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I. INTRODUCTICH

The purpose of this vnaper is to discuss an approximate method

for obtaining the velocity potential for a two-dinensional comnressible

-

4 } o V . ‘ » - - . i
fluid flow.;, The effect of wind tunnel walls is 2lso to be investicsated.

The fundamental eguation of motion governing the motion of a
9 o >

compressible fluid in two-dimensions is:

(a u/o)xz -2 & (a V/ayz = 0 (1)

Vhere: ‘d = the local velocity of sound
W = the strean velocity along the xeaxis
V' = the stream velocity along the y-axis

éé(,‘/) = ‘the velocity potential.,

The above equation of motion is non-linear, It is hyperbolic
2 2 2 2 2 2 }
in type if w+V 79 and elliptic if w+v < & ., The equation has
not been solved in general, essentially due %o its non-linearity.
The equa‘cion becomnes linear by tvm&sforma'tion from the vhysical
plane to a hodograph plane, 'l_‘h'is transformation leads to a linear
egquation with the jrelocity components as the indopendent wvariables
instead of the usual physical space co-ordlaw,es. | This simplifica-
tion is achieved however, at the cost of more difficult boundary
conditionse. .The linearity of these hodograph eguations in incom-
pressible fluid theory make them very valuable for the solution of

certain problems.
L @



Exact solutions to the hodogravh equations have been given in
several papers e.%., Tsien and Kuo (Ref. 1) (but a paper scon to be
published by Guderley doubts even these results). The hodograph
method has also heen used as the basis for the approximate method of
Karmen and Tsien (Ref. 2) which is accurate for low subsonic speeds,
but breaks down as soon as the flow becomss locally supersonic.

Garricﬁ and Kaplen (Ref. 3) have developed a "velocity correction
method" to give an approximate correspondence betwean the compressible

-and incompressible flow conditions. The knovm approximate results of
Karmen and Tsien, Temple and Yarwood, and Prandtl and Glauert are
‘wnified in the above reference. Tables and figures giving velocity
~and pressure coefficient correction factors are presented in order
to facilitate the practical apnlication of the results,

Thdugh the exact non-linear equation has nof, as yet, been solved
in the physical plaﬂe’und the linear hodograph equations offer the
difficulties mentioned above,vseveral approximete meﬁhods of solution
for equation (1) have been developed by various authors. Cne of these
methods is the development of the velocity-potential in powers of =
thiclkness parameter;

The Prandtl-Glauert method of small perturbatiors can be regarded
as the first term in such an expansion. Hanfsche and Wendt (Ref., 4)
have cénsidered further terms and Kaplan has used a similar iteration
mgthod to obtain the flow past a curved surface. Gortler (Ref. 5)
‘also used an iteration method to obtain higher approximations to

flow past a wave-shaped wall,



A series expansion is used in this paver and hence is siven in
some debail later.

Another approximate method which has been used is the Rayleigh-
Janzen method. The velocity notential fﬁ is expanded in & series of

the powers of the free-stream Mach number,
‘ 2 .4 6 .
§=fﬂ+§M+¢ﬁ4+£M+

Where M= é%f , and 55; is the velocity potential of the incom-
pressible flow. On substituting this value of QE in the exact

equation (1), the coefficients_of the powers of M give sets of equations
for é%,é% “ES etc. It assumes that the velocity potential of the
incompressible flow over the body is imown and successive appfoxima-
tions correct that potential for compressibility effectsf The solu-

tion converges quickly enough only for bluff bodies. EKaplan (Ref. 6)
applied this method to dete?mine the effect of cbmpressibility for the
flow over the surface of an elliptic cylinder,

All the first order approximations are valid only for flows at
low subsonic Mach numbers. In the Prandtl-Glauert method the
assumption of snall disturbahoes is not always satisfied;‘e.g., the
theory breaks dovm at the stagnation point. Also the approximétion
deteriorates as the free stream velocity increases and as the thick-
ness or fhe camber of the body increases. However, as a first
approximation those metﬁods help to solve the many practical problems.

The effect of the higher order terms in the power series expansion

in terms of thickness ratio is investigated here., A simple case is
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worked out fully and the effect of wind tumnmel walls is also shown.

The method is also indicated for bodies of arbitrary shape,



II.

The exact equation for a

compressible 'fluid‘v flow is:

J 92
@ d2Z _2uvIL (@I - o
(1)
Where: a = the local velocity of sound
W = %é -  the local stream velocity along x-axis
X.
V- 98 _ the local stream velocity along y-axis
Y ;
?(X,y) = the velocity potential,
The enérgy equation is:
z 2 -
W, da - U, 9y
i 1-1 2 -1 (2)
Where: W = the local stream veloolity
s 2 the velocity of sound in the free-stream
U = the free-stream velocity taken parallel to
the x-axis
3 = the ratio of specific heats.
, 9 ;
Substituting for . from (2) in (1)
: | : - 2 2 (=2 T2 2(h =0
2 . il 5 _é ¢ =
B wal 3 fd pal - +{(Lo+ U—(SP* 7] ‘/} T

It is assuned that this

THE APPROXIIATE PROBLEHM

steady, isentropic two-dimensional

exact equation must be solved with the

following "exnct" boundary conditions:



1) The local velocity is tangential to the body at any point;
»:'L.e‘.*, é'fy(x ff(x)): @X(x '(fm)‘ TF /(x where the shape oi‘ the
body is glve*l by Y= Tfx) and T is a dimensicnless parametve:
depending on the thickness of the bodly.

ii) No disturbances at infinity.

Let the veldcity potential @ be made up of a uniform rectilinear
‘ o L2 3 ng .
flow and perturbation potentials ’Z'¢, ;T ¢2 e L RS T ¥

'@—-: UX+ZT¢V7' (4)

So that as ’Z’__).o, f__> UX
Equation (4) is assumed to converge for small enough values of T o

Substituting for the derivatives of @ in (3) by using (4)

aii'??'j’[u?-_{ U?f‘#’wZUTCP +T 952;( }] [U-rt ¢ s204, ke ’chx20+’r4>,y+ } (14,1“.,. ‘qb“; )
_ 2 (U‘f‘ T¢lx+ T¢2 ‘*"}{Z(P‘)"f; #4)2'7;*"7} (fcptxf’_ TZd)zxi"'"}

+{ 2 1—![U [u.;.’('qb +2UT¢ +T¢,’+2U’[;¢2x ﬂ—[’fi‘hzi—"-]}(’f(ﬁlyy.;-fzzy;___-) = O )

Similarly substituting for the boundary condition (i) of (3)

| A 2 .x ‘+- ---‘ I)L .
T () + Ty (xiv) + Ty o)+ = = [or Tt e T s T ] = B

Expanding the derivatives of by Taylor Series and substituting for
Xp & . .

Y = T$(x) . the general boundary condition of the problem is:



Te

, 2 2% )
;i [47\ (x0)+ T f(x) qSI (x0)+ T_;L%_’.‘) éyﬁ(&o)a‘--:]-ﬁ T [‘i’z'y("‘o) + Tf(%) Céyg’"o)"‘ -ti—f—.jﬁwgf"")* . }

[cﬁ (1) + TH) Gy Gpo)+ ] {u +'c[¢> <on+’£‘¢> <*°)ff")+’”f'2(”)¢ S5y ]
fcz[qax@o); 1) ¢zx'§m)+~_~-}+ ’c"’[ b, fxat ]} TF )
| (6)
Collecting the ‘c‘okeff'icients of the powers of T in (5) and (6),

‘the three sets of equaticns for the first, second, and third order

perturbation potentials with their respective boundary conditions are:

()bt - 0 w
A 9= Uf ) (ii)‘ (a)
Py = 6, 0. (111)

(’ M«s)cbzxﬁ‘ﬁzyy* "“[( 1“"‘1..,)43 fb,xx+4>y43x\/] " ke
® | b, 00= ¢(xo)f(x)-¢,,<xfo)fcx) |
9 (oa) Cbzx(oa) .

() @

(iii)

| (“M:&) 4)3“""‘%\,.\,"'" '&-[%’{(’*mlj[g:‘#x;w%ﬁg*2U¢u. 1“45”_}}+2U[4>,,‘@,y d37“4"‘7' v % ]

+ qj*xx*%}%yy"'%ﬁy nug], - (i)
() PR T oy
| ¢37<x )= ¢, (x)f )+, cx»)fcx)ﬂx) 4>,;;~)f2“ 4527{;.0)?(():) | (i1) (c)
(1i1)

%x("o) = ﬁyl_oé) = O
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The solutions of the above set of esquations with the correspond-

ing boundery conditions for an arbitrary body shape, give the values

of the perturbation potentials ¢, 952, % etca

In a similar way one may find an expression for ilach number,

which ﬁp to terms of 2 is
o = 1o 520 )fE b w—[%w {w(wm}]}/ )

; 2
end M on the body

M(X O) Mmf*/"‘ 7'/M/{ TPy (x0)+ rz[gx(x,c)nféggéxy(x,o—)]
’Z’[gb (x0) *+ ¢Z(x,o}//+ i(r—/)M,a'f/f/ -

. To the same order the expression for C the pressure coefficient

.tk
Cp (;f,o) - F P02

: 4
2 [x- .. ’Z’L l(K :.x I'fl({'UMﬂE}
CP[x,o)= - _Z_Dfﬁé/x(x,o)~ %z‘[;azx(x,o)ff J¢’,,(§ )] Tﬂ[% ,ojf-gé[p | ]

(9)

The derivativionsof the above expressions for M  ana gb are

shovm in the appendix.
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III. SOLUTION OF SIMPLE PROBLEM

® N\
a) A Wave-Shaped Well in Free-Stream /; -
' , &x
_ Let f(x)=o‘?5""“’<x - where o(:izcmdfe?]:
)(: ’z’f[x): E Sun x X .
; e
< 2
The flow equations and the boundary conditions for § are from
(a)
g %
5 i
‘O—Mod)@xx.f- Yy~ o (1)
@y(x,cy = UTT casxx . (11) ()
() = Py ()=0. (i11)

A ~solution for ¢ (X,Y) is expressed-as
mxy

$om X
4) (x Yj Cosk: +Mx}

where X is an eu"b:i.'l:rzas.a‘:'y~

- ol
constant. and M= I~ M

and of course any linear oombinationv of such sciutions could be used
to satisfy the boundary values.
v For the simple cass, only one term is nesded to satisfy the -

boundary conditions (11 and iii), and putting )< X  we write

2
Ut ol §
(P' (X,\/) = —_- —-’h& CoS &% @ .

(10)
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Substituting for the derivatives of ¢ in (B 1end ii)

3 SR £ 41r2 ~2maty
m ¢2xx+ ¢2\/7”' 2 T A (1)
},, (x0) = YY) oo e (11) (8,)
2w v
Py () = d’zy(".é) = G Y

A particular solution of Cbl is easily obtained as

¢, [x v)= - 2 ”l;;s” UY Sin 200x&°™7 (11)

The complete solution which damps out at ed is written as

LMY
¢, (XY)— Z(an5mn4x+ by, Cmmx)enm“y Zf*' M 7T UY Sun2ex @
: M

where the d,, and b.,, are still \mdetemined.
To sa.tis.fy the boundgry condition- (Bg 1ii)
by=o ;
dy =o0 for all values of T 'uexé‘ep’c for m=2K .

When N=2,, d, can be found from (Bg ii) which is

¢, (x0) = [ 2m«d,- 1+I MM U]sw,zo(x— _‘i&_m_ Sin 200X
2y
so_fhat
2
| U 2 74l Mj]
a, = - Lt = = = _
2, , 4—w72'o([ 4 ’ml (12)



1l.

Then

4 —2m«
l+m_f, ¥+ Mad+ I+| &&Y]éw 2o x e 7’
4 m? 2 m '

<b<xv)'

(13)

The velocity potential CP (X,‘/) up to terms of T 1is expressed as:

; 2 —1may
UTf' smety 4t uT 1 74 M.o a’+lM,d S v
é(x,y) Ux- ’l’ Cos ix e 14;& I+m+ TT«T o<~/ Strn (14)
Formulas for the velocity components in space and cn the body ares
| moly 273 IIM.4 - 2mely
' - +
w(xy)=U+T E,,T”Smdxe Z ’t’z%i[u-m-rT Mnu <y | Gl x e
( ) -2may
~Mel ] €Y Sa zooke ‘
V("'Y)‘,:f T'-'lTUCoSolxg 7+ v leU [H_m.f.fﬂm-f—l M’:;c(jj w
| - 14! ,
U«(X.o)z U+ ’I'T%—Jsmolx r TT)U [| m-r——t- ]Cosl&x
o Aeix) UTim oL Cao X
. o 3 2 : - TH)
V(x0) = TylU (oS e¢x — ZUT [Hm y Trl Mt i 2ot R
o ‘ 2m* & W
b) A Vave-Shaped Wall in a Closed Tunnel W
h{ r\/

(x)_ Swuxx ‘ JL

and the height of the tumnel wall from the x-axis is = h,

‘The boundary condition (A ii) s this ocase is

CPY’()(,"’),) = a (AS ii)



o

The solubion of (A i) is easily obtained as

b (xv) = W Cosoix Cosh ma(h,-Y) | -

Substituting for the derivatives of ¢ in (B i and 11)

2 2
2 S RU—] ‘*'M 4 Gosh 2t (h-Y) + 3”&*’2]5‘“2‘“
W ¥ 4)277 m? Sit (meth,) ¢ (
$,, (x0) = YT(Hr) oty (math,)siis 207 (11) (3
b l) =0 fhad)

A particular solution of (Bz i) is

CPZ(X"\,) = [A,y ;h 2mdl (h-y)t B,shlw (5,.y)] Som 200 X

where ‘ 3.2 _
1+ M« T (Y
A= T 76 wlsip(meh,)
22
TETL ), Y —
Bt' = “(% Mo+ 2M4e(5h"(m°1/)p) . S
end . ‘ _ T E '

The complete solution for d’z can be written in the form

P, (x9) = | Z (G;5M Yo + by Gos m(x) sh 2ma(h-)
| -(17)
'F [A.V Sh lmd(hl"\/)?— Bl Shz md(h/—\/_{] Som Zo{x, ‘
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) s
where @, and bn are undetermined.

n

To satisfy the boundary condition (83 11)
b,, 'e)
Cly,-:o for all values of 7 , except for M=24

When Y= 24

. ; ) 3 S- D_dx
CPYCX‘Y)‘: (:._ 2mo d; Cosh 2ma(h, -Y)+ A, sh 2"”“(*):“/)‘ B,matSh 2madh, y)] lM
o A,

}_J,TL_(_'iT_) Coth el h, Sun 24X 5 for Y=O.
B 2m A

| 2
' . tanh 2meth, [+ oth meth,
QQ_ = U4’::50( ( 77”"‘)5})1”0015 U4m’u Cooh 2Meth, (18)

4?2 (xY) = [(G;f— A.‘/) Sh zmez(h,_x/)f BnShl ’Y’d/h,-‘/)]sm ot

(19)
The total velocity potential § is
__um (o ) +
@(m): Ux mdSh(mdb,)(mO(x sh mo(h, ‘/) (20)

[(erA‘Y)Sh 2mo<[h, ¥+ B sh' ma(h Y)] Stan 202 .

. = o =0
¢) A Wave-Shaped Wall in an Oven Tunnel 7‘ :
Let the height of the free-jet where there  h, y :
is no pressure difference be = h . j Iﬂ\
: 2 , € .
The boundary condition (A ii) in this case is W ——A

' QY(X,‘hZ) = O . | ; (A4' ii)



The solution for ¢/ is

) = — U Cos xx Sh mo (b —‘.
Bow - YT )

‘Substituting for the derivatives of @, in (B i end i1)

2_2 g
o _ _MaT +IM> 2 __(g_th HJS. .
m ¢2xx+ zyy""mld U[T My Cosh 2m°(07;_ Y) 7 M ) w

| 4’2 (x0) = M U '5h(mozhl) Som 2oL X . (i1) (B4)
A 2 m Cooly math, .
(131)
¢, (5) = O

A particular solutdon of (By i) is

d)z (X’Y) - @27{ Sh 2mel ("71'"\/) "' stbzm“(bl“y}J Sun 2ol X

(22)
where 4
N I |
2 - 16 "m? cosh¥m~hs) -
2_2
¥-3 2 M.o ] U
B, = (7 m MY Erorep oy

The complete solution of (Bg i) to satisfy (By iii) is written as
i [T ) " )
¢ (X,Y)= Z (Cly,Su‘m netx + by, Cos npzx) Sh lmO([hz—‘l)
2% .

-t [Azy Sh 2m« (hz")’) + B, sk’ Mol(hz-\/g] Stn Lo X

(23)

(1)



Satisfying the boundary condition (B4 ii)

2.2 |
a n _ _ U Mo TT (l 5 :ﬂ__'EMi tanh 2mlh, _Un'l(lfmz)-}a'nh md;;?_z%)
% B 4mAx 8 /lohimahs AW Coh 2mahy

| , e
¢ (xy) = [(a2“+ Ay)sh 2met (h~Y)+ B,Sh moc(hl-\/)]s%ux. o

'The total velocity potential é is.

. U o
@ (x.y) 5 ’tmaa”h(mbl).cos oLX Sh lma[bl ‘/)

4 [(Gz'# Aﬁ) Sh 2md(hl~$')+ 625h2mo<(h,—~/)]5u'«2¢x- (26)



IV, THE SOLUTICN FCR A BODY OF ARBITRARY SHAPE

" An attempt can be made to solve the approximate problem for the
body of arbitrary shape by extending the reasoning of II by means of
Fourier Analysis. The first approximation is thus easily obtained for
the free stresm case (and in fact could be found even for a cldsed or
open chammel (Ref. 7)). However the second approximation is harder to
obtain even for bodies of very simple shape.

Thus problem (A)

7h1<plxx_+ d%yy‘:: O
&,y (x.0) = UF'(x) o w

$y(2) =0 (111)

(1)

has the solution d%(xqj) which can be represented almost everywhere
by an integral
: 0d

¢. (""’) = = {,—% -d?)l | Q_M)\Y.f'(t) cos A (t-x) dt

%

(28)

(28) satifies (A 4, iii) and since

8, (x.0) - f—/o//\/f[f)Cosz\[z‘ et = Uit 9ifbed)

by Fourier's integral theorem, (A 1ii) is also satisfied.

If the airfoil lies between — U

£l = px) for M<e TS

, +C
= o fovix[>¢C - (30)
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and the order of integration in (28) may be changed, the potential

+C

P <) a 7o ) (t-x )2+ m’Y* &)

Thus, to obtain the second approximation, problen (B) must be solved.

i ngbzxxr 27y = ,C[¢,(Xf>')] ')
qu = G[¢,(*/V)] ) (®)
4y () =0 )

After the first approximetion CP/' 35 found, the right hand sides of
(3 1, ii) are known functions of X.,Y . Thus the problem is that

of solutions of Polsson's equation with certain boundary conditionse

By putting

b, (xv) = K(Y) 7 (%) (52)

where
ngxx vy © 9
and g, (x0) = 6[@1’9] ‘
; | : ‘ (33)
9}/ (06} =0 ¥

the problem is reduced to findin~ a solution to Poisson's equation
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where Y derivatives vanish on the boundary

Wl Kx+ Kyy = Fb ]

KY (x.0) = Ky (2)= O

This may be done by constructing the Greens' function. (33) of course,
can be solved just as (A).

In any practical caée however, even for the simplest airfoils,
the function F is so complicated that this integration procedure has

not been carried out explicitily.
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V. DISCUSSICH OF METHOD AND RESULTS

By the method of power series the solutions of the non-linear
.equatioﬁ (B) under certain Boundary conditions was approximatedbby
the successive solution of a set of potential problems. As long as
the flow is everywhere subsonic, equation (B) is elliptic and‘the'
bouﬁdary‘conditions (1 and ii), of e elliptic type, are probably
sufficient. However, there is éome doubt, as expressed by Guderley
(Ref. 8) and others, whether the problem is properly statéd if there
is & local supersonie zones, Guderley concludes that pdtential £1cw
must break down, or that the serieé approximation (4) diverges. It
Bhould'se noted here that integrations of this t&pe are very impor-
tant, for one never knows by virtuer of the non~linearity, whoether
a lccal.supersonic zone will form, However, from another point of

" view, experimental results (Ref. 9) do show smdoth‘shock-free tren-
scnic flow for a certain range of Mach numbers close to 1. It may
be that the exact gquestion ofibreak-down of flow, due to viscosity
effects ete., hgs to be investigated near ﬁf:./ ; In addition>a
supersonic zone imbedded in a subsonic flow can behave in an elliptic
way, for, a smail disturbence in it,\can éffect‘the entire flow
field., Thus it 'is still felt that solutiéns~may be appfoximated in
this way for local Mach numbers close enough to 1.

Since ohly the simplified problems were solved completely, the
resuité shovm in the curves should be taken as only quantitative
for airfoils. Figufe 1{sh0ws the distribution of the local Mach

4

nurber as calculated by the values of the first and second order
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‘potentials over two wavy walls of maximm thiclmess €=-01| and €012
in & free-strean of Iach mmbor O-8 . The distribution is
syrmetrical over the body as calculated by the first and second order
approxinmations. The first approximation gives a high value of M at
-the leading and trailing edges and lower value at the center, than
the more accurate second order values. .The difi‘erenoe-behvéen the

two valucs at the maximum Mach number is about 3% for €=0-] and

104 for €=02, Also, the difference increases for higher values
of M,o'. This is in qualitative agreement with the experimental
results at GALCIT traensonic tunnel i‘dr a 127 circular arc airfoil
_where the distribution for Moa" O-8 is less at the leading and.
tré.iling edges and more at the center than the calculated values

.by the smell perturbation theory, (Ref. 7). The velocity distri-
bution is lmown i“or two bodies of thickne_ss €- O-| and €:0-2 at
Ms = O-8 « There is no supersonic zone for €s0-| . As the
thiclmess increases, a supersonic region is develoz}ed and there is a
great variaf';ion' between the two approximations, Of course the valués
obtained .for €=0+| are closer to the actual conditions of the flow
vthan'for the body é.—..o-Z . The tunnel wall interference on the local
velocity distribution over the body in a 10" tunnel as deternmined

by second order approximation is sho'wn in Figufe 1. For a closed
tunnel, the effect of the wall boundary is to increase the veloéity
over the body. The first order épproximatiori indicates maximum
irii‘luence at the center of the body; The second -approximation

gives maximum values at %=o.25 ¢075., It is ‘m.i’n at the center %=0'5
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and at the end §=O ¢ /-0 ., For open tumnel, the effect is just
the reverse; i.c., the velocity over the body decreases. For a tumel
of the height chosen the effect is apparéntly very small, However
due to the peculiar problem which was solvéd, that of an ini‘inite ;
wall, thé free stream Mach number is not defined.

- Pigure (2) indicates the variation of the maxirmum local Mach-
number with free-stream vaiues for two bodies of maximum thickness
€=0-1and é€:0:2, The diffefence between the fii’st and second
approximations, for low froe-stream Mach numbers is negligible.,

For hirher volues of Mw ther‘e is a ra?id inecrease in M due to ¢2. .
In génere.l, the linearized small perturbation theory gives s lower local
Mach.number and there is considerable error in neglecting the second» )
perturbation potential for calculations at hiéh subsonic lMach hmnbers.

It is also evident the error increases as the thiclmess of the body

= aid

increases., It can be seen from the form of the soclutions that T
‘ ' : =My

is the important parameter.
Firures (3) and (4) show the variétion of M- with Y for I"Lfo‘ga"" 0-9.

They indicato the considerable error in caleulating M close to the

body by the first approximation. The error decreases for inc.x"ee.sing
distances along the y-axis until the two values reach the frec-stream

Macﬁ nurber at large distances along‘the y-axis. The Amximﬁn.heigh‘t

of the supersonic zoﬁe for €202 end Mw=0'91is 0-5 ’oy the fi.fs’c.
approximation and about /-/ by the —— approximation, |

~ Another approach, which ibs restricted to transonic f'low, and

should be the nore accurate then, is the .solution of an epproxinate
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b]

non=linesr cguation. By. assuming (Ref. 8)

w = a*'f‘ Cl)x
(35)

* “ .
where Q- sound velecotiy = flow velocity at M=/ s For thin bodies

equation (3) is approximated by

Y+ - = 0
o ¢x¢xx ¢7’7’ (38)

The mein advantace of (36) compared with (3) is its simplicity
butAthe same fundamental difficulties of non-iinearity and proper
boundary conditions remain,
surmarizing, the method of power serizs makes it possible
to obtain anproximations fo some simple compressible flow problems up
to the second order. Qualititively, 1% is showm that the first order
theory; (Prandtl's rule) tends to underesbimate the compressibility
effectss & further investization of the gensral problem, the proper

boundary corditions, and the traonscnic flow equation seems desirable.
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EXANPLES
For the purpose of computations, a wavy wall with the follow-
ding dimensions was chosen
6 = O l and OZ

A= 2C= 60

_ZTr—-. s :.é_g
0(_._)_\—-..|05 T =

Moo:v®l8

2
Vs
M(ma.s onThe body)

nix

Pigure 1.

From (8)

Mz(x.O)‘ 5 M:[l + 6+ ’%’Mi){% 7 ¢ (x0)+

" ettt

2__:_{’1[¢2‘(x.o) + ][(") ¢‘x),(x‘°)]
u

Y
U (setx @ - (10)
ms

2 v i 4 ~ 2y
I [iyoy 21 12 4 50 ] 5 2em
m

'432()(‘“/) = _Wd [H'm T m 2
(13)

Substituting lor the derivatives of ¢, and ¢2 in (8)



12
2 , (X ‘KH Mq ]
M2<X,O): Meb[l+ (I+ %’Mi}izyi“Smo(x— et [’1‘ CoS 2ot X

22 o
2 . . 2 9. 2 .E"_(. Stnx |1+ 2 (f—l)M‘J}]
- 2.6«125um:%(x + €« Covleix + 5 [

For M08 snd €=0-2, ¥=14°5
5 S'Zo(x+o.o44}]
Mz("'o): : 64[[+I"28{'75M°{X-—-«25(052o(x+ . 653 5o X .

At =05

Nix

ma = ! # ot } = |-40.
' = 64! l-tzs«{.7+-25.r.053+'o44] |- 4
M( A X M”"body) \

By the first approximation
%_é'_g wd,x}

e = mafie (g 5

M%ﬁu; .64[I+l428x7] = 1-05 .

m, .

The Computations are similarly carried out for different values of T .

With a Straisgut-iiall Boundary :—

L T oo w0 (1Y)
¢l (X'Y) = = ”W} Cos 0‘)‘L |

' 1 A X .
¢, (1) = [(ag_A,sth 2mu (h=¥)+ BSP rnot(h,-\/)Jsm 204
2

SR Y [(, + Ly ){ 2 fz( — Qi) + 212[4, = ¢ap) +jo)(¢£,~,_¢g.ﬂ
Mo = My = M -

+ 5’22[ J’fy(x,o) - ‘hzyém) “" { ¢ o) - ‘hf(‘m)} {HZUJ)M:}]} ;
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Substituting for the derivatives of (1)',43, 437_4 4’2 for My=08

[Mz-’ Mllz .64[- 003Sun X 4+ - 06298 los 26 x +.002950KX ~ -00034]
F

Wal)—
nask

!

Taximum difference = 0021 by second approximation,

at é:O.S
- #0019 by Tirst approximaticn.
The values for various values of ’—c‘-_ are plotted in Figure 1.
o .
Firure 2 -— Mipax V2 M.y (a’r 2= 0-5) .
(o —’-______________-—

2 2 12 2€d
M'm:gn’x = M"‘ [l+(l+ ?Ma)m] ;

12 ‘ 4
2 2 31 g2 2€L . & [Z-Ml‘f' T+, Mes :’
Mzm,} = Md[’+(,+ 3._M°° l.-M: ,_M‘:' = 4 -M2

2.2
2] €
— 26w+ ﬂ*l("")M"‘ I-MZ

Substituting for €= 02,

My = o1,
M.z,w = ©0-82:
Mi...,_., = 0-91:
Pigure 3

M° vs L. My-08.

f =

MQCLS,\/) = - 64[,+ |.|23{,7ém°‘7_;_ (,25+ .o(53+ -044)2
% ' s

Far z=§'} Mfz 0 910



‘Fizure 4
r‘f V5 % *OY M,“:O‘g
C
~mel
= [|-385
M2= 'SI[H l-léz 964e }J [-3
]

M, = .sl[w o€

% (13T 512y)e™ ’] = [« B75.
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APPENDIX

(i) Expression Tor lach Number

-

wz 5+§L

v il
MO =57 T g

. _ 2 ,
Substituting for +he derivatives of ¢ and for . 4 from (4) and (2)

. ] R 2
MZ(XY)' /U2+ZUT¢/x"'T¢’/i"’1¢,;+ZUT¢ZX+----]
. Olj = Z—E-—I[ZUT%"f- '[2¢Ii+ Tz ,3,+2U12¢2x “_]

2
Tactoring out q.,o and using the binomial exvansion for the denominator,

Mz[x,y): M:- /+%2 b £{¢,i+‘2c/¢z,‘+¢33}]/’/+2—%'/5 {ZUT /yx+
’L‘(¢>,x+ ¢>,j+ 2U¢2x)}+ (1".2’[’ v 96,,]
Vz(xn/) = /\7:[/ * ﬁf lZ:IMj)[Z% ¢t _3_1'2¢2x [4§ + {HZ("/)MX%W

The local Mach number on the body is obiained as

M (X 0) = M[/‘f' /+ 7’(//‘1){ T¢(w)+ 27[¢(x,o)+f(x) 95,‘), /‘i)]

+ 12[¢;(x,o)+ gé,i(x,o){u Z(P/)Mg/// (8)
U* ‘ ’

(3i) TExperssion for the Pressure Coefficient . —

_ PR _ _f__-/)__?.. | (9)
Clb— 7sz2~ - /bad 7MM2



y
po_ 1= LImn oy

P !+ Z:—T/ My: (10)

Substltutlng for ﬁ4 fron equatlon (7) in (10)

Peto-3t hatu= 2 Ot~ Tgal i1 9if 12 200

Substituting in (9)
N T WEL PRy PO Y S )
7] /X —‘7' 2% a‘i 1y (2. + . (11)

Expanding the derivatives of 96 by Taylor Series and substituting for

y= T,
| ; 2
c/b_[x,o) = - 22/ ¢ (o + L) P, %x/a)-/--]_, 2z [¢2 Goe-]

[¢2(x,o)+ ' '— z [/+2(r—/)/‘/w][ (""/*

The contrlbutions to C%:[&q) from the perturbation potentlak Dby uhe

first end second order ‘approximations are:
- g 27, (x0
Cplen)= Gt Gy Whe G = - EEEER S
_ /'¢ (XD)'/'.?ZCX)% /x;oi [¢§ m+¢2 fl{f«/)"j/

(2) -

o= - 2L 27y o SOh) / b4 { "W)Mj] 02
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