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Abstract 

The interaction of normally incident time-periodic water waves with a density­

stratified fluid in a rectangular trench is studied experimentally and theoretically; 

the fluid outside the trench is homogeneous. 

This investigation has focused on the excitation of internal waves in the trench 

by surface waves, and the effects of the internal oscillations on the waves on the 

free surface. The study shows that, when the frequency of the incoming surface 

waves corresponds to the natural frequency of oscillation of the internal waves in 

the trench, the amplitude of the internal waves becomes large compared to the 

amplitude of the surface waves. The effects of the internal waves on the surface 

waves were very small in the experiments. 

A two-layer model and a three-layer model are developed and applied to a 

particular constant-depth channel and trench configuration used in the experiments. 

The two-layer model is also applied to a rectangular trench in an infinite region. 

These models treat steady-state wave motions of infinitesimal amplitude for all 

ranges of fluid depth relative to the wavelength of the surface waves, and include 

a vigorous treatment of the effects of energy dissipation in the laminar boundary 

layers adjacent to the solid surfaces and at the density interface. In the two-layer 

model the stratified fluid in the trench is represented by two homogeneous fluids of 

different densities; in the three-layer model these two fluids are separated in between 

by a transition region of linear density variation. 

Fresh water and salt water were used to model density stratification in the 
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experiments. The effects of surface wave amplitude and density distribution on 

the internal motion in the trench were investigated for small density differences 

compared to the density of water. A new technique using a scanning laser beam and 

detector system was developed to measure internal wave amplitudes. Satisfactory 

agreement with the theoretical predictions was obtained. The effects of nonlinearity 

and viscous dissipation on the internal motions were more pronounced when the 

depth of the heavier fluid was small compared to the wavelength of the internal 

waves in the trench. 

For a trench in an infinite region, the two-layer model also predicts that large 

surface wave reflections occur when the trench is "at internal resonance," and a 

significant portion of the incident wave energy can be dissipated within the trench. 

The investigation has provided insight with regard to both the dynamics of 

wave-trench interaction and the design of navigation channels in density-stratified 

fluids for reducing the potential of wave-induced internal resonance. 
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1. INTRODUCTION 

1.0 Introduction 

This study is concerned with the generation of internal waves in a submarine 

trench that is partially filled with a heavier fluid; the fluid outside the trench is 

homogeneous. Such a situation may occur in harbors where the bottom is composed 

of very fine sediment. 

Sediment is carried into the harbors by various coastal processes, which may 

include the following: onshore/ offshore movement of sand by swell and storm waves, 

longshore transport due to wave and current action, and sedimentation from fresh­

water inland sources. In most cases, the sediment carried by longshore transport is 

composed of coarse material such as sand, which usually forms firm deposits on the 

bottom (sand bars). This must be dredged from harbor entrances and navigation 

channels to maintain the required underkeel clearance for smooth operation of the 

waterways. Thus, coarse material would not be of major concern with regard to 

the questions raised in this investigation. 

On the other hand, sediment deposited from freshwater inland sources usually 

contains a significant portion of fine material such as silt and clay. Waves, currents, 

and the passage of ships can keep some of this material in suspension. Hence, 

in harbors with bottoms composed of fine materials there is usually a dense layer 

near the bottom with the thickness of this layer increasing because of major storms 
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Figure 1.1. Schematic drawing of a dredged navigation channel. 

and other extreme events. Indeed, because of this, in those harbors it is difficult 

to define the actual elevation of the bottom. For example, at Europort (Holland) 

the bottom is defined as that elevation where the specific gravity of the silt-water 

mixture is 1.2. In this country an example of a harbor where this type of dense 

lower layer is present is in Norfolk, Virginia. Such a layer could exist in a navigation 

channel dredged into the bottom where fine sediments are put into suspension by 

waves, currents, ships, etc. The density-stratified fluid in these channels can have 

an influence on the kinematics around the perimeter of the trench as a result of 

internal waves generated in the stratified fluid. The excitation of internal waves, 

which can affect the water particle velocities in the trench, is the subject of this 

study. 
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An important aspect of wave-trench interaction with a heavier fluid in the trench 

is the excitation of internal waves within the trench; this is illustrated in figure 1.1. 

The dynamic pressure from surface waves propagating past the trench induces a 

flow in the trench that displaces the dense fluid and, through the action of buoyancy 

forces, generates internal waves that propagate to-and-fro between the walls of the 

trench. When the frequency of the propagating surface waves corresponds to the 

natural frequency of the internal motions in the trench, the interfacial waves can 

attain large amplitudes relative to the surface waves, due to the comparatively small 

potential energy involved in a given deformation of the density interface. Thus, for 

a particular trench geometry relative to the characteristic length scale of the surface 

waves, the density-stratified fluid within the channel may be excited into a mode of 

resonant oscillation. 

The motivation for this work is the effect of waves on dredged navigation chan­

nels with a layer of fine sediment in suspension near the bottom. Resonant oscilla­

tions of internal waves in such channels are of engineering importance because large 

amplitude fluid motions within the trench would result in locally large velocities 

near its boundaries, leading to more serious bottom erosion. Because of this, more 

sediment would be entrained in the bottom regions than would normally occur near 

a bottom that is undisturbed by internal waves. Because the wave-induced oscilla­

tions within the dredged channel are related directly to the spectral energy content 

of the incident waves, in different locations certain specific dimensions may be more 

susceptible than others to these motions. Hence, with regard to maintenance dredg­

ing in harbors, more maintenance would be required in some channels. 

The density stratification in a navigation channel can also affect ship maneuver­

ability. The phenomenon of "dead water" is a well-known experience to seamen in 

the polar regions. Along the Norwegian coast, in regions where ice melts or where 

rivers flow into the fjords, a light layer of fresh water frequently overlies heavier 
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saline water. If the density interface is near the keel of a ship, at certain speeds 

the ship must spend large amounts of power on the creation of internal waves. 

Thus, it is anticipated that ships navigating in stratified channels could also gener­

ate internal waves, and with the possibility of internal resonance, the hydrodynamic 

forces on vessels may be significantly different from those experienced in unstratified 

channels. 

1.1 Objectives and Scope 

The objective of this study is to examine, both experimentally and theoretically, 

the dynamics of internal wave motion in a stratified rectangular trench due to 

surface waves that propagate in a direction perpendicular to the longitudinal axis 

of the trench. We hope to be able to infer the kinematics from the dynamics of the 

interfacial motion within the trench, and hence the effects of density stratification 

on the channel shape. 

It is intended that the results of this study will assist in the design of naviga­

tion channels that may be density-stratified to reduce the potential of wave-induced 

internal resonance. However, this study does not present a comprehensive numeri­

cal model that would incorporate nonlinear effects, arbitrary density stratification, 

and variable trench geometry. Instead, several theoretical models were constructed 

to approximate various flow situations and the results were compared with experi­

mental measurements. This approach, we hope, can offer physical insight into the 

dynamics of wave-trench interaction in a stratified fluid. 

A common method for treating wave propagation over a bottom where the 

depth changes discontinuously is to find the solutions of wave motions in separate 

regions of constant depths and then match the solutions at the common boundaries 

of the different fluid regions. This method will be used to treat the problem of wave 

interaction with a rectangular trench that contains a heavier fluid in the trench. In 
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the experimental phase of this study, we require that the theoretical results can be 

compared directly to the experimental measurements. The case of a trench in an 

infinite ocean could not be modelled in the laboratory due to wave reflections from 

the ends of the wave tank. Hence, much of the theoretical work will be done with a 

chosen experimental set-up. The theoretical predictions obtained will be compared 

to the experimental results. The problem of wave propagation over a rectangular 

trench in an infinite region will be studied only theoretically. 

As surface waves propagate past the channel, the flow conditions within the 

trench can be related to changes in the velocity near the bottom due to the geometry 

of the trench and the effect of flow separation at its edges. For water, viscous effects 

are primarily limited to the boundary layers near the trench perimeter and regions of 

flow separation, so that the general pattern of velocities outside the boundary layers 

can be predicted reasonably well by the inviscid theory. Indeed, flow separation at 

the edges of the trench may yield a flow within the trench that is very different from 

that described by an inviscid model. For this reason, the inviscid problem will be 

investigated first, followed by a treatment of viscous dissipation by boundary layer 

methods, and the treatment of flow separation will be discussed only with respect 

to the experimental results. It will be assumed that the fluid motions in the trench 

are excited by small amplitude water waves, and the models that will be developed 

are valid for all ranges of water depth relative to the wavelength of the surface 

waves. The interfacial wave amplitude is greatly enhanced if radiation losses from 

the trench region are reduced, so that energy of the internal wave is largely trapped 

within the channel. Hence, it will be assumed that the stratified fluid is confined to 

the trench, and outside the trench the fluid is assumed to be homogeneous. 

Among the density distributions that will be considered, the two-layer fluid that 

will be considered first represents the simplest case of density stratification, and 

may be a reasonably realistic model for stratified channels. In addition, the most 
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prominent internal waves are those generated at a sharp density interface. Because 

in a miscible fluid a density discontinuity is evened out by molecular diffusion and 

wave-induced internal mixing, the effects of a diffuse interface will be examined and 

treated as a three-layer model. In the analysis, a diffuse interface is approximated 

by a three-layer fluid composed of two homogeneous fluids of different densities 

separated by a transition region of linear density variation. In order to formulate 

this problem analytically, the Boussinesq approximation will be made. This neglects 

variations of density in the Navier-Stokes equations in so far as they affect inertia, 

but retains them in the buoyancy term. Thus, the three-layer model is limited in 

its application to a fluid whose overall density variations are small. 

If the effects of flow separation are neglected, the maximum amplitudes of the 

internal waves in the trench are limited by viscous dissipation in the boundary layers 

and radiation losses from the trench region; the latter represent the energy in the 

surface waves scattered by the trench. The theoretical analysis will include a vigor­

ous treatment of the effects of energy dissipation using boundary layer methods; the 

fluid motion within the boundary layer is assumed to be laminar. In the two-layer 

model, it will be assumed that viscous dissipation takes place in the boundary layers 

adjacent to the density interface and at the solid surfaces. In the three-layer model 

the density of the stratified fluid in the trench is continuous, hence energy dissi­

pation in the boundary layers is significant only at the solid surfaces. The effects 

of wave damping will be incorporated into the inviscid models by a perturbation 

expansion scheme. 

Laboratory experiments were done to verify the analyses. The response of a 

fresh water-salt water fluid in a rectangular trench in a wave tank, to surface waves 

generated by a bulkhead wave generator, was studied by varying the surface wave 

height, the wave period, and the density distribution in the trench. The major 

objectives of the experimental investigation have been to test the validity of the 
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theoretical models, and to examine the importance of different physical effects such 

as density stratification and viscous dissipation on the dynamics of wave-trench 

interaction. 

1.2 Thesis Outline 

In Chapter 2, a review of previous work relevant to this study is presented. 

Chapter 3 contains the theoretical analysis performed for this study. This analy­

sis consists of a two-layer model and a three-layer model both applicable to small 

amplitude simple-harmonic wave motion in an inviscid fluid, a treatment of wave 

damping in the two-layer fluid and the three-layer fluid by boundary layer methods, 

and a perturbation scheme to incorporate the effects of energy dissipation in the 

boundary layers into the two-layer and the three-layer inviscid models. These are 

applied to a particular configuration of a rectangular trench in a wave tank, which 

permits definitive experiments to be conducted and compared to the theory. Then 

the problem of wave propagation over a rectangular trench with a two-layer fluid in 

the trench and a homogeneous fluid in an infinite region outside the trench is for­

mulated in a similar manner. The experimental equipment and procedures used in 

this study are described in Chapter 4. In Chapter 5, the results of laboratory exper­

iments and theoretical models are presented and discussed. The major conclusions 

drawn from this investigation are presented in Chapter 6. 
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2. LITERATURE REVIEW 

2.0 Introduction 

The study of wave-trench interaction is closely related to other studies pertain­

ing to wave propagation over rapidly changing bottoms. That is, bottoms where 

the fractional changes in the depths of the fluid are large within a wavelength of the 

propagating waves. This is because the methods used to treat these problems are 

often very similar. Submarine features that belong to this category include conti­

nental shelf-breaks, seamounts, and submarine canyons. Artificial structures may 

include submerged breakwaters and navigation channels. Numerous studies have 

been devoted to the phenomenon of wave scattering, in which strong wave reflection 

can occur for suitable dimensions of the bottom obstacle relative to the wavelength 

of the propagating waves. For stratified fluids, the generation of internal waves 

through interaction of surface waves with the ocean bottom has also received a lot 

of attention. Practical interests of these phenomena may be related to tsunamis 

propagation from deep ocean onto the continental shelf, the coastal generation of 

internal tides, protection of harbors from storm surge by submerged breakwaters, 

as well as maintenance dredging in navigation channels. 

This chapter will review literature relating to wave propagation over rapidly 

changing ocean bottoms. The literature that relates to homogeneous fluid is re­

viewed first. This is discussed because many of the techniques used in treating this 
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problem are also applicable to a layered fluid. Next, previous work on stratified flows 

that have relevance to this study will be covered. Wave damping due to boundary 

friction, which has not received much attention in previous studies, plays an impor­

tant role in internal wave generation in submarine trenches. The techniques that 

have been used in the past to study this process will also be reviewed. 

2.1 Surface Wave Propagation over Rapidly Changing Bottoms 

When the wavelength of the surface waves is large compared to the horizontal 

length scale of depth variation, the uneven bottom may be approximated by a 

series of separate regions of constant depths. The solution of the problem generally 

falls into one of two basic approximate theories, a linear theory in which the wave 

amplitude is sufficiently small compared to the wavelength and the water depth, 

and the shallow water theory where the depth of the fluid is considered small with 

respect to a characteristic wavelength. The shallow water theory also leads to a 

nonlinear theory for initial value problems. Because the focus of this study is on 

linear problems, the literature review will be limited to the linear approaches. 

In problems related to surface wave scattering by bottom obstacles, almost all 

researchers have treated the fluid as inviscid. The linear inviscid problems are often 

solved for steady-state flow conditions also, because more general cases could be 

treated using Fourier superposition. The inviscid assumption and the steady-state 

condition lead to potential flow problems of the boundary value type. Some investi­

gators have treated steady-state potential flow problems by conformal mapping. A 

general analysis of this method for wave propagation over variable-depth geometries 

was given by Kreisel (1949); the two-dimensional fluid domain was mapped into a 

rectangular strip, and the velocity potential was obtained in the form of a linear 

integral equation solvable by iteration for some regular bottom geometries. Asymp­

totic solutions were found by Kreisel (1949) for the upper and lower bounds of the 
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reflection coefficient, which is defined as the ratio of the amplitude of the reflected 

wave to the amplitude of the incident wave. The term "transmission coefficient" is 

also used in wave diffraction problems, this is defined as the ratio of the amplitude 

of the transmitted wave to the amplitude of the incident wave. Kreisel (1949) also 

derived some theorems that can be used to compare the reflection coefficients for ob­

stacles of different sizes or geometries. The conformal mapping algorithm developed 

by Kreisel (1949) was applied by Miles (1982) to obtain the reflection coefficient 

for a rectangular trench where the depths before and after the trench were equal 

(symmetric trench). In his analysis, Miles assumed that the surface wave was long 

when compared to the width of the trench and the water depth. 

The conformal mapping approach, though elegant in its mathematical composi­

tion, often presents the solution in an intricate implicit form, which is not suitable 

for numerical evalution. A common method employed in the solution of problems 

involving abrupt transitions of fluid depth is to match the solution along a boundary 

that separates the regions of different depths. In this method the fluid domain is 

divided into separate regions of constant depths. Horizontal velocities and velocity 

potentials are matched along common fluid boundaries. The matching procedure 

results in sets of linear integral equations, which may be solved by a host of ap­

proximate methods. Examples of this approach are found in Bartholomeusz (1958), 

Newman (1965b ), Miles (1967), Mei and Black (1969), and Kirby and Dalrymple 

(1983). As an example, Newman (1965b) studied the reflection and transmission of 

waves normally incident on a single step between finite- and infinite-depth regions. 

Newman expanded the velocity potential as an infinite series of a complete, or­

thonormal set. Physically, the fluid motion was described by a linear superposition 

of progressive waves propagating in both directions, and locally bounded standing 

waves that decayed exponentially with distance from the step. The series expansion 

of the velocity potential was truncated after a finite number of terms, and the re-
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sult was a finite system of algebraic equations, which were solved numerically with 

standard methods. In this manner the velocity potential was found for the entire 

fluid domain. 

Miles (1967) presented a variational method to obtain an approximate solution 

for waves scattered by a single step between two finite-depth regions, without the 

necessity of solving the integral equations directly. After matching the horizontal 

velocities and velocity potentials at the step, Miles related the complex transmis­

sion and reflection coefficients, which included both the amplitude and phase of the 

scattered waves, to a "scattering matrix" that had associated variational integrals. 

The variational integrals were functions of the unknown horizontal velocities at the 

step, and their values were stationary with respect to first-order variations of a trial 

velocity about the true velocity at the step. Specifically, Miles (1967) used the hor­

izontal velocities of the propagating waves in the constant-depth regions before and 

after the step as a first order approximation to the unknown horizontal velocity at 

the step; the contributions of the non-propagating standing waves were neglected. 

The scattering matrix determined therefrom was correct to the second order ac­

cording to the variational principle. Miles applied the variational formulation to 

the asymptotic case of a single step between finite- and infinite-depth regions, and 

achieved good results compared to the numerical solution by Newman (1965b) in 

the far field of an infinite step. Note that the near-field solution, where the non­

propagating standing waves are of first order importance, cannot be found by this 

method. Thus, the variational approach cannot be used to study the problem of 

oscillation of internal waves in a trench that is density-stratified. 

Lee, Ayer, and Chiang (1980), and Lee and Ayer (1981) studied surface wave 

diffraction due to a submarine trench. These investigators presented a transform 

method that is quite effective for an arbitrary shaped trench. In their method an 

unknown vertical velocity distribution was located along a line drawn across the 
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"mouth" of the trench, separating the fluid domain into two regions: an infinite 

rectangular region of constant depth and a finite region representing the trench 

itself. An explicit solution for each region was then found in terms of this unknown 

vertical velocity distribution across the "mouth" of the trench. In the infinite region 

outside the trench the solution was found by Fourier transform. In the trench the 

solution was found by separation of variables for a rectangular trench (Lee and Ayer, 

1981), and by the boundary integral method for a trench of irregular geometry (Lee, 

Ayer, and Chiang, 1980). The final solution was obtained by matching the vertical 

velocities numerically along the common fluid boundary. 

The methods discussed above are valid for all ranges of water depth relative to 

the wavelength of the propagating waves. The asymptotic behaviour in the limit 

of shallow water waves can be obtained by letting kh -+ 0, where k is the wave 

number and h is the water depth. In general, the long wave theory as treated in 

Lamb (1945, § 169) is derived separately by assuming that the vertical acceleration 

is negligible, so that the momentum equation in the vertical direction reduces to 

an equation of hydrostatic pressure. Consequently, the horizontal velocity is inde­

pendent of the vertical coordinate z. Lamb ( 1945, § 176) obtained the transmission 

and reflection coefficients for a long wave propagating over a single step between 

finite-depth regions, by imposing continuity of total mass flow and surface elevation 

at the step. Bartholomeusz (1958) questioned that the hydrostatic assumption is 

invalid in the neighborhood of the step. Bartholomeusz formulated the same prob­

lem for arbitrary kh and showed that Lamb's result is the correct asymptotic limit 

as kh-+ 0. Miles (1967) pointed out that Lamb's assumptions are equivalent tone­

glecting the non-propagating standing waves as kh-+ O; a solution that neglects the 

non-propagating standing waves is often called a plane-wave approximation. Miles 

(1967) constructed a plane-wave approximation for arbitrary kh for the problem of 

wave propagation over a step between finite-depth regions and compared with the 
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more accurate numerical results obtained by Newman (1965b) for the asymptotic 

case of a single step between finite- and infinite-depth regions. Miles (1967) showed 

that the plane-wave approximation to the magnitude of the transmission coefficient 

was within 5% of Newman's result (1965b) for all wavelengths, but the correspond­

ing approximation to the reflection coefficient was satisfactory only for small values 

of kh. Kirby and Dalrymple (1983) studied the diffraction of obliquely incident 

surface waves by an asymmetric trench, where the water depths before and after 

the trench were constant but not necessarily equal. Kirby and Dalrymple used both 

the more accurate numerical technique in Newman (1965b) and the plane-wave ap­

proximation, and found significant differences between the two results for all ranges 

of wavelength in one case where the ratio of the water depth in the trench region to 

that in the infinite region was large. These studies indicate that the locally bounded 

non-propagating waves can affect the wave scattering process significantly. 

For a rectangular trench, Lee and Ayer (1981) considered wave propagation in 

a direction perpendicular to the longitudinal axis of the trench only, whereas Miles 

(1982), and Kirby and Dalrymple (1983) dealt with obliquely incident waves also. 

In addition, Kirby and Dalrymple (1983) treated the more general problem of an 

asymmetric trench. It is noted that surface wave diffraction due to an asymmetric 

trench with a heavier fluid in the trench had been studied by Lassiter (1972); this 

work will be discussed more fully in § 2.2. It was found that, for a particular 

symmetric trench where the water depths before and after the trench were equal, 

there existed an infinite number of discrete wave frequencies at which the incident 

wave was fully transmitted, the maximum and minimum values of the transmission 

and reflection coefficients appeared periodically, but the effect of the trench on 

wave transmission decreased monotonically as the wave number increased. For the 

plane-wave approximation, total transmission of an obliquely incident wave occurred 

for kR, = n1r, n = 0, l, 2, ... (even mode), and maximum reflection occurred for 
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k£ = ( n - ½ )7r, n = l, 2, ... ( odd mode), where k is the wave number component 

normal to the trench axis for the propagating waves in the trench region, and £ is 

the trench width. For the full problem, which includes both the propagating and 

non-propagating waves, the above results are corrected by a phase shift, which can 

be large for a deep trench. It was shown in Lighthill (1980, § 3.3) that the effect of 

the bottom on the surface wave is negligible when the ratio of the water depth to 

the wavelength of the surface wave is greater than 0.28, because the kinetic energy 

at the bottom is reduced to approximately 3% of that in the entire fluid column. 

Hence, for a symmetric trench, the change in water depth at the trench has a 

negligible effect on wave transmission when the wave number is sufficiently large. 

However, the results of Lassiter (1972), and Kirby and Dalrymple (1983) showed 

that in the case of an asymmetric trench, the reflection coefficient is non-zero for all 

ranges of wave number. For obliquely incident waves, Miles (1982), and Kirby and 

Dalrymple (1983) showed that the transmission coefficient is greatly reduced when 

the wave number component for the incident wave in the direction of the trench 

axis exceeds the wave number for the propagating waves in the trench region. 

So far, the primary interest in submarine trenches was in the scattering of the 

surface waves. No attention was given to the dynamics of the fluid within the trench 

itself. Ting and Raichlen (1986) investigated the motion of fluid in a rectangular 

trench due to normally incident periodic waves. Ting and Raichlen defined the 

kinetic energy ratio: 

KE = KEt 
,. KEi (2.1) 

where I< Et is the average kinetic energy over one wave period per unit area of 

the fluid within the trench, and I< Ei is the average kinetic energy per unit area 

of the incident wave in the infinite region. Using the formulation of Lee and Ayer 

(1981 ), Ting and Raichlen (1986) computed the frequency response of KE,. for 

various channel-trench aspect ratios. The kinetic energy ratio had the periodic 
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behaviour as in the transmission and reflection coefficients, which could be related 

to a resonant condition in the trench. However, K Er < l for the typical trench 

geometries studied. Thus it appears that trench resonance in a homogeneous fluid 

does not enhance fluid motion within the trench to a significant extent. 

2.2 Internal Wave Studies 

In this section previous work on internal waves that has relevance to this study 

will be reviewed. Interest will be focused on the generation of internal waves through 

interaction of surface waves with submarine topographic features. This is discussed 

because many of the physical processes involved and their methods of analysis can 

be related to the problem of wave-trench interaction in a stratified fluid. The linear 

approaches will be emphasized here. A wealth of knowledge on stratified flows, 

including many results on internal waves, can be found in the books by Turner 

(1973) and Yih (1980). 

Of interest to this study is the transfer of wave energy between surface and 

internal waves due to large variations of the bottom topography within a wavelength 

of the surface waves. An example of this process is given by the coastal generation 

of internal tides. The energy transfer from surface tides to internal tides typically 

takes place at the steep continental shelf-breaks; a similar situation can also occur 

at a submarine trench with a heavier fluid in the trench. The oceanic thermocline 

is often very sharp, whereas the fractional change in density over the total depth is 

small: of the order of a few parts per thousand. The most prominent internal wave 

is given by the lowest internal mode, which has a wavelength much larger than the 

thickness of the diffuse density interface, so that the fluid motion is close to that in 

a two-fluid system. Rattray (1960) obtained analytical solutions for internal tides 

generated at a continental shelf-break, using the long wave equations in a rotating 

two-fluid system. The resulting internal tides removed energy continuously from 
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the surface tides by forming internal progressive waves that travelled seawards. 

The amplitude of the internal tides could be large compared to the surface tides. 

Kelly (1969) studied wave diffraction in a two-layer fluid due to a step change in 

the fluid depth, where the fluid in the shallower region was homogeneous and the 

fluid in the deeper region was two-layer stratified. Kelly formulated the problem in 

the same manner as Miles (1967) for the constant density case; transmission and 

reflection coefficients were obtained by matching horizontal velocities and velocity 

potentials for the separate regions of constant depths along a vertical boundary 

at the step and by applying the variational approximation used by Miles. Kelly's 

analysis approached the homogeneous fluid result as pi/ pz --+ l for fixed Koh, 

where Ko= a2 /g, a is the circular wave frequency, g is the acceleration of gravity, 

h is the total depth of the two-layer fluid, and Pl and pz are the density of the 

upper fluid and of the lower fluid, respectively. On the other hand, if pif pz was 

allowed to approach unity in the shallow water limit, the analysis yielded Lamb's 

results (1945, § 176) for the transmitted and reflected surface wave amplitudes due 

to an incident wave, whereas the amplitude of the resulting internal wave tended to 

infinity. Kelly (1960) showed that the shallow water theory is applicable only if the 

ratio Koh/(1 - pif pz) is sufficiently small. Hence, an additional scale parameter 

is involved in developing approximate theories with regard to internal long waves, 

namely the fractional change in density over the total depth of the fluid. 

Lassiter (1972) solved for the transmission and reflection coefficients in the 

case of normally incident progressive waves propagating past an asymmetric trench 

with a two-layer fluid in the trench. Lassiter formulated the problem in terms 

of complementary variational integrals and by matching horizontal velocities and 

velocity potentials for the trench regions and the regions before and after the trench 

along vertical boundaries at the upstream and downstream edges of the trench, in 

a manner similar to Kelly (1969) for a single step. However, Lassiter's variational 
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formulation yielded the upper and lower bounds for the transmission and reflection 

coefficients. As in Miles (1967), the variational method does not yield the velocity 

potential in the near field, hence the internal wave motions in the trench were 

not studied. Lassiter (1972) applied his formulation to the asymptotic case of a 

homogeneous fluid, but the results for the homogeneous case were shown to be 

incorrect by Kirby and Dalrymple (1983). 

In the case of a layered system where homogeneous fluids of different densities 

are separated by surfaces of density discontinuity, the fluid motion in each layer may 

be supposed to be irrotational; a potential function may be defined in each layer, as 

in the work of Kelly (1969) and Lassiter (1972). The fluid motion is not irrotational 

in a continuously stratified fluid, due to the generation of vorticity. This special fea­

ture of stratified flows can be deduced from the Na vier-Stokes equations ( see Turner, 

1973, p. 7). Working directly from the equations of motion, Love (1891) derived 

the differential equation (Love's equation) governing infinitesimal wave motion of 

an inviscid, incompressible continuously stratified fluid. For simple-harmonic mo­

tion, the governing differential system is reduced to a Sturm-Liouville system, from 

which many properties of infinitesimal waves in a heterogeneous ideal fluid may 

be derived. A unified treatment of this problem was given by Yih (1960). Addi­

tional results with regard to the properties of the eigenfunctions and corresponding 

eigenvalues were given by Yanowitch (1962). 

Simple analytical solutions of the Sturm-Liouville system are not possible in 

general; the exponential density distribution is the only known case to have analyt­

ical solutions for both finite and infinite fluid depths (see Burnside (1889), and Love 

(1891)). A linear density profile, accompanied by the Boussinesq approximation, 

also has analytical solutions. The Boussinesq approximation neglects variations of 

density in the N avier-Stokes equations in so far as they affect inertia, but retains 

them in the buoyancy term. Propagation of internal waves on sloping bottoms 
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for the case of constant density gradient had been studied in detail by Wunsch 

(1968,1969). However, the more important density structure for this study is a 

three-layer fluid in the trench region; the continuously stratified fluid is composed 

of two homogeneous fluids of different densities separated in between by a transition 

region of linear density variation. The three-layer density distribution is a closer 

realization than the two-fluid system to the actual density profile in the trench that 

contains a diffuse salinity interface. The three-layer density distribution has been 

used by many investigators to approximate the oceanic thermocline. For example, 

Sanford (1984) had employed a three-layer model to study interaction of high fre­

quency internal waves with the bottom boundary layer. A numerical approach to 

solving the Sturm-Liouville system is necessary for other density structures. 

The nature of the standing internal waves within the trench is a major con­

cern in this study. Thorpe (1968) had made an extensive study, both theoretical 

and experimental, of standing internal waves at the interface of two fluids and in 

a continuously stratified fluid. For the two-layer problem, his method of analysis 

followed that of Penney and Price (1952) on standing surface waves of finite am­

plitude, and Hunt (1961) on standing internal waves at the interface between two 

semi-infinite fluids. The procedure is similar to the perturbation scheme in Stokes 

second order progressive surface wave theory. Thorpe (1968) represented the finite 

amplitude wave solutions in the form of power series expansions with respect to the 

wave slope as the expansion parameter. As in the finite amplitude surface wave, the 

second order term of the internal wave solution distorts the symmetric waveform of 

the linear solution given by the first order term, whereas the distance from trough 

to crest remains the same for second order approximation. The ratio of the coef­

ficient of the second order term to that of the first therefore represents a measure 

of nonlinear effects in the finite amplitude internal wave. Thorpe (1968) showed 

that the presence of the upper fluid reduces the amplitude of the higher harmonics 
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in the wave profile. This conclusion was first reached by Hunt (1961) on standing 

waves at the interface between two semi-infinite fluids. 

Thorpe (1968) checked his finite amplitude wave theory with experiments in 

three depth limits: (a) a deep upper fluid and a deep lower fluid; (b) a shallow 

upper fluid and a deep lower fluid; and ( c) a shallow lower fluid and a deep upper 

fluid. Thorpe's experimental apparatus consisted of a rectangular tank with trans­

parent perspex walls at front and back, and side walls fitted with plungers that 

could be moved in and out of the tank in simple-harmonic motion. The fluids in 

the tank were fresh water and salt water; these were contained in a polythene bag, 

which was itself supported by the tank. The plunger motion generated the standing 

internal waves whose amplitudes were measured using a vertical rule. Thorpe's ex­

periments were limited to weakly nonlinear waves where the second order effects in 

the internal wave profiles were small compared to the first order effects, and Thorpe 

obtained good agreement between the observed and predicted wave profiles. 

2.3 Wave Damping 

In this section the literature that relates to wave damping is discussed for ho­

mogeneous fluid and for stratified fluid, the literature review is limited to linear 

theory with laminar boundary layer flows. It is noted that laminar boundary layer 

flows are applicable mainly to laboratory conditions (see, for example, Zelt, 1986), 

but with controlled laboratory experiments, they can offer physical insight into the 

competitive role of damping among other physical effects. 

The damping of periodic progressive surface waves advancing down a uniform 

rectangular channel has been studied by Biesel (1949), Ursell (1952), and Hunt 

(1952), among others. They considered, respectively, a channel of finite depth but 

of infinite width, a channel with side walls but of infinite depth, and a channel of 

finite width and depth. It was assumed that the motion was to a first approximation 
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irrotational, except near the boundaries where viscous boundary layers of thickness 

proportional to ( v / a )112 were formed, where v is the kinematic viscosity of the 

fluid and a is the circular wave frequency. Energy dissipation took place in (a) 

the boundary layers adjacent to the solid surfaces, (b) the boundary layer at the 

free surface, and ( c) the body of the fluid. These contributions were respectively 

proportional to v 112 , v 312 and v (see, for example, Mei, 1983). Thus the boundary 

layers adjacent to the solid surfaces contributed most of the dissipation. Viscosity 

caused a slow attenuation of the wave amplitude and also decreased the phase speed 

of wave propagation. For plane progressive waves advancing down a rectangular 

channel, the difference in the flux of wave energy between two vertical sections of the 

channel must be equal to the rate of energy loss in the fluid between the two vertical 

sections. Hence, by balancing energy propagation and dissipation in this control 

region, the rate of amplitude attenuation was found. There are shortcomings in this 

method of analysis, which yields only the attenuation rate of the wave amplitude, 

but not the change in wavelength ( or phase speed) due to viscosity. Furthermore, 

the analysis provides no information on the mechanism of energy transfer in the 

fluid. For instance, it is not known how the energy lost in the boundary layers is 

replenished by energy flows from the essentially inviscid main fluid body. Ursell 

(1952) found that the rate of energy dissipation in the boundary layers adjacent to 

the side walls of the channel could not be balanced by the rate of pressure working 

from the main fluid body on the side-wall boundary layers. Ursell pointed out that 

mathematical singularities must exist at the surface meniscus along lines where the 

free surface meets the side walls, which provide the pressure force for feeding energy 

from the main fluid body into the side-wall boundary layers. However, the details 

of this process were not clear. 

In a manner similar to the progressive wave problem, Case and Parkinson (1957), 

and Keulegan (1959), applied the method of energy balance to obtain the atten-
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uation rate of the decay of standing surface waves in cylinders and in rectangular 

basins, respectively. These investigators also carried out extensive experiments 

to check their theories. Case and Parkinson (1957) found that their experimen­

tal results were extremely sensitive to the conditions of the solid surfaces. They 

emphasized that extreme care must be exercised in comparing the results of exper­

iments with theoretical predictions that are based on the ideal condition of very 

smooth walls. A somewhat different situation was encountered by Keulegan (1959). 

Keulegan found that the observed dissipation for distilled water in lucite basins 

was several times larger than that observed in glass basins, which he attributed to 

different behaviour of the fluid that adhered to the walls during wave motion. 

A different approach was taken by Johns (1968) who found the complex damp­

ing rate (both amplitude attenuation and frequency correction) in a two-layer fluid 

with fixed upper and lower boundaries and infinite lateral extent. The complex 

damping rate in a two-layer fluid of infinite depth and lateral extent had been 

found by Harrison (1908). Johns (1968) developed the solutions in terms of stream 

function separately in the essentially inviscid fluid body, in the boundary layers 

adjacent to the solid surfaces, and in the boundary layers at the density interlace 

of the two fluids, in the form of series expansions with respect to a small boundary 

layer parameter. The solutions inside and outside the boundary layer were joined 

at a position in an overlapped region where both solutions were valid, then coef­

ficients of the series were calculated successively order by order. This method of 

matched asymptotic expansions was employed by Dore (1968) to derive formulae 

for the damping rates in a non-homogeneous fluid with general density and viscosity 

distributions, for the cases of finite depth with either free or fixed upper boundary. 

The algebra involved in the technique used by John (1968) and Dore (1968) 

is extremely tedious. Some of the mathematical difficulties can be circumvented 

by the use of Green's theorem with the series expansion. Green's theorem was 
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applied by Chernous'ko (1966) in calculating the damping rate of free oscillations 

of a homogeneous fluid in a container of arbitrary shape. A similar approach was 

applied by Dore (1969a,b) to obtain the damping rate in progressive waves at the 

interface of two fluids bounded by fixed upper and lower boundaries and of infinite 

lateral extent, and to the decay of small amplitude oscillations of a non-homogeneous 

viscous fluid with general density and viscosity distributions that completely filled 

a rectangular tank. 

The process of energy transfer in a homogeneous fluid bounded by solid walls 

and a free surface was examined by Mei and Liu (1973) using an order of magnitude 

argument. In calculating the damping rates, they presented a perturbation expan­

sion scheme with application of Green's theorem in a manner similar to Chernous'ko 

(1966) and Dore (1969a,b ). Mei and Liu's (1973) unique contribution was that their 

analysis revealed a thin meniscus boundary layer in the neighborhood along the lines 

of intersection between the free surface and the side walls. This region serves as 

a "gateway" of energy transfer to the side-wall boundary layers from the surface 

waves. The meniscus boundary layer behaves like a mathematical singularity in 

the perturbation analysis. By applying the formal analysis to standing waves in a 

circular basin, Mei and Liu (1973) were able to balance the energy dissipation in 

the side-wall boundary layer by work done by the pressure force from the surface 

meniscus and the inviscid fluid body. 
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3. THEORETICAL ANALYSIS 

3.0 Introduction 

This chapter presents the results of the theoretical analysis conducted for this 

study. The problem of surface wave propagation over a rectangular trench with a 

heavier fluid in the trench is treated by using the linear wave theory along with 

steady-state flow conditions. In § 3.1 an analysis is presented for the steady-state 

response of a two-layer density-stratified fluid in a rectangular trench that is placed 

at one end of a constant-depth channel; wave motion is generated by a vertical 

bulkhead wave generator, which moves in simple-harmonic motion at the other end 

of the channel. This particular arrangement was chosen for theoretical analysis be­

cause these flow conditions could be modelled in the wave tank, where experiments 

were conducted to test the validity of the theoretical models. The case of a three­

layer continuously stratified fluid in the trench, with constant density in the top 

and bottom layers and a constant density gradient in the middle layer, is treated in 

§ 3.2. The boundary conditions of the three-layer problem are the same as those of 

the two-layer problem. The fluid is assumed to be inviscid in both cases. In § 3.3 

viscous damping is analyzed for the attenuation of a time-periodic progressive wave 

advancing down a uniform rectangular channel, and for the decay of a time-periodic 

standing wave in a rectangular basin; in these problems the fluid is density strat­

ified and bounded by solid boundaries and a free surface. It is assumed that the 



- 24-

entire loss of the energy of waves is localized in laminar boundary layers adjacent to 

the density interface and at the solid surfaces. A perturbation expansion scheme is 

employed to incorporate the slow rate of viscous damping into the inviscid models. 

Finally, in § 3.4 the two-layer model developed in § 3.1 for the laboratory conditions 

is modified to treat the problem of surface wave propagation over a rectangular 

trench in an infinite region. 

3.1 A Two-Layer Model 

A definition sketch for the two-layer model is presented in figure 3.1.1. It is seen 

that the fluid domain consists of a two-layer fluid in a rectangular trench that is 

connected to a constant-depth channel; the trench is closed at its downstream end 

by a vertical wall. The fluid in the constant-depth channel is homogeneous with the 

trench at one end and a vertical boundary that moves in simple-harmonic motion at 

the opposite end. The following assumptions are made in the analysis: (a) the two 

fluids in the trench are immiscible and homogeneous, (b) the fluids are incompress­

ible, ( c) the fluid motion is two-dimensional, ( d) the fluid motion is irrotational, 

( e) the fluid motion is at steady-state condition, and (f) the displacement of the 

moving vertical boundary at x = - L is small compared to the wavelength and the 

water depth so that the equations can be linearized. Referring to figure 3.1.1, the 

origin of the x-coordinate is located above the edge of the trench with z = 0 at 

the undisturbed free surface and measured positive upwards. The fluid domain is 

divided into the following four regions labelled in figure 3.1.1: 

Region 1 p = Pl, -h1 < z < 0, 0<x<f 

Region 2 P = P2, -(h1 + h2) < z < -h1, 0<x<f 

Region 3 p = Pl, -h < z < 0, -L < x < -L/2 

Region 4 p = PI, -h < z < 0, -L/2 < x < 0 
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Figure 3.1.1. Definition sketch of the two-layer model. 

wherein Pl and p2 are the densities of the upper and lower fluids, respectively, and 

the other symbols are defined in figure 3.1.1. 

The method of analysis is as follow. The Laplace equation is solved using the 

linearized boundary conditions on the free surface, on the density interface, and 

on the solid bottom; these will be discussed. Velocity potentials in the constant­

depth channel and in the trench region are obtained in the form of eigenfunction 

expansions. In doing so, the boundary conditions at x = -L and at x = f are 

employed. The horizontal velocities and velocity potentials are matched along a 

vertical boundary at the upstream edge of the trench, that is, at x = 0. This 

procedure results in sets of linear integral equations, which are solved numerically. 

Note that in a long channel, at a few depths from the moving boundary and the 
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trench, the velocity potential is very nearly a superposition of simple wave trains, 

with the amplitudes of the locally bounded non-propagating standing waves decay­

ing exponentially with distance from x = -L and x = 0. Thus, to facilitate the 

numerical treatment of this problem we have divided the constant-depth channel 

into two regions at x = -L /2. We assume that at this location the wave motion 

consists of the left- and right-going progressive waves only. 

3.1.1 The Boundary-Value Problem 

For steady-state motion of an inviscid irrotational fluid, the velocity potential 

may be written in the form: 

(3.1.1) 

the potential function </>( x, z) must satisfy the Laplace equation: 

(3.1.2) 

in the entire fluid domain along with the following linearized boundary conditions: 

on z = 0, -L < x < ,e, (3.l.3a) 

on 

and z = -_h, -L < x < 0, (3.l.3d) 

on - (h1 + h2) < z < -h, x = 0 

and - (h1 + h2) < z < 0, x = ,e, (3.l.3e) 

on - h < z < 0, x = -L. (3.1.3!) 



The matching conditions at x = 0 are: 

<h = c/J4 
o</J1 o<f>4 -----ax ax 

on 

on 
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- h < z < 0, x = o, 

- h < z < 0, x = 0. 

(3.1.4a) 

(3.l.4b) 

In the above equations, a represents the circular frequency, which is 27T' /wave pe­

riod, g is the acceleration of gravity, Sis the stroke of the wave generator, and the 

subscripts (1, 2, 3, and 4), respectively, denote the appropriate regions shown in 

figure 3.1.1. Equations 3. l.3a and 3. l.3b are obtained from the linearized kinematic 

and dynamic boundary conditions on the free surface and on the density interface. 

The dynamic boundary condition on the density interface is the condition of con­

tinuity of pressure. There are two kinematic boundary conditions on the density 

interface; the first kinematic boundary condition is the condition of continuity of 

vertical velocity ( equation 3. l.3c ), and the second kinematic boundary condition is 

the condition that a fluid particle in contact with the density interface must stay 

on this surface at all times. The latter condition also applies on the free surface. 

The dynamic boundary condition on the free surface is the condition that the free 

surface must be a surface of constant pressure. Equations (3.l.3d) and (3.1.3e) 

are the kinematic boundary conditions on the solid surfaces, which state that the 

component of fluid velocity normal to a solid surface must vanish. On the surface 

of the moving vertical boundary at x = -L, the horizontal component of the fluid 

velocity must be the same as the velocity of the moving boundary. If the displace­

ment of the moving boundary is small compared to the wavelength and the water 

depth, its actual position may be neglect_ed, the resulting linearized equation is 

given by (3.1.3f). The first matching condition (equation 3.l.4a), is obtained from 

the condition of continuity of vertical velocity at x = 0, that is: 

-h < z < 0. (3.1.5) 

From (3.1.5), ¢1(0, z) and ¢4(0, z) can differ only by a constant, and from (3.l.3a) 
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this constant must be zero. Hence the velocity potential is continuous at x = 0. 

Equation 3.l.4b is the condition of continuity of horizontal velocity at x = 0. 

3.1.2 The Solution in the Trench Region (0 < x < J!.) 

We seek separable solutions for </>1 and ef>2 in the two regions in the form: 

(3.1.6) 

Substituting (3.1.6) into (3.1.2), we obtain two ordinary differential equations: 

d2 X1,2 - K2 X = 0 
dx2 1,2 ' 

_d2_z_1_,2 + K2 z = 0 
dz2 1,2 

(3.l.7a) 

(3.l.7b) 

where I< is the separation constant, and the subscripts 1 and 2 refer to Region 1 

and Region 2, respectively. 

The differential equations (3.l.7a) and (3.l.7b) have the general solutions: 

X A Kx + B -Kx 1,2 = 1,2e 1,2e , 

Z C iKx + D -iKx 1 2 = 1 2e 1 2e 
' ' ' 

where Ai, Bi, Ci, and Di, ( i = 1, 2) are arbitrary constants. 

(3.1.8a) 

(3.l.8b) 

Let us examine the ordinary differential equation ( 3 .1. 7b). The boundary con­

ditions are given by substituting (3.1.6) into (3.l.3a)-(3.1.3d). Thus, we have: 

£Z2 = K 2Z2, -(h1 + h2) < z < -h1, 

dZ1 a 2 

---Z1 =0 
dz g 

dz dz 

on z = 0, 

(3.l.9a) 

(3.1.9b) 

(3.1.9c) 

(3.1.9d) 

(3.1.9e) 
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on (3.1.9!) 

in which£= -d2 /dz2 • Equations (3.1.9a)-(3.1.9f) constitute an eigenvalue prob­

lem. We are interested in the case where a is held fixed and K 2 is the eigenvalue 

parameter, with the corresponding eigenfunction given by Z(z). Note that Z(z) 

is represented by different functions in Region 1 and Region 2. We define a trial 

function that is continuous within each region (1 and 2), and has continuous 1st 

and 2nd derivatives, and satisfies the boundary conditions of that region. For any 

two trial functions U(z) and V(z), we define the inner product (£U, V) by: 

O -h1 

(£U, V) = PI j (£U)V dz+ p2 j (£U)V dz. (3.1.10) 

-h1 -(h1 +h2) 

Integrating by parts twice in (3.1.10) and applying the boundary conditions (3.l.9c)-

(3.1.9f), there follows: 

(£U, V) = (U, £V). (3.1.11) 

The eigenvalue problem (3.1.9) is therefore self-adjoint. Let a and /3 be any two 

different eigenvalues of the problem with corresponding eigenfuctions given by cp( z) 

and 'ljJ(z), respectively. Then (3.1.11) gives: 

(£cp,'ljJ) = (cp,£'ljJ) 

⇒(acp,'ljJ) = (cp,/J'ljJ) 

=>(a - /3)(cp, 'ljJ) = 0 

( a -/- /3). (3.1.12) 

Let us assume that cp( z) and 'ljJ( z) are linearly independent and both correspond 

to the same eigenvalue a. The Wronskian W(z) is defined as: 

W ( z) = 'P d'ljJ - 1P dcp 
dz dz 

(3.1.13) 

in each region where c.p( z) and 'ljJ( z) are differentiable. W( z) vanishes identically over 

an interval if and only if cp( z) and 'ljJ( z) are linearly dependent. Equation ( 3.1.13) 
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gives: 

(3.1.14) 

Thus W( z) is a constant, so that its vanishing at a point implies its identical van­

ishing in the entire interval where <p( z) and 'l/J( z) are differentiable. Since: 

d'l/J d<p 
W(z) = <p- - 'l/J-

dz dz 

_ (<p _ g d<p) d'l/J _ ('l/J _ g d'l/J) d<p 
- a 2 dz dz a 2 dz dz ' 

(3.1.15) 

it follows from (3.l.9c) and (3.1.9!) that W(z) = 0 in each interval (-h1 < z < 0) 

and (-(h1 + h2) < z < -hi). Hence <p and 'l/J are linearly dependent. To each 

eigenvalue a there corresponds only one eigenfunction <p( z ). After normalization, 

the eigenfunctions are orthogonal in the sense that: 

(3.1.16) 

Now let <p* be the complex conjugate of <p. Multiplying the differential equations 

by p<p*, integrating between -(h1 + h2) and 0 layer by layer in the ordinary sense 

and applying the boundary conditions (3.l.9c) and (3.l.9d), we obtain: 

a2 2 g I d<p 12 
Pl 9 1<p(0)I + (p2 - PI) a2 dz (-hi) 

0 

Id 12 0 j pd; dz- a j 
-(h1+h2) -(h1+h2) 

(3.1.17) 

wherein pis the density in each layer. It can be seen that a is real. Furthermore, 

the integrals are positive and the non-integral terms are positive and finite, thus the 

negative values of a must be finite. However, the positive values of a have no upper 

bound because the oscillation of the eigenfunction <p increases with a. The eigenval­

ues can be obtained by solving (3.1.9) analytically. The solutions of Z(z) are of the 

form given by (3.l.8b), and the four boundary conditions (equations 3.l.9c-3.l.9f) 

provide four equations with four unknowns Ci, C2, D 1 , and D2. The equations 
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are linear and homogeneous in these four unknowns, and therefore, for a solution 

to exist, the determinant of these equations must vanish. The condition that the 

determinant must vanish defines the relationships for the eigenvalues of K 2 . There 

are two negative values and an infinite number of positive values of K 2 . We desig­

nate them by: -K/, (j = 1, 2) and k~, (n = l, 2, ... ). The eigenvalues are defined 

by the following relationships: 

a4 (P
2 

coth Kjh1 coth Kjh2 + 1) - a 2 P
2 

( coth Kjh1 + coth Kjh2) gKj 
PI PI 

+ (;: - 1) g2 K/ = 0, (j = 1, 2) (3.l.18a) 

and 

From (3.1.Sb), and (3.l.9c)-(3.1.9f), the eigenfunctions of Z(z) are determined to 

an arbitrary constant. The normalized eigenfunctions are given by: 

(3.l.19a) 

(3.l.19b) 

(3.l.19c) 

(3.l.19d) 

cosh2Kj(z + hI + h2)d 
2 z 

sinh Kjh2 

(3.l.19e) 
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(3.l.l9f) 

in which Ko = a 2 / g. The eigenfunctions in (3.1.19) have been previously derived 

by Kelly (1969). 

We expand the spatial potential function ¢>( x, z) in terms of a series of products 

of the functions X ( x) and Z ( z), in the form: 

</>1,2(x,z) = L (AjeiKjx + Bje-iKix) Zj1,2(z) 
j=l,2 

+ L ( Aneknx + Bne-knx) Zn1,2(z) 
n 

(3.1.20) 

in which Aj, Bj, (j = l, 2), and An, En, (n = l, 2, ... ) are unknown constants to 

be determined from the boundary and matching conditions. 

Equation (3.l.18a) is the dispersion relation for a two-layer fluid, and Kj is 

physically equivalent to the wave number defined as 271" /wavelength. There are two 

real solutions of Kj for a given value of a, corresponding to the wave numbers for 

two possible systems of waves: surface mode and interfacial mode. These two modes 

have the same wave period but different wavelengths. The surface mode has the 

smaller root of ( 3. l. l8a) which we term J{ 1, that is, larger wavelength, whereas the 

interfacial mode has the larger root designated by K 2 , that is, smaller wavelength. 

For the surface mode, the motion of a two-layer fluid is very close to that of a 

homogeneous fluid of the same total fluid depth. The wave motion at the density 

interface is in phase with the wave motion at the free surface and has been decreased 

by nearly the amount that the particle oscillations would have been decreased in 

amplitude if there had been no variation in density with depth. The velocity po­

tential is almost continuous across the density interface. For the interfacial mode, 
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the motion of a two-layer fluid has the largest amplitude at the density interface, 

the wave motion at the density interface is 180° out of phase with the wave motion 

at the free surface. Moreover, the velocity potential is discontinuous at the density 

interface, hence the density interface is also a vortex sheet. For a basic treatment of 

surface and interfacial waves in a two-layer fluid, readers are referred to Gill (1982), 

and Neumann and Pierson (1966). These authors also discussed the special cases 

of long waves ( Gill, 1982), and of a shallow interface in a deep fluid and of a deep 

interface in a deep fluid (Neumann and Pierson, 1966). For these particular cases, 

Kj can be obtained in explicit forms from (3.l.18a). 

For a given value of a, equation (3.l.18b) has an infinite number of real roots 

Kn, corresponding to the wave numbers of the non-propagating modes of local 

disturbances in a two-layer fluid. In (3.1.20), wave motion in the two-layer fluid 

is seen to be represented by a linear superposition of the left- and right- going 

progressive waves of the surface and interfacial modes (the first summation), and 

an infinite number of locally bounded standing waves ( the second summation) that 

decay exponentially with distance from the two ends of the trench. To compute the 

eigenvalues of I<2 , approximate solutions were found from (3.l.18a) and (3.l.18b) 

by direct substitution, and were then refined by Regula Falsi iteration (see, for 

example, Carnahan, Luther and Wilkes, 1969). 

From the the boundary condition at x = R, (the second of equation 3.l.3e), we 

have: 

BA - AA e2Knl 
n - n , 

(j = 1, 2), 

(n = 1,2, ... ). 

(3.l.2la) 

(3.l.21b) 

Thus, the velocity potentials in the trench region are given by (3.1.20) with Bj, 

(j = 1,2) and En, (n = 1,2, ... ) given by (3.l.21a) and (3.l.21b), respectively. The 

eigenvalues and eigenfunctions are given by (3.1.18) and (3.1.19). The unknown 
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coefficients Aj, (j = 1,2) and An, (n = 1,2, ... ) must be found by matching at x = 0 

the horizontal velocity and velocity potential with the solutions in the constant­

depth channel. 

3.1.3 The Solution in the Constant-Depth Channel (-L < x < 0) 

In a manner similar to that presented in § 3.1.2, the potential functions in the 

constant-depth channel can be written as: 

q>3(x, z) = ( Ceik(x+L) + De-ik(x+L)) Z(z) 

+ I:Cne-kn(x+L)zn(z), 
n 

ef>4(x,z) = (Eikx + Fe-ikx) Z(z) + I:Pninxzn(z) 
n 

(3.1.22a) 

(3.1.22b) 

in which C, D, E, F, and Cn, Fn, (n = l, 2, ... ) are unknown constants to be 

determined. For the homogeneous fluid, the corresponding eigenvalue problem con­

sists of (3.l.7b), (3.l.9c), and (3.1.9!) with the subscripts 1 and 2 dropped because 

there is only one fluid in this region. The eigenfunctions of Z ( z) are determined to 

an arbitrary constant by imposing the boundary condition on the bottom ( equa­

tion 3.1.9f). After normalization, the eigenfunctions are given by: 

Z(z) = (Ah)-1l2 coshk(z + h), 

Zn(z) = (A~f
112 

cos kn(z + h), 
0 

Ah= Pl j cosh2k(z + h)dz = ~1 [h + 
2
~ sinh2kh], 

-h 

A!= Pl f0 

cos2kn(z + h)dz = Pl [h + __;.._ sin2knh]. 
2 2kn 

-h 

The eigenfunctions are orthogonal in the sense that: 

Pl j <ptpdz = ' o {o 
-h l, 

'P i= t/J; 

'P = 'Ip 

(3.l.23a) 

(3.l.23b) 

(3.l.23c) 

(3.1.23d) 

(3.1.24) 
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where cp(z) and ¢(z) are any two eigenfunctions given by (3.1.23). The eigenvalues 

k and kn, (n = 1, 2, ... ) are defined by the following relationships: 

r7 2 = gk tanh kh, 

(n=l,2, ... ). 

(3.l.25a) 

(3.l.25b) 

The unknown coefficients in the potential function ¢3 are related through the bound­

ary condition at the wavemaker ( equation 3.1.3!) as follows (see, for example, Ursell, 

Dean and Yu, 1960): 

0 

C - D = s;:1 j Z(z)dz, (3.l.26a) 

-h 

A iSr7p1 Jo A 

Cn = - A Zndz, 
2kn -h 

(n = 1,2, ... ). (3.l.26b) 

The assumption that the wave motion is a superposition of simple wave trains at 

x = -L/2 gives: 

3.1.4 Matching the Solutions 

(3.l.27a) 

(3.l.27b) 

The potential functions in the trench region and in the constant-depth channel 

are given by (3.1.20) and (3.1.22) in terms of the unknown coefficients. The solutions 

must be matched at x = 0 to obtain the sets of equations from which the unknown 

coefficients can be determined. Because there are an infinite number of unknown 

coefficients in the infinite series, an infinite number of simultaneous equations are 

needed. For numerical evalution, the infinite series of the potential functions are 

truncated after a finite number of terms given by N. We are then left with (2N + 3) 

unknown coefficients: Aj (j = 1, 2), C, and An, Fn, (n = 1, 2, ... , N). We obtain 
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(2N +3) equations by matching the solutions in the trench region and the constant­

depth channel along a vertical boundary at the upstream edge of the trench, that 

is, at x = 0. First we consider the condition of continuity of horizontal velocity at 

x = 0 (equation 3.l.4b). Let U(z) be the horizontal velocity at x = 0, it follows 

from (3.1.20) that: 

~ N 
U ( Z) = ~<pl ( 0, Z) = L iKj ( Aj - B j) Z j 1 ( Z) + L Kn ( An - B n) Znl ( Z), 

X j=l,2 n=l 

(-h1 < z < 0) (3.1.28a) 
~ N 

8¢2 " • ~ ( ~ ~ ) A = OX (0, z) = _L.., iKj (Aj - Bj) Zj2(z) + L Kn An - Bn Zn2(z) 
J=l,2 n=l 

(-(h1 + h2) < z < -h1) (3.l.28b) 

in which ~ denotes the truncated series of <p. Equation (3.l.22b) gives: 

~ N O<p4 A A A 

U(z) = ax (0, z) =ik (E - F) Z(z) + L knFnZn(z). 
n=l 

(-h < z < 0) (3.1.29) 

First multiplying U(z) by p<p(z), where <p(z) is an eigenfunction for the two-fluid 

system given by (3.1.19), and then integrating between -(h1 + h2) and O layer by 

layer in the ordinary sense, after this is done for each eigenfunction of the orthonor­

mal set, we get: 

(j = 1, 2) (3.l.30a) 

and 

( n = l, 2, ... , N) (3.l.30b) 
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in which the boundary condition at x = 0 (the first of (3.1.3e)) has been used. 

Invoking the orthogonality property of the eigenfunctions of Z ( equation 3.1.16), 

we obtain (N + 2) integral equations from (3.1.30a) and (3.1.30b) as follow: 

0 ~ 

iKj (Aj - Bj) = Pl j : 4
(0, z)Zj1(z)dz, 

-h 
0 ~ 

A ( A A ) J Oq>4 A Kn An - Bn = Pl ox (0, z)Zn1(z)dz, 
-h 

(j=l,2), (3.1.3la) 

(n = 1, 2, ... , N). (3.l.3lb) 

The remaining ( N + l) equations are constructed from the condition of continuity 

of</> at x = 0 ( equation 3.l.4a ). From (3.1.20) and (3.1.22b), we have: 

N 

ef>(O, z) = ef>1(0, z) = L (Aj + Bj)Zj1(z) + L (An+ En) Zn1(z), 
j=l~ n=l 
(-h < z < 0) (3.1.32a) 

N 

= ef>4(0, z) =(E + F)Z(z) + L FnZn(z). 
n=l 

(-h < z < 0) (3.1.32b) 

Next we obtain the (N + 1) integral equations in a manner similar to (3.1.30a) and 

(3.1.30b) but this time we employ the set of eigenfunctions for the homogeneous 

fluid ( equation 3.1.23) and integrate only from -h to 0, it follows: 

0 0 

Pl j ~4(0,z)Z(z)dz = PI j ~1(0,z)Z(z)dz, (3.l.33a) 
-h -h 

0 0 

Pl j ef>4(0,z)Zndz = Pl j ¢>1(0,z)Zndz, (n = 1,2, ... ,N). (3.l.33b) 
-h -h 

Invoking the orthogonality property of the eignenfunctions of Z ( equation 3.1.24), 

we get: 

0 

E + F = PI j ¢1(0, z)Z(z)dz, 
-h 

0 

Fn = Pl j ¢1(0,z)Z(z)dz, 
-h 

(3.1.34a) 

(n = 1,2, ... ,N). (3.1.34b) 
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The integrals in (3.1.31) and (3.1.34) can be evaluated in terms of trigonometric 

functions and hyperbolic functions. The set of (2N + 3) simultaneous equations are 

solved numerically as a linear matrix equation. After the coefficients are found, the 

horizontal velocity and velocity potential at x = 0 are computed using (3.1.20) and 

(3.1.22) and the matching conditions (equations 3.l.4a and 3.l.4b) are checked for 

the solution accuracy. We have not proved that the series expansion (3.1.20) is com­

plete and can represent the potential function </>( x, z ), which satisfies the Laplace 

equation and linearized boundary conditions. However, we are certain that all the 

propagating modes ( there are only two) that correspond to waves are included in the 

series. These are the surface mode and the interfacial mode given by the first sum­

mation of (3.1.20). If we neglect the infinite series that contains the non-propagating 

modes, the solution is a plane-wave approximation of the full problem. We found, 

numerically, that the series expansion for the two-layer fluid (equation 3.1.20) con­

verges much faster than that for the homogeneous fluid ( equation 3.1.22). Thus the 

contributions of the non-propagating modes to the series expansions are negligible 

after the first few terms. However, a series with a large number of terms does make 

the matrix equation obtained from (3.1.31) and (3.1.34) more ill-conditioned, con­

sequently the accuracy of the solution declines. In this study we use N = 3, which 

gives a good match of the horizontal velocity and velocity potential at x = 0. 

3.1.5 Analysis of Wave Amplitude 

After the unknown coefficients of the series expansions are found, the velocity 

potentials are determined for the entire flui"d domain. The fluid velocities and wave 

amplitudes are readily obtained from the velocity potentials. The amplitude and 

phase of the surface wave are given by linear theory to be: 

(3.l.35a) 
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0s = arg {-! a<p} 
g 8t z=O 

(3.l.35b) 

where H is the wave height, 0 is the phase angle, r, is the surface elevation, "arg" 

is the argument of a complex number, and the subscript S denotes the free surface. 

The velocity potential <pis of the form (3.1.1) with the spatial potential function¢ 

given by (3.1.20) in the trench region and (3.1.22) in the constant-depth channel. 

From the linearized kinematic boundary condition on the density interface, the 

amplitude and phase of the interfacial waves are given by: 

(3.l.36a) 

(3.l.36b) 

in which the subscript I denotes the density interface. Of importance to this study 

is the amplitude of the interfacial wave relative to the amplitude of the surface wave. 

In the experiments, the motion of the density interface was measured at a location 

near the upstream wall of the trench. Thus, we define an amplification factor R as 

the ratio of the interfacial wave height at x = 0 to the surface wave height at the 

end wall ( x = £), that is: 

R = {HI}x-o. 
{Hs}x=l 

(3.1.37) 

The phase shift between the interfacial motion at x = 0 and the surface motion at 

x = R, is given by: 

(3.1.38) 

The theoretical predictions of (3.1.37) and (3.1.38) are compared with the results 

of experiments in Chapter 5. 

3.1.6 Wave Energies of Internal Waves and the Variational Principle 

Wave damping of interfacial waves is analyzed in § 3.3 but it is convenient to 

present the kinetic and potential energies of wave motion in a two-layer fluid here. 
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We will also show that the differential system given by (3.1.9) has a variational 

principle, that is, the system of equations (3.1.9a)-(3.l.9f) can be obtained by 

making some function stationary. The statement that a physical system so acts 

that some function of its behaviour is least ( or greatest) is often a useful starting 

point for theoretical analysis. For instance, in finite element analysis, the differential 

equations and boundary conditions are often cast into a variational formulation in 

the form of an integral equation, which is then minimized by standard methods to 

obtain the dependent variables of the problem. Thus the variational formulation 

could be useful in the analysis of the problem of wave propagation over a stratified 

trench of arbitrary geometry. In addition, important results with regard to the 

properties of the eigenfunctions and eigenvalues of the two-layer problem are also 

given by the variational principle; these will be discussed. 

First, let us write down the kinetic energy and the potential energy of a pro­

gressive wave in a two-layer fluid. The average kinetic energy of a progressive wave 

per unit width, per unit length, over one wave period is given by: 

(3.1.39) 

wherein u( x, z, t) and w( x, z, t) are the horizontal and vertical components of the 

fluid velocity, respectively, T is the wave period, ,\ is the wavelength, p is the density 

of the fluid, and cp( z) denotes the eigenfu~ction of the two-fluid system given by 

(3.l.19a) and (3.l.19b) for the propagating waves with K = iKj, (j = 1, 2) the 

corresponding eigenvalue (wave number). The integration in (3.1.39) is done layer 

by layer. With no loss of generality, we have assumed that the amplitude of the 

progressive wave is unity. The average potential energy per unit width, per unit 
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length, over one wave period attributable to the progressive wave is given by: 

(3.1.40) 

As seen in (3.1.17), the total energy of wave motion is equally partitioned in the 

form of kinetic and potential energies. As in many conservative systems, it is 

expected that the two-layer fluid will move so that the time average of the difference 

between kinetic and potential energies will be stationary. Thus the two-fluid system 

is characterized by a variational principle. Seen in this light, we consider making 

the following functional stationary: 

[ (d ) 2 l 2 [d l 2 c.p ,,..z 2 u 2 g ({) 
p - - K c.p dz - p1-[c.p(0)] - (p2 - pi)- -(-h1) 

dz g u 2 dz 
-(h1+h2) 

0 

J 
(3.1.41) 

Let cp( z) = c.p( z) + c(, where cp( z) is a perturbation of c.p( z ), c is a perturbation 

parameter, and ( is an arbitrary function that satisfies the boundary conditions of 

c.p(z). The perturbed functional is: 

0 

Q(cp) = J 

Differentiating Q( cp) with respect to c and setting the derivative to zero, we get: 

(3.1.43) 

Integration by parts yields: 
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+ p1((0) [di.p (0) - 0-

2 
<p(O)l + Pl di.p (-h1) [_J_ d( (-h1) - ((-h1)] 

dz g dz o-2 dz 

- pz d<p (-h1) [_J_ d( ( -h1) - (( -h1)] 
dz o-2 dz 

d<p 
- pz((-h1 - h2)-(-h1 - hz) = 0. (3.1.44) 

dz 

Because ((z) is arbitrary and ((z) satisfies the boundary conditions of <p(z), equa­

tion (3.1.44) implies that the <p( z) that makes Q( i.p) stationary also satisfies the 

differential system given by (3.1.9). 

An equivalent statement of the variational principle is to make the following 

functional stationary: 

~ [ ( d'lp) 2] a-2 g l- d¢ l 2 0.( 7P) = j p dz dz - Pi-g[¢(0)]2 - (p2 - p1) a-2 dz (-h1) (3.1.45a) 
-(h1 +h2) 

subject to the auxillary condition that: 

0 

j p¢2dz = constant. 

-(h1+h2) 

(3.1.45b) 

Here 'If( z) is a trial function, which satisfies the boundary conditions at z = 0, 

z = -h1, and z = -(h1 + h2). Suppose we normalize 'lf(z) with respect to the 

density function p( z), such that: 

0 

j p'lf2dz = l 

-{h1 +h2) 

(3.1.46) 

then the 'lf(z), which makes n stationary is a normalized eigenfunction of the dif-

ferential system, and the corresponding value of 0.( 'If) is the associated eigenvalue. 

The last result is readily obtained from ( 3. l.45a) through integration by parts. 

3.2 A Three-Layer Model 

In this analysis, the density distribution in the trench is represented by a three­

layer fluid, which is composed of two homogeneous fluids of different densities in 
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the upper and the lower layers separated in between by a transition region of linear 

density variation; the top of the density transition region is located beneath the edge 

of the trench (figure 3.2.1). The fluid is assumed to be inviscid and incompressible, 

but the motion is not irrotational, due to generation of vorticity in the continu­

ously stratified transition layer. A partial differential equation (Love's equation) is 

obtained from the equations of motion by standard perturbation procedure. For 

simple-harmonic motion, the Love's equation is reduced to a second order ordinary 

differential equation with variable coefficients, which together with the boundary 

conditions specify an eigenvalue problem. For arbitrary density distributions that 

are gravitationally stable, the eigenvalues and eigenfunctions must be found nu­

merically. By applying the Boussinesq approximation to the three-layer fluid, the 

ordinary differential equation is changed into one with constant coefficients. The 

Boussinesq approximation neglects variations of density in the Navier-Stokes equa­

tions in so far as they affect inertia, but retains them in the buoyancy term. The 

eigenvalue problem can now be solved analytically, but the eigenvalue parameter 

occurs in the boundary conditions. In fact the problem is not self-adjoint, so the 

associated self-adjoint problem must be found that has a set of mutually orthogonal 

eigenfunctions. A solution in the trench region is expanded in terms of an infinite 

series of these eigenfunctions. A similar procedure yields the series expansion so­

lutions in the constant-depth channel. The horizontal and vertical velocities are 

matched along a vertical boundary at the upstream edge of the trench to obtain 

a set of linear integral equations, which are solved numerically for the unknown 

coefficients. 

The constant-depth channel and trench arrangement for this analysis ( figure 

3.2.1) is essentially the same as shown in figure 3.1.1, except for the density dis­

tribution in the trench, and we shall use the same notation here unless specifically 

stated otherwise. 
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Figure 3.2.1. Definition sketch of the three-layer model. 

3.2.1 The Governing Equations in a Continuously Stratified Fluid 

Let (x, z) be a Cartesian coordinate system with z extending positive upwards 

from the undisturbed free surface and the bottom located at z = -( h1 + h2 + 8), 

where h1, h2, and 8 respectively, are the depths of the upper layer, the lower layer, 

and the density transition region. The horizontal and vertical components of the 

fluid velocity in the positive x direction and the positive z direction are denoted by 

u( x, z, t) and by w( x, z, t), respectively. The mean pressure p( z), is related to the 

mean density p( z ), by the hydrostatic condition: 

a-P -dz= -pg. (3.2.1) 
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The equation of mass conservation is: 

op 8(pu) 8(pw) _ 
0 at+ ax + oz - (3.2.2) 

in which the density is given by p = p + p1
, where p(z) is the mean density and 

p1 
( x, z, t) is the density fluctuation due to the wave motion. Because the fluid is 

incompressible, we must have: 

Dp 
-=0 
Dt ' 

D a 
-=-+u•V 
Dt ot 

(3.2.3) 

in which u represents the velocity vector. The equations of motion for an inviscid 

fluid are: 
Du 
p- = -Vp- pgVz 

Dt 
(3.2.4) 

in which the pressure is given by p = p + p', where p(z) is the mean pressure, and 

p'(x, z, t) is the pressure fluctuation due to the wave motion. If second order terms 

in the perturbation quantities are neglected, equations (3.2.2)-(3.2.4) become: 

op op (au aw) -+w-+p -+- =0, at oz ax oz 
op op 
-+w-=0 at oz ' 

au 
pat= -Vp-pgVz. 

(3.2.5) 

(3.2.6) 

(3.2.7) 

The equation of mass conservation (3.2.2) and the equation of incompressibility 

(3.2.3) lead to the continuity equation: 

au aw 
V-u=-+-=0. ax oz (3.2.8) 

Differentiating the linearized equation of motion in the x direction with respect to 

z and the linearized equation of motion in the z direction with respect to x, then 

eliminating the terms involving p from the two equations obtained, we get: 

p~ (ow_ au)- opou +gap =0. 
at ax az az at ax (3.2.9) 
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Differentiation of (3.2.9) with respect to t and then with respect to x yields, after 

using (3.2.6) and (3.2.8), Love's equation: 

(3.2.10) 

We shall investigate steady-state wave motion of the form: 

w(x, z, t) = f(z)ei(Kx-C1t) (3.2.11) 

in which I< is the wave number and a is the circular frequency. Substitution of 

(3.2.11) into (3.2.10) yields: 

d ( df) ,..2 (N2 
) - p- + pl\ - - 1 f = 0. 

dz dz a 2 (3.2.12) 

In (3.2.12), N is the buoyancy frequency (Brunt-Vaisala frequency) given by: 

(3.2.13) 

In a stratified fluid, an element of fluid displaced a small distance vertically from 

its equilibrium position induces a body force in the direction of the fluid element's 

original position. The simple-harmonic motion produced by this restoring force has 

a circular frequency of oscillation equal to the buoyancy frequency JV. Internal 

waves are impossible if: 

(3.2.14) 

everywhere in the fluid, where a is the excitation frequency ( see, for example, Yih, 

1977). In the following analysis, internal waves in a continuously stratified fluid 

are defined to be those waves where f(z) vanishes at least once in the interval 

-(h1 + h2 + 8) < z < 0. From (3.2.11), f(z) is by definition the amplitude of the 

vertical velocity, hence f( -h1 -hz -8) = 0 because the vertical velocity must vanish 

on the bottom. Internal waves have at least one other zero of f(z) in the interval 

-(h1 + h2 + 8) ::; z < 0. This property distinguishes internal waves from free surface 
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waves, which are generated only at the free surface and whose only zero of f ( z) is 

When the density variation in the quiescent fluid is small compared to a fluid 

density po, the mean density p(z) in the first term of (3.2.7) may be replaced by po; 

this produces only a small error in the inertia term. But if the reference state of 

hydrostatic pressure is removed from (3.2. 7) it is clear that the density variation is of 

primary importance in the buoyancy term. When the previous derivation is carried 

out with the Boussinesq approximation, equations (3.2.12) and (3.2.13) become: 

(3.2.15) 

N2( z) = _.!!._ ap. 
po dz 

(3.2.16) 

Notice that N is constant when the density variation is linear, and zero when the 

density is constant. 

Now let us derive the boundary conditions for a stratified fluid that has piecewise 

continuous density distribution. The fluid has a free surface and possibly one or 

more surfaces of density discontinuity in the interior, which divide the fluid into 

layers of continuously stratified fluids. If the displacement of a surface of density 

discontinuity from its undisturbed position is: 

ry(x, z, t) = TJo(z)ei(Kx-<Tt) (3.2.17) 

where T/O is the wave amplitude, then a kinematic boundary condition on this surface 

is given by: 

OTJ 
w = at· (3.2.18) 

Because the pressure in the fluids above and below the surface of density disconti­

nuity must be the same on the interface, the dynamic boundary condition is: 

I I 

Pf = Pu ⇒ Pe - pggry = Pu - Pu9T/ (3.2.19) 
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in which the subscripts u and /!, denote the upper fluid and the lower fluid, respec­

tively. From (3.2.8) and (3.2.11), the horizontal velocity is found to be: 

i df "(R' t) u(x z t) = --ei x-(T 
' ' K dz . 

(3.2.20) 

Upon using (3.2.20) and the linearized equation of motion in the x direction from 

(3.2. 7), the pressure fluctuation is found to be: 

'( t) - ·-_:!__ df i(K X-fft) 
p x, z, - z p 1{2 dz e . (3.2.21) 

The substitution of p1 into (3.2.19) yields the dynamic boundary condition on the 

density interface: 

( 
df) ( df) gK

2 

p- - p- +-(75£-75u)f =0. 
dz u dz £ 0"

2 
(3.2.22) 

On the free surface, equation (3.2.22) reduces to: 

on z = 0. (3.2.23) 

The boundary condition on the bottom is: 

f(z) = 0 on (3.2.24) 

By definition, f(z) is continuous everywhere, and from (3.2.22) df /dz is continuous 

where pis continuous. Note that the three-layer fluid previously described belongs 

to this density distribution; its density is continuous in the interval -( h1 + h2 + <5) < 

z < 0 but the density gradient has finite jumps at z = -h1 and z = -(h1 + 8). 

3.2.2 The Eigenvalue Problem with the Boussinesq Approximation 

It is recalled that the Boussinesq approximation neglects variations of density in 

the inertia term of the N avier-Stokes equations. In the case where the Boussinesq 

approximation has been made and the density of the fluid is continuous in the 

interval -(h1 +h2+6) < z < 0, the governing differential system consists of (3.2.15), 
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(3.2.16), (3.2.23), and (3.2.24). These equations together specify an eigenvalue 

problem, which is stated as follows: 

where 

d2 f + 1{2 (N2 - 1) f = 0, 
dz2 a-2 

f=O 

on 

on 

N 2(z) = _Jf_ ap_ 
po dz 

z = 0, 

(3.2.25a) 

(3.2.25b) 

(3.2.25c) 

(3.2.25d) 

In (3.2.25), f and df / dz are continuous everywhere whiie d2 f / dz 2 is continuous in 

the region where ap/ dz is continuous. We are interested in the case where a- is held 

fixed and 1{2 is the eigenvalue parameter. This is not a standard Sturm-Liouville 

problem because the eigenvalue parameter occurs in the free surface boundary con­

dition. Let us define an inner product (.Dp,¢) by: 

0 

J (3.2.26) 

in which cp(z) and ¢(z) are any two trial functions, which are continuous and have 

continuous 1st derivative and piecewise continuous 2nd derivative in the interval 

-( h1 + h2 + 8) < z < 0, the trial functions cp and ¢ also satisfy the the boundary 

conditions at z = 0 and z = -( h1 + h2 + 8). The integration in (3.2.26) is carried 

out layer by layer in the ordinary sense for each region where d2 / dz 2 is continuous; 

this is implied throughout this section. Integration by parts yields: 

(3.2.27) 
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We cannot eliminate the terms in the square bracket in (3.2.27) because the eigen­

value parameter occurs in the free surface boundary condition. The eigenvalue 

problem defined by (3.2.25) is not self-adjoint, so that we cannot find the orthogo­

nality conditions for an eigenfunction expansion. 

Let us put (3.2.25) in a vector form which we can do the normal eigenfunction 

expansion. Consider the space of vectors with the first component a trial function 

and the second component a scalar, for any two such vectors U and V given by: 

(3.2.28) 

we define the inner product: 

0 

(U, V) = J (3.2.29) 

We further specify a subspace S of vectors such that <.p( -h1 - h2 - 8) = 0 and 

<.po = <.p(O). Then all vectors U E S are of the form: 

U(z) = (<.p(z )) 
<.p( 0) 

and (3.2.30) 

Let: !_:p_ 
.CU= -( ~z2(z))' 

rz-(0) 
(3.2.31) 

then our original eigenvalue problem can be stated as follows: 

.CU= aRU, (3.2.32a) 

where Nz 

(
--=-r - 1 

R = (J' 

0 
(3.2.32b) 

Now: 
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[
di.() d'ljJ l O O d2¢ di.() 

= - dz 'ljJ - dz I.() - J dz2 l.()dz + dz (O)?/J(O) 
-(h1 +h2+8) -(h1 +h2+6) 

J
o d2?/J d?j) 

dz2 (()dz+ dz (0)1.()(0) 
-(h1+h2+8) 

= (U,£V). (3.2.33) 

Hence (3.2.32) is self-adjoint. The eigenvectors of the adjoint problem are written 

as: 

(
l.()n( Z )) 

Un(z) = l.()n(0) , (n = 1,2, ... ). (3.2.34) 

Let a and /3 be any two different eigenvalues of the adjoint problem, and U and V 

the corresponding eigenvectors. It follows from (3.2.33) that: 

(.CU, V) = (U, .CV) 

⇒(aRU, V) = (U,/3RV) 

⇒(a - /3)(RU, V) = 0 

⇒(RU, V) = 0, (a i= /3). 

An equivalent form of (3.2.35) is: 

0 (N2 ) j o- 2 - 1 l.()'ljJdz + : 21.()(0)¢(0) = 0, 
-(h1+h2+8) 

(3.2.35) 

(3.2.36) 

Following the same procedure in § 3.1.2 for the two-layer fluid, the Wronskian can 

be used to show that each eigenvalue corresponds to only one eigenvector. Now 

that we have the orthogonality condition (3.2.36), we may expand a given vector 

F( z) in terms of a series of these eigenvectors, in the form: 

(
f(z )) 00 

F(z) = f(0) =:; CnUn(z) (3.2.37a) 

where 

(
l.()n(z )) 

Un(z) = l.()n(0) , (3.2.37b) 
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0 

(RF,Un) = j 
-(h1+h2+8) 

(
N2 ) g 
o-2 - 1 f(z)rpn(z)dz + o-2 f(O)rpn(O), (3.2.37c) 

0 

J (3.2.37d) 

-(h1+h2+8) 

It is clear that (3.2.36) and (3.2.37) give the orthogonality condition and the eigen-

function expansion for the original problem, which cannot be found by standard 

procedures for Sturm-Liouville systems. Let rp* be the complex conjugate of rp, 

an eigenfunction of (3.2.25), multiplying (3.2.25a) by porp*, integrating between 

-( h1 + h2 + 8) and 0, and applying the boundary conditions (3.2.25b) and (3.2.25c), 

we get: 

(3.2.38) 

It can be seen that K 2 is real, but the positive and negative values of K 2 have no 

upper and lower bounds. Inspection of (3.2.11) shows that the positive values of K 2 

correspond to the wave numbers of the propagating waves while the negative values 

of K 2 correspond to the wave numbers of the locally bounded standing waves that 

do not propagate. In§ 3.2.4 it will be shown that the first two terms in (3.2.38) are 

proportional to the potential energy of wave motion, whereas the last two terms 

in (3.2.38) are proportional to the kinetic energy of wave motion. Hence (3.2.38) 

shows that the total energy of wave motion in a continuously stratified fluid is 

equally partitioned in the form of kinetic and potential energies. 

Now we proceed to solve the eigenvalue problem (3.2.25) for a homogeneous 

fluid, and for a three-layer fluid. 
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3.2.2.1 Eigenvalues and Eigenfunctions of a Homogeneous Fluid 

The bottom of the homogeneous fluid in the constant-depth channel is specified 

at z = -h with z measured positive upwards from the undisturbed free surface. In 

this region ap/dz = 0, hence (3.2.25) reduces to: 

d2f -K2f = 0 
dz 2 ' 

f=O on 

Equation (3.2.39) has the general solution: 

-h < z < 0, 

on z = 0, 

z = -h. 

(3.2.39a) 

(3.2.39b) 

(3.2.39c) 

(3.2.40) 

where A and Bare unknown constants. The function f(z) is determined to an arbi­

trary constant by imposing the boundary condition on the bottom ( equation 3.2.39c). 

After normalization, the eigenfunctions are given by: 

Z(z) = (Ah)-112 sinhk(z + h), 

Zn(z) = (A~)-1
/

2 sinkn(z + h), 
0 

(n=l,2, ... ), 

Ah= - j sinh2 k(z + h)dz + : 2 sinh2 kh 

-h 

= _i (~ sinh 2kh - h) + .!L sinh2 kh 
2 2k ~2 ' 

0 

A~ = - j sin2 kn(z + h)dz + : 2 sin2 knh 
-h 

= ~ (_;_ sin2knh - h) + g
2 

sin2 knh. 
2 2kn ~ 

The eigenfunctions are orthogonal in the sense that: 

- j <p1j}dz + : 2 <p(0)1jJ(O) = ' o {o 
-h l, 

(3.2.41a) 

(3.2.41b) 

(3.2.41c) 

(3.2.41d) 

(3.2.42) 
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where cp(z) and 'l/J(z) are any two normalized eigenfunctions. In (3.2.41), k2 and 

~2 _ · 2 -kn, ( n - l, 2, ... ) are the eigenvalues of I< . The eigenvalues are defined by the 

following relationships: 

a 2 = gk tanh kh, 

(n=l,2, ... ). 

(3.2.43a) 

(3.2.43b) 

Equations (3.2.43a) and (3.2.43b) can be obtained by substitution of (3.2.41a) and 

(3.2.41b) into (3.2.39b ). 

3.2.2.2 Eigenvalues and Eigenfunctions of a Three-Layer Fluid 

The density distribution of the three-layer fluid in the trench region (figure 3.2.1) 

is specified as follows: 

l 
Pl, 

p(z) = Pl - ~p(z + h1)/8, 

P2, 

-( h1 + 8) < z < -h1; 

-(h1+h2+8) < z < -(h1 +8) 

where ~p = p2 - PI· From (3.2.25) the governing differential system is given by: 

where 

and 

d
2 

f ,.2f 
dz2 - !1 = 0, and 

- (h1 + h2 + 8) < z < -(h1 + 8), 

!:{ +K2 (!2

2 

- 1) f = 0, -(h1 H) < z < -h1, 

df - gI<
2

2 
J = 0 on z = 0, 

dz a 

f=O on 

f 
df 

continuous 
' dz 

on 

(3.2.44a) 

(3.2.44b) 

(3.2.44c) 

(3.2.44d) 

(3.2.44e) 
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Equation (3.2.44) has the general solutions: 

f ( ) A Kz + B -Kz 2 z = 2e 2e , 

7i/ =/- a : 

(
7i/2 ) 1/2 . ~ (7i/2 ) 1/2 

]3(z)=A3cosK aZ -1 z+B3smli. aZ -l z, 

N=a: 

(3.2.45a) 

(3.2.45b) 

(3.2.45c) 

(3.2.45d) 

where A1, B1, A2, B2, A3, and B3 are unknown constants. The subscripts (1, 2, 

and 3) denote the respective regions shown in figure (3.2.1). 

First let us consider the case where 7i/ =I a. The two boundary conditions 

( equations 3.2.44c and 3.2.44d) and the four matching conditions ( continuity of J 

and df /dz on z = -h1 and z = -(h1 +8)) provide six equations with six unknowns. 

The equations are linear and homogeneous in these six unknowns, and therefore, 

for a solution to exist, the determinant of these equations must vanish. The con­

dition that the determinant must vanish defines the following relationships for the 

eigenvalues of K 2: 

and 
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in which 0 = (]V2 
/a2 - 1) =I= 0, Ko = a 2 /g, and KJ, (j = 1, 2, ... ) and -f<;, 

(n = 1, 2, ... ) are the eigenvalues of K 2• Notice that (3.2.46a) has an infinite number 

of roots of Kj if and only if 0 > 0. The smallest root K1 is the wave number of the 

surface mode. The next root K2 is the wave number of the primary internal mode. 

The surface mode and the primary internal mode usually have wavelengths much 

larger than 6, so that K8 ~land (3.2.46a) may be approximated by: 

( 
h K. h K j cash K j h 1 - Ko sinh K j h 1 ) 

cot 1 2 + Kj sinhKjh1 - Ko coshKjh1 

-K·b (e- KjcoshKjh1 - KosinhKjh1 cothK·h
2

) = 0. 
1 Kj sinhKjh1 - Ko coshKjh1 1 

(j = 1, 2) (3.2.47) 

With the substitution ofN from (3.2.44e ), and some alegbra, we obtain the following 

dispersion relation: 

a 4 
( coth Kjh1 coth Kjh2 + l + Kj8( coth Kjh1 + coth Kjh2)) 

-a2 (;: cothKjh1 + cothKjh2 + Kj8(cothKjh1 cothKjh2 + 1)) gKj 

+ (P2 
- 1) g2 K~ = 0, (j = 1, 2). (3.2.48) 

Pl J 

Notice the similarity between (3.2.48) and the dispersion relation for the two­

layer fluid given by (3.1.lSa). Equation 3.2.48 is not as exact as (3.1.18a) because 

the Boussinesq approximation is made in the three-layer problem. In particular, if 

we put 8 = 0 in (3.2.48), the equation does not reduce exactly to (3.2.18a) because in 

the three-layer problem the density ratio p2/ Pl in the inertia term is approximated 

by unity; this is due to the Boussinesq approximation. Equation (3.2.48) indicates 

that when Kj8 is small, the wave numbers for the first two propagating modes of 

the three-layer fluid would be similar to the wave numbers of the surface mode 

and the interfacial mode in the two-layer fluid. When 0 < 0, the trigonometric 

functions sine and cosine in (3.2.46a) become the hyperbolic sine and hyperbolic 
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cosine, consequently K 1 has only one real root corresponding to the wave number of 

the surface mode. Thus internal waves are impossible in the three-layer fluid when 

the forcing frequency a is greater than the buoyancy frequency N. 

When 0 = 0, equation (3.2.45d) should be used instead of (3.2.45c). The 

dispersion relation corresponding to (3.2.46a) is given by the following for 7v = a: 

a2 ( cothKh1 coth Kh2 + l + K8 cothKh2) 

=gK (cothKh1 + cothKh2 + K8 cothKh1 cothKh2). (3.2.49) 

Equation (3.2.49) reduces to (3.2.43a) when K 8 = 0. It is seen in (3.2.49) that K 

has only one real root corresponding to the wave number of the surface wave; there 

is no internal wave. Equations (3.2.46a) and (3.2.49) show that internal waves in 

the three-layer fluid are possible only when a < N; when a ~ N only the surface 

mode exists. In this study we are interested in internal waves in a submarine trench, 

hence the case 0 = 0 will not be considered in the following analysis. 

Equation 3.2.46b always has an infinite number of real roots, these are the wave 

numbers of the locally bounded standing waves that do not propagate. 

Any five of the six unknowns of the homogeneous equations can be determined 

in terms of the remaining unknown, therefore f(z) is determined to an arbitrary 

constant. After normalization, the eigenfunctions are given by: 

Z11(z) = (AJ)-112 ( 0 1/ 2 cos ( 0 1/2 K18) + cothK1h2 sin ( 0 1/2 K18)) 

( 
Ko coshK1z + K1 sinhKjz ) 

} h h h h ' (j = l, 2' ... ), '<o cos Kj 1 - Kj sin Kj 1 
(3.2.50a) 

Zj2(z) = (A~)-1;201; 2 (sinhK1(~ + h1 + h2 + 8))' 
1 smhK1h2 

(3.2.50b) 

Zj3(z) = (AJ)- 112 ( 0 1/ 2 cos ( 0 1/ 2 Kj(z + h1 + 8)) 

+ cothKjh2 sin ( 0 1/ 2 Kj(Z + h1 + 8)))' (3.2.50c) 

Zn1(z) = (A~)-112 (01l2 cosh(01l2kn8) +cotKnh2sinh(01l2kn8)) 
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In (3.2.50), the subscripts (1, 2, and 3) denote the respective regions shown in fig­

ure 3.2.1. The normalizing constants A1, (j = 1, 2, ... ), and A~, (n = 1, 2, ... ) are 

obtained by direct substitution of (3.2.50a)-(3.2.50f) into (3.2.37d). The eigenfunc-
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tions are orthogonal in the sense that: 

(3.2.51) 

wherein N = 0 in -(h1 + h2 + 8) < z < -(h1 + 8) and in -h1 < z < 0, and 

N =Nin -(h1 + 8) < z < -h1. The functions r..p and 'l/; are any two normalized 

eigenfunctions. 

Now we have found the sets of mutually orthogonal eigenfunctions for the ho­

mogeneous fluid (equation 3.2.41) and for the three-layer fluid (equation 3.2.50). 

We may expand the horizontal velocities and the vertical velocities in the constant­

depth channel and in the trench region in terms of a series of these eigenfunctions. 

Then the horizontal and vertical velocities must be matched along a vertical bound­

ary at the upstream edge of the trench to obtain a set of simultaneous equations in 

terms of the unknown coefficients, which can then be solved by standard methods. 

3.2.3 The Trench Model 

The fluid domain is divided into five regions as shown in figure (3.2.1): 

Region 1 

Region 2 

Region 3 

Region 4 

Region 5 

75= Pl, 

75 = P2, 

75 = Pl, 

75 = Pl, 

-h1 < z < 0, 0 < X < f, 

-h < z < 0, -L < x < -L/2 

-h < z < 0, -L/2 < x < 0 

where Pl and p2 are the densities of the upper fluid and of the lower fluid, respec­

tively, and 6.p = P2 - p1; the other symbols are defined in figure 3.2.1. As in the 

two-layer model, we divide the constant-depth channel into two regions ( 4 and 5) at 

x = -L /2. We assume that at this location the wave motion is represented by the 

propagating modes only; the amplitudes of the locally bounded non-propagating 
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modes decrease exponentially with distance from x = -L and x = 0, so that their 

contributions at x = -L /2 are negligible. 

For steady-state motion, the horizontal velocity u(x, z, t) and the vertical veloc­

ity w(x, z, t) may be written in the form: 

u(x, z, t) = u'(x, z)e-iut, 

( t) '( ) -iut w x, z, = w x, z e . 

(3.2.52a) 

(3.2.52b) 

Equations (3.2.52a) and (3.2.52b) are of the form (3.2.20) and (3.2.11). The eigen­

functions in (3.2.41) and (3.2.50) take the role of f(z) in (3.2.11) and (3.2.20). The 

spatial velocities u' ( x, z) and w' ( x, z) may be expanded in terms of a series of the 

orthogonal modes found in § 3.2.2. The solutions in the trench region are written 

as: 

(3.2.53a) 

(3.2.53b) 

In (3.2.53a) and (3.2.53b ), Aj, Bj, (j = 1, 2, ... ), and An, Bn, ( n = 1, 2, ... ) are 

unknown constants to be determined from the boundary and matching conditions. 

In both equations the first summation represents propagating waves consisting of 

the free surface mode and the infinite number of internal modes, and the second 

summation represents local disturbances that do not propagate. Similarly, the 

solutions in the constant-depth channel are written as: 

(3.2.54a) 
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' ( ) i ( ikx -ikx) dZ() ~ 1 £, knxdZn() u5 x, z =-k Ee - F -d z - L,; -Arne -d z , 
Z n~1kn Z 

(3.2.54b) 

w~(x, z) = ( Ceik(x+L) + De-ik(x+L)) Z(z) 
00 • 

+ L Cne-kn(x+L) Zn(z), (3.2.54c) 
n=l 

00 • 

w;(x,z) = (Eeikx + Fe-ikx) Z(z) + L Fneknxzn(z) (3.2.54d) 
n=l 

in which C, D, E, F, and Cn, Fn, (n = 1, 2, ... ) are unknown constants to be 

determined. Notice that in (3.2.53) and (3.2.54) u' and w' satisfy the continuity 

equation (3.2.8). 

The fluid velocities in the trench region and in the constant-depth channel must 

satisfy the following additional boundary conditions: 

u=0 on - (h1 + h2 + 8) < z < -h, X = 0, (3.2.55a) 

u=0 on - ( h1 + h2 + 8) < z < 0, X = £, (3.2.55b) 

Z -iut 
u4 = -Sae on 

2 
- h < z < 0, X = -L (3.2.55c) 

where S is the stroke of the wave generator. The matching conditions are the 

conditions of continuity of horizontal velocity and of vertical velocity at x = 0, that 

IS: 

on - h < z < 0, x = 0, 

on - h < z < 0, x = 0. 

Equation (3.2.55b) implies: 

B . - A ·e2iKie ( . 1 2 ) 3- J '.]=,, ... , 

BA - AA e2kne ( 1 2 ) n- n , n= , , .... 

Integrating (3.2.55c), and after using (3.2.52a) and (3.2.54a), we get: 

i 00 1 A A iSa 
k(C - D)Z(z) + L -A CnZn(z) = -(z + h). 

n=1 kn 2 

(3.2.56a) 

(3.2.56b) 

(3.2.57a) 

(3.2.57b) 

(3.2.58) 
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Note that the integration of (3.2.55c) yields the volume flux between-hand z, the 

constant of integration is determined from the condition that the volume flux must 

be zero at z = -h. Now (3.2.58) is in the form (3.2.37a), it is seen that if the right 

hand side of (3.2.58) is given the role of f(z) in (3.2.37a), the unknown constants 

on the left hand side of (3.2.58) can be found using (3.2.37b ), thus, we have: 

(3.2.59a) 

(3.2.59b) 

We assume that the wave motion is asymptotically a superposition of simple wave 

trains at x = -L/2, hence: 

3.2.3.1 Matching the Solutions 

(3.2.60a) 

(3.2.60b) 

The spatial horizontal and vertical velocities in the trench region and in the 

constant-depth channel are given by (3.2.53) and (3.2.54) in terms of the unknown 

coefficients. These velocities must be matched at x = 0 to obtain the sets of 

equations from which the unknown coefficients can be determined. Because there 

are an infinite number of unknown coefficients in the infinite series, an infinite 

number of simultaneous equations are needed. For numerical evalution, we truncate 

the infinite series in (3.2.53) and (3.2.54) after a finite number of terms given by J 

for the propagating modes and N for the non-propagating modes, we are then left 

with (J+2N+l) unknowns: Aj, (j = 1,2, ... ,J), C, and An, Fn, (n = 1,2, ... ,N). 
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We obtain ( J + 2N + 1) equations by matching the horizontal and vertical velocities 

in the trench region and in the constant-depth channel along a vertical boundary at 

the upstream edge of the trench, that is, at x = 0. First we consider the condition 

of continuity of horizontal velocity at x = 0 ( equation 3.2.56a ). Let u' be the 

truncated velocity of u', then (3.2.53a) yields: 

J . d 
fii,2,3(0, z) = L 1;. (Aj - Bj) dz ( Zj1,2,3(z)) 

J=l J 

N 1 (A A ) d (A ) - L -A- An - Bn d Zn1,2,3(z) . 
n=l l{n z 

(3.2.61) 

Integrating (3.2.61) between -(h1 + h2 + 8) and z, we obtain the volume flux Q(z) 

at X = 0: 
z 

J u'(0, z)dz 

in which Qi, ( i = 1, 2, 3) denotes the volume flux between -(h1 + h2 + 8) and z in 

region i. From (3.2.54b), we have: 
N A 

1 i dZ '°' 1 A dZn 
u5(0, z) = -k (E- F)-d (z) - ~ -A Fn-d (z). 

Z n=l kn Z 

Integrating between-hand z, we get: 
z 

Qs(z) = j u;(o, z)dz 

-h 
. N 
z '°'lAA = k (E - F) Z(z) - ~ -A FnZn(z). 

n=l kn 

Equations (3.2.55a) and (3.2.56a) imply that: 

Q1(z) = Qs(z), -h < z < 0, 

Q1(z) = 0, -h1 < z < -h, 

Q2(z) = 0, -(h1 + h2 + 8) < z < -(h1 + 8), 

Q3(z) = 0, -(h1 + 8) < z < -h1. 

(3.2.63) 

(3.2.64) 

(3.2.65a) 

(3.3.65b) 

(3.2.65c) 

(3.2.65d) 
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Note that Qi is continuous in z, and the matching is done over the larger depth 

( h1 + h2 + 8) in order to satisfy the boundary condition on the upstream wall of 

the trench (equation 3.2.55a). Now we can apply (3.2.37) to obtain (J + N) linear 

integral equations. The right hand side of (3.2.65) is given the role of f(z) in 

(3.2.37a), then the unknown constants in the series expansions of Q1,2,3 are given 

by: 

. 0 

1
;. (A1 - B1) = - j Qs(z)Z11(z)dz + : 2 Qs(O)Z11(0), 

J -h 

(j = 1, 2, ... 1 J) 
0 

-~ (An - En)= - J Qs(z)Zn1(z)dz + ~Q5(0)Zn1(0). 
hn ~ 

-h 

(n = 1,2, ... ,N) 

(3.2.66a) 

(3.2.66b) 

The remaining ( N + l) equations are constructed from the condition of continuity 

of vertical velocity at x = 0 ( equation 3.2.56b ). In this case, we only need to be 

concerned with the vertical velocities in the interval between -h and 0. From 

(3.2.53b) and (3.2.54d), the truncated series of the vertical velocities at x = 0 are 

given by: 

J N 
w~(O, z) = L(Aj + B1)Z11(z) + L(An + Bn)Zn1(z), (3.2.67a) 

j=l n=l 

N 

w;(o, z) = (E + F)Z(z) + L FnZn(z). (3.2.67b) 
n==l 

This time wi(O,z) is given the role of f(z) to take advantage of the orthogonality 

relationships of the eigenfunctions for the homogeneous fluid. From (3.2.37) and 

(3.2.67), we obtain: 

0 

E + F = - j w~ (0, z)Z(z)dz + : 2 w~ (0, O)Z(O), 
-h 

0 

Fn = - j w~(O,z)Zn(z)dz + : 2 w~(O,O)Zn(O). 
-h 

(n=l,2, ... ,N) 

(3.2.68a) 

(3.2.68b) 
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The integrals in (3.2.66) and (3.2.68) can be evaluated in terms of trigonometric 

functions and hyperbolic functions. The set of ( J + 2N + l) simultaneous equations 

are solved numerically as a linear matrix equation. As in the two-layer problem, we 

have not proved that the series expansions in (3.2.53) and (3.2.54) are complete. In 

the numerical analysis, we have used J = 2 and N = 3. In our experiments, the 

thickness of the density transition region between the upper fluid and the lower fluid 

was small compared to the total depth of the fluid. Thus, the free surface mode 

and the primary internal mode dominate the wave motion in the trench region. 

3.2.3.2 Analysis of Wave Amplitude 

After the unknown coefficients of the series expansions are found, the horizontal 

velocity and the vertical velocity are determined for the entire fluid domain. For the 

problem of oscillation of internal waves in a trench, we are more interested in the 

amplitude of the internal wave relative to the amplitude of the surface wave. From 

linear theory, the vertical displacement T/ of a fluid element from its undisturbed 

position is obtained by integrating the vertical velocity with respect to t, that is: 

T/(x, z, t) = T/o(z)ei(Kx-ut) 

(3.2.69) 

in which we have applied (3.2.52b). In (3.2.69), T/O is the amplitude of vertical 

displacement, and w' is given by (3.2.53) in the trench region and (3.2.54) in the 

constant-depth channel. The phase angle of wave motion is given by the argument of 

T/· The amplification factor R is defined as "the ratio of the internal wave amplitude 

at x = 0 to the surface wave amplitude at x = £, that is: 

R(z) = IT/(0,z,t)J_ 
J,,,(t,o,t)J 

(3.2.70) 

The phase shift () between the internal motion and the surface motion at these 
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locations is given by: 

0(z) = arg{ 17(0, z, t)} - arg{ 17(£, 0, t)} (3.2. 71) 

where "arg" is the argument of a complex number. Note that for a progressive wave 

propagating in the positive x direction, equations (3.2.11) and (3.2.69) yield: 

17(x, z, t) = !_ f(z )ei(Kx-<rt). 
(7 

(3.2.72) 

3.2.4 Wave Energies of Internal Waves and the Variational Principle 

The analysis of wave damping for the three-layer fluid is presented in§ 3.3.2 but 

it is convenient to present the kinetic and potential energies of wave motion here. 

For a continuously stratified fluid with the Boussinesq approximation, the average 

kinetic energy of a progressive wave per unit width, per unit length, over one wave 

period is: 

l t+Tx+.X o 

KE= >..T j j j ½po(u2 + w 2 )dzdxdt 
t x -(h1 +h2+6) 

1 ° ( 2 1 I df 1

2

) - 4 / Po If I + 1{2 dz dz 
-(h1+h2+6) 

(3.2.73) 

wherein ).. is the wavelength. The last result in (3.2. 73) is obtained by direct sub-

stitution of u and w from (3.2.11) and (3.2.20). The average potential energy per 

unit width, per unit length, over one wave period attributable to the progressive 

wave is given by: 

t+Tx+..\ o lap l tf+Txf+.-\1 2 

PE= - )..~ j j j 2 dzg17 2dzdxdt + >..T 2pog11 (O)dxdt 
t X -(h1 +h2+6) t X 

= 4~2 (- J iu12
dz + Polf(O)l

2
) (3.2.74) 

-(h1+h2+6) 

in which (3.2.72) has been used. Equations (3.2.73) and (3.2.74) also hold without 

the Boussinesq approximation but po should be replaced by p( z ). By inspection of 
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(3.2.38), it is seen that the total energy of wave motion is equally partitioned; one 

half in the form of kinetic energy, the other half in the form of potential energy. 

The system of equations (3.2.25) also has a variational principle, which can be 

related to the kinetic and potential energies of wave motion. As in many conser­

vative systems, it is expected that the stratified fluid will move so that the time 

average of the difference between the kinetic energy and the potential energy will 

be stationary. Thus we consider making the following functional stationary: 

(3.2. 75) 

Let j(z) = f(z) + c((z), where f(z) is a perturbation of j(z), Eis a perturbation 

parameter, and (( z) is an arbitrary function that satisfies the boundary conditions 

of f(z). From (3.2.75), the perturbed functional Q(f) is: 

Q(f) = J po [J' + ;, (~:)']dz+ :2 J f ]2dz - P;; ]2(0). 
-(hi +h2+8) -(hi +h2+8) 

(3.2.76) 

Differentiating Q(f) with respect to E and setting the derivative to zero, we get: 

0 0 

J [ 1 df d(l g j ap pog 
Po f ( + --- dz+ - -f(dz - -f(O)((O) = 0. 

1{2 dz dz a 2 dz a 2 

-(hi +h2+8) -(hi +h2+8) 
(3.2.77) 

Integration by parts yields: 

(3.2.78) 

Because ((z) is arbitrary and ((z) satisfies the boundary conditions of f(z), equa­

tion (3.2.78) implies that the f(z) that makes Q(f) stationary also satisfies the 

differential system given by (3.2.25). 



- 68-

An equivalent statement of the variational principle is to make the following 

functional stationary: 

o (d'/j)' 2 
n( '/jJ) = j dz ) dz 

-(h1+h2+6) 

(3.2.79a) 

subject to the auxillary condition that: 

0 

J (- g
2

...!._dap -1) '//J 2dz + g
2

'//J2(0) = constant. 
a po z a 

-(h1 +h2+6) 

(3.2.79b) 

Notice that (3.2.79b) defines the orthogonality condition of the eigenvalue problem 

( cf. equation 3.2.51 ). The function '//J( z) is a trial function, which satisfies the 

boundary conditions of the differential system. If all the trial functions of '//J(z) 

are normalized such that the left hand side of (3.2. 79b) equals to unity, then the 

'//J(z), which makes n stationary, is a normalized eigenfunction of (3.2.25), and the 

corresponding value of n( '/jJ) is the associated eigenvalue. The latter result is readily 

obtained from ( 3.2. 79a) through integration by parts. 

3.3 Wave Damping in Density-Stratified Fluid 

In this section an analytical treatment of viscous effects on surface and internal 

waves is presented, based on linear wave theory. The energy dissipation in a strati­

fied fluid is studied for the two-layer and the three-layer fluids discussed in§ 3.1 and 

§ 3.2. We assume that the free surface is uncontaminated and flow separation does 

not occur in the fluid; thus, energy dissipation is significant only in the boundary 

layers adjacent to the solid surfaces and at the density interface. It has been shown 

for homogeneous fluids of small viscosity that energy dissipation in the boundary 

layers adjacent to the solid surfaces, in the boundary layer at the free surface, and 

in the body of the fluid, are respectively proportional to v 112, v312 and v (see, for 

example, Mei, 1983), where vis the kinematic viscosity. In§ 3.1 we have seen that, 

for two inviscid fluids, the vertical velocities across the density interface are equal, 
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but the horizontal components of the velocity are discontinuous. In addition, the 

fluid motion has substantial tangential velocity at the solid boundaries. Of course, 

these results follow from the neglect of the effects of viscosity, which can be seen 

directly from the N avier-Stokes equations: 

Du 2 
P Dt = -'vp - pg'vz + µ'v u (3.3.1) 

in which µ is the dynamic viscosity; the flow is assumed to be laminar. The last 

term in (3.3.1) is the result of molecular viscosity; its effect is to produce diffusion 

of momentum, with a diffusivity v = µ/ p. Hence, the discontinuity of the velocity 

profile at the interface is possible only in the absence of viscosity. Mathematically, 

equation (3.3.1) is changed from a second order partial differential equation into a 

first order equation (Euler equations) after neglecting the term involving viscosity. 

With the Euler equations, it is not possible to satisfy all the physical boundary con­

ditions. Indeed, when the Euler equations are adopted we cannot impose the no-slip 

boundary condition at the solid surfaces, or at the interface between two immiscible 

fluids. Viscosity, however small, will instantaneously annul such a discontinuity by 

the diffusion of momentum. This is accomplished by the action of shear stresses 

in the fluid. By the definition of viscosity, a gradient of velocity generates a shear 

stress equal to the dynamic viscosityµ times the velocity gradient. This shear stress 

causes the retardation of fluid in the boundary layers adjacent to the solid surfaces 

and at the density interface. If the value of µ is very small, the boundary layers are 

very thin at these surfaces because the shear stress can be sufficient to generate the 

necessary retardation only if the velocity gradient is very large. Hence, the overall 

fluid motion outside the boundary layers c·an be predicted well by the Euler equa­

tions; only within the very thin boundary layers do we need to include the viscous 

term. This is particularly important because the complete Navier-Stokes equations 

are too difficult to analyze for arbitrary flows. Flow separation, if it exists, may 

alter the flow pattern significantly from that predicted by the Euler equations. 
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An estimate of the oscillatory boundary layer thickness near a smooth wall is 

given by the Stokes length: 

(3.3.2) 

after G. G. Stokes (1851). Two typical laboratory conditions for experiments con­

ducted in this investigation are: (i) h1 = 22.8 cm, h2 = 7.6 cm, T = 8.0 sec; and (ii) 

h1 = 26.6 cm, h2 = 3.8 cm, T = 11.0 sec, with v = 0.01 cm2sec-1 and pz/ PI = 1.05. 

Let us define the relative boundary layer thickness as: 

(3.3.3) 

in which ho is a characteristic depth of the fluid. For the surface wave, ho should 

be taken as the total depth ( h1 + h2) because the overall fluid motion is very close 

to that of a homogeneous fluid of the same depth if the density variations are 

small. Then from (3.3.3) the relative boundary layer thicknesses in (i) and (ii) 

are respectively 0.0052 and 0.0062, which are very small. On the other hand, the 

interfacial wave motion is related to the density difference between the upper fluid 

and the lower fluid, and the depths h1 and hz. Therefore, a suitable ho for the 

internal wave should be the smaller depth hz. Then the relative boundary layer 

thicknesses for the internal waves, corresponding to (i) and (ii) are about 0.02 and 

0.05, respectively. 

The boundary layer thickness at the density interface cannot be specified for our 

experiments that use a miscible fluid. We shall show experimentally in § 5.2.5 that 

a thin transition region of continuous density variation between the upper fluid 

and the lower fluid reduces the energy dissipation at the interface substantially. 

Nevertheless, the approximation inherent in the analysis of the two-layer problem 

requires that the interfacial wave amplitude be much smaller than the thicknesses 

of the boundary layers adjacent to the oscillating interface. This condition will be 

discussed more fully in § 3.3.1. 
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The laminar boundary layer may become turbulent at a sufficiently large value 

of the Reynolds number. A Reynolds number Re, based on the maximum fluid 

velocity immediately outside the boundary layer U, and the Stokes length Dw, is 

written as Re = U Dw/ v. According to Jonnson (1978), the critical wave Reynolds 

number, Recrit, for transition to turbulent boundary layer flow on a smooth bottom 

Recrit ~ 563. (3.3.4) 

Assuming a two-layer fluid and small density difference, an estimate for U is given 

by the linear nondispersive theory as follows: 

(surface mode), (3.3.5a) 

(internal mode) (3.3.5b) 

where g1 = g(p2 - PI)/ P2, and H s, HJ are the surface wave height and the interfacial 

wave height, respectively. Notice that the internal wave has much smaller particle 

velocity than the surface wave because the phase speed of the internal wave is only 

a fraction of that of the surface wave. From (3.3.4) and (3.3.5), the conditions for 

the boundary layer to remain laminar are: 

Hs 563v 1 
---- < ----;::===== 
(h1 + h2) 8w jg(h1 + h2) 

(surface mode), (3.3.6a) 

(internal mode). (3.3.6b) 

Using (3.3.6) and the laboratory conditions stated previously, the relative wave 

height for the surface wave Hs/(h1 + h2)- must be less than 0.21 and 0.17 in (i) 

and (ii), respectively, for the boundary layer to remain laminar. These values of 

the relative wave height are much larger than the limits for small amplitude waves. 

The corresponding limits of the relative wave height for the internal wave HI/ h2 

are respectively 2.27 and 2.38, which are extremely large values of the wave height 
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parameter. Therefore, the boundary layer is expected to remain laminar whenever 

the conditions for small amplitude waves are fulfilled. These limiting conditions 

emphasize the differences in the effects of viscosity on the surface wave and the 

internal wave. 

3.3.1 Wave Damping in a Two-Layer Fluid 

To obtain a viscous correction to the two-layer inviscid model presented in§ 3.1, 

we follow a perturbation analysis similar to that used by Mei and Liu (1973) for a 

homogeneous fluid. Let (x, y, z) be a Cartesian coordinate system with z extending 

positive upwards from the undisturbed free surface. The bottom corresponds to 

z = -( h' + h) and the density interface is at z = -h'. Assuming small amplitude 

motion and laminar flow, the linearized momentum equations for the upper layer 

can be written as: 

Bu' 1 , µ' 2 , - = --VP +-Vu -gVz at p' p' 
(3.3.7) 

in which u' is the velocity vector ( u, v, w ), P' is the total pressure, p1 is the density 

of the upper fluid, µ' is the dynamic viscosity of the upper fluid, and g is the 

acceleration of gravity. In this analysis we distinguish the physical variables in 

the upper layer by prime; the subscripts (1 and 2) are reserved for use in the 

perturbation analysis. The velocity u1 can be split into a potential part VcI>' and a 

rotational part U', that is: 

u' = VcI>' + U' (3.3.8) 

where 

(3.3.9) 

and 

V-U'=O, U' = (U', V', W'). (3.3.10) 

The total pressure is written as: 

I I I I I acI>' 
p = -p gz + p = -p gz - p at (3.3.11) 
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where p1 is the dynamic pressure in the upper layer. Substitution of (3.3.8) and 

(3.3.11) into (3.3.7), and after using (3.3.9) and (3.3.10), we get: 

(3.3.12) 

in which v' = µ1 
/ p' is the kinematic viscosity. On the free surface, the linearized 

kinematic boundary condition is given by: 

8171 81/ -=-+W' at az on z = 0. (3.3.13) 

Assuming that the free surface is uncontaminated, the normal stress must vanish 

there, that is: 
Bif!' 2µ' 8w' 
at + 911

1 + -- = 0 
p' az 

as well as the tangential stresses: 

, (au' 8w') , (8v' 8w') µ -+- =µ -+- =0 az ax oz 8y 

on z=O (3.3.14) 

on z = 0. (3.3.15) 

On the solid surfaces S', the fluid velocities must satisfy the no-slip boundary con­

dition: 

V<I>' + U' = 0 on S'. (3.3.16) 

Equations (3.3. 7)-(3.3.10), (3.3.12), and (3.3.16) are the same for the lower 

layer. The total pressure in the lower layer is written as: 

I f ( I) I / / 8if! p = p gh - pg z + h + p = p gh - pg(z + h) - pat (3.3.17) 

where pis the dynamic pressure in the lower layer. The linearized kinematic bound­

ary conditions on the density interface are: 

a11 = a<I> + w 
at 8z 

on 

817 - 8if!' W' on at - az + 
Vif! + U = Vif!' + U' 

z = -h', 

z- -h' - ' 

on z = -h'. 

(3.3.18a) 

(3.3.18b) 

(3.3.18c) 
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The normal stress must be continuous at the density interface, that is: 

(
o<I? ) ow , (o<I?' ) , ow' P - + 917 + 2µ- = p - + 91] + 2µ -
8t oz 8t oz on z = -h' (3.3.19) 

and so are the tangential stresses: 

(ou ow) , (ou' ow') µ -+- =µ -+-oz ox oz ax on z = -h', (3.3.20a) 

( ov ow) , (ov' ow') µ -+- =µ -+-oz oy oz oy on z = -h'. (3.3.20b) 

In the perturbation analysis that follows, it is crucial to nondimensionalize each 

variable by a characteristic quantity. In studying the time-periodic progressive 

waves in a long channel, one usually defines the circular frequency a as given and 

real. Dimensionless variables may be defined as: 

(x*,y*,z*) = 4(x,y,z), 
a 

(u*,v*,w*) = aoa(u,v,w), 
* t t - -

* 

- ' a 

p = pgaop, 

ip* = ao9 <I?, 
a 

* 17 = ao17 

where the starred symbols represent the original dimensional variables and ao is 

a typical wave amplitude. Henceforth all the equations are dimensionless unless 

specifically stated otherwise. The scaling is such that all the previously defined 

dimensionless variables are of order unity. -The dimensionless equations are: 

u' = V<I>' + U', u = V<I> + U, 

V-U'=O, V-U=O, 

(3.3.21) 

(3.3.22) 

(3.3.23) 
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81> 
p=-at' 

au= c2v2u 
8t 

The kinematic boundary condition on the free surface is: 

8r/ _ 81>' W' 
8t - oz + on z = 0. 

The dynamic stress conditions on the free surface are given as follows: 

normal: 

01>1 
/ 

2 
120W1 

0 -+17+ c -= 
at az on z = 0, 

tangential: 

,2 (au' ow') ,2 (av' aw') c -+- =c -+- =0 oz ax oz oy on z = 0. 

The no-slip boundary condition in the upper layer is: 

on S'-S' - w, 

(3.3.24) 

(3.3.25) 

(3.3.26a) 

(3.3.26b) 

(3.3.27) 

(3.3.28) 

(3.3.29) 

(3.3.30) 

in which Sh, is the side wall. The linearized kinematic boundary conditions on the 

density interface are: 

and 

817 - 81> w 
at - az + 
817 _ 81>' W' 
at - az + 

on 

on 

on 

Z - -h' - ' 

z = -h' 

z = -h'. 

(3.3.31a) 

(3.3.31b) 

(3.3.32) 
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The equation for the continuity of normal stress at the interface is: 

81> 2 ow (01> 1 
,2 ow\ - + 17 + 2.s - = f3 - + 'f/ + 2.s - I at az \ at az J on (3.3.33) 

in which f3 = p1 
/ p. The tangential stresses are continuous at the interface, hence, 

we have: 

on 

on 

z = -h1, 

z = -h' 

(3.3.34a) 

(3.3.34b) 

in which a = µ1 
/ µ. The no-slip boundary condition in the lower layer is given by: 

on (3.3.35) 

where Sw is the side wall, and SB is the bottom. 

Combining (3.3.27) and (3.3.28), we have: 

on z = 0. (3.3.36) 

Substitution of (3.3.21) into (3.3.29) yields: 

,2 ( 2 a
2<1>1 aw') ,2au' _ 0 c OXOZ + ax + c OZ - ' (3.3.37a) 

,2 ( 2 a
2 

<1>' aw1
) ,2 av' _ 0 c oyoz + oy + c OZ - . (3.3.37b) 

Equation (3.3.37) indicates that oU' /oz and 8V1 /oz can be of 0(1). Because 

z = 0( c1
) in the free surface boundary layer, U' and V' are of 0( c1

). Then aw'/ 8 z = 

0(.s') from the continuity equation (equation 3.3.23), and this implies that W1 = 

0(.s'2 ). Equation (3.3.36) can be approximated by: 

a2<1>' 81>' W' 0( ,2) --+-+ = c at2 az on z = 0. (3.3.38) 

Mei and Liu (1973) pointed out that W' is of the same order as the other terms in 

(3.3.38) only in a thin strip of the meniscus boundary layer along the intersection 
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between the free surface and the side wall. Because the rotational part of the 

velocity varies quickly from [-81f>' /oz] z=O at the wall ( assumed vertical) to zero 

within a horizontal distance of 0( c') away from the wall, its global effect can only 

be felt at 0( c'). This point will be discussed more fully during the perturbation 

analysis. 

Inside the interfacial boundary layers, U, U', V, V' = 0(1). By continuity, W 

and W' are respectively of 0(c) and 0(c'). Hence (3.3.33) can be approximated by: 

on z = -h' (3.3.39) 

in which (3.3.31a) and (3.3.3lb) have been used. Again, W and W' are of the 

same order as the other terms only within the interfacial meniscus boundary layers. 

Substituting (3.3.21) into (3.3.34a) and (3.3.34b ), we get: 

a2 1f> au aw ( a2 lf>' au' aw') 2 axaz + oz + ox = a 
2 8x8z + oz + ax on z=-h',(3.3.40a) 

2--+-+-=a 2--+-+--o21f> av aw ( 8 21f>' av' aw') 
oyoz oz oy oyoz oz oy on z = -h'. (3.3.40b) 

Notice that in (3.3.40a), 821f>/8x8z = 0(1), au /oz= O(1/c), and 8W /ox= 0(e). 

We recall that in obtaining the dimensionless equations, each physical variable was 

scaled by a characteristic quantity, so that all the previously defined dimensionless 

variables are of the order unity. However, this scaling was based on the inviscid wave 

theory because the irrotational component of the fluid velocity dominates the flow 

outside the boundary layer. Inside a boundary layer, the tangential components of 

U and Vlf> are comparable. The rotational part introduces a much smaller boundary 

layer length scale into the problem. In particular, the tangential component of U 

varies rapidly within the dimensionless distance 0( e ). As we shall see later in the 

perturbation analysis, the solutions are developed systematically in powers of a 

boundary layer parameter, where the terms of different orders are separated. It is 

convenient to use local coordinates when working with the boundary layer equations. 
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Figure 3.3.1. Boundary layer coordinate system. 

This is shown in figure 3.3.1; the unit directional vectors XN, XT 1 , and XT2 form a 

local Cartesian coordinate system, with XN being in the normal direction pointing 

into the fluid. The normal coordinate x N is scaled as follows: 

so that U' = U'(xT,e',t) (3.3.41a) 

and 

so that U = U(xT, ~' t). (3.3.4lb) 

In terms of the local coordinate system the continuity equation becomes: 

(3.3.42a) 

(3.3.42b) 
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In studying standing waves in a bounded region the wave number k is usually 

given and is real, then the appropriate dimensionless variables are given by: 

(u*,v*,w*) = ao(gk)112(u,v,w), 

(x*,y*,z*) = ½(x,y,z), 

* 1 
t = (gk)l/2t, 

p* = pgaop, 

cp* = ao(gk )1/2 <P 
k ' 

* T/ = aory. 

Besides (3.3.26a) and (3.3.26b), all the dimensionless equations previously stated 

remain unchanged. With this scaling, the new boundary layer parameters are given 

by: 

k 11/2 
I V 

f, - --,-

- (gk)1/4' 
(3.3.43a) 

kvl/2 
E,---,-

- (gk)1/4" 
(3.3.43b) 

It is appropriate here to examine the validity of the present analysis. The 

inherent assumption of the linear wave theory requires that the wave amplitude 

is small compared to a characteristic depth of the fluid, so that the boundary 

conditions can be linearized. In formulating this problem, we have in addition 

replaced the viscous layers adjacent to the oscillating free surface and the density 

interface by boundary layers adjacent to z = 0 and z = -h'. This approximation 

is legitimate provided that the wave amplitudes are so small that the oscillating 

surfaces do not pass out of the viscous regions. Hence, it is necessary that: 

(3.3.44a) 

(3.3.44b) 
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where Hs, H1 are the surface wave height and the interfacial wave height, respec­

tively, and 8s, 81 are the respective thicknesses of the boundary layers. Thus, it 

appears at first sight that (3.3.44a) and (3.3.44b) would impose a severe restriction 

on the usefulness of the theory. However, the boundary layer method requires that 

the thickness of the boundary layer be very thin compared to a characteristic depth 

of the fluid (see equation 3.3.3), otherwise the overall motion of the fluid cannot 

be described by the inviscid theory alone, and viscosity becomes important in the 

body of the fluid. Therefore, the basic assumptions inherent in the present analysis 

already imply that the wave amplitude and the thickness of the boundary layer are 

both small compared to a characteristic fluid depth. It follows that ( 3.3.44a) and 

(3.3.44b) may not be unduly restrictive. A similar argument has been put forward 

by Johns (1968). 

3.3.1.1 Plane Progressive Waves in a Uniform Rectangular Channel 

A two-layer fluid of total depth ( h' + h) is contained in a long rectangular 

channel of width 2b. The upper fluid is of depth h' and of density p'. The lower 

fluid is of depth h and of density p. Let ( x, y, z) be a Cartesian coordinate system 

with the x axis on the undisturbed free surface coinciding with the channel axis 

and z measured positive upwards (figure 3.3.2). The side walls of the rectangular 

channel are located at y = b and y = -b. The wave motion is assumed to be 

two-dimensional. We introduce the following perturbation expansions: 

<I>= [</>o(y,z) +l</>1(y,i) + O(s2)]ei(kx-t), 

U = [qo(xr, ~) + lq1(xr, ~) + O(s2)]ei(kx-t), 

k = ko + lk1 + O(s2
) 

(3.3.45a) 

(3.3.45b) 

(3.3.45c) 

wherein£ is a boundary layer parameter, and the subscripts (0, 1, 2, ... ) denote the 
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Figure 3.3.2. Schematic drawing of surface and interfacial waves advancing down a 
uniform rectangular channel that is partially filled with a two-layer fluid. 

order of approximation. From (3.3.26a) and (3.3.26b), we have: 

E 

Hence, we may assume that: 

µ P = 0(1). 
( 

1 ) 1/2 

µp' 

O(c') = O(c) = O("E). (3.3.46) 

Let us examine (3.3.45) for a moment, it is seen that the wave number k in the 

exponent of the velocity potential <I> and t"he rotational part of the fluid velocity 

U is expanded in terms of the boundary layer parameter E as shown in (3.3.45c). 

In the following analysis, we determine k to O("f) and show that ko represents the 

determined wave number based on the inviscid theory and is real, and the first order 

term "fk1 is complex; the damping rate is given by "fk1. It is seen in (3.3.45a) and 
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(3.3.45b) that the real part of the damping rate contributes a viscous correction of 

O(l) to the inviscid wave number ko, whereas the imaginary part of the damping rate 

gives the rate of amplitude attenuation. When (3.3.45a )-( 4.3.45c) are substituted 

into the dimensionless equations and the terms of different orders are separated, we 

obtain the following problems: 

(1) Inviscid solution of O(i0
): 

d2 </>ci - k2 -tJ 
dz2 - O'PO, 

d2 </>o 2 
dz2 = ko</>o, 

d</>~ - ¢>~ = 0 
dz 

-h' < z < 0, 

-(h'+h)<z<-h', 

on z = 0, 

d</>o _ <l>o = /3 (d</>ci _ <t>~) 
dz dz 

on z = -h', 

d</>o _ d¢>~ 
dz - dz 

d</>o = O, 
dz 

on 

on z = -h' 
' 

z=-(h'+h). 

(3.3.47a) 

(3.3.47b) 

(3.3.47c) 

(3.3.47d) 

(3.3.47e) 

(3.3.47!) 

The inviscid problem has been treated in § 3.1. The solutions, in dimensionless 

form, are given by: 

</>~(z) = C'(ko coshkoz + sinhk0z), 

,1, ( ) = C'(coshkoh' - kosinhkoh') hk ( h' h) 
'f'O Z • h k h cos o Z + + sm o 

(3.3.48a) 

(3.3.48b) 

in which C' is an arbitrary constant. The wave number ko is given by the dispersion 

relation: 

( coth koh coth koh' + /3) - ko( coth koh + coth koh') + k5(l - /3) = 0. 

(2) Interfacial boundary layer correction of O(i0): 

t = z + h'' 
c' 

(3.3.49) 

(3.3.50a) 
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z + h' 

c 

e--+ oo, 

Uo --+ 0, e--+ oo, 

iko<Po + Uo = iko</>~ + Ub on z = -h', 

dUo dUti 
-=a-
dz dz 

on z = -h'. 

Equations (3.3.50a)-(3.3.50d) imply: 

Ub1( e') = D' e -72(1-i)(, 

Uo1(0 = De -72(1-i)t 

(3.3.50b) 

(3.3.50c) 

(3.3.50d) 

(3.3.50e) 

(3.3.50!) 

(3.3.5la) 

(3.3.5lb) 

in which D' and Dare unknown constants, and the subscript I denotes the density 

interface. Substitution of (3.3.5la) and (3.3.5lb) into (3.3.50e) and (3.3.50!) yields: 

D' = iko[</>o(-h') - </>~(-h')] + D, 

D D' 
-=-a-. 
c c1 

Upon using (3.3.47d) and (3.3.47e), we obtain: 

(3.3.52a) 

(3.3.52b) 

(3.3.53a) 

(3.3.53b) 

It is noted that the velocity components U, V, and W were originally used to 

denote the rotational part of the fluid vel9city U. For simplicity, in (3.3.50) and 

(3.3.51) we have omitted the exponential term ei(kx-t) and used the same symbols 

to denote the velocity components of q that are independent of x and t; this is 

implied in the following analysis unless specifically stated otherwise. 
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(3) Bottom and side-wall boundary layer correction of order O(i0
): 

o2Uo . l = z + (h' + h) and l=b~y, (3.3.54a) oe2 = -zUo, c c 

o2Wo ·w, l = b~y, (3.3.54b) oe2 = -z o, c 

Uo = -ikoc/Jo on e = o, (3.3.54c) 

Wo = - de/Jo 
dz 

on e = o, (3.3.54d) 

Uo, Wo-+ 0, e-+ oo. (3.3.54e) 

This is the classical Stokes' problem for unsteady flow of a semi-infinite fluid 

caused by a plate oscillating in its own plane (see, for example, Yih, 1977). The 

solutions are given by: 

• 1 - 1 (1-i)e z+(h' +h) 
UoB(O = -zkoc/Jo(-(h + h))e 72 , l = ----, (3.3.55a) 

c 
-~(1-i)e 

Uow(z, l) = -ikoc/Jo(z)e v 2 , 
b~y l = -, (3.3.55b) 

c 

l=b~y 
c 

(3.3.55c) 

in which the subscripts Band W denote the bottom and the side wall, respectively. 

Equations (3.3.55b) and (3.3.55c) are the same in the upper layer. 

(4) Inviscid correction of order 0(£°1 ): 

02fPi 02fPi 2 / / v' (3.3.56a) oy2 + oz2 = koc/J1 + 2kok1 fPo ln 
' 

02fPI 02fPI 2 
7fT + 7fT = k0 cp1 + 2kok1c/Jo y z . 

ln V, (3.3.56b) 

oc/Ji _ cp~ = _ ~6 
OZ E 

on S~MW' (3.3.56c) 

OfPI ( OfPi , ') - - fPI + W1 = f3 - - fPI + W1 
oz oz 

on S1, (3.3.56d) 

ocp1 _ fPI + ~o = /3 ( OfPi _ cp~ + ~6) 
OZ E OZ E 

on S1MW' (3.3.56e) 
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S'F(FREE SURFACE) 

I- - - - - - - - - - - - - - - - - - - - - - ~ 

ii' (UPPER FLUID) 
I 

S1 (DENSITY INTERFACE) : 
1--------- ____________ _J 
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! ______________________ I 
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MW 
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MW 

Sw (SIDE WALL) 

Figure 3.3.3. Division of a two-layer viscous fluid into regions of the boundary layers 
and the inviscid cores. The dash lines denote the interface between the boundary 
layers and the inviscid cores. 

8</>1 W 8</>i W' -+ 1=-+ 1 8z 8z 
on S1, (3.3.56!) 

8¢>1 Wo 8</>i Wci 
S1MW' (3.3.56g) -+-=-+- on 

8z "f 8z °E: 

n · V </>i = - n · q~ on Sw, (3.3.56h) 

n · V </>1 = - n · q1 on Sw+SB (3.3.56i) 

wherein V' is the body of the upper fluid, Vis the body of the lower fluid, Si is the 

density interface, Sw is the side wall of the upper layer, Sw is the side wall of the 

lower layer, SB is the bottom, and SFMw' S1Mw represent an area of O(°E) of the 

free surface meniscus boundary layer and of the interfacial meniscus boundary layer, 

respectively. A schematic drawing of a cross section of the rectangular channel with 

the various regions of interest is shown in figure 3.3.3. 
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Let us examine (3.3.56d) and (3.3.56e) for a moment. These two equations 

apply in the region of the density interface. Inside the interfacial boundary layers, 

the tangential components of U and VcI> are comparable, and are both of the order 

unity. From continuity consideration, the normal component W = O(z), and this is 

effective over the entire density interface Sr. When the terms of O(z) are collected 

from (3.3.39) after substitution of (3.3.45), equation (3.3.56d) is obtained. In the 

neighborhood along the intersection between the interface and the side wall, W is 

of the order unity, but it acts only over a narrow strip of width O(t), so that its 

integrated effect is of significance only at O(l). Mathematically, inside the meniscus 

boundary layer, W is treated as a singular concentrated forcing function. That is, 

by expanding: 

(3.3.57) 

over a strip of width O(e). When (3.3.57) is substituted into (3.3.39) and the 

terms of O(l) are collected, equation (3.3.56e) is obtained. Equations (3.3.56c) and 

(3.3.56g) are obtained in the same manner. 

Now let us find the unknown k1. If ef>~ * is the complex conjugate of¢>~, ¢>~ * also 

satisfies (3.3.47) and (3.3.56). Applying Green's formula to</>~* and <Pi, we have: 

r (<t>' *v2 ¢' - ¢' v2 ,.J.,, *) dV = r ().,' * oc/Ji - ).,' 8¢~ *) ds Jv, 0 l 1 'f'O }51 'f'O on 'fl on (3.3.58) 

in which S' = S'p + S'pMW + Sw + S1 + SrMw, where S'p is the free surface; n is 

a unit normal vector pointing away from the fluid; \72 cp1 = 82 cp1 
/ 8y2 + 82 cp' / 8z2• 

Upon using (3.3.47) and (3.3.56), equation (3.3.58) becomes: 

2kok1 f lc/J~l 2dV = - f cp~ * ~ 6 dS - f cp~ *[n · q~]dS Jv, 1s1 c 1s1 

FMW W 

f (<t>~ * oc/Ji - <Pi 8¢>~ *) dS. 
+ 1s1+S1Mw On an 

(3.3.59) 

In the lower layer, Green's formula yields: 

(3.3.60) 
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where S = S1 + S1Mw + Sw + SB. Again, use of (3.3.47) and (3.3.56) yields: 

2kok1 f l</>ol 2dV = - f </>~[n. q1)dS + { (<1>~aa¢il - </>1 oa</Jo) dS. 
lv lsB+sw ls1+s1Mw n n 

(3.3.61) 

Notice that in (3.3.59) and (3.3.61) k1 is given in terms of the unknowns q~, </>i, and 

q 1 , ¢1, respectively. The rotational components of the fluid velocities q~ and Q1 

can be found from the continuity equation. Integration of (3.3.42a) and (3.3.42b) 

yields: 

, c:' Je (·k u' + au1r-) dt:' n. Q1 = -=- z O -a ', ' 
coo XT 0 

(3.3.62a) 

{ 

n -q1 = ~ j (ikoU + :~;) 
0 

d(. (3.3.62b) 

To eliminate ¢i1 and </J1 from k1, multiply (3.3.59) by /3 and add the equation 

obtained to (3.3.61), then write k1 in the form: 

Upon using the boundary conditions at the interface given in (3.3.47) and (3.3.56), 

the terms involving </>i and </J1 cancel out between the first two integrals inside the 

curly bracket. Hence, we obtain: 

(3.3.64) 

where 

(3.3.65a) 



The common denominator r · IC'l2 is given by: 

r = l~l2 {11 fv, 1¢~1 2
dV + fv 1¢ol 2

dV} 

4ko b { Jo 1 2 -Jh' 2 } = IC'l2 /1 !<Pol dz+ l<Pol dz 
-h' -(h'+h) 

(3.3.65b) 

(3.3.65c) 

(3.3.65d) 

(3.3.65e) 

(3.3.65!) 

(3.3.65g) 

(3.3.65h) 

= b{fi (k5(sinh2koh' + 2koh') + 2ko(l - cosh2koh') + (sinh2koh' - 2koh')) 

+ (coshkoh' -~o sinhkoh')2 (sinh2koh + 2koh)}. (3.3.66) 
sinh koh 

Now let us evaluate the terms in (3.3.64). For the first term and the second term the 

integration over S1 is taken over an area of unit length and of width 2b at z = -h'. 

From (3.3.65a) and (3.3.65b ), we get: 

2b [ , * , ] 
kl/, = r. IC'l2 l'<Po W1 z=-h'' 

2b [ * ] 
kII = r. IC'l2 ¢0W1 z=-h'. 

From (3.3.62a) and (3.3.62b ), we obtain: 

f.' I 

[w{Jsl = -; J ikoU~1de' 
00 

(1 - i) c:' k D' - ~(1-i)e' = - v'2 € 0 e v2 

(3.3.67a) 

(3.3.67b) 

(3.3.68a) 
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€ 

[W1]s1 = ~ j ik0Uo1de 
00 

(1 - i) ck D --k(1-i)€ 
= J2 -g o e v

2 

in which we have used (3.3.5la) and (3.3.51b). Direct substitution yields: 

-k r,::2(1 ·)r-11k2b (/3-l) 
c !JI = - V Z + i c O 1 + ( a/3)1/2 

· (cothkoh - ko)(ko coshkoh' - sinhkoh') 

· ( cosh koh' - ko sinh koh') 

and 

- In . -1 2 (,8-1) (a)l/2 
c:k11 =v 2(1 + z )r c:k0b 1 + ( a,B)I/z /3 

· ( coth koh - ko) coth koh 

· ( cosh koh' - ko sinh koh') 2
. 

(3.3.68b) 

(3.3.69a) 

(3.3.69b) 

For the third term and the fourth term in (3.3.64), the integration over S1Mw is 

taken over a thin strip of width O(e) of the interfacial meniscus boundary layers at 

y =bandy= -b. From (3.3.65c) and (3.3.65d), we obtain: 

00 [ , l 2 '* Wow , , 
k11.Mw = r. IC'l2 / /3 <fao ~ C de' 

o z=-h' 

(3.3.70a) 

2 /
00

[ * Wow] kuMw = -r IC'l2 </>o -_- c:d( 
· c z=-W 

0 

(3.3.70b) 

Direct substitution yields: 

eku, =V2(1 + i)r-1c:' f3ko(ko cosh koh' - sinh koh') 
MW 

· ( ko sinh koh' - cosh koh'), (3.3.7la) 

ekuMw =V2(1 + i)r-1c:ko(ko sinh koh' - cosh koh')2 coth koh. (3.3.7lb) 
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Similarly, equation (3.3.65e) gives: 

-k 2 /oo/3 [..1..1 * W~w] 'de' 
C lFMw = r. IC'l2 'f'O € C ',, 

o z=O 

= v'2(1 + i)r-1c:'J3k5. (3.3. 72) 

For the side-wall boundary layer, substitution of (3.3.55b) and (3.3.55c) into (3.3.62a) 

yields: 

(3.3.73) 

where the last line is due to (3.3.47a). Equation (3.3.73) also holds in the lower 

layer, hence, we have: 

On the channel bottom, equations (3.3.55a) and (3.3.62b) give: 

! 

[n · Q1]sB = ~ j ikoUoBdt 
00 

From (3.3.65h), we get: 

'Ek1B = r. ~~112 [e<!>~(-h' - h)[n · q1]sB] 

= v'2(l + i)r-Ic:k5/ cosh koh~ - ;o sinh koh')
2 

• smh koh 

In dimensional form, these damping rates are given by: 

( 
') 1/2 ( ') ( 1/2 ) ekll, = - v'2(1 + i)r-1 k5b !.:_ 1 - E_ pv l/2 

a p pvI/2 + p'v' 

( 
gko) ( . I gko ') · coth koh - a 2 s1nh koh - a 2 cosh koh 

(3.3.74a) 

(3.3.74b) 

(3.3.75) 

(3.3.76) 
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. (coshkoh' - g:zo sinhkoh'), (3.3.77a) 

°EkII = - v'2(1 + i)r-1 k5b (!:.) 112 
(1 - p') ( /v'112 

112 ) 
u p pvl 2 + p' v' 

( 
gko) ( 1 gko . ')

2 

· coth koh - u2 cosh k0h - u2 s1nh koh coth koh, 

(3.3.77b) 

€k11;,,w =v°2( I+ i)r-1 ko (: r 2 

( ~) (sinh ko h' - ::',' cosh koh') 

· (coshkoh' - ~ 2° sinhkoh'), (3.3.77c) 

1/2 ( k ) 
2 

°EkIIMw =h(l + i)I'-1 ko (~) coshkoh' - gu2° sinhkoh' cothkoh, 

(3.3.77d) 

€k1FMw =v°2(1 + i)r-l ( g:n ( :) l/2 
(~), (3.3.77e) 

(3.3.77!) 

(3.3.77g) 

where 

""tk1w1 =0, 

""tk1w =0, 

sk1B =v'2(1 + i)r-1 k5b (v) 112 
. ; 

u smh koh 

· ( cosh ko h' - j 0 
sinh ko h') 

2 

r =bt ( ( 
9
:,

0 
)' ( sinh 2k0 h' + 2k0h') + 2 ( 9:,

0
) (1 - cosh 2k0h') 

+ (sinh2koh' - 2koh')) + (coshkoh' - 9
:,

0 
sinhkoh') 

2 

. (sinh 2koh + 2koh) }· 
sinh2 koh 

(3.3.77h) 

Mei and Liu (1973) found in a similar manner, the complex damping rate for time-

periodic progressive free surface waves in a rectangular channel. Their result, in 

dimensional form, is given by: 

k ( .) ko ( v ) 
1

/
2 

( 2kob + sinh 2koh) c1= l+z- -
b 2u 2koh + sinh2koh 

(3.3.78) 
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wherein h is the depth of the homogeneous fluid, and 2b is the width of the rectan­

gular channel. The attenuation rate, which is the imaginary part of ck1, had been 

found by Hunt (1957). As a check on the results in (3.3.77), we consider two limits 

in which (3.3.77) reduces to the damping rates for a homogeneous fluid. These 

limits are: (i) p1 = 0, (v' /v) 112 = 0(1); (ii) p1 = p, v' = v. In case (i), it is easy to 

show that (3.3.77) reduces to: 

cku, = 0, 
MW 

.k0 (v)1
/

2
( sinh2k0 h ) 

ckuMw = (l + z),; 2a 2koh + sinh2koh ' 

ck1FMw = 0, 

ck1w = 0, 

. ko ( v ) 
1

/
2 

( 2kob ) 
ckrn=(l+z),; 2a 2koh+sinh2koh · 

(3.3.79a) 

(3.3.79b) 

(3.3. 79c) 

(3.3.79d) 

(3.3. 79e) 

(3.3.79!) 

Notice that cku, and cku are excluded from (3.3.79). This is because the results 

in (3.3.77) do not strictly apply in this limit. In particular, equations (3.3.50), 

(3.3.56d), and (3.3.56!) are not applicable to an air-water interface. Besides this, 

the present analysis remains valid, provided that the expansion parameter l is of the 

same order in both layers. It can be seen in (3.3.46) that this condition is fulfilled; 

though the density of air is much less than the density of water, (v' /v) 112 = 0(1) 

for air and water. 

In case (ii), we have: 

(3.3.80a) 

cku = 0, (3.3.80b) 

. ko ( v )
112 

( sinh2koh ) 
ckukw = -(l + z),; 2a 2k

0
(h' + h) + sinh2k

0
(h' + h) ,(3-3,SOc) 

. k0 (v)1
/

2
( sinh2k0 h ) 

ckuMw = (l + z),; 2a 2ko(h' + h) + sinh2ko(h' + h) ' (3-3,SOd) 
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. ko ( v ) 112 
( sinh2ko(h' + h) ) 

ckiFMw = (l + i)b 2a 2ko(h' + h) + sinh2k0(h' + h) ' (3-3·80e) 

ck1w = 0, 

.ko(v)
1
1

2
( 2kob ) 

ckiB = (l + i)b 2a 2ko(h' + h) + sinh2ko(h' + h) . 

(3.3.80!) 

(3.3.80g) 

(3.3.80h) 

Clearly, the total damping rates given by (3.3.78), (3.3.79), and (3.3.80) are the 

same. 

The mechanism of energy transfer in a homogeneous fluid has been discussed 

in detail by Mei and Liu (1973), similar conclusions may be drawn for a two-layer 

fluid. It can be shown that the imaginary parts of the integrals in the numerator 

of (3.3.63) represent the average rates of work being done by the pressure force on 

the interface between the boundary layers and the fluid outside the boundary lay­

ers. Notice that in (3.3.65) only the rotational velocity components normal to the 

boundary layers contribute to the work done. This is because the potential part of 

the velocity normal to the boundary layer is out of phase with the dynamic pressure 

to O(e). Moreover, the rotational velocity components acting normal to the side­

wall boundary layers (y = ±b) are zero to O(l) owing to the two-dimensional nature 

of this problem ( see equation 3.3. 73). Hence, there is no energy exchange through 

the interface between the side-wall boundary layers and the inviscid core. Indeed, 

Ursell (1952) found that the rate of energy dissipation in the side-wall boundary 

layers could not be balanced by the rate of work done by the pressure force from the 

main fluid body on the outer edge of the side-wall boundary layers. Mei and Liu 

(1973) showed by energy balance that the energy dissipated in the side-wall bound­

ary layers originates from the inviscid core and is fed into the meniscus boundary 

layers by the pressure force, and then transmitted essentially undiminished to the 

side-wall boundary layers. This result is clearly shown in (3.3. 79b ); the imaginary 

part of ckuMw represents the rate of work done by the pressure force on the inter-
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face between the meniscus boundary layer and the side-wall boundary layer. Thus, 

the meniscus boundary layer serves as a "gateway" of energy fl.ow from waves to 

the side-wall boundary layer where it is then dissipated. For a detailed description 

of the mechanism of energy transfer in the neighborhood of the meniscus boundary 

layer, the readers are referred to Mei and Liu (1973). It is also seen in (3.3.79!) 

that the energy dissipated in the bottom boundary layer is obtained from work be­

ing done by the pressure force of the inviscid core on the outer edge of the bottom 

boundary layer. 

When the densities in the upper and the lower layers are equal, that is, p1 = p, 

the two-layer fluid becomes a homogeneous fluid. The results in (3.3.80) are in 

agreement with the above discussion. Equations (3.3.80c)-(3.3.80e) show that the 

damping rates c:kIIkw and c:kuMw are equal in magnitude but have opposite signs, 

and are both less than c: k1 FMw. This is because part of the wave energy fed into the 

side-wall boundary layer through the surface meniscus is dissipated in the boundary 

layer above z = -h', at z = -h' the remaining energy is fed from above through 

a narrow strip of width 0( c:) of the side-wall boundary layer by the pressure force 

into the part of the side-wall boundary layer between z = -( h' + h) and z = -h' 

where it is then dissipated. 

In this section, an analytical treatment of wave damping in a two-layer fluid 

is presented based on linear theory. We assume that the entire loss of energy of 

waves is localized in the boundary layers adjacent to the solid surfaces and at the 

density interface, and the fl.ow is laminar within the boundary layers. The damping 

rates for plane progressive waves in a two-layer fluid is obtained by expanding the 

velocity potential and the rotational part of the fluid velocity in terms of a boundary 

layer parameter. The results are used in § 3.3.3 to incorporate the effects of wave 

damping into the inviscid two-layer model treated in§ 3.1. 
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3.3.1.2 Standing Waves in a Rectangular Basin 

A two-layer fluid of total depth ( h' + h) is contained in a rectangular basin of 

length f and of width 2b. Let the physical variables in the upper layer be distin­

guished by primes. The upper layer is of depth h' and the lower layer is of depth h. 

The densities of the upper fluid and of the lower fluid are p' and p, respectively. A 

Cartesian coordinate system is defined as shown in figure 3.3.4. The (x, y) plane is 

taken at the undisturbed free surface with z measured positive upwards. The walls 

of the basin are located at x = 0, x = £, y = -b, and y = b. The wave motion in 

the basin is assumed to be two-dimensional so that no cross-waves are generated in 

the y direction. The perturbation analysis for the standing waves is virtually iden­

tical to that of the progressive waves presented in § 3.3.1.1. In this case, the wave 

number k is assumed to be real and fixed. The following perturbation expansions 

are introduced: 

1> = [</>o(x,y,z) +l</>1(x,y,z) + O(l2)]e-iut, 

U = [qo(XT, ~) + °Eq1(XT, 0 + O(l2)]e-iut, 

(3.3.81a) 

(3.3.81b) 

(3.3.81c) 

When (3.3.8la)-(3.3.8lc) are substituted into the dimensionless equations and 

the orders are separated, we obtain the following problems: 

(1) Inviscid solution of O("t0): 

-h' < z < 0, 

-(h'+h)<z<-h', 

on z = 0, 

on z = -h', 

(3.3.82a) 

(3.3.82b) 

(3.3.82c) 

(3.3.82d) 



- 96 -

z 

y 

WATER SURFACE 

DENSITY 
INTERFACE 

INTER FACIAL 
STANDING WAVE 

Figure 3.3.4. Schematic drawing of a standing interfacial wave in a rectangular 
basin that is partially filled with a two-layer fluid. 

on 

and 

on 

and 

The solutions are: 

on z = -h', 

x = 0, -h' < z < 0 

x = £, -h' < z < 0, 

x = 0 - ( h' + h) < z < -h' 

x=R, -(h'+h)<z<-h', 

on z=-(h'+h). 

</>~ ( x, z) = C' ( cosh z + 0"5 sinh z) cos x, 

(3.3.82e) 

(3.3.82!) 

(3.3.82g) 

(3.3.82h) 

(3.3.83a) 
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, ( a5 cosh h' - sinh h') , 
</>o ( x, z) = C . h h cosh( z + h + h) cos x, 

sm 

(n = 1,2, ... ) 

(3.3.83b) 

(3.3.83c) 

in which C' is an arbitrary constant. Note that all the physical quantities with the 

dimension of length have been scaled by the wave number k. The circular frequency 

ao is given by the dispersion relation: 

at( coth h coth h' + /3) - a5( coth h + coth h') + (1 - /3) = 0. 

(2) Interfacial boundary layer correction of O(r0): 

The solutions are: 

o2ui . ' ot2 = -zaoUo, 

o2Uo . 
oe = -zaoUo, 

Ub -+O, 

Uo -+O, 

c' = z + h' 
(,, I ' 

t-+ oo, 

e- oo, 

c 

z + h' 
c 

o</Jo + U,o = o</J'o + rrl h' 
ox ox v o on z = - ' 

oUo oUb 
-=a- on z=-h'. 
oz oz 

UI ( t:') - D' -~(I-i)€' OJ x,-, - e , 

(3.3.84) 

(3.3.85a) 

(3.3.85b) 

(3.3.85c) 

(3.3.85d) 

(3.3.85e) 

(3.3.85!) 

(3.3.86a) 

(3.3.86b) 

where the subscript I denotes the density _interface, and D', D are functions of x 

given by: 

, 1 [o</Jo 1 o2</Jo l D(x)=-(/3-1) -- 2 - +D, 
/3 ox a0 oxoz z=-h' 

(3.3.87a) 

1 (a) 112 
[oqy0 1 o2

<jJ0 l 
D(x) = -1 + (a/3)1/2 (3 (/3- l) ox - a5 oxoz z=-h' · 

(3.3.87b) 
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(3) Bottom and side-wall boundary layer correction of O(s0
): 

The solutions are: 

on 

and 

o2Wo . W. ae = -iao o, on 

and 

and 

Uo = - 8¢0 
ax on 

Wo = - 8¢0 
oz on 

e = z + h' + h 
c 

e = b~y, 
c 

X 
e=-

c 
R-x 

e=-
c 

e = b~y, 
c 

e = o, 

e = o, 

Uo, Wo - 0, e- oo. 

(3.3.88a) 

(3.3.88b) 

(3.3.88c) 

(3.3.88d) 

(3.3.88e) 

z + (h' + h) e = ----'---'-, 
c 

(3.3.89a) 

(3.3.89b) 

(3.3.89c) 

wherein the subscripts W and B, respectively, denote the side wall and the bottom. 

Equations (3.3.89b) and (3.3.89c) also hold in the upper layer. 
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( 4) Inviscid correction of O(I1 ): 

'v2</>i = 0 1n V', (3.3.90a) 

'v2</>1 = 0 m V, (3.3.90b) 

O<Pi 2 ' I W6 
SpMW' (3.3.90c) - - a0</>1 - 2aoa1</>o +--=-- = 0 on 

OZ E 

B</>1 2,1.. ,I.. w 13 (B</>i 2,1.., 2 ,1..' w') oz - ao'f'I - 2aoal'f'0 + l = oz - O"Q'f'l - O"QO"I'f'O + l 

on S1, (3.3.90d) 

8</>1 W 8</>i W' -+ 1=-+ 1 oz oz on S1, (3.3.90!) 

8</>1 Wo 8</>i W6 
S1MW' (3.3.90g) -+-=-+- on oz "l oz l 

n•'v</>i=-n•q~ on Sw, (3.3.90h) 

n · 'v <PI = -n · q1 on Sw+SB. (3.3.90i) 

Let </>'o * denote the complex conjugate of <f>'o. Applying Green's formula to </>'o * and 

<Pi, we have: 

(3.3.91) 

where S' =Sp+ Sp,MW + Sw + S1 + S1MW1 and n is a unit normal vector pointing 

away from the fluid. Upon using (3.3.82) and (3.3.90), equation (3.3.91) becomes: 

(3.3.92) 
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In the lower layer, Green's formula gives: 

(3.3.93) 

where S = S1 + S1Mw + Sw + Sn. Upon using (3.3.82) and (3.3.90), we obtain: 

0 = I <Po* [n. q1]dS - / (<Po* aa<PI - <PI aa<Po *) dS. 
lsw+SB ls1+s1Mw n n 

(3.3.94) 

The unknowns q~, q 1 in (3.3.92), (3.3.94) are found from the continuity equation. 

Integration of (3.3.42a) and (3.3.42b) yields: 

n. q~ =~ft.' (8Uh + 8Uh) de', 
c 

00 
8xr1 8xr2 0 

(3.3.95a) 

~ 

- C / (8Ur1 8Ur2) di: n · q1 - - -- + -- c,. 
Z 

00 
8xr1 8xr2 0 

(3.3.95b) 

Multipying (3.3.92) by /3 and adding the equations obtained to (3.3.94), we get: 

2aoa1 /3 { I </J~ 12 dS = - /3 { (</>~ * B</>i - <Pi B</>~ *) dS 
lsF ls1+s1Mw 8n 8n 

- { (<1>0 * 8¢1 - c/J1 8¢0) dS + (3 f </>~ * ~6 dS 
1s1+s1Mw 8n 8n lsFMw c: 

+ f3 f ¢~ *[n. q~]dS + f </Jo *[n · q 1]dS. (3.3.96) 
Js'w lsw+Sn 

After applying the boundary conditions at the interface given in (3.3.82) and (3.3.90), 

the terms involving </>i and </>1 are eliminated from the first two integrals on the right 

hand side of (3.3.96), and we obtain a1 immediately as: 

where 

(3 .. 3.97) 

(3.3.98a) 

(3.3.98b) 

(3.3.98c) 
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r = 2a-o {/3 r 11>' 12as - (/3-1) r 1a1>012 as} 
Jc1

1
2 ls'p O 0'6 lsr az 

= 40"ob {/31' 1,1.J 12 d - (/3- l) 1' 18¢>012 d } 
IC!J2 'f'O z=O X 0'4 8z X 

o O o z=-h' 

{ 
(1 - /3) ( , J 2 /)2 1 = 2a-obf f3 + 0'

6 
smh h - O"o cosh h ) 

(3.3.98d) 

(3.3.98e) 

(3.3.98!) 

(3.3.98g) 

(3.3.98h) 

(3.3.99) 

in which (3.3.83a) and (3.3.83b) have been used. Now let us evaluate the terms in 

(3.3.97). For the first term and the second term the integration over S1 is taken 

over the plane area of the density interface, that is: 

2b r' [ , * ,] 
O'IJI = -r. 1c112 Jo f3 ef>o WI z=-h' dx, 

2b rt 
O'IJ = r. 1c112 lo [¢>0W1lz=-h' dx. 

(3.3.lOOa) 

(3.3.lOOb) 

The induced velocities normal to interfacial boundary layers are obtained using 

(3.3.95a) and (3.3.95b ): 

I f.' au:1 
[W I] - -~ 1 _..sg_dtl 

l z=-h' - e 8x " , (3.3.lOla) 
00 

(3.3.lOlb) 
00 

From (3.3.83), (3.3.86), (3.3.87), (3.3.100), and (3.3.101), we obtain: 

_ (1 + i) ,r-I bf (l - /3) 
E:O'IJI = r,r=- c 2 / 

v 20"0 0'0 1 + ( a/3) 1 2 
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· ( 0-5 coth h - l)( 0-5 cosh h' - sinh h')( 0-5 sinh h' - cosh h'), 

(3.3.102a) 

(l+i) _1 bf (1-/3) (a) 112 

..;_-~EI' _;...__;.._ -
J2o=a o-5 l + ( a/3)1/2 /3 

· ( 0-5 coth h - l )( 0-5 cosh h' - sinh h')2 coth h. (3.3.102b) 

For the third term and the fourth term in (3.3.97), the integration over S1Mw is 

taken over a narrow strip of width O(e) of the interfacial meniscus boundary layer 

along the perimeter of the rectangular basin. By symmetry, only the integrals on 

x = 0 and y =bare needed. Equations (3.3.98c) and (3.3.98d) give: 

[ ] 2b Joo [ , * W~w l , , 
o-u~w x=O = -r. IC''2 /3 <l>o ~ Ede' 

I O x=O,z=-h' 

[o-lIMwl,-, = -r-1~'1' / r3 [11 • w;w L_/d(dx 
[ ] 2b Joo[ * Wow] 
O"lIMw x=O = r. IC'l2 0 </>o ~ x=O,z=-h' Edl, 

f, 00 

[a-IIMw L=b = r. l~'l2 j j [<t>o* W;wL=-h' Edldx, 
0 0 

Direct substitution of (3.3.83) and (3.3.89c) yields: 

[- ] 2(1 + i) 'ab -1 ( 2 . h h' ') EO"l]I = - r.,::::-- E /J r O"o sm - coshh 
MW x=O y20"o 

· (o-5coshh 1 
- sinhh'), 

[- ] (l + i) 'a1Jr-1( 2 . h h' h h') Ea-u, = - r.,::::--E p-t O"o sin - cos 
MW y=b 2y 20-0 

· ( 0-5 cosh h' - sinh h'), 

[EO"lJMw] - = -
2
~) Ebr-1 ( 0-5 cosh h' - sinh h')2 coth h, 

X-0 20-Q 

[- ] (l+i) IJr-1(-2 hh' . h ')2 h EO"lJMw -b = - r.,::::--E-t o-0 cos - sm h cot h. 
Y- 2y 20-0 

(3.3.103a) 

(3.3.103b) 

(3.3.103c) 

(3.3.103d) 

(3.3.104a) 

(3.3.104b) 

(3.3.104c) 

(3.3.104d) 

Similarly, the integration over S'pMw in (3.3.98e) is evaluated in two parts, that is, 

on x = 0 and y = b. We have: 

[ ] 2b Joo [ , * W~w] 1 , 

0"1FMw x=O = r . IC' 12 0 /3 </>o ~ x=O,z=O E de ' 
(3.3.l05a) 
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Direct substitution yields: 

[
- ] 2(1 + i) / -1 2 
c0"1FMw _ =- y'2uo c/3br 170, 

x-0 20-0 

[
- ] (1 + i) / -1 2 
c0"1FMw -b = - ~c /3f.T 170 • 

Y- 2 170 

(3.3.105b) 

(3.3.106a) 

(3.3.106b) 

For the side-wall boundary layers adjacent to the wall at x = 0, equations (3.3.95a) 

(3.3.107a) 

(3.3.107b) 

Owing to the two dimensional nature of this problem, the rotational velocity com­

ponents normal to the side-wall boundary layers at y = ±bare zero to O(e). Hence: 
0 

[Ea-1 w1 lx=O = r . ~~' 12 j /3 [ </>~ * [ n · q~] L=o dz 
-h' 

~~c' /3br- 1 
{ ( sinh 2h' + 2h') 

+ 20-5(1 - cosh2h') + 176(sinh2h' - 2h') }, (3.3.108a) 

(3.3.108b) 

(3.3.108c) 

(3.3.lOSd) 
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On the channel bottom, we have: 

Hence: 

2b e 
sarn = I'. JC'J2 / [</>~[n. Q1]]z=-(h'+h) dx 

0 

(1 + i) cbfr-1 ( a5 cosh h' - sinh h')2 

~ sinh2 h 

(3.3.109) 

(3.3.110) 

Returning to dimensional variables, the circular frequency a1 is written as: 

a1 =2{ [a1FMw L=o + [a1wI ]x=O + [a11Mw L=o + [a11Mw L=o 
+ [a1w]x=O} + 2{ [a1FMw ]y=b [a11Mw] y=b + [a11Mw L=b} 
+ a11, + a11 + a1sB. (3.3.111) 

In (3.3.111), the first curly bracket represents that part of a1 due to the boundary 

layers adjacent to the wall at x = 0, the second curly bracket is due to the boundary 

layers adjacent to the wall at b = 0, and the factor of two accounts for the walls at 

x = I! and y = -b. The terms in (3.3.111) are given by: 

( 
v' ) 

1
/

2 
( p') ( pvl/2 ) 

sa111 =(l + i)I'-1gk2b£ - 1 - - / 1/2 
2ao p pvl 2 + p'v' 

( gk) (a5 . , ') · coth kh - a
5 

gk smh kh - cosh kh 

· (;! cosh kh' - sinh kh') , (3.3.112a) 

( 
V ) 1/2 ( p') 

sa11 =(1 + i)I'-1gk2bf 
2

ao 1 - p 
( 

,1/2 ) 

pvlf:: p'v'l/2 

g (J' , • , ( k) ( 2 ) 2 
· cothkh - a

5 9
f coshkh - smhkh cothkh, 

(3.3.112b) 
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[za-u, ] = - 2(1 + i)r-1 gkb ( ..!!_) 
112 

(p') (a-k5 sinh kh' - cosh kh') 
MW x=0 ,2ao p g 

· (;! cosh kh' - sinh kh') , (3.3.112c) 

[EO"IJI ] = - !c1 + i)r-1gkf (..!!_) 112 

(p') (a-kl sinh kh' - cosh kh') 
MW y=b 2 20-0 p g 

· (;! cosh kh' - sinh kh') , (3.3.112d) 

( 
V )1/2 (0"2 )

2 
[za-uMw] x=0 = - 2(1 + i)r-1 gkb 20-0 g~ cosh kh' - sinh kh' coth kh, 

(3.3.112e) 

[Za-uMw] _ = - ]:_(1 + i)I'-1gkf (~)
112 

(o-k5 coshkh' - sinhkh')
2 

cothkh, 
b-0 2 20-0 g 

(3.3.112!) 

[€0"1FMw] - = - 2(1 + i)r- 1 a-5b (..!!_) 112 
(p') ' (3.3.112g) 

x-0 20-0 p 

[Za-1FMw] _ = - ]:_(l + i)f-1a5f (..!!_) 1

/

2 

(p'), (3.3.112h) 
b-0 2 20-0 p 

[fo1 w, l,-o =½(1 + i)r-1 gkb ( ;,;'
0 
(' ( ~) { ( sinh 2kh' + 2kh') 

+ ~! (1 - cash2kh') + (;!) 2 

(sinh2kh' - 2kh') }, (3.3.112i) 

[€0" ] =!(1 i)r-1 kb(~)
1
/
2

(sinh2kh+2kh) 
1 W x=O 2 + g 20-0 sinh2 kh 

· (;! cash kh' - sinh kh')' , (3.3.112 j) 

Zo-rn = - (1 + i)I'- 1gk2
bf (~)

112 
. ~ 

20-0 s1nh kh 

· (;! cash kh' - sinh kh')' (3.3.ll2k) 

where 

(3.3.113) 

If both fluids have the same density and viscosity (i.e., p' = p, v' = v ), equations 
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(3.3.112a)-(3.3.112k) reduce to: 

(3.3.114a) 

(3.3.114b) 

(3.3.114c) 

(3.3.ll4d) 

(3.3.114e) 

(3.3.1141) 

(3.3.ll4g) 

(3.3.114h) 

(3.3.114i) 

(3.3.114j) 

(3.3.114k) 

From (3.3.111) and (3.3.114), the total damping rates due to the wall at x = 0, and 

the wall at y = b, are given by: 

(3.3.115a) 

(3.3.115b) 

On the bottom z = -(h1 + h), the damping rate is given by (3.3.114k). The 

imaginary parts of these damping rates agree with the attenuation rates found by 

Keulegan (1959). 

In this section we have found the damping rates for standing waves in a rect­

angular basin that is partially filled with a two-layer fluid. The real part of the 
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damping rate represents a frequency shift due to viscous effect and the imaginary 

part of the damping rate is the attenuation rate responsible for the decay of wave 

amplitude. The decay of standing internal waves in a rectangular basin is studied 

in § 5.2.5 using the results of experiments and the linear theory. In experimental 

investigation of wave damping the dimensionless parameter known as the modulus 

of decay is frequently used. Keulegan (1959) defined the modulus of decay a* as: 

t 

a*= T f 1-dt (3 3 116) 2t E .. 
0 

wherein T is the wave period; 1 and E are the rate of energy loss and the energy 

density of the wave, respectively, both averaged over one wave period. We have: 

(3.3.117) 

Integrating (3.3.117) and applying (3.3.116), we obtain: 

(3.3.118) 

in which Eo is the wave energy at t = 0. It can be shown that, in linear theory, 1 / E 

is independent of the wave amplitude, and hence independent oft. Then equation 

(3.3.116) is reduced to: 

* l ,T 
a =2 E. (3.3.119) 

Thus, for small amplitude waves, the modulus of decay equals half the ratio of the 

energy dissipated during a completed wave cycle to the energy of the wave during 

that cycle. In addition, E is proportional to the square of the wave amplitude a, 

hence, we have: 

(3.3.120) 

where ao is the wave amplitude at t = 0. Thus, the modulus of decay is related to 

the damping rate by: 

(3.3.121) 

in which~ denotes the imaginary part of a complex number. 
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3.3.2 Wave Damping in a Three-Layer Fluid 

In § 3.3.1, the damping rates in a two-layer fluid were found by perturbation 

expansions and the application of Green's theorem. As we have seen, this approach 

yields both the attenuation rate and the viscous correction to the wave number or 

the circular frequency obtained using the inviscid theory. In addition, it is possible 

to infer from the damping rates the flow of energy in various parts of the fluid. 

Most importantly, the analysis provides a formal expansion scheme in which energy 

dissipation in the boundary layers can be incorporated into an inviscid model. A 

similar technique had been used by Dore (1969 a,b) to determine the damping rates 

of non-homogeneous viscous fluids of general density and viscosity distributions. 

Because the velocity potential does not exist in a continuously stratified fluid, Dore 

(1969 a,b) instead expanded the dynamic pressure in terms of a boundary layer 

parameter. The damping rates were found by separating the terms of different 

orders and by the application of Green's theorem in a manner similar to the two­

layer problem. The same method can be applied here to the three-layer fluid, but 

the algebra involved will be very lengthy. Moreover, the analysis of the two-fluid 

system and the studies by Dore (1969 a,b) on continuously stratified fluids indicate 

that the real parts and the imaginary parts of the complex damping rates are equal 

in magnitude. Hence, instead of following the approach in § 3.3.1 we simply find 

the attenuation rate, and assume that the shift in wave number is the same. 

The conventional method in finding the attenuation rate is by balancing the 

rate of decay of wave energy by the rate of energy dissipation. For the propagation 

of time-periodic surface waves in a long channel, the attenuation rate had been 

found by Hunt (1952) and Ursell (1952). We apply this method here to the three­

layer fluid. Let ( x, y, z) be a Cartesian coordinate system with the x axis on the 

undisturbed free surface coinciding with the channel axis and z extending positive 

upwards. The side walls of the rectangular channel are located at y = band y = -b. 
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The continuously stratified fluid is composed of two homogeneous fluids of different 

densities separated by a transition layer with a linear density variation. The upper 

fluid is of density PI and of depth h1, between z = -h1 and z = -(h1 + 8) the 

density of the fluid increases linearly from PI to p2 . The depth of the lower fluid is 

h2 and the bottom of the channel is at z = -(h1 + h2 + 8). The density of the fluid 

is approximated by PI when the buoyancy term is not involved; this is consistent 

with the Boussinesq approximation made in the three-layer model. The kinematic 

viscosity of the fluid v is assumed to be constant. The wave motion is assumed to 

be two-dimensional in the (x, z) plane, and other assumptions stated in § 3.2 also 

apply here. For time-periodic plane progressive waves travelling in the positive x 

direction, the vertical velocity, the horizontal velocity, the dynamic pressure, and 

the vertical displacement of a fluid element from its undisturbed position are given 

by (3.2.11 ), (3.2.20), (3.2.21), and (3.2.72), respectively. For convenience we quote 

these equations as follows: 

11o(x, z, t) = !_ f(z)Aei(Kx-ut), 
(7 

u (x z t) = .!_ df Ai(Kx-ut) 
0 

' ' I< dz ' 

wo(x,z,t) = f(z)Aei(Kx-O't), 

P (x z t) = ip ...:!.._ df Aei(Kx-O't) 
o ' ' I J<2 dz . 

(3.3.122) 

(3.3.123) 

(3.3.124) 

(3.3.125) 

where the subscript 0 denotes the inviscid solution. We may use the normalized 

eigenfunctions in (3.2.50) for f(z). The orthogonality conditions (3.2.51) are not 

needed in this analysis, it is simpler to use an arbitrary constant A as the coefficient 

instead. From (3.2.50a)-(3.2.50c), we have; 

f(z) = ( 0 1
/

2 cos ( 0 1/ 2 K 8) + coth Kh2 sin ( 0 112 K 8)) 

( 
Ko coshKz + K sinhKz ) 

-h1 < z < 0, 
Ko cosh Kh1 - K sinh Kh1 ' 

(3.3.126a) 

=01
/

2 cos ( 0 1
/

2 K(z + h1 + 8)) + coth Kh2 sin ( 0 1
/

2 K(z + h1 + 8)) , 
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- (h1 + 8) < z < -h1, 

=e1/2 (sinhK(z + h1 + h2 + 8)) 
sinhI<h2 ' 

(3.3.126b) 

-(h1 + h2 + 8) < z < -(h1 + 8). 

(3.3.126c) 

All the symbols in (3.3.126) have been defined in § 3.2, and for simplicity we have 

dropped the subscripts (1 and 2) for the wave number I<. 

In the bottom boundary layer, the horizontal velocity UB is given by the sum 

of the inviscid part u0 and the viscous correction U B, that is: 

(3.3.127) 

where 

(3.3.128) 

and the subscript B denotes the bottom. Denote the rectangular coordinates by 

Xi, ( i = 1, 2, 3), with x1 = x, x2 = y, x3 = z and the corresponding velocity 

components by Ui. The rate of dissipation of mechanical energy per unit time in an 

incompressible fluid is given by: 

dE = 2- r r~-dv 
dt 2µ lv 13 (3.3.129) 

where Tij are the components of the viscous stress tensor given by: 

(3.3.130) 

The average rate of energy dissipation over one wave period is given by: 

dE = µ r laui + OUjl2 dv. 
dt 4 lv 8xj 8xi 

(3.3.131) 

In (3.3.129) and (3.3.131) summation over repeated indices is implied. The principal 

contribution to the integral in the bottom boundary layer in the region between x 

and x + dx is: 

[dE] = µ f 18u11
2 

dV 
dt B 2 lv 8x3 
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µ loo 18Un 2 = -(2bdx) - dz. 
2 -(h1 +h2+8) 8z 

= [vp1uf2dxldfl2 ·JAJ2. 
V ~ K dz z=-(h1 +h2+8) 

(3.3.132) 

By symmetry, we only need to consider the boundary layer adjacent to the side wall 

y = b. The horizontal velocity and the vertical velocity are given by: 

where 

uw = [uo]y=b + Uw, 

ww = [wo]y=b + Ww 

U [ , - IZ(l-i)(b-y) w = - uoJy=be V2ii" , 

Ww = -[wo]y=be-.J!i(l-i)(b-y). 

(3.3.133a) 

(3.3.133b) 

(3.3.134a) 

(3.3.134b) 

In (3.3.133) and (3.3.134) the subscript W denotes the side wall. The net contri­

bution to the integral in (3.3.131) from the side-wall boundary layers at y =band 

y = -b is given by: 

[~~L = ~ 1v (1:~:1' + 1:::1') dV 

= -~(2dx)-<•1+n-L (18~:I' + 1a:;I') dydz 

= [vp1udx 
v~ I{ 

0 

J 
-(h1+h2+8) 

( ~ dz 
2 

+ KIJI') dz - IAl2
- (3.3.135) 

Equations (3.3.132) and (3.3.135) include all the energy losses that are proportional 

to v 112
. It can be deduced from (3.3.129) that energy dissipation in the density 

transition region (-h1 +o < z < -h1) is proportional to v, and therefore is neglected 

at the present order of approximation. The average rate at which work is done over 

one wave period across a section of the rectangular channel is: 

dW 2b t+T o 
dt = T j j pouodz 

t -(h1 +h2+8) 
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= p1crb Jo I_ ldf 12 dz. IAl2. 
K 2 K dz 

-(h1+h2+8) 

(3.3.136) 

The integrals in (3.3.135) and (3.3.136) can be evaluated in terms of trigonometric 

and hyperbolic functions. For 0 > 0, the results are: 

4 
Jo _!_ I df 1

2 
dz = ( 0 1

1
2 

cos ( 0
1
1
2 
]{ 8) + coth Kh2 sin ( 0

1
1
2 
]{ 8)) 

2 

K dz Ko coshKh1 - K sinhKh1 
-(h1+h2+8) 

4 

· { K5(sinh2Kh1 - 2Kh1) + K 2(sinh2Kh1 + 2Kh1) 

+ 2KoK(l - cosh 2Kh1)} 

+ 0 2 ( 2K 8 - 0-1/2 sin ( 201/ 2 K 8)) 

+ 0 coth2 K h2 ( 21{ 8 + 0-1/2 sin ( 201/ 2 KO)) 

+ 20 cothKh2 ( cos ( 201/2 Ko) - 1) 

+ 0 (sinh2Kh2 + 2Kh2) (3_3_137a) 
sinh2 Kh2 ' 

o (0112 cos ( 0 112 K 8) + coth K h2 sin ( 0 1/2 Ko)) 
2 

J Kjfj 2dz = . 
Ko coshKh1 - K s1nhKh1 

-(h1+h2+8) 

· { K5(sinh2Kh1 + 2Kh1) + K2(sinh2Kh1 - 2Kh1) 

+ 2KoK(l - cosh2Kh1)} 

+ 0 (2K8 + 0-1/ 2 sin (201/ 2 Ko)) 

+ coth2 Kh2 (2Ko - 0-1/2 sin (201/ 2 K8)) 

-2cothKh2 (cos (20112K8) - 1) 

+ 0 (sinh2K~2 - 2Kh2 ). 

sinh Kh2 
(3.3.137b) 

The difference between the energy crossing the planes x and x + dx is equal to the 

energy dissipated in the region between x and x + dx. From (3.3.132), (3.3.135), 

and (3.3.136), we have: 

b Jo _..!_ I df 12 d . dlAl2 
K K dz z 

-(h1 +h2+8) 
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(3.2.138) 

Now let us find the attenuation rate designated by K*. With energy dissipation, 

equations (3.3.122)-(3.3.124) still apply if the coefficient A is written as: 

(3.3.139) 

where Ao is a constant. Note that we have neglected the viscous correction to the 

wave number K; the method of energy balance cannot provide information on the 

shift in the wave number. The attenuation rate is obtained immediately through 

differentiation of (3.3.139). Hence, we have: 

K* = -~ dA 
Adx· 

(3.3.140) 

Without loss of generality, Ao may be taken as real, and hence A is real. From 

(3.3.138) and (3.3.140) the attenuation rate K* is given by: 

{ b I df 1

2 0 

( 1 I df 1

2 

) } - - + j - - + Kif 12 dz 
J{* = ~ K dz z=-(h1 +h2+8) -(h1 +h2+6) K dz 

2 b 
O 

1 df 2 

J -· dz 
K K dz 

-(h1 +h2+6) 
(3.3.141) 

In (3.3.141), we have: 

(3.3.142) 

by direct substitution from (3.3.126b ). As discussed earlier, we may assume that 

the viscous correction to the wave number is equal in magnitude to the attenuation 

rate, hence the damping rate in the three-layer fluid is given by (1 + i)K* (see 

equation 3.3.45c). 

The concept of energy balance provides a simple method for determining the 

attenuation rate, but the amount of information obtained is very limited. A major 
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disadvantage of this method is its lack of a formal expansion scheme by which the 

effect of viscosity on the inviscid solution can be assessed order by order in terms of 

a boundary layer parameter. For instance, in obtaining (3.3.136) we have implicitly 

assumed that the wave energy is transferred along the channel by the irrotational 

component of the velocity. 

In this section we have obtained the attenuation rate for a time-periodic pro­

gressive wave advancing down a uniform rectangular channel that is partially filled 

with a three-layer fluid. We assume that the entire loss of energy of waves is lo­

calized in the boundary layers adjacent to the side walls and at the bottom of the 

channel, and the flow is laminar within the boundary layers. The attenuation rate 

is obtained by balancing energy dissipation and energy flux in a contol segment 

of the rectangular channel. Because the method of energy balance does not yield 

the viscous correction to the wave number, we assume that this is the same as the 

attenuation rate. The above results are used in § 3.3.3 to incorporate the effects of 

wave damping into the inviscid three-layer model developed in § 3.2. 

3.3.3 Trench Models with Boundary Layer Damping 

For the two-layer problem, the fluid velocity u in the constant-depth channel 

and in the trench region can be written as a sum of an irrotational part, and a 

rotational part, as given in (3.3.21). If the boundary layers are very thin compared to 

a characteristic depth of the fluid, the potential function <I>, and the rotational part 

of the velocity U, can be expanded in terms of a boundary layer parameter, Z, in the 

form given by (3.3.45a) and (3.3.45b ), respectively. The horizontal velocities and the 

vertical velocities from the separate regions of constant depths must be continuous 

at the upstream edge of the trench, in addition to satisfying the boundary conditions 

of the constant-depth channel and trench arrangement as shown in figure 3.1.1. By 

equating coefficients of like power of Z, a series of problems are defined. The solutions 
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at the lowest order are used to yield the next higher order of approximation, and 

so on. Hence, the perturbation procedure provides a plausible scheme by which 

the effect of viscosity can be incorporated into the solution. In practice, finding a 

solution to higher order than O('t) will be difficult. On the other hand, the inviscid 

model treated in § 3.1, which neglects the effect of viscosity completely, is clearly 

inadequate. In particular, the cumulative effect of viscosity on wave attenuation 

cannot be neglected, no matter how small viscosity is. Consider the wave machine 

generating surface waves continuously at the resonant frequency of the internal 

waves in the trench. If the viscosity of the fluids is very small, the surface waves 

and the internal waves will grow to large amplitudes, until the rate of energy input 

by the wave machine is balanced by the rate of energy dissipation in the fluids. 

It may take a long time before this steady-state condition is reached in the wave 

tank, but this final stage will be attained eventually. Hence, the cumulative effect 

of viscosity on wave attenuation is of first order importance over a period of time 

long compared to the wave period. It is seen in (3.3.45) that the rotational part of 

the velocity, U, is comparable to the irrotational part of the velocity, 'v«I>, only in 

the boundary layer, which has a thickness of O(l"). Thus, locally, the overall fluid 

motion can be described well by the lowest order velocity potential cp0 • On the other 

hand, the complex damping rate, given by the term lk1, appears with the distance 

of propagation x as a product in the exponent of e. The effect of this term is to 

decrease the wave amplitude with distance, and hence with time. Because of this, 

k1 must be included in the solution. Strictly speaking, the attenuation rate is given 

by the imaginary part of "lk1, the real par.t contributes only a small shift of O("l) 

in the wave number, and thus should be ignored in order to be consistent with the 

present order of approximation. However, it is often observed in experiments that 

viscous damping shifts the resonant peaks of the amplitude-frequency response curve 

slightly away from the inviscid natural frequencies. Hence, for a better prediction 
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of the location of the response curve, it is preferable to include the real part of Zk1. 

A similar argument can be applied to the three-layer fluid. 

Boundary layer dissipation are incorporated into the inviscid models that were 

treated in § 3.1 and § 3.2 as follow: the wave numbers for the propagating waves in 

the exponents of the series representations in (3.1.20) and (3.1.22) for the two-layer 

problem, and in (3.2.53) and (3.2.54) for the three-layer problem, are expanded to 

O(Z). Then the horizontal and vertical velocities in the constant-depth channel, 

and in the trench region, are matched at the upstream edge of the trench as be­

fore, to obtain the unknown coefficients in the eigenfunction expansions. Thus, all 

the equations in § 3.1 and § 3.2 are unchanged, except that the previous real wave 

number for the propagating wave in the exponent of e is replaced by the corre­

sponding complex wave number, which includes both the attenuation rate and the 

shift in wave number to O(z). As we have seen, this modification is justified by the 

perturbation analysis. 

3.4 A two-Layer Model of a Rectangular Trench in an Infinite Region 

In § 3.1 an analytical treatment is presented for the steady-state response of a 

two-layer density-stratified fluid in a rectangular trench that is placed at one end 

of a constant-depth channel; wave motion is generated by a vertical bulkhead wave 

generator which moves in simple-harmonic motion at the other end of the channel 

(figure 3.1.1). This particular arrangement was chosen for theoretical analysis be­

cause the conditions of wave propagation over a rectangular trench in an infinite 

region could not be modelled in the laboratory, due to wave reflections from the 

ends of the wave tank. With the arrangement shown in figure 3.1.1, the theoret­

ical predictions that are obtained using the two-layer model treated in § 3.1 can 

be compared directly to the experimental measurements to establish the possibility 
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of using the same theoretical approach for the case with the infinite region; these 

results will be discussed in Chapter 5. In this section, the potential formulation 

presented in § 3.1 is employed to treat the problem of normally incident surface 

waves propagating over a rectangular trench in an infinite region, with a heavier 

fluid in the trench (figure 3.4.1 ). Let ( x, z) be a Cartesian coordinate system with z 

extending positive upwards from the undisturbed free surface. We fix the origin of 

the x coordinate above one edge of the trench as shown in figure 3.4.1. The fluid in 

the trench is two-layer stratified, and the fluid outside the trench is homogeneous. 

The fluid domain is divided into four regions: 

Region 1 p = Pl, -h1 < z < 0, 0<x<f 

Region 2 P = P2, -(h1 + h2) < z < -h1, 0<x<f 

Region 3 p = Pl, -h < z < 0, -OO < X < 0 

Region 4 p = Pl, -h < z < 0, 0 < X < +oo 

wherein Pl and p2 are the densities of the upper fluid and of the lower fluid, respec­

tively, and the other symbols are defined in figure 3.4.1. 

3.4.1 The Boundary-Value Problem 

The basic assumptions and the method of analysis are the same as given in§ 3.1 

for the treatment of the laboratory problem. Assuming a steady-state solution for 

the velocity potential in the form: 

(3.4.1) 

the spatial potential function </>( x, z) must satisfy the Laplace equation: 

a2<1> a2<1> 
8x2 + 8z2 = O (3.4.2) 

throughout the fluid domain along with the following linearized boundary condi­

tions: 

8¢> a 2 

---</>=0 az g 
on Z = 0, -00 < X < +oo, (3.4.3a) 
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Figure 3.4.1. Definition sketch of a two-layer density-stratified rectangular trench 
in an infinite region. 

(
8</J1 a-

2 
) (8</J2 a-

2 
) Pl - - -r/>1 = P2 - - -r/>2 

8z g 8z g 
on z = -hi, 0 < x < R, (3.4.3b) 

o<j) 
-=0, oz 

O<P = 0, ox 

8efJ1 o</J2 ---az oz on z = -hi, 0 < x < R, (3.4.3c) 

on z=-(hi+h2), 0<x<R 

and z = -h, -oo < x < 0 and R < x < +oo, (3.4.3d) 

on - (hi+ h2) < z < -h, x = 0 and x = R. (3.4.3e) 

The matching conditions at x = 0 and x =Rare: 

on 

on 

- h < z < 0, x = 0, 

- h < z < 0, x = R, 

(3.4.4a) 

(3.4.4b) 
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8</J1 o<j)3 
- h < z < 0, X = 0, (3.4.4c) --=-- on 

ox ox 
o</J1 o<j)4 

- h < z < 0, X =£. (3.4.4d) 
ox ox 

on 

In (3.4.3) and (3.4.4), the subscripts (1, 2, 3, and 4), respectively, denote the appro­

priate regions shown in figure 3.4.1. A time-periodic progressive wave train of wave 

amplitude as; is assumed to be incident from x = -oo in region 3, in a direction 

perpendicular to the longitudinal axis of the trench. The free surface elevation of 

the incident wave is written as: 

ei(kx-a-t) 
T/S; = as; . (3.4.5) 

The velocity potential of the incident wave is given by linear theory ( see, for exam­

ple, Dean and Dalrymple, 1984) to be: 

m ( )- ias;gcoshk(z+h) i(kx-a-t) 
~S; x,z,t - - hkh e . 

(J cos 
(3.4.6) 

The radiation conditions at x = ±oo require that the scattered waves ( the trans­

mitted and the reflected waves) are asymptotically simple-harmonic wave trains 

travelling away from the trench region. 

3.4.2 The Solutions in the Trench Region and in the Infinite Region 

As in § 3.1 we expand the spatial potential function <P in terms of an infinite 

series of mutually orthogonal eigenfunctions. In the trench region 0 < x < £, we 

have: 

<P1,2(x, z) = L (AjeiKjx + Bje-iKix) Zj1,2(z) 
j=l,2 

+ L ( Aneknx + Bne-knx) Zn1,2(z) 
n 

(3.4. 7) 

in which Aj, Bj, (j = 1,2), and An, En, (n = 1,2, ... ) are unknown constants to be 

determined from the boundary and matching conditions at the trench. The wave 
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numbers Kj, (j = l, 2) and Kn, (n = l, 2, ... ), and the functions Zj1,2, (j = 1, 2) and 

Zn1,2, (n = l, 2, ... ), respectively, are given by (3.1.18) and (3.1.19) for a two-layer 

fluid. 

In the infinite regions x < 0 and x > £, the spatial potential functions in the 

homogeneous fluid are written as: 

c/;J(x,z) = (ceikx +ne-ikx) Z(z)+ Lbninxzn(z), 
n 

<p4(x,z) = Eeik(x-i)z(z) + LEne-kn(x-i)zn(z) 
n 

(3.4.Sa) 

(3.4.Sb) 

wherein we have used the radiation conditions at x = ±oo, and the assumption that 

the incident waves only come from x = -oo. The unknown constants C, D, E, and 

Dn, En, ( n = l, 2, ... ) are to be determined from the incident wave condition at 

x = -oo and the matching conditions at the trench. The wave numbers k and kn, 

(n = l, 2, ... ), and the functions Z and Zn, (n = l, 2, ... ), respectively, are given 

by (3.1.25) and (3.1.23) for a homogeneous fluid. 

3.4.3 Matching the Solutions 

As in§ 3.1 the infinite series of the spatial potential functions given by (3.4.7), 

(3.4.Sa), and (3.4.Sb) are truncated after a finite number of terms N. We are then 

left with 4N + 7 unknowns: Aj, Bj, (j = l, 2), C, D, E, and An, En, Dn, Fn, 

(n = 1,2, ... ,N). Note that in (3.4.Sa), the unknown constant C is the complex 

coefficient of the velocity potential of the incident wave, hence from (3.4.6) and 

(3.4.8a), C is found to be: 

(3.4.9) 

wherein we have used (3.l.23a). The remaining (4N +6) unknowns are found from 

the conditions of continuity of horizontal velocity and velocity potential at x = 0 

and x = R, ( equation 3.4.4). In the same manner as the treatment in § 3.1 the 
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horizontal velocities and velocity potentials from the trench region and the infinite 

regions before and after the trench are matched along vertical boundaries at x = 0 

and x = e. Upon invoking the orthogonality conditions (3.1.16) and (3.1.24), we 

obtain ( 4N + 6) linear integral equations, which are given as follows: 

Continuity of oef>/ox at x = 0: 

0 -

iKj( Aj - Bj) = PI j : 3 
(0, z )Zj1 ( z )dz, 

-h 
0 -

".~ A A J Oq>3 A 

I1.n(An - Bn) = Pl ox (0, z)Zn1(z)dz, 
-h 

Continuity of Oq> I ox at X = e: 

Continuity of ef> at x = 0: 

0 

C + D = PI j ¢>1(0,z)Z(z)dz, 
-h 

0 

Dn = PI j ¢>1(0,z)Zn(z)dz, 
-h 

Continuity of q> at X = e: 
0 

E = Pl j ¢;1(l, z)Z(z)dz, 
-h 

0 

(j = 1, 2), (3.4.lOa) 

(n = l, 2, ... , N). (3.4.lOb) 

(j = 1, 2), (3.4.lla) 

(n = 1,2, ... ,N). 

(3.4.llb) 

(3.4.12a) 

(n = 1,2, ... ,N). (3.4.12b) 

(3.4.l3a) 

En= PI j ef>1(l,z)Zn(z)dz, 
-h 

(n=l,2, ... ,N). (3.4.l3b) 
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In (3.4.10)-(3.4.13), J denotes the truncated series of <p. The integrals can all be 

evaluated in terms of trigonometric and hyperbolic functions. The set of ( 4N + 6) 

simultaneous equations are solved numerically as a linear matrix equation with 

N=3. 

3.4.4 Analysis of Wave Amplitude 

The interaction of the incident surface waves with the stratified trench can be 

demonstrated most easily by the transmission and the reflection characteristics, and 

the amplitude amplification of the interfacial waves in the trench. The transmission 

coefficient Kt is defined as the ratio of the amplitude of the transmitted wave to the 

amplitude of the incident wave, and the reflection coefficient Kr is defined as the 

ratio of the amplitude of the reflected wave to the amplitude of the incident wave. 

The amplitude of the surface wave is given by (3.l.35a) in terms of the velocity 

potential <I>. By inspection of (3.4.8a) and (3.4.8b), it is clear that the constants C, 

D and E, respectively, represent the complex coefficients of the velocity potential 

of the incident wave, the reflected wave, and the transmitted wave. Hence, from 

(3.l.35a), (3.4.8a) and (3.4.8b), the transmission and reflection coefficients are given 

by: 

(3.4.14) 

and 

(3.4.15) 

The amplification factor R of the interfacial wave is defined as the ratio of the 

amplitude of the interfacial motion at x = 0 to the amplitude of the incident wave, 

that is: 

R = l17Ilx=0 
l11si I 

(3.4.16) 

where 171 and 17S; are given by (3.l.36a) and (3.4.5), respectively. The velocity 

potential <I> is of the form (3.4.1 ), with the spatial potential function <p given by 
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(3.4. 7) in the trench region. 

As discussed in § 3.3.3, the above treatment for the inviscid problem can be 

slightly modified to include the effects of energy dissipation in the boundary layers. 

In the viscous theory, all the equations presented above remain unchanged. In 

the exponents of e in (3.4. 7) the determined wave numbers for the propagating 

modes Kj, (j = 1,2) using the inviscid theory (equation 3.1.18a) are replaced by 

complex wave numbers, which include both the attenuation rate and the shift in 

wave number due to viscosity (see equation 3.3.45c); these have been found in 

§ 3.3.1.1 for a time-periodic plane progressive wave in a two-layer fluid. Energy 

dissipation is assumed to take place in the boundary layers adjacent to the density 

interface and at the trench bottom. However, we neglect the contributions of the 

vertical walls at x = 0 and x = £; this will be discussed more fully in § 5.3. In 

addition, we assume that the surface waves are unattenuated in the infinite regions 

before and after the trench, thus the effects of energy dissipation on wave motion 

are due solely to wave-trench interaction. The numerical solutions of the inviscid 

and viscous theories are presented in § 5.3 for several specific flow conditions. 
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4. EXPERIMENTAL EQUIPMENT AND PROCEDURES 

4.0 Introduction 

The primary objective of the experimental investigation was to gam insight 

into the dynamics of internal wave motion in a stratified rectangular trench due to 

normally incident surface waves. Of interest were the effects of surface wave charac­

teristics, density stratification and viscous dissipation on internal wave generation. 

We were also interested in the effects of a stratified trench on the incoming sur­

face wave. As mentioned earlier, we required that the laboratory problem could be 

formulated theoretically, for this reason simple boundary conditions were chosen. 

The major equipment included a wave tank and wave generator, a false bot­

tom to create the trench, a system to measure interfacial wave amplitudes, stepping 

motor controlled resistance-type wave gages for measurement of surface wave ampli­

tudes, a probe to measure fluid conductivity from which densities could be inferred, 

and a microcomputer for control and data acquisition. The original design of the 

wave tank and the wave generation system had been described in detail by Goring 

(1978), and this will be discussed only bri~fly herein. The hydraulic power supply 

was upgraded in this study with the installation of a new pump, which allowed for 

the prolonged operation of the wave generator. A unique contribution in this study 

was the development of an interfacial wave gage for measurement of internal wave 

amplitudes at a density interface. 
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4.1 Experimental Equipment 

4.1.1 The Wave Tank 

A schematic diagram of the wave tank with the false bottom in place is shown 

in figure 4.1.1. The wave tank was 120ft (36.6m) long, 2ft (0.61m) deep and 

15.5in (0.394m) wide, and consisted of 12 identical modules. An additional module 

at one end of the wave tank contained a block section of the bed that could be 

moved vertically; this was used by Hammack (1972) to simulate waves generated 

by tectonic bottom displacements. This end module was not used in this study and 

was sealed off to avoid leakage. The side walls of each module were constructed 

of glass panels 5ft (1.52m) long, 25in (63.5cm) high and 0.5in (1.27cm) thick. 

Instrument carriages could be moved on circular 1 in (2.54 cm) diameter stainless 

steel rails mounted to the top flanges of the tank side walls with studs spaced at 2 ft 

(61 cm) intervals. The rails had been carefully leveled to within ±0.001 ft (0.3 mm) 

of a still water surface in the wave tank. A steel tape graduated in meters and 

centimeters fixed to the top flanges of the tank side walls was used for positioning 

of instrument carriages. 

A horizontal plywood false bottom was placed in the wave tank to create a 

rectangular trench 0.6m long and 0.152m deep. The upstream edge of the trench 

was located 19.15m from the mean position of the wave plate. The portion of the 

wave tank downstream of the trench was not used in this study and was sealed off 

from the rest of the wave tank by a plywood vertical wall. 

The plywood false bottom was largely constructed in units, each measuring 

8ft (2.44m) long, 6in (15.2cm) deep and 15.25in (38.7cm) wide. Each unit was 

weighted with two 251b (11.36kg) lead weights, one at each end to prevent it from 

floating, and ribs were placed at the 4ft (1.22m) center to strengthen the unit. The 

two units placed next to the trench were constructed in 2ft (0.61 m) length and 
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each had a vertical face at one end, which formed a side wall of the trench. Water 

filled the underside of the false bottom in the experiments, the gap between the 

false bottom and the glass walls of the wave tank was sealed with 0.375 in (0.95 cm) 

polyethylene rope. Some warping of the surface of the false bottom was noticeable 

at places after a period of use; the false bottom was horizontal to within ±2 mm. 

This had a negligible effect on the surface wave whose wavelength was very long 

compared to the water depth. In the experiments, the still water level was measured 

relative to the floor of the wave tank where it formed the trench bottom. 

4.1.2 The Wave Generator 

The wave generator consisted of the hydraulic system, the servo-system, and 

the wave plate. The basic function of the hydraulic system was to supply fluid 

power to a hydraulic cylinder that extracted energy from the fluid and converted 

it into mechanical motion of the wave plate. It included an oil reservoir, a pump, 

a motor, several filters, two check valves, an unloading valve, several accumulators, 

a heat exchanger, piping, a servo-valve, and two hydraulic cylinders. The oil reser­

voir, which had a capacity of 180gal (0.681m3), provided a storage space for the 

hydraulic oil until it was called for by the system. A variable displacement pump, 

rated at 40 gpm (0.00252 m 3sec-1) at 2500 psi (17,000 KNm- 2 ) created the flow of 

oil in the hydraulic system. It was powered by a 75hp (56KW), 1800rpm electric 

motor. The operation of the pump and power supply could maintain a constant 

pressure in the hydraulic system for an indefinite period of time at the maximum 

output of the hydraulic cylinder. An unloading valve and a check valve were lo­

cated downstream of the pump. The rated pressure of the hydraulic system was set 

at 2500 psi (17,000 KNm-2), when this pressure was reached, the unloading valve 

directed the flow of oil back to the oil reservoir; the check valve prevented a reverse 

flow through the pump from the pressurized system when the pump was not op-
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erating. Two 10 gal (0.038 m 3) accumulators precharged at 450 psi (3000 KNm-2
) 

were located between the unloading valve and the check value to reduce hydraulic 

transients due to the operation of the pump. The temperature of the hydraulic oil 

flowing through the pump was regulated by a water cooled heat exchanger rated at 

20 gpm (0.00126 m 3sec-1) at 75°F (23.9°C). 

The servo-valve and the the hydraulic cylinder were the output components 

of the hydraulic system. The servo-valve (Moog Model 72-103) directed the flow 

of oil to either end of a double-acting hydraulic cylinder and thus controlled the 

motion of the wave plate, it was rated at 60 gpm (0.0038 m3sec-1 ) at 40 ma cur­

rent. Two 10 gal (0.038 m 3 ) accumulators were located upstream of the servo-valve. 

They were precharged at 450psi (3000KNm-2 ) and were charged to the operating 

pressure of the hydraulic system, that is, 2500 psi (17,000 KNm-3), when the pump 

was operating. When the pump was shut down the accumulators could provide a 

reservoir to supply flows to the servo-valve. The hydraulic cylinder used in this 

study (Miller Model DER-77) had a 5 in (12. 7 cm) bore and a 1. 75 in ( 4.45 cm) rod 

with a maximum stroke of 16 in ( 40.6 cm). The net bearing area of the piston in the 

cylinder was 17.3 in2 (112 cm2). The rod was connected at one end to a wave plate 

carriage that carried the wave plate that generated the waves. A second hydraulic 

cylinder (Miller Model DH77B) was not used in this study, it had a 2.5 in (6.35 cm) 

bore and a 1. 375 in ( 3.49 cm) rod with a maximum stroke of 96 in ( 2.44 m ). The 

net bearing area of the piston in the cylinder was 3.4 in2 (22 cm2
). The cylinder 

with the larger bore diameter was used because its larger piston area reduced the 

differential pressure required to overcome the static friction when the piston moved 

from its rest position. The return line downstream of the hydraulic cylinder was 

kept full by a second check valve located before the oil reservoir. 

The function of the servo-system was to supply the servo-valve with the electric 

current necessary to drive the wave plate to follow a specified displacement-time his-
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tory. It consisted of a function generator, a feedback device, and a servo-controller. 

A 1000 point displacement-time history of the wave plate was computed using a 

microcomputer, this was transmitted to the function generator memory through 

a DRVll-J 64 line parallel interface where the data were stored in binary form. 

The function generator converted the binary data into a voltage-time history pro­

portional to the displacement-time history cf the wave plate, this would be the 

voltage that should be applied across the servo-valve if frictional forces were ab­

sent. However, frictional forces in the hydraulic cylinder and at the wave plate 

inevitably distorted the desired trajectory. A feedback system consisting of a linear 

variable differential transformer (LVDT) measured the actual position of the pis­

ton in the hydraulic cylinder and returned a voltage to the servo-controller. The 

servo-controller compared the feedback voltage to the voltage from the function gen­

erator memory and adjusted the voltage applied across the servo-valve accordingly 

to minimize the difference between the desired piston position and the measured 

piston position. The resulting current generated by the applied voltage directed the 

servo-valve to regulate the fl.ow rate of oil to either end of the double-acting cylin­

der, thus pushing the piston inside in one direction or the other; the quantity of 

fl.ow through the servo-valve and hence the velocity of the piston was proportional 

to the magnitude of the current. The piston motion was transmitted to the wave 

plate through a rod and a wave plate carriage to generate the waves. A detailed 

description of the servo-system can be found in Goring (1978), its interfacing with 

the microcomputer is described in Synolakis (1986). 

The wave plate was a rectangular plate 0.25in (6.4mm) thick, and made of 

aluminum with dimensions slightly smaller than the inside dimensions of the wave 

tank when the false bottom was in place. It was mounted vertically to the wave plate 

carriage, which rode on circular rails supported on a steel truss that was structurally 

independent from the wave tank. To avoid the problem of leakage around the wave 
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plate, it was sealed against the side walls and the false bottom by rubber windshield 

wiper blades. 

4.1.3 The Interfacial Wave Gage 

Internal waves at a fresh water-salt water interface have been measured by 

many researchers using various techniques. The simplest method is visual using 

photographs and motion-pictures of the interfacial waves; the density interface is 

made visible by colouring one of the fluid layers with dissolved dye. This approach 

is particularly useful when the profile of the interfacial wave is sought. Accuracy of 

measurement depends on the position of the observer; for example, a false reading 

can result if the observer's line of sight is not level with the dye interface. In 

addition, the relation of the dye interface to the density stratification is unknown. 

A frame by frame examination of motion pictures would be necessary in this case 

to obtain a time record of the motion. 

Helal and Molines (1981) used an "interface follower" to follow a fresh water-salt 

water interface at a given conductivity ( and hence salinity). Basically, the principle 

of this apparatus is to measure the conductivity and compare it with a chosen 

reference. An electric motor moves the conductivity probe in order to minimize the 

difference between the measured and referenced conductivity. Helal and Molines 

reported measurement accuracy of ±0.1 mm with their instrument. We had also 

constructed a similar device but found the feedback system to be very unstable, 

and the instrument was never used in actual experiments. 

A laser-optics detector system was used by Hammack ( 1980) and that instru­

ment circumvented some of the difficulties discussed above. Hammack used a sys­

tem of cylindrical lenses to transform a laser beam into a vertical sheet of light with 

a constant height that was directed horizontally across a wave tank containing a 

stratified fluid of water and salt water. The salt water was dyed dark blue with 
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dissolved dye. The light, after traversing the tank, was focused onto a photodiode 

that provided an output voltage proportional to the incident light intensity. Blue 

dye blocked the portion of light sheet that was incident on the dyed salt water below 

the interface. Thus, motions of the interface caused changes in the output signal of 

the photodiode. The amplitude of the interfacial motion was determined through 

calibration when the fluids were quiescent, by moving the gage up or down. Ham­

mack (1980) found that the dye interface seen by the interfacial wave gage appeared 

in the upper portion of the diffuse salinity interface. This measurement system had 

certain limitations and drawbacks. The most significant limitation inherent in the 

technique of light intensity measurement is that many sources of noise may enter 

the signal. These may include variation in the intensity of the light source, light 

from extraneous sources, and electronic noise in the detector circuit. In addition, 

the calibration curves were inherently nonlinear due to spatial variation of light 

intensity in the vertical sheet of light produced by the cylindrical lenses. If the 

background signal changes during an experiment for reasons not related to the mo­

tion of the dye interface, an error may result using the measured calibration curves. 

Another problem faced by Hammack (1980) was that mixing of the fluids at the 

interface generated a high frequency signal, which was superimposed on the signal 

corresponding to the internal wave. This limited the amplitudes of the internal 

waves studied to those with a stable density interface. 

For studying internal wave breaking and mixing, laser-induced fluorescence 

(LIF) has been used by other researchers as a non-intrusive method to measure 

fluid concentrations across a density interface with temporal and spatial resolution 

unattainable by conventional methods. In this technique, a laser fluorescent dye 

( e.g. Rhodamine 6G) is premixed with either the upper or the lower fluid. The 

dye fluoresces when excited by light in the visible spectrum at wavelengths charac­

teristic of the dye. For a range of dye concentration, the fluorescence intensity is 
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proportional to the concentration of the dye, which is in turn related to the local 

concentrations of the dyed fluid. The instantaneous fluorescence signal is measured 

at a large number of points across the density interface by a scanned linear pho­

todiode array and recorded in real time by a high speed data acquisition system. 

Recently, Hannoun and List (1988) used the LIF technique to study turbulent struc­

ture at a density interface of water and salt water; their paper also contains a survey 

of earlier work by other investigators. 

An interfacial wave gage was developed in this study to measure internal wave 

amplitudes at a density interface. As in Hammack's laser-optics detector system, 

movement of the interface was detected by using a dyed fluid to partially block an 

incident sheet of light. But instead of producing the sheet of light by a system 

of cylindrical lenses and measuring the intensity of the light transmitted, the new 

instrument used a single scanning laser beam. The use of a scanning beam allowed 

the extent of light passing through the clear fluid to be measured in time, the 

motion of the dye interface did not depend directly on the change in the intensity of 

the light detected by the photodiode, hence eliminating problems inherent in light 

intensity measurements. 

We now describe a simple method to generate a moving beam to sweep through 

the fluid vertically in a continuous fashion. Consider a light beam striking the face 

of a rotating prism as shown in figure 4.1.2. The refracted beam that emerges is 

parallel to the incident beam but is laterally displaced by an amount h depending 

upon the angle of incidence a and the size of the prism. The displacement h is 

obtained from Snell's law: 

h 
(

sin a _ -;=s=in=2=a==) 
2Jn2 - sin2 a 

(4.1.1) 

where R is the distance separating the two opposite faces through which the light 

beam enters and leaves the prism, and n is the index of refraction of the prism's 
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material. If the distance between the other two opposite faces is d, the range of a is 

given by 0::; o:::; tan-1 d/£. In figure 4.1.3 the ratio of the beam displacement, h, to 

the dimension, £, is plotted against the angle of incidence a. Note that the relation 

is almost linear for small a. If two opposite faces of the prism are masked and the 

moving beam is focused onto a photodiode, the output from the photodiode when 

displayed on an oscilloscope will look like a rectified rectangular wave as shown in 

figure 4.1.4. The voltage is proportional to the intensity of the transmitted beam. 

Twice in a complete revolution of the prism the voltage drops out for a period 

of time that equals the duration the incident beam is striking a masked surface 

of the prism. For the transmitted beam the prism's geometry can be chosen to 

limit the maximum angle of incidence ( e.g., o: ::; 20°, with d/ e :s; 0.36) so that the 

scan is approximately linear in time. The dimension of the scanned field will be 

determined by the size of the prism, and the prism's rotational speed will determine 

the scanning rate. 

The light beam from a 0.5 mW helium-neon laser (Spectra-Physics Model 155) 

was aligned so that it was perpendicular to the glass walls of the wave tank (fig­

ure 4.1.4). The beam created by the rotating prism, after traversing the tank, 

was focused by a piano-convex lens (200 mm focal length, 125 mm diameter) onto a 

photodiode, which provided a voltage that was proportional to the intensity of the 

incident beam. By dyeing the salt water dark blue, a portion of the active duration 

of the scanning laser beam was blocked as the interface rose or fell during wave 

motion. The duration was a maximum when the interface did not rise to the lowest 

position of the scanned field, and it was a -minimum when the interface rose to or 

above the top of the scanned field. An example of this is shown in figure 4.1.4 for 

a partially risen interface; the oscilloscope display was only for viewing the instan­

taneous signal during the experiment. The time duration of the unblocked signal 

was measured using a digital counter with a 10 MHz clock, the digital signal was 



- 134 -

i-----1 

a 
a 

h 

h 

! 
d 

j 

Figure 4.1.2. Schematic drawing of a rotating prism. 
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using ( 4.1.1). 
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converted into an analog output for recording by a microcomputer. 

Two lucite prisms were constructed for this study. A summary of the charac­

teristics of the prisms is given in table 4.1.1. Prism 1 was generally used for small 

amplitude internal waves, the small angles of incidence gave approximately linear 

calibration. The prism was mounted to an electric motor (Bodine Electric Company 

Type NSH-12) with the speed controller (Minarik Electric Company Model SL 14) 

set on high speed in all the experiments. The frequency of the rectangular wave 

as shown in figure 4.1.4 was measured by a frequency counter to be~ 94Hz, this 

implies a prism's rotational speed of 2820 rpm. Thus the prism completed one scan 

of the interface in~ 1/94 sec, which was sufficient for the long period of the internal 

waves in the trench. 
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Characteristics Prism 1 Prism 2 

thickness (cm) 1.27 1.27 

length, i. (cm) 13.0 10.0 

width, d (cm) 7.6 17.0 

maximum angle of 
incidence of laser beam, 

amax 30° 60° 

maximum vertical 
displacement of 
incident beam, hmax 

2.4 (cm) 4.05 

Table 4.1.1. Characteristics of rotating prisms. 

The interfacial wave gage was mounted to a frame that was shaped like an 

inverted U with the legs on the outside of the wave tank (figure 4.1.5), the frame 

was supported by a carriage that rode on the wave tank carriage rails. The wave 

gage was calibrated by raising and lowering the frame predetermined distances when 

the fluids were quiescent. Typical calibration curves for the two prisms are shown 

in figures 4.l.6a and 4.l.6b; the ordinate is the reading on a point gage attached to 

the U frame, and measured relative to the· support carriage. A larger reading on 

the point gage corresponded to a lower position of the U frame and thus a shorter 

duration of the scanning beam striking the fluid above the dye interface. After 

calibration, the U frame was fixed in a vertical position where a lower portion of 

the beam's scanned field was blocked by the dyed salt water. Subsequent changes 
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Figure 4.1.5. Overall view of the interfacial wave gage. 

in the gage's output signal were due to movement of the interface as the result of 

molecular diffusion and/ or wave motion. 

The interfacial wave gage depended for accuracy on the two-dimensionality of 

the waves, and its operation was limited to a stable density interface. When the 

amplitudes of the internal waves were sufficiently large, vortex-induced mixing oc­

curred at the interface. This induced a high frequency signal superimposed on that 

corresponding to the internal waves as in Hammack's (1980) laser-optics detector 

system. However, with a stable interface, the interfacial wave gage had extremely 

low noise-to-signal ratio. When the wave tank was filled only with fresh water the 

laser's scanned field was completely unblocked. It was found that the analog output 

produced by the gage could remain stable for an indefinite period of time. 
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Figure 4.1.7. Locations of dye interfaces in relation to the density profiles at various 
times in a typical experiment. 

The interfacial wave gage measured movement of the dye. To determine the 

location of the dye interface in the quiescent fluid, the interfacial wave gage was 

raised until the top of the laser scanned field coincided with the free surface and 

the reading on the point gage was recorded. The wave gage was then lowered to a 

position where the duration of output voltage detected by the photodiode started 

to decrease. This was due to the laser beam previously scanning clear fresh water 

intercepting the dye interface, and a portion of the active duration of the scanning 

beam was blocked by the dyed fluid. This duration change could be observed on 

the oscilloscope display as shown in figure 4.1.4, but was more easily detected by 

a voltmeter connected ~o the analog output of the digital counter. Knowing the 

dimension of the scanned field and the vertical displacement of the wave gage, the 
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location of the dye interface relative to the quiescent free surface was determined; 

typical examples are shown in figure 4.1. 7. The ordinate is the distance below the 

still water surface, the total depth of the stratified fluid in the trench region was 

30.4 cm and the depth of salt water was 3.8 cm. The initial stratification was pre­

pared by withdrawing fluid from the interface after the filling process. The density 

profile and the location of the dye interface were measured initially and 7 hours 

later, and about 15 minutes after the experiment was conducted; the measurement 

of the density profile is described in § 4.1.5. It is seen in figure 4.1. 7 that when the 

fluid is quiescent, the interfacial wave gage always sees the dye interface close to the 

top of the diffuse salinity interface. 

4.1.4 The Surface Wave Gage 

Surface wave amplitudes were measured using resistance wave gages. A pho­

tograph of a typical wave gage is shown in figure 4.1.Sa. The wave gage consisted 

of a pair of stainless steel rods 0.74mm in diameter, 9cm long, and spaced 0.5cm 

apart. The steel rods had sufficient stiffness to allow them to be supported at only 

one end; the other ends penetrated the water surface. The steel rods were insulated 

from each other at the support, but allowed a current to pass between them when 

the other ends were immersed in water. Under operating conditions the wave gage 

behaved as a variable resistor, which formed part of a Wheatstone bridge in a car­

rier preamplifier (Hewlett Packard 8805A) as shown in figure 4.1.Sb. The resistance 

between the two steel rods was proportional to the depth of immersion in water. 

The Wheatstone bridge received a 2400 Hz, 4.5 volt excitation from the preampli­

fier. After balancing the bridge when the fluid was quiescent, subsequent changes in 

water surface elevation unbalanced the bridge circuit and induced an output voltage 

proportional to the change in the depth of immersion of the wave gage relative to 

its balanced position. The preamplifier monitored this output voltage which, after 
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demodulation and amplification, was recorded by a microcomputer. 

The wave gage was mounted to a stepping motor (Hurst Model LAS, 768 steps 

per inch) and used in conjunction with a Hurst stepping motor controller, which 

permitted both continuous stepping at an adjustable frequency and single steps. 

The vertical position of wave gage could be adjusted to an accuracy of~ 1/30 mm. 

A more severe problem came from signal drifting in the gage output voltage. The 

measured surface wave amplitudes were less than 4mm in most of the experiments. 

A small drift in the wave record of a fraction of the measured wave amplitude was 

noticeable on occasions. This had little effect on the overall wave height because the 

wave gage calibrations were found to be approximately linear. To calibrate the wave 

gage, the Wheatstone bridge circuit first was balanced at a fixed gage immersion, 

and the gage output voltage, which was very nearly equal to zero, was recorded by 

a microcomputer. Then the wave gage was withdrawn to a known distance from 

the balanced position by means of the stepping motor and controller. The distance 

withdrawn and the gage output voltage were recorded, the voltage change relative 

to the balanced gage was computed and this value was used in constructing the 

calibration curve. To obtain the next calibration point the gage was returned to its 

balanced position and a "zero" voltage was recorded again, then the gage was im­

mersed to the same distance as the distance last withdrawn and the microcomputer 

computed the change in the gage output voltage relative to the voltage recorded 

the last time the gage was at a balanced position. This procedure was repeated for 

various withdrawals and immersions to obtain the calibration curve. Thus signal 

drifting was corrected for in the calibration. Figure 4.1.9 shows two such calibra­

tion curves for the same gage obtained from two different experiments conducted on 

consecutive days. The two curves are almost identical and these results are typical 

of the gage calibrations. There was usually a time gap of 1.5-2 hours between the 

calibration of the gage and the start of the experiment; during this period the gage 
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Figure 4.1.8. (a) Resistance wave gage and stepping motor, and (b) Circuit diagram 
for resistance wave gage (after Raichlen, 1965). 
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Figure 4.1.9. Calibrations of a wave gage from two experiments after correction for 
signal drifting. 

output voltage had drifted. All the wave gages were rebalanced just before initiat­

ing the motion of the wave generator but the calibration curves initially obtained 

were used for data analysis. From the calibration curves shown in figure 4.1.9 this 

procedure was satisfactory. Signal drifting of the gage was generally small during 

the short period of the experiment ( ~ 17 min). 

It was found that tr.e proximity of the two wave gages placed above the trench 

affected the gage output voltages when one of them was raised or lowered while the 

other remained stationary. For this reason these two gages were moved together 

during calibration to simulate the experimental condition; the wavelength of the 

surface waves in the tank was so long that surface elevation above the trench was 

almost level. 
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Figure 4.1.10 Views of the miniature four-electrode conductivity probe ( after Head, 
1983). 
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4.1.5 The Conductivity Probe 

Density stratification was inferred from conductivity measurements that were 

made using a miniature four-electrode conductivity probe. The probe was cali­

brated using thirteen "standard" salt water solutions with densities ranging from 

0.998gcm-3 (fresh water) to about l.065gcm-3 (salt water). The solutions were 

prepared at the same temperature of the stratified fluid in the trench (20°C), and 

their exact densities were determined by weighting 100 cm3 of each solution in a 

volumetric flask. The probe was attached to a point gage. The electrode consisted 

of two pairs of platinum wires supported on a tapered glass tube, and the dimen­

sions of the sampling volume were extremely small (figure 4.1.10). The probe had 

the properties of small spatial average, rapid time response, and stable calibration 

designed for accurate measurements of conductivity fluctuations in salt-stratified 

water flows. A typical calibration curve is shown in figure 4.1.11. A detailed dis­

cussion of the probe can be found in Head (1983). The electronic circuit for the 

conductivity probe was obtained from Imberger (1986). 

4.1.6 Data Acquisition and Control 

A LSI-11/23 microcomputer (Digital Equipment Corporation) running RT-11 

V4.0 with a 256KB RAM and an A/D-D/A interface board (Datel Model ST-LSI) 

was used to acquire data for the experimental investigation. The interface board 

had a digitizing error of~ 0.005 volt. 

During the experiment, data were collected from up to 5 channels (1 for the 

wave plate, 4 for the wave gages) simultaneously. The MACRO routines that per­

formed the data sampling were written by Skjelbreia (1982). Each run lasted for 

approximately 17 minutes. The sampling rate was 16.5 Hz per channel. 

The computer storage system included a 30 MB winchester disk and a 0.5 MB 

floppy disk system. Data were transferred to a PDP-11/24 computer for analysis. 
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Figure 4.1.11. Typical conductivity probe calibration. 

The LSI-11/23 microcomputer was also equipped with a DRVll-J 64 line par­

allel interface, which was used to transmit wave plate trajectory data to the function 

generator memory. 

4.2 Experimental Procedures 

Referring to figure 5.1.1 for the layout of a typical experiment, each experiment 

with stratified fluid in the trench consisted of four consecutive steps: 

(1) Filling and Stratification: The trench was stratified with fresh water and salt 

water with a density difference of~ 5%. The wave tank was first filled with fresh 

water to a depth of 15.2 cm above the false bottom. Salt water was then introduced 

beneath the fresh water through a port in the bottom of the trench until the depth 

of salt water was about 2.5 cm above the desired depth h2. This extra depth of fluid 
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contained the diffuse salinity interface created by the filling process. To reduce 

the thickness of the diffuse salinity interface, a conductivity probe was calibrated 

using standard solutions and placed at a distance hz above the trench bottom, a 

small plexiglas tube withdrew fluid from the diffuse layer until the probe gave a 

density reading of 1.025 gcm-3 • Thus, the center of the diffuse salinity interface 

was located at the desired vertical distance above the trench bottom. The density 

profile was measured and the location of the dye interface was determined using the 

interfacial wave gage. The process of selective withdrawal reduced the thickness of 

the interface to ~ 0.5 cm. The thickness of the interface was defined as the ratio 

of the maximum density difference between the two layers to the maximum density 

gradient in the diffuse salinity interface. Then the density interface was allowed 

to diffuse to a thickness specified for the experiment. In the experiments in which 

a thin interface was used, calibration of the wave gages started immediately after 

the density profile was measured. The processes of filling the trench and selective 

withdrawal typically took a total of 3 hours. This procedure ensured standard 

preparation of the stratified fluid in the trench in each experiment. The actual 

times of measurement of the density profiles were recorded in each experiment. 

(2) Calibration Step: About 1.5 hours before the estimated time for running 

the experiment another density profile and the new location of the dye interface 

were obtained; this step was bypassed in experiments with thin interfaces. Then 

the surface and interfacial wave gages were calibrated. 

(3) Run Step: The wave generator was started, and at the same time data 

acquisition by the microcomputer was initiated. The time histories of the wave 

plate motion and of the motions of the water surface and the interface were recorded 

simultaneously from the start of the wave generator until the internal waves in 

the trench had reached steady-state conditions. This step took approximately 17 

minutes. 
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The density profile and the location of the dye interface were measured again 

about 15 minutes after the wave generator was stopped. Then the wave generator 

was calibrated; this was not done before the experiment to avoid disturbing the 

stratified fluid in the trench. 

(4) Data Reduction Step: Data analysis was performed on a PDP-11/24 com­

puter. The software chose the best least-squares polynomial fit ( up to the fourth 

degree) to the calibration curves and reduced the voitages recorded during the ex­

periment to wave amplitudes and density stratifications. 
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5. RESULTS AND DISCUSSION 

5.0 Introduction 

The primary objective of this study is to investigate various aspects of the 

dynamics of internal wave motion in a stratified rectangular trench due to surface 

waves, that is, the effects of surface wave characteristics, density stratification, and 

viscous dissipation on internal wave generation in a trench. Also of interest are 

the effects of a stratified trench on the incident surface waves. Several theoretical 

models have been constructed that allow us to isolate individual physical processes. 

However, theoretical models cannot include all the physical effects found in real 

fluids; therefore, experiments were conducted to determine whether the assumptions 

made to develop the theoretical models are valid. From such a comparison we can 

determine whether the important physical effects are included in the models. Then 

if the experiments confirm the theories, there would be confidence that similar 

models could be used to treat other fl.ow conditions. 

This chapter is organized as follows. In § 5.1 some important considerations 

involved in planning the experimental investigation are discussed. In§ 5.2 solutions 

based on theoretical models developed for a laboratory constant-depth channel and 

trench configuration are compared to experimental measurements. Finally, in § 5.3 

the steady-state responses of a two-layer stratified fluid in a rectangular trench to 

normally incident surface waves in an infinite region outside the trench are obtained 
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for several specific flow conditions. 

5.1 Experimental Considerations 

5.1.1 End Reflections in Wave Tank Experiments 

The experiments were conducted in a wave tank 36.6m long, 0.61 m deep, and 

0.394 m wide with glass walls throughout. Waves were generated at one end of the 

tank by a bulkhead wave generator that moved in simple-harmonic motion con­

trolled by an electrohydraulic servo-system. The system accepted an input voltage 

from a memory device that could store a 1000 point voltage-time history; the time­

displacement history of the mechanical movement was proportional to the time­

voltage history of the input signal. A horizontal plywood false bottom was placed 

in the wave tank to create a rectangular trench 0.6m long and 0.152m deep. The 

upstream edge of the trench was located at a distance of 19.15m from the mean 

position of the wave generator and an absorbing beach was placed at the other end 

of the tank to reduce the reflection of waves transmitted past the trench from the 

end of the tank. Thus, initially we attempted to model the condition of a trench in 

an infinite region. In early experiments, it was found that, due to the long waves 

used, the amplitudes of the reflected waves from the beach were greater than 30% 

of those of the incident waves. A method to eliminate beach reflection from the 

measured wave system is described in Dean and Ursell (1959). In this method, 

the amplitudes and phases of the surface wave and internal wave components are 

determined from wave measurements using linear superposition. Then this wave 

system is theoretically transformed into another wave system in which the ampli­

tude of the reflected wave from the beach is zero. In other words, the contributions 

of beach reflection are subtracted from the original wave system. Thus, the wave 

components of the transformed system are directly comparable to the theoretical 
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predictions. This method was not used in this study because nonlinear effects were 

important in some experiments, hence the principle of superposition was not valid. 

The ratio of the phase speed of the surface wave to that of the internal wave was 

of 0( J p2/ 6.p ), where 6.p = P2 - Pl, hence it also was not feasible to terminate 

the experiments before the reflected waves from the beach arrived at the trench, 

because the internal waves in the trench had not reached steady-state conditions. 

Because of the reflections from the beach and, thus, the uncertain boundary 

condition at the beach, the theoretical results using a model consisting of an infi­

nite ocean and a rectangular trench could not be compared to these experimental 

results. Therefore, a different approach was taken to investigate this problem. The 

theoretical model treated was changed from one consisting of an infinite ocean to 

one that could be treated more easily experimentally. Then if the experiments con­

firmed the theory, there would be confidence that a similar analytical model could 

be used to treat the case of a trench in an infinite region. In the model that was 

chosen, the wave tank was terminated by a vertical, perfectly reflecting wall located 

at the downstream edge of the trench (figure 5.1.1). The locations of the surface 

and the internal wave measurements are shown in figure 5.1.1 and labelled as 1, 2, 

and 3 for the surface wave gages and 4 for the interf acial wave gage. Their exact 

locations are given in table 5.1.1. This problem could be formulated theoretically 

and the results compared directly to the experimental measurements to establish 

the possibility of using the same theoretical approach for the case with the infinite 

region. 

5.1.2 The Choice of Channel and Trench Dimensions 

The dimensions of the trench (0.6m long, 0.152m deep) were chosen based on 

theoretical calculations using the two-layer model. Fresh water and a salt water 

solution were used in this study, with a normalized density difference of::::::: 5%. This 
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Figure 5.1.1. Experimental arrangement and locations of wave measurements. 

difference was sufficiently large to provide a stable stratification during filling and 

during resonant conditions in the trench, yet sufficiently small to provide an ade­

quate test of the theoretical results based on small density difference. In addition, it 

was reasonably representative of natural conditions. The primary consideration in 

determining the trench <iimensions was that internal waves of various characteristics 

could be generated in the trench within the capacity of the wave generator. Wa­

ter depth in the constant-depth channel was 15.2 cm in all the experiments. Two 

different depths of the heavier fluid in the trench were used in the experimental 

investigation: (i) h1 = 22.8 cm, h2 = 7.6 cm; and (ii) h1 = 26.6 cm, h2 = 3.8 cm. In 

(i), the lowest mode of standing internal waves in the trench had a natural period 

of oscillation :::::: 7.8 sec. The generated internal waves were similar to the Stokes 
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Wave Gage X (m) 

1 -14.15 

2 0.01 

3 0.585 

4 0.01 

Table 5.1.1. Locations of wave measurements. 

second order finite amplitude surface waves (see, Thorpe 1968). In (ii), the depth 

of the lower fluid was small compared to the wavelength of the internal waves so 

that the generated internal waves were shallow water waves. The wave period for 

the lowest mode of oscillation of the internal waves in the trench was ~ 10 sec. 

All the experiments with stratified fluid were conducted with the lowest mode of 

internal oscillations in the trench. Note that the standing surface waves, which 

had wavelengths much longer than those of the internal waves within the trench, 

resonated at the natural frequencies of oscillation of the constant-depth channel. 

A second consideration in determining the trench dimensions was concerned 

with placing the trench within one module of glass panels (5ft) of the side walls of 

the wave tank so that we had an unobstructed view of the trench and a portion of 
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the constant-depth channel. 

Conditions within the trench were governed by surface waves in the fresh water 

filled constant-depth channel, which was 19.15m long measured from the mean 

position of the wave plate to the upstream edge of the trench. A typical experiment 

started with quiescent fluid in the wave tank, a sinusoidal motion of the wave 

generator was maintained until a steady-state condition had been established in the 

trench. Steady-state condition is, by definition, considered to have taken place at 

time t when the relative variation of all positive extrema along the wave records is 

less than 5% from time t onwards. An estimate of the time required to establish 

a steady-state condition may be obtained by considering surface wave motion in a 

constant-depth channel without the trench. In this analysis, the origin is taken at 

the mean position of the wave generator. The surface elevation at time t after start 

of the wave generator (see Appendix) is: 

( ) 
__ Skhcosk(x-L) -iut 

rJ x' t - 2 sin k L e 
00 nSh (kL) 2 

X st 
+ J; (-1) L (kL)2 - (mr)2 cosmr( L - l)e n (5.1.1) 

where Sis the stroke of the wave generator, his the water depth, L is the channel 

length, and u represents the circular frequency (21r /T with T the wave period). The 

wave number k is: 

(5.1.2) 

wherein v is the kinematic viscosity, and 2b is the width of the channel. The first 

term in (5.1.1) represents the steady-state solution and the summation term is the 

transient excitation that decays with time. The term Sn is: 

(n=l,2, ... ) (5.1.3) 
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where an is the resonant frequency of the channel given by the inviscid theory: 

(n = 1, 2, ... ) (5.1.4) 

and Ela n is the viscous correction: 

(n=l,2, ... ). (5.1.5) 

The denominator in (5.1.4) is ~ L for h/ L ~ 1. Thus the interval between 

two wave periods of resonant oscillation Tn and Tn+l is~ Tn/(n + 1). Steady-state 

condition is considered to have been established when the amplitude of the transient 

excitation has decreased to less than 5% of its initial value, that is, e~[snt] < 0.05 in 

(5.1.1) where ?R denotes the real part of a complex number. From (5.1.3)-(5.1.5) the 

number of oscillations required to establish steady-state condition near resonance 

is found to be: 

(5.1.6) 

Because the trench dimensions were much smaller than the wavelength of surface 

waves in the wave tank, addition of the trench was not deemed to change the surface 

wave condition in the wave tank significantly. This was confirmed by both theory 

and experiment, which will be presented later. For an estimate of the time required 

to establish a steady-state condition in the wave tank we may neglect the change 

in water depth in the trench region and consider the entire working section of the 

wave tank between the mean position of the wave plate, and the end wall, to be of 

constant depth h, that is, L = 19.75 m. In the experiments with stratified fluid in 

the trench there were approximately two surface wavelengths in the constant-depth 

channel. From (5.1.4), the wave period of resonant oscillation of the constant-depth 
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channel corresponding ton= 4, with L = 19.75m and h = 0.152m, is ~ 8.1 sec. 

With 2b = 0.394 m and v = l.O x 10-6 m2sec-1 this implies ~ 100 oscillations of the 

wave generator to establish a steady-state condition in the wave tank. This result 

is independent of the length of the channel L for a given value of an. However, 

surface waves of the same wave period correspond to a smaller modal number n in 

a shorter channel. Because the time interval between successive modes of resonant 

oscillation of the main channel given by (Tn - Tn+I) increases with decreasing n, 

with a shorter channel a resonant condition for the internal waves in the trench 

that corresponds to an off-resonant condition for the surface waves in the constant­

depth channel may be found. With this arrangement, the internal wave will be 

much more sensitive to variations of wave period than the surface wave. This is 

important because the major objective in this study is to investigate the frequency 

dependence of the internal motions in the trench due to surface waves. 

5.2 Comparison of Theoretical Results with Experiments 

A general description of all the experiments conducted in this study is given 

in table 5.2.1, and a summary of the nominal experimental conditions is given in 

table 5.2.2; the exact conditions for these experiments will be presented later. To 

illustrate the different physical effects involved in wave-trench interaction, the pre­

sentation and discussion of the results of the laboratory investigation are divided 

into five sub-sections. The results of surface wave motion in a constant-depth chan­

nel filled with fresh water without the trench at the end of the channel are presented 

in § 5.2.1. In these experiments (Series H) the rectangular cavity in the trench re­

gion was filled in by a plywood false bottom. Thus the length of the constant-depth 

channel was L = 19. 75 m measured from the mean position of the wave plate to 

the end wall. These experiments were conducted because the motion of the strati-
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Experiment 
Description Series 

G 
fresh water in the constant-depth 
channel and trench 

H fresh water in the constant-depth 
channel without the trench 

fresh water in the constant-depth 

I 
channel, and a deep layer of salt 
water in the trench with a thin 
diffuse salinity interface 

same as Series I, but with a larger 
J thickness of the diffuse salinity 

interface 

fresh water in the constant-depth 

K 
channel, and a shallow layer of 
salt water in the trench with a thin 
diffuse salinity interface 

damping of standing internal wave 

L 
in a rectangular basin partially 
filled with a stratified fluid of water 
and salt water 

same as Series K, but with a larger 
M thickness of the diffuse salinity 

interface 

Table 5.2.1. General description of experiments performed. 
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Experiment T s L J. d h h1 h2 0 P1 P2 
Series (sec) (mm) (m) (m) (cm) (cm) (cm) (cm) (cm) (gtcm3) {gtcm3) 

G 7.0-9.0 4.8-5.0 19.15 0.6 15.2 15.2 30.4 0.0 1.0 

H 7.0-9.0 4.6-5.0 19.75 15.2 1.0 

I 7.3-8.2 4.6-29.5 19.15 0.6 15.2 15.2 22.8 7.6 1.3 1.0 1.05 

J 7.8-8.4 3.3-14.0 19.15 0.6 15.2 15.2 22.8 7.6 2.5 1.0 1.05 

K 9.6-10.8 4.8-114.3 19.15 0.6 15.2 15.2 26.6 3.8 1.3 1.0 1.05 

L 7.8, 10.0 0.6 22.8, 26.6 7.6, 3.8 1.0 1.05 

M 10.0-11.2 4.9-50.0 19.15 0.6 15.2 15.2 26.6 3.8 2.5 1.0 1.05 

Table 5.2.2. Summary of experimental conditions. The numbers presented in the 
table are nominal values. 

fied fluid in the trench is directly related to the conditions of the surface waves in 

the fresh water filled constant-depth channel. Hence, it is important to investigate 

first the surface wave motion in the constant-depth channel without the trench. By 

comparing these measurements with the results of the experiments with the trench, 

we could determine the effects of the trench on the surface wave. The results of the 

experiments with fresh water in both the trench and the constant-depth channel 

(Series G) are presented next in § 5.2.2. The experimental set-up was as shown 

in figure 5.1.1 except that fresh water filled the trench in these experiments. The 

distance between the mean position of the wave plate and the upstream edge of 

the trench was L = 19.15 m, and the width of the trench was f._ = 0.6 m. In § 5.2.3 

the results of the experiments with a fresh water-salt water fluid in the trench and 
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fresh water in the constant-depth channel are presented. The density difference 

between the two fluids was ~ 5% in these experiments. The depth of the upper 

fluid (water) was h1 = 22.8cm, and the depth of the lower fluid (salt water) was 

h2 = 7.6 cm. The depths h1 and h2 respectively, were measured from the undis­

turbed water surface and the trench bottom to the center of the diffuse salinity 

interface. Two sets of experiments were conducted with the above conditions in 

the trench: (i) 8 ~ 1.3 cm (Series I); and (ii) 8 ~ 2.5 cm (Series J), where 8 is 

the thickness of the diffuse salinity interface defined as the ratio of the maximum 

density difference between the two fluids to the maximum density gradient in the 

diffuse salinity interface. From the results of these experiments we could determine 

the effects of a density transition region on the internal wave motion. In § 5.2.4 we 

present the results of those experiments where the total depth of the stratified fluid 

in the trench region was kept the same (i.e., h1 + h2 = 30.4cm), whereas the depth 

of the lower fluid ( salt water) was reduced to h2 = 3.8 cm. Two sets of experiments 

were conducted, with 8 ~ 1.3 cm (Series K), and with 8 ~ 2.5 cm (Series M), respec­

tively. A major objective of these experiments was to determine whether non-linear 

processes are important in the generation of internal waves in a submarine trench 

by surface waves, or whether the linear models developed in Chapter 3 were suffi­

cient. In§ 5.2.5 the results of the decay of standing internal waves in a rectangular 

basin are presented. In these experiments a standing internal wave was generated 

in the trench as before. After the internal wave motions in the trench had attained 

steady-state conditions, a gate was lowered at the upstream edge of the trench to 

separate the trench region from the constant-depth channel. In this manner, the 

effects of boundary friction on internal wave motions in the trench could be studied 

separately. 
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5.2.1 Experiments with Fresh Water in a Constant-Depth Channel 

In these experiments, the rectangular trench as shown in figure 5.1.1 was filled 

in by a plywood false bottom; the gaps between this section and the adjacent false 

bottom and the side walls of the wave tank were sealed by polyethylene rope. The 

length of the constant-depth channel L was 19. 75 m, with a water depth h of 15.2 cm. 

Note that L is defined as the length of the constant-depth region measured from 

the mean position of the wave plate to the upstream edge of the trench, therefore 

without the trench L is the length of the constant-depth region between the mean 

position of the wave plate and the end wall, that is, L = 19. 75 m. Waves were 

generated by a bulkhead wave generator that moved in simple-harmonic motion 

with a constant stroke S = 4.8 mm. A series of experiments were conducted for 

wave periods varying from 7.0 sec to 9.0 sec. 

The response of the surface waves is shown in figure 5.2.1 where the wave height 

at the end wall of the channel, H 3, normalized by the stroke of the wave machine, 

S, is plotted as a function of the product of the wave number, k, and the length 

of the channel, L. The wave height is defined as the distance between the positive 

and the negative extrema of the surface elevation at steady-state condition. The 

wave number k is calculated using the dispersion relation for a homogeneous fluid 

( equation 3. l.25a) with the wave period T measured in the experiments. The linear 

inviscid solution shown in figure 5.2.1 is constructed using potential function formu­

lation in a similar manner to the wavemaker problem of Ursell, Dean and Yu (1960). 

The only difference between the two problems is that the horizontal velocity must 

vanish at the end wall in this case, while in the wavemaker problem the channel 

extends from the oscillating plane of the wave generator to infinity. The surface 

elevation of the standing wave at the end wall is given by: 

(5.2.1) 
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Figure 5.2.1. Variation of normalized wave height at the end wall with relative wave 
number for constant-depth channel conditions; h = 15.2 cm, L = 19. 75 m. 

wherein k, Ah, and kn, A~, (n = 1, 2, ... ) are given by (3.1.23) and (3.1.25). Equa­

tion 5.2.1 is the inviscid solution; notice that the solution is singular when kL = mr, 

(n = 1, 2, ... ). The comparable expression for ry3 with energy dissipation is the 

same as ( 5.2.1) but the determined wave number k using the inviscid theory ( equa­

tion 3.1.25a) in the denominator term of sinkL should be replaced by the complex 

wave number, which includes both the attenuation rate and the shift in wave num­

ber due to viscosity. The wave number including the viscous effects is given by 

(3.3.45c) with (3.3.49) and (3.3.78). It is recalled from§ 3.3 that energy dissipation 

in the homogeneous fluid is considered to take place in the boundary layers adjacent 

to the side walls and at the channel bottom. In addition, the flows in the boundary 

layers are assumed to be laminar. 
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At resonance, the wavelength of the standing waves in the channel is given by 

,\ = 2L/n, thus kL = mr, (n = 1,2, ... ). Using the inviscid theory, the wave 

period for the resonant mode shown at kL = 41r is found to be To~ 8.1 sec, which 

is about 0.3 sec greater than the wave period corresponding to the lowest mode 

of oscillation of the internal waves in the trench for the experimental conditions 

of Series I shown in table 5.2.2. The measured amplitude response is somewhat 

smaller than the theoretical curve for the damped case, and the measured resonant 

peak at T = 8.226 sec ( kL = 12.37) is shifted from the inviscid natural period of 

oscillation of the channel by approximately 6%, and from the viscous prediction by 

a somewhat smaller amount; these are compared to the interval between adjacent 

resonant peaks. These results indicate that energy dissipation in the channel was 

larger in the actual fluid, though the difference between experiments and theory 

was small. 

In figure 5.2.2, the variation of the wave extrema, normalized by S, is plotted as 

a function of kL near the inviscid natural resonant wave period of 8.1 sec. Because 

of small amounts of drifting in the wave gage analog output during the experiment, 

the mean water level obtained from the wave records was not necessarily equal 

to zero. Thus, the amplitudes of the wave crest and the wave trough at steady­

state conditions were evaluated with respect to the computed mean water level. 

Nonlinear effects are evident in these results, the maximum ratio of the positive 

extremum to the negative extremum measured at the end wall was about 1.9 at a 

wave period of T = 8.2 sec ( kL = 12.41 ). for standing surface waves in a fluid of 

depth h, Tadjbakhsh and Keller (1960) developed a finite amplitude wave theory 

to the third order. The equation of the standing wave profile to second order is: 

17 = a sin o-t cos kx + ia2 k ( T - y-I + y-
3 

( T 2 
- 3) cos 2o-t) cos 2kx (5.2.2) 
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Figure 5.2.2. Variation of wave extrema at the end wall with relative wave number 
near resonance at kL = 41r; h = 15.2 cm, L = 19. 75 m. 

and the dispersion relation to third order is: 

(5.2.3) 

where a is the wave amplitude of the linear solution, k is the wave number, a- is the 

circular frequency, h is the fluid depth, and 7 is written for tanh kh. The above 

expansion is valid if the ratio of the coefficient of the second order term to that of 

the first is much less than unity, that is, if: 

ak ( 7 - 7-1 + 7-3 ( 7 2 - 3)) 
8 ~ 1. ( 5.2.4) 

If kh ~ l, equation (5.2.4) reduces to: 

(5.2.5) 
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where H = 2a is the wave height of the linear solution. 

The difference between the dimensionless parameter, H / k 2 h 3 , and the U rsell 

number is of some importance. The Ursell number is defined as Ur = Hl2 /h3, 

where H, l, and ho refer to a characteristic wave height, wavelength and depth. 

Equation 5.2.2 is obtained by expanding the standing wave profile in the form of a 

power series taking the wave slope ka as the perturbation parameter. The analysis 

is similar to the expansion technique used by Stokes for progressive waves of finite 

amplitudes. When kh « 1, the dimensionless parameter H/k 2 h3 is proportional 

to the ratio of the coefficient of the second order term in (5.2.2) to that of the 

first. However, when the value of kh is so small that H / k 2 h3 is of order unity 

(5.2.2) must become invalid, and a different expansion procedure that assumes long 

waves is necessary. It is well known that for long waves whose wavelengths are 

large compared to the water depth the magnitude of the nonlinear terms is given by 

the wave height parameter, H /ho, and the magnitude of the vertical acceleration is 

indicated by the dispersive parameter, h5/l2• Nonlinear effects result in the wave 

crest moving faster than the leading edge, hence wave breaking will eventually 

occur. On the other hand, vertical acceleration results in long waves travelling 

faster than short waves, hence a non-sinusoidal wave will disperse into its spectral 

components as the wave propagates. The Boussinesq equations ( see, for example, 

Whitham, 1974) are derived by taking both the values of H/ho and h5/l2 small but 

of an equal order of magnitude, hence including the effects of finite amplitude and 

vertical acceleration as a first approximation, whose opposing effects allow waves of 

permanent form. Thus, the Ursell number measures the relative importance of the 

nonlinear effects to the dispersive effects. The dimensionless parameter H / k2 h3 may 

be regarded as another form of Ursell number when kh « 1 (with H/k 2h3 « 1). 

From (5.2.5), with h = 15.2cm, L = 19.75m, and k = 4r./L for the resonant 
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mode of n = 4, the condition that second order effects are negligible is found to be: 

H 
,; ~ 0.05. (5.2.6) 

The measured value of H/h at the end wall for T = 8.2sec (kL = 12.41) was about 

0.034, thus it is not surprising that second order effects were important in these 

experiments near resonance, where the wave heights were large compared to the 

water depth. A way from resonance the agreement between the experimental results 

and the linear theory is good. 

To further illustrate the characteristics of the surface waves near resonance the 

steady-state portion of the time history of the surface elevation at the end wall is 

shown in figure 5.2.3 for a range of relative wave frequency a-/ao, where a-o = 2n-/To 

with To = 8.1 sec corresponding to the predicted wave period for the resonant mode 

of kL = 41r using the linear inviscid theory. The ordinate is normalized surface 

elevation with respect to the stroke of the wave generator, and the abscissa is a 

dimensionless time. Note that L / ,.jgfj, is the time for a surface wave to travel 

from the wave plate to the end wall. Because L ~ 2,\ for this resonant mode, the 

abscissa is approximately equal to t/2T, which is half the number of oscillations 

generated by the wave machine. It is seen in figure 5.2.3 that the surface waves 

are almost sinusoidal away from resonance (see, for example, a/a-0 = 1.006). As a­

decreases, the crest to trough ratio of amplitude increases, a secondary oscillation 

appears behind the main wave before the frequency for the peak amplitude response 

( a-/a-o = 0.985) is reached. This secondary oscillation grows in amplitude as a- is 

further decreased past the resonant peak until it becomes equal in amplitude to the 

main wave. The two waves then merge together and eventually a nearly sinusoidal 

wave appears. This behaviour is similar to that observed by Lepelletier (1980); in 

that study the waves were those generated in a rectangular tank by moving the 

tank in an oscillatory manner. 
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Figure 5.2.3. Steady-state free surface motions at the end wall for relative circular 
frequencies near resonance at kL = 41r; h = 15.2 cm, L = 19. 75 m, S = 4.8 mm. 
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Figure 5.2.4. Time histories of free surface motion at the end wall as recorded 
experimentally for relative circular frequencies near resonance at kL = 41r; h = 
15.2cm, L = 19.75m, S = 4.8mm. 
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Figure 5.2.5. Time histories of free surface motion at the end wall for relative cir­
cular frequencies near resonance at kL = 41r, computed using (5.1.1); h = 15.2cm, 
L = 19.75m. 
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To illustrate the evolution of the standing surface waves in the wave tank the 

complete water surface time histories at the end wall from the start of the wave 

generator are presented in figure 5.2.4 as recorded experimentally for several wave 

frequencies near resonance. It is helpful to compare this figure with the theoret­

ical time histories obtained using the linear theory, which can be computed from 

the steady-state solution of (5.2.1) by Fourier superposition. However, the effort is 

much reduced if long waves are assumed in the wave tank. An analytical solution of 

the time history of the surface motion is given by (5.1.1); the solution is constructed 

using linear dispersive dissipative theory. Some computed time histories are shown 

in figure 5.2.5. Note that the scale of the ordinate is twice as large in figure 5.2.4 

as in figure 5.2.5. It is seen that the amplitude of the surface waves increases about 

every four oscillations initially. This is because near the resonant mode of kL = 41r 

there are approximately two wavelengths in the constant-depth channel. Thus, 

when the wave generator is first started, it takes approximately a time of 2T for the 

first wave of the progressive wave train (primary incident wave) to reach the end 

wall. There the wave train is nearly fully reflected (primary reflected wave); the 

reflection process preserves the phase of the incident wave. The primary reflected 

wave is reflected from the wave plate a time of 2T later (secondary incident wave). 

At resonance, the length of the channel is an integral multiple of half wavelength 

(L/>.. = n/2, n = 1,2, ... ) hence the primary incident wave and the secondary 

incident wave are in phase, and the two waves superimpose to increase the wave 

amplitude. But the combined wave does not arrive at the end wall until a time of 

2T later, when the wave record at the end wall shows a distinct change in the wave 

amplitude. In time, the tertiary and the higher order incident waves are also super­

imposed in phase, hence the wave amplitude at the end wall increases every four 

oscillations. However, the higher order incident waves have progressively smaller 

amplitudes due to viscous dissipation; thus, the wave motion eventually attains a 
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steady-state condition. Because at resonance the incident waves are always in phase 

at the end wall, beat effects are absent. ½'hen off resonance the wavelengths of the 

incident waves are not an integral multiple of >../2, thus the higher order incident 

waves superimpose at different phase angles ( either constructively or destructively) 

with the primary incident wave, therefore changing the wave amplitude at the end 

wall each time a new train of reflected waves arrives. The period of the beat is 

longer for smaller phase shifts between the incident waves, and this period becomes 

infinite at resonance. An interesting situation is shown in the top time traces of 

figures 5.2.4 and 5.2.5, respectively, for a/ ao = 1.095 and a/ ao = 1.114. In these 

cases, there are approximately two and a quarter wavelengths in the constant-depth 

channel. The secondary incident wave is 180° out of phase with the primary in­

cident wave. Because viscous effects take time to develop, the amplitude of the 

secondary incident wave is almost the same as that of the primary incident wave, 

hence the surface elevation at the end wall drops to nearly zero, four oscillations 

after the start of the wave generator. The tertiary incident wave is in phase with 

the primary incident wave, and the wave amplitude at the end wall increases again 

after another four oscillations. This process repeats itself but the higher order in­

cident waves have progressively smaller amplitudes due to viscous dissipation, thus 

the wave motion eventually attains a steady-state condition. 

In figure 5.2.4, a/ ao = 0.985 ( kL = 12.37) corresponds to the maximum am­

plitude response measured in these experiments. The surface elevation is almost 

symmetrical about the mean water level initially. Then the front face of the wave 

steepens as the amplitude increases, and the amplitude of the wave crest becomes 

increasingly larger than the amplitude of the wave trough. Eventually, a secondary 

oscillation emerges behind the main wave and grows with the main wave as wave 

motions in the wave tank approach steady-state conditions. 

It should be noted that long wave theory can be used to model the surface 
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Figure 5.2.6. Comparison between the predicted normalized surface wave heights 
at the end wall obtained using the linear viscous theory (equation 5.2.1), and the 
long wave theory (equation 5.1.1); h = 15.2cm, L = 19.75m. 

wave motion in the wave tank for the conditions in our experiments. The common 

criteria used to specify long waves is that the water depth to wavelength ratio h/ ,\ 

is less than 0.05. For the water depth of 15.2 cm used in this study, this implies 

a wavelength larger th2.n about 3.0m (kL < 40), which is actually much smaller 

than the wavelengths of the surface waves in these experiments ( ~ 10 m). Indeed, 

a comparison of the normalized wave heights at the end wall (figure 5.2.6) obtained 

using the linear viscous theory (equation 5.2.1), which is valid for all ranges of 

relative water depth h / ,\, and the long wave theory ( equation 5.1.1), shows no 

difference in the theoretical results from the two theories for the range of kL of 

interest to this study. Notice that the amplitude response of the surface wave H3/ S 

increases as the relative wave number kL increases. This is because the amplitude of 
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Figure 5.2. 7. Variation of the relative phase angle between surface motion at the end 
wall and wave plate motion with relative wave number; h = 15.2cm, L = 19.75m. 

the incident wave generated by the bulkhead wave generator increases as the value of 

kh increases. This result is most easily understood by considering the incident waves 

generated by an oscillating vertical plate that moves in simple-harmonic motion in 

a constant-depth channel that extends from the wave plate to infinity (see, Ursell, 

Dean and Yu, 1960). 

Finally, the variation of the relative phase angle between the surface motion 

at the end wall and the wave plate motion-, 03, with relative wave number, kL, is 

shown in figure 5.2.7. The relative phase angle is defined between -180° and 180°. 

For example, if the phase angle of the surface motion at the end wall leads the 

phase angle of the wave plate motion by 270°, the relative phase angle between the 

surface motion at the end wall and the wave plate motion is equal to -90°. "\V-hen a 
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secondary oscillation such as those shown in figure 5.2.3 appeared, the wave record 

was filtered to eliminate the secondary wave, and the phase angle was obtained 

from the filtered wave record. Several features in figure 5.2. 7 are characteristic of 

the wave motion in this wave generator-closed channel configuration. These are 

discussed here to help the reader to interpret the results of the trench experiments. 

First let us consider the linear inviscid theory. In this case the phase angle between 

the surface motion at the end wall and the wave plate motion must be either in 

phase or 180° out of phase. This is because the net work done on the fluid by 

the wave generator over one complete oscillation must be zero, because there is 

no energy dissipation in the channel in the inviscid theory. As a result, the fluid 

motion in the channel is a true standing wave; the end wall is always an antinode, 

the location of the wave plate cannot be an antinode because the horizontal velocity 

would then be zero, and the boundary condition on the oscillating plate cannot be 

satisfied. Because the length of the channel is an integral multiple of half wavelength 

( L / ,\ = n /2, n = l, 2, ... ) at resonance, and the standing wave is an antinode at the 

end wall, the boundary condition at the wave plate cannot be satisfied at resonance, 

hence the solution is singular. In the linear viscous theory, the wave motion in 

the channel is also represented by two sinusoidal progressive waves travelling in 

opposite directions, but the wave amplitude of each progressive wave is attenuated 

in its direction of wave propagation. The left- and right-going progressive waves 

must have the same amplitude and phase at the end wall, where the horizontal 

velocity vanishes. Moving away from the end wall, and in the direction towards the 

wave generator, the amplitude of the left-going wave is attenuated due to viscous 

damping, whereas the amplitude of the right-going wave increases at the same rate 

in this direction opposite to its direction of wave propagation. Thus, the wave 

motion in the channel is not a true standing wave, in that the envelope of the 

wave amplitude of the combined wave has no nodes and antinodes besides the 
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antinode at the end wall. Because of this, the conclusion, which is predicted by 

the linear inviscid theory, that an antinode occurs at the wave plate at resonance, 

cannot occur if based on the linear viscous theory. The surface motion at the end 

wall is 90° out of phase with the motion of the wave plate at the frequency of 

the resonant peak, because the net work done by the wave generator on the fluid 

is then a maximum. This condition is required to balance the maximum rate of 

energy dissipation in the channel at resonance. When off resonance, the relative 

phase angle varies continuously with the frequency of the wave generator to adjust 

for the energy balance between viscous dissipation in the channel and energy input 

from the wave generator. The variation of the relative phase angle with frequency 

is directly related to the fluid state at the wave plate. 

In summary, surface wave motions in a constant-depth channel with a vertical 

wall at one end and a bulkhead wave generator that moves in simple-harmonic mo­

tion with a constant stroke at the opposite end were studied experimentally, and 

theoretically using linear wave theory, for conditions near a mode of resonant oscil­

lation of the surface waves in the constant-depth channel. Surface wave measure­

ments were obtained that would be compared with the results of the experiments 

with the trench to determine the effects of the trench on the surface waves. The 

experimental results indicate that the response curve is very steep near resonance, 

and a secondary oscillation develops in the main wave when the wave amplitude 

is sufficiently large. Thus, the characteristics of the surface waves are very sensi­

tive to variations of wave period near a resonant mode of oscillation of the surface 

waves in the constant-depth channel. For this reason, in studying the generation 

of internal waves in the trench, it is desirable to have a near-resonant condition of 

the internal waves in the trench and an off-resonant condition of the surface waves 

in the constant-depth channel, then the motions of the internal waves will be much 

more sensitive to variations of wave period than the motions of the surface waves. 
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5.2.2 Experiments with Fresh Water in a Rectangular Trench 

The objectives of these experiments were: (i) to determine the effects of change 

in water depth on the surface waves; and (ii) to obtain surface wave measurements 

for comparison with results of the experiments that used a stratified trench. In these 

experiments, the width of the trench was £ = 60 cm, and the depth of the trench was 

d = 15.2 cm. The rectangular trench was connected to the end of a constant-depth 

channel of length L = 19.15 m filled with fresh water to a depth of h = 15.2 cm 

(figure 5.1.1 ). Thus the water depth in the trench region was h1 = 30.4 cm. A 

vertical wall was located at the downstream end of the trench, at the other end of 

the constant-depth channel a bulkhead wave generator consisting of a vertical plate 

moved in simple-harmonic motion with a constant stroke S = 4.8 mm. Surface wave 

motion in the wave tank was investigated for wave periods varying from 7.0 sec to 

9.0sec, that is, near the resonant mode of kL = 41r, where k is the wave number of 

the surface wave obtained in the constant-depth channel using the linear inviscid 

theory. 

The studies by Lee and Ayer (1981), Miles (1982), and Kirby and Dalrymple 

(1983) indicate that the effects of a trench on surface waves are significant only 

when the wavelength of the surface waves is of the same order as the trench width 

and depth. For the stratified trench problem, we are interested in surface waves of 

wavelength much longer than the trench width. This is because density differences 

in navigation trenches are usually small. In a study by the Marine Board of the 

National Research Council (1983) on criteria for the depths of dredged navigational 

channels it was reported that, at Europort (Holland) the bottom was defined as 

a region where the specific gravity of the fluid was greater than 1.2. A result 

of small density ratio is that the wavelength of the surface waves is much longer 

than the wavelength of the internal waves in the trench for the same wave period; 

this will be discussed more fully in § 5.3. Therefore, a trench in a homogeneous 
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fluid generally would have little effect on the surface waves for the range of surface 

wavelengths that would produce large internal oscillations in the corresponding 

stratified trench problem. In figure 5.2.8a, the normalized wave height at the end 

wall is obtained theoretically for the case where there is a trench and for the case 

where there is only the constant-depth channel. The trench solution is obtained 

using the potential formulation of Kirby and Dalrymple (1983) with correction for 

boundary layer dissipation as described in§ 3.3.3. The abscissa is normalized with 

respect to the trench width £, but k is the wavelength of the surface waves in 

the constant-depth channel. Indeed, there are little differences between the two 

solutions for the range of experimental conditions considered in this study, that is, 

near the predicted resonant peak of k£ = 0.380. The variation of the relative phase 

angle between the surface motion at the end wall and the wave plate motion with 

kR, is shown in figure 5.2.Sb. It is seen that the two theories give almost identical 

results. These results are expected because the ratio of the trench width to the 

wavelength of the surface wave in the constant-depth channel, £/ >., corresponding 

to the relative wave number of the predicted resonant peak of k/!, = 0.380, is only 

about 0.06. 

The above results are based on the assumption that the wave motion is domi­

nated by inviscid flows, and viscous dissipation is important only within very thin 

boundary layers adjacent to the solid surfaces. In particular, the effects of fl.ow sep­

aration at the edge of the trench are ignored. Therefore, it is important to compare 

these results with experiments. The normalized surface wave height at the end wall 

(x/R, = 1), H3/S, is plotted as a function ·of the relative wave number, k£, in fig­

ure 5.2.9. The variation of wave extrema with k.€ at two locations above the trench 

(x/£ = 0 and x/R, = 1) is plotted in figures 5.2.lOa and 5.2.lOb. The relative wave 

number of the resonant peak as measured experimentally was kR, = 0.376 at a wave 

period of T = 8.226 sec. In figures 5.2.9 and 5.2.10 the measured response curves 
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Figure 5.2.8. Variation of (a) normalized wave height, and ( b) relative phase angle, 
at the end wall with relative wave number, computed for constant-depth channel 
with trench conditions; h = 15.2 cm, L = 19.15 m, ,f, = 60.0 cm, d = 15.2 cm, and 
for constant-depth channel conditions; h = 15.2 cm, L = 19. 75 m. 
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Figure 5.2.9. Variation of normalized wave height at the end wall with relative 
wave number for constant-depth channel with trench conditions; h = 15.2 cm, L = 
19.15m, £ = 60.0m, d = 15.2cm. 

near the resonant peak of kf = 0.376 exhibit a distinct jump that is not observed 

in the experiments with the constant-depth channel (figures 5.2.1 and 5.2.2). The 

nature of this sudden jump in the measured response curve is not clear and this 

could have been the result of experimental variation, because the response curve 

is very steep near resonance. Also, in comparison with the response curves for the 

constant-depth channel, the maximum wave height is smaller by about 13%. Note 

that in figure 5.2.9, the difference in the relative wave number between the mea­

sured resonant peak at kf = 0.376 and the predicted resonant peak at kf = 0.380 

when compared to the interval between adjacent resonant peaks is only about 4%. 

In figure 5.2.11 the variation of the relative phase angle at the end wall with kf is 

shown, the discontinuity in the measured relative phase angle between the surface 
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Figure 5.2.10. Variation of wave extrema at two locations above the trench with 
the relative wave number for a resonant mode of oscillation of the surface waves 
in the constant-depth channel and trench: (a) x / f = 0, ( b) x / f = l; h = 15.2 cm, 
L = 19.15 m, .€, = 60.0 cm, d = 15.2 cm. 
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Figure 5.2.11. Variation of the relative phase angle between surface motion at the 
end wall and wave plate motion with relative wave number, for constant-depth 
channel with trench conditions; h = 15.2 cm, L = 19.15 m, R, = 60.0 cm, d = 15.2 cm. 

motion at the end wall and the wave plate motion is clearly seen. 

The time histories of the steady-state motion at the end wall are shown in 

figure 5.2.12 for a range of relative wave frequencies a/ao, where ao = 21r/To, and 

To= 8.1 sec (kl= 0.382) is the determined wave period of resonant oscillation of the 

surface waves for the constant-depth channel with trench conditions using the linear 

inviscid theory. The wave profiles are almost sinusoidal before the wave frequency 

reaches the frequency of the sudden jump in the response curve (figure 5.2.9) at 

a/ao = 0.985 (kR, = 0.376). After the jump, a secondary oscillation appears behind 

the main wave, the secondary wave eventually grows to the same amplitude as the 

main wave as a decreases. The two waves then merge together. As a decreases the 

wave amplitudes become progressively smaller due to an off-resonant condition for 
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the surface waves in the constant-depth channel and trench. The surface elevation 

becomes nearly symmetrical about the mean water level. The behaviour of the 

secondary wave after the sudden jump in the response curve is very similar to the 

experiments with the constant-depth channel. The water surface time histories 

measured at the end wall from the start of the wave generator are presented in 

figure 5.2.13. It is seen that from a/ao = 0.988 to a/ao = 0.985 the water surface 

time history at the the end wall changes suddenly from a characteristic "beat" 

pattern of off-resonant oscillation to a resonant condition that is characterized by 

the absence of the "beat" pattern. This sudden change in the water surface time 

history at the end wall was not observed in the experiments with the constant-depth 

channel (figure 5.2.4). In figure 5.2.13, after the sudden jump in wave amplitude at 

a/ ao = 0.985, the growth of the surface wave and the evolution of a secondary wave 

behind the main wave follow the same general pattern as shown in figure 5.2.4 for 

the experiments with the constant-depth channel. 

The experimental results for the constant-depth channel and for the constant­

depth channel with trench conditions both indicate larger energy dissipation in the 

wave tank than the theoretical predictions. Because a simple-harmonic motion of 

the wave generator is assumed in the theoretical formulation, it is important to 

compare the generated incident waves with the predictions of the linear wavemaker 

theory (Ursell, Dean and Yu, 1960). The primary incident wave was measured 

at a point about 5.0m from the mean position of the wave plate (figure 5.1.1), 

which corresponds to a relative distance of x / h ::::::: 30. There were approximately 

four waves passing this location before the· first wave reflected from the end of the 

channel arrived. The second and the third waves were not affected by transient 

effects at the leading edge of the first wave (see, for example, figure 5.2.4), hence 

the wave height of the primary incident waves was obtained from the average of the 

wave heights of the second and the third waves. In figure 5.2.14 the wave height of 
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Figure 5.2.12. Steady-state free surface motions at the end wall for relative circular 
frequencies near a resonant mode of oscillation of the surface waves in the constant­
depth channel and trench; h = 15.2 cm, L = 19.15 m, R, = 60.0 cm, d = 15.2 cm. 
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Figure 5.2.14. Variation of normalized incident wave with relative wave number. 
The waves were generated by a bulkhead wave generator that moved in simple­
harmonic motion in water of a constant depth of h = 15.2 cm. 

the primary incident waves, H1, normalized by the stroke of the wave generator, S, 

is plotted as a function of the relative wave number kh using the data from four sets 

of experiments. The agreement between the experimental results and the theory is 

reasonably good ( ± 10%) indicating that the linear wavemaker theory is adequate 

in describing the wave generation process for these experiments. 

In summary, surface wave motions in a rectangular trench that is connected at 

one end to a constant-depth channel and closed at the other end by a vertical wall, 

were studied experiment ally, and theoretically using linear wave theory, for condi­

tions near a mode of resonant oscillation of the surface waves in the constant-depth 

channel and trench. Surf ace waves were generated by a bulkhead wave generator 

that moved in simple-harmonic motion with a constant stroke at the opposite end 
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of the constant-depth channel. The major objective of the experiment was to look 

for physical effects not included in the theoretical models, such as flow separation, 

and to obtain surface wave measurements for comparison with results of the ex­

periments with the constant-depth channel and the experiments with the stratified 

trench. The experiments conducted with fresh water in the trench indicate small 

but positive differences compared to the results of the experiments conducted in the 

constant-depth channel. Further studies on this topic are warranted. It is noted 

that the constant-depth channel and trench arrangement used in this study (fig­

ure 5 .1.1) is not very suitable for the investigation of flow separation. In particular, 

the standing surface wave had an antinode at the end wall. Hence the horizon­

tal component of the fluid velocity above the trench was much smaller than the 

horizontal component of the fluid velocity at some other locations along the wave 

tank. To study the effects of flow separation around the edges of the trench, it is 

more effective to put the end wall one quarter of a wavelength downstream from 

the trench, then the location of the trench is near the node of a standing surface 

wave where the horizontal component of the fluid velocity is the largest. This has 

not been done in this study and is recommended for future work. 

5.2.3 Experiments with a Deep Lower Fluid in a Stratified Trench 

A series of experiments were conducted with a stratified fluid of water and 

salt water in the rectangular trench and fresh water in the constant-depth channel. 

The experimental arrangement is shown in figure 5.1.1. The water depth in the 

constant-depth channel was h = 15.2 cm. In the trench region, the depth of the 

upper fluid (fresh water) was h1 = 22.8 cm, and the depth of the lower fluid (salt 

water) was h2 = 7.6cm. The depths h1 and h2 were measured from the water 

surface and the trench bottom, respectively, to the center of the diffuse salinity 
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interface. Experiments were conducted using two nominal thicknesses of the diffuse 

salinity interface: (i) 8 = 1.3 cm (Series I), and (ii) 8 = 2.5 cm (Series J). The 

thickness of the diffuse salinity interface is defined as the ratio of the maximum 

density difference between water and salt water to the maximum density gradient 

in the diffuse salinity interface, that is: 

, d )-1 
6 = -~p (_f_ 

dz max 
(5.2.7) 

where ~p = P2 - Pl. Because the internal wave motion in the trench is directly 

related to the density stratification, it is important to determine the exact thickness 

of the diffuse salinity interface in these experiments. The trench was stratified by 

first filling the wave tank with fresh water to a depth of h = 15.2 cm. Salt water 

was then introduced through a port in the bottom of the trench. The filling process 

created a diffuse salinity interface of thickness of about 2.5 cm; this was reduced to 

about 0.5 cm by selective withdrawal of fluid from the diffuse salinity interface. The 

density profile was determined from conductivity measurements made at a location 

2.0 cm from the upstream wall of the trench immediately after the thickness of the 

diffuse salinity interface was reduced and about 15 minutes after the experiment 

was completed. In Series I the experiments were conducted within two hours after 

the interface was reduced. In Series J the stratified fluid in the trench was left 

undisturbed for 6 to 7 hours, then the density profile in the trench was measured 

again before the experiment was conducted. The thickness of the diffuse salinity 

interface for these experiments was determined from the density profiles obtained 

after the experiments; the actual experiments took about 17 minutes. Hence, these 

values correspond to steady-state conditions in the trench. The same procedure was 

followed in the experiments with the shallower lower fluid (Series Kand Series M). 

In Series I, the mean value of the thickness of the diffuse salinity interface was 

1.32 cm, with a standard deviation of 0.12 cm. The mean density of salt water was 
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1.0497 gcm-3 , with a standard deviation of 0.00084 gcm-3 . In Series J, the mean 

thickness of the diffuse salinity interface was 2.46 cm, with a standard deviation 

of 0.06cm. The mean density of salt water was l.0507gcm-3 , with a standard 

deviation of 0.0005 gcm-3• 

In experiments Series J and Series M the density profiles in the trench were 

measured after the thickness of the interface was reduced and also before the ex­

periments were conducted; the time period in between varied from 6 to 8 hours. 

Thus, we can determine the molecular diffusion coefficient of salt in water from 

these measurements. Assuming a surface of density discontinuity at z = -h1 at 

some initial time t = 0, the density profile in the trench region at a subsequent time 

t due to molecular diffusion is given by the following diffusion equation: 

( 
z - h1 ) 

p =PI+ 21.perfc ~ 
4Dmt 

(5.2.8) 

where Dm is the molecular diffusion coefficient, and "erfc" is the complimentary 

error function. Substitution of (5.2.8) in (5.2.7) yields the following relationship for 

the thickness of the diffuse salinity interface and the molecular diffusion coefficient: 

(5.2.9) 

Hence, the molecular diffusion coefficient Dm can be calculated for the time interval 

Dm = J_ (8t2 2 - 8t1 2) . 
41r i2 - t1 

(5.2.10) 

Using (5.2.10), the molecular diffusion coefficient Dm was obtained from thirteen 

experiments, the mean is 1.31 x 10-5 cm2sec-1 , and the standard deviation is 0.07 x 

10-5 cm2sec-1 . Hammack (1980) quoted a molecular diffusion coefficient Dm of salt 

in water of 1.5 x 10-5 cm2sec-1 . 

Some typical density profiles in the trench are presented in figures 5.2.15a and 

5.2.15b; the wave periods of these experiments correspond to resonant conditions 
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Figure 5.2.15. Density Profiles before and after experiments for wave periods cor­
responding to resonant conditions of internal waves in the trench: (a) T = 7.8 sec, 

and (b) T = 8.0sec; h1 = 22.8cm, h2 = 7.6cm, 6.p ~ 0.05gcm-3
. The density 

profiles were obtained at a location 2.0 cm from the upstream wall of the trench. 
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of internal waves in the trench for the experimental conditions of Series I and 

Series J, respectively. The ordinate is the vertical distance below the water surface; 

the "mouth" of the trench and the trench bottom, respectively, are located at 

z = -15.2 cm and at z = -30.4 cm, and the center of the diffuse salinity interface 

is located at z = -22.8 cm. For figure 5.2.15a, the thickness of the diffuse salinity 

interface increased from 0.54 cm after the interface was reduced, to 1.41 cm after the 

experiment was completed, during a time interval of 116 minutes. Using (5.2.10), 

with 8t2 = 1.41 cm, 8t1 = 0.54 cm, and ( t2-t1) = 116 minutes, the apparent diffusion 

coefficient Da is found to be 1.94 x 10-5 cm2sec-1 . For figure 5.2.15b the thickness 

of the diffuse salinity interface before and after the experiment was 2.22 cm and 

2.61 cm, respectively. The time interval between measurement of the density profiles 

was 115 minutes. Using these values, the apparent diffusion coefficient is found to 

be 2.17 x 10-5 cm2sec-1 . The larger values of the apparent diffusion coefficient were 

attributed to mixing of the fluids by internal wave motions; the internal waves in 

the trench were "at resonance" in these experiments. The values of the apparent 

diffusion coefficient in most experiments were smaller than the above values. 

Experiments were conducted for a range of wave periods near the lowest mode 

of oscillation of the internal waves in the trench. In Series I, internal waves for 

a wide range of surface wave heights above the trench were studied. Hence, the 

results of these experiments are presented first. 

When the trench was first installed, the length of the rectangular cavity was 

almost exactly equal to 60.0 cm (±1.0 mm). This length decreased to 59.5 cm after 

a short period of use, due to swelling of the· plywood false bottom in the wave tank, 

and then remained constant. Nevertheless, the original trench width of 60.0 cm has 

been used in § 5.2.1 and § 5.2.2 for the evaluation of the theoretical results. This 

small difference in the trench width had negligible effects on the surface waves in 

the constant-density case, because the wavelength of the surface wave was large 
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Figure 5.2.16. Variation of normalized internal wave height at the upstream wall of 
the trench with relative wave number. The theoretical results are obtained using 
the two-layer viscous theory and the two-layer inviscid theory; h = 15.2 cm, h1 = 
22.8cm, h2 = 7.6cm, L = 19.15m, t = 59.5cm, d = 15.2cm, b = 19.7cm, p2/p1 = 
1.05. 

compared to the trench dimensions. However, the wavelengths of internal waves in 

the trench were only about twice the trench width for the lowest mode of oscillation. 

Therefore, the exact length of 59.5 cm will be used in the following analysis of 

internal waves. 

In figure 5.2.16, the internal wave height at the upstream wall of the trench, 

H4, normalized by wave height of the surface wave at the end wall, H3, is plotted 

as a function of kt, where k is the wave number of the surface wave in the constant­

depth channel obtained using (3.l.25a). From the two-layer inviscid theory, the 

wave period corresponding to the lowest mode of oscillation of the internal waves 

in the trench is found to be 7. 75 sec ( kt = 0.396), and the wave period for a mode 
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of the resonant oscillation of the surface waves in the constant-depth channel is 

8.1 sec (kl = 0.379). As seen in figue 5.2.16 the response curve obtained from 

the experiments is extremely peaked and H4/H3 (this ratio will be termed the 

amplification factor R) attains a magnitude of about twenty-four at resonance while, 

of course, the response from the linear inviscid theory tends to infinity at resonance. 

To either side of resonance the response decreases rapidly. The linear viscous theory, 

with v = l.0 x 10-6 m 2sec-1 for both layers, predicts a smaller amplification factor 

(H4/ H3 = 20.49) than the experiments, and the wave period of resonant oscillation 

of the internal waves in the trench is shifted to 7.82sec (kl= 0.392). It appears that 

the two-layer viscous theory has overestimated energy dissipation in the trench. The 

excessive energy loss is due to dissipation in the interfacial boundary layers built 

into the two-layer viscous theory. Interfacial boundary layers do not exist in the 

real fluids that are miscible. A detailed discussion of energy loss in various regions 

of the fluid is presented in § 5.2.5. 

The wave period corresponding to the second resonant mode of the internal 

waves in the trench is about 4.4 sec from the two-layer inviscid theory. Thus, the 

difference between the wave periods of the resonant peaks predicted by the two-layer 

viscous theory and the two-layer inviscid theory when compared to the difference 

between the wave periods of the first and second resonant modes is only about 2%. 

The relative phase angle between internal wave motion at the upstream wall of 

the trench and surface wave motion at the end wall, 043, is plotted as a function 

of the relative wave number, kl, in figure 5.2.17. The results of the theories and 

experiments show a shift from in phase to out of phase through resonance. The 

experimental data show a more rapid change in the relative phase angle than the 

prediction of the two-layer viscous theory, which again indicates smaller viscous 

dissipation in the experiments compared to the theories. 

In figure 5.2.18 the same experiments are compared to predictions obtained 
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Figure 5.2.17. Variation of the relative phase angle between internal wave motion at 
the upstream wall of the trench and surface wave motion at the end wall with relative 
wave number. The theoretical results are obtained using the two-layer viscous 
theory and the two-layer inviscid theory; h = 15.2 cm, h1 = 22.8 cm, h2 = 7.6 cm, 
L = 19.15 m, ,f, = 59.5 cm, d = 15.2 cm, b = 19.7 cm, pzf PI = 1.05. 

using the three-layer viscous theory and the three-layer inviscid theory, computed for 

a value of 5 = 1.3 cm. The theoretical response curves are computed for the internal 

wave height at the top of the density transition region, that is, at z = -22.15 cm, 

where z is measured positive upwards from the still water surface. It is recalled 

from § 4.1.3 that the interfacial wave gage measures wave motion at a location 

close to the top of the diffuse salinity interface. The wave period for the lowest 

mode of resonant oscillation of the internal waves in the trench is found to be 

7.80 sec (kl = 0.393) using the three-layer inviscid theory. In figure 5.2.19 the 

trench responses obtained using the two-layer inviscid theory and the three-layer 
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Figure 5.2.18. Variation of normalized internal wave height at the upstream wall of 
the trench with relative wave number. The theoretical results are obtained using 
the three-layer viscous theory and the three-layer inviscid theory, computed for 
the internal wave height at the top of the density transition region; h = 15.2 cm, 
h1 = 22.15cm, h2 = 6.95cm, 8 = 1.3cm, L = 19.15m, f = 59.5cm, d = 15.2cm, 
b = 19.7 cm, pz/ PI = 1.05. 

inviscid theory are compared. It is seen that the effects of the density transition 

region on the invisicd ~esults are very small for these conditions; the difference 

between the wave periods of resonance obtained using the two-layer inviscid theory 

and the three-layer inviscid theory when compared to the difference between the 

wave periods of the fint and the second resonant modes of internal oscillations 

in the trench is less than 2%. vVith damping, the wave period of the resonant 

peak is found to be 7.83sec (k/!, = 0.392) using the three-layer viscous theory. 

The corresponding amplification factor is H4/ H3 = 37.17, which is almost twice 

that predicted by the two-layer viscous theory (figure 5.2.16); this is attributed to 
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Figure 5.2.19. Comparison between the trench responses obtained using the two­
layer inviscid theory and the three-layer inviscid theory for the lowest mode of 
oscillation of internal waves in the trench. 

the absence of the interfacial boundary layer damping in the three-layer viscous 

theory. It is recalled from § 3.3.2 that in the three-layer viscous theory, viscous 

dissipation is considered to take place in the boundary layers adjacent to the solid 

surfaces only. In fact, the three-layer model is a closer realization of the actual 

conditions in the trench, provided that the density differences between the two 

fluids remain small (Boussinesq approximation). The comparison of the predictions 

of the three-layer viscous theory to the experimental measurements (figure 5.2.18) 

indicates that laminar boundary layer damping near the solid surfaces alone tends 

to underestimate energy loss in the trench; a similar conclusion is also reached in 

§ 5.2.1 and § 5.2.2 for the experiments with fresh water. The variation of relative 

phase angle, 043, with relative wave number, k.€, is shown in figure 5.2.20 for the 
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Figure 5.2.20. Variation of the relative phase angle between internal wave motion 
at the upstream wall of the trench and surface wave motion at the end wall with 
relative wave number. The theoretical results are obtained using the three-layer 
viscous theory and the three-layer inviscid theory, computed for the internal wave 
motion at the top of the density transition region; h = 15.2 cm, h1 = 22.15 cm, 
h2 = 6.95 cm, 8 = 1.3 cm, L = 19.15 m, R = 59.5 cm, d = 15.2 cm, b = 19.7 cm, 
p2/ Pl= 1.05. 

results of experiments and three-layer theories. 

In figure 5.2.21, the wave extrema of internal wave at the upstream wall of the 

trench, 'r/4, normalized by the surface wave height at the end wall, H 3, is plotted as 

a function of the relativE wave number, kR, for the lowest mode of oscillation of the 

internal waves in the trench. The amplitudes of the wave crest and the wave trough 

are evaluated with respect to the mean dye interface, which changes with time due 

to molecular diffusion. The spread of data near kR = 0.4 is due to steepness of 

the response curve near resonance. Thus, the trench response was very sensitive to 
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Figure 5.2.21. Variation of internal wave extrema at the upstream wall of the trench 
with relative wave number, for the lowest mode of oscillation of the internal waves in 
the trench. The theoretical results are obtained using the two-layer viscous theory; 
h = 15.2 cm, h1 = 22.8 cm, h2 = 7.6 cm, L = 19.15 m, ,e = 59.5 cm, d = 15.2 cm, 
b = 19.7 cm, p2f Pl= 1.05. 

variations in experimental conditions. Note that the scale of the ordinate is much 

smaller than the scale of the abscissa. The important feature in this figure is the 

symmetry of the internal wave motions about the quiescent level for a wide range 

of surface wave heights. The corresponding surface wave extrema at two locations 

( x / R = 0 and x / ,e = 1) above the trench are shown in figures 5.2.22a and 5.2.22b. 

The maximum value of H3/h in these experiments was 0.0247. It is recalled from 

(5.2.6) that second order effects in the surface wave profile are negligible if the ratio 

of the wave height of the standing surface wave to the water depth, H3/h, is much 

less than 0.05. Indeed, the free surface elevation above the trench appears to be 
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Figure 5.2.22. Variation of surface wave extrema at two locations above the trench 
with relative wave number: (a) x/R = 0, and (b) x/R = l. 
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reasonably symmetric about the mean water level. 

It should be noted that in computing the theoretical response curves, a nominal 

density ratio of p2/ Pl = 1.05 has been used. The mean value of the density of 

salt water for these experiments was 1.0497 gcm-3 • The density of fresh water was 

0.9982 gcm-3 at the room temperature of 20°C. This implies a value of p2/ Pl of 

1.0516, which is 3.2% larger than the nonimal density ratio of 1.05 when compared 

to 0.05. Because the frequency of internal oscillation varies as J ~p/ p2, where 

~p = P2 - Pl, the difference in the predicted resonant frequency of the internal 

waves in the trench as the result of using the nominal density ratio is less than 2%. 

Nonlinear standing internal waves had been studied by Thorpe (1968). For a 

two-layer fluid that completely fills a rectangular tank, the equation of the interface 

to second order for small density difference is: 

ry(x,t) = asincrtcosKx + ;:1~ 2(T1 -T2)(T1T2 -3cos2crt)cos2Kx 
8 1 2 

and the dispersion relation to third order is: 

2 gK(p2 - P1)T1T2 [ a2 K 2 
2 2 

er = (p1T2 + p2T1) l + 32TfTJ (9T1 + 9T2 - l8T1T2 

- 6Tf T2 - 6T]T1 + 8Tf Ti) l 

(5.2.11) 

(5.2.12) 

where h1, h2 are the depths of the upper and the lower fluid, respectively, a 1s 

the wave amplitude, K is the wave number, and Ti = tanhKhi, (i = 1,2). The 

second order term in ( 5.2.11) distorts the symmetric waveform of the linear solution 

given by the first order term; the distance from trough to crest remains constant for 

second order approximation. Equation 5.2.11 is valid if the ratio of the coefficient 

of the second order term to that of the first is much less unity, that is, if: 

(5.2.13) 
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If one of the fluids is deep and the other shallow of depth h, equation (5.2.13) 

reduces to: 

where H = 2a. 

3.H 
l6Kh2 ~ 1 (5.2.14) 

For standing surface waves in water of depth h, the relevant condition is given 

by (5.2.5). Thus, the presence of the upper fluid reduces the amplitude of the 

second order term by a factor of Kh. It is seen that the left hand side of (5.2.14) 

is not in the form of the U rsell number, defined as Ur = H l2 / hJ for long waves 

in a homogeneous fluid, where H, l, and ho refer to a characteristic .wave height, 

wavelength and depth. Because the Ursell number measures the relative importance 

of the nonlinear effects to the dispersive effects, it is important to examine the 

physical meaning of the dimensionless parameter H / Kh2 with regard to internal 

waves. 

Equation 5.2.11 is valid only when the density difference between the upper fluid 

and the lower fluid is very small compared to the fluid densities; the full equation, 

which takes no account of small density difference, is given in Thorpe (1968). For 

this condition, equation 5.2.14 is the limiting result for standing internal waves at 

the interface of a deep fluid overlying a shallow fluid, or vice versa. As in ( 5.2.2 ), 

equation 5.2.11 must become invalid when the value of Kh is so small that H / Kh2 is 

of order unity, and a different expansion procedure is necessary. The theory of long 

waves of finite amplitude and permanent form in a stratified fluid had been studied 

by Benjamin (1966, 1967). Benjamin (1966) considered internal waves whose wave­

lengths are very large compared to the totaf fluid depth. Fixing his attention on the 

first mode of the infinite number of internal wave modes in a continuously strati­

fied fluid, Benjamin (1966) demonstrated that a non-sinusoidal internal wave suffers 

dispersion of its steepest parts at a rate depending on the difference between the 

phase and group velocities of its predominant spectral components, which for long 
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waves is proportional to h5/ 12 times the phase velocity obtained using infinitesimal 

wave theory. However, nonlinear effects result in the local wave speed at the wave 

crest exceeding the phase velocity of infinitesimal waves by an amount proportional 

to (H/h0 )(!::..p/po) times the phase velocity, where !::..p/po represents the fractional 

change in density over the total depth of the fluid. Hence, the relative importance of 

the nonlinear effects to the dispersive effects is rated by the ratio (!::..p/ po)(Hl2 /h3) 

for internal waves compared to H l 2 / h5 for surface waves. 

Benjamin (1967) considered a different situation in which the density of the 

fluid varies only within a layer whose thickness is much smaller than the wave­

length of the internal wave, while the total depth of the stratified fluid is infinite. 

Benjamin's solution for a solitary wave at the interface of two homogeneous fluids 

clearly brought out the results that Hl/h5 = 0(1) for the internal wave. This re­

sult is consistent with (5.2.14). The dimensionless parameter H/kh2 is a measure of 

the relative importance of the nonlinear effects to the dispersive effects for standing 

internal waves at the interface of a deep fluid overlying a shallow fluid, or vice versa. 

The wave extrema of internai waves, T/4, normalized by the depth of the lower 

fluid, h2, are plotted as a function of K2h2 in figure 5.2.23 for all the experiments in 

Series I, where K2 is the wave number of the internal waves in the trench. In these 

experiments, the wave periods were measured and the wave numbers of the internal 

waves K2 were calculated using the two-layer dispersion relation (equation 3.l.18a). 

In figure 5.2.23, the theoretical predictions are obtained using ( 5.2.11 ), with the 

wave number J{ given by K2, and the wave amplitude a given by the mean of the 

positive and negative wave extrema measured at the upstream wall of the trench, 

that is, a = H4/2. The good agreement between experiments and second order 

theory ( equation 5.2.11) suggests that second order effects in the internal waves 

were very weak. From figure 5.2.23, an estimate of the second order effects in 

the internal wave profiles can be obtained using (5.2.13). The maximum value of 



- 201 -

0-3 I I I I I I 
□ ExP,erlments 
X 2nd Order Inv I sc Id Theory - Eq. 5. 2 .11 

l!!I 
0.2 ..... 

I -

l!!I 
l!!I 

Ill 
o. 1 ..... l!!I liil liil -

l!!I Ill liil liil Iii ~ 
Ill l!!I 

774 II II Iii 181 liil Iii Ill Iii l!I 

h2 
0 

l!I II Iii llll liil Iii 181 Iii a 
Iii a 

l!!I 181 liil l'iil Iii ~ 
Iii a liil l'iil 

-0. 1 - 11!1 Ill -
l!!I 

l!!I 
II 

-0.2 - -

-0.3 I I I I I I 

0-37 0.38 0.39 0-4 0-41 0.42 0-43 0.44 
K2h2 

Figure 5.2.23. Comparison between the internal wave extrema at the upstream 
wall of the trench for experiments, and second order theory ( equation 5.2.11 ); h1 = 
22.8 cm, h2 = 7.6 cm, pz/ PI = 1.05. 

H4/h2 in these experiments was 0.382 at I<2h2 = 0.399 (I<2h1 = 1.197, kf, = 0.393), 

the corresponding ratio of the amplitude of the second order terms in (5.2.11) to 

that of the first is found to be 0.144 which indeed is much less than unity. The 

corresponding value of the dimensionless parameter, H4/ K2h~, is 0.96. 

The profiles of the density interface for two different wave heights of the internal 

wave for a wave period of 7.7 sec are shown in figures 5.2.24a and 5.2.24b. For 

this wave period the internal waves were near resonance for the lowest mode of 

oscillation. The ordinate is normalized by the mean of the internal wave heights 

measured at the two vertical walls of the trench. The abscissa is normalized by 

the trench width. The agreement between the results of the experiments and the 
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Figure 5.2.24. Standing internal wave profiles for the lowest mode of oscillation 
of the internal waves in the trench: (a) H4/h2 = 0.184, and (b) H4/h2 = 0.317. 
The wave period is 7.7sec (kf = 0.398). The experimental data are obtained from 
steady-state wave records taken at intervals of 5.0 cm along the trench. The the­
oretical curve is computed using (5.2.11), with h1 = 22.8 cm, h2 = 7.6 cm, and 
T=7.7sec. 
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( a ) 

( b ) 

Figure 5.2.25. Standing internal waves in a deep lower fluid in the trench for the 
1st mode of resonant oscillation (I<2£ = 1r ): (a) maximum upward displacement 
at x / £ = 0, and ( b) maximum downward displacement at x = 0; h1 = 22.8 cm, 
h2 = 7.6 cm, !:).p ~ 0.05 gcm-3, T = 7.8 sec. 
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( a ) 

( b) 

Figure 5.2.26. Standing internal waves in a deep lower fluid in the trench for the 
2nd mode of resonant oscillation (1<2f = 21r) (a) maximum upward displacement at 
x / R, = 0.5, and ( b) maximum downward displacement at x / R, = 0.5; h1 = 22.8 cm, 
h2 = 7.6 cm, 6.p ~ 0.05 gcm-3 , T = 4.5 sec. 
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( a) 

( b ) 

Figure 5.2.27. Standing internal waves in a deep lower fluid in the trench for the 
3rd mode of resonant oscillation ( I< 2f == 31r): (a) maximum upward displacement 
at x / R, == 0, and ( b) maximum downward displacement at x / R, == O; h1 == 22.8 cm, 
h2 == 7.6 cm, t:,.p ~ 0.05 gcm-3 , T == 3.4 sec. 
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( a ) 

( b ) 

Figure 5.2.28. Standing internal waves in a deep lower fluid in the trench for the 
4th mode of resonant oscillation (K2R = 41r): (a) maximum upward displacement 
at x / R = 0.5, and ( b) maximum downward displacement at x / R = 0.5; h1 = 22.8 cm, 
h2 = 7.6 cm, l::ip ~ 0.05 gcm-3 , T = 2.9 sec. 
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Figure 5.2.29. Comparison between the steady-state internal wave time histories 
at the upstream wall of the trench for experiment and second order theory ( equa­
tion 5.2.11); h1 = 22.8cm, h2 = 7.6cm, H4 = 2.4cm, T = 7.7sec, p2/p1 = 1.05. 

second order theory ( eq1:..ation 5.2.11) is excellent. Notice that the standing internal 

waves do not have a true node at x / £ = 0.5 due to second order effects in the wave 

profiles. The internal oscillations were observed to be two-dimensional; no cross­

waves were seen in the direction across the wave tank. Photographs of standing 

internal waves in the trench for the first four modes of resonant oscillation are 

shown in figures 5.2.25-5.2.28. Notice that in these figures the motion of the free 

surface are very small compared to the motion of the dye interface. It is seen in 

figures 5.2.25a and 5.2.25b that the internal wave profiles for the lowest mode of 

oscillation are similar to those shown in figure 5.2.24b. In figure 5.2.29, the steady­

state portion of the time history of internal wave motion at the upstream wall of 

the trench is compared to second order theory ( equation 5.2.11) for a wave period 
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of 7.7 sec. The ordinate is normalized by H4/2, where H4 is the wave height of 

the internal waves measured at the upstream wall of the trench. The abscissa is 

dimensionless time measured from the start of the wave generator. The phase of 

the computed wave has been matched to coincide with the phase of the measured 

wave. 

To further illustrate the characteristics of internal waves near resonance, the 

steady-state portion of the time histories of motion at the upstream wall of the 

trench are presented in figure 5.2.30 for a range of relative circular frequencies, 

a/ao, where ao = 2rr/7.75 is the resonant frequency for the lowest mode of oscilla­

tion of the internal waves in the trench obtained using the two-layer inviscid theory. 

It is seen that the internal wave motions are weakly nonlinear, and the ratio of 

crest amplitude to trough amplitude increases with the internal wave height. No 

secondary oscillation is seen in the internal waves, in contrast to the surface wave 

motions near a resonant mode of oscillation of the surface waves in the constant­

depth channel (figure 5.2.3). This may simply be explained by the effects of density 

stratification; the presence of the upper fluid reduces the amplitude of the second 

order term in the wave profile (see equations 5.2.5 and 5.2.14). The spurious sig­

nals seen for a/ ao = 0.969 in figure 5.2.30 are due to electronic problems in the 

interfacial wave gage. The corresponding steady-state portion of the surface wave 

time histories at the end wall are shown in figure 5.2.31. The high frequency com­

ponents seen in some of the surface wave records are not secondary oscillations 

due to nonlinear effects as discussed in § 5.2.1 and § 5.2.2, but are due to irregular 

motions of the wave generator. After close examination, the problem was found to 

be in the servo-valve of the wave generator. The servo-valve directs the flow of oil 

to either end of a double-acting hydraulic cylinder and thus controls the motion 

of the wave plate. The deflective servo-valve was replaced and the high frequency 

components in the surface waves disappeared. It is important to note that the high 
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Figure 5.2.30. Steady-state internal wave motions at the upstream wall of the trench 
for relative circular frequencies near the lowest mode of internal oscillation in the 
trench; h1 = 22.8 cm, h2 = 7.6 cm, 6.p ~ 0.05 gcm- 3

. 
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Figure 5.2.31. Steady-state water surface motions at the end wall for relative cir­
cular frequencies near the lowest mode of internal oscillation in the trench; h1 = 
22.8 cm, h2 = 7.6 cm, 6-p ~ 0.05 gcm-3
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frequency components apparent in the surface wave records are not observed in the 

internal wave records. This may be because the peakedness of the response curve 

of figure 5.2.16 results in an efficient filter for the frequencies away from resonance. 

The complete time histories of the internal waves at the upstream wall of the 

trench and of the surface waves at the end wall, from the start of the wave generator, 

are presented in figure 5.2.32 for a wave period of 7.7sec (a/ao = 1.006). Note that 

the scale of the ordinate for the internal waves is a factor of ten smaller than that 

of the surface waves, that is, the internal waves would appear ten times larger than 

those shown if plotted to the same scale as the surface waves. This wave period 

corresponds to the lowest mode of oscillation of internal waves in the trench and an 

off-resonant condition for surface waves in the constant-depth channel. Notice the 

absence of a beat pattern in the internal wave record due a resonant condition in 

the trench; the growth of internal waves are retarded temporarily after the first few 

oscillations due to a decrease in amplitude of the surface waves above the trench. 

Surface and internal wave time histories are presented in figure 5.2.33 for a 

wave period of 7.6sec (J/ao = 1.02), which corresponds to off-resonant conditions 

in both the constant-depth channel and the trench. The internal wave record is 

characterized by a beat pattern, and amplitude modulation due to changing ampli­

tude of the surface waves. From these figures, one can obtain an idea of the time 

required to establish steady-state conditions in the trench. Further off-resonance, 

the beat period of the internal waves becomes still shorter. This situation is shown 

in figure 5.2.34 for a wave period of 7.4 sec (a/ ao = 1.04 7). 

The time histories of motion of the surface and internal waves are shown in fig­

ure 5.2.35 for a wave period of 8.2 sec (a/ ao = 0.945). This wave period corresponds 

to a resonant mode of oscillation for the surface waves in the constant-depth channel 

and an off-resonant condition for the internal waves in the trench. However, the 

internal wave record does not show a beat pattern, because at this off-resonant con-
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Figure 5.2.32. Surface and internal waves for experiment at T = 7. 7 sec ( kf = 0.398) 
and H3 = 1.08 mm. 
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Figure 5.2.33. Surface and internal waves for experiment at T = 7.6 sec ( kf = 0.404) 
and H3 = 1.36 mm. 
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dition for the internal waves the effects of the surface waves are more pronounced. 

As seen in figure 5.2.16, the measured amplification factor, H4/ H3, is only about 

2.3 for kf = 0.374 (a/ao = 0.945). Indeed, the internal wave motion appears to 

follow the growth of the surface waves. 

We concluded in § 5.2.2 that a trench in a homogeneous fluid has little effect 

on the surface waves if the dimensions of the trench are small compared to the 

wavelength of the surface wave. Internal oscillation in a stratified trench can change 

the above conclusion in important ways. The effects of internal waves on the waves 

on the water surface will be discussed now. It is noted that in calculating the 

amplification factor, H4 / H3 , for the response curves, the wave height H3 is taken 

to be the wave height on the water surface at the end wall. In linear two-layer 

theory, the fluid motion is composed of the contributions of the surface mode and 

interfacial mode (see equation 3.1.20). These two modes have the same wave period 

but different wavelengths. The surface mode and the interfacial mode, respectively, 

are generated at the water surface and at the density interface, where the density 

differences between the fluid above and the fluid below provide the restoring force 

responsible for the existence of wave motions. Hence, the effects of the interfacial 

mode are most pronounced at the density interface whereas the effects of the surface 

mode are most pronounced at the water surface. For the lowest mode of oscillation 

of the internal wave in the trench the wavelength of the interfacial mode is very 

close to twice the trench width. For the same wave period, the wavelength of the 

surface mode is much longer than the wavelength of the interfacial mode. The wave 

motion observed on the water surface may be regarded as the sum of the effects of 

the surface mode and the interfacial mode, and likewise on the density interface. 

However, we shall demonstrate that the surface effect of the interfacial mode is 

very small compared to that of the surface mode, if density differences between 

the two fluids are small. Thus, in most circumstances the water surface motion 



- 214 -

3----------------------------

SURFACE WAVE 

-3.__ __ ........, ___ ..._ __ _._ ___ ....__ __ ---1 ___ ---1-__ ___, 

0 10 20 30 40 50 60 70 
tJgh/L 

Figure 5.2.34. Surface and internal waves for experiment at T = 7.4sec (kf = 0.414) 
and H3 = 3.05 mm. 
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Figure 5.2.35. Surface and internal waves for experiment at T = 8.2 sec ( kf = 0.37 4) 
and H3 = 1.85 mm. 
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above the trench can be represented reasonably well by the surface mode alone. 

When the effects of the internal oscillations cannot be felt on the water surface, 

the fluid motion above the trench would behave as if there had been no density 

variation in the trench. Therefore, an incident surface wave whose wavelength is 

large compared to the trench dimensions will not be affected by the presence of 

the stratified trench. On the other hand, the internal oscillations of the density 

interface will be noticeable due to comparatively small potential energy involved 

in a given deformation of the density interface. The above situation may change 

when a resonant condition develops in the trench. The amplitude of the internal 

motions at the interface may become large enough to be noticeable on the water 

surface. Then the fluid state above the trench must adjust to this new condition, 

thus changing the surface waves scattered by the trench in important ways. To 

illustrate this, let us consider the motion of a time-periodic plane progressive wave 

in a two-layer fluid, that is, the problem treated in § 3.3.1.1. The upper fluid is of 

depth h1 and of density Pl, and the lower fluid is of depth h2 and of density P2. 

The velocity potentials 4>1 for the upper layer and 4>2 for the lower layer are given 

by: 

cl>1(x, z, t) =C ( coshKz + ;; sinhK z) cos(Kx - 17t), (5.2.15a) 

( 
a 2 . ) coshK(z + h1 + h2) 

4> 2(x,z,t) =C gK coshKh1 - smhKh1 sinhKh
2 

· cos(Kx - at) (5.2.15b) 

wherein C is an arbitrary constant, and K is the wave number given by the two-layer 

dispersion relation (3.l.18a), which is written here for convenience to the readers: 

17
4 (P2 

coth Kh1 coth Kh2 + 1) -a2 P2 ( coth Kh1 + coth Kh2) gK 
PI PI 

+ (;: - 1) g2 K 2 = 0. (5.2.16) 

The displacement of the water surface (z = 0) and of the density interface (z = -h1) 
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can be found from the following relationship: 

J 
[)if! 

n- - + ., - oz d •. (5.2.17) 

From ( 5.2.15) and ( 5.2.17), the ratio of the amplitude of displacement of the density 

interface to that of the water surface is found to be: 

R* = (coshKh1 - g;{ sinhKh1) (5.2.18) 

Note that R* is different from the amplification factor R; R is the ratio of the 

amplitude of the internal waves in the trench to the amplitude of the surface waves 

due to wave-trench interaction, whereas R* represents the ratio of the amplitude of 

the vertical displacement of a fluid particle at the density interface to that on the 

free surface in a two-layer fluid of constant-depth, due to the wave motion of the 

surface mode or the interfacial mode. Equations 5.2.15 and 5.2.18 are the same for 

the surface mode and the interfacial mode, but the wave number I{ is different in 

each case. The wave numbers are given by the two real roots of (5.2.16), which we 

designate by K1 for the surface mode and by K2 for the interfacial mode. Using 

(5.2.16), with h1 = 22.8cm, h2 = 7.6cm, T = 211-ja = 7.75sec, and p2/p1 = 1.05, 

the values of K 1 and K 2 are found to be 0.473m-1 and 5.294m-1 , respectively. 

Substituting K2 for I{ in (5.2.18) and using the above flow conditions yield a value 

of R* = -118.45. The minus sign indicates that the wave at the water surface is 

180° out of phase with the wave at the interface, for the interfacial mode. It is seen 

that the effects of the interfacial mode on the water surface are indeed very small 

for the above conditions. 

For the surface mode, we substitute the determined value of K1 for J{ in (5.2.18), 

which yields a value of R* = 0.24, thus the wave motion at the interface is dimin­

ished, compared to the wave motion on the water surface. Let us compare this result 

with the fluid motion in a time-periodic progressive wave in a homogeneous fluid of 
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Figure 5.2.36. Variation of surface wave extrema at the end wall with relative wave 
number. Comparison between the results for fresh water in trench and a two-layer 
fluid in trench. 

the same total depth h = h1 + h2. From linear theory (see, for example, Dean and 

Dalrymple, 1984), the ratio of the amplitude of the vertical displacement of a fluid 

particle at a depth z to that on the water surface is given by sinh k( h + z) / sinh k h, 

where z is measured positive upwards from the still water surface, and k denotes 

the wave number in homogeneous fluid. Putting k = K1 and using the previously 

stated flow conditions yield an amplitude ratio of 0.25. Thus, for the surface mode, 

the wave motion at the interface is in phase with the wave motion at the water 

surface and has been decreased in amplitude by almost the same amount that the 

particle oscillations would have been decreased in amplitude if there had been no 

variation in density with depth. 

Seen in this light, we expect that the effects of internal oscillations due to wave-
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Figure 5.2.37. Variation of surface wave extrema at the end wall with relative wave 
number. The experimental results for stratified fluid in trench with a mean thickness 
of the diffuse salinity interface of 1.32 cm (Series I) are compared to the predictions 
of the two-layer viscous theory; h1 = 22.8 cm, h2 = 7.6 cm, and the three-layer 
viscous theory; h1 = 22.15 cm, h2 = 6.95 cm, 8 = 1.3 cm. 

trench interaction on the water surface will be small if jR/ R* I <{: 1. In other words, 

because the amplitude of the internal motion decays rapidly with distance from the 

density interface toward the free surface, the effects of internal oscillation cannot 

be felt on the free surface unless the motion at the density interface is sufficiently 

large. This appears to be the case in our· experiments. The variation of surface 

wave extrema at two locations above the trench with relative wave number was 

presented in figures 5.2.lOa and 5.2.lOb for the condition that fresh water fills both 

the constant-depth channel and the trench, and in figures 5.2.22a and 5.2.22b for 

the case of a stratified fluid in the trench. The experimental and theoretical results 
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Figure 5.2.38. Variation of normalized internal wave height at the upstream wall 
of the trench with relative wave number for a diffuse salinity interface thickness of 
2.5 cm. Comparison between the results of the experiments, the two-layer inviscid 
theory, the three-layer viscous theory, and the three-layer inviscid theory. 

shown in figures 5.2.l0b and 5.2.22b are plotted together in figure 5.2.36. It is seen 

in figure 5.2.36 that the differences in the surface wave height for the two cases 

are small for both experiment and theory. The lowest mode of oscillation of the 

internal waves in the trench occurs at kC = 0.392. The amplification factor R 

obtained using the two-layer viscous theory is 20.49 at kC = 0.392, and R* is about 

-120 from the previous calculation, thus IR/R*I ~ 0.17. Hence, the effects of the 

internal oscillations on the waves on the water surface are small. 

The theoretical results shown in figures 5.2.22a and 5.2.22b were obtained using 

the two-layer viscous theory. A comparison of the surface wave extrema at the end 

wall for the results of the same experiments, and the predictions of the two-layer 

viscous theory and the three-layer viscous theory, is presented in figure 5.2.37. In 
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computing the theoretical solution using the three-layer viscous theory, the thickness 

of the diffuse salinity interface was taken to be 1.3 cm. It is seen that the two-layer 

viscous theory and the three-layer viscous theory yield nearly identical results, but 

the three-layer viscous theory predicts somewhat larger effects on the water surface 

near the relative wave number for the lowest mode of resonant oscillation of the 

internal wave in the trench, that is, near kf = 0.392. This is because the three-layer 

viscous theory does not include interfacial boundary layer damping, consequently, 

the amplification factor as predicted by the three-layer viscous theory is larger 

than that predicted by the two-layer viscous theory (see figures 5.2.16 and 5.2.18). 

Thus, the effects of the internal oscillations on the water surface as predicted by 

three-layer viscous theory are also more pronounced near resonance. Also seen 

in figure 5.2.37, the theoretical predictions of the two-layer viscous theory and the 

three-layer viscous theory agree resonably well with the experimental measurements 

at off-resonant conditions of the surface waves in the constant-depth channel and 

trench. 

Finally, in figure 5.2.38 we present the response of the internal wave motion for 

those experiments where the thickness of the diffuse salinity interface was increased 

to a mean value of 2.46 cm (Series J). The theoretical predictions obtained using 

the three-layer theories (with 8 = 2.5 cm) and the two-layer inviscid theory are 

also shown. There is a small but definite shift in the resonant frequency of the 

internal waves in the trench relative to that predicted by the two-layer inviscid 

theory; the difference between the wave periods of resonance for the lowest mode 

obtained using the two-layer inviscid theory and the three-layer inviscid theory 

when compared to the difference between the wave periods of the first and second 

resonant modes is about 6%. The relative wave number kf corresponding to the 

lowest mode of oscillation of the internal waves in the trench as predicted by the 

two-layer inviscid theory, the three-layer inviscid theory, and the three-layer viscous 
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theory, respectively, are 0.396, 0.386, and 0.383. The corresponding wave periods are 

7.75sec, 7.95sec, and 7.99sec. The effect of increasing the thickness of the diffuse 

salinity interface is to decrease the resonant frequency. This is quite understandable 

from the physical point of view, because the density of the quiescent fluid, p, which 

represents the inertia of the fluid, is almost unchanged by increasing the thickness of 

the diffuse salinity interface, whereas the restoring force responsible for the existence 

of wave motion, represented by g17ap/ dz, where 17 is the vertical displacement of a 

fluid element from its undisturbed position, decreases as 8 increases. The frequency 

of the motion will decrease with smaller restoring force, which is the case shown 

here. Nevertheless, the effects of the thickness of the diffuse salinity interface on the 

response of the internal wave are still small. Comparing figure 5.2.38 ( 8 = 2.5 cm) 

to figure 5.2.18 ( 8 = 1.3 cm), it is seen that the maximum values of the amplification 

factor, H 4 / H3, which were obtained using the three-layer viscous theory, are about 

the same for the two different thicknesses of the diffuse salinity interface. 

In summary, the responses of a two-layer stratified fluid in a rectangular trench 

to time-periodic surface waves were studied experimentally and theoretically for 

wave periods near the lowest mode of resonant oscillation of the internal waves in 

the trench. A constant-depth channel and trench arrangement allowed definitive 

experiments to be conducted and compared to the theoretical predictions. Density 

stratification in the trench was created using fresh water and salt water. For these 

experiments the depth of fresh water in the constant-depth channel and the depths 

of fresh water and salt water in the trench region were held fixed and experiments 

were conducted with two different thicknesses of the diffuse salinity interface. The 

experimental results indicate that when the ratio of the internal wave height to the 

depth of the lower fluid, H4/h2, is small compared to the relative internal wave 

number, K2h2, second order effects in the internal wave profiles are small. The 

dimensionless parameter H4 / K 2h~ is proportional to the amplitude of the second 
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order term in the internal wave profile. It is also a measure of the relative impor­

tance of the nonlinear effects to the dispersive effects. The measured response curves 

for the internal waves in the trench were compared to the theoretical predictions 

obtained using a linear two-layer theory and a linear three-layer theory. Satisfac­

tory agreement between the measured and the predicted responses was obtained 

for these experiemnts where the values of the dimensionless parameter, H4/ I<2ht 

were small. The measured profiles of the interface also compared well with the 

finite amplitude standing internal wave solutions of Thorpe (1968); the standing 

internal waves did not have a true node due to second order effects in the wave 

profiles. The experimental results indicate that the response characteristics of the 

trench for wave periods near internal resonance tend to be an effective filter for 

higher frequency components in the surface waves. The results of the linear viscous 

theories show that the frequencies of resonant oscillation of the internal waves in 

the trench are smaller compared to the predictions of the linear inviscid theories, 

but the differences are small for these experimental conditions. This is because a 

relatively deep lower fluid (K2h2 ~ 0.4) was used in these experiments, thus inter­

nal wave damping due to shearing motions in the boundary layer adjacent to the 

trench bottom were substantially reduced compared to wave motions in a shallower 

lower fluid in the trench. It was found that the three-layer viscous theory underes­

timated energy dissipation in the actual fluid, whereas the two-layer viscous theory 

overestimated the damping significantly. The three-layer viscous theory consid­

ers the effects of continuous density variation at the density interface and assumes 

that the entire loss of the energy of waves .is localized in laminar boundary layers 

adjacent to the solid surfaces. The two-layer viscous theory assumes a surface of 

density discontinuity at the density interface and consequently energy dissipation 

takes place in the boundary layers adjacent to the density interface as well as at 

the solid surfaces. Thus, the three-layer model should be a closer realization of the 
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real fluid conditions. The experimental results therefore suggest that extra energy 

loss not accounted for by the linear viscous theories existed in the real fluids. The 

thickness of the diffuse salinity interface affects the density gradient and hence the 

buoyancy force responsible for the existence of internal waves. The measured and 

the predicted frequencies of resonant oscillation of the internal waves in the trench 

decrease as the thickness of the interface increases. Finally, theoretical analysis 

suggests that the effects of the internal waves on the waves on the water surface 

can be related to the amplification factor R and an amplitude ratio R*. The effects 

of internal oscillations on waves on the water surface are small when R/ R* « 1, 

which appears to be the case in these experiments. 

5.2.4 Experiments with a Shallow Lower Fluid in a Stratified 'Irench 

In § 5.2.3, internal wave motion in a deep lower fluid (I<2h2 ~ 0.4) in a rect­

angular trench was investigated for a range of wave periods near the lowest mode 

of internal oscillation. The linear theories predicted the motion in the trench quite 

well for the conditions of weakly nonlinear internal motions and small dissipative ef­

fects. It is the intent in this section to study internal oscillations in the same trench 

for conditions where these effects .are more important. The objective is to establish 

a range of validity of the linear theories, and hence determine their usefulness in 

predicting internal resonance in submarine trenches under other flow conditions. 

We have seen in (5.2.14) that second order nonlinear effects in standing internal 

waves at the interface of a two-layer fluid where one of the fluids is deep and the 

other shallow of depth hare characterized by the dimensionless parameter H / I<h2, 

where H is the wave height and J{ is the wave number. In our experiments the 

wavelengths of the internal waves in the trench were large compared to the depth 

of the lower fluid ( salt water), but the total fluid depth was not large enough in 
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comparison with the wavelength to be considered as infinite. Thus, the dimension­

less parameter H/Kh2 gives only an estimate of the magnitude of the second order 

effects in the internal wave profiles (see equations 5.2.13 and 5.2.14). Nevertheless, 

this parameter is seen to vary inversely as the square of the shallow fluid h. Hence, 

it is expected that nonlinear effects in the standing internal waves in the trench 

will be more important as the depth of the lower fluid h2 decreases. However, the 

gradient of horizontal velocity near the bottom, for fixed internal wave height at 

the upstream wall of the trench H4 and internal wave number K2, increases as h2 

decreases ( this may be deduced from the boundary layer solutions in § 3.3, the de­

tails are discussed more fully in § 5.2.5); thus, viscous dissipation in the boundary 

layer adjacent to the trench bottom increases as h2 decreases. In a shallow lower 

fluid, the effects of nonlinearity and dissipation may compete with each other and 

thus produce a much more complicated behaviour. Motivated by the above conclu­

sion, a series of experiments were conducted using the experimental arrangement 

shown in figure 5.1.1, with h1 = 26.6cm, and h2 = 3.8cm. Hence, the value of 

h2 in these experiments was reduced by half from the value of h2 of 7.6 cm used 

in the experiments which were discussed in § 5.2.3. The value of the dimensionless 

parameter H4/ K 2 h~ would be increased by four times for the same wave height and 

wave number of the internal wave. The density difference between water and salt 

water in these experiments was kept about the same, that is, !::i..p ~ 0.05 gcm-3• 

Experiments were conducted using two nominal thicknesses of the diffuse salin­

ity interface: (i) 8 ~ 1.3 cm (Series K), and (ii) 8 = 2.5 cm (Series M). In Series 

K the mean thickness of the diffuse salinity interface was 1.31 cm, with a stan­

dard deviation of 0.09 cm. The mean density of the lower fluid ( salt water) was 

1.0506 gcm-3, with a standard deviation of 0.0008 gcm-3. Internal oscillations for 

a wide range of surface wave heights above the trench were studied; the results of 

this case will be discussed now. 
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Figure 5.2.39. Variation of normalized internal wave height at the upstream wall of 
the trench with relative wave number. The theoretical results are obtained using 
the two-layer viscous theory and the two-layer inviscid theory; h = 15.2 cm, h1 
26.6cm, h2 = 3.8cm, L = 19.15m, £ = 59.5cm, b = 19.7cm, p2f p1 = 1.05. 

In figure 5.2.39, the internal wave height at the upstream wall of the trench, H4, 

normalized by the wave height of the surface wave at the end wall, H 3, is plotted as a 

function of k£, where k is the wave number of the surface wave in the constant-depth 

channel obtained using the linear inviscid theory. From the two-layer inviscid theory, 

the wave period corresponding to the lowest mode of oscillation of the internal waves 

in the trench is found to be 9.9 sec ( k£ = 0.31). It is seen that the linear inviscid 

theory is inadequate in predicting the response of the internal oscillation because in 

addition to nonlinear effects, viscous dissipation is significant in this shallow region. 

The linear viscous theory, with a kinematic viscosity v = l.O x 10-6 m2sec-1 for 

both layers, predicts a resonant wave period of internal oscillation in the trench of 
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Figure 5.2.40. Variation of the relative phase angle between internal wave motion at 
the upstream wall of the trench and surface wave motion at the end wall with relative 
wave number. The theoretical results are obtained using the two-layer viscous 
theory and the two-layer inviscid theory; h = 15.2 cm, h1 = 26.6 cm, hz = 3.8 cm, 
L = 19.15 m, f = 59.5 cm, b = 19.7 cm, pz/ Pl = 1.05. 

10.08 sec ( k£ = 0.304) and an amplification factor, H4 / H3, of 4.9. The agreement 

between experiment and linear viscous theory is good, even though nonlinear effects 

are significant in this problem. The wave period of resonance for the second resonant 

mode is about 5.4 sec from the two-layer inviscid theory. The difference between the 

wave periods of resonance for the lowest in:ode predicted by the two-layer viscous 

theory and the two-layer inviscid theory when compared to the interval between the 

first and second resonant modes is about 4%. This compares to 2% for the case of 

the deep lower fluid (i.e., hz = 7.6 cm) reflecting this increase in viscous effect on 

the internal wave motions in the trench. The relative phase angle between internal 
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Figure 5.2.41. Variation of normalized internal wave height at the upstream wall of 
the trench with relative wave number. The theoretical results are obtained using 
the three-layer viscous theory and the three-layer inviscid theory, computed for 
the internal wave height at the top of the density transition region; h = 15.2 cm, 
h1 = 25.95 cm, h2 = 3.15 cm, 8 = 1.3 cm, L = 19.15 m, .e. = 59.5 cm, d = 15.2 cm, 
b = 19.7 cm, p2/ PI = 1.05. 

wave motion at the upstream wall of the trench and surface wave motion at the end 

wall, 043, is plotted as a function of the relative wave number, kt, in figure 5.2.40. 

The shift in 043 from in phase to 180° out of phase through trench resonance is also 

predicted well by the linear viscous theory. 

In figure 5.2.41 the results of the same experiments are compared with the 

predictions of the three-layer viscous theory and the three-layer inviscid theory, 

computed using 8 = 1.3 cm. The theoretical response curves are computed for 

the internal wave height at the top of the density transition region, that is, at 

z = -25.95 cm, where z is measured positive upwards from the still water surface. 
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Figure 5.2.42. Variation of the relative phase angle between internal wave motion 
at the upstream wall of the trench and surface wave motion at the end wall with 
relative wave number. The theoretical results are obtained using the three-layer 
viscous theory and the three-layer inviscid theory, computed for the internal wave 
motion at the top of the density transition region; h = 15.2 cm, h1 = 25.95 cm, 
h2 = 3.15cm, 6 = 1.3cm, L = 19.15m, £ = 59.5cm, d = 15.2cm, b = 19.7cm, 
p2/ Pl = 1.05. 

The wave period of resonant oscillation of the internal waves in the trench is found 

to be 10.05 sec ( k£ = 0.306) using the three-layer inviscid theory. In comparison 

with the deep fluid, that is, h2 = 7.6 cm, the density transition region has a more 

pronounced effect on the response curve in this case. The difference between the 

wave periods of resonance predicted by the two-layer inviscid theory and the three­

layer inviscid theory when compared to the interval between the first and second 

resonant modes is about 3.3%. Note that the total depth in the trench region 

(h1 + h2) and the thickness of the diffuse salinity interface were about the same 
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in these two sets of experiments. However, the fractional change in h2 was greater 

in the shallow lower fluid by the inclusion of the density transition region, hence 

the shift in the response curve is more pronounced (see equation 3.2.48). The wave 

period of the resonant peak predicted by the three-layer viscous theory is 10.17 sec 

(k£ = 0.301). The corresponding theoretical amplification factor is 8.2, compared 

to a value of 4.9 from the two-layer viscous theory. This difference is attributed 

to interfacial boundary layer damping built into the two-layer viscous theory, and 

is not included in the three-layer viscous theory. It is recalled that for the deep 

lower fluid, that is, h2 = 7.6 cm, the two viscous theories predicted somewhat larger 

differences (~ 8% larger) in the amplification factor. These results suggest that 

viscous dissipation in the boundary layer adjacent to the trench bottom increases 

more rapidly than that in the boundary layers adjacent to the density interface, 

as the depth of the lower fluid decreases. This point will be further elucidated 

in § 5.2.5. Figure 5.2.41 also indicates that viscous dissipation in the actual fluid 

was larger than that predicted by laminar boundary layer damping near the solid 

surfaces. The variation of relative phase angle with relative wave number is shown 

in figure 5.2.42. 

In figure 5.2.43, the wave extrema of internal wave motion at the upstream 

wall of the trench, T/4, normalized by the surface wave height at the end wall, 

H3, is plotted as a function of the relative wave number, kR, for the lowest mode 

of oscillation of internal waves in the trench. In comparison with figure 5.2.21, 

nonlinear effects are clearly seen in the internal waves in the shallow lower fluid. 

The ratio of the crest amplitude to the trough amplitude of the internal wave in these 

experiments reached a maximum value of 3.1 at k£ = 0.306, the corresponding value 

of H3/h was 0.0803. It is interesting to compute the ratio of the second order term 

in (5.2.11) to that of the first, even though the solution given by (5.2.11) is clearly 

invalid in this case. We have H4/h2 = 1.079, K2h1 = 1.393, K2h2 = 0.199. From 
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Figure 5.2.43. Variation of wave extrema of internal waves at the upstream wall of 
the trench with relative wave number, for the lowest mode of oscillation of internal 
waves in the trench. The theoretical results are obtained using the two-layer viscous 
theory; h = 15.2 cm, h2 = 26.6 cm, h2 = 3.8 cm, L = 19.15 m, £ = 59.5 cm, b = 
19.7 cm, pz/ PI = 1.05. 

(5.2.13) this implies an amplitude ratio of 0.972, which is indeed large, indicating 

that nonlinear effects are important. The corresponding value of the dimensionless 

parameter, H4/ K2h~, is 5.422. The internal wave heights are also large compared 

to the depth of the lower fluid. 

The corresponding surface wave extrema at two locations above the trench 

( x / £ = 0 and x / £ = l) are shown in figures 5.2.44a and 5.2.44b, where f/2/ S cor­

responds to the normalized amplitude of the free surface elevation at x / £ = 0, and 

173 / S corresponds to the normalized amplitude of the free surf ace elevation at x / P = 

1. The values of H 3 / h that were used in these experiments were considerably larger 
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with relative wave number: (a) x/f = 0, and (b) x/f = 1. 
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than those used in the experiments with the deep lower fluid, that is, h2 = 7.6 cm. 

This is because the amplification factor for the internal waves was small in the shal­

low lower fluid, hence larger surface wave amplitudes were needed to generate the 

internal waves. It is seen in figures 5.2.44a and 5.2.44b that the free surface motions 

above the trench correspond to an off-resonant condition in the main channel. The 

wave period for the nearest resonant mode of oscillation of the surface waves in 

the main channel is found to be 10.85 sec ( kf = 0.282) using the two-layer viscous 

theory. Hence, using (5.2.5), with kh = kf • h/f = 0.282 x 0.152/0.595 = 0.072, 

the condition that second order effects are negligible in the standing surface wave 

profile is: 
H 16k2h2 
-2 A' 0 028 h ~--3--:;::::J .. (5.2.19) 

Considering the relatively large values of H3/h in these experiments, the good 

symmetry shown by the surface waves about the mean water level is somewhat 

surprising. In figure 5.2.44b the theoretical curves obtained using the three-layer 

viscous theory (with 8 = 1.3 cm) are also shown. It is seen that the two-layer 

viscous theory and the three-layer viscous theory yield identical results. These 

results indicate that the effects of internal oscillations on the motion of the free 

surface are small for these experimental conditions. These may be simply because 

the amplification factor of the internal wave in the trench is substantially less in the 

shallow lower fluid (h2 = 3.8 cm). Because the effects of density variations in the 

trench are not pronounced on the water surface, the two-layer viscous theory and 

the three-layer viscous theory yield the same results for the surface motion above 

the trench. 

The steady-state portion of the time histories of internal wave motion as mea­

sured at the upstream wall of the trench for three different wave heights and a wave 

period of 10.0 sec are presented in figure 5.2.45. The ordinate is normalized by the 

internal wave height H4 and the abscissa is a dimensionless time measured from 
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( C ) 

( d) 

Figure 5.2.4 7. Internal waves in a shallow lower fluid in the trench for the lowest 
mode of resonant oscillation: (a) maximum upward displacement at x / .e = 1, ( b) 
and ( c) internal wave travelling from right to left, and ( d) maximum upward dis-

placement at x / .e = O; h1 = 26.6 cm, h2 = 3.8 cm, !:::..p ~ 0.05 gcm-3, T = 10.2 sec. 
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the start of the wave generator. For this wave period the internal waves are at 

resonance for the lowest mode of oscillation. The ratio of the crest amplitude to 

the trough amplitude for H4/h2 = 0.295, 0.711 and 1.079 are 1.55, 2.38 and 3.10, 

respectively. The spurious signals seen in the wave record for H4/h2 = 1.079 are 

due to the effect of mixing at the interface. The variation of the normalized eleva­

tion of the density interface with relative distance along the trench is presented in 

figure 5.2.46 for H4/h2 = 1.079 for several different phases of an internal oscillation. 

The data points were obtained from steady-state wave records taken at intervals of 

5.0 cm along the trench. To construct the plots shown in figure 5.2.46 from individ­

ual internal wave records, the surface motions at the end wall were recorded at the 

same time as the internal motions, then the elevations of the density interface at 

different locations along the trench were obtained for the same phase of the surface 

motions. The travelling wave pattern is clearly seen, the internal wave looks like 

a single "hump" travelling back and forth in the trench almost entirely above the 

quiescent density interface. Steady-state conditions in the trench were still reached 

in this case; the thickness of the diffuse salinity interface after the experiment was 

about 10% larger than the mean. 

Lepelletier (1980) conducted experiments in a rectangular tank, which was filled 

with water to a shallow depth when compared to the length of the tank. Lepel­

letier generated standing waves by oscillating the tank horizontally in a sinusoidal 

manner at the resonant frequencies of the surface waves in the rectangular tank. 

Wave motions were measured near one end of the tank by a resistance wave gage, 

which was stationary. Lepelletier represented the wave motions in the rectangular 

tank as the sum of two cnoidal waves, which have the same amplitude and travel 

in opposite directions. Appreciable discrepancies were found between the measured 

and the cnoidal wave shapes in some cases. Helal and Molines (1981) conducted 

similar experiments in an oscillating rectangular tank, which was partially filled 
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with a two-layer stratified fluid of water and salt water. The motions of the stand­

ing internal waves were also obtained in the form of two internal cnoidal waves of 

the same amplitude travelling in opposite directions. Helal and Molines showed 

experimentally that the waves in the oscillating tank as measured by a stationary 

wave gage could be represented by a linear superposition of a cnoidal shape wave 

and a sine shape wave; the sine wave component was due to the oscillatory motion 

of the tank. Thus the experimental measurements could not be compared directly 

to a standing wave in a stationary frame. The constant-depth channel and trench 

arrangement used in this study (figure 5.1.1) has eliminated the difficulty stated 

above. Our experiments showed that standing internal waves of various character­

istics can be generated in the trench by moving a vertical plate in the fresh water 

filled constant-depth channel sinusoidally and by carefully controlling the depths 

and the density stratifications in the trench region. The experimental results are 

directly comparable to the theoretical predictions. 

Photographs of a travelling internal wave are shown in figure 5.2.47. This wave 

is about 60% larger in amplitude than the one shown in figure 5.2.46 and the wave 

profiles as seen could be maintained for only a few oscillations. This is because the 

density stratifications in the trench were constantly changing due to intense mixing 

of the two fluids at the interface. Hence, a steady-state condition could not be 

realized in this case. 

The steady-state portion of the time histories of internal motion at the up­

stream wall of the trench, and of free surface motion at the end wall, are presented 

in figures 5.2.48 and 5.2.49, respectively, for a range of relative circular frequencies, 

a/ cro, near the lowest mode of oscillation of the internal waves in the trench; cro 

is the circular frequency of resonant oscillation, which is 21r'f9.9 rad/sec from the 

two-layer inviscid theory. As seen in figure 5.2.49 the surface waves are symmetrical 

about the mean water level for the range of frequencies of these experiments. The 
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wave period corresponding to the nearest resonant mode of oscillation of the surface 

waves in the constant-depth channel is 10. 79 sec ( o-j o-o = 0.918) obtained using the 

two-layer inviscid theory. No secondary oscillation is observed in these off-resonant 

conditions for the free surface motions in the main channel, hence the pressure force 

exerted by the surface waves on the internal waves was nearly sinusoidal for these 

experiments. The complete time histories of the internal waves and of the surface 

waves are presented in figures 5.2.50-5.2.53 for several typical wave periods near 

the lowest mode of trench resonance. Note that the surface and internal waves are 

plotted to a different scale. Beat patterns, which diminish with time, can be seen in 

each wave record. The waveforms of the internal motions as shown in these figures 

are non-symmetrical about the quiescent density (dye) interface. However, no sec­

ondary oscillations are seen in the internal waves. From these internal wave records 

one also gets an idea that mixing at the interface must be small, otherwise the den­

sity stratifications in the trench would be constantly changing, hence the internal 

motions would approach steady-state condition in a more complicated fashion. 

Finally, we present in figure 5.2.54 the response curve obtained from those ex­

periments where the thickness of the diffuse salinity interface was increased to a 

mean value of 2.44 cm, with a standard deviation of 0.04 cm. The mean density 

of the lower fluid ( salt water) was 1.0496 gcm-3 , with a standard deviation of 

0.0017 gcm-3• The predictions of the internal wave height using the three-layer 

viscous theory and three-layer inviscid theory were computed at the top of the den­

sity transition region, that is, at z = -25.35 cm, with 8 = 2.5 cm. The relative wave 

number kR corresponding to the lowest mode of oscillation of the internal waves 

in the trench as predicted by the two-layer inviscid theory, the three-layer inviscid 

theory, and the three-layer viscous theory are 0.31, 0.295 and 0.292, respectively. 

The corresponding wave periods are 9.9 sec, 10.38 sec, and 10.51 sec. Thus, the dif­

ference between the wave periods of resonance for the lowest mode predicted by the 
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Figure 5.2.50. Surface and internal waves for experiment at T = 9.6 sec (k£ = 0.319) 
and H3 = 4.95mm. 
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Figure 5.2.51. Surface and internal waves for experiment at T = 9.8 sec ( k£ = 0.313) 
and H3 = 5.15mm. 
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Figure 5.2.52. Surface and internal waves for experiment at T 
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Figure 5.2.53. Surface and internal waves for experiment at T 
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Figure 5.2.54. Variation of normalized internal wave height at the upstream wall 
of the trench with relative wave number for diffuse salinity interface thickness of 
2.5 cm. Comparison between the results of the experiments, the two-layer inviscid 
theory, the three-layer viscous theory, and the three-layer inviscid theory. 

two-layer inviscid theory and the three-layer inviscid theory when compared to the 

interval between the first and second resonant modes is about 11 %, reflecting the 

increase in the effect of the density transition region on the response curve in the 

shallow lower fluid compared to that in the deep lower fluid (i.e., h2 = 7.6 cm). The 

experimental data are too limited to give anything more than a general picture of 

the response curve, which appears to agree with the predictions of the three-layer 

viscous theory and the three-layer inviscid theory. 

In summary, the internal motions in a two-layer stratified rectangular trench due 

to time-periodic surface waves were studied experimentally and theoretically for the 

condition that the depth of the lower fluid (salt water) in the trench was reduced 
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by half from the depth used in the experiments that were discussed in§ 5.2.3. The 

trench responses were obtained for a range of wave periods near the lowest mode 

of oscillation of the internal waves in the trench for two different thicknesses of the 

diffuse salinity interface. In this case, the depth of the lower fluid in the rectangular 

trench was small compared to the wavelength of the internal waves (K2h2 ~ 0.2). 

The inviscid theory could not predict the response of the stratified fluid in the 

trench as good as in the case of the deep lower fluid (i.e., h2 = 7.6 cm). This 

was due to the proximity of the density interface to the trench bottom, and hence 

the increased importance of viscous effects and/ or the influence of nonlinearities 

in the shallow region. The two-layer and three-layer viscous theories predicted the 

internal wave heights in the trench satisfactorily, even though nonlinear effects were 

important for these experimental conditions. The linear theories did not do so well 

in predicting the amplitudes of the wave crest and wave trough, due to nonlinear 

effects in these experiments. The effects of the density transition region on the 

internal motions in the trench were also more pronounced in this case because 

the thickness of the diffuse salinity interface was comparable to the depth of the 

lower fluid. The dimensionless parameter, H4/K2h~, increases as the depth of the 

lower fluid , h2, decreases. The effects of viscosity also increase as h2 increases. 

Comparing the results of these experiments to those for the deep lower fluid (i.e., 

h2 = 7.6 cm), the amplitude responses of the internal waves in the shallow lower 

fluid (i.e., h2 = 3.8 cm) were substantially smaller. In addition, the internal wave 

in the shallow lower fluid behaved more like a travelling wave than a standing wave 

as observed in the deep lower fluid. The waveforms of the internal motions were 

non-symmetrical about the still density interface. At resonance, the internal wave 

looked like a single "hump" travelling back and forth between the vertical walls of 

the trench almost entirely above the still density interface. 
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5.2.5 Damping of Standing Internal Waves in a Rectangular Basin 

The experiments that were discussed in § 5.2.3 and § 5.2.4 for the oscillation 

of internal waves in a rectangular trench showed that the two-layer viscous theory 

overestimated energy dissipation in the actual fluid, whereas the three-layer viscous 

theory underestimated the damping significantly. The two-layer viscous theory 

assumes that the entire loss of energy of waves is localized in very thin laminar 

boundary layers adjacent to the density interface and at the solid surfaces. This 

follows from the treatment of two immiscible fluids. Thus, if the effects of viscosity 

are neglected the horizontal components of the fluid velocity across the density 

interface are discontinuous; the density interface is a surface of infinite velocity 

gradient, that is, a vortex sheet. Viscosity, however small, will instantaneously even 

out such a discontinuity by the diffusion of momentum, but the gradient of velocity 

is still very large within thin layers of fluids (boundary layers) adjacent to the density 

interface. Indeed, it was found in§ 3.3.1.1 and§ 3.3.1.2 for progressive waves and for 

standing waves in a two-layer fluid that energy dissipation in the boundary layers 

adjacent to the solid surfaces and at the density interface are both proportional 

to v 112 , where v is a characteristic kinematic viscosity of the fluids. However, a 

miscible fluid ( water and salt water) was used in the experiments, and the gradient 

of fluid velocity in the diffuse salinity interface is substantially less than that at the 

density interface of two immiscible fluids. It can be deduced from (3.3.131) that 

energy dissipation in the diffuse salinity interface is only proportional to v. In the 

three-layer viscous theory, the density variation and the velocity distribution in the 

density transition region are continuous, and energy dissipation is considered to take 

place only in the laminar boundary layers adjacent to the solid surfaces. Hence, 

the three-layer viscous theory should be a closer realization of the actual fluid state 

than the two-layer viscous theory. It follows that the observed discrepancies between 

theoretical predictions and experimental observation might be due to other sources 
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of damping not included in the linear viscous theories. 

To further investigate the various aspects of internal wave damping, the at­

tenuation of standing internal waves was studied experimentally in a rectangular 

basin, which was partially filled with a stratified fluid of water and salt water. A 

theoretical treatment of the two-layer problem is given in § 3.3.1.2. As in previous 

experiments, the arrangement shown in figure 5.1.1 was used to generate the inter­

nal waves in the trench. The wave period was chosen to correspond to the lowest 

mode of oscillation of the internal waves in the trench. After a steady-state condi­

tion was established in the wave tank, a gate constructed of lucite was lowered at 

the upstream edge of the trench (x = 0) to separate the trench region (0 < x < .e) 

from the region of the constant-depth channel (-L < x < 0). The gate was held 

in place by vertical guides fastened to the side walls of the wave tank. To reduce 

leakage around the gate, rubber seals were used against the glass walls and the false 

bottom. The mounting arrangement for the rubber seals was similar to that for the 

wave plate. The motion of the decaying standing internal wave in the trench was 

measured by the interfacial wave gage at a location close to the upstream wall of 

the trench. 

For the study of internal wave damping, the above arrangement had at least two 

advantages over the constant-depth channel and trench combinations used in the 

previous experiments. First, flow separation at the upstream edge of the trench was 

eliminated in this problem. Second, the effects of the surface waves were kept to a 

minimum. Note that without the gate the fluid at x = 0 acts as a wave generator for 

the fluid motion in the trench. Closing the-gate instantly brought the fluid motion 

at this location to zero; thus, the pressure force exerted by the surface waves on the 

density interface disappeared. It is recalled that the forced internal wave motion 

in the trench was due to action of a surface wave whose wavelength was large 

compared to the width of the trench. After the gate was closed the surface motions 
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in the trench region no longer corresponded to the conditions for the forced resonant 

oscillations of the internal waves. Hence, the internal wave amplitude continued to 

decrease due to viscous effects alone. 

The rectangular basin created in the manner described above was 59.5 cm long 

and 39.4 cm wide. One objective of the investigation was to test the validity of 

the linear viscous theory. Hence, conditions were chosen in which nonlinear effects 

related to the internal waves were either small, or large. As mentioned earlier, we 

have obtained the former conditions with a deep lower fluid, that is, the depth of 

the upper fluid (water) in the trench region was h1 = 22.8 cm, and the depth of 

the lower fluid (salt water) was h2 = 7.6 cm. Three experiments were conducted 

with different thicknesses of the diffuse salinity interface: 8 = 1.03 cm, 1.41 cm, 

and 2.61 cm. The corresponding wave periods for the lowest mode of oscillation 

of the internal waves as measured experimentally were 7.8 sec, 7.8 sec, and 8.0 sec, 

respectively. The wave periods for the first two experiments were the same because 

the difference in the thickness of the diffuse salinity interface was small. Though a 

much larger thickness of the interface was used in the third experiment, the wave 

period of resonant oscillation had only increased slightly for these experimental 

conditions. The density of salt water in these three experiments were, respectively, 

1.0513 gcm-3 , 1.0505 gcm-3 , and 1.0494 gcm-3 . 

A fourth experiment was conducted with a shallow lower fluid in the trench 

(h1 = 26.6cm, h2 = 3.8cm). These conditions were used in the experiments that 

were discussed in§ 5.2.4, where it was shown that nonlinear effects related to the in­

ternal oscillations were very important in the shallow region. Hence, it is interesting 

to see how the decay of the internal wave as recorded experimentally compared to 

the theoretical predictions of the linear viscous theory. The thickness of the diffuse 

salinity interface was 0.94cm, and the density of salt water was l.0506gcm-3 • The 

wave period measured was 10.0 sec. 
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Figure 5.2.55. Time histories of decay of internal oscillations at the upstream wall 
of the rectangular basiu for the lowest mode of resonant oscillation in the deep 
lower fluid (h1 = 22.8cm, h2 = 7.6cm): (a) experiment; T = 7.8sec, ao = 1.12cm, 
b = 1.41 cm, p2 = 1.0505 gcm-3, and (b) two-layer viscous theory; T = 7.843 sec, 
P2/ Pl= 1.05. 
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Figure 5.2.56. Time histories of decay of internal oscillations at the upstream wall 
of the rectangular basin for the lowest mode of resonant oscillation in the shallow 
lower fluid (h1 = 26.6cm, h2 = 3.8cm): (a) experiment; T = 10.0sec, ao = 1.07cm, 
8 = 9.4 cm, p2 = 1.0506 gcm-3, and (b) two-layer viscous theory; T = 10.095 sec, 
pif p1 = 1.05. 
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The experimental and theoretical results for the time history of the decay of 

the internal oscillations at the upstream wall are presented in figures 5.2.55a and 

5.2.55b, respectively. The experiment was conducted in the deep lower fluid, that is, 

h2 = 7.6cm for a wave period of 7.8sec, which corresponded to the lowest mode of 

oscillation of the internal waves in the rectangular basin. The density of salt water 

was 1.0505 gcm-3, and the thickness of the diffuse salinity interface was 1.41 cm. In 

figure 5.2.55a, 'T/I and ao are, respectively, the time-dependent displacement of the 

density interface and the average of the crest amplitude and the trough amplitude 

measured at the upstream wall at an initial time t = 0, and T is the measured wave 

period of 7.8 sec. The abscissa of the theoretical curve in figure 5.2.55b is normalized 

by the predicted wave period of the resonant oscillation which, from the two-layer 

viscous theory, is 7.843sec. At t/T = 0, the ratio of the experimentally observed 

crest amplitude to trough amplitude of the internal oscillation is about 1.2. This 

ratio decreases as the amplitude of the standing internal wave a decreases with time. 

The theoretical time history includes damping in the boundary layers adjacent to the 

density interface and at the solid surfaces. Considering the sensitivity of damping to 

the conditions of the solid surfaces in the experiment, the linear viscous theory does 

a good job in predicting the decaying internal oscillations for this weakly nonlinear 

case. 

The measured and the predicted time histories of the decay of the internal os­

cillations for h2 = 3.8 cm are presented in figures 5.2.56a and 5.2.56b, respectively. 

This is the fourth experiment discussed earlier. The wave period of resonant oscilla­

tion measured was 10.0 sec, and the wave period predicted by the two-layer viscous 

theory was 10.095 sec. The experimentally observed time decay of oscillation of the 

internal wave is highly non-symmetrical about the quiescent density interface in 

this shallow lower fluid. 

The results of three experiments m the deep lower fluid (h2 - 7.6 cm) are 
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Figure 5.2.57. Amplitude envelopes of the decay of internal oscillations in the deep 
lower fluid; h1 = 22.8 cm, h2 = 7.6 cm. 

presented in figure 5.2.57. The ordinate is ao/a where ao is an initial wave amplitude, 

and a is the wave amplitude at a subsequent time t taken from the average of the 

crest amplitude and the trough amplitude. The abscissa is the number of oscillations 

t/T, where Tis the wave period measured. Thus figure 5.2.57 shows the amplitude 

envelopes of the decay of the internal waves. From (3.3.120), a/ao and t/T are 

related to the modulus of decay a* by: 

* T 1 (ao) 
O! = t 11_ -;; (5.2.20) 

where "ln" is the natural logarithm. Also shown in figure 5.2.57 are the predictions 

of the two-layer viscous theory. These are found using (3.3.111)-(3.3.113), (3.3.121) 

and ( 5.2.20), with h1 = 22.8 cm, h2 = 7.6 cm, b = 19. 7 cm, p2/ PI = 1.05, v1 = v2 = 

1.0 x 10-6 m 2sec-1 , and an internal wavelength of twice the trench width, that is, 
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Figure 5.2.58. Amplitude envelopes of the decay of internal oscillations in the shal­
low lower fluid; h1 = 26.6 cm, h2 = 3.8 cm. 

1.2 m for the lowest mode of resonant oscillation. The full line is the result including 

energy dissipation in all the boundary layers, that is, the boundary layers adjacent 

to the solid surfaces and at the density interface. According to (3.3.111) we may 

break the modulus of decay into two parts: that part due to the solid surfaces and 

that part due to the density interface. The dashed line in figure 5.2.57 is a plot of 

(5.2.20) with the modulus of decay given by that due to the solid surfaces only. 

Several conclusions may be obtained from figure 5.2.57. First, the damping of 

the internal wave in these experiments is characterized by a constant value of the 

modulus of decay. Second, the measured modulus of decay is nearly the same for 

different thicknesses of the diffuse salinity interface 8. This indicates that energy 

dissipation in the diffuse salinity interface is not sensitive to the thickness of the 
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interface in the real fluid. This may be simply because wave damping in the density 

transition region is small compared to the total energy loss in the fluid for these 

experimental conditions. Last, the modulus of decay given by the full line overesti­

mates the energy dissipation, whereas the dashed line underestimates the damping 

significantly. The former is attributed to damping at the density interface, which 

does not exist in the miscible fluids. The latter suggests that other sources of en­

ergy dissipation not included in the two-layer model existed in the experiment. The 

excessive energy loss could not be due to fl.ow separation or surface action, because 

these effects were negligible in the rectangular basin that had been isolated from 

the constant-depth channel. It is possible that the linear viscous theories, which as­

sume the ideal conditions of a very smooth surface, have underestimated the energy 

dissipation near the solid surfaces. The effects of these on the internal oscillations 

were not studied. 

The amplitude envelopes of the decay of internal waves in the shallow lower 

fluid (h2 = 3.8 cm) for the lowest mode of resonant oscillation are presented in 

figure 5.2.58. The experimental and theoretical time histories of the internal wave 

have been shown in figures 5.2.56a and 5.2.56b, respectively. In figure 5.2.58 the 

wave amplitude a is given by the average value of the crest amplitude and the trough 

amplitude. It is surprising that even though the waveform as seen in figure 5.2.56a 

is highly non-symmetrical about the quiescent density interface, the internal wave 

amplitude measured can still be related to a constant value of the modulus of decay. 

It is constructive to examine the energy loss in various parts of the fluid in 

the rectangular basin. A comparison is made in table 5.2.3 between the attenu­

ation rates for standing internal waves in the deep lower fluid (h2 = 7.6 cm) and 

in the shallow lower fluid (h2 = 3.8 cm), for the lowest resonant mode in the rect­

angular basin. These results are obtained using the two-layer viscous theory. The 
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T (sec) 7.843 10.095 

h1 (cm) 22.8 26.6 

h2 (cm) 7.6 3.8 

a (sec-1) 0.00766 0.01203 

as(sec-1) 0.00262 0.00595 

u1(sec-1) 0.00318 0.00452 

aw1 (sec-1) 0.00018 0.00011 

aw2(sec-1) 0.00049 0.00025 

awisec-1) 0.00007 0.00002 

aw4(sec-1) 0.00112 0.00118 

Table 5.2.3. Comparison between the attenuation rates for standing internal waves 
in the deep lower fluid and in the shallow lower fluid for the lowest resonant mode 
in the rectangular basin; _f, = 59.5 cm, b = 19.7 cm. 

attenuation rate a is related to the wave amplitude a by: 

(5.2.21) 

where ao is the wave amplitude at an initial time t = 0. Hence a = a* /T from 

(3.3.120) and (5.2.21). From (3.3.111), the attenuation rate may be divided into 

the following parts (see figure 3.3.4): 

a =--== aB + a1 + aw1 + awz + aw3 + aw4 (5.2.22) 

where the subscript B denotes the basin bottom, I denotes the density interface, 

Wl denotes the end walls for -b < y < b at x = 0 and x = _f, in the upper layer, 

W2 denotes the side walls for 0 < x < R, at y = -bandy = bin the upper layer, 
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W3 denotes the end walls for -b < y < b at x = 0 and x = C in the lower layer, 

and W 4 denotes the side walls for O < x < /!, at y = -b and y = b in the lower 

layer. Notice that the energy loss is concentrated in three regions: in the boundary 

layers adjacent to the density interface, at the basin bottom, and at the side walls 

at y = -b and y = b, whereas the fraction of energy loss due to the end walls at 

x = 0 and x = C is very small. The latter is because the horizontal component of 

the fluid velocity is much larger than the vertical component for the lowest mode 

of resonant oscillation, hence viscous dissipation in the boundary layers adjacent to 

the end walls at x = 0 and x = R, is much smaller than those at the basin bottom 

and the side walls at y = -band y = b. It is seen that the total energy loss in the 

upper fluid is smaller than that in the lower fluid. This is understandable because in 

the internal wave mode, the water particle velocities decrease rapidly with distance 

from the density interface in the upper layer but they decrease much more slowly in 

the lower layer. The former can be deduced from (5.2.18) and has been discussed in 

§ 5.2.3; the latter can be seen in (3.3.83b), from which the horizontal component of 

the fluid velocity in the lower fluid u2 can be obtained. This is given for the inviscid 

case in dimensional form as: 

coshK(z + h1 + h2) . ~ . 
u2 = aoao . hl{h smli..xsmaot 

sm 2 
(5.2.23) 

where ao is the amplitude of the internal wave. From (5.2.23), the ratio of u2 on the 

bottom, z = -(h1 + h2), to that at the interface, z = -h1, is given by l/coshKh2. 

Using h2 = 7. 6 cm, and the wave number of the internal wave ]{ = ]{ 2 = 7f / f for the 

lowest mode of oscillation, the ratio of the horizontal velocity on the basin bottom 

to that at the density interface is found to be 0.925. Hence, equation 5.2.23 predicts 

that the amplitude of the horizontal velocity is almost uniform in the lower layer, 

therefore the energy loss due to the bottom at z = -(h1 + h2) and the side walls 

at y = -b and y = b should be approximately proportional to their surface areas. 

Indeed, it is seen in table 5.2.3 that aB is approximately equal to (b/h2)aw4. 
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Using ( 5.2.23) and table 5.2.3, the ratio of uz on the basin bottom for the shallow 

lower fluid to that for the deep lower fluid, for the same internal wave amplitude 

at the density interface, is found to be about 1.6. The ratio of the attenuation rate 

for the bottom ( a B) for these two cases is about 2.3, reflecting the effect of this 

increase in the horizontal velocity near the bottom. Note that these comments are 

only of an approximate nature because the waves in the lower fluid for the shallow 

layer are nonlinear. Hence, damping in the boundary layer adjacent to the basin 

bottom increases as hz decreases. The density interface is an important source of 

energy loss in immiscible fluids but its contribution is greatly reduced in miscible 

fluids such as water and salt water. 

In summary, the damping of the standing internal waves was studied in the 

same rectangular trench used in previous experiments; a vertical partition was used 

to separate the trench region from the constant-depth channel after steady-state 

conditions were established in the trench. Hence, in these experiments the effects 

of surface motions on the internal waves were negligible. The time histories of the 

decay of the internal oscillations in the trench were obtained for two different depths 

of the lower fluid to examine the effects of bottom dissipation and nonlinearity on 

the damping of internal waves. The amplitude envelopes of the decay of internal 

oscillations obtained from these experiments could be related to constant values of 

the modulus of decay, even for the case of the shallow lower fluid where the internal 

motions were highly non-symmetrical about the quiescent density interface. The 

excessive energy loss observed in the experiments which were discussed in § 5.2.3 and 

§ 5.2.4 for the constant-depth channel and trench arrangement was also observed 

in these experiments. Hence, it appears that the excessive energy loss could not 

be attributed to flow separation and/or surface wave damping. Roughness of the 

solid surfaces could increase energy dissipation substantially but the effects of this 

on the internal wave were not studied. Experiments with different thicknesses of 
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the diffuse salinity interface and theoretical analysis of damping in various parts of 

the fluid indicate that the density interface is an important source of energy loss in 

immiscible fluids but its significance in miscible fluids such as water and salt water 

is substantially reduced. Both experiment and theory show that, if the total depth 

of the stratified fluid is held fixed, energy dissipation increases as the depth of the 

lower fluid decreases due to the increase in fluid velocity adjacent to the bottom. 

5.3 Wave Interaction with a Rectangular Trench in an Infinite Region 

In the experimental phase of this investigation, because of wave reflection from 

the ends of the wave tank, the problem of surface wave propagation over a trench in 

an infinite region could not be studied in the laboratory. Therefore, a different ex­

perimental set-up ( figure 5.1.1) was adopted where the problem could be formulated 

theoretically and the results compared directly to the experimental measurements. 

The objective of the experimental investigation was to determine if the linear mod­

els developed are adequate or if it is necessary to use more complicated models. The 

results of theory and experiment dealing with this arrangement have been discussed 

in § 5.2. Hence, when we use the same theoretical approach for the case of a trench 

in an infinite region, we already have some knowledge of the range of validity of the 

linear solutions. 

In this section we present the linear steady-state solutions for a time-periodic 

progressive surface wave, which propagates over a rectangular trench in an infinite 

region; the direction of wave propagation i~ perpendicular to the longitudinal axis 

of the trench. The theoretical treatment of this problem is given in § 3.4. As shown 

in figure 3.4.1, the fluid in the trench region is represented by a two-layer system 

with the heavier fluid confined within the trench; the fluid outside the trench is 

homogeneous. The regions before and after the trench are of a constant depth and 
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of infinite lateral extent. It is assumed that energy dissipation takes place in the 

boundary layers adjacent to the density interface, and next to the trench bottom 

as discussed in § 3.3; the flows in the boundary layers are laminar. We also ignore 

damping due to the vertical walls at x = 0 and x = f, this contribution has been 

shown earlier to be relatively small in a trench where the ratio of the trench width 

to the depth of the lower fluid is large. As mentioned earlier, this is because for 

shallow water conditions the amplitude of the horizontal component of the fluid 

velocities is large compared to the amplitude of the vertical component, hence the 

shear stress developed adjacent to the trench bottom is substantially larger than 

that developed adjacent to the vertical walls at x = 0 and x = e. This situation 

was illustrated in § 5.2.5 for the decay of a standing internal wave in a rectangular 

basin. However, we caution that for internal waves in a deep lower fluid in the 

trench, the shearing motions near the vertical walls may become a dominant cause 

of wave attenuation instead of that at the bottom. In addition, we also ignore wave 

damping in the infinite region ( x < 0 and x > f), that is, the homogeneous fluid 

outside the trench region ( 0 < x < £) is assumed to be inviscid. Hence, viscous 

effects are considered to be due solely to the fluid motion in the trench. 

For the problem shown in figure 3.4.1, the quantities of interest are the wave 

height of the standing internal wave H1, the wave height of the reflected surface 

wave H Sr, and the wave height of the transmitted surface wave H St. Each of the 

above three quantities can be related functionally to the independent variables of 

the problem as follows: 

(5.3.1) 

wherein the dependent variable Hsub can be used to denote any one of the three 

quantities H1, Hsr, and Hst• In (5.3.1), Hs; is the wave height of the incident 

surface wave, O' is its circular wave frequency (21r /T with T the wave period), g is 
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the acceleration of gravity, Pl is the density of the upper fluid, p2 is the density of 

the lower fluid, µ1 is the dynamic viscosity of the upper fluid, µ2 is the dynamic 

viscosity of the lower fluid, and h, h1, h2, and .€ are defined in figure 3.4.1. The 

twelve variables involve three physical dimensions: mass, length and time, thus 

physical reasoning leads to one particular choice of dimensionless groups: 

(5.3.2) 

where 

ci = :2 (;)1/2' (i = 1,2). (5.3.3) 

In (5.3.3), Vi = µ;j Pi, (i = 1, 2) is the kinematic viscosity of the fluid. The dimen-

sionless quantity ci, (i = 1, 2) is a boundary layer parameter. For fresh water and 

salt water we assume that v1 = v2 = 1.0 x 10-6 m2sec-1 . In the following analysis, 

we shall be interested in the case where Hsjh is held fixed, and Hsub/ Hs; varies 

with the frequency parameter a 2 h/ g for conditions determined by the four dimen­

sionless groups hi/h, h2/h, .€/h, and pi/ p2, which define the trench geometry and 

the density ratio. A summary of the conditions for the cases that will be discussed 

is presented in table 5.3.1. Note that from the dispersion relation of a homogeneous 

fluid (equation 3.l.25a) we have a 2h/g = khtanhkh, where k is the wave number 

of the surface wave in the infinite region, thus we may use kh instead of a 2 h/ g as 

the frequency parameter. 

Before we present the results of the two-layer theory treated in § 3.4, let us 

consider a simple method for finding the value of kh corresponding to a mode 

of oscillation of the internal waves in the trench. This method, though not as 

precise as the numerical approach, would still be very useful to engineers who design 

navigation channels, to reduce the potential of wave-induced internal resonance. 

It has been shown that for long waves with infinitesimal amplitude in a two­

layer fluid with small density difference, the phase speed of the surface mode C1 is 
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Case ~ h2 1 £.2-
h h h P1 

a 1.5 0.5 3.95 1.05 

b 1.5 0.5 3.95 1.1 

C 1.5 0.5 10.0 1.05 

d 1.75 0.25 3.95 1.05 

e 1.5 3.5 3.95 1.05 

Table 5.3.1. Summary of conditions for a time-periodic surface wave that propagates 
over a two-layer stratified rectangular trench in an infinite region. 

given by (see, for example, Gill, 1982): 

(5.3.4) 

where E = (p2 - p1)/ p2, and the phase speed of the internal mode C2 is given by: 

(5.3.5) 

To a first order approxirn.ation, the wave number of the internal mode corresponding 

to a resonant mode of oscillation of the internal waves in the trench is given by 

K2 = mr/R, (n = 1,2, ... ). Then the resonant frequency is given by er= K2C2, 

with C2 given by (5.3.5). For long waves, the phase speed of the surface wave in the 

infinite region is equal to ,Jgli. Hence the relative wave number kh of the incident 
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wave is found to be: 

(n = 1,2, ... ). (5.3.6) 

In addition, we have Ki/ I<2 = C2/C1 for the same wave period, hence the wave 

number of the surface mode is given by: 

(n = 1,2, ... ). (5.3.7) 

For the constant density problem, Kirby and Dalrymple (1983) showed that total 

reflection of the surface wave by a rectangular trench occurs for K1f = (n - ½}7!", 

(n = 1,2, ... ). But from (5.3.7) K1f = O(.Jc), E «:: 1 for resonant oscillation of 

internal waves, hence for the problem of internal resonance we are interested in 

incident waves whose wavelength is much longer than that which would produce 

large surface reflection in the corresponding constant density problem. 

Equation 5.3.5 is expected to work well when K2h2 is small compared to unity. 

An appropriate situation may be the lowest mode of oscillation of internal waves 

in a trench where f'_ / h2 > 1. For the higher modes we should use the dispersion 

relation for a two-layer fluid (equation 3.l.18a) to find the resonant frequency a; 

equation 3.l.18a is valid for all ranges of relative fluid depths Kih1 and Kih2, 

(i = 1, 2). The surface waves, however, generally would fall in the range of long 

waves for at least the first few modes of oscillation of the internal waves. Hence, 

equation ( 5.3.4) is still a very good approximation for this problem. 

In the following sections, the responses of a two-layer fluid in a rectangular 

trench to a time-periodic surface wave for various trench aspect ratios and density 

ratios of the lower fluid to the upper fluid will be presented. This is done to show 

the sensitivity of the internal oscillations to variations in these quantities. 
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Figure 5.3.1. Variation of amplification factor, R, with relative wave number, kh: 
(a) two-layer viscous theory, and (b) two-layer inviscid theory; hi/h = 1.5, h2/h = 
0.5, R/ h = 3.95, pz/ Pl =--= 1.05. 
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5.3.1 Case a (hi/h = 1.5, h2/h = 0.5, R/h = 3.95, p2/p1 = 1.05) 

In figure 5.3. la, the amplification factor of internal wave R, is plotted as a 

function of relative wave number for the surface waves in the infinite region kh. 

The amplification factor is defined as the ratio of the amplitude of the internal 

wave at x = 0 to the amplitude of the incident surface wave, that is, R = HJ/ Hs;• 

The above chosen conditions are similar to the constant-depth channel and trench 

arrangement in the wave tank (figure 5.1.1), except that the constant-depth regions 

before and after the rectangular trench have now been extended to infinity. In 

addition, there are at least two major differences between the two problems. First, 

the water surface above the trench in the wave tank was always near an antinode 

of a standing wave, due to the proximity of the end wall at x = R. Hence, above the 

trench the amplitude of the horizontal component of the fluid velocity was much 

less than the amplitude of the vertical component of the fluid velocity. For a trench 

in an infinite region, the fluid state in the trench region is not so dictated. Thus, 

the velocity distribution above the trench can be very different from that in the 

wave tank. Second, damping due to the side walls of the wave tank does not exist 

in this two-dimensional problem. 

From ( 5.3.6) the value of kh for the first three modes of oscillation of the internal 

waves is found to be 0.106, 0.213, and 0.319. The value of kh for the lowest mode 

of oscillation agrees quite well with the more accurate numerical method of§ 3.4; 

the corresponding value of K2h2 is about 0.4. For the second and the third modes 

of oscillation, equation 5.3.6 poorly predicts the frequencies of resonant oscillation. 

This is because the wavelength of the internal wave is not necessarily long compared 

to the fluid depths for the higher modes of oscillation of the internal waves, even 

though the surface waves are long waves. Note that even for this relatively short 

trench (R,/h = 3.95), the surface waves that excite the first five modes of oscillation 

of the internal waves in the trench all are long waves, that is, kh/21r < 0.05. The 
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values of the relative wave number, kh, for the first five resonant peaks as shown 

in figure 5.3.la are: 0.0997, 0.175, 0.231, 0.275, and 0.312, and the corresponding 

values of K2.e are: 0.9951r, l.991r, 2.981r, 3.981r, and 4.961r, which are very close to 

the values of K2C = mr, (n = 1, 2, ... ). Hence, instead of using the two-layer viscous 

theory of § 3.4, we may determine the frequencies of resonant oscillation from the 

two-layer dispersion relation (3.l.18a) by substituting for K the wave numbers of 

resonant oscillation of the internal waves in the trench, that is, K = K2 = n1r/C, 

(n = 1, 2, ... ). This method, of course, does not yield the amplification factor R, 

but it is still useful in the design of navigation channels to avoid the conditions that 

would lead to internal resonance. It is seen in figure 5.3.la that the amplification 

factor for the lowest mode of oscillation reaches a value of almost 60, whereas for 

the laboratory conditions with the end wall at the downstream edge of the trench 

the predicted value of the amplification factor is about 20 (figure 5.2.16). But it is 

noted that in the laboratory problem, the wave height of internal wave is normalized 

by the wave height of surface waves above the trench. 

Figure 5.3.la indicates that the lowest mode of oscillation has the largest re­

sponse. The computation steps in kh near the resonant peaks have been refined 

to ensure that the maximum value of R is reached. The maximum response of the 

internal wave is very sensitive to the damping rate, which is a function of the depth 

ratios and the density ratio, as well as the frequency parameter. To illustrate this, 

the corresponding inviscid solution for the case of a trench in an infinite region is 

shown in figure 5.3.lb. In the inviscid problem, the amplitude of the response curve 

is limited only by radiation loss from the trench. It is seen that the higher modes of 

oscillation have larger responses than the lowest mode but the resonant peaks of the 

higher modes have such a small frequency bandwidth that a small degree of damping 

reduces the amplification factor substantially. The more important result is that the 

lowest mode of oscillation has the largest frequency bandwidth. Figures 5.3.la and 
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5.3.lb indicate that the asymmetric modes (n = 1, 3, 5, ... ) have larger frequency 

bandwidths than the symmetric modes ( n = 2, 4, 6, ... ), which is no doubt related 

to the velocity and pressure distributions in the trench region. Although this case is 

shown for comparison, in this section we present primarily the results of the viscous 

problem and this is implied unless specifically stated otherwise. It should be noted 

that laminar viscous boundary dissipation is used herein. 

The variation of the transmission and reflection coefficients of the surface waves 

with relative wave number is presented in figures 5.3.2a and 5.3.2b, respectively. The 

transmission coefficient Kt is defined as the ratio of the amplitude of the transmitted 

wave to the amplitude of the incident wave, that is, Kt = Hs) Hs;- In a similar 

manner, the reflection coefficient Kr is defined as the ratio of the amplitude of the 

reflected wave to the amplitude of the incident wave, that is, Kr= Hsrf Hs;- It is 

seen that the transmission and reflection coefficients of the surface wave are closely 

related to the amplification factor of the internal wave. Large reflections of the 

surface waves take place at approximately the same relative wave numbers that 

correspond to resonant conditions of the internal waves in the trench. When the 

internal waves are "off-resonance," the incident wave is little affected by the trench 

because the wavelength of the surface wave is very large compared to the trench 

width. This result is apparent in the transmission coefficient. Large reflection also 

occurs when the wave number of the surface wave in the trench region is given by 

K1f = (n-1}1r, (n = 1,2, ... ). However, the latter condition is generally outside 

the range of surface waves of interest to the problem of internal resonance. The 

corresponding inviscid solution for the transmission and reflection coefficients are 

shown in figures 5.3.3a and 5.3.3b, respectively. 

The variation of the dimensionless quantity, (K; + Kl), with kh, is presented in 

figure 5.3.4. The quantity ( 1- I<; - Kl) is a measure of the energy loss in the trench 

( equal to zero for an inviscid fluid). As expected, the variation of energy loss in 
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Figure 5.3.4. Variation of incident wave energy conserved in wave-trench interaction 
with relative wave number; hi/h = 1.5, h2/h = 0.5, f/h = 3.95, p2/ PI = 1.05. 

the trench with relative wave number closely follows the trend of the amplification 

factor. Notice that the energy of the incident wave is nearly completely conserved 

when the period of the internal wave is "off-resonance." 

5.3.2 Case b (hi/h = 1.5, h2/h = 0.5, f/h = 3.95, p2/p1 = 1.1) 

Next we keep the same length and depth ratios but change the density ratio 

p2/ Pl to 1.1. The variation of R, and (K; +I<;), with kh are shown in figures 5.3.5a 

and 5.3.5b, respectively. The values of kh for the first five resonant peaks are found 

to be: 0.139, 0.245, 0.325, 0.389, and 0.443. The corresponding values of K2f are: 

0.9981r, 1.991r, 2.991r, 3.981r, and 4.971r. In comparison to figure 5.3.la, it is seen 

that the magnitude of the resonant frequencies has increased due to this increase in 

density of the lower layer. The effect of increasing the density of the lower fluid is 
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to increase both the inertia of the lower fluid and the restoring force responsible for 

the internal wave motion. If the wavelength is held fixed, the effect is to increase 

the frequency of oscillation. Hence, the response curve is shifted in the direction 

of higher frequencies, that is, larger kh. The effect on the amplification factor of 

changing the density ratio is more difficult to interpret because the amplification 

factor depends on the velocity distribution in the trench region and on the damping 

rate, which are both functions of p2/ p1 • Figure 5.3.5a indicates that the maximum 

amplitude responses in general have decreased. This is quite understandable from 

the physical point of view, for more potential energy would be involved in a given 

deformation of the density interface. The frequency bandwidths of the resonant 

peaks appear to be about the same for the two conditions; note that the scales 

of the abscissa in figures 5.3.la and 5.3.5a are different. Again energy loss in the 

trench is closely related to the amplification factor. The transmission and reflection 

coefficients are presented in figures 5.3.6a and 5.3.6b, which follow a trend similar 

to figures 5.3.2a and 5.3.2b, respectively. 

5.3.3 Case c (hi/h = 1.5, h2/h = 0.5, R.,/h = 10.0, p2/ Pl = 1.05) 

In figures 5.3. 7 a and 5.3. 7b the variations of R and ( K; + K;), respectively, 

with kh, are presented for the same conditions as Case a except that the relative 

trench width is increased to i/ h = 10.0. As the width of the trench is increased, 

the resonant modes of oscillation of the internal waves occur at still larger wave 

periods. The values of kh for the first five resonant peaks are found to be: 0.0413, 

0.0801, 0.115, 0.146, and 0.173. The corresponding values of K2f are: 0.99?r, l.981r, 

2.981r, 3.977r, and 4.97 7r. The first three resonant peaks are also predicted well by 

the long wave approximation ( equation 5.3.6); the corresponding values of kh are: 

0.0420, 0.0840, and 0.0126. Comparing figures 5.3.la and 5.3.7a, it is seen that the 

interval between adjacent resonant peaks decreases as R.,/h increases, thus a wide 
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trench is more susceptible to internal resonance than a narrow trench for the same 

range of incident wave conditions. The transmission and reflection coefficients are 

presented in figure 5.3.Sa and 5.3.Sb, respectively. The effects of the oscillation of 

internal waves on surface wave transmission is apparent, and it is seen that large 

reflections of the incident wave occur for K2f!. = mr, (n = 1, 2, ... ). Minimum values 

of the the transmission coefficient also occur for K1f!. = (n -½?r), (n = 1,2, ... ), 

which are the resonant conditions for the surface waves. However, the latter occur 

at much higher frequencies than the resonant frequencies of the internal waves; 

hence, its effects are not apparent. Nevertheless, if in figure 5.3.8a the spikes in 

the transmission coefficient due to the resonant oscillation of the internal waves are 

ignored, Kt is seen to vary slowly with kh due to the periodic behaviour of the 

transmission coefficient. This effect becomes more pronounced in a wide trench, 

because the resonant conditions for the surface waves occur at longer wave periods. 

5.3.4 Cased (hi/h = 1.75, hz/h = 0.25, f!./h = 3.95, pz/p1 = 1.05) 

The result of reducing hz/ h to 0.25 while the trench geometry and the density 

ratio are held fixed are presented in figure 5.3.9a for the trench response. Comparing 

figure 5.3.9a to figure 5.3.la, the response curve is seen to have shifted towards 

longer wave periods. This is because, for the same value of kh, the value of K2f!. 

is larger for the case with the shallow lower fluid, thus the resonant frequencies of 

the internal waves decrease. The values of kh for the first five resonant peaks are 

found to be: 0.0772, 0.144, 0.20, 0.252, and 0.292. The corresponding values of K21!. 

are: 0.987r, l.981r, 2.971r, 4.027r, and 4.967r. We can deduce from figures 5.3.9a and 

5.3.9b that the damping rate increases as a result of the decrease in the relative 

depth of the lower fluid h2 / h; the damping rate for a progressive wave is defined in 

(3.3.45c). Comparing figure 5.3.9a to figure 5.3.la, it is seen that the amplification 

factor for the lowest mode of oscillation is reduced by about half from the deep 



- 276 -

60 

(a) 

50 

40 

R 30 

20 

10 

0 
0 o.os 0. 1 0. 15 0.2 0.2s Q.3 o.35 

kh 

( b) 

0.9 

o.a 
C\I.,. 

~ 

+ Q.7 
C\I ... 
~ 

o.s 

o.s 

0,4 
0 o.os 0. 1 o. t 5 0.2s Q.3 a.JS 

kh 

Figure 5.3.9. Variation of (a) amplification factor, and (b) incident wave energy 
conserved in wave-trench interaction, with relative wave number; hi/ h = 1. 75, 
hz/h = 0.25, £/h = 3.95, pz/ PI = 1.05. 



- 277-

I 
' I 

I I 

{a) 

0,9 '- -

a.a - -

0.7 - -
Kt 

0.6 - -

o. 5 '- -

0. 41- -

o.J I I i 

0 0.05 0. 1 0, 15 0.2 0,25 Q.3 0,35 

kh 

a.a 
( b) 

0,7 

Q.6 

o.s 

Kr Q.4 

0,3 

0,2 

0. 1 

0 
0 0,05 a. 1 a. 1 s 0,2 0,25 0,3 0,35 

kh 

Figure 5.3.10. Variation of (a) transmission coefficient, and (b) reflection coefficient, 
with relative wave number; hi/h = 1.75, h2/h = 0.25, £/h = 3.95, pz/ Pl = 1.05. 



- 278 -

lower fluid to the shallow lower fluid, thus if the damping rates were the same in 

both cases, the energy loss in Case a should be about four times of the energy loss 

in Case cl. The energy loss in the trench region is proportional to ( 1 - K; + Kl). 

It is seen in figures 5.3.4 and 5.3.9b that the energy loss in the shallow lower fluid 

is equal to nearly half of that in the deep lower fluid, thus the damping rate must 

have increased substantially. This is no doubt due to larger shear stress developed 

near the bottom in the shallow lower fluid, that is, Case d compared to Case a. For 

the transmission and reflection coefficients presented in figures 5.3.lOa and 5.3.lOb, 

it is seen that the effects of the internal waves on the incident waves are reduced 

substantially as the relative depth of the upper layer is increased from hi/ h = 1.5 

(Case a) to hi/h = 1.75 (Cased). 

5.3.5 Case e (hi/h = 1.5, hzlh = 3.5, £/ h = 3.95, pz/ PI = 1.05) 

To demonstrate the effect of a deep lower fluid, the value of h2/h is increased 

to 3.5 while the other aspect ratios are held fixed. Comparing figure 5.3. l la with 

figure 5.3. la, it is seen that the resonant peaks of the first three modes of oscillation 

are shifted towards higher frequencies, indicating that for the same value of kh the 

wavelength of the internal wave is longer in the deep lower fluid. The values of kh 

for the first five resonant peaks are found to be: 0.133, 0.197, 0.243, 0.281, and 

0.315. The corresponding values of K2R. are: l.017r', 2.07r', 2.9971', 3.977r', and 4.957r'. 

A striking feature in figure 5.3.lla is the substantial increase in the bandwidth 

of the lowest mode of oscillation. Comparing figure 5.3.lla to 5.3.la, it is seen 

that the effect of increasing the depth of the lower fluid on the response curve is 

decreasingly smaller for larger values of k h. This is reasonable because, as the value 

of kh increases, the wavelength of the internal wave decreases, therefore the actual 

depth of the lower fluid becomes less significant. The large reduction in energy loss 

for the lowest mode of oscillation shown in figure 5.3.llb is no doubt due to the 
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Figure 5.3.11. Variation of (a) amplification factor, and (b) incident wave energy 
conserved in wave-trench interaction, with relative wave number; hi/h = 1.5, 
h2/h = 3.5, £/h = 3.95, p2/ PI = 1.05. 
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Figure 5.3.12. Variation of (a) transmission coefficient, and (b) reflection coefficient, 
with relative wave number; hi/h = 1.5, h2/h = 3.5, £/h = 3.95, pz/ PI = 1.05. 



- 281 -

lack of significant attenuation by bottom friction. The internal waves in the deep 

lower fluid do not induce near the trench bottom any motions that can lead to large 

shear stress in the bottom boundary layer. Consequently, the dominant cause of 

wave attenuation is energy dissipation in shearing motions in the boundary layers 

adjacent to the density interface. We caution that damping due to the vertical walls 

at x = 0 and x = R., which is ignored in the present analysis, may be important in 

this situation. It is interesting to see that the energy loss is actually larger for the 

second and the third modes of oscillation, even though the value of the amplification 

factor for the higher modes is smaller. These results suggest that the damping rate 

due to the interfacial boundary layers increases as the modal number increases, for 

these flow conditions. The transmission and reflection coefficients are presented in 

figures 5.3.12a and 5.3.12b, respectively. 

5.3.6 Application of the Two-Layer Theory to Prototype Situations 

In the previous discussion we have demonstrated that the surface wave condi­

tions responsible for the oscillation of internal waves in a trench generally would 

fall in the range of long waves, that is h/ ,\ < 0.05, where ,\ is the wavelength of 

the incident wave. This was demonstrated experimentally in § 5.2 for a relatively 

narrow trench compared to the fluid depths. Thus, long waves that might produce 

resonant conditions in a harbor could also be responsible for the oscillation of inter­

nal waves in a navigation channel. To further illustrate the importance of internal 

resonance in stratified trenches, we consider a typical navigation trench as shown in 

figure 5.3.13. The depth of the homogeneous fluid in the infinite region is h = 6 m 

(20ft), the depth of the trench is d = 9m (30ft), and the width of the trench is 

R. = 300 m ( 1000 ft). A layer of heavier fluid of depth h2 = 3 m ( 10 ft) lies next to 

the trench bottom. Let us consider the situations where the heavier fluid is due to 

sedimentation of suspended sediments, as discussed in Chapter 1. In a study by the 
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Figure 5.3.13. Variation of amplification factor with relative wave number for the 
lowest mode of internal resonance in a navigation channel for different values of the 
density ratio p2/ Pl· 

Marine Board of the National Research Council (1983) on criteria for the depths 

of dredged navigational channels it was reported that at Europort (Holland) the 

bottom was defined as a region where the specific gravity of the fluid was larger 

than 1.2. Hence, let us examine the responses of the trench for three different den­

sity ratios of the lower fluid to the upper fluid p2f p1 , these are given as: 1.05, 1.1, 

and 1.2, respectively. The response curves for the lowest mode of oscillation for 

the three cases are presented in figure 5.3.13. For p2/ p1 = 1.05, the relative wave 

number kh of resonant oscillation is found to be 0.0085, the corresponding value of 

the amplification factor is 26.44. As p2/ Pl increases, the resonant frequency also 

increases, whereas the amplification factor decreases. The former is due to the ef­

fects of the increase in the restoring force at the density interface, and the latter is 
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related to the increase in the potential energy required for a given deformation of 

the density interface, as the density difference between the two fluids increases. The 

relative wave number kh of resonant oscillation is 0.0118 for p2/ PI = 1.10, the cor­

responding value of the amplification factor is 18.81. For p2/ Pl = 1.2, the relative 

wave number kh of resonant oscillation is increased to 0.0162, and the amplification 

factor of the resonant peak is reduced to 12. 79. The wave periods of the lowest 

mode of resonant oscillation for the above three cases are, respectively, 9.6 minutes, 

6.9 minutes, and 5.2 minutes. These wave periods are commonly observed in harbor 

resonance. As the relative length f/h increases, the resonant modes of oscillation 

of the internal waves occur at increasingly larger wave periods for the same modal 

number n, whereas the number of resonant modes of oscillation increases within 

a given range of wave periods. Hence, the fluid motion in a wide trench is more 

susceptible to internal resonance than in a narrow trench. 

The above examples illustrate that, for a resonant condition of the internal 

waves in the navigation channel, the internal waves can attain large amplitudes 

relative to the amplitude of the incident surface waves. 

It is expected that internal waves at resonance may induce large shearing mo­

tions near the trench boundaries compared to a trench of the same geometry in 

a homogeneous fluid, for the same incident wave conditions. This result may be 

obtained by comparing the horizontal velocity on the trench bottom due to the 

internal wave, to that due to the surface wave. Assuming long waves and small 

density difference, an estimate for the horizontal velocities in the lower layer is 

given by (3.3.5a) and (3.3.5b), respectively, for the surface wave and the internal 

wave. The ratio of the horizontal velocities is: 

Ur Hr 
Us Hs 

(5.3.8) 

where the subscripts S and J denote the surface wave and the internal wave, re-
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spectively. Notice that in (5.3.8), if the wave height of the surface wave and the 

wave height of the internal wave are the same, the internal wave has much smaller 

particle velocity than the surface wave because the phase speed of the internal wave 

is only a fraction of that of the surface wave. However, for a resonant condition of 

the internal wave in the trench, the amplitude of the internal wave is substantially 

larger than the amplitude of the wave on the water surface, hence the ratio UJ/Us 

is much larger than unity. For the vertical velocity, in a homogeneous fluid the 

amplitude of the vertical velocity decreases with distance from the water surface, 

whereas in a two-layer fluid the amplitude of the vertical velocity is the largest at 

the density interface for the internal wave. Hence, for a resonant condition of the 

internal waves in the trench, the internal waves can attain large amplitudes relative 

to those of the surface waves, which result in local velocities near the trench bound­

aries that may be significantly larger than those corresponding to a non-stratified 

fluid, leading to more serious bottom erosion. 

We have discussed that long surface waves are generally responsible for internal 

resonance in navigational channels. Is it possible for "packets" of much shorter 

waves, which have a long period of amplitude modulation, to excite the resonant 

oscillation of internal waves in the trench? The answer to this question is negative 

within the framework of a linear theory. This is because we can consider the wave 

groups to be made up of two progressive waves of slightly different frequencies 0-1 

and 0-2 travelling in the same direction. Then the period of amplitude modulation 

of the wave groups is given by o- = ( 0-2 - 0-1)/2. This is the familar problem of "beat 

effect" in linear wave theory. If a is the ~esonant frequency for the oscillation of 

internal waves in the trench, then the two periodic wave components ( of frequencies 

cr1 and cr2) both lead to off-resonant conditions in the trench. Therefore, by linear 

superposition, the amplitude of the resulting internal wave motion due to the wave 

groups will also be small. 
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It should be noted that the theoretical results presented in § 5.3.1-§ 5.3.5 are 

based on the assumption of laminar flow in the boundary layers. These results 

are presented to show the sensitivity of the internal oscillations to viscous effects. 

Indeed, dissipation of internal wave energy due to boundary friction is found to 

significantly reduce the amplitude of the internal waves in the trench. The boundary 

layers are probably turbulent in prototype conditions, and the damping rates for 

the surface and internal waves should be determined based on turbulent flows in the 

boundary layers. For turbulent flow a theoretical analysis of the velocity distribution 

within an oscillatory boundary layer had been carried out by Kajiura (1964). This 

assumes a turbulent eddy viscosity which is a function of space and time. The 

analysis leads to a quadratic drag law, which relates the bottom shear stress to 

the amplitude of the inviscid velocity on the bottom by a drag coefficient. The 

drag coefficient is a function of the wave Reynolds number Re= uBAB/v, and the 

relative bottom roughness AB/ks, where UB is the inviscid velocity on the bottom, 

AB is the amplitude of the bottom fluid particle displacement based on inviscid 

theory, and ks is the equivalent roughness. This relationship is analogous to the 

dependency of the friction factor for unidirectional steady flow. The wave friction 

factor diagram, which is similar to the Moody chart, was given by Jonsson (1966). 

Once the bottom shear stress is known, the attenuation rate can be found using 

the method of energy balance in a similar manner to the treatment presented in 

§ 3.3.2 for laminar flow. In reality, it is not easy to determine the roughness length 

scale because of sand ripples and other roughness elements that may be found on a 

natural sea bottom. 

So far we have only considered steady-state wave motions. As a final comment 

it should be noted that because surface waves in the ocean may be assumed steady 

for only a short duration, it is important to know the time required for the internal 

waves in the trench to reach steady-state conditions for a time-periodic surface 
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wave that propagates over the trench. The theoretical time history of the internal 

oscillations in the trench can be computed from the steady-state solutions by Fourier 

superposition. Because this has not been done we will discuss the transient motion 

only qualitatively. 

The forced internal oscillations in the trench are due to the pressure force exerted 

by the surface waves on the density interface that displaces the heavier fluid and 

brings buoyancy effects into action. The simple-harmonic motion produced by the 

restoring force as a result of the displacement of the interface from its quiescent 

position has a circular frequency equal to the buoyancy frequency N. Therefore, a 

characteristic time for the interface to adjust to a vertical displacement is given by 

1/N. The surface waves propagate past the trench in a time of order f/C1, where f 

is trench width and C1 is the wave speed due to the surface wave. Hence, the ratio 

of the adjustment time to the displacement time is given by: 

(5.3.9) 

where F1 is the internal Froude number. The internal Froude number is a measure 

of the relative importance of the advective effect to the buoyancy effect. If F1 < l 

the density interface can adjust to the advective motion of the surface wave and 

maintain the internal oscillation. If F1 > l the stratified fluid will have sufficient 

momentum to overcome the buoyancy forces and the fluid will behave as if it were 

homogeneous. 

Assuming long waves in a two-layer fluid, the frequency of resonant oscillation 

of the internal waves in the trench is giveri by O' n = ( mr / £)C2, ( n = l, 2, ... ) with 

C2 given by (5.3.5). Hence, the internal Froude number is proportional to Ci/ 0, 
where E = (p2 - p1)/ P2, and C1 is given by (5.3.4). 

If the density difference between the upper fluid and the lower fluid is small 

compared to unity, the phase speed of the surface wave is much larger than that of 
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the internal wave in the trench for the same wave period. It follows from the above 

discussion that appreciable internal motions cannot be developed in the trench 

within a few oscillations. Similar reasoning also leads to the conclusion that a 

solitary wave will have a negligible effect on the density interface, because F1 ~ l 

for € ~ 1 . For a steady train of time-periodic progressive waves with a frequency 

close to the resonant frequency of the internal waves in the trench, the time required 

to establish steady-state conditions in the trench will be primarily controlled by 

friction. The number of transient oscillations will be smaller for internal waves in 

a shallower lower fluid, due to the larger shearing motions adjacent to the trench 

bottom. The initial growth of the amplitudes of the internal waves at the trench 

walls at x = 0 and x = £ will be approximately linear with time for the lowest 

mode of internal oscillation. This can be seen from the results of the experiments 

for wave motions in the water filled constant-depth channel discussed in § 5.2.1. In 

those experiments, the wave amplitude at the end wall increased about every four 

oscillations initially because it took the primary reflected wave from the end wall a 

time of four wave periods to travel twice the length of the channel and superimpose 

constructively on the primary incident wave; there were about two wavelengths in 

the constant-depth channel. A similar situation will happen for internal waves in 

a trench during transient oscillations. For the lowest resonant mode, it takes only 

one wave period for the internal wave to travel twice the width of the trench and 

be constructively reinforced, but it will take a longer time for the internal waves of 

the higher resonant modes to do the same. 
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6. CONCLUSIONS 

6.1 Interaction of Water Waves with a Stratified Rectangular Trench 

The major objective of this study has been to investigate, experimentally and 

theoretically, the dynamics of internal resonance in a rectangular trench due to 

time-periodic surface waves that propagate in a direction perpendicular to the lon­

gitudinal axis of the trench; the trench is partially filled with a heavier fluid and the 

fluid outside the trench is homogeneous. Also of interest are the effects of resonant 

oscillations of the internal waves in the trench on the waves on the free surface. 

Much of the investigation was done with a particular combination of constant­

depth channel and trench used in the experiments. This is because the case of a 

trench in an infinite region could not be modelled in the laboratory due to wave 

reflections from the ends of the wave tank. A linear two-layer model and a linear 

three-layer model were developed to study this problem, these models include a vig­

orous treatment of the effects of energy dissipation in the boundary layers adjacent 

to the density interface and at the solid surfaces; the flows in the boundary layers are 

assumed to be laminar. The theoretical pr~dictions that were obtained using these 

models were compared to the experimental measurements. The problem of wave 

propagation over a rectangular trench with a two-layer fluid in the trench and a 

homogeneous fluid in an infinite region outside the trench was studied theoretically. 

The following major conclusions can be drawn from this investigation: 
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1. Wave motions at the dye interface of fresh water and salt water can be measured 

in real time using a scanning laser beam and detector system. The dye interface 

coincides with the top of the diffuse salinity interface in the quiescent fluid. 

Wave-induced mixing of the fresh water and the dyed salt water limits the wave 

motions that can be measured with this instrument to those with a sharp dye 

interface. 

2. For the lowest mode of oscillation of the internal waves in the trench, the wave­

length of the surface waves in the constant-depth channel was large compared 

to the wavelength of the internal waves and the trench dimensions. When the 

constant-depth channel and the trench \Vere filled with fresh water, the effects 

of the change in water depth in the trench region on the surf ace waves were very 

small. The effects of flow separation at the upstream edge of the trench on the 

free surface motions were not apparent in these experiments. 

3. For a stratified fluid in the trench, when the frequency of the surface waves in the 

constant-depth channel corresponded to the natural frequency of the internal 

waves in the trench, the internal waves attained large amplitudes relative to the 

amplitudes of the surface waves. 

4. The predicted wave heights of the internal waves in the trench using the linear 

theory agreed quite well with the experimental measurements, even when non­

linear effects were significant. The linear theory did not do so well in predicting 

the amplitudes of the wave crest and the wave trough, due to nonlinear effects in 

the experimentally recorded wave profiles. The effects of viscosity and density 

stratification on the frequencies of resonant oscillation of the internal waves in 

the trench were predicted well by the linear theory. 

5. The experimental results indicated that when the ratio of the internal wave 

height to the depth of the lower fluid is small compared to the product of the 
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depth of the lower fluid and the wave number of the internal wave, that is, when 

HJ/ K2h~ « 1, second order effects in the standing internal wave profiles were 

small. (The variables H1, K2, and h2 are, respectively, the internal wave height, 

the internal wave number, and the depth of the lower fluid.) 

6. When the value of the dimensionless parameter, HJ/ K2h~, was small the ex­

perimentally recorded profiles of the density interface compared well with the 

finite amplitude standing internal wave solutions of Thorpe (1968). 

7. The response characteristics of the stratified fluid in the trench for wave periods 

near trench resonance tend to be an effective linear filter for higher frequency 

components in the surface waves. 

8. When the dimensionless parameter, H1 / K2ht was increased by decreasing the 

depth of the lower fluid h2, nonlinear effects in the internal motions in the trench 

became more apparent. The observed waveforms were non-symmetrical about 

the still density interface, and the internal wave looked like a single "hump" 

travelling back and forth between the vertical walls of the trench. 

9. The frequency of resonance of the internal waves in the trench decreased as 

the thickness of the diffuse salinity interface increased. This frequency shift 

was predicted well by the three-layer viscous theory, and also by the three­

layer inviscid theory when viscous effects were small. The effects of the density 

transition region on the trench response were more pronounced when the depth 

of the lower fluid was decreased. 

10. When the thickness of the diffuse salinity interface was small compared to the 

wavelength of the internal waves and the fluid depths, the difference between 

the frequencies of resonance of the internal waves in the trench as predicted by 

the two-layer theory and the three-layer theory was very small. 

11. Viscous effects on the internal motions in the trench were more important when 
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the depth of the lower fluid was small compared to the wavelength of the internal 

waves. The ratio of the amplitude of the internal waves in the trench relative 

to the amplitude of the surface waves decreased substantially compared to that 

for a deeper lower fluid. The experimentally recorded wave heights and the 

resonant frequencies of the internal waves agreed quite well with the predictions 

of the linear viscous theory. The linear inviscid theory could not predict the 

frequency shift in the response curve due to viscous effects. 

12. It was shown experimentally that the damping of the internal waves m the 

trench could be related to constant values of the modulus of decay, even when 

nonlinear effects were significant. The two-layer viscous theory predicted the 

wave height of the internal motions better than the three-layer viscous theory; 

the two-layer viscous theory overestimated energy dissipation in the trench, 

whereas the three-layer viscous theory underestimated damping significantly. 

13. The effects of internal oscillations on the waves on the free surface were negligible 

for these experiments. 

14. The two-layer model was applied to the problem of a time-periodic progressive 

wave that propagates over a stratified rectangular trench in an infinite region. 

As mentioned earlier this problem could not be investigated in the laboratory 

so the following conclusions are solely based on the theoretical model: 

a) Resonant oscillations of internal waves in the trench occur when J{ 2£ = mr, 

(n = 1, 2, ... ), where K2 is the wave number of the internal wave and I!, is 

the trench width. 

b) The trench response is very sensitive to viscous effects near the frequen­

cies of resonant oscillation of the internal waves; a small degree of damping 

reduces the response predicted using the two-layer inviscid theory substan­

tially. The lowest mode of oscillation has the largest amplification factor and 
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frequency bandwidth. The asymmetric modes (n = 1, 3, 5, ... ) have larger 

amplification factors and frequency bandwidths compared to the symmetric 

modes (n = 2, 4, 6, ... ). 

c) A significant portion of the incident wave energy can be dissipated in a 

stratified trench when the internal waves in the trench are "at resonance." 

When the internal waves are "off resonance," the energy of the incident wave 

is nearly completely conserved in the process of wave-trench interaction. 

d) Large reflections of incident waves occur when the frequencies of the surface 

waves correspond to the frequencies of resonant oscillation of the internal 

waves in the trench, that is, when Kz/!, = mr, (n = 1, 2, ... ). For these 

conditions the wavelengths of the surface waves are large compared to the 

width and depth of the trench. 

e) The reflection coefficient of surface waves also has maximum values when 

K1f = (n - ½)7r, (n = l, 2, ... ), where K1 is the wave number of the surface 

waves in the trench region. For these conditions the wavelengths of the 

surface waves and the width and depth of the trench are of the same order 

of magnitude. 

f) A case study using prototype dimensions of a navigation channel and typi­

cal density ratios indicates that the wave periods corresponding to internal 

resonance can also be found in resonant conditions for surface waves in har­

bors. When the internal waves are "at resonance," local velocities near the 

trench boundaries could be significantly larger than those corresponding to 

a non-stratified fluid in the trench, thus internal resonance could lead to 

more serious bottom erosion. 



- 293 -

6.2 Recommendations for Future Studies 

Some knowledge of the dynamics of the interaction of water waves with a strat­

ified fluid in a rectangular trench are gained in this study. However, this work does 

not present the results in a comprehensive model that would incorporate nonlinear 

effects, arbitrary density stratifications, and variable trench geometries. Instead, 

some aspects of these physical effects were investigated theoretically and experi­

mentally, while many uncertainties still remain that need further investigation: 

1. The theoretical results of this study were obtained by matching solutions of 

the trench region and the region of the constant-depth channel along vertical 

boundaries at the edges of the trench. The effects of flow separation, which are 

most acute at these locations, are neglected in the analysis. Flow separation 

effects were not apparent in the experiments, possibly because the location of 

the trench was near an antinode of the standing surface waves, due to the 

end wall at the downstream edge of the trench. Hence, the amplitude of the 

horizontal velocity near the "mouth" of the trench in the experiments might 

be substantially less than that for a trench in an infinite region. As a way to 

investigate the effects of fl.ow separation, a node of the standing surface waves 

can be established above the trench by placing the end wall further downstream. 

This problem can be formulated theoretically and the results compared directly 

to measurements of surface and internal motions as well as fluid velocities in 

the trench region. 

2. The above arrangement of the constant-depth channel and trench also allows 

the effects of internal oscillations on transmission and reflection of surface waves 

to be investigated in the laboratory. For instance, if large reflections of surface 

waves occur for a resonant mode of oscillation of the internal waves in the 

trench, the corresponding free surface motions in the constant-depth channel 
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downstream of the trench would be different from those when the trench is "off 

resonance." 

3. It has been assumed throughout this study that the time-periodic surface waves 

propagate in a direction perpendicular to the longitudinal axis of the trench. 

The more general problem of propagation of obliquely incident waves over a 

trench where the depths before and after the trench are constant but not nec­

essarily equal can be treated in a similar manner. 

4. This study has not considered the effects of variable trench geometry, and trape­

zoidal channels are commonly found in harbors. The shearing motions on the 

slopes of a trapezoidal channel might be significantly larger than that on the 

vertical walls of a rectangular trench, thus leading to more serious erosion dur­

ing conditions of internal resonance. For the linear problem, the variable trench 

geometry can be handled in a straightforward manner by standard finite ele­

ment methods. We have formulated the finite element problem for the linear 

case though the results are not presented here. In reality, the run-up and run­

down of internal waves on the slopes of a trapezoidal channel may change the 

dynamics of internal oscillations in the trench in important ways. Recently, Zelt 

(1986) developed a finite element model based on a set of long wave equations 

in the Lagrangian description, which can compute the run-:-up of non-breaking 

surface waves on sloping boundaries with an arbitrary curved shoreline. A sim­

ilar formulation for a two-fluid system may be useful for studying the effects of 

run-up and run-down of internal waves-on trench resonance. 

5. For a rectangular trench, the nonlinear problem can be formulated by develop­

ing the solutions in the trench region and in the constant-depth channel using 

nonlinear long wave equations. The final solution is obtained by imposing con­

tinuity of total mass flow and surface elevation at the vertical boundaries at the 



- 295 -

upstream and downstream edges of the trench. Generalized long wave equa­

tions of the Boussinesq class for a two-layer fluid of constant depths have been 

developed by Zhu (1986) and applied to study the problem of internal solitons 

generated by moving bottom obstacles. 
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Appendix 

Transient Excitation of Long Waves in a Rectangular Channel 

The problem is illustrated in figure A.l. A homogeneous fluid of depth his con­

tained in a rectangular channel of length L and width 2b. Let ( x, z) be a Cartesian 

coordinate system with the x axis on the undisturbed free surface and z measured 

positive upwards; the wave motion is assumed to be two-dimensional in the (x, z) 

plane. Surface waves are generated by a vertical boundary that moves in simple­

harmonic motion at x = O; a vertical wall is located at x = L. The long wave 

equations, which include nonlinear and dispersive effects, and viscous dissipation in 

a thin laminar boundary layer adjacent to the bottom had been derived by Lepel­

letier (1980). The corresponding linearized equations are: 

(A.1) 

au Br, h2 83
u 1 ( h) (va-) 1

/2 -+g-- --+- l+- - (1-i)u=0 
8t ox 3 8x28t h b 2 

(A.2) 

wherein T/ is the surface displacement, u is' the depth average horizontal velocity, g 

is the acceleration of gravity, vis the kinematic viscosity, a is the circular frequency 

given by 21r /wave period, and i = J=I. Dispersive and viscous effects, respectively, 

are given by the third and the fourth terms in (A.2). In order to account for 

dissipation due to friction at the side walls, the coefficient of the dissipation term 
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Figure A. l. Schematic drawing of the rectangular channel. 

in (A.2) has been multiplied by (1 + h/b ). Equation (A.2) is slightly different from 

that obtained by Lepelletier (1980), which does not have the imaginary part in the 

dissipation term; this will be discussed. The initial conditions are: 

ry(x, 0) = 0, 

u(x, 0) = 0, 

The boundary conditions are: 

u(L, t) = 0, 

0 < x < L, 

0 < i < L. 

t > 0, 

t > 0. 

(A.3) 

(A.4) 

(A.5) 

(A.6) 
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For simplicity, the variables are nondimensionalized as follows: 

T/* = HT/, 

x* = Lx, 

* L t = '1iht, 

u*=!J;hu 

where starred symbols represent the original dimensional variables. The character­

istic wave height H can be determined from the following consideration: when the 

wave plate is displaced in the x direction a distance of S /2, the free surface rises by 

H = Sh/2L. In dimensionless form, equations (A.1)-(A.6) are given by: 

where 

aT/ au -+-=0 
at ax ' 

T/(x, 0) = 0, 

u(x,0)=0, 

u(l, t) = 0, 

aL 
a= '1ili,' 

~=G)'. 

0 < X < 1, 

0 < X < 1, 

t > 0, 

t>O 

'= (v;r/2 (1 + % ) h~-

Eliminating T/ from (A.7) and (A.8), we obtain: 

a2u 82u /3 a4u . au 
at2 - ax2 - 3 ax2at2 + (l - i), at = O. 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 
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The steady-state solution of (A.16) can be written as: 

(A.17) 

Substituting (A.17) into (A.16) yields: 

(1-½t1ci) !:~ +a
2 

(1+(l+i):)u=O. (A.18) 

From (A.18), and after using the boundary conditions (A.11) and (A.12), the steady­

state solution is found to be: 

where 

ia • 
u(x,t) = ---:--k sink(x - l)e-zat 

Sln 
(A.19) 

(A.20) 

The wave number k given by (A.20) includes a term of 0(,/a); the real part is 

the viscous correction to the wavelength, and the imaginary part is the attenuation 

rate. It is well known in the theory of Stokes for an oscillatory boundary layer near 

a smooth wall that the shear stress and the tangential velocity are out of phase by 

1r / 4. Lepelletier ( 1980) neglected this phase shift and used an equivalent expression 

for the laminar shear stress that yields the same energy loss in a wave period. The 

consequence of this approximation is that the attenuation rate is of 0(, /a), whereas 

the viscous correction to the wavelength is only of 0( 1 2 / a 2 ). 

From (A.7) and (A.19), the steady-state free surface displacement is found to 

be: 
k - . 

ry(x, t) = --:--k cos k(x - l)e-zat_ 
sm 

(A.21) 

The transient problem is given by (A.16), with the following boundary conditions: 

u(O, t) = 0, 

u(l, t) = 0, 

t > 0, 

t > 0. 

(A.22) 

(A.23) 
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In addition, the transient solution must vanish as t ~ oo, that is: 

u(x, oo) = 0, O<x<l. (A.24) 

The transient solution can be written in the form: 

u(x,t) = u(x)est , ~[s] < 0 (A.25) 

where ~ denotes the real part of a complex number. Substitution of (A.25) into 

(A.16) yields: 

( 
1 2) d

2
u 2 ( . , ) 1+ 3/3s dx 2 +s -1-(1-i)-:; u=0. (A.26) 

From (A.26), and after using (A.22) and (A.23), we obtain: 

where 

(A.28) 

(n = l, 2, ... ) 

(A.29) 

and Cn, (n = 1, 2, ... ) are constants to be determined. From (A.7) and (A.27), we 

obtain: 

17(x, t) = 2ianCn (' + t) ---cosan(x - l)e &an Sn • 

Sn 
(A.30) 

The general solution must include the steady-state solution given by ( A.21) and the 

transient solution given by (A.30), that is: 

k · t ~ 2ianCn (' + t) 17(x, t) = --.- cos k(x - l)e-m - ~ ---cos an(x - l)e ian sn • 

sink n=I . Sn 
(A.31) 

The unknown constants Cn are obtained by imposing the initial condition (A.9). 

The final solution is given by: 

k · 00 2k2 
17(x,t) = ----;--k cosk(x - l)e-mt + I:(-1? k2 2 

cosan(x - l)esnt_ (A.32) 
sin n=I - an 

The dimensional form of (A.32) is given by (5.1.1). 




