,Mi] of the solution m̂i = λi(1+
√
pi/β)/(µi

√
pi/β)

of (A.5) with ω̄i = ωi = 0.

GLB-LIN again decouples into data centers finding mi given λi, and sources finding λij given

the mi. Feasibility and complementary slackness conditions (A.2), (A.4), (A.6) and (A.7) are as for

GLB-Q; the stationarity conditions are:

∂gi(mi, λi)

∂λi
+ β

(
∂ (λifi(mi, λi))

∂λi
+ dij

)
− νj − δij = 0 (A.9)

∂gi(mi, λi)

∂mi
+ βλi

∂fi(mi, λi)

∂mi
+ ω̄i − ωi = 0. (A.10)

Note the feasibility constraint (3.4d) of GLB-Q is no longer required to ensure stability. In GLB-LIN,

it is instead assumed that f is infinite when the load exceeds capacity.

The objective function is strictly convex in data center i’s decision variable mi, and so there is a

unique solution m̂i(λi) to (A.10) for ω̄i = ωi = 0, and the optimal mi given λi is the projection of

this onto the interval [0,Mi].
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GLB in its general form has the same KKT conditions as GLB-LIN, with the stationary condi-

tions replaced by

∂gi
∂λi

+ r(fi + dij) +
∑
k∈J

λikr
′(fi + dik)

∂fi
∂λi
− νj − δij = 0 (A.11)

∂gi
∂mi

+
∑
j∈J

λijr
′(fi + dij)

∂fi
∂mi

+ ω̄i − ωi = 0 (A.12)

where r′ denotes the derivative of r(·).

GLB again decouples, since it is convex because r(·) is convex and increasing. However, now

data center i’s problem depends on all λij , rather than simply λi.

A.2 Characterizing the optima

Lemma 1 will help prove the results of Chapter 2.2.

Lemma 1. Consider the GLB-LIN formulation. Suppose that for all i, Fi(mi, λi) is jointly convex

in λi and mi, and differentiable in λi where it is finite. If, for some i, the dual variable ω̄i > 0 for

an optimal solution, then mi = Mi for all optimal solutions. Conversely, if mi < Mi for an optimal

solution, then ω̄i = 0 for all optimal solutions.

Proof. Consider an optimal solution S with i ∈ N such that ω̄i > 0 and hence mi = Mi. Let S′ be

some other optimal solution.

Since the cost function is jointly convex in λij and mi, any convex combination of S and S′ must

also be optimal. Let mi(s) denote the mi value of a given solution s. Since mi(S) = Mi, we have

λi > 0 and so the optimality of S implies fi is finite at S and hence differentiable. By (A.10) and the

continuity of the partial derivative [47, Corollary 25.51], there is a neighborhood N of S within which

all optimal solutions have ω̄i > 0, and hence mi(s) = Mi for all s ∈ N . Since S + ε(S′ − S) ∈ N for

sufficiently small ε, the linearity of mi(s) implies Mi = mi(S+ε(S′−S)) = mi(S)+ε(mi(S
′)−mi(S)).

Thus mi(S
′) = mi(S) = Mi.

Proof of Theorem 1. Consider first the case where there exists an optimal solution with mi < Mi.

By Lemma 1, ω̄i = 0 for all optimal solutions. Recall that m̂i(λi), which defines the optimal mi,

is strictly convex. Thus, if different optimal solutions have different values of λi, then a convex

combination of the two yielding (m′i, λ
′
i) would have m̂i(λ

′
i) < m′i, which contradicts the optimality

of m′i.

Next consider the case where all optimal solutions have mi = Mi. In this case, consider two

solutions S and S′ that both have mi = Mi. If λi is the same under both S and S′, we are

done. Otherwise, let the set of convex combinations of S and S′ be denoted {s(λi)}, where we have
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made explicit the parameterization by λi. The convexity of each Fk in mk and λk implies that

F (s(λi))−Fi(s(λi)) is also convex, due to the fact that the parameterization is by definition affine.

Further, since Fi is strictly convex in λi, this implies F (s(λi)) is strictly convex in λi, and hence has

a unique optimal λi.

Proof of Theorem 2. The proof when mi = Mi for all optimal solutions is identical to that of

Theorem 1. Otherwise, when mi < Mi in an optimal solution, the definition of m̂ gives λi =

µi
√
pi/βi/(

√
pi/βi + 1) for all optimal solutions.

Proof of Theorem 3. For each optimal solution S, consider an undirected bipartite graph G with a

vertex representing each source and each data center and with an edge connecting i and j when

λij > 0. We will show that at least one of these graphs is acyclic. The theorem then follows since

an acyclic graph with K nodes has at most K − 1 edges.

To prove that there exists one optimal solution with acyclic graph we will inductively reroute

traffic in a way that removes cycles while preserving optimality. Suppose G contains a cycle. Let C

be a minimal cycle, i.e., no strict subset of C is a cycle, and let C be directed.

Form a new solution S(ξ) from S by adding ξ to λij if (i, j) ∈ C, and subtracting ξ from λij if

(j, i) ∈ C. Note that this does not change the λi. To see that S(ξ) is maintains the optimal cost,

first note that the change in the objective function of the GLB between S and S(ξ) is equal to

ξ

 ∑
(j,i)∈C

r(dij + fi(mi, λi))−
∑

(i,j)∈C

r(dij + fi(mi, λi))

 (A.13)

Next note that the multiplier δij = 0 since λij > 0 at S. Further, the KKT condition (A.11) for

stationarity in λij can be written as Ki + r(dij + fi(mi, λi))− νj = 0, where Ki does not depend on

the choice of j.

Since C is minimal, for each (i, j) ∈ C where i ∈ I and j ∈ J there is exactly one (j′, i) with

j′ ∈ J , and vice versa. Thus,

0 =
∑

(j,i)∈C

(Ki + r(dij + fi(mi, λi))− νj)−
∑

(i,j)∈C

(Ki + r(dij + fi(mi, λi))− νj)

=
∑

(j,i)∈C

r(dij + fi(mi, λi))−
∑

(i,j)∈C

r(dij + fi(mi, λi)).

Hence, by (A.13) the objective of S(ξ) and S are the same.

To complete the proof, we let (i∗, j∗) = arg min(i,j)∈C λij . Then S(λi∗,j∗) has λi∗,j∗ = 0. Thus,

S(λi∗,j∗) has at least one fewer cycle, since it has broken C. Further, by construction, it is still

optimal.
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Proof of Theorem 4. It is sufficient to show that, if λkjλk′j > 0 then either mk = Mk or mk′ = Mk′ .

Consider a case when λkjλk′j > 0.

For a generic i, define ci = (1 +
√
pi/β)2/µi as the marginal cost (A.8) when the Lagrange

multipliers ω̄i = ωi = 0. Since the pi are chosen from a continuous distribution, we have that with

probability 1

ck − ck′ 6= dk′j − dkj . (A.14)

However, (A.8) holds with equality if λij > 0, and so dkj + (1 +
√
p∗k/β)2/µk = dk′j + (1 +√

p∗k′/β)2/µk′ . By the definition of ci and (A.14), this implies either p∗k 6= pk or p∗k′ 6= pk. Hence at

least one of the Lagrange multipliers ωk, ω̄k, ωk′ or ω̄k′ must be non-zero. However, ωi > 0 would

imply mi = 0 whence λij = 0 by (A.3), which is false by hypothesis, and so either ω̄k or ω̄k′ is

non-zero, giving the result by (A.6).
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Appendix B

Proofs for Chapter 2.3

B.1 Algorithm 1

To prove Theorem 5 we apply a variant of Proposition 3.9 of Ch 3 in [10], which gives that if

(i) F (m,λ) is continuously differentiable and convex in the convex feasible region (3.4a)–(3.4c);

(ii) Every limit point of the sequence is feasible;

(iii) Given the values of λ−j and m, there is a unique minimizer of F with respect to λj , and given

λ there is a unique minimizer of F with respect to m.

Then, every limit point of (m(τ),λ(τ))τ=1,2,... is an optimal solution of GLB-Q.

This differs slightly from [10] in that the requirement that the feasible region be closed is replaced

by the feasibility of all limit points, and the requirement of strict convexity with respect to each

component is replaced by the existence of a unique minimizer. However, the proof is unchanged.

Proof of Theorem 5. To apply the above to prove Theorem 5, we need to show that F (m,λ) satisfies

the differentiability and continuity constraints under the GLB-Q model.

GLB-Q is continuously differentiable and, as noted in Appendix A.1, a convex problem. To see

that every limit point is feasible, note that the only infeasible points in the closure of the feasible

region are those with miµi = λi. Since the objective approaches∞ approaching that boundary, and

Gauss-Seidel iterations always reduce the objective [10], these points cannot be limit points.

It remains to show the uniqueness of the minimum in m and each λj . Since the cost is separable

in the mi, it is sufficient to show that this applies with respect to each mi individually. If λi = 0,

then the unique minimizer is mi = 0. Otherwise

∂2F (m,λ)

∂m2
i

= 2βµi
λ2
i

(miµi − λi)3
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which by (3.4d) is strictly positive. The Hessian of F (m,λ) with respect to λj is diagonal with ith

element

2βµi
m2
i

(miµi − λi)3
> 0

which is positive definite except the points where some mi = 0. However, if mi = 0, the unique

minimum is λij = 0. Note we cannot have all mi = 0. Except these points, F (m,λ) is strictly

convex in λj given m and λ−j . Therefore λj is unique given m.

Part (ii) of Theorem 5 follows from part (i) and the continuity of F (m,λ). Part (iii) follows

from part (i) and Theorem 2, which provides the uniqueness of optimal per-server arrival rates

(λi(τ)/mi(τ), i ∈ N).

B.2 Algorithm 2

As discussed in the section on Algorithm 2, we will prove Theorem 6 in three steps. First, we will

show that, starting from an initial feasible point λ(0), Algorithm 2 generates a sequence λ(τ) that

lies in the set Λ := Λ(φ) defined in (2.15), for τ = 0, 1, . . . . Moreover, ∇F (λ) is Lipschitz over Λ.

Finally, this implies that F (λ(τ)) moves in a descent direction that guarantees convergence.

Lemma 2. Given an initial point λ(0) ∈
∏
j Λj, let φ := F (λ(0)). Then

1. λ(0) ∈ Λ := Λ(φ);

2. If λ∗ is optimal then λ∗ ∈ Λ;

3. If λ(τ) ∈ Λ, then λ(τ + 1) ∈ Λ.

Proof. We claim F (λ) ≤ φ implies λ ∈ Λ. This is true because φ ≥ F (λ) ≥ Σk
βλk

µk−λk/mk(λk) ≥
βλi

µi−λi/mi(λi)
≥ βλi

µi−λi/Mi
,∀i. Therefore λi ≤ φ

φ+βMi
Miµi,∀i. Consequently, the intial point λ(0) ∈ Λ

and the optimal point λ∗ ∈ Λ because F (λ∗) ≤ F (λ).

Next we show that λ(τ) ∈ Λ implies Zj(τ+1) ∈ Λ, where Zj(τ+1) is λ(τ) except λj(τ) is replaced

by zj(τ). This holds because Zjik(τ + 1) = λik(τ) ≥ 0,∀k 6= j,∀i and ΣiZ
j
ik(τ + 1) = Σiλik(τ) =

Lk,∀k 6= j. From the definiition of the projection on Λ̂j(τ), Zjij(τ + 1) ≥ 0,∀i, ΣiZ
j
ij(τ + 1) = Lj ,

and ΣkZ
j
ik(τ + 1) ≤ φ

φ+βMi
Miµi,∀i. These together ensure Zj(τ + 1) ∈ Λ.

The update λj(τ + 1) = |J|−1
|J| λj(τ) + 1

|J|zj(τ),∀j is equivalent to λ(τ + 1) =
ΣjZ

j(τ+1)
|J| . Then

from the convexity of Λ, we have λ(τ + 1) ∈ Λ.

Let F (M,λ) be the total cost when all data centers use all servers, and ∇F (M,λ) be the

derivatives with respect to λ. To prove that ∇F (λ) is Lipschitz over Λ, we need the following

intermediate result. We omit the proof here.
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Lemma 3. For all λa,λb ∈ Λ, we have

∥∥∥∇F (λb)−∇F (λa)
∥∥∥

2
≤
∥∥∥∇F (M,λb)−∇F (M,λa)

∥∥∥
2
.

Lemma 4.
∥∥∥∇F (λb)−∇F (λa)

∥∥∥
2
≤ K

∥∥∥λb − λa
∥∥∥

2
,

∀λa,λb ∈ Λ, where K = |J |maxi 2(φ+ βMi)
3/(β2M4

i µ
2
i ).

Proof. Following Lemma 3, here we continue to show
∥∥∥∇F (M,λb)−∇F (M,λa)

∥∥∥
2
≤ K

∥∥∥λb − λa
∥∥∥

2
.

The Hessian ∇2F (M,λ) of F (M,λ) is given by

∇2Fij,kl(M,λ) =


2βµi/Mi

(µi−λi/Mi)3
if i = k

0 otherwise.

Then
∥∥∇2F (M,λ)

∥∥2

2
≤
∥∥∇2F (M,λ)

∥∥
1

∥∥∇2F (M,λ)
∥∥
∞ =

∥∥∇2F (M,λ)
∥∥2

∞. The inequality is a

property of norms and the equality is from the symmetry of ∇2F (M,λ). Finally,

∥∥∇2F (M,λ)
∥∥
∞ = max

ij

{
Σkl∇2Fij,kl(M,λ)

}
= max

i

{
|J | 2βµi/Mi

(µi − λi/Mi)3

}
≤ |J |max

i

2(φ+ βMi)
3

β2M4
i µ

2
i

.

In the last step we substitute λi by φMiµi

φ+βMi
because λi ≤ φ

φ+βMi
Miµi,∀i and 2µi/Mi

(µi−λi/Mi)3
is

increasing in λi.

Lemma 5. When applying Algorithm 2 to GLB-Q,

(a) F (λ(τ+1)) ≤ F (λ(τ))−( 1
γm
−K2 ) ‖λ(τ + 1)− λ(τ)‖22, where K = |J |maxi 2(φ+ βMi)

3/(β2M4
i µ

2
i ),

γm = maxj γj, and 0 < γj < mini β
2µ2
iM

4
i /(|J |(φ+ βMi)

3),∀j.

(b) λ(τ + 1) = λ(τ) if and only if λ(τ) minimizes F (λ) over the set Λ.

(c) The mapping T (λ(τ)) = λ(τ + 1) is continuous.

Proof. From the Lemma 4, we know

∥∥∥∇F (λb)−∇F (λa)
∥∥∥

2
≤ K

∥∥∥λb − λa
∥∥∥

2
,∀λa ∈ Λ,∀λb ∈ Λ

where K = |J |maxi 2(φ+ βMi)
3/(β2M4

i µ
2
i ).

Here Zj(τ + 1) ∈ Λ,λ(τ) ∈ Λ, therefore we have

∥∥∇F (Zj(τ + 1))−∇F (λ(τ))
∥∥

2
≤ K

∥∥Zj(τ + 1)− λ(τ)
∥∥

2
.
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From the convexity of F (λ), we have

F (λ(τ + 1)) = F

(
ΣjZ

j(τ + 1)

|J |

)
≤ 1

|J |
ΣjF (Zj(τ + 1))

≤ 1

|J |
Σj

(
F (λ(τ))−

(
1

γj
− K

2

)∥∥Zj(τ + 1)− λ(t)
∥∥2

2

)
= F (λ(τ))− Σj

(
1

γj
− K

2

) ∥∥Zj(τ + 1)− λ(τ)
∥∥2

2

|J |

≤ F (λ(τ))−
(

1

γm
− K

2

)
Σj
∥∥Zj(τ + 1)− λ(τ)

∥∥2

2

|J |

where K = |J |maxi 2(φ+ βMi)
3/(β2M4

i µ
2
i ).

The first line is from the update rule of λ(τ). The second line is from the convexity of F (λ).

The third line is from the property of gradient projection. The last line is from the definition of γm.

Then from the convexity of ‖·‖22, we have

Σj
∥∥Zj(τ + 1)− λ(τ)

∥∥2

2

|J |
≥

∥∥∥∥∥Σj
(
Zj(τ + 1)− λ(τ)

)
|J |

∥∥∥∥∥
2

2

=

∥∥∥∥ΣjZ
j(τ + 1)

|J |
− λ(τ)

∥∥∥∥2

2

= ‖λ(τ + 1)− λ(τ)‖22 .

Therefore we have

F (λ(τ + 1)) ≤ F (λ(τ))−
(

1

γm
− K

2

)
‖λ(τ + 1)− λ(τ)‖22 .

(b) λ(τ + 1) = λ(τ) is equivalent to Zj(τ + 1) = λj(τ),∀j. Moreover, if Zj(τ + 1) = λj(τ),∀j,

then from the definition of each gradient projection, we know it is optimal. Conversely, if λ(τ)

minimizes F (λ(τ)) over the set Λ, then the gradient projection always projects to the original point,

hence Zj(τ + 1) = λj(τ),∀j. See also [10, Ch 3 Prop. 3.3(b)] for reference.

(c) Since F (λ) is continuously differentiable, the gradient mapping is continuous. The projection

mapping is also continuous. T is the composition of the two and is therefore continuous.

Proof of Theorem 6. Lemma 5 is parallel to that of Proposition 3.3 in Ch 3 of [10], and Theorem 6

here is parallel to Proposition 3.4 in Ch 3 of [10]. Therefore, the proof for Proposition 3.4 immediately

applies to Theorem 6. We also have F (λ) is convex in λ, which completes the proof.


