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by

Ashley Moore
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Doctor of Philosophy

Abstract

Space trajectory design is often achieved through a combination of dynamical

systems theory and optimal control. The union of trajectory design techniques

utilizing invariant manifolds of the planar circular restricted three-body problem

and the optimal control scheme Discrete Mechanics and Optimal Control (DMOC)

facilitates the design of low-energy trajectories in the N -body problem. In partic-

ular, DMOC is used to optimize a trajectory from the Earth to the Moon in the

4-body problem, removing the mid-course change in velocity, ∆V , usually neces-

sary for such a trajectory while still exploiting the structure from the invariant

manifolds.

This thesis also focuses on how to adapt DMOC, a method devised with a

constant step size, for the highly nonlinear dynamics involved in trajectory design.

Mesh refinement techniques that aim to reduce discretization errors in the solution

and energy evolution and their effect on DMOC optimization are explored and

compared with trajectories created using time adaptive variational integrators.

Furthermore, a time adaptive form of DMOC is developed that allows for a

variable step size that is updated throughout the optimization process. Time

adapted DMOC is based on a discretization of Hamilton’s principle applied to the

time adapted Lagrangian of the optimal control problem. Variations of the discrete

action of the optimal control Lagrangian lead to discrete Euler-Lagrange equations
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that can be enforced as constraints for a boundary value problem. This new form

of DMOC leads to the accurate and efficient solution of optimal control problems

with highly nonlinear dynamics. Time adapted DMOC is tested on several space

trajectory problems including the elliptical orbit transfer in the 2-body problem

and the reconfiguration of a cubesat.
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Chapter 1

Introduction

Space trajectory design is a complicated endeavor that often combines dynamical

systems theory, optimization, and numerical techniques. The importance of energy

efficiency for space missions has motivated the development of many techniques

for the design of low-energy trajectories. Such trajectories exploit the natural

dynamics of the solar system to travel from one region of space to another using

less fuel. For example, invariant manifolds of the planar circular restricted 3-

body problem provide structure for control-free transport that can be utilized for

some problems including Earth-to-Moon transfer or trajectories traveling between

Jovian moons or in the Saturnian system. Many researchers have focused on using

these techniques to design interesting, low-energy trajectories. In most instances,

the resulting trajectories require some form of optimization to either reduce the

change in velocity, ∆V , or to reconcile the dynamics with more accurate solar

system models. Furthermore, optimal control schemes, particularly local optimal

control methods, require a good initial guess for successful optimization. Therefore,

using a trajectory that takes advantage of the natural forces in the solar system as

an initial guess for an optimal control technique has the potential to generate highly

energy-efficient trajectories not easily produced using either technique individually.

This thesis seeks to combine trajectory design techniques utilizing invariant

manifolds of the planar circular restricted 3-body problem with the optimal control

scheme Discrete Mechanics and Optimal Control (DMOC). DMOC is theoretically
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formulated for use with a constant step size; however, it is possible to use DMOC

with a variable step size. This is absolutely necessary when employing DMOC for

the optimization of space trajectories due to the highly nonlinear nature of the

dynamics. Therefore, this work also examines how to best adapt DMOC for use

with nonlinear problems, first through step size refinement and then by considering

full time adaption.

In Chapter 3, two different methods utilizing invariant manifolds are used to

design initial guess trajectories from the Earth to the Moon that are then optimized

using DMOC. This problem is solved considering both impulsive and low thrust

maneuvers. The first method replicates the work done by Koon, Lo, Marsden,

and Ross [27, 28] to design a trajectory in the patched 3-body problem. Invariant

manifolds of the Sun–Earth and Earth–Moon 3-body systems are connected to

create a trajectory that travels from the Earth to ballistic capture at the Moon

requiring an impulsive ∆V at the manifold intersection. Next, a new method is

devised in which the structure of the manifolds is exploited directly in the 4-body

problem, generating a trajectory that travels from the Earth to the Moon with

shorter flight time. In addition, the combination of DMOC with low thrust is

considered for a trajectory that employs low thrust propulsion to spiral into an

elliptical orbit at the Moon. Overall, DMOC is shown to be very successful at

optimizing these trajectories.

Work in Chapter 3 reveals the necessity of a procedure for automated, dynamics-

driven, step size design. Therefore, Chapter 4 focuses on refinement of the time

grid. First, classical mesh refinement as described by Betts [6] is used to develop

a step size profile that reduces discretization errors in the solution. Since DMOC

generates optimal solutions with good energy behavior, a new mesh refinement

method is proposed that seeks to reduce errors in the energy evolution. Finally,

step size profiles are generated using time adapted variational integrators as de-

scribed by Kharevych [24]. Each mesh refinement scheme is used to generate initial

guess trajectories that are then optimized using DMOC. The results are compared

analyzing the convergence rates for both solution and energy error. The mesh re-
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finement schemes are tested on both an elliptical orbit transfer and the low-energy,

Earth-to-Moon trajectory studied in Chapter 3.

Chapter 5 focuses on the development of a time adaptive form of DMOC.

The chapter begins with a thorough derivation of variational integrators with time

adaption. Even though DMOC follows directly from the derivation of regular vari-

ational integrators, the same is not true with time adaption. Naively translating

time adaptive variational integrators to time adaptive DMOC leads to incorrect

optimization results, demonstrating that time adaption within the optimal control

problem is more complicated. First, it is necessary to consider how to properly

write the time adapted version of the optimal control Lagrangian. Then, discretiza-

tion of Hamilton’s principle applied to the optimal control Lagrangian leads to a

different version of discrete Euler-Lagrange equations that serve as constraints for

optimization. The proposed time adapted DMOC is now an indirect optimization

method while regular DMOC is a direct method. The new method is tested on

the elliptical orbit transfer problem and the reconfiguration of a formation flying

cubesat.
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Chapter 2

Background

This thesis combines and builds upon several topics within dynamical systems

theory including invariant manifolds and their use in trajectory design, variational

integrators, and optimal control, specifically, discrete mechanics and optimal con-

trol (DMOC). Therefore, an introduction to the theoretical background of each

topic is warranted.

2.1 Trajectory Design Using Invariant Manifolds

Many techniques focus on the design of spacecraft trajectories. Traditionally, most

trajectory design techniques are based on the 2-body problem and patched con-

ics. Therefore, solution arcs are built based on possible solutions including ellipses,

parabolas, and hyperbolas. As explained by Bate, Mueller, and White [3], this Ke-

plerian approach to design was used for the trajectory that sent Voyager around

the solar system. Even though no analytical solution exists, the 3-body problem

is well understood and allows for the design of complicated trajectories not possi-

ble using patched conics. In particular, invariant manifolds of the planar circular

restricted 3-body problem (PCR3BP) can be used to locate energy efficient tra-

jectories that follow the natural dynamics of the solar system from one region of

space to another. For trajectories involving more than two primary bodies, and

since the N -body problem is notoriously difficult to solve, much work has focused

on patching multiple 3-body systems together. Such trajectories typically include
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impulsive control at the intersection of the invariant manifolds of the two systems.

2.1.1 The 3-Body Problem

The planar circular restricted 3-body problem describes the motion of a body P

under the gravitational influence of two primary masses, m1 and m2. The system

is described in a rotating coordinate frame, and the mass is normalized with the

mass parameter,

µ =
m2

m1 +m2
, (2.1)

where m1 > m2. The normalized mass of the larger body is denoted by m1 =

1− µ, and the normalized mass of the smaller body is m2 = µ. The two primary

bodies rotate in circular, planar orbits about their common center of mass at the

origin. The third body P , for example a spacecraft, is assumed to have negligible

mass. The primary bodies, m1 and m2, are positioned at (−µ, 0) and (1 − µ, 0),

respectively. The geometry of the PCR3BP is shown in Figure 2.1. The equations

of motion for the PCR3BP are [43]

ẍ− 2ẏ =
∂Ω

∂x
, (2.2a)

ÿ + 2ẋ =
∂Ω

∂y
, (2.2b)

where

Ω =
x2 + y2

2
+

1− µ√
(x+ µ)2 + y2

+
µ√

(x− 1 + µ)2 + y2
+
µ(1− µ)

2
. (2.3)

The system, equations (2.2)–(2.3), has five equilibrium points L1, . . . , L5 (see Fig-

ure 2.1), also known as Lagrange points.

The equations of motion for the PCR3BP are Hamiltonian and time indepen-

dent, so there exists the following energy integral,

E =
1

2
(ẋ2 + ẏ2)− Ω(x, y). (2.4)
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Figure 2.1: Geometry of PCR3BP in Sun-Earth rotating frame with two primary masses, m1

and m2, and Lagrange points {Li}5i=1.

Correspondingly, the Jacobi constant is given by C = −2E. The energy integral

divides the phase space into regions of possible and forbidden motion. There are

five possible cases, with the first four cases shown in Figure 2.2. Each plot shows the

Hill’s region, a projection of the energy surfaceM(µ, e) = {(x, y, ẋ, ẏ)|E(x, y, ẋ, ẏ) =

e} onto configuration space, for a particular energy level. The cases are distin-

guished by the critical energy {Ei}5i=1, which represents the energy of a particle

at rest at the Lagrange point {Li}5i=1.

If the energy of P is less than E1, then P is energetically trapped; it is im-

possible for P to reach either m1 or m2 from the exterior region, Figure 2.2(a).

However, as the energy of P increases from E < E1 to E1 < E < E2, a neck opens

up at the L1 Lagrange point so that motion between m1 and m2 is energetically

possible, Figure 2.2(b). If E2 < E < E3, another neck opens at the L2 Lagrange

point making it energetically possible for P to travel to the exterior region as well,

Figure 2.2(c). If E3 < E < E4 = E5, more motion is possible, Figure 2.2(d). These

openings near m2 correspond to periodic orbits about L1 and L2, and transport

between m1, m2, and the exterior region must travel through these periodic orbits.
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(a) E < E1 (b) E1 < E < E2

(c) E2 < E < E3 (d) E3 < E < E4 = E5

Figure 2.2: Regions of possible motion: (a) P cannot move between m1 and m2, (b) P can move

between m1 and m2 via L1, (c) P may move from m1 to m2 to exterior region via L1 and L2,

(d) P may travel past m1 to exterior region via L3. Case 5, E > E5, is not shown: P may move

freely in x-y plane.

For a thorough treatment of the 3-body problem, see Szebehely [45], Ross [43], and

Abraham and Marsden [1].

2.1.2 Invariant Manifolds

Invariant manifolds are tube-like structures comprised of trajectories originating

on or leading to the periodic orbits of L1 and L2. A particle, or spacecraft, may

travel along or through an invariant manifold expending no energy. A method

for computing invariant manifolds is described in Barden, Howell, and Lo [2] and

Ross [43] and is briefly summarized here for manifolds of L2. First, the location of

the L2 Lagrange point and the initial condition for a periodic orbit are computed;
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see [43] for details. Next, a family of periodic orbits is generated using differential

correction and numerical continuation. The state transition matrix of a periodic

orbit with period T , Φ(T, 0), is computed; this is also known as the monodromy

matrix. From the monodromy matrix, the eigenvalues and associated eigenvectors

are computed and used in the manifold initial condition near the first point on the

periodic orbit, x0,p.o,

xu,±0 = x0,p.o ± ε
Vu
||Vu||

, (2.5)

xs,±0 = x0,p.o ± ε
Vs
||Vs||

, (2.6)

where ε is a small constant that moves the initial condition sufficiently far from the

periodic orbit to avoid the asymptotic nature of the manifold while maintaining

the linear estimate. For example, a normalized value of ε = 1e−4 is used in this

work for manifolds in the Earth–Moon 3-body system. Next, initial conditions can

be generated corresponding to successive points on the periodic orbit, xi,p.o with

xu,±i = xi,p.o ± ε
Φ(ti, 0) · Vu
||Φ(ti, 0) · Vu||

, (2.7)

xs,±i = xi,p.o ± ε
Φ(ti, 0) · Vs
||Φ(ti, 0) · Vs||

. (2.8)

Integrating each initial condition forwards (backwards) using the nonlinear equa-

tions of motion generates the trajectories that make up the unstable (stable) man-

ifolds, W u,±
L2

and W s±
L2

, respectively.

The invariant manifolds for L2 are shown in Figure 2.3. The plus and minus

stable (unstable) manifolds are denoted by W s,+
L2

and W s,−
L2

(W u,+
L2

and W u,−
L2

),

respectively. Note that as time moves forward, a particle on the unstable manifold

moves away from the periodic orbit while a point on the stable manifold travels

toward the periodic orbit. The converse is true if time flows backwards.

Conley [11] and McGeehee [37] studied the orbit structures around L1 and L2,

classifying the trajectories as asymptotic orbits that are asymptotic to the periodic

orbit, transit orbits that cross the equilibrium region around the Lagrange point
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from one region to another, or non-transit orbits. They also considered how to use

such orbits to travel from the Earth to the Moon.

A Poincaré section can be used to demonstrate the types of orbits identified

by Conley and McGehee and the general behavior of trajectories near invariant

manifolds. A Poincaré section is a plane transverse to the flow that gives the y and

ẏ values for trajectories when they hit the x coordinate of the plane. The velocity

in the x-direction, ẋ, may be computed using x, y, ẏ and the Jacobi constant of the

trajectory. For example, Figure 2.4(a) shows the location of the Poincaré section

at m2, x = 1 − µ, for the invariant manifolds of L2, and Figure 2.4(b) displays

the y and ẏ values for the unstable (-) and stable (+) manifolds on the Poincaré

section.

Focusing on the unstable manifold, initial conditions (x = 1 − µ, ẋ, y, ẏ) are

selected inside the manifold, on the manifold, and outside the manifold, as shown

in Figure 2.4(c). Integrating these initial conditions generates trajectories that flow

towards the periodic orbit at L2. Figure 2.4(d) demonstrates the vastly different

dynamical behavior of these trajectories. The trajectory with initial condition

inside the manifold flows through the manifold tube and the periodic orbit toward

the exterior region and is a transit orbit. The trajectory with initial condition

on the manifold follows the manifold asymptotically to the periodic orbit. The

initial condition just outside the invariant manifold generates a trajectory that

hugs the manifold but then bounces off the periodic orbit, returning to the region

surrounding m2; this is a non-transit orbit.

Even though the initial conditions are very close to each other, they lead to

dynamically different behavior, demonstrating that the invariant manifold acts as

a separatrix. This idea is explored thoroughly in Gómez et al. [19]. It is this

separatrix property that renders invariant manifolds useful in trajectory design.

Near invariant manifolds, small changes in energy can lead to drastically different

regions in space, providing energy-free transport via the manifold.
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Figure 2.3: Stable and unstable manifolds emanate from the periodic orbit about the L2 La-

grange point.

2.1.3 History of Trajectory Design Using Invariant Manifolds

Since the discovery of the transport mechanism provided by invariant manifolds,

many authors have investigated different ways of using the invariant manifolds to

facilitate the design of low-energy trajectories. Marsden and Ross [35] and Koon

et al. [30] offer a great overview of the subject. More specifically, transfer from

the Earth to periodic orbits around L1 and L2 is described by Howell, Barden,

and Lo [2] and Gómez et al. [18]. The formal existence of heteroclinic connections

between periodic orbits of the same energy is investigated by Koon et al. [26].

Invariant manifolds are particularly useful for the design of trajectories from

the Earth to the Moon, in the Jovian moon system, and in the Saturian moon

system. The design of a multi-moon orbiter in the Jupiter system is studied in

Gómez et al. [19]. The combination of resonance and gravity assists are used

for trajectories to Titan in [16] and [9], and in the Jupiter system, Ross and
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Figure 2.4: (a) A Poincaré section taken at x = 1− µ on the manifolds of L2 reveals (b) the y

and ẏ coordinates of each manifold trajectory for x = 1− µ, and ẋ may be determined based on

the energy. (c) Selecting initial conditions inside, on, or outside the manifold and (d) integrating

reveals the vastly different trajectory behavior possible.

Scheeres [44]. Resonance and heteroclinic connections are shown to explain the

motion of some comets, particularly those around Jupiter, presented by Koon

et al. [29].

Belbruno and Miller [4] were the first to use the structure of the 3-body prob-

lem for a real mission. Taking advantage of the Weak Stability Boundary, an idea

closely related to invariant manifolds, and by patching the Sun–Earth and Earth–

Moon 3-body systems together, they designed a low-energy trajectory that sent

the Japanese Hiten spacecraft to the Moon in 1991. Furthermore, the Genesis Dis-
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covery Mission successfully flew on a trajectory following the invariant manifolds

of the Sun–Earth system along a heteroclinic connection between L1 and L2, as

presented in Koon et al. [25]. Central to the research presented in Chapter 3 is the

work of Koon, Lo, Marsden, and Ross [27, 28] on the Shoot the Moon problem, a

low energy transfer from the Earth to the Moon facilitated by the patched 3-body

problem combining the Sun–Earth and Earth–Moon systems. This problem was

also studied by Howell and Kakoi [22] and Mingotti and Topputo [38]. Lo [32]

proposes how invariant manifolds and their connections that make up the Inter-

planetary Superhighway may be used for future NASA missions as part of the

Origins Program.

Invariant manifold techniques typically lead to trajectories that require some

kind of control, whether it be impulsive or low thrust. For example, Mingotti

et al. [39] explores the use of low thrust combined with invariant manifolds to

reach an elliptical orbit at the moon. Lo et al. [33] further examines the role of

invariant manifolds for low thrust trajectory design. Davis et al. [12] proposes an

optimization technique for connecting periodic orbits about L1 and L2 of different

energy. Marchand et al. [34] explores the use of optimal control for spacecraft

formation keeping in orbits near L1 and L2.

An extension of invariant manifold techniques in order to account for a continu-

ously applied control force is presented in Dellnitz et al. [14] and employed to design

a trajectory from Earth to Venus and from Earth to L2 in [13]. However, tech-

niques like this are only computationally reasonable for a constant one-dimensional

control force. The research presented in Chapter 3 employs a time-dependent con-

trol law influencing all degrees of freedom of the spacecraft at each time node

that are optimal with respect to a certain goal. Therefore, the application of a

local optimal control scheme is indispensable for the design of trajectories with

more complex control laws. Therefore, the thrust-less trajectories designed using

invariant manifold techniques serve as initial guesses for the optimization of the

controlled model. The emphasis in Chapters 3, 4, and 5 on the local optimal

control scheme DMOC warrants an introduction to DMOC and optimal control.
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DMOC is based on variational integrators, and since those ideas will be central to

Chapter 5, a theoretical review of variational integrators is presented first.

2.2 Variational Integrators

Variational Integrators are symplectic, momentum-preserving integrators derived

from variational mechanics. The full development and analysis of discrete me-

chanics and variational integrators is presented in Marsden and West [36]. Before

discussing the derivation of variational integrators, it is useful to begin with some

definitions. Consider a mechanical system with configuration manifold Q, associ-

ated state space TQ and Lagrangian L : TQ → R. Following the conventions of

[36], given a time interval [0, T ], the path space is defined by

C(Q) = C([0, T ], Q) = {q : [0, T ]→ Q|q is a C2 curve}, (2.9)

and the action map G : C(Q)→ R is

G(q) ≡
∫ T

0
L(q(t), q̇(t))dt. (2.10)

Hamilton’s principle states that the evolution q(t) of the system is a stationary

point of the action. Therefore, variations of the action with fixed endpoints must

be zero. For the Lagrangian system L(q, q̇), this gives

δ

∫ T

0
L (q(t), q̇(t)) dt =

∫ T

0

[
∂L

∂q
· δq +

∂L

∂q̇
· δq̇
]
dt

=

∫ T

0

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
· δq dt+

∂L

∂q̇
δq

∣∣∣∣T
0

=

∫ T

0

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
· δq dt = 0, (2.11)

where integration by parts is used to reformulate the δq̇ term and the boundary

term disappears because δq(T ) = δq(0) = 0. For this expression to be zero for all

δq, then the integrand must be zero, resulting in the continuous Euler-Lagrange
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equations
∂L

∂q
(q, q̇)− d

dt

(
∂L

∂q̇
(q, q̇)

)
= 0. (2.12)

The same derivation may be performed in the discrete framework using dis-

crete variational mechanics. The state space TQ is replaced by Q × Q and the

discretization grid is defined by ∆t = {tk = kh | k = 0, . . . , N}, Nh = T , where

N is a positive integer and h is the step size. The path q : [0, T ] → Q is replaced

by a discrete path qd : {tk}Nk=0 → Q, where qk = qd(kh) is an approximation

to q(kh)[36, 40]. The continuous Lagrangian, L(q, q̇), is replaced with a discrete

Lagrangian, Ld(qk, qk+1, h) using the midpoint rule

Ld(qk, qk+1, h) = hL

(
qk + qk+1

2
,
qk+1 − qk

h

)
, (2.13)

approximating the action integral along the curve between qk and qk+1. Thus it is

possible to write ∫ T

0
L(q, q̇) ≈

N−1∑
k=0

Ld(qk, qk+1, h) (2.14)

where the integral has also been approximated using the midpoint rule. Note that

it is possible to use more advanced quadrature rules to achieve integrators with a

higher order of accuracy, but midpoint rule is exclusively used in this thesis.

Variations of the discrete action with respect to qk gives

δ
N−1∑
k=0

Ld(qk, qk+1, h)

=

N−1∑
k=0

[D1Ld(qk, qk+1, h) · δqk +D2Ld(qk, qk+1, h) · δqk+1]

=

N−1∑
k=0

[D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h)] · δqk,

where discrete integration by parts and the condition that δq0 = δqN = 0 is used

to arrive at the final expression. Note that D1 (D2) denotes the derivative with

respect to the first (second) argument. The discrete Euler-Lagrange equations are
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obtained if the variations are required to vanish for all δqk,

D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h) = 0. (2.15)

The discrete Legendre transform, also called discrete fibre derivatives, gives

the discrete version of the standard Legendre transform, p = ∂L
∂q̇ ,

F+Ld : (q0, q1) 7→ (q1, p1) = (q1, D2Ld(q0, q1)), (2.16)

F−Ld : (q0, q1) 7→ (q0, p0) = (q0,−D1Ld(q0, q1)). (2.17)

The left and right momenta may now be defined as

p+k,k+1 = p+(qk, qk+1) = F+Ld(qk, qk+1),

p−k,k+1 = p−(qk, qk+1) = F−Ld(qk, qk+1).
(2.18)

Recognizing that the Euler-Lagrange equations may be rewritten as

D2Ld(qk−1, qk) = −D1Ld(qk, qk+1)

or

p+k−1,k = p−k,k+1,

reveals that the Euler-Lagrange equations enforce momentum matching; that is,

the momentum at a particular node k should be the same whether it is computed

from above or below. Therefore, the momentum at each node k is given by

pk = p+k−1,k = p−k,k+1. (2.19)

In addition to preserving the momentum, variational integrators display excel-

lent energy behavior. In particular, symplecticity guarantees no energy dissipation

or growth for constant time steps [36].
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2.2.1 Variational Integrators with Forcing

For a Lagrangian system with external forces f(q(t), q̇(t), u(t)), where u(t) ∈ U is a

control parameter, the motion q(t) must satisfy the Lagrange-d’Alembert principle,

δ

∫ T

0
L(q(t), q̇(t)) dt+

∫ T

0
f(q(t), q̇(t), u(t)) · δq(t) dt = 0 (2.20)

for all variations δq with δq(0) = δq(T ) = 0. Integration by parts generates the

forced Euler-Lagrange equations

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = f(q, q̇, u). (2.21)

The path q is discretized as before, and the control path u : [0, T ] → U is

replaced by a discrete one. To this end, a refined grid, ∆t̃, is generated via a

set of control points 0 ≤ c1 < · · · < cs ≤ 1 and ∆t̃ = {tk` = tk + c`h | k =

0, . . . , N − 1; ` = 1, . . . , s}. With this notation, the discrete control path is defined

to be ud : ∆t̃ → U . The intermediate control samples uk on [tk, tk+1] are defined

as uk = (uk1, . . . , uks) ∈ U s to be the values of the control parameters guiding the

system from qk = qd(tk) to qk+1 = qd(tk+1), where ukl = ud(tkl) for l ∈ {1, . . . , s}.

Then the continuous force f(q, q̇, u) : TQ × U → T ∗Q is approximated by the

discrete force fk(qk, qk+1, uk) on the same time grid, ∆t̃.

The continuous virtual work term in equation (2.20) is approximated by

f−k · δqk + f+k · δqk+1 ≈
∫ (k+1)h

kh
f(q(t), q̇(t), u(t)) · δq(t) dt, (2.22)

where f−k , f
+
k are the left and right discrete forces, respectively. The left and right

discrete forces combine to represent the discrete force, fk, such that

fk(uk)(qk, qk+1) · (δqk, δqk+1) = f+k (uk)(qk, qk+1) · δqk+1 + f−k (uk)(qk, qk+1) · δqk.

(2.23)

Note that f+k−1 may be viewed as the force acting on qk during the time interval

[tk−1, tk], while f−k is the force on qk applied during [tk, tk+1]. See [40] for more
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details. Therefore, the discrete Lagrange-d’Alembert principle requires the discrete

curve {qk}Nk=0 to satisfy

δ
N−1∑
k=0

Ld(qk, qk+1, h) +
N−1∑
k=0

[
f−k · δqk + f+k · δqk+1

]
= 0, (2.24)

for all variations δqk such that δq0 = δqN = 0. This is equivalent to the forced

discrete Euler-Lagrange equations

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+k−1 + f−k = 0. (2.25)

The forced discrete Legendre transform,

Ff+Ld : (qk−1, qk) 7→ (qk, pk) = (qk, D2Ld(qk−1, qk) + f+k−1)

Ff−Ld : (qk−1, qk) 7→ (qk−1, pk−1) = (qk−1,−D1Ld(qk−1, qk)− f−k−1),
(2.26)

provides the definition for the discrete momentum,

pk = D2Ld(qk−1, qk) + f+k−1 (2.27)

pk−1 = −D1Ld(qk−1, qk)− f−k−1. (2.28)

Even with external forces, variational integrators preserve the energy rate bet-

ter than non-symplectic integrators. Specifically, the Forced Noether’s theorem

relates the momentum evolution and applied forces, guaranteeing that the La-

grangian momentum map is preserved. See [36] for more details.

2.2.2 Implementation

Given an initial condition (q0, p0), it is possible to compute q1 from equation (2.28).

Next, the discrete Euler-Lagrange equations provide a recursive rule for computing

{qk+1}N−1k=1 based on (qk−1, qk). The equations are most likely implicit and must be

solved using an iterative solver such as Newton’s method or Fsolve in MATLAB.

With knowledge of the {qk}Nk=0, the momenta {pk}Nk=1 can be computed using
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equation (2.27).

2.2.3 Time Adaptive Variational Integrators

The variational integrators described above are valid for a constant step size, h.

However, it is impractical to approach some systems using a constant step size.

For example, the nonlinearity of the 3-body problem requires very small step size

near bodies while coarser time stepping is sufficient elsewhere. Therefore, time

adaption would be very useful in such a problem. However, if the step size is

changed naively throughout the integration, the symplecticity can be destroyed.

Therefore, care must be taken when including time adaption.

Hamiltonian Symplectic Integrators

Symplectic time adaptive integrators for Hamiltonian systems are proposed by

Leimkuhler and Reich [31] and Hairer, Lubich, and Wanner [21] using a Sundman

transformation,
dt

dτ
= σ(q, p), (2.29)

where σ is a smooth function of position and momentum. Application of this

transformation to a system with Hamiltonian H(q, p) generates the equations of

motion

q′ =
dq

dτ
= σ(q, p)∇pH(q, p)

p′ =
dp

dτ
= −σ(q, p)∇qH(q, p).

(2.30)

In general, this system is no longer Hamiltonian. Therefore, the authors suggest a

new Hamiltonian

H̃(q, p) = σ(q, p)(H(q, p)−H0), (2.31)
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where H0 is the energy and is constant along trajectories. The equations of motion

for this system are given by

q′ = σ(q, p)∇pH(q, p) + (H(q, p)−H0)∇pσ(q, p)

p′ = −σ(q, p)∇qH(q, p)− (H(q, p)−H0)∇qσ(q, p).
(2.32)

Since H(q, p)−H0 = 0, this system reduces to the original system

q′ = σ(q, p)∇pH(q, p)→ q̇ = ∇pH(q, p)

p′ = −σ(q, p)∇qH(q, p)→ ṗ = −∇qH(q, p).
(2.33)

This idea will be very important for the derivation of DMOC with time adaption

in Chapter 5. Integration of the transformed system using fixed time steps in τ is

equivalent to using variable time steps in t.

Note that, in general, a Hamiltonian and Lagrangian are related by the equa-

tions

H =
∂L

∂q̇
· q̇ − L

L =
∂H

∂p
· p−H,

(2.34)

if they are hyper-regular. Therefore, it is possible to write the time adapted

Lagrangian as

L̃ =
∂H̃

∂p
· p− H̃ =

∂σ(q, p)

∂p
(H −H0) · p+ σ

(
∂H

∂p
· p−H +H0

)
= σ(L+H0).

(2.35)

This relationship will be useful in Chapter 5.

Time Adaption for Lagrangian Systems

In addition to a time-adaptive Hamiltonian formulation, it is desirable to develop

the same ideas for a Lagrangian system. To this end, Kharevych [24] suggests

adding a constraint to enforce the time step control directly into Hamilton’s prin-
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ciple. Consider the time adaption rule

tk+1 − tk = hσ(qk, qk+1), (2.36)

where tk are the discrete time points in t, h = τk+1 − τk is the constant time step

in τ , and τk are the discrete time nodes in τ . The discrete, constrained action may

be written

ŜN0 =

N−1∑
k=0

[Ld(qk, qk+1, tk+1 − tk) + λk(tk+1 − tk − hσ(qk, qk+1))] , (2.37)

where λk is a Lagrange multiplier that enforces the time constraint. Variations

with respect to qk, tk, and λk give

δŜN0 =

[
D1Lk,k+1 +D2Lk−1,k − hλk−1

∂σ(qk−1, qk)

∂qk
− hλk

∂σ(qk, qk+1)

∂qk

]
·δqk

+

[
λk−1 − λk + Ek+1 − Ek

]
· δtk +

[
tk+1 − tk − hσ(qk, qk+1)

]
·δλk,

(2.38)

where Lk,k+1 = Ld(qk, qk+1, tk+1 − tk), Lk−1,k = Ld(qk−1, qk, tk − tk−1), and Ek+1

is the discrete energy given by

Ek+1 = −D3Ld(qk, qk+1, tk+1 − tk). (2.39)

Since the discrete Hamilton’s principle requires that δŜN0 = 0, the time adapted

discrete Euler Lagrange equations are given by

D1Lk,k+1 +D2Lk−1,k − hλk−1
∂σ(qk−1, qk)

∂qk
− hλk

∂σ(qk, qk+1)

∂qk
= 0, (2.40a)

λk = λk−1 + Ek+1 − Ek, (2.40b)

tk+1 = tk + hσ(qk, qk+1). (2.40c)

Kharevych [24] claims that these new time adapted discrete Euler-Lagrange

equations are only a slight modification of the regular, fixed time step equations,
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and with λk sufficiently small, the integrator generates a discrete path with local

flow near that of the original system while maintaining long time energy preserva-

tion. In particular, the discrete energy of the time adapted system,

Êk+1 − Ê1 = λkσ(qk, qk+1), (2.41)

is preserved. This claim will be further explored in Chapter 5.

Lagrangian Systems with External and Dissipative Forces

A modification of the usual Lagrange-d’Alembert principle allows for the inclusion

of external and dissipative forces in this time adaptive framework. The principle

is now written

δ

∫ T

0
L(q(t), q̇(t)) dt+

∫ T

0
f(q(t), q̇(t), u(t))(δq − q̇δt) dt = 0, (2.42)

where the term −q̇δt is necessary because variations with respect to time are also

considered. Using this variational principle, the forced, time adaptive discrete

Euler-Lagrange equations are

D1Lk,k+1 +D2Lk−1,k − hλk−1
∂σ(qk−1, qk)

∂qk
− hλk

∂σ(qk, qk+1)

∂qk
+ f+k−1 + f−k = 0,

(2.43a)

λk = λk−1 + Ek+1 − Ek − f+k−1

(
qk − qk−1
hk−1

)
− f−k

(
qk+1 − qk

hk

)
, (2.43b)

tk+1 = tk + hσ(qk, qk+1). (2.43c)

where f+k = f−k = hk
2 fk, hk = tk+1 − tk, and hk−1 = tk − tk−1. Integration

of the regular time adapted system, equation (2.40), or the forced time adapted

system, equation (2.43), requires q0, q1, t0, t1, and λ0 = 0 to start. The implemen-

tation works as for a regular variational integrator with qk, tk, and λk computed

simultaneously at each step.
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2.3 Optimal Control

The basic ideas behind optimal control are necessary for an understanding of

DMOC and particularly the development in Chapter 5. Ober-Blöbaum [40] pro-

vides a nice introduction and is summarized here. The goal of optimal control

is to modify the dynamics of a system such that some quantity, for example the

control effort, is minimized. More precisely, the objective functional is to be min-

imized subject to the system dynamics, initial conditions, and final constraints.

Therefore, the optimal control problem, as used in this work, is defined as

min
x(·),u(·),(T )

J(x, u) =

∫ T

0
C(x(t), u(t)) dt+ Φ(x(T )), (2.44a)

ẋ(t) = f(x(t), u(t)), (2.44b)

x(0) = x0, (2.44c)

0 = r(x(T )), (2.44d)

where J is the objective functional, C is the cost function, Φ(x(T )) is the Mayer

term and is considered zero for this work, ẋ = f(x(t), u(t)) is the system of differen-

tial equations describing the dynamics, x0 is a vector defining the initial condition,

and r(x(T )) defines the final point constraint. Also note that the controls, u(t), are

constrained to the pointwise control constraint set U = {u(t) ∈ Rnu |h(u(t)) ≥ 0},

and the final time T is held fixed.

The solution trajectory η(t) = (x(·), u(·)) is a feasible solution if the constraints,

equations (2.44b)–(2.44d), are fulfilled. The solution trajectory η(t) = (x∗, u∗) is

an optimal solution of the optimal control problem if

J(x∗, u∗) ≤ J(x, u) (2.45)

for all feasible pairs (x, u). The solution η(t) = (x∗, u∗) is a locally optimal solution

if there exists a neighborhood Bδ(x
∗, u∗), δ > 0 for which equation (2.45) is true

for all feasible (x, u) ∈ Bδ(x∗, u∗). For such a solution, x∗(t) is a locally optimal
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trajectory, and u∗(t) is the locally optimal control.

Definition The Hamiltonian of the optimal control problem is given by the func-

tion H : Rnx × Rnu × Rnx → R and is defined by

H(x, u, λ) = −C(x, u) + λT · f(x, u), (2.46)

where λi, i = 1, . . . , nx are the adjoint variables, and nx and nu are the dimensions

of the state, x, and control, u, respectively.

Definition The Lagrangian of the optimal control problem, equation (2.44), is a

function L : Rnx × Rnu × Rnx given by

L(η, λ) = C(x(t), u(t)) + λT (t) · [ẋ− f(x(t), u(t))]. (2.47)

The action of the optimal control Lagrangian is given by

G(η, λ) =

∫ T

0

(
C(x(t), u(t)) + λT (t) · [ẋ− f(x(t), u(t))]

)
dt. (2.48)

The point (η∗(t), λ∗(t)) is a saddle point of the action if

(η(t), λ∗(t)) ≤ L(η∗(t), λ∗(t)) ≤ L(η∗(t), λ(t)) ∀ (η(t), λ(t)). (2.49)

Local solutions of the optimal control problem, equation (2.44), are saddle

points of the action of the Lagrangian L. Therefore, setting variations of the action

of L with respect to η and λ to zero results in the Euler-Lagrange equations, which

serve as necessary optimality conditions for the optimal control problem. This

result is given by the Pontryagin Maximum Principle.

Theorem 2.3.1 (Pontryagin Maximum Principle) Let (x∗, u∗) be an opti-

mal solution of the optimal control problem, equation (2.44). Then, there exists a

piecewise continuous differentiable function λ : [0, T ]→ Rnx and a vector α ∈ Rnr
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such that

H(x∗(t), u∗(t), λ(t)) = max
u(t)∈U

H(x(t), u(t), λ(t)) ∀ t ∈ [0, T ], (2.50a)

ẋ∗(t) = ∇λH(x∗(t), u∗(t), λ(t), x∗(0) = x0, (2.50b)

λ̇(t) = −∇xH(x∗(t), u∗(t), λ(t)), (2.50c)

λ(T ) = ∇x(Φ(x∗(T ))−∇xr(x∗(T ))α. (2.50d)

A proof of this theorem can be found in Pontryagin et al. [42]. Note that the

proof is not based on the calculus of variations. Deriving the necessary optimality

conditions via calculus of variations on the optimal control Lagrangian can be more

intuitive and is valid only if the solution and controls are smooth enough.

There are many different approaches used for the numerical solution of optimal

control problems. Most methods can be classified as either an indirect method

or a direct method. Indirect methods are derived directly from the Pontryagin

maximum principle and involve an explicit expression of the necessary conditions

for optimality. For direct methods, the problem is transformed into a finite di-

mensional nonlinear programming problem. Some examples of indirect methods

include gradient methods, multiple shooting, and collocation, while direct shooting,

direct multiple shooting, and direction collection are examples of direct methods.

Betts [5] and Binder et al. [8] provide good overviews of the algorithms used for dif-

ferent numerical optimization methods. DMOC (Discrete Mechanics and Optimal

Control) can also be classified as a direct method.

2.3.1 DMOC

DMOC is an optimal control scheme closely related to variational integrators that

was developed by Junge, Marsden, and Ober-Blöbaum [23, 40, 41]. It is based

on a direct discretization of the Lagrange-d’Alembert principle of the mechani-

cal system. The resulting forced discrete Euler-Lagrange equations are used as

optimization constraints for a given cost function. The resulting restricted opti-
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mization problem is solved with an SQP solver.

Consider a mechanical system to be moved along a curve q(t) ∈ Q during

the time interval t ∈ [0, T ] from an initial state (q0, q̇0) to a final state (qT , q̇T )

under the influence of a force f(q(t), q̇(t), u(t)). The curves q and u are chosen to

minimize a given objective functional,

J(q, q̇, u) =

∫ T

0
C(q(t), q̇(t), f(q(t), q̇(t), u(t))) dt, (2.51)

such that the system satisfies the Lagrange-d’Alembert principle,

δ

∫ T

0
L(q(t), q̇(t)) dt+

∫ T

0
f(q(t), q̇(t), u(t)) · δq(t) dt = 0, (2.52)

for all variations δq with δq(0) = δq(T ) = 0.

The optimal control problem stated in equation (2.51) and equation (2.52)

is transformed into a finite dimensional constrained optimization problem us-

ing a global discretization of the states and the controls, as described for vari-

ational integrators. Recall from §2.2, the discrete Lagrange-d’Alembert principle,

equation (2.24), emerges using an approximation of the action integral in equa-

tion (2.52) by a discrete Lagrangian Ld : Q×Q→ R,

Ld(qk, qk+1) ≈
∫ (k+1)h

kh
L(q(t), q̇(t)) dt,

and discrete forces

f−k · δqk + f+k · δqk+1 ≈
∫ (k+1)h

kh
f(q(t), q̇(t), u(t)) · δq(t) dt, (2.53)

where the left and right discrete forces f±k now depend on (qk, qk+1, uk). Then the

discrete Lagrange-d’Alembert principle requires that,

δ
N−1∑
k=0

Ld(qk, qk+1) +
N−1∑
k=0

(
f−k · δqk + f+k · δqk+1

)
= 0, (2.54)
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for all variations {δqk}Nk=0 with δq0 = δqN = 0.

The discrete cost function, Cd, approximates the continuous cost function, C,

in a similar manner such that

Cd(qk, qk+1, fk, fk+1) ≈
∫ (k+1)h

kh
C(q, q̇, f). (2.55)

Therefore, the discrete objective functional is given by

Jd(qd, fd) =
N−1∑
k=0

Cd(qk, qk+1, fk, fk+1). (2.56)

For the optimal control problem, it is also necessary to consider the boundary

conditions. First, the discrete initial and final positions are required to match the

continuous ones,

q0 = q(0),

qN = q(T ).

The momentum boundary conditions require more care. The initial and final

momentum of the continuous system is computed via the Legendre transform,

p = ∂L
∂q̇ ,

p(0) = D2L(q0, q̇0),

p(T ) = D2L(qN , q̇N ).

Then requiring that p(0) = p0 and p(T ) = pN , where p0 and pN are computed

using the forced discrete Legendre transform, equations (2.27)–(2.28), generates

the momentum boundary conditions,

D2L(q0, q̇0) +D1Ld(q0, q1) + f−0 = 0,

−D2L(qN , q̇N ) +D2Ld(qN−1, qN ) + f+N−1 = 0.
(2.57)
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In summary, the discrete constrained optimization problem is given by

min
qd,ud

Jd(qd, ud) =
N−1∑
k=0

Cd(qk, qk+1, uk), (2.58a)

q0 = q0, (2.58b)

qN = qT , (2.58c)

D2L(q0, q̇0) +D1Ld(q0, q1) + f−0 = 0, (2.58d)

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+k−1 + f−k = 0, (2.58e)

−D2L(qT , q̇T ) +D2Ld(qN−1, qN ) + f+N−1 = 0, (2.58f)

with k = 1, ..., N − 1.

Balancing accuracy and efficiency, the discrete cost function, Cd, the discrete

Lagrangian, Ld, and the discrete forces are approximated with the midpoint rule,

and constant control parameters are assumed on each time interval with l = 1 and

c1 = 1
2 ,

Cd(qk, qk+1, uk) = hC

(
qk+1 + qk

2
,
qk+1 − qk

h
, uk

)
, (2.59)

Ld(qk, qk+1) = hL

(
qk+1 + qk

2
,
qk+1 − qk

h

)
, (2.60)

f−k = f+k =
h

2
f

(
qk+1 + qk

2
,
qk+1 − qk

h
, uk

)
. (2.61)

The order of approximation of the discrete Lagrangian, equation (2.60), and the

discrete forces, equation (2.61), determines the order of convergence of the optimal

control scheme. Therefore, second-order convergence is expected with this form of

DMOC.

Equation (2.58) describes a nonlinear optimization problem with equality con-

straints, which can be solved by standard optimization methods like SQP, such

as SNOPT [17]. Optionally, inequality constraints on states and controls can be

included. In contrast to other direct optimal control methods, DMOC is based

on the discretization of the variational principle, equation (2.52), rather than a

discretization of the ordinary differential equations. In Ober-Blöbaum, Junge, and
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Marsden [41], a detailed analysis of DMOC resulting from this discrete variational

approach is given. The optimization scheme is symplectic-momentum consistent,

i.e., the symplectic structure and the momentum maps corresponding to symmetry

groups are consistent with the control forces for the discrete solution independent

of the step size h. Thus, the use of DMOC leads to a reasonable approximation

to the continuous solution, also for large step sizes, i.e., a small number of dis-

cretization points. Also, the discrete solution inherits structural properties from

the continuous system, e.g., good energy preservation or correct energy drift in the

presence of external forces [36].
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Chapter 3

Low Energy Earth-to-Moon Transfer Using

DMOC and Invariant Manifolds

3.1 Introduction

As mentioned in Chapter 2, invariant manifolds of the planar circular restricted

3-body problem can be used to locate energy efficient trajectories that follow the

natural dynamics of the solar system from one region of space to another. This

chapter aims to extend the patched 3-body problem ideas for the design a tra-

jectory using 4-body dynamics with local optimal control applied throughout the

trajectory. The combination of invariant manifold techniques in the PCR3BP and

the optimal control algorithm DMOC (Discrete Mechanics and Optimal Control)

facilitates the design of low energy trajectories in the 4-body problem.

Since the 1950s countless missions have targeted the Moon, sending space-

craft along trajectories for fly-bys, lunar observation orbits, and both manned

and unmanned lunar landings. More recently, propulsion technology and design

techniques, including the use of invariant manifolds, have facilitated the design

of creative, fuel efficient trajectories. For example, in addition to the Hiten mis-

sion mentioned in §2.1.3, ESA’s SMART-1, described by Camino et al. [10], was

launched in 2003 to demonstrate the potential use of ion propulsion for future

interplanetary and deep space missions. The sustained thrust provided by the ion

thruster allowed the spacecraft to spiral out from an elliptical orbit around the
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Earth to the Moon and then spiral in for lunar capture.

This chapter presents two methods for the design of locally optimal trajectories

from the Earth to the Moon with initial guess trajectories based on the invariant

manifolds of the PCR3BP. The first method, method 1, replicates a trajectory

similar to the Shoot the Moon trajectory, following the procedure presented by

Koon, Lo, Marsden, and Ross [27, 28]. Their trajectory begins in low Earth orbit,

travels along the invariant manifolds of the Sun-Earth and Earth-Moon PCR3BPs,

and ends in ballistic capture at the Moon, using a total change in velocity, ∆V ,

of approximately 3, 245 m/s (3, 211 m/s to leave Earth orbit and 34 m/s applied

mid-course). Mingotti, Topputo, and Bernelli-Zazzera [39] describe a low thrust

version of this trajectory.

The second method, method 2, explores a different way of exploiting the man-

ifold structure directly in the 4-body problem. It focuses on the stable Sun-Earth

manifold and the unstable Earth-Moon manifold and generates a trajectory di-

rectly in the 4-body problem. The necessary invariant manifolds are shown in

Figure 3.1. Both methods create trajectories that are used as initial guesses for

DMOC, which searches for a locally optimal trajectory in the 4-body system, ap-

plying control throughout the trajectory while minimizing the control effort, or

the total ∆V.

3.2 Method 1—Shoot the Moon

To achieve transfer between the Earth and Moon using invariant manifolds, as pre-

sented in [27, 28], the first step is to locate a suitable intersection of the unstable

Sun-Earth manifold with the stable Earth-Moon manifold. A Poincaré section is

used to find this intersection in the Sun-Earth rotating frame. For the transforma-

tion between the Sun-Earth and Earth-Moon rotating frames, see [43]. As shown

in Figure 3.2, the phase of the Earth-Moon frame with respect to the Sun-Earth

frame can be adjusted to identify such an intersection; φ = 100 degrees is used

here.
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Figure 3.1: Manifolds emanate from the periodic orbit about L2. (a) Stable and unstable

manifolds of the Sun-Earth L2 Lagrange point. (b) Stable and unstable manifolds of Earth-Moon

L2 Lagrange point.

Using the Poincaré section, shown in Figure 3.3(b), a patch point is selected

that falls within the stable manifold of the Earth-Moon system and outside the

unstable manifold of the Sun-Earth system. From the Poincaré section, the patch

point includes x, y, and ẏ. The x-velocity, ẋ, is selected to insure that the energy

integral at the patch point equals that of the desired manifold. Forward integration

of the conditions at the patch point (x, y, ẋ, ẏ) leads to a trajectory that flows along

the stable Earth-Moon manifold and ends in ballistic capture at the Moon. The

same initial conditions are modified slightly in ẋ and ẏ and integrated backwards,

generating a trajectory that hugs the unstable Sun-Earth manifold and then twists,

targeting back to the Earth. The modification in the velocity ensures that the

energy of the spacecraft is at the appropriate level to travel along the Sun-Earth

manifold in the desired manner.

The Sun-Earth and Earth-Moon trajectories are patched together to form a

trajectory which begins at the Earth and ends in ballistic capture at the Moon.

Ballistic capture here is defined to mean that the trajectory orbits the Moon at

least once within its sphere of influence. Note that at the patch point, the energy

is discontinuous; therefore, an impulsive ∆V is necessary to jump from the energy
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Figure 3.2: The phase, φ, of the Earth-Moon x-axis with respect to the Sun-Earth x-axis is

varied until a suitable intersection of the Sun-Earth unstable manifold and Earth-Moon stable

manifold is found.

level of the Sun-Earth manifold to the energy level of the Earth-Moon manifold.

For mathematical details about this process, see [27, 43].

The patched trajectory is shown in Figure 3.4; it begins in a 135 km altitude

circular orbit about the Earth and ends in a 11, 785 km circular orbit about the

Moon. An initial thrust of 3,227.8 m/s is required to escape Earth orbit along

the trajectory, a mid-course ∆V of 60.6 m/s is applied at the patch point, and a

final ∆V of 197.8 m/s is required to settle into a permanent circular orbit at the

Moon. This trajectory is only valid for the patched 3-body problem; therefore, it

is necessary to modify it to fulfill the dynamics of the 4-body problem.

3.2.1 Controlled 4-Body Model

The 4-body model used here is modeled in the Sun-Earth rotating frame, similar

to the PCR3BP, with the Moon as a perturbation. Using the coordinates of the

PCR3BP, the x-coordinates of the trajectory vary between (0.995, 1.01), while the

y-coordinates vary between (−0.006, 0.006). The difference in scale between these

numbers can cause problems for the optimization, so the convergence improves

when both x and y variables hover around the origin [6]. Therefore, a simple
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nates. (b) Poincaré section showing the intersection of the stable Earth-Moon manifold with the

unstable Sun-Earth manifold. The patch point is chosen inside the stable Earth-Moon manifold

and outside the unstable Sun-Earth manifold.

change of coordinates shifts the Earth so that it is centered at the origin. In

general, the shifted problem converges faster and with smaller constraint residuals

than the original problem.

This 4-body model describes the dynamics of the Sun, Earth, Moon, and space-

craft such that the Moon rotates around the Earth in planar circular motion. Then,

the Earth and Sun rotate in planar circular motion about the center of mass of all

three bodies. As before, the mass of the spacecraft is negligible. Figure 3.5 shows

the geometry of this 4-body model. The controlled equations of motion for this

model in Sun-Earth rotating coordinates are [43]

ẍ− 2ẏ =
∂Ω

∂x
+ ux, (3.1a)

ÿ + 2ẋ =
∂Ω

∂y
+ uy, (3.1b)

where

Ω =
x2 + y2

2
+

mS√
(x+ 1)2 + y2

+
mE√
x2 + y2

+
mM√

(x− xM )2 + (y − yM )2
,

(3.1c)



34

0.995 1 1.005 1.01

−6

−4

−2

0

2

4

6

x 10
−3

x (AU)

y 
(A

U
)

0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

x (Earth−Moon Distance)

y 
(E

ar
th

−
M

oo
n 

D
is

ta
nc

e)
(a) Trajectory, SE Rotating Frame (b) Capture at Moon, EM Rotating Frame

Figure 3.4: (a) Trajectory in 3-body problem (Sun-Earth rotating coordinates) begins near the

Earth, hugs the Sun-Earth unstable manifold towards the periodic orbit of L2. It twists and then

intersects the stable manifold of the Earth-Moon system, following that manifold to the realm of

the Moon. (b) Ballistic capture at the Moon.

and mS , mE , and mM are the normalized mass of the Sun, Earth, and Moon,

respectively, given by

mS = 1− µ, (3.2a)

mE = µ, (3.2b)

mM =
MM

MM +ME +MS
= 3.734 · 10−8, (3.2c)

and

µ =
ME +MM

ME +MM +MS
= 3.036 · 10−6. (3.3)

Note that Mi, i = E,M,S, denotes the mass in kg. The variables ux and uy

represent the control forces normalized by the negligible mass of the spacecraft

in the x and y directions, respectively. Also, xM and yM represent the x- and
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y-positions of the Moon as a function of time given by

θM = ωM t+ θM0, (3.4a)

xM = aM cos θM , (3.4b)

yM = aM sin θM , (3.4c)

where t is time, θM0 is the initial angle of the Moon with respect to the x-axis

in the Sun-Earth rotating frame, aM = 2.573 · 10−3 is the normalized radius of

the Moon’s circular orbit, and ωM = 12.369 is the normalized rotation rate of the

Moon.
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Figure 3.5: 4-body model: geometry in the Sun-Earth rotating frame with three primary masses,

mS , mE , and mM , and spacecraft, P . The Moon rotates relative to the Sun-Earth rotating frame,

which is stationary.

3.2.2 Shoot the Moon Initial Guess Trajectory

Beginning with the same initial conditions from the patch point, ẋ and ẏ are mod-

ified slightly and integrated using the 4-body model described above. The modi-

fication is necessary due to the differences between the dynamics of the PCR3BP

and the 4-body problem. The patch point is modified differently for the Sun-Earth
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section and the Earth-Moon section because of the energy differences between the

manifolds of the two systems. Thus, the initial conditions denoted by ICSE and

ICEM , respectively, can be expressed as

ICSE =
[
x y ẋ+ ∆ẋSE ẏ + ∆ẏSE

]
, (3.5)

ICEM =
[
x y ẋ+ ∆ẋEM ẏ + ∆ẏEM

]
. (3.6)

ICSE is integrated backwards to generate the Sun-Earth portion of the trajec-

tory, and ICEM is integrated forwards to generate the Earth-Moon portion of the

trajectory. Note that the ∆s are adjusted until a good trajectory is found; that

is, a trajectory which begins and ends at a desired distance from the Earth and

Moon, respectively. Note that the initial and final momentum values may not

be favorable. DMOC adjusts these momentum values according to the specified

constraints and cost function during optimization. This trajectory serves as the

initial guess for DMOC.

3.3 Method 2—Invariant Manifold Endpoints

To design a trajectory valid for the 4-body problem, the process starts with the

unstable Earth-Moon manifold and stable Sun-Earth manifold. A point, ICM , is

selected on the unstable Earth-Moon manifold a desired distance from the Moon,

and when integrated backwards in the 4-body problem (transformed to Sun-Earth

rotating coordinates), generates TrajM which flows from the Moon towards, and

then through, the Earth-Moon L2 periodic orbit. Another point, ICE , is selected

on the stable Sun-Earth manifold some distance from the Earth. ICE is integrated

forwards along the manifold, generating TrajE . In the 3-body problem, this tra-

jectory would end on the periodic orbit; however, due to 4-body perturbations, the

trajectory bounces off the periodic orbit and flows back towards the Moon’s orbit.

Figure 3.6(a) shows TrajM in Earth-Moon rotating coordinates, and Figure 3.6(b)

shows TrajE in Sun-Earth rotating coordinates.

Next, the intersection of the resulting trajectories in Sun-Earth rotating coor-
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dinates is located; this is the patch point, shown in Figure 3.6(c). The conditions

of TrajM at the patch point are integrated forwards in the 4-body problem to cre-

ate TrajM2 (identical to TrajM , but it flows in the opposite direction, towards the

Moon instead of away from it). Note that even though the trajectories intersect

in x-y space, they do not actually intersect in time or velocity. The discontinu-

ity in velocity requires an impulsive ∆V . The lack of intersection in time means

that the position of the Moon, given by equations (3.4), is different for TrajM and

TrajE and requires more consideration. Consequently, the position of the Moon

at the patch point for TrajM is selected as the initial condition of the Moon for

TrajE . Next, the conditions of TrajE at the patch point are modified slightly and

integrated backwards toward the Earth to give TrajE2, which is similar to TrajE

and ends in the desired location. Figure 3.6(d) shows TrajM2 and TrajE2 joined

by an impulsive ∆V at the patch point. This trajectory serves as the initial guess

for optimization. In Figure 3.6, the manifolds are labeled such that EMU (EMS)

represents the Earth-Moon unstable (stable) manifold, and SEU (SES) represents

the Sun-Earth unstable (stable) manifold.

3.4 Step Size Considerations for Creation of Initial

Guess

When creating the initial guess using the two methods described above, the non-

linearity of the dynamics poses a problem. Ideally, a constant step size would

be used throughout the trajectory, but this leads to two possible and undesirable

scenarios. First, if a medium step size is used, e.g., O(10−2), there are not enough

nodes near the Earth and Moon to accurately capture the dynamics and general

accuracy and numerical problems arise. On the other hand, if a sufficiently small

step size is used, e.g., O(10−5), there are too many nodes leading to unreasonable

computation time and computer memory problems. To solve this problem, the

trajectory is broken into sections of different step size. For example, five sections

are used for the initial guess found with method 1. Selecting the step size and



38

0.9 1 1.1 1.2 1.3 1.4
−0.2

−0.1

0

0.1

0.2

x (Earth−Moon Distance)

y 
(E

ar
th

−
M

oo
n 

D
is

ta
nc

e)

Moon

EM
U

EM
S

EM
U

EM
S

1 1.005 1.01

−5

0

5

x 10
−3

x (AU)

y 
(A

U
) Earth

SE
U

SE
S

EM
S

EM
U

(a) TrajM (b) TrajE

1 1.005 1.01

−5

0

5

x 10
−3

x (AU)

y 
(A

U
)

Patch point

Traj
M

Traj
E

0.995 1 1.005 1.01
−6

−4

−2

0

2

4

6
x 10

−3

x (AU)

y 
(A

U
)

IG

(c) Intersection (d) Combined Trajectory

Figure 3.6: Process for method 2: (a) Integrate point on Earth-Moon unstable manifold back-

wards in 4-body problem. (b) Integrate point on Sun-Earth stable manifold forwards in 4-body

problem. (c) Locate intersection of the two trajectories; this is the new patch point. (d) Integrate

initial conditions at the patch point with consistent Moon position to generate initial guess with

impulsive ∆V at the patch point.

number of nodes is an iterative, manual process that is repeated until a sufficiently

accurate trajectory is produced. This variation in step size is accommodated in

DMOC by supplying h as a vector containing the step size at each node.
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3.5 Initial Guesses

The initial guess trajectories are plotted in Figure 3.7. Two initial guess trajec-

tories are created using each method: IG1 and IG2 are created using method 1,

while IG3 and IG4 are created using method 2. Note that IG3 and IG4 take less

than 100 days to reach the Moon compared to IG1 and IG2, which take 168 and

161 days, respectively. Also, the final position of the Moon is different for each tra-

jectory. IG1 and IG2 are very similar except that IG1 ends at the first encounter

with the Moon while IG2 first loops around the Moon (ballistic capture) and then

continues until the spacecraft encounters the Moon a second time. IG3 and IG4

differ most in the location of the path point. In Figure 3.7(b), notice the strong

kink in IG4; this is at the patch point; there is a larger discontinuity in velocity

than at IG3’s patch point.

Table 3.1 displays the trajectory details including initial distance from the

Earth, denoted dE.O, final distance from the Moon, dM.O., the total ∆V, which

is broken into: ∆VE (the ∆V necessary to leave circular Earth orbit), ∆VM (the

∆V necessary to inject the spacecraft into a circular orbit at the Moon), ∆Vtraj

(the ∆V applied throughout the trajectory, concentrated at the patch point for

the initial guess), and the number of nodes. All four initial guesses begin within

500 km of the Earth, but they end at varying distances from the Moon: 2,614

km for IG1, 249 km for IG2, 685 km for IG3, and 267 km for IG4. Also, at

8,683 m/s and 9,250 m/s, ∆VE is much larger for IG3 and IG4. Additionally, the

impulsive ∆Vtraj at the patch point is 60 m/s, 56 m/s, 174 m/s, and 269 m/s for

IG1, IG2, IG3, and IG4, respectively. These different initial guess trajectories will

demonstrate the local nature of DMOC as well as the effect different constraints

have on the optimal solution.

Note that the number of nodes used for each initial guess is different. As

mentioned before, each trajectory is broken into sections of constant step size to

accurately capture the dynamics while maintaining a reasonable number of nodes.

Smaller step sizes are used near the Earth and Moon, while larger step sizes are
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Figure 3.7: Initial guess trajectories: two initial guesses in Sun-Earth rotating frame created

using (a) method 1 and (b) method 2. Initial guesses in Earth-Moon rotating frame for (c) method

1 and (d) method 2.

sufficient in regions far from the bodies. Note that IG3 and IG4 use more nodes

than IG1 and IG2, even though IG1 and IG2 are longer trajectories. The maximum

step size used for IG3 and IG4 is 1e-3 while the maximum step size used for IG1 and

IG2 is 5e-3. The maximum step size is used in the middle portion of the trajectory,

nearly in free space for IG1 and IG2, but closer to the Earth and the Moon’s orbit

for IG3 and IG4. Therefore, the dynamics dictate a smaller maximum step size

for IG3 and IG4, leading to more nodes.

Even though the initial guesses have impulsive control applied at the patch

point, when supplied to DMOC, the control force is assumed to be zero through-
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out the trajectory. This allows DMOC to find a solution with a smooth control

profile. Due to the local nature of the SQP (Sequential Quadratic Programming)

algorithm, if the impulsive force is included, DMOC returns a control profile with

an impulse and much higher ∆V.

Table 3.1: Details of Initial Guess Trajectories

IG1 IG2 IG3 IG4

Time of flight (days) 168 161 98 95

Total ∆V (m/s) 3,966 3,992 9,951 10,193

∆VE (m/s) 3,214 3,214 8,683 9,250

∆VM (m/s) 692 722 1,094 674

∆Vtraj (m/s) 60 56 174 269

dE.O. (km) 195 195 217 378

dM.O. (km) 2,614 249 685 267

Number of nodes 1,810 1,190 2,271 3,018

3.6 Optimization

The optimization procedure begins with the formulation of cost function and con-

straints. Then, an SQP solver, SNOPT, performs the optimization. A number of

optimization results are presented for the initial guesses described above.

3.6.1 Constraints and Cost Function

The next step before the optimization is the formulation of constraints. The pri-

mary constraint enforces the system dynamics, requiring that the forced discrete

Euler-Lagrange equations, equation (2.58e), derived from the Lagrangian for the

4-body model, are fulfilled. The Lagrangian is given by

L =
1

2

(
ẋ2 + ẏ2

)
+

1

2

(
x2 + y2

)
+ xẏ − yẋ+

mE√
x2 + y2

+
mS√

(x+ 1)2 + y2
+

mM√
(x− xM )2 + (y − yM )2

. (3.7)
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The control force, f(q, q̇, u) = u, consisting of control parameters (ux, uy), repre-

sents the control force applied in the x and y-direction, respectively, and is included

in the forced discrete Euler-Lagrange equations.

In addition to the forced discrete Euler-Lagrange equations, a variety of other

boundary conditions are enforced, including the initial and final distance from the

Earth and Moon, respectively, the initial and final radial velocity, and a capture

condition at the Moon. For each optimization, the initial distance from the Earth

is required to be dE.O = 200 km. The final distance from the Moon is different

for each optimization, either equaling that of the initial guess or being allowed

to vary within some specified range. If the radial velocity is required to be zero,

the velocity of the initial (final) node is tangential to the trajectory, which allows

the spacecraft to move out of (or into) a circular or elliptical orbit using less ∆V.

If the final distance from the Moon is required to match that of the initial guess,

ballistic capture happens naturally. However, if the final distance is allowed to vary,

usually to decrease the final distance from that of the initial condition, ballistic

capture may not be maintained by the optimization. As described by Belbruno

and Miller [4], ballistic capture may be enforced with the condition,

EM =
1

2

(
(ẋN − ẋMN

)2 + (ẏN − ẏMN
)2
)
− mM

rMN

< 0, (3.8)

where ẋN and ẏN are the x and y velocity components of the spacecraft at the

final node, and ẋMN
and ẏMN

are the velocity components of the Moon at the

final node. This equation gives the Keplerian energy with respect to the Moon

and states that the kinetic energy of the spacecraft relative to the Moon at the

final node must be less than the gravitational potential energy of the Moon. Due

to gravitational effects of the Earth and Sun, this condition is not enough for

permanent capture, but it does generate ballistic capture, as desired.

For each of the four initial guesses, two optimizations are performed with a

slightly different set of constraints. Each optimal result is named according to the

convention DMOC i - j, where i = 1, . . . , 4 is the initial guess number (i = 1, 2
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correspond to method 1 and i = 3, 4 correspond to method 2), and j = 1, 2 is

the optimization run number. For all the j = 1 runs, the final distance from the

Moon is required to match that of the initial guess, except for DMOC 1-1 which is

required to be 500 km instead of the 2,614 km of the initial guess. Also, for these

trials, the initial and final radial velocity must be zero. For all the j = 2 runs, the

final distance from the Moon is allowed to vary within some range, only the initial

radial velocity is zero, and the capture condition is enforced. The constraints for

each run are outlined in Table 3.2.

Table 3.2: Optimization Constraints

dE.O (km) dM.O (km) vr0 = 0 vrN = 0 or capture

DMOC 1-1 200 500 yes vrN = 0

DMOC 1-2 200 [100 : 5, 000] yes capture

DMOC 2-1 200 249 yes vrN = 0

DMOC 2-2 200 [400 : 1, 000] yes capture

DMOC 3-1 200 685 yes vrN = 0

DMOC 3-2 200 [500 : 1, 000] yes capture

DMOC 4-1 200 267 yes vrN = 0

DMOC 4-2 200 [500 : 1, 000] yes capture

The goal of the optimization is to minimize the control effort; correspondingly,

the discrete cost function is

Jd(ud) =
∑
k

hk‖(uk)d‖2, (3.9)

where (uk)d = {(ux,k, uy,k)}N−1k=0 is a vector of length 2N , corresponding to N + 1

total discretization points (nodes), and ‖ · ‖ denotes the 2-norm. The total ∆V

applied throughout the trajectory, based on the control forces computed with

DMOC, is given by

∆Vtraj = αV
∑
k

hk‖(uk)d‖, (3.10)

where αV scales the velocity to units of m/s.
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The optimization process is performed using SNOPT [17]. The primary ad-

vantage of SNOPT is its ability to handle large, sparse, nonlinear programing

problems. This problem is large, requiring more than 1000 nodes for basic results.

A trajectory with N + 1 nodes results in 2N + 2 constraints and 8N2 + 12N + 4

constraint derivatives. Obviously, this is a huge endeavor in terms of memory.

Fortuitously, this problem is very sparse: most of the constraint derivatives are

zero. SNOPT allows the user to provide analytical expressions for the derivatives,

and to store these as sparse matrices, saving a great deal of memory and speeding

up the process.

3.6.2 Optimization Results

The optimization results for methods 1 and 2 are summarized in Table 3.3, and the

initial guess and optimal trajectories are shown in Figure 3.8 and Figure 3.9. Each

optimal trajectory is different, demonstrating the local nature of DMOC; each

optimized trajectory is similar to its initial guess. Most importantly, ∆Vtraj is

reduced to zero. With the correct initial condition, it travels to the Moon using no

fuel. Also, both ∆VE and ∆VM are reduced because the radial velocity constraint

forces the initial and final node of the trajectory to be tangent to a circular orbit

at the same distance. These impulsive ∆V are included for completeness, but are

not explicitly included in the optimization or cost function.

Table 3.3: Details of Optimization

1-1 1-2 2-1 2-2 3-1 3-2 4-1 4-2

Flight time (days) 168 168 161 161 98 98 95 95

Total ∆V (m/s) 3,844 3,803 3,853 4,025 3,764 3,790 3,824 3,787

∆VE (m/s) 3,240 3,240 3,240 3,240 3,212 3,212 3,212 3,212

∆VM (m/s) 604 563 613 785 552 578 612 575

∆Vtraj (m/s) 0 0 0 0 0 0 0 0

dE.O (km) 200 200 200 200 200 200 200 200

dM.O. (km) 500 5,000 249 931 685 500 267 500
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Figure 3.8: DMOC results generated using different constraints for method 1. Optimal trajec-

tories in SE rotating frame for (a) IG1 and (d) IG2. Natural capture behavior at the Moon in EM

rotating frame for (b) IG1 and (e) IG2. Circular orbit at the Moon facilitated by ∆VM applied

at final node of optimal trajectory for (c) IG1 and (f) IG2.

In Figure 3.8, (a) and (d) show the optimal trajectories and initial guesses for

IG1 and IG2, (b) and (e) display the trajectory integrated beyond the final node

with zero ∆V in the EM rotating frame. As shown in the Figure 3.8(b), DMOC 1-

1 is not ballistically captured, even though the initial guess had capture because

the final distance at the Moon is reduced from 2,614 km to just 500 km without

enforcing capture. For DMOC 1-2, capture is maintained without any additional

∆V . Figure 3.8(c) shows the circular orbit at the Moon when ∆VM is applied at

the final node of the optimal trajectory. Notice that DMOC 1-2 is ballistically

captured before the final node, so the trajectory loops around the Moon once

before entering the permanent circular orbit. As shown in Figure 3.8(e) and (f),

continuation of the trajectory shows that ballistic capture is naturally maintained
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for both DMOC 2-1 and DMOC 2-2, and the application of ∆VM at the final node

leads to a permanent circular orbit.

Figure 3.9 shows similar results for the optimal trajectories generated for

method 2 initial guesses. Unlike the results shown in Figure 3.8, the different

constraints have less of an impact on the optimal results. DMOC 3-1 and DMOC

3-2 are very similar, as are DMOC 4-1 and DMOC 4-2. All four optimal trajec-

tories naturally maintain ballistic capture at the Moon, as shown in Figure 3.9(b)

and (e). As before, ∆VM applied at the final node of the trajectory injects the

spacecraft into a permanent circular orbit.
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Figure 3.9: DMOC results generated using different constraints for method 2. Optimal trajec-

tories in SE rotating frame for (a) IG3 and (d) IG4. Natural capture behavior at the Moon in EM

rotating frame for (b) IG3 and (e) IG4. Circular orbit at the Moon facilitated by ∆VM applied

at final node of optimal trajectory for (c) IG3 and (f) IG4.
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3.7 Low Thrust

The lack of control throughout the trajectory means that this is not actually

optimal control. DMOC essentially adjusts the boundary conditions until a free

transfer is found. These results are interesting nonetheless. Also, as shown in the

previous sections, an impulsive maneuver is still required for permanent capture

at the Moon. Therefore, this section explores the use of low thrust propulsion to

spiral into an elliptical orbit at the Moon.

3.7.1 Formulation of Low Thrust Initial Guess

Since this problem focuses on the trajectory behavior near the Moon, it is natu-

ral to consider the dynamics of the 4-body problem in the Earth-Moon rotating

frame. The low thrust equations of motion for this model in Earth-Moon rotating

coordinates are [39, 43]

ẍ− 2ẏ =
∂Ω

∂x
+
Tx
m
, (3.11a)

ÿ + 2ẋ =
∂Ω

∂y
+
Ty
m
, (3.11b)

ṁ = − T

ILTsp g0
, (3.11c)

0 ≤ T =
√
T 2
x + T 2

y ≤ Tmax, (3.11d)

Ω =
x2 + y2

2
+

mE√
(x+ µ)2 + y2

+
mM√

(x+ (1− µ))2 + y2
(3.11e)

+
mS√

(x− xS)2 + (y − yS)2
− mS

a3S
(xS + yS),

and mS , mE , and mM are the normalized mass of the Sun, Earth, and Moon,

respectively, given by

mE = 1− µ, (3.12a)

mM = µ, (3.12b)

mS =
MS

MM +ME
= 3.2890× 105, (3.12c)
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and

µ =
MM

ME +MM
= 0.01215. (3.13)

As before, Mi, i = E,M,S, denotes the mass in kg, and xS and yS represent the

x- and y-positions of the Sun as a function of time given by

θS = −ωSt+ θS0, (3.14a)

xS = aS cos θS , (3.14b)

yS = aS sin θS , (3.14c)

where t is time, θS0 is the initial angle of the Sun with respect to the x-axis in

the Earth-Moon rotating frame, aS = 3.8881× 102 is the normalized radius of the

Sun’s circular orbit, and ωS = 0.9251 is the normalized rotation rate of the Sun.

Note that ILTsp = 3000 s is the specific impulse of the thruster, g0 = 9.81 m/s2 is

the acceleration due to gravity at sea level, and Tmax is the maximum allowable

thrust; in this case, 0.5 N is used. As before all of these values are normalized and

non-dimensionalized.

The performance of a low-thrust trajectory is measured based on the fuel mass

consumption, mp, and the mass fraction,
mp

m0
, where

mp = m0 −mN , (3.15)

the difference of the initial and final mass. To determine the mass fraction for an

impulsive ∆V ,
mp

m0
= 1− exp

(
−
∑

i ∆Vi
IHTsp g0

)
, (3.16)

where IHTsp = 300 s is the specific impulse of an impulsive thruster, and ∆Vi are

the impulsive ∆V .

The desired optimal trajectory ends in an elliptical orbit at the Moon. There-

fore, the conditions (x, y, ẋ, ẏ) of an elliptical orbit with eccentricity e = 0.65 and

desired distance from the Moon are integrated backwards applying the maximum
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value of thrust. At a specified time, Tt, the thrust is set to zero and the integra-

tion continues. By varying Tt and Φ, the phase angle of the ellipse with respect

to the Earth-Moon rotating frame’s x-axis (shown in Figure 3.10), it is possible

to generate a trajectory that spirals out from the elliptical orbit at the Moon,

flows through the periodic orbit at L2, shown in Figure 3.11(a),(b), and follows

the stable invariant manifold toward the intersection with the Sun-Earth unstable

manifold, the patch point, shown in Figure 3.11(c),(d).

For this low thrust initial guess, time t = 0 is set at the desired final point of the

trajectory near the Moon, and time flows backwards. This differs from the original

case when designing an initial guess in the Sun-Earth rotating frame using method

1 for which time t = 0 occurs at the patch point. To ensure the same manifold

intersection as before, θS0 , the initial angle of the Sun with respect to the Earth-

Moon x-axis, is chosen such that θM at the patch point equals θM0 from method

1. This is achieved using an iterative process in which a guess is posed for θS0 , the

trajectory is integrated backwards to the patch point, θM is computed and θS0 is

refined. This process continues until θM (patch point)− θM0(method 1) <tolerance.

When the patch point is reached, an impulsive ∆V is applied and integra-

tion continues until the trajectory reaches the Earth. This ∆V may be adjusted

until the desired radius at the Earth is reached. The full trajectory is shown in

Figure 3.11(c) in Earth-Moon rotating coordinates and (d) in Sun-Earth rotating

coordinates.

If the initial conditions at the Moon are integrated forwards with no thrust,

the desired elliptical orbit at the Moon results. Recall that the majority of the

trajectory, except for the small portion near the Moon and at the patch point, is

achieved using zero thrust. For optimization purposes, the trajectory is reorganized

such that it begins at the Earth and ends near the Moon. The initial guess ends at

the last node before low thrust is applied, excluding the low thrust spiral towards

the Moon.

Two initial guesses are tested. Both trajectories begin approximately 167 km

from the surface of the Earth. IG LT1 requires an impulsive ∆V = 68 m/s
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Figure 3.10: Low thrust spiral with variable parameters Φ and Tt. Φ is the angle of the semi-

major axis of the elliptical orbit at the Moon with respect to the Earth-Moon x-axis. Tt marks

the transition from no thrust to low thrust.

at the patch point and with low thrust spiral, ends in an elliptical orbit with

dp = 1000 km at periapsis. The mass fraction for the low-thrust portion of the

trajectory is 0.0158, and according to equation (3.16), the mass fraction for the

impulsive ∆V is 0.0230, giving a total mass fraction of 0.0388. The second initial

guess, IG LT2, requires an impulsive ∆V = 33 m/s at the patch point and ends in

an elliptical orbit at the Moon with periapsis dp = 100 km. The total mass fraction

is 0.0356 with 0.0243 for the low thrust spiral and 0.0113 for the impulsive ∆V .

3.7.2 Optimization for Low Thrust Trajectory

The optimization process differs from that of method 1 and method 2. In par-

ticular, the optimized solution should be achievable using only low thrust. As

before, the primary constraints are the discrete Euler Lagrange equations, equa-

tion (2.58e), derived from the Lagrangian

L =
1

2

(
ẋ2 + ẏ2

)
+

1

2

(
x2 + y2

)
+ xẏ − yẋ +

mE

rE
+
mM

rM
+
mS

rS

− mS

a3S
(x · xS + y · yS) , (3.17)
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Figure 3.11: Initial guess trajectories with low thrust are achieved by integrating backwards

from desired elliptical orbit at the Moon. Maximum thrust is applied in the direction opposite

the velocity until reaching time, Tt, and then integration continues without thrust for (a) IG LT1

and (b) IG LT2. The full trajectory, including a small impulsive ∆V at the patch point, ends 167

km from the Earth in the Sun-Earth rotating frame for (c) IG LT1 and (d) IG LT2.

where rE , rM , and rS are the distance of the spacecraft from the center of the

Earth, Moon, and Sun, respectively. Since mass is included in the equations of

motion, equation (3.11c), the mass at each node, mk, is an optimization variable,

and the mass dynamics are enforced by the constraint equation,

mk+1 −mk + hk

(
Tk

ILTsp g0

)
= 0. (3.18)

where Tk is the thrust magnitude applied at each node, k. There are several options

for the definition of Tx,k and Ty,k.

1. Tx,k and Ty,k are optimization variables that vary within the limits [−Tmax, Tmax]
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subject to the constraint Tk =
√
T 2
x,k + T 2

y,k ≤ Tmax.

2. The optimization variable is τk, and Tx,k and Ty,k are defined such that

the thrust, Tk = |τk|, is applied in the direction parallel to or opposite the

velocity vector, depending on the sign of τk,

Tx,k = τk

 vx,k√
v2x,k + v2y,k

 , (3.19)

Ty,k = τk

 vx,k√
v2y,k + v2y,k

 , (3.20)

−Tmax ≤ τk ≤ Tmax. (3.21)

There are problems with both of these options that arise in the computation of

the derivatives for the constraint Jacobian. For option 1, if Tx,k = 0 and Ty,k =

0, which is allowable, the derivative of the mass constraint, equation (3.18), with

respect to Tx,k or Ty,k does not exist. For option 2, since Tk is not differentiable

when τk = 0, the derivative of the mass constraint with respect to τk also does

not exist everywhere. There are possible tricks in the problem setup that avoid

these existence problems, but both strategies display poor convergence results.

Ultimately, the best results are achieved when the thrust is defined similar to

option 2, but with a restriction.

Let Tk be the control optimization variable such that the thrust is applied in

the direction opposite the velocity (this means that the thrust acts to slow the

spacecraft)

Tx,k = Tk

− vx,k√
v2x,k + v2y,k

 , (3.22)

Ty,k = Tk

− vy,k√
v2x,k + v2y,k

 , (3.23)

0 ≤ Tk ≤ Tmax, (3.24)
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where vx,k and vy,k are the velocity in the x- and y-directions at node k, respec-

tively. The discrete left and right control forces based on this thrust definition

are

f+x,k = f−x,k =
hk
2

Tk(
mk+1+mk

2

)
−

(
xk+1−xk

hk

)
√(

xk+1−xk
hk

)2
+
(
yk+1−yk

hk

)2
 , (3.25)

f+y,k = f−y,k =
hk
2

Tk(
mk+1+mk

2

)
−

(
yk+1−yk

hk

)
√(

xk+1−xk
hk

)2
+
(
yk+1−yk

hk

)2
 . (3.26)

In summary, the optimization variables are xk, yk, and mk, for k = 1, . . . , N

and Tk for k = 1, . . . , N − 1, and the constraints that enforce dynamics are

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+k−1 + f−k = 0, (3.27)

mk+1 −mk + hk

(
Tk

ILTsp g0

)
= 0. (3.28)

Since the optimized solution should naturally flow into the low thrust spiral deter-

mined for the initial guess, the final mass mN is required to be 1000 kg (the initial

mass assumed for the spiral). Additionally, the initial altitude of a circular orbit

at the Earth must be dE.O = 167 km and vr0 = 0. To ensure that the spiraling,

low thrust portion remains possible, the position and momentum at the final node

must match that of the initial guess.

Two different objective functions are considered. The first aims to minimize

the initial mass (since the final mass is held fixed),

Jd1 = m1. (3.29)

The second objective function seeks to minimize the overall control effort, or thrust,

Jd2 =
∑
k

hk

(
Tk

mk+1+mk

2

)2

. (3.30)
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These objective functions lead to very similar optimal trajectories with different

thrust profiles. Optimization with Jd1, equation (3.29), converges faster and leads

to a thrust profile for which the thrust is turned off for most of the trajectory.

Minimizing the control effort, equation (3.30), leads to a continuous thrust profile,

with magnitude much less than Tmax, applied for most of the trajectory. Results

for both initial guesses, IG LT1 and IG LT2, are presented for Jd1, denoted DMOC

LT1-1 and DMOC LT2-1, respectively. Only IG LT1 is optimized with Jd2 and

since the trajectory results, denoted by DMOC LT1-2, are nearly identical to those

of Jd1, only the thrust profile and thrust location are shown.

Figure 3.12 shows the optimization results for DMOC LT1-1. The transition

from no thrust to low thrust near the Moon is shown in Earth-Moon rotating

coordinates in Figure 3.12(a). Figures 3.12(c) and (d) show the entire trajectory

with the location of thrust arcs in red in Sun-Earth rotating coordinates and

Earth-centered inertial coordinates, respectively. If the final conditions at the

end of the low-thrust spiral are integrated with no thrust, the trajectory settles

into the desired orbit at the Moon, shown in Moon-centered inertial coordinates in

Figure 3.12(b). Figure 3.13 shows the same plots for DMOC LT2-1. Figures 3.14(a)

and (b) show the thrust arcs in Sun-Earth rotating coordinates and Earth-centered

inertial coordinates for DMOC LT1-2.

The entire thrust profile for DMOC LT1-1 is shown in Figure 3.15(a). The

majority of the profile consists of zero thrust, with a small maximum thrust arc

applied for about 9.5 hours on day 33. Also, the thruster turns on approximately

7 hours before reaching the beginning of the low thrust spiral. This optimal tra-

jectory from Earth to elliptical orbit at the Moon requires just 17 kg of fuel, giving

a total mass fraction of mp/m0 = 0.0168. This thrust profile is nearly bang-bang

control; the thrust is either off or on at the maximum value.

The entire thrust profile for DMOC LT2-1 is shown in Figure 3.15(b). This

thrust profile contains two smaller, continuous thrust arcs. The first arc begins

on day 31, rising continuously to a maximum of 0.1 N before decreasing back to

zero by day 32. The second thrust arc begins on day 146, reaches a maximum of
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0.29 N, and ends approximately 1 day later. The mass fraction for this trajectory

is mp/m0 = 0.0249, and uses just 25 kg of fuel.

The thrust profile for DMOC LT1-2, excluding the low thrust spiral, is shown in

Figure 3.15(c). The thrust is continuous, except for the drop-off to zero at the final

node. The thrust turns on approximately 1 day into the trajectory. The thrust

steadily increases to a maximum of 0.0065 N on day 34 and then decreases back

to zero on day 79. The thrust is then off until day 113 when it begins to increase

to a maximum of 0.016 N, decreases slightly and increases again to the global

maximum of 0.0371 N on day 153 before shutting off. This trajectory requires 18

kg of fuel and its total mass fraction is mp/m0 = 0.0179. Notice the difference
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Figure 3.12: DMOC LT1: optimal trajectory with low thrust. (a) The optimal trajectory

is shown near the Moon in the Earth-Moon rotating frame, with low thrust spiral and final

orbit added. (b) Low thrust spiral and final orbit in Moon-centered inertial frame. (c) Optimized

trajectory in Sun-Earth rotating frame with low thrust arcs indicated in red, and (d) the optimized

trajectory in Earth-centered inertial frame with low thrust arcs.
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Figure 3.13: DMOC LT2: optimal trajectory with low thrust. (a) The optimal trajectory

is shown near the Moon in the Earth-Moon rotating frame, with low thrust spiral and final

orbit added. (b) Low thrust spiral and final orbit in Moon-centered inertial frame. (c) Optimized

trajectory in Sun-Earth rotating frame with low thrust arcs indicated in red, and (d) the optimized

trajectory in Earth-centered inertial frame with low thrust arcs.

in scale between Figures 3.15(a) and (b) and Figure 3.15(c); the thrust profile

resulting from Jd2 leads to thrust magnitudes more than an order of magnitude

less than those generated by Jd1.

Table 3.4 summarizes the optimization results. Of the three optimal results,

DMOC LT1-1 results in the smallest mass fraction and takes 4 days less than

DMOC LT2-1. Figure 3.16 shows the mass consumption for each trajectory.

DMOC LT1-2 requires the highest starting mass. DMOC LT2-1 requires the small-

est initial mass, but the low thrust spiral burns more fuel than the other low thrust

spirals.
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Figure 3.14: DMOC LT1-2: optimal trajectory with low thrust, generated with cost function

Jd2. (a) Optimized trajectory in Sun-Earth rotating frame with low thrust arcs indicated in red,

and (b) the optimized trajectory in Earth-centered inertial frame with low thrust arcs.

Table 3.4: Details of Low Thrust Optimization

LT IG1 DMOC LT1-1 DMOC LT1-2 LT IG2 DMOC LT2-1

Flight Time 164 164 164 168 168

∆VE (m/s) 3,190 3,190 3,190 3,189 3,189

∆VM (m/s) 381 381 381 465 465

∆Vtraj (m/s) 68 - - 33 -

dE.O. (km) 167 167 167 167 167

dE.O. (km) 1000 1000 1000 100 100

mp/m0 0.0388 0.0168 0.0179 0.0356 0.0249

3.8 Analysis and Comparison

Table 3.5 displays several trajectory results from literature to compare with the

DMOC solutions. The first four trajectories are presented by Belbruno and Miller [4]

where WSB, BP, H, and BE stand for Weak Stability Boundary, biparabolic, biel-

lipctic, and Hohmann transfers, respectively. All of these trajectories begin in a

167 km circular Earth orbit, and end in a 100 km circular orbit at the Moon.

The WSB trajectory is very similar to that of Shoot the Moon and produces a

low energy transfer trajectory that connects the weak stability boundaries (closely
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Figure 3.15: Thrust profile: magnitude of thrust throughout the trajectory for (a) DMOC

LT1-1, (b) DMOC LT2-1, and (c) DMOC LT1-2.

related to invariant manifolds) of the Sun-Earth and Earth-Moon systems. Ad-

ditionally, the Shoot the Moon trajectory presented by Koon, Lo, Marsden, and

Ross [28] is denoted by SM. This trajectory begins in a 200 km circular orbit, just

like the DMOC solutions and ends in ballistic capture. The final orbit and ∆VM

required to circularize the orbit at the Moon are not provided for SM.

For each trajectory, certain metrics are compared, as done in Belbruno and

Miller [4]. First, it is assumed that the launch vehicle provides an injection ∆V

equal to that necessary for a Hohmann transfer from that particular altitude orbit.

The first four trajectories begin in a 167 km orbit, requiring ∆VH = 3.143 km/s

to leave Earth orbit using a Hohmann transfer. Any additional ∆V required for

injection, denoted ∆VE −∆VH , must be included in the mission ∆V . The DMOC

and SM results begin in 200 km orbits; such orbits require ∆VH = 3.149 km/s for
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a Hohmann transfer. Next, mid-course ∆V are compared, as denoted by ∆Vtraj .

For the WSB, BP, H, and BE trajectories, it is assumed that the spacecraft is

first captured at the Moon in an elliptical orbit with eccentricity e = 0.95, and

periapsis radius rp = rM + 100 km where rM is the radius of the Moon. The ∆V

necessary to enter this elliptical capture orbit is denoted by ∆VC ,

∆VC =

√
V 2
∞ +

2mM

rp
−

√
2mMra

(ra + rp)rp
, (3.31)

where ra is the radius of the orbit at apopasis and

V∞ =

√
mM

(
2

rMH

− 1

aH

)
−
√
mM

rMH

, (3.32)

where rMH
and aH are the periapsis and semi-major axis of the Hohmann transfer

ellipse, respectively. Finally, ∆VM is necessary to circularize the orbit at the

periapsis. The DMOC solutions do not include ∆VC , they are circularized directly

from the final node. The total measure of ∆V performance is given by
∑

∆V =

∆VE −∆VH + ∆Vtraj + ∆VC + ∆VM . All numbers in the table are given in km/s.

As shown by the % change from the corresponding Hohmann transfer, the

DMOC results are at most 19% better than the Hohmann transfer (DMOC 3-1).

Two of the DMOC results, DMOC 1-2 and DMOC 2-2, are actually worse than the
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Hohmann transfer, requiring 7% and 19% more ∆V , respectively. Both of these

results lack the constraint requiring the radial velocity at the final node to be zero,

demonstrating the importance of that constraint. The other DMOC results are

competitive with those from the literature. An emphasis on ∆VE and ∆VM for

the initial guess or in the optimization may lead to even better results.

Table 3.5: Comparison for Trajectories with Impulsive ∆V

Type ∆VE −∆VH ∆Vtraj ∆VC ∆VM
∑

∆V % change from H

WSB 0.018 0.029 0 0.648 0.695 -18

BP 0.089 0 0.073 0.648 0.810 -4

H 0.000 0 0.2 0.648 0.848 0

BE 0.018 0.287 0.052 0.648 1.005 19

DMOC 1-1 0.090 0 - 0.604 0.694 -11

DMOC 1-2 0.091 0 - 0.562 0.653 7

DMOC 2-1 0.091 0 - 0.613 0.704 -13

DMOC 2-2 0.091 0 - 0.785 0.876 19

DMOC 3-1 0.062 0 - 0.552 0.614 -19

DMOC 3-2 0.062 0 - 0.578 0.640 -17

DMOC 4-1 0.063 0 - 0.612 0.675 -16

DMOC 4-2 0.063 0 - 0.575 0.638 -18

SM 0.062 0.034 - - - -

Table 3.6 compares the DMOC low thrust results with low thrust reference

trajectories from literature. These reference trajectories, denoted by LT ref 1

and LT ref 2, presented by Mingotti et al. [39], were created using a shooting

optimization method. All trajectories begin in a 167 km circular orbit at the Earth

and end in an elliptical orbit at the Moon. Comparing the trajectories, DMOC

trajectories require less fuel and flight time than the trajectories created using

shooting methods. Due to similar end conditions, DMOC LT1-1 and DMOC LT1-

2 may be compared directly with LT ref 1, and DMOC LT2-1 may be compared

with LT ref 2. The mass fractions of DMOC LT1-1 and DMOC LT1-2 are an

improvement of 46% and 42%, respectively, over the mass fraction of LT ref 1, and

DMOC LT2-1 is a 59% improvement over the mass fraction of LT ref 2. Note that
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these comparisons exclude the small differences in ∆VE necessary to start on the

optimal trajectory.

Table 3.6: Comparison for Trajectories with Low Thrust

Type ∆VE (m/s) dp (km) e mp/m0 flight time (days)

LT ref 1 3,195 1000 0.65 0.031 236

LT ref 2 3,203 100 0.65 0.061 228

DMOC LT1 3,190 1000 0.65 0.0168 164

DMOC LT2 3,189 100 0.65 0.0249 178

DMOC LT1-2 3,190 1000 0.65 0.0179 164

3.9 Conclusion

This chapter describes how to combine dynamical systems theory with discrete

mechanics and optimal control to design interesting, low-energy trajectories from

the Earth to the Moon. It should be noted that the optimal trajectories produced

here are accurate to second order. For a higher fidelity solution, these solutions

could act as initial guesses for a higher-order method.

First, two methods are presented to create initial guess trajectories. Method

1 utilizes the invariant manifolds of the Sun-Earth and Earth-Moon PCR3BP,

patching the two 3-body systems together to generate a trajectory that begins

at the Earth and is ballistically captured at the Moon. Slight modification of

the velocity at the intersection of the manifolds produces a trajectory valid for

the 4-body problem. Method 2 exploits the dynamics of the problem, designing

the trajectory directly in the 4-body problem, using the invariant manifolds of

the PCR3BP as a guide. Next, the initial guess trajectories are optimized using

DMOC, removing the impulsive mid-course ∆V and reducing the ∆V necessary

to leave Earth orbit and to circularize the orbit at the Moon, following the natural

ballistic capture. The combination of invariant manifolds and DMOC successfully

produces optimized trajectories from the Earth to the Moon that are competitive
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with the literature, requiring up to 19% ∆V less than a Hohmann transfer.

DMOC is also shown to be very effective for the design of low thrust trajec-

tories. After an impulsive ∆V that sets the spacecraft on a trajectory influenced

by invariant manifolds, the trajectory requires as little as 17 kg of fuel to reach an

elliptical orbit at the Moon.
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Chapter 4

Mesh Refinement for DMOC

4.1 Introduction

Optimal trajectory planning in space mission design provides a challenging task

regarding accuracy requirements. These problems can be formulated as optimal

control problems and solved via direct transcription methods, i.e., the trajectory

is approximated by a discrete path using appropriate integration schemes based

on a discrete time mesh. To improve the accuracy of the discrete solution, finer

time-stepping is required near planets due to the strong influence of gravity, while

for a transfer in nearly free space, fewer discretization points are necessary to

accurately reflect the dynamics. The design of the variable step size profile, or

mesh, is a manual process; hence it is favorable to use an automated process such

as mesh refinement. In this chapter, the effect of mesh refinement strategies for

the optimal control scheme Discrete Mechanics and Optimal Control (DMOC) is

investigated by means of an elliptical orbit transfer and an energy-optimal transfer

from the Earth to the Moon.

The primary idea of mesh refinement, as described by Betts [6], is to iteratively

add nodes to the mesh to reduce the discretization error. The results presented

here exhibit the techniques’ ability to improve the accuracy of a solution as well as

to improve the qualitative behavior of a solution, specifically the energy behavior,

while maintaining a fast computation time.
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4.2 Motivation and Problem Formulation

Consider the energy-optimal transfer from the Earth to the Moon presented in

Chapter 3. Since the dynamics of the 4-body problem are very nonlinear, a vari-

able step size is necessary. If a sufficiently small, constant step size is used, fully

capturing the nonlinear dynamics, a prohibitive number of nodes are necessary.

Conversely, restricting the number of nodes, the step size is too large for the dy-

namics, leading to poor accuracy and convergence problems. A compromise leads

to a step size profile that consists of sections of constant step size, as shown in

Figure 4.1(b). The design of this step size profile is a manual and tedious process

based on experimentation, motivating the need for an automated mesh refinement

process.
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Figure 4.1: Motivating example: optimization of the Shoot the Moon trajectory requires the

discretization mesh to be broken into sections of constant step size. (a) Optimized trajectory and

(b) step size profile.
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4.2.1 Elliptical Orbit Transfer

The mesh refinement algorithms are first demonstrated by means of an optimal

elliptical orbit transfer. Consider the 2-body problem for which a spacecraft orbits

the Earth in an elliptical orbit. The controlled equations of motion are

ẍ = − x

(x2 + y2)
3
2

+
ux
m
, (4.1a)

ÿ = − y

(x2 + y2)
3
2

+
uy
m
, (4.1b)

where ux and uy are the control forces in the x- and y-directions, respectively,

and m is the mass of the satellite. The problem is normalized such that GME ,

usually seen in the 2-body problem, equals one. At the periapsis an impulsive

∆V is applied to double the apoapsis of the orbit. DMOC is used to optimize the

transfer, allowing continuous control throughout the trajectory and minimizing the

control effort. Although this problem may be solved with desired accuracy and

reasonable computation time using a constant step size, various step size profiles

generated with the different mesh refinement strategies are tested and compared.

Figure 4.2(a) shows the initial guess and DMOC optimal trajectory for the 2-body

problem with step size h = 5e-4 and 4203 total nodes. Figure 4.2(b) shows the

optimal control magnitude |u|m . Instead of one impulsive thrust applied at the

periapsis, the control is distributed throughout the trajectory, with the maximum

control applied at the periapsis. Henceforth the terms ux
m and

uy
m will simply be

denoted by ux and uy.

4.3 Traditional Mesh Refinement

Mesh refinement for the optimal control problem is thoroughly described by Betts [5,

7, 6]. Betts’ method, summarized here, describes how to refine the discretization

mesh used for the solution of an optimal control problem to reduce errors caused

by the discretization. Suppose the dynamical system to be optimized consists of
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Figure 4.2: Elliptical orbit transfer example problem with (a) initial guess trajectory and DMOC

optimized trajectory and (b) the optimal control magnitude.

the differential equation

ẏ(t) = f [y(t),u(t), t]. (4.2)

The first step is to construct an approximation to the continuous solution using

cubic B-splines

y(t) ≈ ỹ(t), (4.3)

subject to

ỹ(tk) = yk, (4.4)

d

dt
ỹ(tk) = fk, (4.5)

where ỹ(t) is the B-spline approximation, k = 0, . . . , N , N + 1 is the number

of discrete points, and fk = f(yk,uk, tk). In the same manner, a linear B-spline

approximation of the control is formulated,

u(t) ≈ ũ(t) with (4.6)

ũ(tk) = uk, k = 0, . . . , N. (4.7)
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Next, it is necessary to estimate the discretization error for the current mesh.

Begin by defining the absolute local error at step k by

ηi,k =

∫ tk+1

tk

|εi(s)|ds, (4.8)

where

ε(t) = ˙̃y(t)− f [ỹ(t), ũ(t), t]. (4.9)

Since ỹ represents splines for x, y, vx, and vy, ε(t) consists of four components,

reading for the 2-body problem

ε1(t) = ˙̃x(t)− ṽx(t), (4.10a)

ε2(t) = ˙̃y(t)− ṽy(t), (4.10b)

ε3(t) = ˙̃vx(t)−
(
− x̃(t)

(x̃(t)2 + ỹ(t)2)3/2
+
ũx(t)

m

)
, (4.10c)

ε4(t) = ˙̃vy(t)−
(
− ỹ(t)

(x̃(t)2 + ỹ(t)2)3/2
+
ũy(t)

m

)
, (4.10d)

where ˙̃x(t), ˙̃y(t), ˙̃vx(t), and ˙̃vy(t) are the time derivatives of the respective splines.

Based on the absolute error, the solution error is approximated by

εk ≈ max
i

ηi,k
(ωi + 1)

, (4.11)

with the weights

ωi =
N

max
k=1

[|ỹi,k|, | ˙̃yi,k|]. (4.12)

Note that the integral in equation (4.8) is evaluated using adaptive Simpson

quadrature. Now a new mesh is created based on the solution error, equation (4.11).

Nodes are added such that a given time interval is subdivided, so the new mesh

still contains the original nodes. Let Ik represent the number of nodes added to

any time interval k. Determine the interval α with the maximum error,

εα = max
k

εk, (4.13)
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and subdivide this interval, adding one node. Next, compute the predicted error

based on the new mesh. From Betts [6], the predicted error is

εp,k ≈ max
i

ηi,k
(ωi + 1)

(
1

1 + Ik

)p−rk+1

, (4.14)

where p is the order of accuracy of the method (p = 2 for this form of DMOC)

and rk is the order of reduction, assumed to be zero for this work because no

additional path or state constraints are considered. Now, the maximum error

is again computed based on the predicted error, equation (4.14), and a node is

added to the corresponding interval. This process is repeated until a termination

condition is met.

The mesh refinement performed for this work follows Betts’ procedure exclud-

ing the termination condition. Betts [6] suggests a termination condition that

depends upon a combination of the predicted error, the total nodes added, and

the nodes added to a single interval. Here the process terminates when the dis-

cretization mesh contains a maximum number of total nodes. After a new mesh

is generated, an initial guess with the new discretization mesh is optimized using

DMOC. The new optimal result serves as the starting point for a new round of

mesh refinement. This iterative process continues until either the error has been

sufficiently reduced or until the total number of nodes becomes computationally

cumbersome. Note that the weight, ωi, is calculated only on the first iteration of

the mesh refinement process and is then used for subsequent iterations.

4.3.1 Energy Considerations for Mesh Refinement

The classic form of mesh refinement is based entirely on the solution error. It is

desirable to formulate a metric by which the qualitative behavior of the solution,

such as energy behavior, can be judged. As mentioned before, the use of discrete

variational principles for the approximation of the continuous trajectories (as for

DMOC) leads to good energy behavior using a constant time step. However,

arbitrarily adding nodes to the discretization mesh may destroy this property.
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Since accurate energy behavior is the goal, it is important to examine how the

mesh refinement affects the energy, and thus, construct meshes in such a way that

the error in the energy evolution is reduced.

In the presence of control, the energy injected into the system at time t is

Eu(t) =
∫ t
0 q̇(τ) · u(τ) dτ , leading to energy change. Thus the controlled energy

Ec(t) = E(t)−Eu(t), the difference of the total energy and the energy induced by

external control forces, should be preserved. The energy difference,

∆Ec = Ec(t)− E0, (4.15)

where E0 is the energy of the initial condition used to create the initial guess, and

Ec(t) =
1

2
(ẋ2 + ẏ2)− 1√

x2 + y2
−
∫ t

t0

(ẋ(τ)ux(τ) + ẏ(τ)uy(τ))dτ, (4.16)

should be zero for all time, t, for the continuous system. The discrete version of

equation (4.16) is computed using the discrete variables xk, yk, vx,k, and vy,k,

Ec,k =
1

2
(v2x,k + v2y,k)−

1√
x2k + y2k

−
k∑
i=0

hi (vx,iux,i + vy,iuy,i) , (4.17)

and k = 0, . . . , N . DMOC uses state variables xk and yk only, so the velocities,

vx,k and vy,k are computed using the discrete Legendre transform, equation (2.26).

Figure 4.3 shows the energy difference, the discrete version of equation (4.15), for

the optimal solution of the 2-body problem shown in Figure 4.2.

4.4 Mesh Refinement Strategies

Mesh refinement is approached using three different strategies. The first strat-

egy follows the procedure introduced by Betts [6] and adds nodes to decrease

discretization errors in the solution.
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Figure 4.3: Energy difference ∆Ec: The energy difference increases in regions where the potential

is greatest, when the spacecraft is closest to the Earth, indicating that a finer discretization mesh

is required in that region.

Energy-Based Mesh Refinement

The second strategy also follows Betts’ basic idea, but instead of reducing the so-

lution error, the goal is to minimize the energy difference given by equation (4.15).

To this aim, an expression is formulated for the discretization error in the energy.

The energy error is defined by

εE,k =

∫ tk+1

tk

|εE(s)|ds, (4.18)

where

εE(t) = Ẽc(t)− E0. (4.19)

Ẽc(t) approximates Ec(t) using linear B-splines that fulfill the condition

Ẽc(tk) = Ec,k, (4.20)
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where Ec,k is computed according to equation (4.17). The mesh refinement then

proceeds as described before with the maximum energy error

εE,α = max
k

εE,k, (4.21)

and the predicted error

εEp,k
≈ εE,k

(
1

1 + Ik

)p−rk+1

, (4.22)

where p = 2 is the order of the optimization scheme and rk = 0 is the order of

reduction. As before, a node is added to the interval with the maximum error,

and the process repeats until the mesh contains a maximum number of nodes.

Time Adaption

The third strategy is based on the time adaptive variational integrators described

in §2.2.3. This integrator aims to maintain the good energy behavior of the dis-

crete solution also for non-constant time steps. The approach directly considers

the system’s dynamics for the construction of a discrete adaptive time grid. In

particular, the time update is determined such that

tk+1 = tk + hσ(qk, qk+1), (4.23)

where h is the initial step size and σ is a function of the dynamics, specifically the

potential and/or energy. It follows that the variable step size is given by

hk = hσ(qk, qk+1). (4.24)
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Two update strategies are tested in this work:

σ1(qk, qk+1) =
1√

E0 −W
(
qk+qk+1

2

)
+ ν

(equispaced poses) (4.25)

σ2(qk, qk+1) =
1

||∇W (qk) +∇W (qk+1) + ν||2
(acceleration based) (4.26)

where W is the potential, E0 is the initial energy, and ν is a small constant that

prevents division by zero. Employing time adaption in this manner ensures that

the nodes are arranged according to the dynamics. If time is adapted based on

equispaced poses, given by equation (4.25) and denoted by σ1, time evolves such

that the points are equally spaced in x-y space. If time is adapted according to

acceleration, given by equation (4.26) and denoted by σ2, there are more nodes

when the dynamics change quickly and fewer nodes when the dynamics change

slowly. Unlike energy- or solution-based mesh refinement, additional nodes are

not added iteratively; the mesh is generated based on the dynamics and h only.

Thus each solution stands alone and does not depend on the previous solutions.

These time adaption strategies are first presented for the 2-body problem.

Figure 4.4(a) shows the potential and node placement for a constant step size

of h = 0.01 and 255 nodes. There are a dearth of nodes in the regions where

the potential is strongest. Figures 4.4(b) and 4.4(c) show the potential for time

adaption according to equispaced poses and acceleration, respectively. For the

acceleration-based time adaption, the nodes are concentrated where the potential

is strongest, capturing the dynamics more accurately with fewer total nodes than

the constant time step version.

4.5 Mesh Refinement for Elliptical Orbit Transfer

Using each strategy, nodes are added to the mesh, approximately 500–1000 per

iteration. In this way, a variety of step size profiles are created for each strategy.

The step size profiles for energy- and solution-based mesh refinement (also de-

noted by MR) are not immediately ready for use with DMOC. Due to convergence
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Figure 4.4: Potential energy for the 2-body elliptical orbit transfer. Node placement along

potential energy for (a) constant step size, (b) time adaption with equispaced poses, σ1, and (c)

acceleration-based time adaption, σ2. Time adaption leads to better node placement.

problems, any spikes in the step size profiles are removed.

Representative profiles are shown for all mesh refinement strategies in Fig-

ure 4.5. The maximum step size for the energy- and solution-based mesh refine-

ment is 5e-3 for the first iteration while the time adapted schemes (also denoted by

TA) generate much larger maximum step sizes at nearly 0.04 for the acceleration-

based time adaption and approximately 0.01 for equispaced poses. Also, the time

adapted step size profiles are smooth and continuous and require no manipulation.

Each discretization mesh is used to create an initial guess for DMOC optimiza-

tion. The optimization constraints include the discrete Euler-Lagrange equations,
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Figure 4.5: Elliptical orbit transfer step size profiles for (a) energy-based MR, (b) solution-based

MR, (c) time adaption with σ1, and (d) time adaption with σ2.

equation (2.58e), which enforce the dynamics, and the initial and final position and

momentum, equations (2.58d) and (2.58f), are held fixed. The objective function

corresponds to the control effort,

Jd =
∑
k

hk(u
2
x,k + u2y,k), (4.27)

and has to be minimized.

The resulting discretization energy error, equation (4.18), is shown for each

strategy in Figure 4.6. As expected, the energy error consistently improves for

the energy-based mesh refinement. However, the energy error for the solution-
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based mesh refinement is even smaller. Two factors contribute to this result. The

energy-based mesh refinement adds nodes uniformly at the beginning, middle, and

end of the trajectory, compared with the graduated changes in step size that occur

for solution-based mesh refinement. Also the minimum step size is not nearly as

small compared with an equivalent number of nodes in a solution-based mesh. The

energy error for both time adaption schemes is smooth and improves quickly with

the addition of nodes.

The solution error for each strategy, computed according to Betts, equation (4.11),

is shown in Figure 4.7. For all schemes except the acceleration-based time adap-

tion, the largest errors are concentrated at the beginning and middle of the tra-

jectory; these points occur when the spacecraft is closest to the Earth and subject

to the greatest potential force. The solution error for the acceleration-based time

adaption is more evenly distributed and grows toward the end of the trajectory.

To put the results of each scheme into context with the others, log-log plots

of the maximum norm of the energy error and the solution error versus the total

number of nodes, respectively, are shown in Figure 4.8(a) and Figure 4.8(b). The

plots demonstrate the convergence rates, clearly displaying how quickly the error

improves with the addition of nodes to the mesh. DMOC optimal solutions with

constant step size attain nearly third-order convergence, as expected for the local

error using the midpoint rule approximation (black line) for both energy error and

solution error.

Figure 4.8(a) shows that the energy error decreases with nearly third order

convergence for the energy-based mesh refinement (blue line). The solution-based

mesh refinement (green) results in smaller energy errors with the same number

of nodes and a similar convergence rate of approximately 2.8. For both time

adaption schemes, equispaced poses (red line) and acceleration-based (magenta

line), the energy error decreases with a convergence rate of 2.6 and 2.1, respectively,

and with error magnitude less than those of the constant time step solutions.

With larger total number of nodes, the energy-based mesh refinement performs

slightly better than the acceleration-based time adaption. Figure 4.8(b) shows



76

that the best solution error behavior occurs for solution-based mesh refinement.

For small number of total nodes, the time adaption schemes produce smaller errors

than the solution-based mesh refinement, but the faster convergence rate of the

solution-based mesh refinement quickly leads to smaller errors as nodes are added.

The energy-based mesh refinement shows an error behavior rather similar to the

constant time stepping solutions with a slightly faster convergence rate. Overall,

the solution-based mesh refinement generates the best results for both energy error

and solution error, even though the solutions generated with time adaption look

promising.
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Figure 4.6: Elliptical orbit transfer discretization energy error for (a) energy-based MR, (b)

solution-based MR, (c) time adaption with σ1, and (d) time adaption with σ2.
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Figure 4.7: Elliptical orbit transfer discretization solution error for (a) energy-based MR, (b)

solution-based MR, (c) time adaption with σ1, and (d) time adaption with σ2.

4.6 Mesh Refinement for Shoot the Moon

Now that the success of mesh refinement has been demonstrated for the ellipti-

cal orbit transfer, the same ideas are tested on the motivating problem, Shoot

the Moon. Solution-based mesh refinement proceeds as before using the 4-body

dynamics. When considering energy-based mesh refinement, the problem is more

complicated because it is time dependent; the energy is not preserved. A new met-

ric for the energy error must be developed. In a time-independent problem like the

2-body problem, it holds that dEc
dt = 0 ⇒ Ec(t) − E0 = 0. Since dEc

dt 6= 0 for the

Shoot the Moon problem, it is useful to consider errors in the energy derivative.
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Figure 4.8: Convergence rate of DMOC optimized solution for elliptical orbit transfer when

considering the (a) energy error and (b) solution error. The log of the maximum norm of the

error is plotted versus the log of the total number of nodes.

The controlled energy evolves according to the equation,

Ec =
1

2
(ẋ2 + ẏ2)− 1

2

(
(x+ (1− µ))2 + y2

)
− µS
rS
− µE
rE
− µM
rM

−
∫ t

t0

(ẋ(τ)ux(τ) + ẏ(τ)uy(τ))dτ,

(4.28)

where (1−µ) shifts the problem so that the Earth is at the origin, µS , µE , and µM

are the normalized masses of the Sun, Earth, and Moon, respectively, and rS , rE ,

and rM are the distances of the spacecraft from the center of each body. For the

time derivative of the controlled energy, all terms cancel except for those relating

to the time-dependent portion of the problem, the position of the Moon,

dEc
dt

=
d

dt

(
−µM
rM (t)

)
=

− µMaMωM
r3M

(cos (θM (t)) · (y(t)− yM (t))− sin (θM (t)) · (x(t)− xM (t))) ,

(4.29)
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where

rM (t) =
√

(x(t)− xM (t))2 + (y(t)− yM (t))2, (4.30a)

xM (t) = aM cos θM (t), (4.30b)

yM (t) = aM sin θM (t), (4.30c)

θM (t) = ωM t+ θM0 , (4.30d)

and aM is the normalized radius of the Moon’s circularized orbit, θM0 is the initial

angle of the Moon with respect to the Sun-Earth line, and ωM is the normalized

rate of rotation of the Moon. For ease of notation, let the right-hand side of

equation (4.29) be denoted by Ψ(t). Thus the difference of the time derivative of

the controlled energy and the time-dependent Ψ(t),

∆Ėc =
d

dt
Ec(t)−Ψ(t), (4.31)

should be zero for all time t. The discrete version of dEc(t) := d
dtEc(t) on each

interval [tk, tk+1] is determined using finite differences of the discrete controlled

energy values Ec,k, reading

dEc,k =
Ec,k+1 − Ec,k
tk+1 − tk

, (4.32)

for k = 0, . . . , N − 1. The discrete version of Ψ(t) is given by

Ψk = −µMaMωM
rM (tk)3

(cos (θM (tk)) (yk − yM (tk))− sin (θM (tk)) (xk − xM (tk))) ,

(4.33)

for k = 0, . . . , N − 1. In this way, the energy error is given as in equation (4.18)

where εE is replaced with

εĖ(t) = d̃Ec(t)− Ψ̃(t), (4.34)
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where the linear splines d̃Ec and Ψ̃ fulfill d̃Ec(tk) = dEc,k and Ψ̃(tk) = Ψk, respec-

tively. The mesh refinement proceeds as for the 2-body problem.

Note that optimization of the Shoot the Moon problem leads to a solution with

zero control because the boundary conditions are adjusted until a free transfer is

found. Therefore, the effect of control terms in equation (4.28) are henceforth

neglected. Figure 4.9 displays the energy, equation (4.28), for the Shoot the Moon

trajectory. Far from the Moon, the energy oscillates around the constant energy

value of the Earth-Sun-spacecraft 3-body problem. The oscillation corresponds to

the time-dependent perturbation from the Moon. As the spacecraft approaches

the Moon, the Moon’s potential force dominates, leading to the rapid change in

energy at the end.
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Figure 4.9: The energy for the Shoot the Moon problem is time-dependent and evolves based on

the constant energy value of the Sun-Earth-spacecraft planar circular restricted 3-body problem

and the time-dependent motion of the Moon.

Time adaption also works as before; however, only the acceleration-based σ,

denoted σ2, is used. Due to the non-linearity of this problem, equispaced poses

are not appropriate. Such time adaption places too many nodes in the mesh.

Figure 4.10 shows the representative step size profiles for energy-based mesh

refinement, solution-based mesh refinement, and acceleration-based time adaption.

The energy- and solution-based mesh refinement schemes begin by adding nodes

to an optimized trajectory with maximum step size h = 0.01. As shown in the
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plots, energy- and solution-based mesh refinement primarily add nodes at the

beginning and end of the trajectory, near the Earth and Moon, respectively. The

acceleration-based time adaption generates smooth profiles with a maximum step

size in the region furthest from the Earth and the Moon and very small step sizes

near the bodies. Also, notice that the maximum step size is larger compared with

the energy- and solution-based profiles.
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Figure 4.10: Shoot the Moon step size profiles for (a) energy based MR, (b) solution based MR,

and (c) time adaption with σ2.

Figure 4.11 shows the energy error for each mesh refinement strategy. For all

strategies, the discretization energy error oscillates around zero with a large spike

near the Moon (end of trajectory). The solution error is shown in Figure 4.12.

The solution error looks very similar for both energy- and solution-based mesh re-
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finement. The acceleration-based time adaption looks a bit different, with smaller

magnitude errors near the Earth.

The log-log convergence plots fully demonstrate the behavior of the different

strategies for Shoot the Moon. As shown in Figure 4.13(a), the maximum norm

of energy error for acceleration-based time adaption is significantly smaller than

for the energy- or solution-based mesh refinement. The energy-based mesh refine-

ment line has a faster convergence rate, but the magnitude is higher. While the

acceleration-based scheme converges at a slower rate of 2.2, the rate is consistent,

and the value of the error is orders of magnitude smaller.

The trends are not as clear when examining the solution error shown in Fig-

ure 4.13(b). For the first several points, the solution error is significantly better

for the acceleration-based scheme even though the energy-based mesh refinement

converges with a much faster rate. In the middle, the convergence lines cross: the

energy-based convergence rate levels off, but the magnitude of error is still less

than that of acceleration-based time adaption. Even though the solution-based

mesh refinement leads to a convergence rate similar to that of acceleration-based

time adaption, the magnitude of error is higher. The convergence rates for all

solutions are displayed in Table 4.1.

Based on these results, it appears that both energy-based mesh refinement

and acceleration-based time adaption perform better than solution-based mesh re-

finement for this time-dependent problem. Overall, the acceleration-based time

adaption produces the best results for Shoot the Moon regarding energy and so-

lution error. Additionally, the time adaption approach is much easier to use and

requires less computation time for convergence to optimal solutions.

4.7 Conclusion

This chapter examines the effect of different mesh refinement schemes on the energy

error and the solution error of optimal solutions produced using DMOC. First,

four different approaches are tested on an elliptical orbit transfer. The energy-
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Figure 4.11: Shoot the Moon discretization energy error: the energy error decreases with

increasing nodes for (a) energy-based MR, (b) solution-based MR, and (c) time adaption with σ2.

and the solution-based approaches add nodes to the discretization mesh to reduce

the energy error and the solution error, respectively. Additionally, time adaption

based on equispaced poses and acceleration lead to continuous step size profiles.

Overall, solution-based mesh refinement leads to the best energy error and solution

error results for the 2-body problem with the time adaption schemes producing

results that are nearly as good.

Mesh refinement is also explored for the Shoot the Moon problem. The energy-

and solution-based schemes are tested again, as well as the acceleration-based time

adaption. It should be noted that all schemes lead to meshes that accurately and

efficiently produce optimal solutions using DMOC. While the convergence rates
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Figure 4.12: Shoot the Moon discretization solution error: the solution error decreases with

increasing nodes for (a) energy-based MR, (b) solution-based MR, and (c) time adaption with σ1.

may be faster for the energy- and solution-based schemes, the acceleration-based

scheme leads to the best energy and solution error that improves consistently with

the addition of more nodes. Based on the competitive results and ease of use, time

adaption shows the most promise. It is the easiest to use and requires no iteration

from one solution to the next; each solution stands on its own and is not influenced

by the results of previous solutions. Also, the smooth step size profile leads to

fast convergence of the optimizer. Overall, the success of time adaption motivates

exploration of a time adaptive form of DMOC. Time adaption schemes as described

here have already been used for time adaptive variational integrators [24]. Since

DMOC is based on the same discretization schemes as variational integrators,
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Figure 4.13: Shoot the Moon convergence rate of DMOC optimized solution when considering

the (a) energy error and (b) solution error. The log of the maximum norm of the energy error

versus the log of the total number of nodes.

Table 4.1: Convergence Rates

Energy Error Solution Error

Elliptical orbit transfer, Constant step size 2.9 2.9

Elliptical orbit transfer, Energy MR 2.9 3.7

Elliptical orbit transfer, Soln MR 2.8 3.3

Elliptical orbit transfer, TA σ1 2.1 1.2

Elliptical orbit transfer, TA σ2 2.6 1.7

Shoot the Moon, Energy MR 5.3 5.1

Shoot the Moon, Soln MR 2.9 2.9

Shoot the Moon, TA σ2 2.2 2.3

a time adaptive form of DMOC can be derived using similar strategies. Such

an optimizer should efficiently produce optimal solutions with excellent energy

behavior.
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Chapter 5

Time Adaptive DMOC

5.1 Introduction

It is impractical to optimize nonlinear problems, particularly those in trajectory

design, using DMOC with a constant step size. Different strategies can be em-

ployed to circumvent this issue such as using sections of constant step size, as

described in Chapter 3, or using mesh refinement to design the step size profile,

described in Chapter 4. However, it is desirable to develop a form of DMOC that

allows for variable step size while maintaining the convergence and energy proper-

ties expected for DMOC. Furthermore, full time adaption should allow for the step

size, determined by the dynamics, to be updated during the optimization. Time

adaptive DMOC builds on the time adaption strategy developed for variational

integrators described by Kharevych in [24]. However, the transition from time

adaptive variational integrators to time adaptive DMOC is not as obvious as it

may initially seem.

This chapter begins by describing Lagrangian mechanics with time adaption,

setting the stage for a clear derivation and analysis of time adaptive variational

integrators. The most obvious, and incorrect, attempt at translating time adaptive

variational integrators to DMOC is presented to demonstrate why time adaptive

DMOC requires different considerations than variational integrators. Next, a cor-

rect method for approaching time adaption for the optimal control problem is
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described. The method is validated with a simple example before proceeding with

more interesting examples, including the elliptical orbit transfer problem presented

in Chapter 4 and the reconfiguration of a cubesat.

5.2 Lagrangian Mechanics with Time Adaption

Before the derivation of time adaptive DMOC is presented, it is necessary to fully

understand the derivation of variational integrators with time adaption. First con-

sider a continuous system with configuration variables and time as functions of the

parameter τ . This idea originates with the development of variational integrators

for collision by Fetecau, Marsden, Ortiz, and West [15].

Following their notation, it is necessary to present some of their definitions.

Consider a configuration manifold Q, and let the path space be defined as

M = T × Q([0, τF ], Q),

where

T = {ct ∈ C∞([0, τF ],R)|c′t > 0 in [0, τF ]},

Q([0, τF ], Q) = {cq : [0, τF ]→ Q|cq is a C2 curve}.

A path c ∈ M is a pair c = (ct, cq). Thus, given a path defined in this way, the

associated path q : [ct(0), ct(τF )]→ Q is given by

q(t) = cq(ct
−1(t)). (5.1)

Equivalently, cq(τ) = q(t), where τ is a time parameter. It is useful to note that

c′q denotes derivatives of cq with respect to τ and q̇ denotes derivatives of q with
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respect to t. With this in mind,

c′q =
dq

dτ
, (5.2)

c′t =
dt

dτ
, (5.3)

q̇ =
c′q
c′t
. (5.4)

The action map G :M→ R for the Lagrangian system in this new setting is given

by

G(ct, cq) =

∫ τf

0
L

(
cq(τ),

c′q(τ)

c′t(τ)

)
c′t(τ)dτ. (5.5)

The action map for the associated curve q may be written

G(q) =

∫ ct(τf )

ct(0)
L(q(s), q̇(s))ds, (5.6)

where s = ct(τ) is the change of coordinates.

5.2.1 Continuous System with Time Adaption

Now, consider a Lagrangian system with time adaption. From §2.2.3, a time

adapted Lagrangian is given by

L̃(q(t), q̇(t)) = σ(q) (L(q(t), q̇(t)) +H0) , (5.7)

where the time adaption will be enforced such that

c′t =
dt

dτ
= σ(q). (5.8)

L̃ may be transformed into τ coordinates by

L̃

(
cq(τ),

c′q(τ)

c′t(τ)

)
= σ(cq(τ))

(
L

(
cq(τ),

c′q(τ)

c′t(τ)

)
+H0

)
. (5.9)
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For ease of notation, (τ) will not be included henceforth, but it is implied. Equa-

tion (5.9) may equivalently be written

L̃

(
cq,

c′q
c′t

)
=

(
L

(
cq,

c′q
c′t

)
+H0

)
· c′t + cλ · (c′t − σ(cq)), (5.10)

where cλ(τ) = λ(t) is a Lagrange multiplier that enforces the time adaption con-

straint, c′t = σ(cq). Therefore, the action map of the time adapted system is given

by

G(ct, cq, cλ) =

∫ τf

0

(
L

(
cq(τ),

c′q(τ)

c′t(τ)

)
+H0

)
· c′t + cλ · (c′t − σ(cq)) dτ, (5.11)

where the path c is now represented by c = (ct, cq, cλ). Variations of the action

map with respect to the path gives

δ

∫ τf

0

(
L

(
cq(τ),

c′q(τ)

c′t(τ)

)
+H0

)
· c′t + cλ · (c′t − σ(cq)) dτ =∫ τf

0

([
∂L

∂q
· δcq +

∂L

∂q̇

(
δc′q
c′t
−
c′qδc

′
t

(c′t)
2

)]
c′t + cλ

(
δc′t −

∂σ

∂q
· δcq

)
+(L+H0)δc

′
t + (c′t − σ(cq))δcλ

)
dτ.

Multiple applications of integration by parts and the requirement that variations

vanish on the endpoints generates the equations of motion,

d

dτ

∂L

∂q̇
− ∂L

∂q
c′t + cλ

∂σ

∂q
= 0 (5.12)

d

dτ

(
∂L

∂q̇

cq
′

ct′
− L−H0 − cλ

)
= 0 (5.13)

ct
′ − σ(cq) = 0. (5.14)
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Incorporating equation (5.14) into equation (5.12), recognizing that ∂L
∂q̇

c′q
c′t
−L = E

and H0 = E0, the initial energy, and transforming to t coordinates gives

d

dt

∂L

∂q̇
− ∂L

∂q
+
λ

σ

∂σ

∂q
= 0, (5.15a)

d

dt
(E − E0 − λ) = 0. (5.15b)

5.2.2 Continuous System with Time Adaption and Forces

The force term for the associated curve q,

∫ T

0
f (q(t), q̇(t), u(t)) δq(t) dt, (5.16)

may be rewritten considering the transformation δq(t) = δcq −
c′q
c′t
δct,

∫ T

0
f (q(t), q̇(t), u(t)) δq(t) dt =∫ τf

0

(
f

(
cq,

c′q
c′t
, cu

)
c′t · δcq − f

(
cq,

c′q
c′t
, cu

)
c′q · δct

)
dτ, (5.17)

where dt = c′t dτ , and cu is the control parameter in τ coordinates. The Lagrange-

d’Alembert principle requires that

δ

∫ τf

0

(
L

(
cq,

c′q
c′t

)
+H0

)
· c′t + cλ · (c′t − σ(cq))dτ+∫ τf

0

(
f

(
cq,

c′q
c′t
, cu

)
c′t · δcq − f

(
cq,

c′q
c′t
, cu

)
c′q · δct

)
dτ = 0, (5.18)

for all variations δcq, δct, and δcλ, with δcq(0) = δcq(τf ) = 0, and δct(0) =

δct(τf ) = 0, and δcλ(0) = δcλ(τf ) = 0. This principle gives the forced equations of

motion, written in t coordinates, with H0 replaced by E0,

d

dt

∂L

∂q̇
− ∂L

∂q
+
λ

σ

∂σ

∂q
= f, (5.19a)

d

dt
(E − E0 − λ) = f q̇. (5.19b)
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5.2.3 Correspondence Between Original System and Time Adapted

System

If (q, q̇) is a solution of the regular Euler-Lagrange equations,

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (5.20a)

dE

dt
= 0, (5.20b)

then (q, q̇, λ) is a solution of the time adapted Euler-Lagrange equations,

d

dt

∂L

∂q̇
− ∂L

∂q
+
λ

σ

∂σ

∂q
= 0, (5.21a)

d

dt
(E − E0 − λ) = 0, (5.21b)

if λ = 0.

Proof Plug equation (5.20a) and λ = 0 into the right-hand side of equation (5.21a),

verifying that (q, q̇, λ = 0) is a solution of equation (5.21a). Equation (5.21b) also

holds because d
dtE0 = 0 since E0 is a constant, d

dtλ = 0 by definition of λ, and

d
dtE = 0 according to equation (5.20b). �

Conversely, if (q, q̇, λ) is a solution of the time adapted Euler-Lagrange equa-

tions, equations (5.21), restricted to the energy surface E = E0, then (q, q̇) is also

a solution of the regular Euler-Lagrange equations if λ(0) = 0.

Proof Equation (5.21b) gives that d
dt(E−E0) = d

dtλ. Since E = E0, then d
dtλ = 0,

and λ = 0 because λ(0) = 0. With λ = 0, equations (5.21) are equivalent to

equations (5.21b). �

Numerically, λ converges to zero with second-order convergence; thus the time

adapted system converges to the original system in the limit as the step size con-

verges to zero. Note that λ also converges to zero when the system includes forces.
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5.2.4 Discrete System with Time Adaption

Before defining the discrete version of relevant integrals, it is necessary to define

the discrete step sizes for both t and τ ,

dτ = τk+1 − τk = h, (5.22)

dt = tk+1 − tk = hk. (5.23)

The action integral may be approximated according to the following quadrature

rules,

∫ τf

0
L

(
cq,

cq
′

ct′

)
· ct′(τ) dτ ≈

N−1∑
k=0

L̄d(qk, qk+1, h, hk)
hk
h
, (5.24)

∫ T

0
L(q(t), q̇(t)) dt ≈

N−1∑
k=0

Ld(qk, qk+1, hk), (5.25)

where

L̄d = hL

(
qk + qk+1

2
,
qk+1 − qk

hk

)
, (5.26)

Ld = hkL

(
qk + qk+1

2
,
qk+1 − qk

hk

)
. (5.27)

Based on the definitions of L̄d and Ld, the right-hand sides of equation (5.24) and

equation (5.25) are equivalent.

Similarly,

∫ τf

0
cλk(ct

′ − σ(cq))dτ ≈
N−1∑
k=0

hλk

(
hk
h
− σ(qk, qk+1)

)

=

N−1∑
k=0

λk (hk − hσ(qk, qk+1)) , (5.28)
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and

∫ (k+1)h

kh
f

(
cq,

cq
′

ct′
, cu

)
ct
′δcq dτ ≈

N−1∑
k=0

[
f−k (qk, qk+1, uk)δqk + f+k (qk, qk+1, uk)δqk+1

]
=

N−1∑
k=0

[
f−k (qk, qk+1, uk)δqk + f+k (qk, qk+1, uk)δqk+1

]
,

(5.29)

where f−k = f+k = hk
2 fk. The next part of the force integral may be approximated

by

∫ (k+1)h

kh
f

(
cq,

cq
′

ct′
, cu

)
c′qδct dτ ≈

N−1∑
k=0

[
f−k (qk, qk+1, uk)

qk+1 − qk
hk

δtk + f+k (qk, qk+1, uk)
qk+1 − qk

hk
δtk+1

]

=
N−1∑
k=0

hk
h

[
f−k (qk, qk+1, uk)

(
qk+1 − qk

hk

)
δtk + f+k (qk, qk+1, uk)

(
qk+1 − qk

hk

)
δtk+1

]
.

(5.30)

Based on these approximations, the discrete action principle may be written

δ

N−1∑
k=0

[Ld(qk, qk+1, hk) + hkH0 + λk(hk − hσ(qk, qk+1))]

+
N−1∑
k=0

[
f−k (qk, qk+1, uk) · (δqk −

qk+1 − qk
hk

δtk)

]

+
N−1∑
k=0

[
f+k (qk, qk+1, uk) · (δqk+1 −

qk+1 − qk
hk

δtk+1)

]
= 0. (5.31)

Variations with respect to qk, λk, and tk generate the discrete Euler-Lagrange

equations as well as equations enforcing the time adaption and energy dissipation,
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D1Ld(qk, qk+1, hk) +D2Ld(qk−1, qk, hk−1)

− hλk
∂σ(qk, qk+1)

∂qk
− hλk−1

∂σ(qk−1, qk)

∂qk
+ f−k + f+k−1 = 0, (5.32a)

tk+1 = tk + hσ(qk, qk+1), (5.32b)

λk = λk−1 + Ek+1 − Ek − f−k

(
qk+1 − qk

hk

)
− f+k−1

(
qk − qk−1
hk−1

)
, (5.32c)

where

Ek+1 = −D3Ld(qk, qk+1, tk+1 − tk). (5.33)

Equations (5.32) are exactly the variational integrator equations with time adap-

tion presented by [24]. However, note that the notation used here differs slightly

from the notation used in [24], particularly for the external forces.

Preservation Properties

Since the usual Euler-Lagrange equations include energy preservation, it is useful

to analyze the time adapted system to determine what quantities, if any, are

conserved. Consider the system of equations for the time adapted continuos system

given by equation (5.15). Manipulation of equation (5.15b) gives

d

dt
λ =

d

dt
E (5.34a)

λ̇ =
d

dt

(
∂L

∂q̇
q̇ − L

)
(5.34b)

λ̇ =

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
q̇. (5.34c)
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Using the relation from equation (5.15a),

λ̇+
λ

σ

∂σ

∂q
q̇ = 0 (5.35a)

λ̇σ + λ
∂σ

∂q
q̇ = 0 (5.35b)

d

dt
(λ · σ) = 0. (5.35c)

Hence, λ · σ is a conserved quantity. Since λ̇ = Ė, it follows that

λ(t) = λ0 + E(t)− E(0) = E(t)− E(0), (5.36)

because λ0 = 0 by definition. Therefore, the time adapted energy being preserved

is

Ê(t) = λ(t)σ = (E(t)− E(0)) · σ(q). (5.37)

Rearranging this equation, it is clear that

E(t)− E(0) =
Ê(t)

σ(q)
, (5.38)

and if σ is bounded from below, it gives a bound on the energy drift [24].

The new time adapted continuous system may be written

d

dt

∂L

∂q̇
− ∂L

∂q
+
λ

σ

∂σ

∂q
= 0, (5.39)

d

dt
(λ · σ) =

d

dt

(
Ê
)

= 0, (5.40)

where Ê is the quantity being preserved.

Analyzing the system from a discrete perspective, consider variations of the

discrete action

δ
N−1∑
k=0

[Ld(qk, qk+1, hk) + hkH0 + λk(hk − (τk+1 − τk)σ(qk, qk+1))] = 0, (5.41)

with respect to τk for a modified mechanical system with constant step size h =
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τk+1 − τk. This generates the difference in discrete energy,

Êk+1 − Êk = λkσ(qk, qk+1)− λk−1σ(qk−1, qk), (5.42)

for the modified system. Applying recursion relationships and λ0 = 0, this may be

written as

Êk+1 − Ê1 = λkσ(qk, qk+1) = (Ek+1 − E1)σ(qk, qk+1). (5.43)

Since Êk+1− Ê1 defines the energy drift for a variational integrator with constant

step size, h, the modified discrete system inherits the usual energy preservation

properties. Specifically, the energy drift is bounded such that |Êk+1−Ê1| = O(h2).

This relationship can be used to bound the energy of the time adapted system. In

particular,

|Ek+1 − E1| =
∣∣∣∣ Êk+1 − Ê1

σ(qk, qk+1)

∣∣∣∣ = O
(

h2

σmin

)
, (5.44)

because σ is bounded from below by σmin. Therefore, even though the discrete

energy may drift further from the initial value than for integration with constant

time steps, the drift is still bounded with no error accumulation.

Preservation Properties with Forces

For a system with forces, it is important to see how the forces affect the energy

evolution. The analysis proceeds as before, beginning by rewriting equation (5.19b)

as

d

dt
E − d

dt
λ = f q̇

d

dt

(
∂L

∂q̇

)
q̇ − ∂L

∂q
q̇ − d

dt
λ = f q̇. (5.45)
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Replace f with the left-hand side of equation (5.19a),

d

dt

(
∂L

∂q̇

)
q̇ − ∂L

∂q
q̇ − d

dt
λ = −

(
∂L

∂q
− d

dt

∂L

∂q̇
− λ

σ

∂σ

∂q

)
q̇

d

dt

(
∂L

∂q̇

)
q̇ − ∂L

∂q
q̇ − d

dt
λ =

(
d

dt

∂L

∂q̇
− ∂L

∂q
+
λ

σ

∂σ

∂q

)
q̇ (5.46)

d

dt
λσ + λ

∂σ

∂q
q̇ = 0

d

dt
(λ · σ) = 0, (5.47)

so λ · σ is a conserved quantity, as before. From equation (5.19b),

λ̇ =
dE

dt
− f q̇, (5.48)

λ(t) = E(t)− E(0)−
∫ t

0
f(q(s), q̇(s), u(s)) ˙q(s) ds. (5.49)

Tthe time adapted energy being preserved is

Ê = λ · σ =

(
E(t)− E(0)−

∫ t

0
f(q(s), q̇(s), u(s))q̇(s) ds

)
σ. (5.50)

Rearranging this equation,

Ê(t)

σ(q)
= E(t)− E(0)−

∫ t

0
f(q(s), q̇(s), u(s))q̇(s) ds. (5.51)

The energy should evolve according to the integral of the applied forces, and since

Ê(t) is preserved and σ is bounded from below, there is a bound on the drift in

true energy evolution.

Considering the discrete formulation, the energy drift is bounded by

|Ek+1 − E1 −
k∑
i=1

f+i−1(qj − qj−1) + f−i (qj+1 − qj)| = O
(

h2

σmin

)
. (5.52)
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5.3 Naive Time Adaption for DMOC

Since the regular form of DMOC is directly related to variational integrators, it

appears that the time adapted form of DMOC should also be related to time

adapted variational integrators. However, this assumption is incorrect as demon-

strated with a simple optimal control example. Consider the simple system with

Lagrangian, L = 1
2 q̇

2. The controlled equations of motion are

q̈ = u, (5.53)

where u is the control force. The goal is to move the system from some initial

condition (q0, q̇0) to the final condition (qN , q̇N ) while minimizing the control effort;

therefore, the cost function is C = 1
2u

2. The analytical solution to this optimal

control problem is given by

q(t) = c1 + c2t+
c3
2
t2 +

c4
6
t3, (5.54a)

u(t) = c4t+ c3, (5.54b)

where the constants c1, c2, c3, and c4 are determined by the boundary conditions,

c1 = q0,

c2 = q̇0,

c3 = − 2

t2N
((2q̇0 + q̇N )tN + 3(q0 − qN )) ,

c4 =
6

t3N
((q̇0 + q̇N )tN + 2(q0 − qN )) .

Now consider a specific example on the time interval [0, 10] with boundary

conditions q0 = 1, q̇0 = 1, qN = 11, and q̇N = 0. A time adapted initial guess

is created using equation (5.32) with f = u = 0 and σ = q
2 . This initial guess

is optimized using the time adapted equations, equations (5.32), as optimization

constraints and with control force f = u an optimization variable. As before, the
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discrete objective function is given by

Jd =
N−1∑
k=0

h

2
u2k.

Successful optimization generates the trajectory and control profile shown in Fig-

ure 5.1. The analytical solutions for the trajectory q(t) and control u(t), based

on equation (5.54) are included. It is obvious from the optimized control profile

shown in Figure 5.1(b), that the optimizer converges to a different optimal solu-

tion. Even if the true solution is used as the initial guess, the incorrect solution is

still generated. This result indicates that the equations that work for time adapted

variational integrators do not directly translate to a time adapted form of DMOC.

The effect of time adaption on control forces and the optimal control problem must

be considered.
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(a) Optimal Trajectory, q(t) (b) Optimal Control, u(t)

Figure 5.1: Naive formulation of time adapted DMOC leads to incorrect optimal solution both

for the (a) optimal trajectory and (b) optimal control force.

5.4 Time Adaption for Optimal Control Problem

To understand how to properly employ time adaption with DMOC, it is neces-

sary to begin by determining how the optimal control Lagrangian L is computed

using the optimal control Hamiltonian H. Then, this relationship may be ex-
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ploited to formulate the time adapted optimal control Lagrangian L̃ based on H̃.

Euler-Lagrange equations derived from L provide necessary optimality conditions,

assuming sufficient smoothness of the solution. Considering the time adapted op-

timal control Lagrangian, L̃, new Euler-Lagrange equations can be derived that

provide a set of necessary optimality conditions for the time adapted system.

5.4.1 Transformation from Optimal Control Hamiltonian to La-

grangian

Recalling that L = ∂H
∂p · p−H, the optimal control Lagrangian may be written

L =
∂H
∂po.c.

· po.c. −H, (5.55)

where po.c. is the momentum of the optimal control problem. Ordinarily, the

momentum for a Hamiltonian system may be computed according to the equation

p =
∂L

∂q̇
, (5.56)

where q represents the state. For the optimal control problem, the state is aug-

mented with the adjoint variable µ; therefore, denote the state and its derivative

by

x = (q, µ), (5.57a)

ẋ = (q̇, µ̇). (5.57b)

Thus, the optimal control momentum is given by

po.c. =
∂L
∂ẋ

=

(
∂L
∂q̇
,
∂L
∂µ̇

)
. (5.58)

Consider the optimal control Lagrangian for the simple example in §5.3,

L =

(
−1

2
µ2 + ν(q̇ − q̇) + µq̈

)
, (5.59)
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where ν and µ are the adjoint variables. Since variations of the action of the opti-

mal control Lagrangian are important, consider the action of the optimal control

Lagrangian,

G(q) =

∫ T

0

(
−1

2
µ2 + ν(q̇ − q̇) + µq̈

)
dt. (5.60)

Integrating the term containing q̈ by parts and neglecting the boundary term (it

will disappear when considering variations), the optimal control Lagrangian may

be written,

L = −1

2
µ2 − µ̇q̇. (5.61)

Application of equation (5.58) gives the momentum

po.c. = (−µ̇,−q̇) , (5.62)

and when applied in equation (5.55) generates the expression

L = − ∂H
∂(−q̇)

q̇ − ∂H
∂(−µ̇)

µ̇−H, (5.63)

where

H =
1

2
µ2 + νq̇. (5.64)

Examination of the differential equations for the adjoint variables reveals that

ν = −µ̇ for this system, giving

H =
1

2
µ2 − µ̇q̇. (5.65)

Application of equation (5.63) returns the expected expression for L given in equa-

tion (5.61).

For a more general optimal control problem with dynamics given by

q̈ = F (q, q̇) +G(q)u,
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the optimal control Hamiltonian is given by

H = −1

2
u2 + νq̇ + µ (F (q, q̇) +G(q)u) . (5.66)

Variations of this Hamiltonian with respect to u gives the expression for the optimal

control

u = µG(q). (5.67)

Therefore, the optimal control Lagrangian can be written

L = −1

2
G(q)2µ2 − µF (q, q̇)− µ̇q̇. (5.68)

It is assumed that ∂2F
∂q̇2

= 0. This assumption is valid for all problems discussed in

this thesis. Based on this more general optimal control Lagrangian, the optimal

control momentum is

po.c. =

(
−µ̇− µ∂F

∂q̇
,−q̇

)
. (5.69)

Note that for a mechanical system, the Lagrangian depends on q and q̇, and it

is written L(q, q̇). For the optimal control problem, the optimal control Lagrangian

depends on q, µ, q̇, and µ̇, written L(q, µ, q̇, µ̇).

5.4.2 Transformation of Time Adapted Optimal Control Hamil-

tonian and Lagrangian

Recall that the time adapted Hamiltonian is given by H̃ = σ(q)(H −H0). There-

fore, the time adapted optimal control Hamiltonian is

H̃ = σ(q) (H−H0) , (5.70)

where H0 replaces H0 and is used to denote the initial value of the optimal control

Hamiltonian, representing an energy of the optimal control problem. Consequently,
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the time adapted optimal control Lagrangian can be written

L̃ =
∂H̃
∂po.c.

· pc.o − H̃ = σ(q)

(
∂H
∂po.c.

· pc.o −H+H0

)
= σ(q) (L+H0) , (5.71)

where the simplification on the right-hand side is possible under the assumption

that σ(q) is not a function of the optimal control problem momentum, po.c.. Using

the same representation as for equation (5.10),

L̃(τ) = c′t(L+H0) + cλ(c′t − σ(cq)). (5.72)

The variation of the action is

δL̃(τ) = δ

∫ τf

0
[c′t(L(τ) +H0) + cλ(c′t − σ(cq))] dτ = 0, (5.73)

with variations vanishing on the endpoints.

5.4.3 Time Adapted DMOC: Discrete Time Adapted Euler La-

grange Equations

The discrete time adapted action for the optimal control problem is given by

ŜN0 =
N−1∑
k=0

[Ld(qk, qk+1, µk, µk+1, hk) + hkH0 + λk(hk − hσ(qk, qk+1))] (5.74)

where

Ld(qk, qk+1, µk, µk+1, hk) = hk

[
− 1

2
G

(
qk + qk+1

2

)2(µk + µk+1

2

)2

(5.75)

−
(
µk + µk+1

2

)
F

(
qk + qk+1

2
,
qk+1 − qk

hk

)
−
(
µk+1 − µk

hk

)(
qk+1 − qk

hk

)]
,

and hk = tk+1−tk and h = τk+1−τk is a constant. Then, variations of the discrete

action for the optimal control problem with respect to qk, µk, tk, and λk,

δ

N−1∑
k=0

[Ld(qk, qk+1, µk, µk+1, hk) + hkH0 + λk(hk − hσ(qk, qk+1))] = 0, (5.76)
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generate the discrete time adapted Euler-Lagrange equations for the optimal con-

trol problem

∂

∂qk
Lk−1,k +

∂

∂qk
Lk,k+1 − hλk

∂σ(qk, qk+1)

∂qk
− hλk−1

∂σ(qk−1, qk)

∂qk
= 0, (5.77a)

∂

∂µk
Lk−1,k +

∂

∂µk
Lk,k+1 = 0, (5.77b)

λk−1 − λk +
∂

∂tk
Lk−1,k −

∂

∂tk
Lk,k+1 = 0, (5.77c)

tk+1 − tk − hσ(qk, qk+1) = 0, (5.77d)

where Lk−1,k = Ld(qk−1, qk, µk−1, µk, hk−1) and Lk,k+1 = Ld(qk, qk+1, µk, µk+1, hk).

Note that all variations of H0 vanish since it is a constant.

Equation (5.77a) are constraints equations for the adjoint variables, equa-

tion (5.77b) are equivalent to the usual discrete Euler-Lagrange equations, equa-

tion (5.77c) enforces preservation of the optimal control Hamiltonian function, and

equation (5.77d) enforces the time adaption. Equations (5.77) serve as constraints

that enforce the dynamics. Since the cost function is built into the Lagrangian, it

is not necessary to enforce the cost function separately.

Boundary Conditions

The boundary conditions for configuration variable q are the same as for regular

DMOC. That is, q(0) = q0 and q(T ) = qN , as before. The momentum boundary

conditions require more care. Recall that for the optimal control problem, there is

an augmented state consisting of (q, µ). Consequently, there are discrete momen-

tum variables pq and pµ computed according to the discrete Legendre transform,

pq0 = − ∂

∂q0
Ld(q0, q1, µ0, µ1, h0) + hλ0

∂σ(q0, q1)

∂q0
, (5.78a)

pµ0 = − ∂

∂µ0
Ld(q0, q1, µ0, µ1, h0), (5.78b)

pqN =
∂

∂qN
Ld(qN−1, qN , µN−1, µN , hN−1)− hλN

∂σ(qN−1, qN )

∂qN
, (5.78c)

pµN =
∂

∂µN
Ld(qN−1, qN , µN−1, µN , hN−1). (5.78d)
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The continuous momentum boundary values are determined via the continuous

Legendre transform, and the boundary conditions are given by

∂L(q0, q̇0)

∂q̇0
− pq0 = 0, (5.79a)

∂L(q0, q̇0)

∂µ̇0
− pµ0 = 0, (5.79b)

∂L(qN , q̇N )

∂ ˙qN
− pqN = 0, (5.79c)

∂L(qN , q̇N )

∂µ̇N
− pµN = 0. (5.79d)

External Forces

This formulation is valid even for systems with external forces in addition to control

forces. The external forces are included in F (q, q̇) as part of the dynamics. If the

system is subject to a time-dependent external force, the dynamics are given by

q̈ = F (q, q̇) +G(q)u+ Ft(q, t),

where Ft(q, t) represents the time-dependent external force. Then, the optimal

control Lagrangian is

L = −1

2
G(q)2µ2 − µF (q, q̇)− µ̇q̇ − µFt(q, t). (5.81)

The discrete version of this forced optimal control Lagrangian replaces Ld in equa-

tion (5.74), and variations of this new time adapted Lagrangian should be zero,

leading to new Euler-Lagrange equations including both control forces and exter-

nal forces. Furthermore, the momentum boundary conditions are still given by

equations (5.79).

5.4.4 Time Adaptive DMOC: an Indirect Method

Even though DMOC is a direct method for optimal control, formulation of time

adapted DMOC as described in §5.4.3 actually results in an indirect method for
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solving the optimal control problem. Equations (5.77) combined with the bound-

ary conditions describe a boundary value problem, which can be solved with any

BVP solver. For the solution of all examples in this chapter, the implementation is

nearly identical to regular DMOC with the Euler-Lagrange equations and bound-

ary conditions enforced as constraints and with cost function set to one. Then

the SQP solver SNOPT determines the feasible solution, which in this case is the

locally optimal solution.

Table 5.1 demonstrates the parallels between the Lagrangian of the mechani-

cal system, L, and the optimal control Lagrangian, L, for continuous and discrete

settings. Variations of the action of the Lagrangian of the mechanical system lead

to the Euler-Lagrange (EL) equations of motion. Variations of the action of the

time adapted Lagrangian, L̃, lead to the time adapted (TA) Euler-Lagrange equa-

tions of motion. Variations of the action of the optimal control Lagrangian lead

to necessary optimality conditions (nec. opt. cond.), and time adapted necessary

optimality conditions (TA nec. opt. cond.) result for the time adapted optimal

control Lagrangian. The discrete versions are denoted by D.

Table 5.1: TIme Adaption Comparison

Continuous Discrete

L L̃

⇓ ⇓
EL equations TA EL equations

L L̃
⇓ ⇓
nec. opt. cond. TA nec. opt. cond.

Ld L̃d

⇓ ⇓
DEL equations TA DEL equations

Ld L̃d

⇓ ⇓
D nec. opt. cond. DTA nec. opt. cond.

5.4.5 Results for Simple Example

Consider again the simple example with L = 1
2 q̇

2, dynamics q̈ = u, and time

adapted according to σ = q
2 . Taking variations of H with respect to u gives that
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u = µ, and the optimal control Lagrangian is

L = −1

2
µ2 − µ̇q̇. (5.82)

The discrete action principle is

δ
N−1∑
k=0

[
− hk

2

(
µk + µk+1

2

)2

− hk
(
µk+1 − µk

hk

)(
qk+1 − qk

hk

)
+ hkH0

+ λk

(
hk − h

(
qk + qk+1

4

))]
= 0. (5.83)

Variations of the discrete action principle with respect to qk, µk, tk, and λk gen-

erate the discrete time adapted Euler-Lagrange equations for the optimal control

problem,

(
µk+1 − µk

hk

)
−
(
µk − µk−1
hk−1

)
− h

4
λk −

h

4
λk−1 = 0, (5.84a)(

qk+1 − qk
hk

)
−
(
qk − qk−1
hk−1

)
− hk

2

(
µk + µk+1

2

)
−hk−1

2

(
µk−1 + µk

2

)
= 0, (5.84b)

λk−1 − λk +

(
qk − qk−1
hk−1

)(
µk − µk−1
hk−1

)
− 1

2

(
µk−1 + µk

2

)
−
(
qk+1 − qk

hk

)(
µk+1 − µk

hk

)
+

1

2

(
µk + µk+1

2

)
= 0, (5.84c)

tk+1 − tk − h
(
qk + qk+1

4

)
= 0. (5.84d)

Recall that the momentum for this example is po.c. = (−µ̇,−q̇). Therefore, the

momentum boundary conditions given in equation (5.79) can be written as

−µ̇0 − pq0 = 0, −q̇0 − pµ0 = 0,

−µ̇N − pqN = 0, −q̇N − pµN = 0.

For this example, the initial and final discrete configurations must equal the
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continuous ones:

q(0) = q0, (5.85a)

q(T ) = qN . (5.85b)

Next, the initial and final velocity values should be enforced; consequently, the

boundary conditions including q̇0 and q̇N should also be enforced,

−q̇0 − pµ0 = 0, (5.86a)

−q̇N − pµN = 0. (5.86b)

Furthermore, initial conditions for time and λ are included such that t0 = 0 and

λ0 = 0. These boundary conditions are sufficient for a well-posed boundary value

problem, so the boundary conditions for pq need not be enforced.

Examining equation (5.86a), and since λ0 = 0 by definition, this constraint

simplifies to

−q̇0 +

(
q1 − q0
h0

)
+
h0
2

(
µ0 + µ1

2

)
= 0, (5.87)

which looks very similar to the usual momentum boundary condition with
(µ0+µ1

2

)
=

u0.

Using the simple initial guess described in §5.3, this time adapted form of

DMOC successfully produces the correct optimal solution. If the final time is held

fixed with time adapted DMOC, the problem is over-constrained. Allowing the

final time to vary, time adapted DMOC finds an optimal solution with a slightly

different final time than the initial guess. A different final time means that the

boundary conditions are slightly different, and therefore, so is the optimal solution.

To verify that time adapted DMOC generates the correct optimal solution, the

optimal solution is used as an initial guess for regular DMOC. In this way, the

optimal solutions from regular DMOC and time adapted DMOC can be compared

because they share the same time grid. Figure 5.3 compares the time adapted

DMOC optimal solution with the regular DMOC optimal solution for both the
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optimal trajectory and optimal control. As shown in the figure, the solutions

match, confirming that time adapted DMOC converges to the correct optimal

solution.

Two different energy metrics are examined to compare the DMOC and time

adapted DMOC solutions. First, the discrete energy drift,

Ed = Ek+1 − E1 −
k∑
i=1

f+i−1(qj − qj−1) + f−i (qj+1 − qj), (5.88)

for regular DMOC, and

Ed = Ek+1 − E1, (5.89)

for time adapted DMOC, where

Ek+1 = −D3Ld(qk, qk+1, tk+1 − tk) for regular DMOC,

Ek+1 = −D5Ld(qk, qk+1, µk, µk+1, tk+1 − tk) for time adapted DMOC,

should converge to zero with second-order convergence. Since the expressions for

discrete energy drift are different for DMOC and time adapted DMOC, it is also

useful to consider the discrete version of

∆Ec = Ec(t)− Ec(0), (5.90)

where

Ec(t) = E(t)−
∫ t

0
f(q(s), q̇(s), u(s))q̇(s) ds, (5.91)

and E(t) represents the total energy at each time. The integral term represents

the energy injected into the system by the control forces. The discrete Legendre

transform is employed to compute the momenta and corresponding velocities at

each node, which are then used to compute the discrete version of equation (5.90).

Figure 5.5 shows the convergence for errors in position and control for regular

DMOC with constant step size, regular DMOC with time adapted initial guess

(time adapted variational integrators generate an initial guess with variable time
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grid; this time grid is held fixed), and time adapted DMOC. Both plots display

the expected second-order convergence. Notice that the errors are slightly smaller

for regular DMOC with constant step size. This is not too surprising since the

time adaption is arbitrary.
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Figure 5.2: Simple example: regular DMOC and time adapted DMOC generate the same

optimal (a) trajectory and (b) control
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(a) Convergence for position error (b) Convergence for control force error

Figure 5.3: Simple example: comparison of solution error for regular DMOC with constant step

size, regular DMOC with time adapted initial guess, and time adapted DMOC. The error in (a)

position and (b) control force converges to zero with a slope of -2.

The energy metrics, Ed and ∆Ec, are compared for regular DMOC and time

adapted DMOC in Figures 5.4(a) and (b), respectively. Note that the energy met-
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ric is better for time adapted DMOC in both instances. Figure 5.5(a) shows the

rate of convergence for λ, which converges to zero with second-order convergence

as predicted. Figure 5.5(b) displays the log of minimum step size versus the log

of CPU time in seconds. For most minimum step sizes, time adapted DMOC con-

verges faster than regular DMOC with constant step size and regular DMOC with

time adapted initial guess. Also, it should be noted that as the minimum step

size decreases, regular DMOC with time adapted initial guess starts having con-

vergence problems. In comparison, time adapted DMOC converges to the optimal

solution every time with stringent tolerances. It is interesting to note that time

adapted DMOC includes optimization variables qk, µk, tk, and λk compared to just

qk and uk for regular DMOC. Even with twice as many optimization variables, time

adapted DMOC still converges faster.
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Figure 5.4: Simple example: comparison of energy behavior with regular DMOC with constant

step size or time adapted initial guess and time adapted DMOC. Convergence of (a) discrete

energy drift, Ed, and (b) ∆Ec.

5.5 Examples

Several different examples are presented that demonstrate different aspects of

DMOC with time adaption. First, the elliptical orbit transfer problem, first pre-

sented in Chapter 4, is solved using time adaptive DMOC. For this problem, the
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Figure 5.5: Simple example: convergence of (a) λ, and (b) log-log plot of minimum step size

versus CPU time in seconds. In most cases, time Adapted DMOC converges fastest.

control force is defined by f = ru, where r is a configuration variable. Therefore,

in contrast to the simple example, g(q) 6= 1. Also, f(q, q̇) is nonzero. Next, the

problem of reconfiguring a cubesat is presented, demonstrating another potential

application for time adapted DMOC.

5.5.1 Elliptical Orbit Transfer

In contrast to how this problem is approached in Chapter 4, the elliptical orbit

transfer is now presented in 2d-polar coordinates, q = (r, ϕ). From before, a

spacecraft orbits a body in an elliptical orbit such that after one full orbit, it

enters a slightly different orbit with a larger apogee radius. The Lagrangian for

this system is

L(q, q̇) =
1

2
m(ṙ2 + r2ϕ̇2) +

GMm

r
, (5.92)

where G is the universal constant of gravitation, M is the mass of the primary

body, and m is the mass of the satellite. To best illustrate the effects of time

adaption, the problem is scaled such that m = 1 and GM = 1. Configuration

variables r and ϕ represent the radial distance of the spacecraft from the center of

the primary body and the angular position of the spacecraft with respect to the

line through the primary body and the perigee of the elliptical orbit, respectively.
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The controlled dynamics of the system are

r̈ = rϕ̇2 − GM

r2
, (5.93a)

ϕ̈ = −2
ṙ

r
ϕ̇+

u

rm
. (5.93b)

Aiming to minimize the control effort, the optimal control Hamiltonian is

H = −1

2
u2 + νrṙ + νϕϕ̇+ µr

(
rϕ̇2 − GM

r2

)
+ µϕ,

(
−2

ṙ

r
ϕ̇+

u

rm

)
, (5.94)

and ∂H
∂u = 0 requires that u =

µϕ
rm . Thus, the optimal control Lagrangian is

L = −1

2

( µϕ
rm

)2
− µr

(
rϕ̇2 − GM

r2

)
+ µϕ

(
2
ṙ

r
ϕ̇

)
− µ̇rṙ − µ̇ϕϕ̇. (5.95)

Using the discrete version of this Lagrangian in equation (5.76) generates the

discrete Euler-Lagrange equations to be enforced as constraints. The spacecraft

begins in an elliptical orbit with rp1 = 1 and ra1 = 2. The spacecraft ends in

an elliptical orbit with the same perigee and ra2 = 4. The boundary conditions

to be enforced include r0 = 1, rN = 4, ϕ0 = 0, ϕN = π, ṙ0 = ṙN = 0, ϕ̇0 =

1
rp1

√
GM( 2

rp1
− 1

a1
), and ϕ̇N = 1

ra2

√
GM( 2

ra2
− 1

a2
), where a = 1

2(rp + ra) is the

semi-major axis of the ellipse.

Several time adaption strategies are tested, given by

σ1 =
1√

E0 −W
(
qk+qk+1

2

)
+ ν

, (5.96)

σ2 =
1√

E0 −W
(
q+k+qk+1

2

)
+

∣∣∣∣∣∣∣∣∇W (
q+k+qk+1

2

) ∣∣∣∣∣∣∣∣2 + ν

, (5.97)

σ3 =
1∣∣∣∣∣∣∣∣∇W (qk) +∇W (qk+1) + ν

∣∣∣∣∣∣∣∣ , (5.98)

where W = GM
r is the potential energy, E0 is the initial energy, || · || denotes the

2-norm, and ν is a small constant.
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Figure 5.6 compares the optimal trajectories for time adapted DMOC and reg-

ular DMOC using the time adapted solution as initial guess. Figure 5.7 compares

the optimal control solutions. As shown in the both figures, the optimal solutions

from time adapted DMOC and regular DMOC match for all three time adaption

strategies.

Figure 5.8 compares the energy metrics, Ed and ∆Ec. As shown in Fig-

ure 5.8(a), the discrete energy drift for solutions generated with time adapted

DMOC is smaller than the discrete energy drift for regular DMOC, even with

time adapted initial guess. For ∆Ec, shown in Figure 5.8(b), time adapted DMOC

produces slightly better results than regular DMOC.

Figure 5.9(a) displays the convergence of λ for all three time adaption strate-

gies. As expected, λ approaches zero with second order convergence. Figure 5.9(b)

exhibits the log of minimum step size versus log of the computation time. Time

adapted DMOC converges faster than regular DMOC with constant step size or

time adapted initial guess. As the minimum step size decreases, convergence with

regular DMOC becomes less dependable, but time adapted DMOC continues to

converge very well. Since an analytical solution to this optimal control problem

does not exist, convergence plots of the error in configuration or control are not

included.
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Figure 5.6: Elliptical orbit transfer: optimal trajectory for regular DMOC and time adapted

DMOC with (a) σ1, (b) σ2, and (c) σ3. The same optimal solution is achieved using DMOC and

time adapted DMOC.
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Figure 5.7: Elliptical orbit transfer: optimal control for regular DMOC and time adapted

DMOC with (a) σ1, (b) σ2, and (c) σ3. The same optimal solution is achieved using DMOC and

time adapted DMOC.
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Figure 5.8: Elliptical orbit transfer: comparison of energy behavior. Convergence of (a) discrete

energy drift, Ed, and (b) ∆Ec.

5.5.2 Cubesat Reconfiguration

This example is modeled on the hovercraft reconfiguration example presented by

[23]. Consider a cubesat with configuration described by position, (x, y), and ori-

entation, θ. The cubesat is to be moved from some initial configuration (x0, y0, θ0)

to a final configuration (xN , yN , θN ) using optimal control. It is controlled by two

control forces, f1 and f2, applied at a distance r from the center of mass such that

f1 acts in the direction of motion, and f2 acts perpendicular to the motion. The



116

4 5 6 7 8 9−18

−17

−16

−15

−14

−13

−12

−11

−10

−9

Slope = −2.0

log(nodes)

||!
|| "

 

 
TA DMOC, #1
TA DMOC, #2
TA DMOC, #3

−12 −10 −8 −6 −4 −2 0−2

0

2

4

6

8

10

log(hmin)

lo
g(

CP
U 

Ti
m

e)

 

 

DMOC
DMOC, !1
DMOC, !2
DMOC, !3
TA DMOC, !1
TA DMOC, !2
TA DMOC, !3

(a) Convergence of λ (b) Computation time

Figure 5.9: Elliptical orbit transfer: convergence of (a) λ. (b) Log of computation time versus

log of minimum step size shows that the time adapted solutions converge fastest.

Lagrangian of this system describes the kinetic energy of the cubesat,

L(q, q̇) =
1

2
(mẋ2 +mẏ2 + Jθ̇2), (5.99)

where m is the mass and J is the moment of inertia. For this example, m and J

both equal one. The controlled equations of motion are given by

ẍ = f1 cos(θ)− f2 sin(θ) (5.100a)

ÿ = f1 sin(θ) + f2 cos(θ) (5.100b)

θ̈ = −rf2. (5.100c)

Aiming to minimize control effort, the optimal control Lagrangian, in terms of the

state and adjoint variables, is

L = −1

2

(
µ2x + µ2y + r2µ2θ + 2rµθ (µx sin(θ)− µy cos(θ))

)
−µ̇xẋ−µ̇yẏ−µ̇θθ̇. (5.101)

Time is adapted according to

σ = x2 + y2, (5.102)
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generating smaller time steps when the cubesat moves closer to its target location,

located near the origin. The square of the distance from the origin is used for

simplicity when deriving the constraint equations.

An initial guess is optimized first using time adapted DMOC. This optimal

solution is then used as an initial guess for regular DMOC to verify that both

methods converge to the same optimal solution. Figure 5.10 demonstrates that

regular DMOC and time adapted DMOC generate the same optimal solution.
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Figure 5.10: Cubesat reconfiguration: regular DMOC and time adapted DMOC generate the

same optimal solution for the (a) trajectory and (b) control forces f1 and f2.

Figure 5.11 compares the energy metrics, Ed and ∆Ec. As shown in the plots,

time adapted DMOC produces smaller values for both the discrete energy drift and

∆Ec. Figure 5.12(a) shows that λ converges to zero with second order convergence

as expected. Figure 5.12(b) compares the computation time, and in contrast to

the other examples, time adapted DMOC is slower than regular DMOC for this

example because σ is not a function of the dynamics.

5.6 Conclusion

The process used to derive time adapted variational integrators can be applied

to the optimal control problem, leading to a time adaptive form of DMOC. Time

adapted DMOC is now an indirect approach to solving the optimal control problem
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Figure 5.11: Cubesat reconfiguration: energy comparison. (a) Discrete energy, Ed, converges to

zero with a slope of -2, as expected. (b) ∆Ec is smaller for time adapted DMOC. Time adapted

DMOC produces solutions with smaller errors for both energy metrics.

even though regular DMOC is a direct optimization method. Variations of the

discrete action of the time adapted optimal control Lagrangian with respect to the

state, time, and adjoint variables lead to discrete Euler-Lagrange equations that

serve as constraints. The problem is now a boundary value problem, and it is

sufficient to set the cost function equal to one. The problem may be solved using

SQP as before, but it may also be solved using another BVP solver.

The method is first tested on a very simple example with an analytical optimal

control solution to verify that the method produces correct optimal control solu-

tions. Then, it is tested on more relevant examples including the elliptical orbit

transfer and the reconfiguration of a cubesat. It should be noted that since time

is an optimization variable that changes throughout the optimization, the optimal

solutions are slightly different than those achieved with regular DMOC. This is

due to the difference in final time. The time adapted optimal solutions are verified

by using them as initial guesses for regular DMOC, which then produces the same

optimal solution.

While it is desirable to enforce a constraint on the final time, it appears that

such a constraint over-constrains the problem. While a variable final time is fine

for many problems, some problems may require a fixed final time, so this issue
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Figure 5.12: Cubesat reconfiguration: convergence of (a) λ, and (b) log of computation time

versus log of minimum step size shows that the time adapted solutions general converge slower

than regular DMOC because σ is not a function of the dynamics.

warrants further exploration. It is notable that while regular DMOC consists

of optimization variables q and u, and time adapted DMOC has twice as many

optimization variables, q, µ, t, and λ, time adapted DMOC converges faster than

regular DMOC in most cases for which σ is a function of the dynamics. Also, as

shown in the examples, time adapted DMOC displays the same energy convergence

rate as regular DMOC, verifying that the energy drift is bounded for time adapted

DMOC, just as it is for regular DMOC. Furthermore, as predicted λ converges

to zero, verifying that the time adapted system converges to the regular system.

Overall, time adapted DMOC provides a great optimization method for highly

nonlinear problems for which variable step size is absolutely necessary.
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Chapter 6

Conclusions and Future Work

This thesis demonstrates how the optimal control algorithm DMOC can be used

for the design of spacecraft trajectories and how to better adapt it for such non-

linear problems. First, when combined with design techniques based on invariant

manifolds of the 3-body problem, DMOC successfully optimizes an initial guess

in the 4-body problem, locating a natural transfer from the Earth to the Moon

requiring no mid-course ∆V . Earlier designs of this trajectory, presented by Koon,

Lo, Marsden, and Ross [27, 28], utilized differential correction to generate a tra-

jectory with a small, mid-course ∆V of 34 m/s valid for the real dynamics of the

solar system described by the JPL ephemeris. DMOC could certainly optimize

the problem using a more realistic model as well. In addition, it is shown that

DMOC is effective for low thrust design, producing a trajectory that ends in an

elliptical orbit at the Moon, instead of ballistic capture. The DMOC results for

the Shoot the Moon problem are competitive with those in the literature, and the

optimization process is fast. Optimizations with thousands of nodes converge in

just minutes.

Furthermore, since DMOC is formulated for use with a constant step size,

special considerations are necessary for use with nonlinear trajectory problems.

For Shoot the Moon, the step size profile is simply divided into sections of constant

step size. Chapter 4 examines the use of mesh refinement for automated step size

design. Classical mesh refinement aims to design the step size profile in such
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a way as to reduce solution errors caused by the discretization. A new mesh

refinement technique is proposed based on errors in the energy evolution. The

mesh refinement schemes are compared with trajectories generated using time

adaptive variational integrators, with step size profiles that are continuous and

dictated by the dynamics. For the elliptical orbit transfer, solution-based mesh

refinement produces the best results, but the time adapted solutions proved to be

very competitive and motivated the exploration of time adaptive DMOC. For the

Shoot the Moon problem, mesh refinement based on errors in the energy derivative

lead to better results than solution-based mesh refinement, but the time adapted

scheme performs the best. Overall, mesh refinement in which the mesh is iteratively

designed based on errors in the solution or energy is cumbersome. Trajectories with

time adapted step size profiles are much easier to produce and converge faster

during optimization.

The thesis concludes with the development of a fully time adapted version of

DMOC. Proper application of time adaption requires that Hamilton’s principle be

applied to the time adapted Lagrangian of the optimal control problem, instead

of to the Lagrangian of the mechanical system. Therefore, instead of discretizing

the Lagrange-d’Alembert principle, discretization of Hamilton’s principle leads to

discrete Euler-Lagrange equations that serve as constraints for a boundary value

problem. This problem can be solved in the same way as regular DMOC using

SQP, but with the cost function set to one. It should be noted that this formu-

lation of time adapted DMOC is an indirect optimization method even though

regular DMOC is a direct method. Optimization employing time adapted DMOC

is demonstrated for the elliptical orbit transfer problem and the reconfiguration of

a cubesat. Time adaptive DMOC proves to be efficient and accurate, preserving

the energy and convergence properties of regular DMOC.

There are many possibilities for future work focusing on the application of

DMOC to mission design and time adaptive DMOC.
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DMOC and Mission Design

Haapala and Howell [20] examines the use of periapse Poincaré maps in a 3-body

system for the design of transit trajectories and heteroclinic connections. A peri-

apse Poincaré map records the location of subsequent periapsis passages around

the second primary body. Using the method described, it is possible to create

trajectories with particular behavior around m2 before traveling towards m1 or

the exterior region. If two such trajectories intersect in position space, they may

be joined and used as an initial condition for DMOC optimization. Optimizing

with DMOC would produce a viable trajectory with optimized control for such

a transfer. For example, this idea could be very useful in the Shoot the Moon

problem. In the Earth-Moon 3-body system, several trajectories may be created

using the periapse Poincaré map method that orbit the Moon a specified number

of times. Then, if an intersection exists between an Earth-Moon trajectory and an

Earth-bound trajectory in the Sun-Earth 3-body system, DMOC may be used to

remove the energy discontinuity using optimal control.

Furthermore, Haapala uses her method to locate initial guesses for hetercolinic

connections before refining them with a corrections algorithm. DMOC could also

be used in this case, employing optimal control to smooth any energy disconti-

nuities in the initial guess. Enforcing boundary conditions on the periodic orbits

around L1 and L2, it is reasonable to assume that the DMOC optimization process

will locate the natural heteroclinic connection.

Continuing with the theme of heteroclinic connections, Davis et al. [12] pro-

poses a method for constructing transfers between periodic orbits of different en-

ergies. An unstable manifold trajectory from the first periodic orbit is connected

with a stable manifold trajectory of the second periodic orbit using two deter-

ministic maneuvers. These maneuvers are then refined using a genetic algorithm.

Conversely, DMOC may be used to determine the optimal control necessary for

such a connection.

Authors such as Ross and Scheeres [44] and Bosanac et al. [9] have shown the

success of combining invariant manifolds and resonant gravity assists to create
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interesting transfers in the Jovian and Saturian moon system. DMOC may prove

very useful in such problems as well. For example, Bosanac et al. [9] use repeated

gravity assists to reduce the semi-major axis of an elliptical orbit about Saturn

and Titan targeting a stable invariant manifold leading to Titan. DMOC could be

useful for optimizing the control required along each orbit in the resonance, the

control necessary to intersect with the manifold at the correct energy, and finally

the control to enter a permanent orbit at Titan.

In addition, as shown in §3.3, unusual initial guesses for Earth-to-Moon trans-

fers may be located by integrating initial conditions on the invariant manifolds

using 4-body dynamics. Even though invariant manifolds only exist in the 3-body

problem, their effects can still be felt in the 4-body problem. Therefore, considering

the Sun-Earth and Earth-Moon 3-body systems, how do their manifolds behave if

integrated from the periodic orbits using 4-body dynamics? Locating intersecting

trajectories with desired behavior at the Earth and the Moon and then optimizing

via DMOC may produce different transfers than those already proposed.

Time Adaptive DMOC

The version of time adapted DMOC proposed here requires that the final time

be unconstrained. This could be undesirable for some problems, so a method

that allows the final time to be fixed should be explored. In addition, since time

adaption leads to an indirect optimization method, a different formulation for time

adapted DMOC that preserves its status as a direct method should be examined.

Also, it would be interesting to compare time adapted DMOC with regular DMOC

using initial guesses employing Bett’s mesh refinement strategy to design the time

grid. Which strategy generates the most accurate optimal solutions? Furthermore,

it is unclear whether time adaption is possible with σ(q, t) instead of σ(q). For

example, a problem like Shoot the Moon, for which the potential forces from the

Moon are time dependent, would require σ(q, t) to ensure finer time stepping near

the Moon. However, defining the time grid based on time is rather circular, so this

problem should be handled with care.
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[19] G. Gómez, W.S. Koon, M.W. Lo, J. E. Marsden, J. Masdemont, and S. D.

Ross. Invariant manifolds, the spatial three-body problem and space mission

design. In Astrodynamics Specialist Conference. AAS/AIAA, 2001.

[20] A. F. Haapala and K. C. Howell. Trajectory design using periapse poincaré
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