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Abstract

Of crucial importance for magnetized plasmas is magnetic helicity, a topological quantity that mea-

sures the knottedness or twistedness of the magnetic field. A universal relaxation theory, applicable

to astrophysical and laboratory plasmas, dictates the evolution of plasmas towards an equilibrium

state based solely on helicity content. The Caltech Solar Loop Experiment creates plasma with

injected helicity to study this evolution, which can involve the merging of two plasma loops into a

single structure. This thesis studies the merging using two techniques. The first is the construction

of an array of vacuum photodiodes to measure extreme ultraviolet radiation from the experiment;

the data provides information concerning non-equilibrium radiation losses and magnetic reconnec-

tion. The second is a Hamiltonian study of particle orbits to explain how particles can transition

from being localized from one plasma loop to being shared among two neighboring loops. This shows

how the merging process may initiate and also leads to a general theorem where the action variable

serves as a Hamiltonian for the orbit-averaged system.
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Chapter 1

Overview and Purpose of the
Caltech Experiments

A plasma is an ionized gas that is thus subject to both fluid-type forces and electromagnetic forces.

Of crucial importance for magnetized plasmas is the concept of magnetic helicity, a topological quan-

tity that measures the knottedness or twistedness of the magnetic field. Helicity is approximately

conserved throughout plasma evolution and often dissipates more slowly than magnetic energy. A

universal relaxation theory, which applies to both astrophysical and laboratory plasmas, dictates

that magnetized plasmas will naturally evolve towards an equilibrium state based on the helicity

content of the plasma. Both the Caltech Solar Loop Experiment and the Caltech Spheromak Ex-

periment create plasmas with injected helicity so that the evolution towards these relaxed equilibria

can be studied. The evolution involves the merging of two or more plasma loops into a single struc-

ture, and this thesis studies the merging using two techniques. The first is the design, construction,

and utilization of an array of vacuum photodiodes to measure extreme ultraviolet radiation from

the Caltech Solar Loop Experiment; the data from the array provides information concerning both

radiation losses and magnetic reconnection during the merging. The second is an analytical study of

charged particle orbits in magnetic fields aimed at explaining how particle orbits can transition from

being localized from one plasma loop to being shared symmetrically among two or more neighboring

loops. This study gives insight into how the merging process is initiated.

The remainder of this chapter further develops the motivating ideas behind these studies. The

concept of magnetic helicity is explored in more detail along with two additional topics: Woltjer-

Taylor states and helicity injection. Woltjer-Taylor states are plasmas with a minimum of magnetic

energy given a fixed helicity content, while helicity injection is the process of introducing helicity into

a plasma in the first place. The Caltech experiments are grounded in these principles: both utilize

novel plasma guns to inject helicity into plasmas and to observe their evolution towards Woltjer-

Taylor states. Both projects described in this thesis are motivated by particular observations from

these experiments.
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Chapter 2 describes the Caltech Solar Loop Experiment and explains how the plasmas are formed

and develop helicity. Vacuum photodiodes are then discussed in Chapter 3, which details the con-

struction of the array and noise reduction techniques. Chapter 4 presents the measurements from

the array together with other diagnostic data in the study of counter-helicity merging on the Solar

Loop Experiment. Strong bursts in extreme ultraviolet radiation are observed; these bursts tend to

be localized in space and time and are believed to be related to magnetic reconnection. Chapter 5

presents a new theory of Hamiltonian dynamics that originated from studies of particle trajectories

in the Caltech experiments; we find that the action integral for the fastest periodic motion acts as

an effective Hamiltonian for the reduced system. This chapter also applies this theorem to charged

particle motion in magnetic fields. Chapter 6 presents a model to explain the onset of two plasma

loops merging; the model shows how charged particles orbiting two parallel current channels can

transition from orbits that remain confined to one current channel to orbits shared symmetrically

between both channels. Finally, the appendices contain a description of modifications made to the

voltage and current diagnostics for improved measurements, application of Stormer theory to the

deflection of charged particles from a diagnostic, a review of action-angle variables and a canonical

transformation to the orbit-averaged Hamiltonian system, and additional calculations concerning

the application of the new Hamiltonian theory to charged particle motion.

1.1 Magnetic Helicity

Magnetic helicity is a measure of how knotted and twisted the magnetic field of the plasma becomes.

Just as a head of hair can get tangled and twisted, so too can the magnetic field lines of a plasma

knot and link each other. Magnetic helicity, like magnetic energy, is a conserved quantity for an

ideal perfectly conducting plasma; for a realistic plasma with non-zero resistivity, magnetic helicity

is often more resilient to resistive decay than magnetic energy. These properties have made helicity

a key concept in fusion devices such as tokamaks and spheromaks and astrophysical plasmas such

as solar coronal loops.

Magnetic helicity can be defined as the volume integral of a rather unusual quantity [1, ch. 3] [2,

ch. 11] [3]:

K =

∫
A ·B d3r, (1.1)

where A is a vector potential associated with B: ∇ × A = B. The above definition must be

supplemented by the condition that the magnetic field cannot penetrate the boundary surface of the

volume, B · dS = 0, to ensure K is unchanged by a gauge transformation. We can prove this by

making a gauge transformation A→ A +∇f and evaluating Eq. (1.1):

K =

∫
(A +∇f) ·B d3r =

∫
A ·B d3r +

∫
∇ · (fB) d3r (1.2)
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=

∫
A ·B d3r +

∮
fB · dS =

∫
A ·B d3r, (1.3)

where the surface integral vanishes precisely because of the condition B · dS = 0. K is thus inde-

pendent of gauge even though the local helicity “density” A ·B is gauge-dependent. This suggests

that helicity is not a local quantity but rather a quantity associated with an entire field line.

Eq. (1.1) obscures the physical interpretation of helicity as the knotting and twisting of the

magnetic field. To make this connection, consider two closed flux tubes that link each other as

shown in Fig. 1.1; one can show that Eq. (1.1) evaluates to

K = 2Φ1Φ2, (1.4)

where Φ1 and Φ2 are the magnetic fluxes of the two flux tubes [2, ch. 11] [4]. If, however, the

two flux tubes did not link each other, then the integral of Eq. (1.1) would vanish. This shows

the topological nature of helicity. Analogous scenarios exist in fluid mechanics regarding the fluid

vorticity [5].

Figure 1.1: Two magnetic flux tubes, or bundles of magnetic field lines, that link each other have
non-zero helicity content.

The above example shows that helicity measures the linkage of flux tubes, but helicity is also

present when a flux tube is twisted. The flux tube depicted in Fig. 1.2 has a helical magnetic field

that can be decomposed into an axial field and an azimuthal field. The azimuthal field clearly wraps

around and links the axial field, so the helical magnetic field configuration also has helicity.

Remarkably, magnetic helicity is conserved under ideal magnetohydrodynamic1 (MHD) condi-

tions. This can be proved by taking a time derivative of Eq. (1.1) [1, sec. 3.7], but an intuitive

picture is as follows. In ideal MHD, each magnetic field line retains its identity and cannot break

or tear [6]. In this case, the analogy to hair is quite accurate; it is as if the magnetic field lines

were actual physical strands that cannot be unlinked without tearing the strands themselves. For

instance, under ideal MHD evolution, the two flux tubes in Fig. 1.1 would remain forever linked.

In non-ideal plasmas, electrical resistivity causes diffusion of the magnetic field inside the plasma

1Magnetohydrodynamics is one of several possible descriptions of plasma; it treats the plasma as a conducting
fluid that carries a current [2, sec. 2.6]. Ideal MHD assumes that the plasma has no resistivity.
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Figure 1.2: A helical flux tube contains helicity and can be thought of as a superposition of an axial
field and a toroidal field.

so that field lines do not retain their identity and can meld with each other, but magnetic helicity

is remarkably still conserved even under such conditions [1, sec. 3.9 - 3.12]. This process of field

lines melding is known as magnetic reconnection [7] and typically involves the annihilation of a

component of magnetic field and dissipation of magnetic energy. For instance, the two linked loops

can reconnect and form a larger loop as shown in Fig. 1.3. While reconnection typically lowers the

magnetic energy of the plasma, the global magnetic helicity is much more nearly conserved. For

instance, in Fig. 1.3, helicity has not been destroyed but is rather changed from the linkage of two

flux tubes to twist or writhe in the final flux tube. The skeptical reader is referred to Ref. [8], which

explains how the above transition of helicity can be seen quite intuitively using simple household

items.

1.2 Taylor States and Spheromaks

The idea that magnetic helicity is better conserved than magnetic energy was pushed to an extreme

by Taylor, who reasoned that a plasma would continue to undergo magnetic reconnection until it

reached a state of minimum magnetic energy given the constraint of constant helicity [6]. Such a

variational problem had been proposed by Woltjer [9], who concluded that such plasmas must satisfy

∇×B = λB, (1.5)

where λ is a constant. Since ∇ × B = µ0J
2, this condition states that the current density is

everywhere parallel to the magnetic field. Such states are now known as Woltjer-Taylor states and

2In MHD, the displacement current in Ampere’s law is quite small and ignored.
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Figure 1.3: With electrical resistivity, magnetic reconnection allows the flux tubes to meld and
unlink. However, the helicity lost in the linkage of the flux tubes is now found in the twist of the
final flux tube.

are supposed to be equilibrium states as follows. The equation of motion for ideal MHD is

ρ
du

dt
= −∇P + J×B, (1.6)

where ρ is the mass density, u is the velocity, and P is the pressure. Eq. (1.6) is essentially Newton’s

second law for a continuous fluid; the lefthand side of Eq. (1.6) is the inertial term, and the righthand

side consists of forces acting on the plasma. For many plasmas, the magnitude of the pressure P

is much less than the magnetic energy density B2/2µ0, and the pressure term in Eq. (1.6) can be

ignored. Such plasmas are referred to as low β, where β = 2µ0P/B
2, the ratio of the thermal energy

density to the magnetic energy density. For a low β plasma that is also in equilibrium, the lefthand

vanishes as well. Eq. (1.6) is then 0 = J×B, which is satisfied when ∇×B = λB.

It should be noted that the condition J×B = 0 is satisfied more generally by a field

∇×B = λ(r)B, (1.7)

where λ is now not constant but is a function of position. Plasmas that satisfy Eq. (1.7) are known

as force-free plasmas. Clearly, all Woltjer-Taylor states are force-free, but the converse is not true.

Force-free plasmas may be in equilibrium, but they generally contain more magnetic energy than

the Woltjer-Taylor states with the same helicity, since the latter minimize energy by definition.

Therefore, while force-free states may be in equilibrium, the equilibrium is unstable as the plasma

can further shed magnetic energy via reconnection.

A plasma, in the absence of outside constraints, naturally tends towards a Woltjer-Taylor state
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determined solely by the magnetic field boundary conditions and the amount of helicity in the plasma.

This is a powerful concept with applications to both laboratory devices and astrophysics. Using this

idea, Taylor explains why laboratory devices such as a reverse-field pinch always settle down to the

same state despite variations of experimental parameters [6]. Allowing the plasma to reach a Woltjer-

Taylor state in a simply connected volume gives the configuration known as a spheromak, a magnetic-

confinement concept aimed at achieving nuclear fusion [2, 10]. Astrophysical plasmas, including solar

coronal loops, are also frequently assumed to be in Woltjer-Taylor states [11, 12, 13, 14, 15].

1.3 Helicity Injection

Magnetic helicity is an important concept but is only well-defined when the magnetic field lines do

not penetrate the bounding volume. In situations such as the one depicted in Fig. 1.4, helicity is

not well-defined because the volume of interest does not enclose all field lines. However, in such

situations, it is possible to define a new but related quantity, called relative helicity, that is gauge-

independent [1, sec. 3.5] [3, 16]. Relative helicity is essentially the difference in helicity of the

magnetic field from a reference field; it resolves the gauge ambiguity while preserving the essence of

helicity.

In such situations, it is possible to inject relative helicity into the system by applying a voltage

between the points at which the magnetic field enters and leaves the volume [1, sec. 3.7]. The rate

for helicity injection is, ignoring dissipation,

dK

dt
= 2V Φ, (1.8)

where V is the voltage difference and Φ is the magnetic flux penetrating the boundary. Helicity

injection can be understood intuitively as follows. Suppose that in Fig. 1.4 the field lines inside the

flux tube point axially along the tube with no wrapping or twisting around the tube. A voltage

applied between the points where the field lines penetrate the boundary drives currents along these

field lines, and these currents generate their own field that wraps around the original field lines

according to the righthand rule. The superposition of the original field, which is directed along the

flux tube, and the field generated by the currents, which wraps around the flux tube, is a helical field

which twists in proportion to the current driven. As twisted field lines contain helicity, we see that

the applied voltage is indeed increasing the helicity content of the plasma. Indeed, this is precisely

what happens in the Caltech experiments and will be discussed further in Sec. 2.1.3

The concept of helicity injection may seem incompatible with Woltjer-Taylor states because the

former implies a time-varying helicity content whereas the latter describes an equilibrium. Nonethe-

less, it is often assumed in many spheromak experiments that the rate of helicity injection is slow
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Figure 1.4: If the magnetic field penetrates the boundary, depicted by the red box, then the usual
definition of helicity becomes gauge-dependent. In such cases, it is possible to define a relative
helicity that is gauge-independent, and it is possible to inject relative helicity into the volume by
applying a potential difference between the points where the magnetic field enters and leaves the
volume.

enough so that the plasma settles down to the Woltjer-Taylor state determined by the instantaneous

value of the plasma gun current. This scenario is called a “driven spheromak” [1, ch. 11].

1.4 The Caltech Experiments

Woltjer-Taylor states depend solely on the magnetic boundary conditions and helicity content with

no dependence on the plasma density, temperature, or flow. Plasmas starting with varying densities,

flows, etc., may, by Taylor’s theory, evolve to the same equilibrium state as determined by the total

helicity content. However, it is not clear exactly how the plasma evolves towards this equilibrium:

the plasma may evolve through a sequence of Woltjer-Taylor states throughout its entire lifetime as

in the driven spheromak picture, or it may be out of a force-free state in its initial stages.

The Caltech experiments allow research into plasma formation and the steps needed to reach

a Woltjer-Taylor state. Both Caltech experiments use planar magnetized plasma guns to create

plasma and inject helicity into them. These planar guns, in contrast to the typical coaxial design,

allow direct observation of the plasma in its infantile stages. Experiments at Caltech have shown

that modeling plasma evolution as a sequence of Woltjer-Taylor states is too simplistic and that

plasma flows and pressures are important [17].

The two topics of this thesis, an array of vacuum photodiodes and a Hamiltonian picture for

particle orbits, evolved out of helicity studies done on both the Solar Loop Experiment and the

Spheromak Experiment. We describe each in turn.
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1.4.1 The Caltech Solar Loop Experiment, Bright Spots, and Vacuum

Photodiodes

The Caltech Solar Loop Experiment creates plasma arcs resembling solar coronal loops on the sun’s

surface [18, 19, 20] as shown in Fig. 1.5. While there is an obvious discrepancy in size, temperature,

density, and field strength between a laboratory plasma and the solar corona, the underlying physics

is the same [21, sec. 1.3.1] [18]. Indeed, the solar corona is often modeled as a force-free or Woltjer-

Taylor state [11, 12, 14, 15], so studies of near force-free plasma loops in the laboratory are expected

to give insight into solar phenomena, particularly the impulsive eruption of coronal loops [22].

Figure 1.5: The plasma loops created by the Caltech Solar Loop Experiment are designed to resemble
plasma structures on the surface of the sun. The image on the right is from the TRACE satellite.

It has been proposed that the sudden eruption of solar prominences might be triggered by the

interaction of two magnetic structures [15], and this possibility was explored on the Caltech Solar

Loop Experiment by producing two loops side-by-side [20]. The loops carry parallel currents and

hence attract each other and merge together. Previous studies of two merging plasmas suggest that

the final state after the merging is determined by the initial helicity content in accordance with

Taylor’s theorem [23, 24, 25, 26]. Similarly, the Caltech Solar Loop Experiment produces two loops

with either the same helicity, called co-helicity, or opposite helicities, called counter-helicity, and the

difference in helicity content results in different plasma behavior. In co-helicity experiments, one of

the two loops tends to expand sooner and faster than the other. In counter-helicity experiments, a

bright spot appears at the loop apex, and, around the same time, a burst of soft x-rays registers on

a set of x-ray diodes. Fig. 1.6 shows an example of both the bright spot and the x-ray burst, and

the possible correlation of these two events forms the original motivation for the array of vacuum

photodiodes, as will be discussed.

The reason for both the bright spot and the x-ray bursts is believed to be the extra amount of

magnetic reconnection that occurs for counter-helicity merging. Magnetic reconnection is present

in both co- and counter-helicity merging because the azimuthal field, the field that is generated
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Figure 1.6: In counter-helicity merging, a bright spot forms in the central regions. At the same
time, a burst of soft x-rays registers on the x-ray diodes. The array of vacuum photodiodes was
constructed to study these phenomena further.

by the plasma current and that wraps around the plasma loop, is the same for both experiments

and is annihilated as the loops merge; see Fig. 1.7. There is additional magnetic reconnection

in counter-helicity experiments because the axial fields also annihilate, as shown in Fig. 1.7. This

additional reconnection is not present in co-helicity experiments because, in that case, the axial fields

are parallel, not anti-parallel, and do not annihilate. Magnetic reconnection involves a decrease in

magnetic energy that is transferred to the plasma particles [7], and both the bright spot and the

x-ray bursts are thought to be energized by the additional amount of reconnection, and hence energy

released, in counter-helicity experiments. The bright spot is believed to be caused by the formation

of a strong current sheet between the two loops as they merge; the current sheet deposits thermal

energy into the plasma by Ohmic dissipation, and this thermal energy is then lost to radiation [27,

sec. 1.2]. The enhanced x-ray emission might be due to a population of energetic electrons that are

accelerated by the reconnection process [28, 29]; these energetic electrons would emit x-rays through

bremsstrahlung. The correlation between x-rays and MHD activity such as sawtooth oscillations has

been known for some time [30], but recently these x-rays have been ascribed to electrons directly

energized by the magnetic reconnection associated with the MHD activity [31, 32].

This pair of phenomena, bright spots and x-ray bursts, motivate the vacuum photodiode array

described in Chapter 3. The bright spot forms consistently from shot to shot, but the x-ray bursts

are rather fickle. Indeed the large variations in the x-ray signals are documented by Hansen et. al.,

who quoted x-ray signals, averaged over a number of shots, of 176.3± 100.6 mV [20]. The possible

explanation for such large variations are numerous. The x-ray burst might not happen every shot, or

perhaps it emits in variable directions. The x-ray diodes have a single line of sight to the plasma, and

their alignment is quite sensitive to small changes in its inclination angle, so perhaps the x-ray bursts
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Figure 1.7: Counter-helicity merging involves two types of magnetic reconnection: (a) the azimuthal
component, generated by the plasma current, and (b) the axial component, generated by the bias
field coils. Co-helicity merging only involves the first type.

occur consistently but are not observed consistently by the diodes. To address these possibilities,

an array of radiation detectors was needed to provide spatial as well as temporal resolution, and

vacuum photodiodes were selected based on their low material cost and potential to scale into an

array. The design of the array is discussed in Chapter 3, while Chapter 4 presents the experimental

results.

1.4.2 Spheromaks, Spider Legs, and Particle Orbits

The Spheromak Experiment produces spheromaks using a novel plasma gun in which the electrodes

are co-planar and concentric as opposed to being coaxial cylinders. The planar electrodes allow direct

observation of the plasma during its initial stages when, as shown in Fig. 1.8, the plasma consists

of eight loops, or “spider legs.” This eightfold symmetry occurs because the gas for the plasma is

injected through eight pairs of gas inlets; the eightfold symmetry is in contrast to the initial magnetic

field, which is generated by a coil of wire behind the electrodes and is entirely axisymmetric. The

Woltjer-Taylor state for the magnetic boundary conditions is hence axisymmetric, and, indeed,

the spider legs quickly expand and merge to form an axisymmetric plasma, as shown in Fig. 1.8.

The exact mechanism of how the plasma transitions from the eightfold symmetry of the initial

gas distribution to the axisymmetry of the magnetic field boundary conditions is not clear, and

an explanation is sought by studying the motion of single charged particles in magnetic fields that

model the Spheromak Experiment.

Single particle motion provides a rather detailed perspective of plasma by following one particle

through the electromagnetic field of the plasma. Such an approach is quite different from but

complementary to a fluid-like description such as MHD. A robust approximation scheme to the

motion of a charged particle through rather arbitrary magnetic fields was developed by Alfvén [33].

In a uniform magnetic field, particle motion in the plane normal to B is perfectly circular and is

referred to as Larmor motion. Alfvén studied particle motion when the strength and direction of
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Figure 1.8: The spheromak starts out as eight discrete spider legs but eventually merges into an
axisymmetric configuration.

the magnetic field varied and concluded that the particle still executes Larmor-like motion except

that the center of the circle slowly drifts over the course of many orbits. A set of equations, known

as guiding center theory [2, ch. 3], describes the average position of the particle without providing

the details of the Larmor motion. These equations provide a substantial simplification of the exact

equations of motion and hold quite generally as long as the magnetic field does not change much

over the course of a Larmor orbit. These equations can be derived by averaging Newton’s law:

m
dv

dt
= qE(r, t) + qv ×B(r, t). (1.9)

To study particle motion in the Spheromak experiment, we employ a Hamiltonian approach.

Hamiltonian mechanics is a formulation of mechanics in which a single function, the Hamiltonian,

generates all equations of motion. Hamiltonian mechanics is entirely equivalent to using Newton’s

law but often leads to different insights. In this case, the Hamiltonian approach reveals a surprising

connection between the guiding center equations and another aspect of charged particle motion,

adiabatic invariants [2, sec. 3.3] [34, sec. 49], which are quantities that are approximately conserved

over long periods of time even when other quantities, such as energy, are not. For instance, the first

adiabatic invariant µ [33, sec. 2.3] is

µ =
(1/2)mv2

L

B
, (1.10)

where vL is the Larmor velocity. Up to three adiabatic invariants can be found for charged particle

motion [35]. The Hamiltonian theory presented in this thesis states that the adiabatic invariant

associated with the fastest periodic motion acts as an effective Hamiltonian for the reduced or orbit-

averaged system. For charged particle motion, this means that µ acts as a Hamiltonian for the

guiding center motion. The strength of the new Hamiltonian theory presented here, however, is

that it applies more generally than charged particle motion, and, in this way, concepts from guiding

center theory are generalized to a broader class of systems.
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Chapter 5 describes the new Hamiltonian theory in its full generality and also applies it to charged

particle motion in electromagnetic fields. Chapter 6 returns to the original problem of explaining

the merging of the spider legs. There, a model magnetic field for the experiment is introduced that

supports two classes of trajectories, those shared symmetrically between two plasma loops and those

confined to a single loop. A mechanism for transitions between the two classes is then proposed.

Although the model greatly simplifies the complexity of the actual experiment, it provides a good

starting point for future investigation.
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Chapter 2

Nuts and Bolts: Operational
Details of the Caltech Solar
Experiment

The Solar Loop Experiment starts with nothing: no gas and no electromagnetic fields. Into this

vacuum, the gas and magnetic field are introduced a few milliseconds prior to the experiment. At a

precisely timed moment, a large capacitor bank discharges across the electrodes, initiating breakdown

of the neutral gas and forming a plasma that lasts less than 10 µs. In this short time window, a set

of diagnostics acquire a variety of data such as fast camera images, the plasma current, the electrode

voltage, and x-ray emission levels. All of this occurs literally faster than the blink of an eye.

This chapter describes the Caltech Solar Loop Experiment both in setup and in operation.

Sec. 2.1 outlines the steps taken to create a plasma, the experimental parameters that can be

controlled, and the general plasma behavior. Sec. 2.2 then details the existing diagnostics along

with their specifications. These diagnostics include fast cameras, a Rogowski coil, a high-voltage

probe, x-ray diodes, and an optical spectrometer.

2.1 Creating the Plasma

This section discusses the steps taken to create the plasma: the injection of neutral gas, the creation

of a bias magnetic field, the discharge of the main bank, breakdown, and general plasma behavior.

Concurrent with this description, we shall see the different experimental parameters that can be

controlled to obtain different plasma behavior. These parameters include the gas species, gas line

pressure, gas valve supply voltage, bias field configuration and strength, and main discharge voltage.

Different permutations of these parameters yield a wide variety of plasmas to study.
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2.1.1 Vacuum Chamber and Plasma Electrode

The Solar Loop Experiment is contained in a large vacuum vessel so that the plasma does not

interact with the vessel walls. The chamber is about 1.58 meters long and 1.4 meters in diameter,

while the plasma loop is less than twenty centimeters in diameter. Hence, the plasma only interacts

with the metallic wall boundary at the footpoint of the loop. This simulates the boundary conditions

of a solar coronal loop on the surface of the sun and is distinguished from many other laboratory

plasmas that fill up the volume of the vacuum vessel and interact with the vessel walls over large

areas. Indeed, the Caltech chamber is so large that the opposite side houses an entirely different

experiment, the Caltech Spheromak Experiment. A schematic of the vacuum chamber and all the

diagnostics to be discussed is shown in Fig. 2.1.

Figure 2.1: A bird’s eye view of the vacuum chamber and the positioning of the diagnostics.

The electrodes themselves are copper plates shaped into quarter circles as shown in Fig. 2.2.

The top two electrodes are cathodes while the bottom two are anodes. A hole, or gas inlet, in the

center of each electrode allows neutral gas to be puffed into the chamber, and coils of wire behind

the electrodes generate a magnetic field that links the anode and cathode. The planar nature of

the electrodes is based on the Spheromak experiment [18], allowing direct observation of the plasma

formation during helicity injection.
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2.1.2 Injecting Neutral Gas

The species of gas chosen for the plasma affects the plasma properties through the differences in

atomic masses, the number of electrons to contribute to the free electron density, and differences in

atomic line emission. The Caltech Experiment is designed with a flexible plumbing system [36, pg.

22] to make switching gas species an easy process. The plasmas studied in this thesis are hydrogen

unless otherwise noted, but other options include nitrogen, argon, and deuterium.

Figure 2.2: The electrodes consist of four planes of copper with gas inlets bored through to allow
neutral gas into the chamber.

The vacuum chamber is maintained at a pressure of roughly 10−7 torr, and neutral gas is injected

into the chamber milliseconds before forming a plasma. This contrasts with many other plasma

experiments where the entire chamber is pre-filled at the desired pressure. A fast gas valve separates

the vacuum from the reserve of neutral gas, which is typically pressurized from 60 to 100 PSI. The

gas valve, designed by Prof. Bellan and shown in Fig. 2.3, consists of a plenum filled with high-

pressure gas and a metallic valve held in place by a spring. The spring presses the valve onto an

o-ring that maintains vacuum. Milliseconds before the shot, a capacitor bank is discharged into a

coil of wire below the valve producing a magnetic field that pushes the valve open against the spring

and allows gas to flow for a brief amount of time. The gas in the plenum then travels through a

tube at roughly its sound speed to the electrodes. As shown in Fig. 2.2, gas inlets bored through

the electrodes allow the gas to expand outward into the vacuum chamber.

The amount of gas admitted by the gas valve can be controlled by adjusting the charging voltage

of the gas valve power supply. The amount of gas admitted can be roughly measured by pulsing
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Figure 2.3: A fast gas valve keeps the high pressure gas isolated from the vacuum. When triggered,
the valve opens briefly, admitting a small amount of gas.

the gas valve and recording the rise in chamber pressure, which is proportional to the number of

particles admitted. The results of this experiment, performed on a smaller test vacuum chamber

with valve identical to the ones on the main experiment and using the actual power supply, are

shown in Table 2.1 for the three main gas species used. Note that the amount of hydrogen admitted

rises rapidly and non-linearly with the charging voltage.

The values reported in Table 2.1 do not necessarily reflect the actual dependence of the plasma

density. While increasing the charging voltage of the gas valve power supply lets more gas into

the chamber, this higher throughput reflects the total amount of gas that passes the gas inlets

integrated over the entire gas puff. What truly matters for the plasma is the instantaneous density

of the neutral cloud in front of the electrodes and in the gas inlets at the moment the main bank

discharges. The larger values of admitted gas obtained by increasing the charging voltage could be

caused by a longer, more sustained gas puff, which would not necessarily provide more gas to the

plasma. In order to truly ascertain the instantaneous value of the neutral cloud density, a fast ion

gauge should be constructed for the Solar Loop Experiment. We also point out that, on the Solar

Experiment, one gas valve feeds two gas inlets. The amount of gas admitted and resulting plasma

densities will be an important issue in Chapter 4.
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Gas Valve Charging Voltage Hydrogen Pressure Argon Pressure Nitrogen Pressure
400 V 21 mtorr 0 mtorr 4 mtorr
450 V 83 mtorr 4 mtorr 11 mtorr
500 V 183 mtorr 10 mtorr 23 mtorr
550 V 436 mtorr 18 mtorr 45 mtorr
600 V 810 mtorr 32 mtorr 74 mtorr
650 V 1314 mtorr 46 mtorr 112 mtorr

Table 2.1: The pressure rise in the small vacuum chamber resulting from a single puff of a fast
gas valve as a function of the charging voltage of the gas valve power supply. The hydrogen gas
line is pressurized to 100 PSI, while the nitrogen and argon lines are pressurized to 60 PSI; these
gas line pressures are used consistently in the experiments presented in this thesis. The amount of
hydrogen puffed is a rapidly increasing and decidedly non-linear function of charging voltage. This
does not necessarily reflect the density of the neutral cloud at the instant the main bank fires; this
must be determined by building a fast ion gauge for the Solar Loop Experiment. On the Solar Loop
Experiment a single gas valve feeds two gas inlets.

2.1.3 Bias Magnetic Field

The fast gas valve provides the matter that forms the bulk or “body” of the plasma, but another

key ingredient is a background or bias magnetic field to serve as an initial “skeleton” over which

the plasma forms. The bias field links the anode to the cathode and is responsible not only for

the arched nature of the plasma but also for helicity injection once current flows. The bias field

is created by discharging capacitor banks into four coils of wire, each located behind one of the

electrode quadrants. The coils are energized 1.7 ms before plasma formation to allow the field time

to diffuse through the metal chamber and electrodes. It is important to note that, on the microsecond

timescale of the plasma, magnetic fields do not have enough time to diffuse through the electrodes.

As the bias field evolves on a millisecond timescale and the plasma lasts roughly ten microseconds,

the bias field can be considered stationary over the plasma’s lifetime, and the magnetic boundary

conditions are essentially “locked in” by the instantaneous value of the bias field when the main

bank fires.

The bias field can be modified in two ways. First, the charging voltage of their power banks

can be varied continuously, allowing the strength of the magnetic field to be changed. A stronger

magnetic field is harder to bend [2, pg. 372], so adjusting the charging voltage allows some degree

of control over the rigidity of the plasma. However, the coils are wrapped around iron cores that

are saturated by the field. Because of this saturation, the magnetic field is not proportional to

the charging voltage but instead varies only weakly with charging voltage in the typical operating

regime. Second, one can reverse the polarity of the bias field, which in turn reverses the helicity of

the plasma. This can be seen most immediately from Eq. (1.8); reversing the direction of the bias

field reverses the sign of the flux Φ and hence the sign of dK/dt. A more intuitive picture will be

provided in Sec. 2.1.5. The polarity of the bias field is reversed by switching the hook-ups of the

coils to the capacitor banks. Dual-loop experiments may be performed with any combination of field
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polarities; in particular, both co- and counter-helicity configurations are accessible.

To describe the bias field configuration, we use the following notation. To determine the hand-

edness of each loop, we use the following convention. Point the thumb of your right hand in the

direction of the axial magnetic field. If your fingers curl in the same sense as the azimuthal field,

the loop is righthanded, and we denote this helicity by the letter R. If the azimuthal field points in

the opposite sense of your fingers, the field is lefthanded, denoted as L. Since the azimuthal field is

generated by the axial current, the field is automatically righthanded when the current is parallel to

the axial magnetic field and lefthanded when the current is anti-parallel to the axial field. As each

loop is either right- or lefthanded, we denote the bias field configuration for dual-loop experiments

by concatenating “R” or “L” for each loop, the first letter denoting the left loop and the second

letter denoting the right loop. The RL and LR configurations are both counter-helicity, while the

RR and LL configurations are both co-helicity. These configurations are depicted in Fig. 2.4

We mention in advance that the plasma behaves asymmetrically between the counter-helicity field

configurations RL and LR. The cause for this asymmetry has not yet been identified, but, barring

asymmetries in the experimental setup, this asymmetry is quite surprising, as MHD predicts that

reversing the magnetic field would simply produce a mirror image of the original plasma. This

phenomenon, along with fast camera images, is discussed in Sec. 4.4.

Figure 2.4: Dual-loop experiments can be configured in four different ways: two co-helicity and two
counter-helicity. (a) Both loops are right-handed, denoted as RR. (b) Both are left-handed, denoted
as LL. (c) The left loop is right-handed, but the right one is left-handed, denoted as RL. (d) The
left loop is left-handed, but the right one is right-handed, denoted as LR.

2.1.4 Main Bank

Having admitted gas and established a bias magnetic field, the main capacitor bank then fires,

initiating breakdown and bringing the plasma to life. The main bank has a 59 µF capacitor that

is switched by an ignitron and is connected to the electrodes by low-inductance cables designed by
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Professor Bellan. The bank can be charged up to 6 kV, storing about a kilojoule of electrical energy.

When fired, the capacitor first establishes a large potential difference across the electrodes, but

current cannot yet flow across the electrodes because the gas has not yet ionized. During this time,

free electrons are accelerated by the electric field from cathode to anode along the bias magnetic field

lines. These accelerated electrons collide with and ionize neutral gas atoms, creating ions and more

electrons. If an electron ionizes several atoms before reaching the anode, we have a multiplication

of electrons, also known as an avalanche effect, which leads to full breakdown. At this point, the

current begins to flow across the electrodes.

The electrodes have been carefully designed so that breakdown is most favored along the arched

path between the gas inlets as opposed to the narrow gap between the electrodes. This is possible

due to the Paschen curve, which dictates when breakdown is most likely [1, pg. 227]. The gap

between electrodes is so narrow and the gas density there is so low that an electron is unlikely

to make any ionizing collisions before reaching the anode. However, later into the shot, arcing is

observed between and behind electrodes, presumably because the distribution of gas and plasma has

changed.

For the Spheromak Experiment, the main capacitor bank acts as a current source for the plasma

after breakdown [37]. This is because the impedance of the ignitron and cables greatly exceeds that

of the plasma itself, and we expect similar behavior from the Solar Experiment. However, as will be

discussed in Chapter 4, the plasma loops can detach from the electrodes, breaking the conducting

path between electrodes. Electrically speaking, the impedance of the plasma load could rapidly

change from extremely low to near infinite, and large disruptions are indeed seen in the plasma

current. We thus assume that the main bank is a current source with the possible exception of the

plasma undergoing a significant change such as detachment.

2.1.5 General Plasma Behavior

Plasma created by the Caltech Solar Loop Experiment can have a variety of behaviors based on

the setting of the experimental parameters. There are, however, some general features that are

common to most or all plasmas formed by the experiment. These features include twisting, kinking,

expansion, and collimation.

The electrodes inject helicity into the plasma loops, inducing twisting and kinking. The twisting

can be understood as follows. Current flowing axially through the plasma generates its own magnetic

field, different from the bias field, that wraps around the loop in a righthand fashion. The total

magnetic field is the vector sum of the bias field and the field generated by the plasma current

and is thus helical. The stronger the field generated by the plasma current, the lower the pitch

of the helices. The plasma current grows over the course of the shot, and the field lines are thus

continually twisting. The plasma, which can be considered frozen to the magnetic field lines [2, sec.
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2.6.4], also starts to twist. The kinking of the loop is essentially a version of the Kruskal-Shafranov

kink instability [38, 39], which the plasma eventually undergoes due to its increasing current and

length. Intuitively, the kinking can be understood by trying to twist a rope or string as much as

possible; eventually, the rope tries alleviate the twist by kinking. In the Solar Loop Experiment, the

kink gives rise to an apparent central dip in the loops, as shown in Fig. 2.5.

Figure 2.5: A central dip forms in the plasma due to the kinking of the column in response to the
increase in magnetic helicity.

The plasma loops expand outward due to the hoop force [2, pg. 311]. The hoop force is a

magnetic force that a loop of current exerts on itself; it tends to cause the loop to expand radially.

The rate of expansion is influenced both by the plasma current and also by the mass of the plasma

as will be shown in Chapter 4. Additionally, it is sometimes observed that the legs of the plasma

loop will expand faster than the central region, or that one of the upper or lower legs will expand

faster than the other.

The plasmas created are remarkably collimated and remain so throughout the experiment. Sim-

ilar behavior has been observed in actual solar coronal loops, and an explanation for this universal

plasma behavior involves a close look at the MHD forces at work [40], which we outline here. Sup-

pose, for illustrative purposes, that the plasma loops are axisymmetric. Radial equilibrium implies

that the radial pressure gradient balances the magnetic pinch force; from Eq. (1.6),

∂P

∂r
= −JzBφ. (2.1)

One can integrate and obtain

P (r, z)− P (0, z) = −
∫ r

0

Jz(r
′, z)Bφ(r′, z)d′r. (2.2)

If the plasma loop is bulged and has a radius that varies with axial position, the current density

and magnetic field will likewise vary with axial position. The resulting pressure will also depend

on z, which results in an axial pressure gradient that pushes plasma towards the bulged region.
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This plasma convects toroidal magnetic field into the bulged region, increasing the pinch force and

causing collimation. Since the Caltech plasmas are slightly bulged towards the apex where the bias

field is weakest, the MHD forces pump plasma from the gas inlets towards the central region from

both anode and cathode. Such flows have been observed on both the spheromak experiment [41] as

well as the Solar Loop Experiment [42, 43].

2.2 Diagnosing the Plasma

A suite of diagnostics are available to study the many aspects of the plasma: fast cameras take

pictures of optical emission, the plasma current and voltage are monitored with a Rogowski coil

and high-voltage probe, x-ray diodes measure high-energy radiation, and an optical spectrometer

provides spectral resolution. The physical layout of all these diagnostics in and around the main

chamber is depicted in Fig. 2.1. In this section, we briefly describe each diagnostic as well as the

typical uses for their data. The vacuum photodiode array, a new diagnostic, will be described in

Chapter 3. Also, modifications made to the current and voltage diagnostics will be discussed in

Appendix A.

2.2.1 Fast Camera

The Imacon camera (DRS Hadland Imacon 200, 10 bit dynamic range, 1200 x 980 pixels) is a mul-

tiframe, high-speed intensified CCD camera suitable for taking optical images of the plasma. The

Imacon consists of eight individual cameras each capable of taking two frames per shot. Unfortu-

nately, one camera is not working, so the images presented here have only fourteen frames. The

timings of these frames can be programmed to almost any desired timing sequence. Comparing

Imacon images from different shots, the plasma is seen to be highly reproducible. The Imacon is

typically located at a side viewport, as indicated in Fig. 2.1, but can be moved to almost any window.

The Imacon images are invaluable for determining the position and overall state of the plasma.

Certain quantities such as the expansion speed can be estimated from these images, and major

events such as detachment from the electrodes can also be seen and hence timed. Imacon images

also reveal inhomogeneity in relative brightness of the plasma and readily identify peculiar optical

activity such as the bright spot described in Sec. 1.4.1. However, a significant amount of plasma

activity occurs in the ultraviolet or x-ray regime that is missed by the Imacon photos. For instance,

at late times the Imacon images show that the plasma has detached and drifted far away from the

electrodes, but the current trace shows a large current flowing through the electrodes at this time,

and the radiation diagnostics shows significant radiation levels. The Imacon camera provides a great

deal of information but does not tell the complete story.
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2.2.2 Plasma Current and Voltage

The current flowing through the plasma is a fundamental quantity; it determines the toroidal mag-

netic field, which pinches the plasma radially against the internal pressure, and is a crucial ingredient

of the MHD pumping force described in Sec. 2.1.5, which depends the square of the current. A Ro-

gowski coil [2, pg. 245] is used to measure the plasma current. A Rogowski coil is a toroidal solenoid

that surrounds a current-carrying wire; the magnetic field from the wire links the turns in the coil and

induces a voltage proportional to the time derivative of the current. This signal is passed through

an RC integrating circuit, as shown in Fig. 2.6, whose output is then proportional to the original

current. The Rogowski coil is placed around one of the capacitor electrodes in the main bank, as

indicated in Fig. 2.1. The integrated signal is passed to a optoelectric converter that transmits the

signal to the data acquisition device (DAQ). Appendix A contains a discussion of the optoelectric

converters and noise issues related to the current measurements.

Figure 2.6: A Rogowski coil, shown on the left, encircles a wire, shown in red, and produces an
output voltage proportional to the time derivative of the current. The output is fed into a passive
RC integrator, shown on the right.

Another important electrical property of the plasma is the voltage across the electrodes. This

voltage is a combination of the Ohmic voltage drop and the inductive voltage drop due to the change

in the flux linking the plasma:

V = IRp +
dΦ

dt
= IRp +

d(LpI)

dt
, (2.3)

where Rp is the plasma resistance and Lp is the plasma inductance. As the plasma inductance is

strongly related to the plasma loop geometry, sudden jumps in the voltage are indicative of sudden

changes in the loop geometry and, perhaps, magnetic field topology as well. For instance, if the

plasma loop detaches from the electrode, one would expect the voltage to rise sharply in attempt to

maintain the current flow and sustain the enclosed flux.

The voltage is measured using a Tektronic P6015 high-voltage probe clipped to the upper right

aluminum clamp that connects the capacitor bank cable to the electrode. Like the output of the

Rogowski coil, the voltage signal is transmitted to the DAQ by optoelectric conversion. A number

of modifications were made to the probe and the accompanying electronics; for instance, the ground
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clip of the probe was attached to the lower electrode to improve voltage measurements. These

modifications are detailed in Appendix A.

Fig. 2.7 contains a generic example of current and voltage data and provides an overview of the

plasma evolution. When the main bank first fires, the voltage increases sharply but current does not

yet flow because the plasma is not ionized. The duration of this period depends on several factors

such as the amount of gas injected into the chamber and the discharge voltage. At some point,

the plasma fully breaks down, resulting in a sharp drop in voltage and the beginning of the current

flow. Simultaneously, spurious oscillations associated with the main bank firing and the ignitron

switching appear in the current data; these oscillations are discussed in Appendix A. As mentioned

above, the change in plasma geometry (in this case, plasma formation) is associated with a sharp

change in voltage. The main bank then acts more or less as a current source, and the current trace

strongly resembles damped oscillation characteristic of an LCR circuit. The behavior of the voltage

trace depends strongly on the plasma itself; in general, though, rapidly expanding plasmas tend to

maintain a higher voltage because of the faster rate of change of flux through the plasma loop. The

timescale of this plot is selected to show the full discharge; the plasma, however, typically only lasts

about 10 µs at most.

2.2.3 X-Ray Diodes

A set of four International Radiation Detector Corporation AXUV-HS5 x-ray diodes monitor soft

x-ray levels. The diodes are placed inside the vacuum chamber because the soft x-rays will not

transmit through the viewports of the chamber [36, pg. 104]. The diodes are thus affixed to the end

of a support arm inside the chamber and look head-on at the electrodes, as shown in Fig. 2.1.

The yield of a bare x-ray photodiode is shown in Fig. 2.8 and is about 1 electron per photon at

photon energies of 10 eV. The yield increases by about 17% per 1 eV increase in photon energy. In

the set of diodes installed on the Caltech chamber, one diode is bare, while the other three have

filters in front of them. The filters are a 200 nm thick sheet of aluminum, which transmits 15-62

eV photons, a 50 nm sheet of titanium, which transmits photons of wavelength less than 15 nm

(energies greater than 83 eV) photons, and a 500 nm sheet of titanium, which transmits energies

greater than 200 eV. The transmission curves for these filters can be calculated at Ref. [44] and are

plotted in Fig. 2.9. No signal has been observed through the 500 nm Ti filter, so that the x-rays

produced in the Caltech experiment have energies less than 200 eV per photon. Note that hydrogen

lines, whose energies are less than 13.6 eV per photon, are not transmitted by any filter. Thus, a

signal registered by the filtered x-ray diodes for a hydrogen plasma is caused by something other

than line emission.

The x-ray diodes are extremely fast; their time resolution is enhanced by back-biasing the diodes

in order to reduce their parasitic capacitance, allowing them to register very fast x-ray bursts. Their
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primary limitation is that they have a single line of sight and thus cannot determine from where in

the plasma the x-rays originate. Also, due to the construction of the diodes’ support arm and their

large distance to the electrodes, slight variations in the diodes’ inclination angle drastically change

the direction of their line of sight. It is perhaps these two issues that introduce large variations in

the x-ray diode signals discussed in Sec. 1.4.1. When an x-ray burst is not observed, it is not clear

whether the plasma did not emit x-rays or the detectors simply missed the burst. The array of

vacuum photodiodes was constructed to address these types of questions.

2.2.4 Spectrometer

The spectrometer measures the relative intensities of different wavelengths of light in a small spectral

window. The spectrometer consists of a diffraction grating, which disperses light at different angles

according to wavelength, and a CCD camera, which registers the incident radiation. The intensity

of light upon a particular CCD pixel is indicative of the number of photons at the corresponding

wavelength. This intensity is not calibrated absolutely, but the relative intensity within a spectral

window is very accurate. A twelve-channel fiber optic bundle carries the plasma light from the

chamber to the spectrometer located across the room. The input to the fiber array is placed outside

a viewport of the vacuum chamber as indicated in Fig. 2.1, and each channel views a different spatial

chord through the plasma. Light from the plasma enters the fiber optic cables and is transmitted to

the spectrometer. The CCD camera can measure each channel independently and simultaneously,

providing spectroscopic data from twelve different chords through the plasma.

Spectroscopic data have many different uses, but in this thesis they will be used to estimate the

electron density by measuring the Stark broadening of the Balmer Hβ line. This technique has been

previously utilized on the Spheromak Experiment [45, 36]. For light-emitting hydrogen atoms in a

plasma, the local electric field created by the surrounding electrons and ions broadens the spectral

line according to the formula [36, pg. 75]:

ws = 2.5× 10−14α1/2n
2/3
e , (2.4)

where ne is the electron density in m−3, wS is the width of the Hβ line in nanometers with instru-

mental and Doppler broadening subtracted out, and α is the so called half-width [36, pg. 78]. The

spectrometer can also detect the presence of impurities in the plasma and determine their ionization

state. If multiple lines are present in the same spectral window, the ratio of the lines can give some

indication of the electron temperature under the assumption of local thermodynamic equilibrium.

Finally, spectral data can also indicate the speed of a plasma via the Doppler shift of the atomic

lines, although this technique will not be employed in this thesis.

The spectrometer’s CCD camera opens for a single time window during a shot, and the spec-
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trometer’s output is an integration of data over this time window. The duration of the time window

is limited by the requirement of receiving enough light to distinguish the signal from the noise.

Measurements of the Hβ line typically require a gating period of 0.5 µs. The spectral window ob-

served by the CCD camera is typically 4 - 5 nm wide [36, pg. 40]. Although the spectrometer is

sensitive from 200 - 500 nm, the lower wavelength limit is actually set by the transmittance of the

port windows on the vacuum chamber. Special windows were custom-made out of boroscilicate [36,

pg. 104] which will start to attenuate light somewhere between 350 - 400 nm.

2.2.5 Data Acquisition

The data acquisition is handled by fast digitizing boards (SiS GmbH SIS3300) mounted on a VME

crate. The boards sample data at 100 MHz, giving a 10 ns time resolution. There are twelve boards

with eight channels each for a total of 96 synchronized channels. Every channel has a built-in 50

Ω termination for impedance matching to 50 Ω cables. The dynamic range is ±0.5 V, and data

beyond this range will be clipped. The VME crate is electrically connected to the vacuum chamber

though the building ground, and this has important implications for diagnostics using the DAQ. As

the ground of the VME crate is connected to the chamber and also to the ground of any diagnostic

cable plugging into it, any additional contact between the diagnostic ground and the chamber will

result in a ground loop, as is discussed in more detail in Sec. 3.3.2. The crate is powered by an

isolation transformer so that it does not additionally couple to ground through its power cord.
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Figure 2.7: The electrode voltage (top) and plasma current (bottom) for a counter-helicity hydrogen
plasma (shot 8205). The data are plotted until 35 µs to show the RLC-like ringing of the current,
but the main plasma activity occurs most before ∼ 8 µs. The leftmost horizontal line is at 0.0 µs,
the time at which the plasma breaks down, at which time the voltage plummets while the current
starts to flow. The rightmost vertical line is at 2.5 µs. At this time the voltage spikes. At both
vertical lines, large oscillations appears on the Rogowski coil. These oscillations are believed to
be spurious electrical pick-up; see Appendix A. The voltage spike is, perhaps, indicative of rapid
changes in magnetic field topology which result in electrical noise such as the oscillations seen on
the current channel.
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Figure 2.8: The yield, or quantum efficiency, of a bare AXUV-HS5 diode shows that the diodes have
a much more favorable response to higher-energy photons.

Figure 2.9: The transmission curves for the filters used on the x-ray diodes roughly complement
each other is the energy range 10 - 200 eV. The transmission curves are obtained from Ref. [44].
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Chapter 3

An Array of Vacuum Photodiodes

Plasma radiation contains valuable information concerning internal plasma dynamics. In the Cal-

tech experiments, spectrometer data measures plasma flows [42] and unexpectedly large densi-

ties [45, 46]. Soft x-ray and vacuum ultraviolet measurements yield ion and electron temperatures

during spheromak merging [47], and, on tokamaks, provide information about confinement, MHD

instabilities[30, 48, 49], impurity levels [48, 50], and the presence of energetic electrons [31, 32]. This

chapter reports the development of an array of vacuum photodiodes for broadband extreme ultravi-

olet (EUV) measurements of the Caltech Solar Loop Experiment. The data from the array provides

important information regarding radiative losses from the plasma as well as magnetic reconnection

during loop merging, as will be discussed in Chapter 4.

The need for an array of vacuum photodiodes originates from limitations encountered with the

x-ray photodiodes described in Sec. 2.2.3. The x-ray diodes revealed energetic radiation bursts

that occur simultaneously with the formation of a central bright region during counter-helicity

merging [20]. However, the x-ray diodes have a single line of sight and cannot determine from

where in the plasma the bursts originate. Their signals also have significant shot-to-shot variation

even though the experiment is very reproducible. To address these issues, a twelve-channel array of

vacuum photodiodes has been built to provide spatially and well as temporally resolved radiation

data. The array can detect variations in radiation along the plasma loops as well as variations of

emission from the loop apex as the plasma expands outward.

Vacuum photodiodes are simple and cost-effective radiation diagnostics that respond primarily

to EUV radiation [48, 50]. The EUV radiation band, defined below, is important for colder plasmas

such as those produced by the Caltech Solar Loop Experiment because such plasmas tend to radiate

away large quantities of heat via EUV line emission, as will be discussed in Chapter 4. Vacuum

photodiodes operate on the photoelectric effect: sufficiently energetic photons strike a metal plate,

called the cathode, and eject electrons that are then collected at the anode, as shown in Fig. 3.1.

The resulting current is measured and gives an estimate of the incident photon flux. Vacuum

photodiodes have an excellent time response due to the near-instantaneous nature of the photoelectric
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effect, allowing for sub-nanosecond time resolution [51, 52]. Their simplicity and compact size allow

many detectors to be fielded on an experiment. Historically, vacuum photodiodes were extremely

important during the 1970’s and 1980’s when conventional silicon x-ray diodes had a dead layer that

prevented them from detecting UV radiation [49]. They were used for temperature studies of fast

laser-produced plasmas [53], for impurity measurements on tokamaks that did not emit significantly

in the soft x-ray regime [48], and for the study of edge-plasma phenomena such as plasma-wall

interactions and H-mode phenomena [49]. In the early 1990’s, International Radiation Detectors

manufactured silicon photodiodes without a dead layer, and since then silicon diodes have been

adopted as the standard for soft x-ray work [54]. However, vacuum photodiodes are still in use and

are being considered for fusion-grade tokamaks such as ITER and JET where the radiation levels

are too strong for non-metallic components [55, 56].

Figure 3.1: A vacuum photodiode consists of a cathode, in this case a metallic disk, that photoemits
electrons when irradiated by EUV photons, depicted here by the blue incident column. The emit-
ted electrons are then collected at the anode, a metallic cylinder coaxial with the cathode. The
photocurrent from cathode to anode is measured and gives an estimate of the photon flux.

The range of sensitivity of bare (unfiltered) tungsten cathodes is quoted at 20 - 120 nm [48] and

5 - 120 nm [50], and this range is largely independent of the cathode metal, as will be discussed in

Sec. 3.2.1. The photoyield for aluminum is shown in Fig. 3.2, and the peak response lies in the EUV

wavelength range. For reference, the wavelengths and photon energies for various types of ultraviolet

radiation are as follows: the UV range spans 100 - 400 nm (3.1 - 12.4 eV), vacuum ultraviolet (VUV)

spans 10 - 200 nm (6.2 - 124 eV), and EUV spans the more restrictive range 10 - 121 nm (10.2 - 124

eV) [57]. Higher energy photons are typically classified as soft x-rays, although the exact distinction

between EUV and x-ray seems to be a matter of opinion.

Vacuum photodiodes present an attractive means of studying bright spot formation on the Solar

Experiment. Since the material cost of each individual detector is small, a large array can be

constructed for a low cost, with the main expenditures coming from auxiliary equipment such as

cables and mechanical support. Each detector is sufficiently fast to resolve the radiation bursts, and

an array of such detectors will give the desired spatial resolution. This chapter details the design
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Figure 3.2: (a) The photoelectric yield of an aluminum cathode, plotted as a function of wavelength,
reproduced from Ref. [58] (b) The yield of an aluminum cathode, as a function of energy, over a
very broad range, reproduced from Ref. [49]. The peak in yield is in the EUV range. These yields
will hold for an average aluminum cathode to within ±30% [59]

and construction of the array. Section 3.1 describes the experimental setup used to test vacuum

photodiode prototypes. Section 3.2 discusses the photoelectric effect, cathode design, means for

measuring the photocurrent, and the need for a bias voltage. Section 3.3 discusses various types

of electrical interference along with measures taken to suppress them in the detector signals. In

Sec. 3.4, the problem of the charged particle background is analyzed along with a magnetic shielding

scheme. In Sec. 3.5, the physical layout of the array is discussed, and the collimation system used

to isolate the field of view of each detector is described in detail.

3.1 Setup on the Test Chamber

Preliminary work with the photoelectric effect and vacuum photodiode prototypes was conducted

on a small vacuum chamber, called the test chamber, where UV radiation was generated by a

PerkinElmer short-arc xenon flashlamp [60] rather than by a plasma experiment. This provided a

reproducible and reliable UV source without the electrical noise associated with the main experiment.

The flashlamp pulse duration was roughly 10 µs, comparable to the lifetime of the Solar Loop

Experiment. Also, the test chamber could be brought up to atmospheric pressure and opened in a

matter of an hour, which allowed for more frequent testing and changing of detector design.

Fig. 3.3 shows the setup on the test chamber. Cathodes were mounted in a BNC feedthrough

flange opposite to the flashlamp. The flashlamp, however, cannot simply face into the chamber

through outside a window port because EUV radiation does not transmit efficiently through quartz

windows1. To solve this problem, a mount was designed2 to eliminate the need for a window by

1For various window transmission curves, see Ref. [61].
2The mount was designed by Shreekrishna Tripathi, whom the author graciously acknowledges for assistance in

the early stages of this work.
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Figure 3.3: For preliminary testing of vacuum photodiodes, a xenon flashlamp was mounted directly
on a small vacuum chamber to provide a reproducible source of EUV radiation.

Wavelength (nm) Fraction of Output Power
100-150 .09
150-200 .10
200-250 .15
250-300 .10
300-400 .10
400-500 .14
500-600 .07
600-700 .05
700-800 .04
800-900 .07
900-1000 .05
1000-1100 .04

Table 3.1: The power distribution of the xenon flashlamp extends into the UV and EUV range.
These numbers do not account for the attenuation introduced by the window of the flashlamp.

holding the flashlamp flush against the port on the test chamber. An o-ring between the lamp and

port maintains vacuum. This setup guarantees maximal transmission of EUV light.

The flashlamp radiates from 1100 nm down to about 100 nm, so part of its spectrum is de-

tectable by a vacuum photodiode. Table 3.1 shows the flashlamp power distribution as a function

of wavelength, but the window of the flashlamp itself attenuates a portion of this radiation. For the

window believed to be installed on the flashlamp, attenuation begins at 200 nm, and at wavelengths

below 105 nm no radiation is transmitted. The exact transmission curve can be found in the flash-

lamp manual [60]. In spite of the window attenuation, sufficient EUV radiation was transmitted to

produce a readable signal on the vacuum photodiodes.

3.2 Photoemission and Cathode Design

The photoelectric effect is usually discussed for photons at or near the work function of the emitting

metal. The photoelectric effect induced by EUV photons, whose energies are several times the work

function, is quite different and has implications for the design of a vacuum photodiode cathode. In

this section, we review the photoelectric effect in the UV range, discuss options for cathode design,
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introduce schemes for measuring the photocurrent, and demonstrate the need for a bias voltage.

3.2.1 Review of the Photoelectric Effect in the UV

Photoelectric emission by UV photons is different from emission by visible light; the UV yields are

10 to 100 times higher and are more stable with respect to surface conditions. These effects can be

explained by invoking a surface and volume effect. The following section reviews the early literature

on the subject.

The photoelectric effect has a much greater yield in the UV range than from visible and near-

UV photons, as was observed in the first measurements of the photoelectric yield in UV [62] and

repeatedly in subsequent work. For Pt and Ta, the yields at wavelengths less than 100 nm are

10 to 100 times higher than for wavelengths 200 - 300 nm [63]. These high yields have important

implications in various gas discharges such as glow discharges, sparks, and Geiger counters [64, 63].

For vacuum photodiodes, this increase in yield is a double blessing. First, the increased yield bolsters

the signal-to-noise ratio, helping the signal stand out above the inevitable electrical noise. Second,

the increase of yield in the UV makes the detector relatively insensitive to visible and near-UV light

in comparison with EUV radiation.

UV photoemission is not as sensitive to surface conditions as emission in the visible and near

ultraviolet, which is “extremely sensitive to the past history of the surface” and requires “careful

outgassing procedures” [65]. The change in UV yield due to surface conditions is at most a factor of

10 instead of 50 to 500 for the visible [64]. No appreciable change in UV photoyield was found after

exposure to air for 17 hours following heat treatment [63], and the yield has been repeatable upon

multiple exposures to air [65]. Even more convincing, the response of a set of vacuum photodiodes

was stable over several months of use in a tokamak [48, 50]. The yield is not completely independent

of surface conditions; sand-blasting an aluminum surface drops the yield by a factor of two [58], and

all previous workers have at the very least sanded the surface and cleaned it with solvents to remove

gross surface contaminants. However, more extreme measures such as heat treatment, frequently

used in work with the photoelectric effect induced by visible or near-UV light, are not needed for

vacuum photodiodes, and their signals appear to suffer little long-term degradation.

Cairns and Samson measured the yields of relatively untreated metals and concluded that un-

treated photocathodes can be used with a probable uncertainty of about ±30% in the range 110 to

40 nm [59]. They focused on the reproducibility of the yield and tested “normally available samples”

instead of specially prepared and ultra-pure samples. They stated that “different samples can be

expected to have similar yields only if their surfaces are smooth and polished” but “a mirror-like

finish, is, however, not essential.” Exposure to He, Ar, and Xe did not alter the yields nor did

exposure to air at atmospheric pressure, and the yield of silver at 58.4 nm remained constant over

50 hours at 10−5 torr.
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The different yields between the UV and visible ranges can be explained by proposing two types

of photoelectric emission: a surface effect and volume effect. The surface effect denotes emission

from the first several monolayers of the metal and is produced by photons just above the threshold

frequency. In contrast, the volume effect is produced by UV photons that penetrate the surface of

the metal and eject electrons from the bulk. Hinteregger proposed a theoretical model involving

the volume effect to explain the rise in yield in the UV, the lower energy distribution of emitted

electrons, the relative insensitivity to air exposure, and why increased temperature causes a decrease

in emission [66]. It should be noted, however, that Cairns and Samson attribute the stability of the

yield in the UV to the decrease in reflectance as opposed to the onset of a volume effect [59].

In summary, the photoelectric effect is easier to work with in the UV range than in the visible

range. The yields are appreciably greater, which helps distinguish the signal from the inevitable

electrical noise of plasma experiments. The yields are also not overly sensitive to surface conditions

and are stable over long periods of time. These two features make vacuum photodiodes an attractive

and low-maintenance diagnostic.

3.2.2 Cathode Material and Surface Conditioning

Cathode properties such as area, material, and surface condition all affect the amount of charge

emitted during a shot and hence the size of the signal. Due to the large power levels of the Caltech

experiment, the vacuum photodiode signals are quite large, so the cathodes do not need to be opti-

mized for maximum signal size. Instead, the cathodes are designed for reproducibility, robustness,

and simplicity, in the spirit of Ref. [59]. The cathodes in use on the array are aluminum disks that

were lightly sanded, but other options were tested, as is discussed below.

The light sanding of the aluminum cathodes removes gross surface contaminants and improves

the signal strength. Further surface conditioning can improve the signal levels even more but is not

a robust technique. We have found that rigorously sanding the cathode surface to a shine boosts the

signal by a factor of eight immediately afterwards, but this increase in yield gradually fades with

time as a new oxide or surface layer slowly forms. Similar observations have been made by other

researchers: even a laser-cleaned magnesium surface suffers an emissivity drop after only fifteen

minutes in vacuum [67]! Thus, extreme surface conditioning may create a photoyield that slowly

drifts with time. However, a light sanding improves the overall yield even in the long term and is a

good practice provided that the sanded cathode is allowed some time in atmospheric conditions to

equilibrate.

The choice of cathode material is not critical, as the yields for various metals are similar in the UV

range to within a factor of unity [64, 59]. Our first choice of material was magnesium because of its

low work function, but magnesium actually has an abnormally low yield in the UV [62]. Aluminum,

on the other hand, has been used in previous photodiodes [49, 53] and is readily available. We
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tested the differences between aluminum and magnesium by placing a cathode of each material

side-by-side on a conflat flange with two isolated electrical feedthroughs, allowing both cathodes to

be tested simultaneously. Both disks were sanded to a shine and were then exposed to identical

conditions (i.e., humidity, atmospheric pressure, vacuum). The yields, measured over the course

of weeks, showed that aluminum emits more electrons than magnesium when irradiated by the

flashlamp. The difference in yield diminished somewhat over time, but after several weeks the ratio

of aluminum to magnesium yields settled to a value around three. Thus, aluminum was chosen for

the final cathode material.

When used in the actual plasma experiment, the vacuum photodiode signals are quite large and

do not require more emissive surfaces. Should there be a need for larger signal amplitudes, perhaps

if a filter is being used, simply increasing the cathode area might be sufficient. Another trick would

be to tilt the cathode, which can increase the yield due to a decrease in reflections [58].

3.2.3 Measuring the Photocurrent

Here, we discuss possible schemes for measuring the photocurrent, namely, with and without ampli-

fication. On the actual plasma experiment, the vacuum photodiode signals are large enough to be

read directly without amplification, simplifying auxillary electronics and reducing potential sources

of noise. However, amplification was needed for work on the test chamber where the signals were

generated by the flashlamp. Amplification might also be required if filters are placed on the vacuum

photodiodes.

The simplest scheme for measuring the photoelectric signal is to run the photocurrent I(t)

through a resistor R and to measure the voltage drop V (t) = R · I(t). For various reasons, R

should be 50 Ω; this choice (i) avoids reflections in the signal line (ii) minimizes RC distortion due to

stray capacitance, and (iii) is the built-in termination of the DAQ. These issues are discussed below.

This scheme works well for large signals, such as those produced by the main chamber, but proves

problematic for smaller signals, such as those produced by the flashlamp. Preliminary calculations

for the flashlamp predict a photocurrent per unit cathode area of 10−5 A cm−2; across a 50 Ω

resistor, this gives signals in the range of 5 · 10−4 V, which is at the limit of the DAQ’s sensitivity.

Reflections in a cable occur when the termination of the cable differs from its characteristic

impedance [68, ch. 2], which is typically 50 Ω. Reflections become problematic when the pulse

duration is short and the cable is long. The cables used for the array are about ten meters long,

and the speed of signals in this cable is approximately cc = 2 · 108 m/s, so reflections become an

issue when the signal varies on a timescale faster than τ = 2 · l/cc = 100 ns. Since the vacuum

photodiodes are built to observe fast UV spikes, an impedance mismatch is unacceptable, and a

50 Ω termination is required.

RC distortion is an unwanted effect where stray capacitance in the cable and detector smears
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out the signal. The RC circuit is formed by the cable and vacuum photodiode capacitance together

with the termination resistance, as shown in Fig. 3.4. We can work out the distortion by modeling

the vacuum photodiode as a current source I(t) and solving for the voltage across the resistor VR(t),

which is the voltage measured by the DAQ. The photocurrent flows both into the resistor and

capacitor: I = IR + IC . Since the capacitor charge is Q(t) =
∫ t

0
Ic(t

′)dt′ and VR = VC , we have

VR = IRR =
1

C
Q =

1

C

∫ t

0

IC(t′)dt′ =
1

C

∫ t

0

(I(t′)− IR(t′))dt′. (3.1)

Differentiating and rearranging,

I(t) = RC
dIR
dt

+ IR. (3.2)

This differential equation can be integrated after multiplying by the integrating factor exp(t/RC):

VR(t) = RIR(t) =
1

C
e−t/RC

∫ t

0

et
′/RCI(t′)dt′. (3.3)

This is the exact solution, and is not equal to the desired output VR = RI(t). However, we obtain

VR ≈ RI(t) when the time scale of the pulse is much greater than RC. One can see this by

changing the integration variable of Eq. (3.3) to τ = t − t′ and then assuming I(t − τ) ≈ I(t).

In the opposite limit where the pulse is much shorter than RC, the circuit acts like an integrator,

VR(t) ≈
∫
I(t′)/Cdt′, and washes out the time resolution. Thus, compensating for low signal levels

by using a larger termination resistance leads to signal distortion if the RC time approaches the

signal duration. The effects of RC distortion can be avoided by keeping the termination resistance

small. In fact, with R equal to the cable’s characteristic impedance, there is absolutely no distortion,

as the perfectly matched resistive load simply absorbs the signal with no reflection.

This model for RC distortion was verified on the test chamber by changing the length of cable

used to carry the signal. The different lengths of cable had different capacitances that, combined

with the 1 MΩ resistance of an oscilloscope, formed RC circuits with varying time constants. V (t)

was measured for each cable and found to be different even though the vacuum photodiode and

flashlamp were unaltered. However, using V (t) for each cable and inverting Eq. (3.3) for I(t), the

photocurrent trace for each cable was found to be more or less the same. That is, the differences in

V (t) came from cable distortion rather than an actual change in photosignal.

Signal amplification was required for work on the test chamber. One possible amplifier, shown

in Fig. 3.5, is a modification of an inverting amplifier for use with a current source such as a vacuum

photodiode. The input current flows across the top resistor so that the op-amp output voltage

is IR. A small capacitor added across the resistor reduces ringing, although this slows the time

response because it forms an RC circuit. For work on the test chamber, a 5 pF capacitor and a 50

kΩ potentiometer were selected to work with an AD711 op-amp; this circuit only slightly rounds a
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Figure 3.4: A circuit diagram showing the stray capacitance of the vacuum photodiode and cable.
The stray capacitance combines with the termination resistance to form an RC circuit that distorts
the photosignal.

10 µs square pulse. The signals on the main chamber are big enough to do away with the amplifier;

quite the contrary, they actually require attenuation rather than amplification.

3.2.4 The Need for a Bias Voltage

A bias voltage between the cathode and anode is vital both for detector performance and trouble-

shooting. The bias helps overcome space-charge limitations, which inhibit full collection of the

emitted charge. Also, changing the bias strength and polarity tests the vacuum photodiode for

proper performance and helps identify the source of spurious signals. For these reasons, a significant

amount of effort was invested in establishing a robust system for applying a bias voltage.

Space-charge limitation is an undesirable effect that takes place within a vacuum photodiode and

can compromise the detector’s accuracy. In a vacuum photodiode, electrons are emitted from the

cathode and are collected on the anode, as shown in Fig. 3.1. However, an electron just above the

cathode surface feels the negative potential of other recently emitted electrons on their flight to the

anode; if this negative potential is sufficiently strong, the newly emitted electron might be reabsorbed

by the cathode. This effect is known as space-charge limitation [69] and clearly is a potential source

of error, as not every emitted electron is collected. Clearly, the larger the photocurrent, the larger

the space-charge. However, the faster the electrons move from cathode to anode, the smaller the

space-charge, and this last feature can be exploited to minimize the effects of space-charge.
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Figure 3.5: An amplifier for use with a vacuum photodiode. The op-amp converts the input current
to an output voltage.

A proper bias lowers the cathode voltage relative to the anode so that the electric field rapidly

moves emitted electrons from cathode to anode and lowers the negative charge density. With a

large enough bias voltage, every electron that is emitted will be collected. In contrast, a reverse

bias puts the cathode potential above the anode and inhibits the photocurrent to the point where

no emitted electrons reach the anode. A reversed bias prevents accurate measurements but is useful

for diagnosing the detector and also for estimating the energy distribution of the emitted electrons.

Space-charge effects are observed experimentally on both the test chamber and in the actual

plasma experiment. The results of such an experiment performed on the test chamber are shown

in Fig. 3.6. The horizontal axis is the applied bias voltage, which was varied with every shot. The

vertical axis is the total collected charge, obtained by time-integrating the detector’s signal. Three

different cathodes are tested; each cathode has a different emissivity either through its total area,

material, or surface conditioning, as discussed in Sec. 3.2.2. Thus, even though each cathode is

exposed to the same level of radiation from the flashlamp, they emit different amounts of electrons.

Fig. 3.6 shows several important features. First, the collected charge increases as the bias is made

more negative, indicating that space-charge effects are limiting the collection of charge but can

be overcome with a strong bias voltage. Second, as shown by cathode 1, the amount of collected

charge plateaus as a function of bias voltage, indicating that every emitted electron can be collected.
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However, by comparing cathode 1 to cathodes 2 and 3, the more charge emitted from a cathode, the

stronger the bias voltage needed to reach the plateau, an observation consistent with space-charge

limitation. On the main chamber, a bias of −66 V is used to guarantee accurate measurements;

the difference between a −66 V bias and a typical −16 V bias is shown in Fig. 3.7. Returning to

Fig. 3.6, with a reverse (positive) bias, the signal reversed polarity and became independent of the

cathode! In this case, all electrons emitted from the cathode were reabsorbed due to the reversed bias

voltage. These observed signals come from electrons emitted from the chamber wall and attracted

to the cathode; the number of such electrons is obviously independent of the cathode.

Figure 3.6: A sweep of the bias voltage reveals the effects of space-charge limitation on the amount of
charge collected. Here, three different cathodes of varying emissivity were exposed to the flashlamp.
Applying a more negative bias resulted in greater charge collection, indicating that the signals are
space-charge limited.

A bias voltage is essential but must be carefully implemented. An ordinary voltage or battery

placed directly into the signal line may carry unwanted stray capacitance and inductance. A solution

proposed by Professor Paul Bellan places a capacitor in series with the detector as shown in Fig. 3.8.

The capacitor is charged by a battery through large resistors; the RC time of the charging circuit

greatly exceeds the shot length, so the photocurrent flows almost entirely through the capacitor. At

the beginning of a shot, the capacitor is fully charged and holds the cathode potential below the

anode potential. During the shot, the photocurrent discharges the capacitor, but if C is large enough
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Figure 3.7: Vacuum photodiodes signals can be space-charge limited. Here, data obtained with
different bias voltages are compared; vacuum photodiode channels 1 and 3 from the array are chosen
as representative plots. The red traces are signals taken with a −16 V bias, and the black traces are
taken with a −66 V bias. As shown, the larger bias voltage helps in the collection of photoemitted
particles. The clipping seen in channel 1 is due to saturation of the DAQ and can be remedied by
using attenuators.

then the bias voltage is more or less constant throughout the shot. In between shots, the battery

slowly recharges the capacitor. For the array, C = 100 nF and R = 470 kΩ, giving RC ∼ .1 s, which

is much longer than the 10 µs duration of the plasma. The charge on the battery is Q = CV , so even

a −10 V bias gives Q = 10−6 C. In some of the most intense experiments performed at Caltech3,

the vacuum photodiode cathodes emit Q ≤ 1.1 · 10−8 C; thus, the capacitors are not significantly

drained over the course of a shot.

A non-trivial amount of work went into designing a circuit box to hold the bias circuits very close

to the DAQ. The current design mounts directly to the boards on the DAQ so that no extra lengths

of cable are needed in between the circuit box and the DAQ. This is done because, as discussed in

Sec. 3.3.3, the use of braided coaxial cable introduces significant noise into the signal, and semi-rigid

cables are rather expensive.

3.3 Noise Issues

In the author’s opinion, no discussion of plasma diagnostics would be complete without some discus-

sion of electromagnetic noise. As pointed out by Professor Bellan, the 59 µF capacitor in the main

bank stores about one kilojoule of energy when charged up to 6 kV; this energy is released in a mat-

ter of 10 µs, giving power levels of 100 MW. Meanwhile, a diagnostic such as a vacuum photodiode

produces signals on the order of 1 V across 50 Ω, which corresponds to 2 mW of power. Therefore,

if even 0.00000001% of the power stored in the main bank couples to the vacuum photodiode, the

3 Counter-helicity merging at a main discharge voltage of 6 kV and a gas supply voltage of 500 V. See, for instance,
shots 7754, 7755, 7758, and 7759.
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Figure 3.8: The circuit used to establish a bias voltage on the vacuum photodiodes. The signal is
AC coupled to the DAQ through a 100 nF capacitor charged through large resistors. The RC time
of the circuit greatly exceeds the shot duration, meaning the charging circuit is effectively isolated
over the course of a shot.

desired signal will be overwhelmed.

Here, we discuss measures taken against electromagnetic noise, including the layout of the cathode

and anode, use of an enclosure, use of semi-rigid coaxial cables, and dealing with radio-frequency

(RF) ground loops. In some cases, several different changes were simultaneously implemented in a

detector prototype to aggressively suppress the noise. Unfortunately, these simultaneous changes

make it difficult to evaluate how well one particular noise-reduction technique worked independently

of the others, and these instances are noted in the text.

3.3.1 Capacitive Coupling and Cathode-Anode Layout

Two types of electrical noise, capacitive and inductive pick-up, can plague plasma diagnostics and

must be taken into consideration when designing the layout of the vacuum photodiode. Capacitive

pick-up can be avoided by enclosing the detectors inside a metallic enclosure, or shield, and also by

carefully laying out the anode and cathode. Inductive pick-up will be discussed in Sec. 3.3.2 and

3.3.5.

Capacitive coupling occurs between any two conductors as their relative voltage changes in time.

Consider the “capacitor” formed by the detector cathode and one of the plasma electrodes. As

shown in Fig. 3.9, if the electrode voltage is V (t), then a charge Q(t) = CV (t) is induced on the
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detector cathode, with C being the capacitance between the two conductors. As V (t) varies in time,

charge flows to and from the cathode and would be read as a photocurrent. Capacitive coupling

can be eliminated by placing a third conductor, known as a shield or enclosure, between the first

two. An enclosure from CompacRF serves as the shield; it encloses the detectors and intercepts

the electric field lines between the detectors and the plasma electrodes. The enclosure makes direct

electrical contact with the chamber wall, so enclosing the detectors essentially transfers the capacitive

coupling between the plasma electrodes and detectors to coupling between the plasma electrodes

and the enclosure. Of course, small holes are drilled through the enclosure to allow the detectors to

see out into the plasma; these holes are further collimated as discussed in Sec. 3.5.3.

Figure 3.9: (a) Capacitive coupling between the detector cathode and the plasma electrode. (b) A
shield placed between the two conductors stops the coupling.

It is suspected that further coupling to the detector cathode can exist even when the detector

is housed inside the enclosure. In principle, one expects the enclosure to act as a Faraday shield

and neutralize all interior fields. However, as will be discussed in Sec. 3.4.3, large interior electric

fields still appear inside the enclosure because the enclosure does not fully enclose the detector;

after all, the detector cables have to exit the enclosure through an aperture. Because of these large

interior fields, further work must be done to reduce capacitive coupling between the enclosure and

the cathode. The main idea is to shield the detector cathode as much as possible with the detector

anode. This works because, while coupling to the cathode creates spurious signals, coupling to the

anode is not detected because induced charge flows to the anode from ground rather than through

the DAQ. The final layout, then, seeks to “enclose” the cathode as much as possible with the anode.

Early anode-cathode designs from detector prototypes provide examples of such coupling and

proper shielding. In the first prototype, shown in Fig. 3.10.a, the cathodes were affixed with Torr

Seal to the ends of long copper tubes that served as both anodes and collimators. These tubes

were themselves glued with Torr Seal into holes drilled through the enclosure and protruded out.

It was supposed that plasma hitting the anode/collimator would simply flow to ground without

inducing a signal. However, the prototype was tested by firing the spheromak experiment, located
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at the opposite end of the vacuum chamber. No signal was initially registered, as expected, but

after about 80 µs, as plasma from the spheromak finally reached the collimator/anodes, a signal

was induced. This signal is believed to be caused by capacitive coupling between the anode and

cathode4. Clearly, the anode should remain shielded inside the chassis, and the collimator should

instead be an extension of the enclosure.

Figure 3.10: (a) The first cathode design used the anode as a collimator. This design does not keep
the anode shielded, and it is suspected that anode-cathode coupling induced spurious signals. (b)
Both anode and cathode are now shielded inside the detector, but the cathode was so close to the
enclosure wall that strong enclosure-cathode coupling was suspected. (c) In the final design, the
cathode is located in the middle of the enclosure and is surrounded, as much as possible, by the
anode.

In another prototype, both anode and cathode were located inside the enclosure as shown in

Fig. 3.10.b. The cathodes were affixed with Torr Seal to the far wall of the enclosure directly

across the collimators. This design suffered from enclosure-to-cathode coupling rather than anode-

to-cathode coupling, and the noise issues were not resolved in this prototype.

The final design further shielded the cathode from capacitive coupling by moving it away from the

enclosure wall and surrounding it with the anode. The cathode was a circular aluminum disk, and

the anode was a short length of copper tubing. The cathode was affixed to a delrin disk machined to

fit inside the copper tubing, and a screw and nut were used to connect the cathode to the centerline

4The coupling could also be magnetic due to the current flowing from the anode to ground. Regardless, the
conclusion is the same: the anode should be shielded inside the enclosure.
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of the coaxial cable used to transmit the signal. Copper foil was wrapped around the back of the

delrin holder and clamped to the cylindrical anode to shield the back of the cathode. The detector

was suspended in the middle of the chassis by a planar piece of delrin so that the added spatial

separation between the detector and the enclosure further reduced coupling. This layout eliminated

much of the noise; however, other design modifications were simultaneously implemented. A high-

quality enclosure was purchased from Compac RF to replace the thin aluminum chassis previously

used, and electrical feedthroughs were eliminated by using semi-rigid coaxial cable to transmit the

signal as discussed in Sec. 3.3.3. It is not certain which design modifications were most responsible

for the improved signals.

3.3.2 Inductive Pick-Up and Ground Loops

Whereas capacitive pick-up is caused by time-varying electric fields, inductive pick-up results from

time-changing magnetic fields. Should the conductors of a detector form a closed loop, then any

change in the magnetic flux through that loop induces a voltage somewhere along the loop by

Faraday’s law. This voltage, or the currents associated with it, can couple to the signal and induce

false readings. In particular, a closed loop may inadvertently be formed in the grounding of various

instruments; this is called a ground loop and, although subtle, can easily distort the desired signal.

In many diagnostics, a ground loop can form along the outer conductor of the signal cable and

the vacuum chamber as follows. The signal cables go to the DAQ where the outer conductor of

the cable connects to the DAQ ground. The DAQ itself is grounded by a thick braided cable that

connects to pipes in the ceiling, which is electrical ground for the building. The vacuum chamber

is likewise electrically connected to building ground and hence to the DAQ ground. Therefore, the

ground of a diagnostic is automatically connected to the chamber ground by virtue of being plugged

into the DAQ. Now suppose that the diagnostic cable touches the chamber. This second connection

forms a large ground loop spanning the laboratory, as shown in Fig. 3.11. Special care must be

taken to electrically insulate the diagnostic from the chamber to avoid forming such loops.

Figure 3.11 shows the deleterious effects of a ground loop on a vacuum photodiode prototype. In

the top plot, the uninsulated cable carrying the signal inadvertently made contact with a support

rod in the ceiling. The resulting ground loop caused strange oscillations in the signal; in particular,

the signal became negative, which is a clear indication of a spurious effect, as a vacuum photodiode

signal is always positive. By simply moving the cable away from the ceiling rod, the ground loop

was undone, and the signal returned to normal, as shown in the bottom plot5. As a second example

of how ground loops can creep into the system, a small tear developed in the insulating sleeve of the

signal line that allows contact between the signal cable and the chamber. The resulting ground loop

5Ironically, the ground loop suppresses the high-frequency noise, presumably by shunting some of the high-frequency
ground currents. These ground currents will be discussed in Sec. 3.3.5.
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Figure 3.11: (a) Electrical contact between the vacuum photodiode array and the chamber will
result in a ground loop extending back to the DAQ. (b) A vacuum photodiode signal taken with a
ground loop in the system. Oscillations are observed, and the negative signal must be spurious, as
the photosignal is strictly positive. (c) The signal with the ground loop removed.

induced a large spurious signal, but, worst of all, the contact between grounds was only maintained

when the vacuum photodiode was rotated to face the plasma. When the detector was rotated away

from the plasma, the contact pressure was released and the ground loop disappeared. This gave

the ground loop signal the appearance of a plasma effect. When unusual signals such as the one in

Fig. 3.11, appear, it is best to check for ground loops immediately.

3.3.3 Cables And Electrical Feedthroughs

Tests on a detector prototype showed that using semi-rigid coaxial cable (coax) to transmit the signal

significantly reduces the noise levels. Semi-rigid coax has a solid and continuous outer conductor,

in contrast with ordinary coax whose outer conductor is a braid of fine wires. Use of braided

coax typically results in large noise levels at 1 - 2 MHz; semi-rigid coax not only reduces the noise

amplitude but also results in noise of a higher-frequency, typically 3 - 5 MHz. The higher frequency

noise is easier to distinguish from the actual photosignal. The solid outer conductor is a more

effective shield [70] but is still flexible and easy to work with, although it is also significantly more

expensive.

The use of semi-rigid coax presents a solution to a second problem: how to take the signal out

of the vacuum chamber. Vacuum flanges with electrical feedthroughs are available, but either (i)

force a non-coaxial geometry, making the signal more susceptible to noise, or (ii) only offer a small

number of feedthroughs per flange. Non-coaxial feedthroughs are a prime suspect for the large noise

seen on prototypes. Instead of using a feedthrough flange, we decided to run semi-rigid coax through
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holes drilled in a cylindrical piece of delrin fit inside a length of steel tubing as shown in Fig. 3.12.

The tubing exits the chamber through a quick-disconnect flange. The cables hold vacuum within

themselves, and Torr Seal was applied to the small space between the cables and the delrin and also

between the delrin and the tubing. Within the tubing, a vacuum-compatible insulating jacket is

sleeved over the cables to insulate them from the tubing. This scheme allows many cables to exit

vacuum though a relatively small space while maintaining vacuum and electrical isolation. With

the thirteen-channel array, only a single small leak was found that was quickly fixed with a second

application of Torr Seal.

Figure 3.12: The semi-rigid cables exit the chamber through small holes drilled through a delrin
piece. Only one cable is depicted in this figure, but this configuration allows the thirteen cables of
the array to exit vacuum.

3.3.4 Blind Channel

When electrical noise appears on a diagnostic signal, it is difficult to determine whether the noise

enters the signal in the detector itself or rather in the cables and electronics used to transmit the

signal. A handle on the electrical noise is obtained by adding a blind channel to the array, as

suggested by Professor Bellan. This channel is identical in construction to the other detectors, but

there is no hole drilled in the enclosure to open the field of view of the blind channel to the plasma.

Any signal read by the blind channel must be due to electromagnetic noise. The blind channel
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typically shows only high-frequency oscillations with zero mean value. If an unusual signal appears

on the other channels but not the blind channel, then the signal must result from the vacuum

photodiode being open to the plasma as opposed to noise.

3.3.5 RF Noise and Ground Currents

Despite the precautions described in this section, radio-frequency (RF) noise appeared in the vac-

uum photodiode signals, including the blind channel signal. As can be seen is Fig. 3.13, the noise

amplitude was so that large that it obscured the desired photosignal. The problem was eventually

ascribed to large RF currents flowing on the outer conductors of the signal cables. Ideally, such

ground currents should not affect the actual photosignal propagating inside the cable, but small

apertures in the bias circuit box allowed the RF ground currents to magnetically (inductively) cou-

ple to the photosignal. This coupling between signal and shield current is called surface transfer

impedance [70] and can be difficult to identify. For instance, to test whether the bias circuit box

was admitting noise, the signal cables were disconnected from it to isolate the noise admitted by the

circuit box from noise admitted elsewhere in the circuit. However, no noise was detected because the

RF ground currents were also disconnected. This test would have identified electrostatic (capacitive)

coupling of noise through the circuit box apertures but failed to detect the magnetic coupling.

To eliminate the noise, the RF ground currents are diverted around the circuit boxes as follows.

The outer conductor of each cable is shunted to the DAQ ground by attaching a clip between the

cable and the DAQ frame. This shunt provides an alternate path for the RF ground current to

flow. Ferrite cores placed around the cables downstream of the shunt increase the inductance of the

path through the circuit box, and the ground current flows preferentially through the low impedance

shunt. This strategy diverts almost all of the current and drastically eliminates the RF noise, as

shown in Fig. 3.13.

The RF ground currents most likely result from an RF ground loop. Recall from Sec. 3.3.2

that a ground loop was avoided by insulating the signal cables from the chamber. As discussed

in Sec. 3.3.3, this is achieved by sleeving the cables as they run through the support arm into the

vacuum chamber. However, the cables are physically very close to the support arm, and there is a fair

amount of capacitance between them. This capacitance can close the ground loop for RF currents

because the capacitive impedance is very low and is effective a short as such high frequencies. The

ground loop only exists for RF signals and hence is called an RF ground loop. The coupling could

perhaps be reduced by shortening the length of the support arm or increasing its radius to reduce

the capacitive coupling to the cables.
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Figure 3.13: Large ground currents couple to the signal at the bias circuit box, introducing massive
noise. By providing an alternate path for the current to flow and using ferrite cores to make the
path through the circuit box high impedance, the large current are diverted from the circuit box,
drastically reducing noise.

3.4 Charged Particle Background and Deflecting Magnets

Vacuum photodiodes work by the photoemission and collection of electrons. Unfortunately, plasma

particles entering the detector can also be collected, in which case the detector output is no longer

an accurate representation of the photon flux. These spurious effects can be avoided by placing a

permanent magnet in front of the detector to deflect charged particle while allowing photons to pass.

The effectiveness of such magnet in deflecting charged particles is discussed in Appendix B

The array was first built with a single neodymium magnet6 placed on each collimator. These

magnets were believed to be strong enough to deflect all charged particles, but spurious signals

appeared on the array. These signals were not electromagnetic interference, because the blind

channel did not register them. This section outlines the investigation into these signals, but the

issues discussed are not necessarily unique to vacuum photodiodes and could be of use in a variety

of instruments. Ultimately, the spurious signals were credited to a collusion of energetic ions passing

the magnets and a large and unexpected electric field that appeared inside the array. All shots

presented here were made with hydrogen gas in the counter-helicity configuration RL (see Sec. 2.1.3)

with the charging voltage of the gas valve power supply voltage set to 500 V (see Sec.2.1.2).

3.4.1 Examples of Spurious Signals

A vacuum photodiode in proper operation should only output positive signals; that is, the only flow

of charge should be electrons photoemitted from the cathode and collected at the anode. However,

6McMaster-Carr, part number 5902K61
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the array occasionally produced negative signals, usually in very brief bursts but sometimes for

more extended periods of time. The array also produced exceedingly large positive bumps at late

times when no special optical activity was observed; these signals were also believed to be spurious.

Specific examples of these two types of spurious signals are shown in Fig. 3.14. Note that the array

has twelve channels, but often a single channel is plotted. The single channel shown is not necessarily

representative of the entire array, as there is plenty of variation within the different channels in a

single shot.

Fig. 3.14.a shows the trace from channel 5 of shot 6952; it has two negative spikes around 3.7 µs.

These spikes must be spurious, as the photoelectric effect only produces positive signals. Channel

3 of shot 6953 has a large positive bump that occurs around 6.7 µs, as shown in Fig. 3.14.b. At

this time, the Imacon images look dimmer than at earlier times in the shot, so this late peak is

suspicious. The clipping seen here is saturation of the DAQ and is resolved by placing attenuators

on the signal output. Fig. 3.14.c shows data from channel 4 of shot 6960; it contains a negative spike

preceding the large positive peak; this has been observed on other shots as well. Fig. 3.14.d shows

another late positive peak, this time from channel 5 of shot 7064, but these data are obtained with

no bias voltage applied to the detector. Without the bias voltage, the photosignal is suppressed,

leaving the late positive peak in isolation.

3.4.2 Investigating the Spurious Signals

Adjustments of the array’s bias voltage influenced the amplitude of the negative signals, suggesting

that charged particles were responsible. The bias voltage was adjustable within from 0 to -16 V, and

shots taken with half strength or no bias voltage produced larger and more frequent negative signals.

This not only implied charged particles as the source of the negative signals but also suggested that

these charged particles had energies on the order of 16 eV. Increasing the bias voltage to -66 V

eliminated almost all negative signals apart from rare and very brief spikes. Secondary electrons

are typically defined as electrons with energies less than 50 eV [71], so the fact that a -66 V bias

eliminated the negative signals implies secondary electrons. The increased bias did not eliminate the

late positive peaks. Also of note, the negative signals were disproportionately worse at discharges

of 6 kV and 5 kV than at 4 kV.

The appearance of the negative signals was puzzling. The most likely explanation was that

energetic electrons were passing the magnets and striking the cathode. However, Stormer analysis,

discussed in Appendix B, suggested that an electron must have very high velocities, over 107 m/s

or 300 eV, to pass the magnets. This scenario was rather unlikely. First, we did not anticipate

such energetic electrons and certainly not in such large quantities. Second, altering the bias voltage,

which was of the order of 16 V, influences the level of negative signal. 300 eV electrons would not

have been affected by such a relatively small bias.
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However, Stormer analysis suggested that moderately energetic ions could pass the magnet.

Ions striking the cathode would produce a positive signal, explaining the large positive bumps. Ions

could induce the negative signals as well through secondary electron emission such as Auger ejection,

where an ion absorbs an electron from a nearby metallic surface and simultaneously liberates a second

electron [72, 73]. However, there was a problem with this explanation. For ion energies below 1

keV, kinetic ejection of secondary electrons is improbable [73]. The primary means of secondary

production is Auger ejection, meaning the secondary electrons must have an energy that is at most

equal to the ionization potential of the ion minus two times the work function of the metal. For

hydrogen, this maximum energy is 13.6 eV minus twice the work function, which is typically on the

order of 3 or 4 eV. Since the bias voltage keeps the cathode at roughly 16 V below the anode, how

could such electrons overcome the −16 V bias voltage to reach the cathode?

For completeness of discussion, there are other mechanisms for producing electrons inside the

detector. UV radiation might photoemit electrons from the collimator wall, but this effect is expected

to be negligible due to the small solid angle of the collimator as seen by the plasma. UV radiation

could photoionize neutral gas inside the chassis, but the number of neutrals inside the array should

be negligible. Neutral particles might also pass the magnet unaltered and create secondary electrons,

although, at particle energies around 10 eV, this is practically ignorable [48].

3.4.3 Transient Voltages

The negative signals were finally explained when a potential difference between the vacuum pho-

todiodes and the array enclosure was hypothesized and then measured. The voltage, plotted in

Fig. 3.16, could reach over 600 V and reversed polarity around 5.7 µs. The origin of this voltage will

be discussed below. When this voltage was positive, it provided a mechanism whereby secondary

electrons could become sufficiently energetic to strike the cathode as follows. Energetic ions passed

the magnets and entered the array; the transient voltage then repelled the ions away from the de-

tector towards the enclosure wall, as shown by the red line in Fig. 3.15. At the wall, secondary

electrons were ejected and then accelerated by the induced voltage towards the detector. Energized

to hundreds of electron volts, the electrons were energetic enough to overpower the bias voltage and

strike the cathode. However, this is not the complete story since a -66 V bias stopped all electrons

from reaching the cathode. Since the anode was closer to the enclosure wall than the cathode, the

electric field lines probably ended on the anode. Electrons likely struck the anode and produced more

secondaries7 [74]. These secondaries, if sufficiently energetic, could strike the cathode, as shown by

the green lines in Fig. 3.15.

The late times of the positive peaks can likewise be explained due to the reversal of the induced

7Kinetic ejection of secondary electrons from primary electrons seems much more probable than kinetic ejection
from primary ions. This is probably due to the inefficient energy transfer of ion-electron collisions [2, pg. 16].
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voltage around 5.7 µs. After this time, ions were attracted towards the detectors. Above, we argued

that the electric field lines end on the anode, but the ions must have collided with the cathode to

produce a positive signal. Since ions are far more massive than electrons, it is conceivable that ions

acquire enough forward momentum to reach the cathode directly, as suggested in Fig. 3.15, even if

the field lines mostly end on the anode. Also, if the ions strike the anode, they might bounce and

reach the cathode.

The origin of this transient voltage lies in the fact that the array has two “grounds:” the “de-

tector” ground consisting of the anode and outer conductor of the signal cables, and the “chamber”

ground consisting of the chamber and enclosure, as discussed in Sec. 3.3.1. Because the two grounds

are kept electrically isolated in the vicinity of the chamber and because of the large distance of

cable connecting them, a transient potential can develop between them. The potential difference

might be due to inductive pick-up; consider the loop that follows the signal cable to the DAQ and

then travels back to the chamber along building ground and finally jumps across the gap to join its

starting point on the signal cable; see Fig. 3.11. This loop encloses a rather large area that is in

the vicinity of the main capacitor bank. By Faraday’s law, if the magnetic flux through the loop

changes in time, then the line integral of the electric field must not vanish. However, most of the

loop lies along conducting metal, so the electric field must, by and large, lie across the gap between

the detector and the enclosure.

Finally, we note that the induced voltage is disproportionately smaller at low discharge voltages

(3 and 4 kV) than at 5 kV or 6 kV. Fig 3.16 compares the voltage for 4 kV and 6 kV discharges. At 6

kV, the voltage reaches almost 700 V. At 4 kV, however, the voltage has at peak oscillation only 200

V, and the mean voltage is roughly 30 V. The amplitude of the transient voltage is thus non-linear

in the discharge voltage. This explains why 6kV discharge voltage produced disproportionately

more negative signals than 4kV. Also, in studying the difference between co- and counter-helicity

merging [20], the amount of soft x-rays emitted likewise has a non-linear dependence on the discharge

voltage. The two observations are perhaps related.

3.4.4 Upgrading the Magnets

Both types of observed spurious signals, negative dips and late positive peaks, are believed to be

caused by ions entering the chassis and causing secondary electron emission. It is a rather bizarre

conclusion that positive charge entering the array can ultimately lead to a spurious signal due to

negative charge hitting the cathode. The large potential difference between the detector and the

chassis, however, provides a mechanism for this phenomenon.

An obvious solution to these spurious signals, then, is to upgrade the magnets guarding the

collimator entrance to deflect ions more effectively. As discussed in Appendix B, the deflecting

power of a magnet is determined both by the field strength and also the spatial extent of this field.
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To improve deflection, a new set of ultra-strong neodymium magnets was ordered, and the geometry

of the magnets was changed. Two magnets are now used on each collimator and are seated in

notches cut into the collimator to form a high-field gap region, as shown in Fig 3.17. In the original

single magnet setup, the field strength decays rapidly with distance from the magnet, but in the

new geometry the field is uniformly large within gap. The magnet upgrade successfully eliminates

spurious signals. The field strength around the gap has been measured, so, if spurious signals do

arise, the energies of the energetic ions passing the magnet can be estimated; see Appendix B.

3.5 Physical Layout and Geometry

This section focuses on the physical layout of the array, including its positioning in the vacuum

chamber, its support system, and collimation. The array is situated to look across the electrodes,

as shown in Fig. 2.1. In total, the array has thirteen channels, but one of them is the blind channel

described in Sec. 3.3.4. The twelve active channels are arranged in a T-shape with seven channels

in the vertical direction and six in the horizontal. This allows variations in the emission of the

loop apex to be observed as the plasma expands outward and asymmetries between the top and

bottom halves to be identified. The number of channels was limited by several factors. The method

of taking the signal cables out of the chamber, described in Sec. 3.3.3, cannot support many more

than thirteen cables; this limitation is actually set more by the size of the BNC connectors on the

cable ends rather than by the radius of the cables themselves. Also, many of the DAQ channels are

occupied by other diagnostics, and making more vacuum photodiode channels would require other

diagnostics to be disconnected.

3.5.1 Array Positioning

Vacuum photodiodes need to be placed inside the vacuum chamber, in contrast to optical spectrom-

eters and photodiodes that can leisurely measure plasma radiation through window ports. There are

two reasons for this. First, EUV radiation suffers extreme attenuation through the vacuum windows

used on the vacuum chambers [36, pg. 104]. Even MgF2 windows, which will transmit UV, cut off

photons of wavelength less than 150 nm [61]. Second, experiments on the test chamber indicate that

vacuum photodiode signals fall off as the vacuum chamber pressure increases, and previous work on

photocathodes also showed that pressures less than 10−4 torr are required [59]. For these reasons,

the detector itself must be located inside the vacuum chamber. This requires that all material used

to construct the detector must be vacuum compatible and that the signal cables must be taken

out of the chamber, as discussed in Sec. 3.3.3. Moreover, the available ports on the chamber are

not always aligned with the preferred line of sight, forcing the experimentalist to design a support

system to hold the array in place, as discussed in Sec. 3.5.2.
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The array currently looks across the electrodes as shown in Fig. 3.18; this positioning is chosen

not only to view a profile of the plasma loops but also to avoid viewing arcing that occurs at

the electrodes. Such arcing is suppressed early in the shot because of the design of the plasma

electrodes, as discussed in Sec. 2.1.4. However, later in a shot, arcing is observed between and

behind the electrodes, and such arcing produces radiation that vacuum photodiodes can detect.

Since this radiation is not from the plasma itself, the detectors must be strategically placed to view

the plasma but not the electrodes. The need for such strategic placement was made clear by a

vacuum photodiode prototype placed on an angle port directly facing the plasma electrodes. The

prototype’s signal extended well past the lifetime of the plasma and looked like a rectified version of

the current trace, as shown in Fig. 3.19; this signal was produced by arcing roughly in proportion to

the absolute value of the current. The Imacon images in Fig. 3.19 confirmed that the interelectrode

arcing dimmed at precisely the zeros of the current trace. To avoid picking up this signal, the array

now looks across the electrodes with its vertical channels located 10.6 cm above the electrodes. Note

that the x-ray diode head is pointed directly at the electrodes, so a portion of their signals might be

from arcing rather than from the plasma.

3.5.2 Support System

The array is rather heavy and needs to be suspended in the chamber to look across the electrodes.

The resulting torque on the support arm is significant, and a support system was implemented8

to provide the mechanical strength needed to hold the array in place. The support arm for the

array is 1” diameter stainless steel tubing, which runs through a 1” quick-disconnect flange. To

add mechanical support, an aluminum bushing was machined and is held in place by two aluminum

brackets, as shown in Fig. 3.20. The bushing keeps the support arm from bending too much under

the torque, especially during installation and rotation. Two set screws in the bushing hold the

tubing in place when tightened down.

3.5.3 Collimation

Each vacuum photodiode in the array should view a different area of the plasma. To prevent the

fields of view from overlapping, collimating tubes are placed in front of each detector. The length

and diameter of the collimator are chosen to maximize the area viewed while keeping each field of

view separate. Here, we calculate the area viewed by each detector as well as an effective area that

accounts for the shadow of the collimator; at the electrodes, each detector views an area of 69.3 cm2

but an effective area of only 2.6 cm2.

8Similar supports have been designed by Carlos Romero and Dave Felt for use with magnetic probe arrays. The
author also acknowledges Joe Haggerty, Ali Kiani, and Brad St. John of the GALCIT shop for suggesting design
improvements and for machining various components for this system.
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Given a collimator of radius R and length L, we can calculate the detector’s view cone, shown

in Fig. 3.21. If we assume that the distance from the middle of the collimator to the plasma is D,

then, at the plasma, the detector’s view cone has a radius r0 given by

r0 = D
2R

L
. (3.4)

The collimators have an inner radius of 0.38 cm and a length of 5.5 cm. The distance from the

center of the electrodes to the middle of the array is 42 cm, and the distance from the center of the

array to the center of the collimator is 7.8 cm, giving D = 34 cm. We then have r0 = 4.7 cm. In an

array, if the fields of view of each detector are not to overlap, then each detector should be separated

a distance 2r0 from its neighbors. The collimator dimensions were chosen so that the twelve active

detectors could cover most of the plasma without overlapping. Fig. 3.22 shows a picture of the

electrodes along with the central axes of the vacuum photodiodes, showing the vacuum photodiode

spacing relative to the electrode size. Also plotted in Fig. 3.22 is the effective viewing area of each

vacuum photodiode, which will be computed below.

Although the detector’s field of view is calculated as above, not all points within this field of

view illuminate the detector equally. Plasma at the edge of the field of view weakly illuminates the

detector because the collimator casts a shadow over the detector, as shown in Fig. 3.23. The detector

thus responds differently to plasma at the edge of its field of view than to plasma at the center of its

field of view. This is important when using the vacuum photodiode signals to estimate the radiation

power density of the plasma. Our goal is to compute an effective viewing area that accurately reflects

the amount of radiation a collimated detector sees given the shadowing effects of the collimator. This

statement will be made precise by first considering the response of a non-collimated detector to a

uniformly emitting source.

For a detector without collimation, it is straightforward to estimate how the detector will respond

to an emitting source. First, let a point source emitting power P isotropically be given with a distance

ρ to the detector and with angle α between the detector’s normal vector and the line connecting the

detector and point source. If the detector has area Ad with Ad � 4πρ2, the power Pd intercepted

by the detector is

Pd(ρ, α) = P
Ad cosα

4πρ2
. (3.5)

The fraction in Eq. (3.5) is the ratio of the detector area presented to the point source divided by the

surface area of a sphere of radius ρ. For a distributed source, one computes the detector response

by integrating Eq. (3.5) over the distribution:

Pd =

∫
d (Pd(ρ, α)) =

∫
Ad cosα

4πρ2
dP. (3.6)



54

In practice, the source is usually located far enough away from the detector that the variations in

ρ and α are small, and both ρ and α are held fixed at some representative values. We also assume

that the source is essentially planar and radiates homogenously with some power per unit area σ, so

dP = σdAe, with dAe being a differential surface element of emitting plasma. The detector response

is then estimated using Eq. (3.5) with Eq. (3.6):

Pd =
Ad cosα

4πρ2
σ

∫
dA =

AdAe
4πρ2

σ cosα, (3.7)

where Ae is the area of emitting plasma. For this discussion, the key quantity is the product AdAe,

the detector area times the emitter area, as the detector response is proportional to this value

assuming constant σ, ρ and α.

For a collimated detector, Ad, the area of the detector presented to the emitter, changes at

different points in the emitter. Again, Fig. 3.23.a shows that only a fraction of the detector is

illuminated by a point source not centered on the collimator axis. Equation 3.7 would then be

Pd =

∫
Ad(r)dAe

4πρ2
σ cosα, (3.8)

where Ad(r) represents the detector area presented to a point source located at r. Our task is to

first compute Ad(r) as a function of position. Second, we would like to define an effective emitter

area A∗e such that

AdA
∗
e =

∫
Ad(r)dAe. (3.9)

A∗e would be the area of an uncollimated detector that would have the same response to the uniformly

emitting source as the collimated detector. A∗e will be used to estimate the power radiated per unit

area, σ, from the power incident on the detector:

σ =
4πρ2Pd

AdA∗e cosα
. (3.10)

We begin by determining the detector area presented to different points of the emitting plane.

We first need to coin names for the different parts of the collimator. The collimator is sketched

in Fig. 3.23.b, where we have labeled the top circle and bottom circle. We are interested in the

illumination of the cathode, but this is equivalent to the illumination of the bottom circle. We then

place our origin at the center of the bottom circle. Let a point source be located at a height z and

at a cylindrical radius r. Because of cylindrical symmetry, we orient a Cartesian coordinate system

such that the point source is located at the coordinates (r, 0, z). The boundary of the shadow cast by

the collimator is determined by drawing lines from the point source to the various points on the top

circle; we then follow each line until it intersects the z = 0 plane. We call this procedure projecting,
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and our first step is to work out the equations of projection.

We first project a point (a, b, c) onto the z = 0 plane. We call the x and y coordinates of the

projection xp and yp respectively; these points are drawn in Fig. 3.23.c. The vector joining the point

(r, 0, z) to (a, b, c) is parallel to the vector joining (a, b, c) to (xp, yp, 0). Therefore, these vectors must

be proportional to one another with a constant of proportionality λ:

(r, 0, z)− (a, b, c) = λ [(a, b, c)− (xp, yp, 0)] (3.11)

Using the z component of this equation, we get z − c = λc or λ = (z − c)/c. We can now use λ to

solve for xp and yp. The x and y components of Eq. (3.11) are

r − a = λ(a− xp) (3.12)

−b = λ(b− yp) (3.13)

Solving for xp and yp gives

xp =
az

z − c
− r c

z − c
(3.14)

yp =
bz

z − c
. (3.15)

Using Eq. (3.14) and (3.15), we can project the entire front circle. We parameterize the front

circle by the angle θ so that the circle is the collection of points (R cos θ,R sin θ, L). The projection

of each point is

xp(θ) =
z

z − L
R cos θ − r L

z − L
(3.16)

yp(θ) =
z

z − L
R sin θ. (3.17)

This projection is itself a circle of radius Rz/(z − L) centered at x = rL/(z − L), as shown in

Fig. 3.23.d. The illuminated area of the bottom circle, then, is the intersection of the bottom

circle with this projected circle. This area, denoted by Ad(r, z), is computed numerically once the

collimator dimensions R and L have been specified.

We can now use Ad(r, z) in Eq. (3.8). We assume again that the distance ρ and angle α can be

held fixed. The integral, ∫
Ad(r, z)dAe =

∫ r0

0

Ad(r, z)2πrdr, (3.18)

can be computed numerically, from which,

A∗e(z) =

∫ r0
0
Ad(r, z)2πrdr

Ad
. (3.19)
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Electrode Position z A∗e
Closer edge of electrode 24 cm 1.1 cm2

Closer gas inlet 33 cm 2.0 cm2

Middle of electrodes 37 cm 2.6 cm2

Further gas inlet 41 cm 3.1 cm2

Further electrode edge 49 cm 4.5 cm2

Table 3.2: The effective viewing area of a collimated vacuum photodiode computed at various points
on the plasma electrodes.

Let us compute the effective area A∗e at the midpoint of the electrodes. At the midpoint of

the electrodes, z = D + L/2, and A∗e = 5.0 cm2. This area corresponds to a circle of radius

r∗ =
√
A∗e/π = 1.3 cm. Note that this effective radius is significantly smaller than ρ0 = 4.7 cm, the

radius of the field of view, but larger than R = 0.38 cm, the radius of the collimator. In fact, r∗ is

closer to the geometric mean:
√
Rρ0 = 1.3 cm.

Because of the gapped magnets in front of the collimator, the above calculation of A∗e is too large

because the magnets will further shadow the detector. The geometric consideration of incorporating

the magnets into the above calculations are considerable. Instead, we note that the magnets occupy

about half of the collimator area and estimate A∗e to be about half its value computed above:

A∗e = 2.57 cm2. The effective areas at other distances from the array are shown in Table 3.2.

3.6 Final Product

The final version of the array contains twelve fully functional channels arranged in a T-shape to

measure both vertical and horizontal variations. In summary,

• Aluminum disks with a light sanding serve as photoemitting cathodes, providing large signals

that do not require amplification.

• A bias voltage is needed to overcome space-charge limitations.

• The detector must be carefully shielded both by using an enclosure and by careful layout of

the anode and cathode to protect against capacitive coupling.

• Ground loops are prevented by not electrically connecting detector ground to the chamber

ground. However, RF ground loops are still present, and these ground currents have been

diverted from the cables by the combined use of ferrites and shunts.

• The use of semi-rigid coaxial cables reduces noise and provides a means of taking the detector

signals out of the vacuum chamber.

• Magnets placed on the collimators deflect incoming charged particles. If energetic ions manage

to pass the magnet, they can induce both positive and negative spurious signals, in part due
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to a transient voltage that appears inside the enclosure during a shot.

• Each detector is collimated so that it views an individual area of the plasma. The effective

area seen by the detector is less than its full field of view but larger than the collimator

cross-sectional area and is estimated at 2.6 cm2.

Thus, the difficulties encountered in implementing vacuum photodiodes on the Caltech Solar

Loop Experiment have been resolved, and it would be straightforward to build and install more

of these detectors on either the Solar Loop or Spheromak Experiments. The true utility of this

diagnostic, however, is the subject of the next chapter.
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Figure 3.14: A collection of vacuum photodiode data with spurious signals due to charged particles:
(a) a shot with negative spikes (b) a shot with a large positive signal late into the plasma lifetime
(c) a shot with a negative dip preceding a positive peak (d) a shot with a late positive peak obtained
with no bias voltage.
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Figure 3.15: The transient voltage between the vacuum photodiode and the enclosure is responsible
for positive and negative spurious signals. In this figure, energetic ions that pass the magnet are
shown in red, whereas secondary electrons are shown in green. (a) When the transient voltage
is positive, secondary electrons produced by the incoming ions are accelerated towards the anode,
where they generate more secondaries that strike the cathode. This produces the negative spurious
signals. (b) When the transient voltage is negative, the ions themselves are attracted to the detector
and induce the late positive spurious signals. They might strike the cathode directly or bounce off
the anode first.

Figure 3.16: (a) There are two “grounds” on the detector: the detector ground shown in red, and
the chamber ground shown in blue. The two grounds are ultimately connected through a long path,
but the distance is large enough that the two grounds can be at different potentials. (b) The voltage
between these two “grounds,” as measured with a high-voltage probe, for a 4 kV counter-helicity
discharge (c) The same measurement for a 6 kV discharge.
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Figure 3.17: (a) The original collimator had a single magnet. (b) The upgraded collimator uses two
magnets placed in notches. (c) The gap region has a uniformly high field strength.

Figure 3.18: The array consists of twelve active channels, seven vertical and six horizontal, and looks
across the electrodes.
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Figure 3.19: Vacuum photodiodes can detect radiation emitted by electrode arcing, which obscures
the desired photosignal from the plasma. The vacuum photodiode data, plotted in blue, is overlayed
with the absolute value of the current trace, plotted in green. The vacuum photodiode signal looks
like a rectified version of the current trace, and the minima of the photodiode signal coincide with
the zeros of the current. This plot extends to 45 µs, while the plasma only lasts until ∼ 12 µs.
Thus, the data after ∼ 12 µs is not from the plasma itself. In the Imacon image, the frames have
been timed to take pictures very late into the shot in order to observe what is happening at the
electrodes after the plasma. Localized arcing is observed between the electrodes. The arcing abates
at the minima of the vacuum photodiode signal, implying that the late signal is due to the arcing.
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Figure 3.20: A support system is needed to handle the torque of the array. The long tube is the
1” stainless steel support arm of the array. Starting from the left of the figure, the first component
is a quick-disconnect flange that mates with a 2 1/4” port on the chamber. After that are two
aluminum brackets followed by an aluminum linear bearing. The linear bearing prevents bending of
the support arm against the torque of the array. The aluminum brackets hold the bearing in place.
Finally, a collar and fluted handle provide a grip for rotating the array.

Figure 3.21: Given the collimator dimensions, the detector’s view cone, depicted by the dashed lines,
can be determined. At the center of the electrodes, the view cone has a diameter of 9.4 cm.
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Figure 3.22: This is a head-on photograph of the electrodes in the middle of a shot. The lines
superimposed over the image represent the fields of view of the vacuum photodiodes. The thick
horizontal line is the central axis of each detector. The dashed lines denote the radius of the
effective area of each detector, as computed in Sec. 3.5.3. This radius does not account for the
additional shadowing by the magnets.
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Figure 3.23: (a) The collimator, shown here in a cutaway view, casts a shadow over the entrance to
the detector. The illuminated area is drawn in green, whereas the shadow is drawn in blue and red.
(b) The top and bottom circles are defined here for clarity. (c) Projection of a point (a, b, c) onto
the z = 0 plane given a point source at (r, 0, z). The projection point is labeled (xp, yp, 0). (d) The
projection of a circle is another circle with a shifted center and larger radius.
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Chapter 4

Radiation Power and Electrode
Detachment

This chapter reports the experimental results of the vacuum photodiode array described in Chapter 3.

The sheer size of the vacuum photodiode signals implies large levels of radiative power coming from

the plasma and has important implications regarding the plasma temperature and ionization balance.

These radiation levels are estimated in Sec. 4.1.1 and compared to the rate of Ohmic dissipation in

Sec. 4.1.2, where it is proposed that a large majority of the heat deposited by Ohmic dissipation

is emitted as extreme ultraviolet (EUV) radiation. Possible mechanisms for the EUV radiation are

then discussed in Sec. 4.1.3 and Sec. 4.1.4. Section 4.2 compares the EUV emission levels between

co- and counter-helicity plasma. As anticipated from Hansen et al. [20], counter-helicity plasmas

emit large bursts of radiation that are not seen in their co-helicity counterparts. A new finding,

however, is that the locations of these bursts depends on the amount of neutral gas injected into the

chamber. In Sec. 4.3, we shall explore how the charging voltage of the fast gas valve capacitor bank,

discussed in Sec. 2.1.2, influences the vacuum photodiode signals as well as other diagnostic data.

4.1 Radiative Losses, Ohmic Heating, and Line Emission

The vacuum photodiodes register signals on the order of a tenth of a volt and higher, depending on

the plasma parameters. These signals, obtained without amplification, suggest very high radiation

levels that appear consistent with the theory that low-temperature plasmas radiate away any heat

deposited by Ohmic dissipation, as will be discussed in Sec. 4.1.2. The exact cause of the vacuum

photodiode signals has not been identified, but the chief suspect is presently hydrogen line emission

as opposed to impurity radiation or thermal bremsstrahlung.
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4.1.1 Vacuum Photodiode Power Flux

From the magnitude of the vacuum photodiode signals, we can roughly estimate the radiation

intensity incident on a vacuum photodiode as well as the total power radiated by a hydrogen plasma.

This estimate suggests that the plasma radiates megawatts of power. The vacuum photodiode output

current is equivalent to the number of electrons photoemitted per second and equals the vacuum

photodiode output voltage divided by 50 Ω. To estimate the number of incident photons required to

emit these electrons, we assume that the vacuum photodiode signals are entirely due to the hydrogen

Lyman α (HLα)1 line, which we expect to be the dominant line emission. The error incurred by

this assumption will be discussed below. HLα photons have an energy of 10.2 eV and a wavelength

of 121.6 nm; the yield of an aluminum cathode at 121.6 nm is approximately 0.038 electrons per

photon (e−/γ) as given by Fig. 3.2. It follows that the power incident on a single diode is

Pdiode =
Vdiode

50 Ω
· 1

1.6 · 10−19 C/e
− ·

1

0.038 e−/γ
· 10.2

eV

γ
= (5 W/V) · Vdiode, (4.1)

where Vdiode is the vacuum photodiode output voltage.

Pdiode is the power incident on the diode, which is only a fraction of the power radiated in

all directions by the plasma. To estimate this latter quantity, we regard the plasma as a sheet of

uniformly emitting material as in Sec. 3.5.3 and compute the power radiated per unit area, σ, using

Eq. (3.10), which we reproduce here after setting α = 0:

σ =
4πρ2Pdiode

AdiodeA∗e
. (4.2)

Note that each vacuum photodiode monitors a total area A0 = 69 cm2, but we use the effective

area A∗e in Eq. (3.10) to account for the shadowing effects of the collimator. As given by Table 3.2,

A∗e = 2.6 cm2 at the midpoint of the electrodes. ρ is the distance from the back of the collimator

to the midpoint of the electrodes, so ρ = 37 cm, while Adiode is the cross-sectional area of the

collimator, so Adiode = 0.45 cm2. Given σ, we extrapolate the total plasma emission by multiplying

σ by the total area A0 monitored by a vacuum photodiode:

P = σA0 = Pdiode
4πρ2

Adiode

A0

A∗e
=
(
1 · 106

)
· Pdiode. (4.3)

We emphasize that the factor A0/A
∗
e is due to the collimation of the detectors and is only accurate

to the degree to which the plasma uniformly emits over the vacuum photodiode field of view. Equa-

tion (4.3) says that, if a vacuum photodiode reads 0.1 V, then the corresponding area of the plasma

is radiating about 0.5 MW.

1We adopt the following notation for hydrogen lines: the Balmer lines will be denoted as Hα and Hβ while the
Lyman lines will be denoted HLα and HLβ .
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Of course, the accuracy of Eqs. (4.1) and (4.3) depends on several assumptions. We assumed

that the radiation was monochromatic at the HLα line; we will explain the rational for assuming

that hydrogen emission is dominant in Sec. 4.1.3. We now explore how the estimated power changes

with assumed wavelength. If we assume a photon energy of 13.6 eV, where the photoyield of an

aluminum cathode peaks at 0.19 e−/γ, we obtain a vacuum photodiode power of 1.4 W/V. If we

instead assume photons at 30 nm, near the low-wavelength limit of an aluminum cathode where the

yield is roughly 0.05 e−/γ, we obtain a vacuum photodiode power of 16 W/V. Thus, our assumption

of monochromatic HLα radiation is at worst incorrect by a factor of three. This should be compared

to the uncertainty of ± 30% in the yield of a metallic cathode in typical laboratory conditions [59].

Finally, we also assumed that the plasma emits homogenously over the detector viewing area, which

leads to the factor of A0/A
∗
e in Eq. (4.3). However, the exact degree to which the collimator shadows

the vacuum photodiode from the plasma radiation depends on how the radiation is distributed within

the vacuum photodiode field of view. For instance, if all the radiation originates from a point source

at the center of the detector’s viewing area, then the collimation has no shadowing effect on the

signal, and the factor A∗e/A0 would be inaccurate. Nonetheless, we expect Eqs. (4.1) and (4.3) to

hold to within an order of magnitude, and we see that vacuum photodiode signals on the order of a

volt correspond to megawatts of radiation power.

4.1.2 Ohmic Heating and Radiative Losses

Simple calculations suggest that Ohmic dissipation of the plasma current should steadily heat the

plasma to higher and higher temperatures if no mechanism exists to carry away this energy. Such

heating is not observed in the Caltech experiments, for a plasma made of argon or nitrogen that is

steadily heated from 1 eV to 10 eV would rapidly progress through its ionization states, and this

behavior is not observed. Instead, radiative losses, primarily in the EUV, carry away the Ohmic

heat, and we investigate this possibility by comparing the radiation estimates of the previous section

to estimates of Ohmic dissipation. Although the figures reported here are only accurate to within

an order of magnitude, it seems plausible that the Ohmic heat is indeed lost to EUV radiation.

To quantify the issue of Ohmic heating, we compute the theoretical rate of increase of temperature

assuming the energy of Ohmic dissipation ends up as thermal particle energy with no loss of energy

as radiation. The thermal energy is (3/2)kBT per particle, so for a singly ionized plasma we sum

over electrons and ions to get a thermal energy density of 3kBTn, where we have assumed that

electrons and ions share that same temperature. We take n ∼ 1021 m−3 based on Stark broadening

measurements of the Hβ lines as discussed in Sec. 2.2.4. This thermal energy density is fueled by

Ohmic dissipation, whose power density is E · J = ηJ2 = ηI2/A2
c , where η is the plasma resistivity,

I is the plasma current, and Ac is the cross-sectional area of the plasma loop. If all of the energy of
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Ohmic dissipation goes into thermal energy, then

Ṫ =
2ηI2

3A2
cnkB

. (4.4)

From fast camera images, the radius of the plasma loop is approximately 2 cm. The plasma resistivity

will be estimated using Fokker-Planck theory [2, pg. 451]:

η =
Ze2√me ln Λ

3π3/2ε20(2kBTe)3/2
(4.5)

= 1.03 · 10−4Z ln Λ

T
3/2
e

, (4.6)

where ln Λ is the usual Coulomb logarithm [75, pg. 34]. Using Z = 1, ln Λ = 7, and Te = 3 eV gives

η = 1.4 · 10−4 Ωm. Therefore, at a modest current of 10 kA, we would have Ṫ ∼ 20 eV/µs. Clearly,

under such conditions the plasma would rapidly heat up to very high temperatures, which is not

observed experimentally. This indicates that radiative losses must be transporting energy out of the

plasma at a rate comparable to the Ohmic dissipation.

To estimate the total amount of heat generated in the plasma loop, we model the plasma as

a uniform cylinder of radius r, length l, and resistivity η, from which the plasma resistance is

Rp = ηl/(πr2). We take r = 2 cm and l = 20 cm, which gives an estimated resistance of the plasma

cylinder of 20 mΩ. This is only a rough estimate. The length of the loop grows steadily throughout

the course of a shot due not only to the overall expansion but also due to the kinking of the flux tube.

The loop radius is not always clearly defined from the camera images. Moreover, the current may

not flow entirely through the loop in fast camera images. On the Spheromak experiment, magnetic

data indicate that the current flows in a radius over three times larger than the radius seen in camera

images [37]. If this is also true for the Solar Loop Experiment, the plasma resistance and Ohmic

dissipation would be smaller be a factor of nine. Also, on the Solar Experiment, current still flows

between the electrodes even at late times when Imacon images suggest that the plasma has detached

from the electrodes. It is not clear where the current flows at this point; it may partially flow through

arcs observed between and behind the electrodes. Finally, we note that Z, which should be averaged

over all ions, both majority and impurity, may have a bigger value than Z = 1 depending on the

impurity concentration. Thus, there are several factors that make our estimate of 20 mΩ accurate

only to within an order of magnitude.

Radiative losses in the EUV appear to balance Ohmic dissipation. Figure 4.1 plots both these

quantities for a single-loop hydrogen plasma formed with a 5 kV discharge (shot 8959). The UV

radiation power is obtained by summing all twelve vacuum photodiode signals and applying the

conversion factors in Eqs. (4.1) and (4.3). The Ohmic heating power is given as RpI(t)2 with Rp

estimated above as 20 mΩ. The two power levels are close in magnitude; moreover, the shapes of
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the two traces are especially similar during the first three microseconds. Both the estimates for

Ohmic dissipation and UV emission are rough, and at this level of accuracy it appears very possible

that the UV radiation indeed balances the Ohmic dissipation. We note that the vacuum photodiode

array does not view the entire plasma, and thus the UV power computed here is smaller than the

total UV power. Plans are in place to install another set of vacuum photodiodes whose field of view

will cover the entire plasma and whose signal will thus reflect the total UV emission. These vacuum

photodiodes will also have reduced uncertainties in regards to computing the total power radiated

because they will not be significantly collimated, and the factor of A0/A
∗
e in Eq. (4.3) will very close

to unity.

We can compare the power levels of EUV radiation and Ohmic dissipation to other power levels

in the experiment. Figure 4.1 plots the total input power Ptot = I(t)V (t), where V is the electrode

voltage. The total input power is an order of magnitude larger than both the UV emission and

Ohmic heating, and the rapid decline of the input power corresponds to the voltage going to zero

and changing sign. We thus see that while radiative losses are significant, they do not dominate

the energy budget, and there is ample energy available for the plasma kinetic and magnetic energy.

Figure 4.1 also plots an estimate of the optical power as estimated from an optical photodiode, as

will be discussed below. While the optical power is over an order of magnitude smaller than the UV

emission, its curve has roughly the same shape during the first several microseconds.

By varying the discharge voltage of the main bank, the UV radiation is seen to be determined

by the instantaneous value of the plasma current. In Fig. 4.2.a, the vacuum photodiode signal

is plotted as a function of time for different discharge voltages. For larger discharge voltages, the

vacuum photodiode signal rises more rapidly in the first several microseconds. In Fig. 4.2.b, however,

the vacuum photodiode signals are instead plotted as a function of current and are seen to coincide

with each other during early times. During this phase, the UV radiation depends only on the

instantaneous value of the current. Moreover, this dependence is roughly quadratic, and fitting

the UV power levels with the square of the current gives a plasma resistance of 5.3 mΩ. At a

certain point in time, however, the UV signal diverges from this quadratic dependence on current;

this occurs at earlier times for lower discharge voltages. The reason from this departure from the

quadratic behavior is not yet understood and presents an intriguing possibility for future research.

Also shown in Figs. 4.2.c and 4.2.d are estimates of the optical radiation obtained from optical-

photodiode data. A PDA36A photodiode by ThorLabs2 was mounted on a viewport looking across

the vacuum vessel at the electrodes. The advantage of this positioning was that the field of view of

the optical photodiode covered the entire plasma, unlike the collimated vacuum photodiodes. For

hydrogen plasmas, we assume that the photodiode signals comes entirely from the Balmer α (656

2The author graciously acknowledges Matthew Kelley for suggesting this diode and lending one to the lab.
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Figure 4.1: A plot of various power levels: the total input power, the estimate for Ohmic dissipation,
the total EUV radiative losses, radiative losses from the optical Hα and Hβ lines, the associated power
loss from the HLβ and HLγ lines, and an estimate for the total hydrogen emission.

nm) line, for which the diode responsivity is 0.408 A/W [76]. Thus,

Pdiode ≈
Vdiode

50 Ω · 0.408 A/W
. (4.7)

The optical photodiode does not have any collimation, so we use Eq. (3.5) to estimate the total

optical power radiated,

Poptical = Pdiode ·
4πρ2

Adiode
(4.8)

= (120, 000 W/V) · Vdiode, (4.9)

where the optical photodiode area is 13 mm2 and ρ = 1.58 m is the separation between the optical

photodiode and the electrodes. It is possible that reflections of visible light rays within the chamber

can make Eq. (4.9) overestimate the true optical power, but we do not expect reflections to be

especially significant based on fast camera images. As shown in Fig. 4.1, the power radiated in the

optical domain is much smaller than both the UV power and the Ohmic dissipation. However, as



71

is seen in Fig. 4.2.c, the optical signals follow the same trend as the vacuum photodiode signals for

early times and, when plotted as a function of current, coincide with each other, confirming that

radiation at different discharge voltages is indeed a function of the instantaneous current.

The data in Fig. 4.2 were taken holding the charging voltage of the fast gas valve capacitor

bank fixed so that the amount of neutral gas available to the plasma is fixed (see Sec. 2.1.2). If the

charging voltage is varied, then the traces do not overlap as well even if the discharge voltage is

held fixed. We hypothesize that the different charging voltages for the fast gas valve capacitor bank

induce different plasma densities that change the emissivity of the plasma, as will be discussed in

the next section.

In conclusion, the magnitude of the EUV emission is comparable to and perhaps balances the

rate of Ohmic dissipation; this implies that the vacuum photodiode signals, in the absence of other

emissive phenomena, are determined by the plasma resistivity and the instantaneous value of the

current. Further support for this hypothesis is found by varying the discharge voltage of the main

bank while holding the charging voltage of the fast gas valve capacitor bank fixed, for both the UV

and optical emission are seen to be functions of the instantaneous value of the current. However, we

note that the vacuum photodiode signals typically contain more structure than the optical photo-

diode signals, as is suggested in Fig. 4.1, and we believe that the vacuum photodiodes are sensitive

to a broader range of phenomena than Ohmic dissipation of the main plasma current, as will be

discussed further in Sec. 4.2.2.

4.1.3 Hydrogen Line Emission

The vacuum photodiode signals are quite large, but the mechanism responsible for producing such

copious amounts of UV radiation has not yet been identified. Here, we present evidence that a

significant portion of this UV radiation is hydrogen line emission. At first glance, this may seem

obvious; since the plasma are composed of hydrogen, hydrogen emission should be significant. How-

ever, hydrogen line emission is typically not a significant source of radiation when the plasma is fully

ionized, and analytical calculations of an equilibrium hydrogen plasma predict relatively minute ra-

diation levels. However, the Solar Loop Experiment is fast and has magnetic field lines that link the

electrodes; these factors keep the plasma out of equilibrium and increase its emission, perhaps ex-

plaining the magnitude of the vacuum photodiode signals. Other candidates for the EUV emission,

impurity lines and thermal bremsstrahlung, will be presented in Sec. 4.1.4.

Line emission refers to the process whereby a bound electron orbiting an atomic nucleus collides

with a free electron or photon, is excited to a higher energy level, and then radiatively decays to

a lower energy state. The rate at which bound electrons are excited increases with both the free

electron density and temperature, but if the ionization rate is too large then the vast majority of

bound electrons will be ionized, resulting in a reduction in line emission. Thus, at fixed electron
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density, line emission typically rises to a peak and then falls as a function of temperature: at lower

temperatures there are many bound electrons but few exciting collisions and at higher temperatures

there are few bound electrons. This rise and then fall in line emission as a plasma heats up is

known as a radiation barrier because the energy lost to line emission can balance Ohmic heating

and prevent the plasma temperature from rising. If the Ohmic heating is sufficiently strong, though,

the temperature will rise high enough such that radiation losses decrease; such a plasma is said to

have “burnt through” the radiation barrier. Hydrogen presents a low-temperature radiation barrier

of 1 - 2 eV [77, pg. 202] that is usually overcome in experiments, and the significant radiation

barriers for a hydrogen plasma typically come from impurities [27, 78]. Indeed, the temperature of

the Caltech plasmas is estimated at 2 − 3 eV based on the ionization states of argon and nitrogen

plasmas and based on the ionization states of carbon and oxygen impurities; as we shall soon see,

such temperatures would suggest a nearly fully ionized plasma and very low hydrogen line emission.

The chief indication that hydrogen line emission is significant in the Solar Loop Experiment is

that hydrogen line emission in the optical range is readily observed. By placing an Hα or Hβ optical

bandpass filter in front of the fast camera, it is seen that a significant fraction of the optical signal

is due to Hα and Hβ line emission. We can quantify the amount of power emitted in Hα and Hβ

by placing the same optical filters in front of the photodiode mentioned in Sec. 4.1. By applying

conversion factors similar to those used in Eq. (4.9), including the 0.45 peak transmission coefficient

of the optical filters, we obtain the Hα and Hβ power traces plotted in Fig. 4.1 for a single loop

hydrogen plasma formed with a 5 kV discharge with the fast gas valve capacitor bank charged to

500 V (shots 8987 and 8992). We shall show below that the power levels in these two optical lines

alone exceeds the total power radiated as predicted by equilibrium models. Moreover, we note that

the optical line intensities are strongly correlated with the vacuum photodiode signals and increase

with time. This is significant because the current and hence Ohmic dissipation is likewise increasing

in time, so the plasma temperature must be increasing until the radiative losses again balance the

Ohmic dissipation. If during this process the plasma was close to equilibrium and the hydrogen was

nearly fully ionized, then we would expect the hydrogen emission to decrease, or at least not increase,

as the temperature rises even further beyond the radiation barrier. For example, on the Macrotor

tokamak, the Hβ signal peaks after 1 ms and then falls to a low value as the vacuum photodiode

signals and oxygen line intensities continue to increase [48]. The behavior from Macrotor is indicative

of full hydrogen ionization, or hydrogen burnthrough, while the optical-photodiode data from the

Caltech Loop Experiment indicate that the hydrogen is still ionizing. Since weak hydrogen emission

is due to full ionization of the hydrogen population, incomplete ionization would allow for strong

hydrogen emission. The strong correlation between the hydrogen optical intensity and the vacuum

photodiode signals is consistent with (but certainly does not prove) the possibility that the vacuum

photodiode signal is entirely due to hydrogen emission.
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Furthermore, from the optical emission we can estimate a portion of the hydrogen EUV emission

and show that it is a substantial fraction of the total EUV emission measured by the vacuum

photodiodes. The Hα line results from electron transitions from the n = 3 to n = 2 state; the rate

of this transition is given by the transition probability per unit time A32 = 4.4 · 107 s−1 [79, pgs.

275 and 281] so that N32 = A32N3, where N32 is the number of Hα photons produced per second

and N3 is the number of hydrogen atoms in the n = 3 state. Knowing the Hα power level and that

each Hα photons contains 1.89 eV, we estimate N3:

N3 =
Pα

1.89 eV ·A32
. (4.10)

The Lyman β (HLβ) line results from transitions from the n = 3 state to the n = 1 state, which

occur at a rate A31 = 5.6 · 107 s−1. Since each HLβ photon contains 12.1 eV of energy, it follows

that the power emitted in HLβ relative to the Hα power is

PLβ = A31N3 · (12.1 eV) = 8.15 · Pα. (4.11)

A similar calculation relates the power of the Lyman γ line (n = 4 to n = 1) to the power from the

Balmer β line: PLγ = 7.74 ·Pβ . Using these calculations, we compute the HLβ and HLγ contributions

to the EUV emission and plot the result in Fig. 4.1. This calculated emission rises to 300 kW, about

10% of the peak EUV power of 3 MW. However, we have not accounted for the most powerful

hydrogen line, the HLα line. Under the assumption of local thermodynamic equilibrium (LTE), to

be discussed below, the power of the HLα would be about five times that of the HLβ line [80], in which

case the powers of the HLα, HLβ , and HLγ lines total to about one third of the total EUV emission.

Clearly, the hydrogen emission is significant. Moreover, the LTE assumption, which is not expected

to hold rigorously for the Caltech experiments, populates states according to the Saha-Boltzmann

distribution, which favor the population of high n states. In Fig. 3 of Ref. [81], which describes

plasma conditions very close to those of the Caltech Solar Loop Experiment, the low n states may

have a higher population than that predicted by LTE, so the total hydrogen contribution to EUV

emission might be even larger than one third. The current data is insufficient to determine exactly

what percentage of the total power radiated comes hydrogen, and an experiment will be described in

the next section to answer this question, but the optical photodiode data suggests that a substantial

fraction of the EUV signal is hydrogen emission.

We now show that a pure hydrogen plasma in ionization equilibrium does not emit nearly as

intensely as the Caltech Solar Loop Experiment. The intensity of line emission is determined by the

populations of the associated ionization and excited states. These populations are in turn determined

by a detailed balance of atomic processes, including collisional excitation and de-excitation as well

as radiative de-excitation [82, 77]. The population levels are typically calculated numerically and
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can vary greatly based on the electron temperature and density. The temperatures and densities of

the Caltech plasmas happen to be similar to the divertor region in a tokamak, for which effective

average cross-sections for ionization and recombination that include multi-step ionization have been

calculated [83] and are reproduced in Fig. 4.3. These cross-sections are effective because they include

all excited states of neutral hydrogen; their utility, as explained by Stangeby, is that “one can proceed

as if all the atoms were in the ground state” [84, pg. 138]. Thus, the effective ionization rate 〈σν〉iz
gives the rate of neutral hydrogen atoms, including all excited states, being ionized, and the effective

recombination rate 〈σν〉re gives the rate at which an electron and proton recombine to form neutral

hydrogen of all excited states. The continuity equation for proton density ni is then

∂ni
∂t

+∇ · (niv) = 〈σν〉iz nen0 − 〈σν〉rc neni, (4.12)

where n0 is the neutral hydrogen density, which includes all excited states. In Eq. (4.12), ionization

acts as a source for protons whereas recombination acts as a sink. For this calculation, we assume a

steady-state and homogenous plasma and set the lefthand side of Eq. (4.12) to zero. This is a poor

assumption as the Caltech experiment is very fast (and thus not steady-state) and also has strong

flows from the footpoints (implying strong convection), but by making such assumptions we will

demonstrate the need for a non-equilibrium process to explain the strong energy discrepancy. The

resulting ionization balance from setting the lefthand side of Eq. (4.12) to zero is

n0

ni
=
〈σν〉rc
〈σν〉iz

. (4.13)

We take the electron density to be ne = 1021 m−3, based on Stark broadening of the Hβ line as

discussed in Sec. 2.2.4, and Te ∼ 2− 3 eV, based on the observed ionization states in nitrogen and

argon plasmas and estimates from spectral lines of oxygen and carbon impurities. Using Fig. 4.3

at T = 3 eV, 〈σν〉iz = 2 · 10−9 cm3/s and 〈σν〉re = 4 · 10−13 cm3/s, which gives n0/ni = 2 · 10−4.

At T = 2 eV, 〈σν〉iz = 4 · 10−10 cm3/s and 〈σν〉re = 9 · 10−13 cm3/s, which gives n0/ni = 2 · 10−3.

In either case, the vast majority of hydrogen is ionized, and only the small fraction of remaining

neutrals can participate in line emission.

To obtain the power radiated by such a hydrogen plasma, we utilize a second quantity called

the emissivity, L. This quantity is related to the power radiated by Prad = Lnen0vol, where vol is

the volume of the plasma. This quantity is computed numerically in Ref. [83] and is reproduced

in Fig. 4.4. For a plasma with ne = 1021 m−3 and T = 3 eV, L ≈ 1.1 · 10−20 ergs cm3 s−1,

and Prad =
(

0.2 W/cm
3
)
· vol. We estimate the plasma volume using the plasma dimensions

given in Sec. 4.1.2, namely, a loop length of 20 cm and a radius of 2 cm, giving a volume of

vol = πr2l ≈ 250 cm3. The total power is then only 50 W, a far cry from the megawatts estimated

in the UV range and even from the optical power estimated from the photodiode. For T = 2 eV, we
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have L ≈ 6.5 · 10−21 ergs cm3 s−1, and Prad = 400 W, which is again too small.

Another theoretical estimate of the plasma radiation can be done assuming local thermodynamic

equilibrium (LTE). The LTE model assumes that the population levels are balanced by collisional

excitations and de-excitations so that the excited states assume a Saha-Boltzmann distribution [77,

pg. 118]. The calculations, performed by Vernon Chaplin, predict radiation levels that are some-

what higher than the ones derived above but that are still too low to account for the experimental

observations. Even within the uncertainty used in estimating the plasma parameters, the theoretical

emission from an equilibrium plasma appears too low to explain the experimental observations.

The large radiation levels suggest that the Caltech plasmas contain more neutrals than suggested

by Eq. (4.13). High neutral densities are often associated with a lower-temperature plasma that is

only partially ionized. Indeed, equilibrium hydrogen plasmas are typically most emissive when the

electron temperature is such that the concentrations of ions and neutrals are about equal [77, pg.

202]. At 1 eV, 〈σν〉iz = 1.5 · 10−12 cm3/s and 〈σν〉re = 6.0 · 10−12 cm3/s from Fig. 4.3, which

together with L = 9 · 10−22 ergs cm3 s−1 and a plasma volume of 250 cm3 predict an emission of 90

kW, which is significantly closer to the radiation losses observed experimentally. The temperature of

hydrogen plasmas on the Caltech Solar Loop Experiment have not yet been accurately diagnosed, so

our hydrogen plasmas may be slightly cooler than expected. However, C III (e.g., carbon ions with

two electrons stripped) lines have been observed, which suggests an electron temperature greater

than 2 eV [80]3. However, we shall now see that non-equilibrium effects can allow a hydrogen plasma

to radiate like a lower-temperature and partially ionized plasma even when the electron temperature

suggests burnthrough.

The above calculations involve several assumptions that are quite dubious, and questioning these

assumptions may help to explain the large vacuum photodiode signals. First, we assumed that the

plasma is in equilibrium, but the duration of the Caltech Solar Experiment is not much longer

than the ionization equilibration time for hydrogen atoms in the plasma conditions described. This

equilibration time is roughly the time needed to ionize neutral hydrogen atoms injected into the

plasma and is computed as follows. The analog of Eq. (4.12) for neutral hydrogen is

∂n0

∂t
+∇ · (n0v) = −〈σν〉iz nen0 + 〈σν〉rc neni. (4.14)

We ignore convection by setting v = 0. Let the equilibrium densities be ni,eq and n0,eq. If we then

add a extra amount of neutral atoms, i.e. n0 = n0,eq + δn0, then the continuity equation becomes

∂(δn0)

∂t
= −〈σν〉iz ne(δn0), (4.15)

3This statement is based on the LTE assumption. While LTE may not be accurate for the Caltech experiments,
we believe that it provides a rough estimate. In this case, at temperatures below 2 eV, carbon ions are predicted to
be almost exclusiively in the C II ionization state.
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from which the relaxation time τ is τ = 1/(〈σν〉iz ne). At T = 3 eV and ne = 1015 cm−3, we have

τ ≈ 0.5 µs, and at T = 2 eV we have τ ≈ 2.5 µs. This relaxation time is not much shorter than the

time scale of the plasma itself, so we cannot expect the plasma to be in equilibrium. This essentially

means that the hydrogen does not have enough time to achieve the ionization balance predicted by

Eq. (4.13) and that we can expect a larger number of neutrals. This proposed situation is similar to

that investigated by Carolan and Piotrowicz, who studied the emission of impurities that have had

insufficient time to achieve coronal equilibrium [85]. They found that impurities such as carbon and

oxygen radiate more intensely at temperatures above burnthrough when not given enough time to

equilibrate. We propose that hydrogen, the majority species, is behaving similarly: even though the

temperatures of the Solar Loop Experiment may exceed burnthrough, the plasma may still radiate

at very high levels as the neutrals gradually ionize over the course of microseconds. Note also that

L, the emissivity, is two orders of magnitude higher at 3 eV than at 1 eV. Thus, it may be that

the Solar Loop Experiment, because of its fast timescale, has a large population of neutrals like a

lower-temperature, partially ionized plasma but, at the same time, has a larger value of L due to its

higher electron temperature.

We also ignored convection in Eq. (4.13), but the Caltech Solar Loop Experiment certainly

exhibits strong flows from the footpoints [43, 17]. It is generally accepted that plasma interaction

with the chamber wall results in a larger density of neutral atoms as ions recombine with electrons

from the wall. It is possible that this higher concentration of neutrals is then pumped out of the

gas inlet via the MHD mechanism described in Sec. 2.1.5. Away from the wall, the neutrals would

ionize on a microsecond timescale, during which time they would radiate far more intensely than

an equilibrium plasma. Moreover, as suggested by Post, the presence of molecular hydrogen could

increase the recombination rate by up to four orders of magnitude [83]! The molecular hydrogen

concentration is expected to be very minute in the plasma itself but could be significant in the gas

inlet.

In summary, a substantial fraction of the vacuum photodiode signals is hydrogen line emission,

but the magnitude of such emission cannot be explained by emission from an equilibrium plasma.

However, non-equilibrium effects might cause the plasma to radiate more intensely due to a large

number of neutral atoms; the enhanced neutral concentration might be attributed to the short time

scale of the experiment as well as the MHD pumping force that drives strong plasma flows from the

wall. Given the uncertainties in the calculation, it is even conceivable that the vacuum photodiode

signals are entirely caused by hydrgeon line emission; this hypothesis is supported by the correlation

between the vacuum photodiode signals and the hydrogen optical line intensity. Of course, there are

other sources of EUV radiation; in the following section we shall look into both impurity radiation

and thermal bremsstrahlung and discuss their potential contributions to the vacuum photodiode

signals.
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4.1.4 Other Emission Processes

We now discuss two other radiation mechanisms: line emission from plasma impurities and ther-

mal bremsstrahlung. Impurity line emission typically dominates the radiative losses of a hydrogen

plasma, and one might suspect that the large vacuum photodiode signals are due to impurity emis-

sion. However, the previous section demonstrated that hydrogen emission is a substantial fraction

of the total radiation, and we discuss in this section why impurity emission may not be as dominant

for the Caltech Solar Loop Experiment as it is for other experiments. We also outline a future

experiment to determine the relative contributions of hydrogen and impurity emission. Thermal

bremsstrahlung, in contrast, is far too weak to contribute significantly the observed radiation levels.

In previous laboratory hydrogen plasmas, impurity line emission typically dominated the radia-

tive losses. The reason for this, as discussed in the previous section, is that the hydrogen atoms

quickly ionize and cease line emission. Impurities, although low in concentration, continue to radiate

until fully stripped of all bound electrons, which may not occur until very high temperatures have

been achieved. Moreover, the line emission of certain impurity ionization states can be quite intense.

Impurities are a major hindrance to tokamak start-up [78] and have thwarted previous spheromak

experiments [27]. In light of these previous experiences with impurity radiation, one might suspect

that the excessively large vacuum photodiode signals should be due to impurity emission and that

the hydrogen emission is negligible, as suggested by the analytical calculations. However, we have

seen in the previous section that hydrogen emission is a non-negligible fraction of the total emission,

so the role of impurities in the Caltech experiments may be less significant than for other previous

experiments. This is probably because these previous experiments are typically hotter (so that the

impurities are more emissive), last longer (so that the hydrogen has time to ionize more fully), and

involve more interactions with the chamber walls (so that more impurities are introduced into the

plasma). Indeed, from Figs. 3(d) and 4(d) from Ref. [85], the burnthrough temperature for carbon

is 9 eV, and the burnthrough temperature for oxygen is about 20 eV. Because the Caltech plasmas

are colder than both of these burnthrough temperatures, the impurity emission from these species

will not be as intense as it is for other experiments at higher temperatures.

If impurity emission dominates the hydrogen emission, then one would expect impurity lines to

be readily observed with the spectrometer. On the contrary, while the Hβ line is readily measured on

the Caltech Solar Loop Experiment, locating impurity lines has been somewhat difficult. Impurity

lines were finally observed on one of the final experimental runs before a shutdown for maintenance;

these lines were located by assuming that the plasma was slightly cooler (2 eV) than previously

expected (3-5 eV) and also by aiming the spectrometer directly at the gas inlets from which the

impurities originate. A sample of the spectrometer data with identified impurity lines4 is shown in

4This spectral window is particularly rich in impurity lines, and analysis of this window, which is beyond the scope
of this thesis, is expected to yield very useful information concerning temperature and relative impurity concentrations.
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Fig. 4.5.a, whereas Fig. 4.5.b shows the Hβ line, whose magnitude far exceeds that of any impurity

line. There are many factors that must be taken into account when comparing the intensities of

these spectral lines. The impurity spectra were obtained on shot 9163, a co-helicity hydrogen plasma

with the gas valve supply charged to 500 V, while the Hβ spectrum was obtained from shot 9024,

a counter-helicity hydrogen plasma also formed with the gas valve supply charged to 500 V. For

the impurity spectra, the spectrometer was gated for the entire lifetime of the plasma, whereas

the Hβ spectrum was obtained by gating only over a microsecond. For the impurity spectra, the

spectrometer was aimed at the gas inlets, the brightest portion of the plasma, whereas the Hβ

spectrum was acquired from a line of sight about ten centimeters away from the electrodes. Clearly,

the spectra should be compared under identical conditions, but, if the Hβ spectra was measured

with the spectrometer gated for the entire plasma duration and pointed directly at the gas inlets,

we would expect the Hβ line to be even more intense than shown in Fig. 4.5.

If the radiative losses are due entirely to impurity emission, then the implied impurity concen-

trations are suspiciously large. Carbon and oxygen are the “usual suspects” for low-Z impurities;

the emissivity of carbon at Te = 3 eV is roughly 10−32 Wm3, while that of oxygen at the same

temperature is 2 · 10−33 Wm3 [85, 83]. Carbon is thus more emissive at these temperatures, so we

ignore oxygen. If we assume that the entire radiative losses, up to 1 MW as predicted by the vacuum

photodiodes, are due to carbon emission alone, then

PC = 1 MW = LCnenCvol, (4.16)

and using ne = 1021 m3 and vol = 250 cm−3 we get

nC =
1MW

Lnevol
= 4 · 1020 m−3. (4.17)

This implies that the carbon concentration is 40 percent of the electron density, or that the carbon

concentration is roughly equal to the hydrogen concentration. This does not seem realistic. In the

Swarthmore Spheromak Experiment, the carbon concentration is estimated to be 2 percent of the

hydrogen concentration, which is nominally 5 · 1020 m−3 [47]. The Swarthmore vacuum chamber is

baked out to reduce impurity levels, but the Swarthmore plasmas also interact with a much larger

surface area, including the coaxial spheromak guns that create the plasma. On the PISCES-B

experiment, the baseline carbon ion fraction is 0.2%, and active injection of methane raises this

fraction to only 2% [86]. Thus, a 40% carbon fraction seems unreasonably high.5 Before concluding

5A similar analysis for hydrogen, with L = 10−33 W m3 at Te = 3 eV, would require nH = 4 ·1021 m−3 to produce
a megawatt of power. This would imply that the plasma is far from ionization equilibrium, which agrees with the
rising optical hydrogen line intensities observed during a shot. The density of the neutral gas puff on the Spheromak
Experiment is believed to be well below 1021 m−3 [46], but this density has not been measured on the Solar Loop
Experiment. Since the Solar Loop Experiment uses different power supplies for the gas valves, and since the gas valves
are quite sensitive to the power supply [87], the Solar Loop Experiment may have a different density of neutral gas
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too much from Eq. (4.17), though, we note that the values of ne and Te are not precisely known,

and nC is inversely proportional to ne and is a strong function of Te. For instance, if Te = 2 eV then

the LC = 2 · 10−33 W m3, and the required carbon concentration is five times higher. The plasma

parameters are not currently known to sufficient precision to constrain the impurity concentration,

and it is quite possible that impurities are contributing substantially to the radiative losses.

An experiment has been designed to determine the contribution of the HLα line to the vacuum

photodiode signal in isolation from other lines. A pair of vacuum photodiodes will be installed in the

middle of the vacuum chamber, roughly in the same location as the x-ray diodes shown in Fig. 2.1.

By adjusting the collimation, these vacuum photodiodes will view the entire plasma on the Solar

Loop Experiment. A lithium fluoride window will be installed over one vacuum photodiode; lithium

fluoride has a sharp cutoff in the VUV just above the HLα line and has roughly a 50% transmission

the HLα line. Surveying the main lines from low-Z impurities, the LiF window should filter out all

impurity lines in the EUV. Thus, if the filtered vacuum photodiode registers a very small signal

compared to the unfiltered vacuum photodiode, then the HLα line is not contributing significantly

to the EUV emission. If, however, the filtered signal is roughly half of the unfiltered signal, then the

Solar Loop Experiment does indeed possess strong hydrogen line emission even though the electron

temperature suggests nearly complete ionization of hydrogen.

Bremsstrahlung is a radiation mechanism that is important for high-temperature plasmas but is

insignificant for the Caltech experiments. Bremsstrahlung is the radiation emitted by an accelerated

charge; in a plasma, an electron is continually being accelerated by Coulomb collisions with each

particles, and the plasma emits a continuous spectrum based on the particle distribution function.

Bremsstrahlung radiation from a thermal plasma is given in cgs units as [79, pg. 160]

εffν =
dW

dtdV dν
=

25πe6

3mc3

√
2π

3mkBT
Z2nenie

−hν/kBT ḡff . (4.18)

ḡff is the velocity-averaged Gaunt factor and can be taken to be about one for this calculation. The

energy spectrum dies off exponentially for photon energies above the plasma temperature. As the

Caltech plasmas have a temperature T ≈ 3 eV, most of the bremsstrahlung energy is concentrated

above the wavelength λthermal = ch/(kBT ) = 410 nm; this makes bremsstrahlung an unlikely can-

than the Spheromak Experiment. We can roughly estimate the neutral gas density as follows. The neutral gas flows
from the fast gas valves through teflon tubes of volume 19 cm3 into the main vacuum chamber, which has a volume
of 1.8 m3. When the gas valves are puffed, the chamber pressure rises on the order of 1 mtorr, which corresponds to
8 · 1019 gas particles let in by a single puff. Since these particles travel through four teflon tubes (one for each gas
inlet), when the gas puff is just exiting the gas inlets and occupies the tube volume, the neutral density is roughly
1 · 1024 m−3. We assume that, once the neutral gas reaches the gas inlet, it expands in a cone of opening angle 45 ◦

and that the linear density scales inversely with the cone radius squared. Under these assumptions, the neutral gas
density a distance 4 cm away from the gas inlet would be 4 · 1021 m−3 since the radius of the teflon tube is about
0.26 cm. This suggests that the Solar Loop Experiment may indeed start at a relatively high neutral density as would
be required by the vacuum photodiode data assuming the radiation is mostly hydrogen line emission. Of course,
neutral gas density measurements should be made on the Solar Loop Experiment to corroborate these “back of the
envelope” calculations. The author would like to thank Auna Moser for assistance in comparing these calculations to
measurements made on the Spheromak Experiment.
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didate for explaining the large EUV emission observed by the vacuum photodiodes. Moreover, the

overall power emitted by bremsstrahlung is rather small; integrating Eq. (4.18) over all frequencies

gives

dW

dtdV
=

25πe6

3mc3

√
2π

3m
Z2neni

√
kBT

h
, (4.19)

again in cgs units. Using Z = 1, ne = ni ∼ 1021 m−3, and T ∼ 3 eV, Eq. (4.19) gives 0.026 W/cm
3
.

From a plasma of volume 250 cm3 the power of bremsstrahlung radiation is Pbrem ∼ 6.6 W, which

is far too small to account for the power levels estimated by the vacuum photodiodes. Thermal

bremsstrahlung is typically more important for hot plasmas because it increases with temperature

whereas line radiation decreases assuming the plasma has burned through the radiation barriers. For

a colder plasma like the ones produced in the Caltech experiment, though, thermal bremsstrahlung

is inconsequential.

4.2 Co- Vs. Counter-Helicity Merging

The original purpose of the vacuum photodiode array was to provide spatial resolution to the EUV

emission of co- and counter-helicity hydrogen plasmas. In this function, the array has indeed detected

enhanced emission from counter-helicity merging that can, in many instances, be correlated with

spikes in the x-ray diode signals. In this section, we shall compare co- and counter-helicity hydrogen

plasmas formed with a 6 kV discharge voltage and a 500 V charging voltage on the fast gas valve

capacitor bank. We shall find that something quite dramatic occurs for the counter-helicity plasma

around 2.7 µs. At this time, EUV emission rises sharply, x-ray spikes are observed, the upper legs of

the plasma brighten and appear to interact with the chamber wall, and a noise pulse is observed in

the electronics. These events are believed to be related to magnetic reconnection and do not occur

for a co-helicity plasma formed under the same conditions. As we shall see in Sec. 4.3, these events

can be tamed by increasing the charging voltage of the fast gas valve capacitor bank, which admits

more neutral gas into the chamber prior to breakdown.

For all counter-helicity shots presented in this section and in Sec. 4.3, the bias magnetic field was

created in the RL configuration discussed in Sec. 2.1.3. The second configuration of the bias field that

produces counter-helicity loops, LR, produces markedly different plasma behavior, as is discussed

in Sec. 4.4. Such a dramatic difference in behavior is not observed between the two co-helicity

configurations, and we will not distinguish between these two.

4.2.1 Comparing Co- and Counter-Helicity Plasmas

Fig. 4.6 overlays the vacuum photodiode signals for both a co-helicity shot (shot 7774) and a counter-

helicity shot (shot 7763). All twelve channels of the array are plotted with the vertical channels
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plotted on the left column and the horizontal on the right. The upper left corner of each plot

contains a legend to identify the position of the individual detector within the array. The emission

from the two plasmas is remarkably similar for the first several microseconds, suggesting that co-

and counter-helicity configurations have the same emission during this time and that this part of the

vacuum photodiode signals is highly reproducible. Between 1.7 and 2.7 µs, however, the counter-

helicity signal rises, sometimes precipitously, above the co-helicity signal. We hypothesize that this

time is the beginning of the merging and that the large counter-helicity emission is due to the

additional magnetic reconnection of the axial fields, as proposed in Ref. [20]. The mechanisms by

which magnetic reconnection can cause enhanced radiation will be discussed in Sec. 4.2.2. The plots

in Fig. 4.6 end at 4.7 µs; beyond this time, the vacuum photodiode signals vary significantly, and the

signal levels can be quite high. We will not focus on these later signals as they do not correspond

with the main plasma activity: the formation and growth of the plasma loop.

For counter-helicity plasmas, the large UV signals obtained from the topmost channels on the

array are corroborated by fast camera images such as Fig. 4.7. Around the time of the UV burst, an

intense brightness appears in the upper legs of the plasma, in the vicinity of channels 1 and 2 of the

vacuum photodiode array, as the plasma loops merge and detach from the electrodes. This merging

is seen more clearly in Fig. 4.9, in which the interframe timing of the Imacon fast camera is reduced

to focus on this time period. Interactions with a bolt in the chamber wall several centimeters above

the electrodes can occasionally be seen; the bolt is shown most clearly in Fig. 2.2. It is possible

that the UV and x-ray signals originate from this interaction with the chamber wall. However, the

UV burst typically persists for some time, up to a microsecond, while the arcing to the bolt dies

down more quickly. Such intense activity is not seen in images of a co-helicity plasma, as shown in

Fig. 4.8.

The rapid rise in the vacuum photodiode for counter-helicity plasmas is sometimes coincident

with x-ray bursts on the x-ray diodes. Fig. 4.10 plots two such occurrences. The x-ray bursts that

are plotted were obtained through the 200 nm thick Al foil filter whose transmission curve is plotted

in Fig. 2.9; since this filter does not transmit hydrogen lines, the x-ray bursts, and perhaps part of

the vacuum photodiode signals, must be caused by something other than hydrogen line emission.

Different possibilities, such as bremsstrahlung from energetic electrons, are discussed in Sec. 4.2.2.

We also note that the x-ray bursts presented here rise more sharply and at a slightly later time than

the EUV bursts; this fact may be useful in determining the nature of the x-ray bursts.

The correlation between the x-ray diode data and the vacuum photodiodes data is not perfect;

there are times when the x-ray diodes register a peak while no special activity is seen on the vacuum

photodiodes, and vice versa. This lack of consistent correlation may be due to the sensitivity of

the x-ray diodes to their alignment as discussed in Sec. 2.2.3. In fact, during the set of shots in

which Fig. 4.10 was obtained, no significant x-ray activity was seen before 4.7 µs for the first several
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shots. Based on the large UV emission observed on the upper channels of the array, the x-ray diodes

were re-aligned to point slightly upwards, after which x-ray bursts were seen on two of the next four

shots. This anecdote demonstrates how sensitive the x-ray diode signals are to alignment and how

the vacuum photodiode data can aid in aligning the x-ray diodes to optimize the chance of registering

an x-ray burst. To improve the x-ray diode setup, a mechanical system should be implemented to

precisely align the x-ray diodes in a reproducible fashion, or the collimation of the diodes should be

redone in order to give the diodes a wide-angle view that covers the entire plasma.

Other differences between co- and counter-helicity plasmas can be seen in the plasma current

and electrode voltage. Fig. 4.11 shows the plasma current and electrode voltage for both a co- and

counter-helicity shot. The vertical dashed line is at 2.4 µs. At this time, the counter-helicity current

begins to oscillate and fails to rise as rapidly as the co-helicity current. The oscillations are due to

ringing in the electronics of the Rogowski coil and do not represent true current oscillations; they are

similar to the oscillations that are induced by breakdown and that are seen at the beginning of the

shot for both co- and counter-helicity plasmas. The deviance of the mean counter-helicity current,

obtained by a boxcar average over 0.8 µs, from the co-helicity mean current may indicate that the

reconnection process disrupts the current flow and that the plasma has trouble in re-establishing a

current path. The primary motion of particles within a magnetized plasma is along magnetic field

lines. As the bias field links the anode and cathode, the initial flow of current can be along these

field lines. The reconnection process for counter-helicity plasmas, however, rearranges the field lines

so that lines initially linking the anode and cathode now link the two quadrants of the anode and

the two quadrants of the cathode. Electrons cannot flow along such field lines and contribute to the

main current without drifting across such field lines.

The electrode voltages for both co- and counter-helicity shots are initially very similar. At 2.4

µs, both voltages drop, but the counter-helicity electrode voltage drops more sharply and afterwards

has several rises and falls while the co-helicity trace progress more steadily to zero. As discussed in

Sec. 2.2.2, a larger voltage may be associated with a rapidly expanding plasma, and a sudden drop

in the electrode voltage may signify the change of the current to a shorter and lower-inductance

path. The voltage drop at 2.4 µs might be similar to the voltage drop that occurs at breakdown.

Also, a voltage spike can be interpreted in analogy to the spark that occurs when one unplugs an

electrical appliance. In any electrical circuit carrying a current, if the circuit is suddenly opened, a

large voltage will appear across the gap. This voltage spike is an attempt by the circuit to maintain

the current flow. When unplugging toasters, the large voltage spike can result in a spark that

allows current to continue flowing. The spikes that appear on the electrode voltage might be the

analogous voltage spike as the loops detach and disrupt the flow of current. Regardless of the exact

interpretation of the voltage signals, something drastic is occurring in a counter-helicity plasma after

2.4 µs but not in co-helicity plasmas.
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4.2.2 Magnetic Reconnection, Current Sheets, and Energetic Electrons

Comparisons of the vacuum photodiode signals between co- and counter-helicity suggest that the

signals consists of two components. The first component is a broad and smooth signal with a

duration of several microseconds, while the second component consists of faster bursts that rise

sharply and last from a microsecond down to tens of nanoseconds. This second component appears

mainly in counter-helicity shots. In Sec. 4.1, we hypothesized that the vacuum photodiode signal are

proportional to the rate of Ohmic dissipation, but in counter-helicity shots the vacuum photodiode

signals spike significantly while the current does not. It seems unlikely that the resistivity of a

counter-helicity plasma suddenly becomes much greater than its co-helicity counterpart, and we

believe that some other mechanism is creating the large UV bursts seen in counter-helicity shots.

We now discuss the possible ways in which magnetic reconnection, seen in Fig. 4.9, could produce

the enhanced emission.

Magnetic reconnection involves current sheets that could produce local Ohmic heating in excess

of the heating produced by the main plasma current; this excess heat would then lead to larger

radiative losses. Current sheets arise during magnetic reconnection because the merging magnetic

fields induce an electric field that drives currents via Ohm’s law [2, ch. 12]. In this way, the energy

contained in the magnetic fields that are being annihilated can be transferred via Ohmic dissipation

to the plasma particles, and, under the hypothesis of Sec. 4.1.2, the Ohmic heat generated inside the

current sheet will be radiated away. We can estimate the plausibility of this argument by calculating

the energy contained in the magnetic field and comparing it to the power radiated by the counter-

helicity bursts in excess of the co-helicity signals. We use a typical magnetic field strength of B ≈ 0.1

T. The volume of plasma within the view of a single vacuum photodiode is vol = 2πr2 · l; the factor

of two comes from the fact that there are two loops, the loop radius r will be taken to be 0.02 m, and

the length l will be the diameter of the vacuum photodiode’s viewcone, calculated in Sec. 3.5.3 to be

about 9.4 cm. With these values, the energy contained in the axial field is roughly 1 J; liberating this

energy over the course of a microsecond would correspond to power levels of 1 MW. The observed

difference between counter- and co-helicity radiation levels, estimated from channel 1 of the vacuum

photodiode array data plotted in Fig. 4.6, is approximately 0.25 MW. Thus, it is not unreasonable

to suggest that the counter-helicity EUV bursts are energized by the reconnection of the axial field.

Another radiation mechanism is bremsstrahlung from a small population of energetic, non-

thermal electrons excited by magnetic reconnection. Such bremsstrahlung would be of a higher

frequency and intensity that of the thermal electrons. Electrons may be energized by the induced

electric field associated with magnetic reconnection; this has been observed in tokamaks [31, 32], the

magnetosphere [88, 89], and in numerical simulations [28, 29]. One interesting feature of plasmas

is that faster-moving particles experience fewer collisions, so populations of energized electrons may

exist for some time before being thermalized by collisions. Energetic electrons might explain the
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bursts seen on the filtered x-ray diode, for the filter blocks all hydrogen lines as shown in Fig. 2.9.

Therefore, the filtered x-ray diode signals must come from another mechanism, either energetic

electrons or perhaps some impurity line that only begins to radiate during reconnection.

4.3 Counter-Helicity Behavior as a Function of Neutral Gas

Levels

The above comparison between co- and counter-helicity experiments was conducted with the gas

valve power supply charged to 500 V, for which a relatively spectacular event occurs in counter-

helicity plasmas sometime between 1.7 and 2.7 µs. These spectacular events, however, can be

diminished by increasing the charging voltage of the fast gas valve capacitor bank, which lets more

neutral gas into the chamber before the shot. In general, counter-helicity plasmas formed with a

higher charging voltage of the fast gas valve capacitor bank produce sharper fast camera images,

emit less UV and x-ray radiation, expand and detach slower, and have smaller electrode voltage rises.

These observations are consistent across counter-helicity plasmas made from hydrogen, nitrogen, and

argon. Interestingly, though, while the overall EUV emission from a hydrogen plasma decreases as

the charging voltage of the fast gas valve capacitor bank is changed from 500 V to 550 V, extremely

large emission appears on the outer channels of the vacuum photodiode array; these bursts in UV

are believed to originate from the central bright spots described in Ref. [20] and in Sec. 1.4.1.

Increasing the charging voltage of the fast gas valve capacitor bank creates a plasma of higher

peak density. This is suggested in Table 2.1, which shows that the total amount of hydrogen puffed

into the chamber rapidly rises with the charging voltage, but these measurements do not prove

that the extra gas ends up as ionized plasma in the loops. However, electron density measurements

confirm that the peak density of a counter-helicity hydrogen plasma formed with a 550 V charging

voltage on the fast gas valve capacitor bank is indeed larger than that of a similar plasma formed

with a 500 V charging voltage. The density is determined by measuring the Stark broadening of

the Hβ lines as described in Sec. 2.2.4. For these measurements, the spectrometer’s channels were

aligned horizontally so that the twelve spectrometer chords extend out along the midplane away

from the electrodes, as shown in Fig. 4.12. The gate time of the spectrometer’s CCD camera was set

to a 1 µs time window, and this time window was systematically shifted to locate the time of peak

density for each gas voltage setting. For a 500 V charging voltage of the fast gas valve capacitor

bank, the average peak density was ne = (6.5 ± 1.0) · 1020 m−3 obtained by gating from 2 to 3 µs.

For a 550 V charging voltage, the average peak density was ne = (12.2± 2.3) · 1020 m−3 obtained by

gating from 3 to 4 µs . Figure 4.12 plots the density profiles at these times. Note that the plasma

does not become less dense after this time but rather drifts past the spectrometer field of view; more

work should be done to investigate the densities at later times. The peak density values reported
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here are obtained by first averaging over several shots and then averaging the three channels with

the largest density values. The error bars in fig. 4.12 represent the shot-to-shot variations. The ratio

of peak density is 1.88± 0.47. These measurements are rough and can be improved by refining the

experimental techniques, but the preliminary results indicate that the plasma does indeed become

denser when the charging voltage of the gas supply is increased.

For the remainder of this section, we shall use the following nomenclature. Plasmas formed

with the fast gas valve capacitor bank charged to 500 V will be referred to as low-mass plasmas,

plasmas formed with the fast gas valve capacitor bank charged to 550 V will be referred to as mid-

mass plasmas, and plasmas formed with the fast gas valve capacitor bank charged to 600 V will be

referred to as high-mass plasmas. Obviously, the words “low,” “mid,” and “high” are relative and

perhaps subjective, but this naming scheme is more concise than specifying the value of the charging

voltage on the fast gas valve capacitor bank for each plasma.

Fast camera images show that increasing the charging voltage of the fast gas valve capacitor

bank produces sharper images, slows the expansion of the loops, and delays detachment from the

electrodes. Fig. 4.13 shows a sequence of images for a mid-mass plasma (shot 7982); it is sharper than

its low-mass counterpart shown in Fig. 4.7. We also note that both the lower and upper legs of the

mid-mass plasma become bright, in contrast to the low-mass plasma. Fig. 4.14 superimposes both

Fig. 4.7, colored green, and Fig. 4.13, colored blue. This superposition clearly demonstrates that

the mid-mass plasma expands slower than its low-mass counterpart. This is not surprising, as the

mid-mass plasma was shown by spectroscopic measurements to be denser and is thus accelerated less

by the magnetic forces than the low-mass plasma. Since the mid-mass plasma expands more slowly,

its footpoints detach from the electrodes at a later time than the low-mass plasma; in Fig. 4.14, the

low-mass plasma appears detached at frame 7, or 2.30 µs, but the mid-mass plasma does not detach

until frame 10, or 3.35 µs.

The two different charging voltages of the fast gas valve capacitor bank produce different levels

of EUV emission as well. Fig. 4.15 overlays the vacuum photodiode signals for a low-mass plasma

(shot 7755) with that of a mid-mass plasma (shot 7980). For the low-mass plasma, the strongest

emission comes from the very top of the plasma with strong emission propagating down the inner

channels, which are plotted in the lefthand column. The signals from the upper channels are not as

intense in the mid-mass plasma, but channel 11 registers enormous radiation that seems isolated to

the outermost channels. 6 Such large yet localized radiation is not seen on the outer channels for low-

mass plasmas, and we hypothesize that this radiation is emanating from the bright central region.

When the vacuum photodiode signals are summed over the entire array, the EUV emission from

the low-mass plasma is comparable to or even larger than the mid-mass plasma for the first several

6The data presented in Fig. 4.15 shows an intense radiation burst only on channel 11 in the mid-mass plasma, but
other shots with the same parameters show large emission from channel 10 as well.
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microseconds. This is surprising, as plasma emission typically scales like the square of density, so

denser plasma are expected to have higher radiation losses. The Caltech plasmas may be so dense

that they have achieved the high-density limit of radiation losses observed in magnetic confinement

devices [78].

Both the plasma current and voltage change appreciably in response to increasing the charging

voltage of the fast gas valve capacitor bank. We focus first on the current. Increasing the charging

voltage causes the plasma current to peak sooner and at a larger value as seen in Fig. 4.16, which

plots the discharge currents for a low-mass, mid-mass, and high-mass plasma together (shots 8203,

8205, and 8208 respectively). The mean current, obtained by a boxcar averaging over 0.8 µs to

remove the spurious oscillations, reaches a peak value of 65 kA for the low-mass plasma but reaches

85 kA for the mid-mass plasma and 90 kA for the high-mass plasma. We observed in Sec. 4.2.1

that the low-mass plasma current undergoes a disruption and deviates from the expected sinusoidal

behavior; Fig. 4.16 shows that this disruption is less apparent for the mid-mass and high-mass

plasmas. The current data also contains spurious oscillations on the Rogowski coil that appear at

breakdown and again in the middle of the shot. These spurious oscillations are less severe for the

mid-mass plasma and are almost entirely absent for the high-mass plasma.

Imacon images show that low-mass plasmas expand faster and detach sooner from the electrodes,

and we hypothesize that this abrupt detachment may be responsible for disrupting the flow of current

and inducing the oscillations. A mid-mass plasma expands at a slower pace and perhaps detaches in

a smoother fashion, resulting in less disruptions and a steadier current. Imacon images for high-mass

plasmas show that the plasma remains attached to the electrodes for a very long time, and indeed,

the current trace for a high-mass plasma is the smoothest of all, peaking at more than 90 kA and

suffering the least disruption around 2.7 µs.

Because the current traces obtained with a larger gas valve voltage return to zero at earlier

times, one might attribute the change in current to the differences in plasma inductance due to

the change in expansion rates. A rapidly expanding plasma quickly grows in size and has a larger

inductance than a slowly expanding plasma. If we model the plasma and capacitor bank as an LRC

circuit, then the current would have larger amplitude and shorter period with a smaller inductance.

However, a close look at Fig. 4.16 shows that the mean values of the three currents are almost

identical over the first microsecond even though the plasmas are expanding at different rates at this

time. The difference in current appears to begin at a particular time, which seems more consistent

with a change in magnetic topology that begins at the onset of reconnection rather than a difference

in expansion rates, which is in action even at the beginning of the shot. Moreover, if the current

finds a new path as the plasma detaches, then the size and inductance of the plasma loop will have

little influence on the current profile after detachment. Really, to study this matter further, the

path of the current should be determined before and after detachment. This may involve detailed
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measurements using the magnetic probe or perhaps the development and installation of small and

moveable Rogowski coils inside the chamber.

More insight can be obtained from the voltage traces. Three voltage traces for a low-mass, a

mid-mass, and a high-mass plasma (shots 8203, 8205, and 8208 respectively) are plotted together in

Fig. 4.17. The traces are synchronized such that breakdown for all three shots occurs at 0.0 µs. The

large signals prior to 0.0 µs are simply the main bank applying the discharge voltage to the electrodes

before current can flow. For the low-mass plasma, the neutral gas takes more than a microsecond to

breakdown; for mid-mass and high-mass plasmas the breakdown time is progressively shorter. For

non-hydrogen plasmas, the breakdown time can be even longer. After breakdown, all three voltage

traces drop to about 2 kV. However, the low-mass plasma voltage starts to rise significantly to 4

kV until, at about 2.7 µs, it plummets again. The voltage rise is presumed to be associated with

the rapid expansion while the voltage plummet is associated detachment as the current finds an

alternate, lower inductance path. We do not see this steady rise for mid-mass plasmas, but we do

see a voltage spike at 2.7 µs. For high-mass plasmas, the voltage is more or less flat with a minimal

rise at 2.7 µs. This trend of a flatter voltage trace with increased charging voltage of the fast gas

valve capacitor bank is seen in both nitrogen and argon plasmas as well.

In summary, all of the disruptive features exhibited by counter-helicity plasmas that are absent

in co-helicity plasmas can be mitigated by increasing the charging voltage of the fast gas valve

capacitor bank, which admits more neutral gas into the chamber and produces denser plasmas. We

hypothesize that these disruptive features are signatures of a change in magnetic topology and that

this change is slowed down by increasing the plasma’s density and hence inertia. Of course, this

hypothesis needs to be verified by measurements of the magnetic field in the vicinity of the footpoints.

Another intriguing possibility is that the plasma becomes “gas starved” for lower charging voltages.

That is, the MHD pumping force described in Sec. 2.1.5 may exhaust the local density of plasma in

the footpoints for lower charging voltages, leading to disruptive behavior. It may be possible to align

the spectrometer in such a way as to measure the density in the gas inlet without simultaneously

measuring the density of the plasma loop immediately outside the inlet. Such measurements would

shed light on the nature of the plasma detachment.

4.4 Bias Field Configuration

In the course of these studies, an interesting observation has been made regarding the polarity of the

bias magnetic field. This section documents this finding in the hopes that a future graduate student

will someday explain this phenomena. As noted in Sec. 2.1.3, there are two field configurations that

produce counter-helicity shots. In principle, these two configurations should produce plasmas that

are mirror-images of each other. Experimentally, though, significant differences have been found
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between the two field configurations. The RL configuration produces bright spots and enhanced

x-ray emission as has been discussed. The LR configuration, however, does not form bright spots

and does not emit strongly in x-ray during the first several microseconds of the experiment. In fact,

at times when the RL configuration becomes bright at the legs, the LR configuration becomes quite

dim. However, at much later times, around 7.2 µs after breakdown, the LR configuration begins to

arc brightly across the electrodes while a plume of plasma is seen to brighten, erupt, and detach.

Fig. 4.18 shows an LR configuration formed with a 500 V charging voltage on the fast gas valve

capacitor bank; this figure should be compared with Fig. 4.19, which has the same parameters and

camera timings but a bias field configuration RL. It is not clear why reversing the magnetic field

configuration should cause such a drastic change in plasma behavior, and this asymmetry should be

investigated further. In particular, the delayed eruption of plasma may have implications for solar

physics.

4.5 Conclusions and Directions for Future Work

This chapter presents two main conclusions regarding the vacuum photodiode signals. First, the

signal amplitudes imply intense radiative losses from the plasma that appear consistent with the

hypothesis that the plasma radiates away any heat deposited by Ohmic dissipation. Moreover, if

this intensity is due to hydrogen line emission, then the plasma must be well out of equilibrium

with an enhanced concentration of neutrals. Second, very intense emission is observed at the upper

legs of a counter-helicity hydrogen plasma formed with a 500 V charging voltage on the fast gas

valve capacitor bank. This burst coincides with localized brightness in camera images at the upper

leg, interactions with a chamber bolt, oscillations on the current data, a peak and sharp drop in

voltage, and occasional coincidences with x-ray bursts. This intense radiation burst is not observed

for co-helicity plasmas and also seems to disappear as the gas voltage is increased. We believe it is

related to the magnetic reconnection associated with counter-helicity merging.

The intense radiation from a non-equilibrium hydrogen plasma could be of use in divertor physics.

There, radiation is a means by which the plasma temperature can be controlled so that the hot

plasma from the core does not damage the diverter plates [83, 90, 81]. The Caltech Solar Loop

Experiment suggests that cold plasma with an abnormally high neutral concentration can be mag-

netically pumped from the wall region into the divertor volume along arched field lines, inducing

intense radiation and potentially quenching the local plasma temperature. The use of cold hydrogen

plasma, rather than impurities, to induce radiative loss might be advantageous since the hydrogen

will eventually ionize and cease radiation after a certain amount of time, whereas impurities will

continue to radiate and might also “leak” into the plasma core. Intense hydrogen emission might

also have the practical application of producing large amounts of EUV radiation for lithography.
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We conclude with some comments concerning directions for future research.

• The most important avenue for future research is the determination of what, exactly, is gener-

ating the large vacuum photodiode signals for a hydrogen plasma. Section 4.1.4 discussed an

experiment involving filtered vacuum photodiodes that will potentially answer this question.

Because vacuum photodiodes are inexpensive and easy to construct, a filtered array could be

constructed to greatly expand upon the spectal resolution of the EUV data. We note that

a more direct, albeit involved and expensive, solution would be to install a vacuum ultravio-

let spectrometer to directly observed the EUV lines most responsible for the radiative losses.

The filtered vacuum photodiodes would certainly provide the preliminary knowledge needed

to decide if a vacuum ultraviolet spectrometer is a worthwhile investment

• If the source of the large vacuum photodiode signals is indeed hydrogen line emission, then

our hydrogen plasmas must be well out of equilibrium. The Caltech Spheromak Experiment

can produce similar plasmas with extended current pulses. Therefore, performing similar ex-

periments on the Spheromak Experiment could provide useful tests of the hypothesis proposed

here.

• The usefulness of the x-ray diodes is currently limited by their sensitivity to alignment. The

signals are collimated in part due to powerful neodymium magnets that protect the diodes

against charged particles, just like the vacuum photodiodes. The magnetic deflecting system

should be redesigned to increase the field of view so that the x-ray diodes can view the entire

plasma, eliminating the sensitivity to alignment.

• Another crucial matter is determining where the current is flowing in the plasma. As men-

tioned, magnetic data on the Spheromak Experiment suggests that current flows in a channel

several times larger than the visible plasma seen in Imacon images. If the same holds true for

the Solar Loop Experiment, then calculations performed with a plasma radius determined from

Imacon images will be misleading. Furthermore, if the plasma has truly detached from the

electrodes, then current should not be flowing through the loop but through some other path.

Determining how and when this occurs during a shot will greatly help in the interpretation of

diagnostic data.

• The noise burst observed in counter-helicity experiments should be investigated further, as it

may be indicative of plasma waves being generated during magnetic reconnection. This can

be investigated by building a radiometer to detect plasma radiation in the radio-frequency

range, the frequency range of the observed noise. One might also use the magnetic probe or a

capacitively coupled probe to detect waves within the plasma.
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• These studies have clearly identified the neutral gas density profile as a major factor in the

plasma evolution. However, this profile has not been studied in detail on the Solar Experiment.

A fast ion gauge should be constructed to map out the density of the neutral gas cloud at the

time of breakdown and how this density changes as a function of the charging voltage of the

fast gas valve capacitor bank.

• The asymmetry in the bias magnetic field should certainly be investigated further. In par-

ticular, this might give insight into why counter-helicity plasmas in the RL configuration has

intense emission in the upper half but not the lower half.

• The role of arcing and the bright light from the gas inlet should be investigated. As the

x-ray diodes point directly at the electrodes, it is possible that particle bombardment of the

electrodes is producing x-rays observed by the x-ray diodes.
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Figure 4.2: (a): Vacuum photodiode signals taken at various discharge voltages and plotted as a
function of time. Larger discharge voltages produce faster rising vacuum photodiode signals. (b)
The same data are now plotted as a function of current. The UV emission is seen to depend on the
instantaneous value of the current. The thick dashed line is a quadratic fit, which yields a plasma
resistance of 5.3 mΩ. (c) and (d) are analogous plots made for optical photodiode data; the same
trends can be observed. The shots used for these plots were 8957 - 8960, which were single-loop
hydrogen shots with the fast gas valve capacitor bank charged to 550 V.
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Figure 4.3: The effective ionization and recombination rates for hydrogen at different densities and
temperatures, reproduced from Ref. [83]. The ratio of these two rates determines the equilibrium
ionization balance and hence neutral hydrogen concentration.
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Figure 4.4: The radiation emissivity for hydrogen at different temperatures and densities, reproduced
from Ref. [83]. This coefficient, when multiplied by the electron density, neutral density, and plasma
volume, gives the radiation power.

Figure 4.5: (a) A number of impurity lines have been observed in hydrogen plasmas. (b) The Hβ

line is noticeably stronger than the impurity lines.
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Figure 4.6: An overlay of UV data from both a co-helicity plasma (shot 7778), plotted in red, and a
counter-helicity plasma (shot 7755), plotted in black, with the gas valve voltage set at 500 V. The
counter-helicity plasma shows strong UV bursts, especially in the upper channels, that are absent
in the co-helicity case.
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Figure 4.7: Imacon image of a counter-helicity plasma formed with a 500 V charging voltage on the
fast gas valve capacitor bank (shot 7754). The plasma becomes very bright in the upper legs around
the time the large UV bursts occurs. Arcing to the upper bolt is also apparent.

Figure 4.8: Imacon image of a co-helicity plasma with a 500 V charging voltage on the fast gas valve
capacitor bank (shot 7774). The upper legs do not become as bright as in the counter-helicity case
shown in Fig. 4.7, and arcing to the upper bolt is not observed.
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Figure 4.9: Imacon image of a counter-helicity plasma with a 500 V charging voltage on the fast gas
valve capacitor bank (shot 7382). The Imacon timings have been adjusted to focus on the merging
and detachment.

Figure 4.10: At the time of the large UV bursts, an x-ray burst occasionally registers on the x-ray
diodes. The UV burst occurs very consistently, but the x-ray burst does not, possibly due to the
x-ray diode alignment. Both x-ray bursts shown here were obtained through the 200 nm thick Al
foil filter, which does not transmit hydrogen lines, so the x-ray diode signals, and perhaps part of
the vacuum photodiode signal, must be produced by another mechanism such as energetic electrons
as discussed in Sec. 4.2.2.
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Figure 4.11: An overlay of the (TOP) plasma current and (BOTTOM) electrode voltage for a
co-helicity plasma (shot 9163), plotted in green, and a counter-helicity plasma (shot 9024), plotted
in blue. The electrode voltage rises in the middle of the shot for both cases, but the counter-helicity
voltage drops rapidly at 2.4 µs, depicted with the dashed line, at which time large oscillations
appear on the current trace. This time is also coincident with the onset of the UV bursts observed
for counter-helicity plasmas.
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Figure 4.12: (a) The approximate positioning of the spectrometer chords during density measure-
ments. The spacing between chords is about 1.9 cm, but the exact positions were not precisely
determined. (b) A plot of the density profiles with error bars shows that a charging voltage of 550
V on the fast gas valve capacitor bank produces a noticeably larger density. The time window for
the plasma produced with a 500 V charging voltage case is 2 to 3 µs but is 3 to 4 µs with a 550 V
charging voltage.

Figure 4.13: Imacon image of a mid-mass plasma; the image is noticeably sharper than its low-mass
counterpart shown in Fig. 4.7. The lower legs become just as bright as the upper legs in the mid-mass
case. There is significant ghosting in the image, particularly in the last frame.
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Figure 4.14: This picture is an overlay of Fig. 4.7, a low-mass plasma, and Fig. 4.13, amid-mass
plasma, with false coloring to distinguish them. The green color corresponds to the low-mass plasma
while blue corresponds to the mid-mass plasma. The Imacon camera had the same timing sequence,
and the times of each frame, measured after breakdown, are printed in the upper right corners.
Clearly, the low-mass plasma expands faster.
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Figure 4.15: Overlays of counter-helicity UV emission for a low-mass plasma (shot 7755, plotted in
black) and mid-mass plasma (shot 7980, plotted in red). For the mid-mass plasma, the large burst
of UV in the upper channels disappears, but unusually large emission appears on channel 11.
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Figure 4.16: As the charging voltage of the fast gas valve capacitor bank is increased, several changes
appear in the current trace. The peak current rises while the zero-crossing time decreases. The major
disruption around 2.7 µs becomes less severe as well. The shots shown are 8203, 8205, and 8208.

Figure 4.17: The electrode voltage also changes appreciably as the charging voltage of the fast gas
valve capacitor bank is increased. The shots shown are 8203, 8205, and 8208 respectively
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Figure 4.18: A plasma formed with the LR bias field configuration, as shown here, is still a counter-
helicity configuration, but its behavior is quite different than its RL counterpart, which has been
discussed in detail in this chapter and is shown in Fig. 4.19 for comparison.

Figure 4.19: An RL plasma, as has been described in this chapter. The camera timing have been
chosen to coincide with those of Fig. 4.18, which shows an LR plasma at the same settings. The LR
plasma erupts at late times when the RL plasma, pictured here, has detached and is decaying.
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Chapter 5

Hamiltonian Mechanics and Single
Particle Motion

Chapters 4 discusses the process of two parallel plasma loops merging together. Considering this

process from the perspective of individual particle orbits, the particles must transition from being

localized to one loop to orbiting symmetrically among the two loops. An analogous transition

happens on the Spheromak Experiment as the individual spider legs merge into an axisymmetric

plasma jet. To study the orbits and transitions, we have employed the Hamiltonian formalism and

report here a general theorem of Hamiltonian mechanics that evolved out of studies of charged

particle motion. The theorem states that the action integral of the fastest periodic coordinate serves

as an effective Hamiltonian for the reduced or orbit-averaged system. Stated alternatively, the

action integral encodes the average evolution of the system such that the average evolution of the

remaining non-periodic coordinates can all be extracted from this single quantity. Being rooted in

Hamiltonian mechanics, the theorem is quite general and, in essence, extends concepts from guiding

center theory to a broad class of Hamiltonian systems. Moreover, the theorem provides a unified

framework for obtaining the averaged evolution without having to average the individual equations

of motion, which can lead to a substantial reduction in the number of computations.

This chapter is organized in the following fashion. Sec. 5.1 will state and prove the theorem

formally in two stages. First, we prove the theorem in a restricted setting in which coordinates

other than the periodic one are ignorable. Examples such Kepler orbits and the relativistic E ×B

drift are provided; in the latter example, we demonstrate the relativistic coupling between orthogonal

Cartesian directions and an unexpected non-uniform motion parallel to the magnetic field. Sec. 5.1.8

then generalizes the theorem to the adiabatic case, where the action integral is then identified as

a Hamiltonian for the reduced system. The exposition of Sec. 5.1 parallels that of Ref. [91] but

includes more details and examples. Sec. 5.2 explicitly shows the connection between the general

theory and guiding center motion, rederiving the drift equations using the first adiabatic invariant µ

as an effective Hamiltonian. These drifts include the grad-B drift, the magnetic mirror force, and the
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E×B drift; finite Larmor radius effects are also computed for the latter. Sec. 5.2.5 then shows how

the magnetic flux enclosed by a gyro-orbit can be computed from the action integral, and Sec. 5.2.6

presents a formula that ties together different calculations presented throughout the chapter. The

application of the theorem to the merging of plasma loops is tackled in Chapter 6.

A comprehensive exposition of mechanics can, of course, be found in the classic texts [34, 92].

For charged particle motion through magnetic fields, Northrop provides a detailed exposition [35],

but more intuitive texts are available [93, 2]. Finally, more mathematical treatments of Hamiltonian

dynamics rooted in differential geometry are available [94, 95].

5.1 A Theorem on the Action Integral of Periodic Motion

The theory presented here hinges on the action integral of periodic motion, defined for a periodic

coordinate Q as

J =

∮
PQdQ, (5.1)

where PQ is the canonical momentum associated with Q, and the symbol
∮

refers to integration

over one full period [92, 94, 34]. Action integrals are adiabatic invariants [34, pg. 154] [94, pg.

297] and play an important role in perturbation theory [94, ch. 10] [92, ch. 12]. A brief review of

action integrals in the context of action-angle variables and canonical transformations is given in

Appendix C, but canonical transformations will not be needed in this chapter.

The crux of this section is that the action integral of the fastest periodic coordinate in a system

acts as an effective Hamiltonian for the reduced or orbit-averaged system. Sec. 5.1.1 explains the

meaning of “reduced” or “orbit-averaged” by analogy to a wall clock. In Sec. 5.1.2, a preliminary

version of the theorem is stated and proved. Several examples such as Kepler motion and rela-

tivistic E×B drifts make the meaning of the theorem concrete and also demonstrate applications.

Sec. 5.1.7 shows how the drifts of guiding center generalize to any Hamiltonian system with a pe-

riodic component. Sec. 5.1.8 then generalizes the preliminary theorem to the adiabatic case. This

section concludes by applying the theorem to a mechanical system which exhibits the phenomenon

of magnetic mirroring without any magnetic field.

5.1.1 A Clock Analogy

The context for this theorem will be Hamiltonian systems in which one coordinate undergoes periodic

motion while the other coordinates are ignorable, but the essence of the theorem can be described

by analogy to a wall clock. As the minute hand makes a full revolution and returns to its original

position, say 12:00, the hour hand does not return to its original position but instead increments

forward one hour or 30 degrees. One part of the system returns its starting point, but another part
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does not. Let us now imagine a peculiar clock whose hour hand does not move at a constant pace;

perhaps it moves faster in the beginning of the hour and slower down towards the end or perhaps

even moves backwards at times. The only condition we place on the hour hand is that, when the

minute hand returns to 12:00, the hour hand has moved its obligatory 30 degrees. Such an hour

hand would not be very useful for estimating time in between hours even though it faithfully tells

the correct time on the hour and in the long run moves at the correct average rate.

Analogously, many Hamiltonian systems have a periodic coordinate that acts like the minute

hand and other coordinates that increment with every period. An example is shown in Fig. 5.1

where an electron undergoes planar motion in the magnetic field of a straight wire; the radial

coordinate is periodic but the axial position increments with every gyration. Like the peculiar hour

hand, the z position does not change at a steady pace but moves faster, slower, and even backwards

depending on the phase of the motion. The crux of Sec. 5.1.2 is to compute the net displacements of

the other coordinates by taking partial derivatives of the action integral of the periodic coordinate.

Section 5.1.7 then devises an averaged system in which the evolution of these other coordinates is

steady, uniform, and free of peculiar non-uniformities.

Figure 5.1: (a) An electron orbiting a current-carrying wire has periodic radial motion but displaces
itself a net distance ∆z with every gyration. (b) Plotting the axial position z as function of time
shows the oscillatory motion superimposed over a net drift.
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5.1.2 Net Displacements and Differentiating the Action Variable

We now state the theorem formally. Consider a two-dimensional time-independent Hamiltonian

system where one coordinate, say η, is ignorable:

H = H(ξ, Pξ, Pη). (5.2)

Suppose that the ξ motion is periodic, that is, ξ(t + ∆t) = ξ(t) for some time interval ∆t. The

evolution of Pη is trivial:

Ṗη =
∂H

∂η
= 0, (5.3)

but the evolution of η is in general non-trivial. For instance, in a central force problem, the canonical

angular momentum Pφ is constant, but φ̇ = Pφ/mr
2 varies with r. Returning to the general setting,

over the time interval ∆t, η undergoes a net displacement ∆η: η(t + ∆t) = η(t) + ∆η. We claim

that

∆η = − ∂J

∂Pη
, (5.4)

where J is the action integral associated with ξ,

J(H,Pη) =

∮
Pξ(H, η, Pη)dξ. (5.5)

In Eq. (5.5), Pξ(H, η, Pη) is obtained by solving the Hamiltonian in Eq. (5.2) for Pξ. Eq. (5.4)

states that if J is known then the net change of η during one period of ξ can be calculated without

integrating the potentially complicated form of η̇.

Figure 5.2: (a) The trajectory, in phase space, is helical because of the periodic motion in the ξPξ
plane and the net displacement, or drift, in the η motion. (b) Projecting the trajectory onto the ξPξ
plane produces a closed trajectory. The area of this curve is J . Also labeled are the turning points
ξ± and the two branches of Pξ along a trajectory: the upper and lower branch denoted P±ξ .

The proof of Eq. (5.4) is surprisingly neat. First, we note that, in Eq. (5.4), there is no con-
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tribution from differentiating the integral bounds because the ξ motion is periodic. To make this

statement concrete, suppose that Pξ is a double-valued function of ξ with value Pξ+ along the upper

branch and Pξ− along the lower branch as suggested in Fig. 5.2. Then

∮
Pξdξ =

∫ ξ2

ξ1

Pξ+dξ +

∫ ξ1

ξ2

Pξ−dξ, (5.6)

where ξ1 and ξ2 are the turning points of motion. By continuity, Pξ+(ξ = ξ1) = Pξ−(ξ = ξ1) and

similarly at ξ = ξ2. Differentiating Eq. (5.6), one must differentiate the integral bounds in addition

to the integrand:

∂J

∂Pη
=

[∫ ξ2

ξ1

∂Pξ+
∂Pη

dξ +

∫ ξ1

ξ2

∂Pξ−
∂Pη

dξ

]
+ (5.7)

∂ξ1
∂Pη

[Pξ−(ξ1)− Pξ+(ξ1)] +
∂ξ2
∂Pη

[Pξ+(ξ2)− Pξ−(ξ2)] . (5.8)

However, the boundary terms then cancel by continuity of Pξ at the turning points1. Hence,

∂J

∂Pη
=

∮
∂Pξ(H, ξ, Pξ)

∂Pη
dξ. (5.9)

Second, the Pξ that appears in Eq. (5.9) is obtained by solving the Hamiltonian H = H(ξ, Pξ, Pη) for

Pξ along this particular trajectory. Furthermore, we can relate the ∂Pξ/∂Pη to partial derivatives

of H as follows. The differential of H = H(ξ, Pξ, Pη) is

dH =
∂H

∂ξ
dξ +

∂H

∂Pξ
dPξ +

∂H

∂Pη
dPη. (5.10)

In Eq. (5.9), we hold ξ and H fixed, so we set dξ = dH = 0 in Eq. (5.10) and obtain

∂Pξ
∂Pη

= −∂H/∂Pη
∂H/∂Pξ

. (5.11)

Using Eq. (5.11) and Hamilton’s equations in Eq. (5.9) gives

∂J

∂Pη
= −

∮
∂H/∂Pη
∂H/∂Pξ

dξ = −
∮
dη/dt

dξ/dt
dξ = −∆η. (5.12)

This result is exact and no assumption of slowness is needed. It applies whether ∆η is small and

the trajectory is nearly closed or whether ∆η is large and the trajectory is decidedly not closed. If

there are extra ignorable coordinates in the system, Eq. (5.4), suitably adjusted, applies to each of

them.

Eq. (5.4) generalizes the theorem [92, pg. 461] [34, pg. 156] that the period of motion is given

1Differential geometry provides a more general framework for such proofs; see Ref. [94, pg. 197], for instance.
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by a partial derivative of J with respect to H,

∆t =
∂J

∂H
. (5.13)

The resemblance between Eq. (5.4) and Eq. (5.13) is due to the fact that (t,−H) can be considered

a pair of canonical coordinates in extended phase space [96, pg. 15], so Eq. (5.13) can be considered

a special case of the theorem presented.

5.1.3 Example: The Trivial Case

Our first example will be the trivial case in Cartesian coordinates in which the two dimensions are

completely uncoupled:

H =
P 2
x

2m
+
P 2
y

2m
+ V (x). (5.14)

There are no forces in the y direction, so y evolves linearly, ẏ = Py/m, and we anticipate ∆y =

ẏ∆t = (Py/m)∆t. This is indeed obtained, for

J(H,Py) =

∮ √
2mH − P 2

y − V (x) dx, (5.15)

so

− ∂J

∂Py
=

∮
Py√

2mH − P 2
y − V (x)

dx. (5.16)

However, ∆t = ∂J/∂H, and

∂J

∂H
=

∮
m√

2mH − P 2
y − V (x)

dx. (5.17)

Therefore, −∂J/∂Py = (Py/m)∆t as expected. This result is rather boring but illustrates that,

for non-trivial examples to exist, there must be some coupling between the periodic and ignorable

coordinate. In the following examples, we will see that this coupling can occur either through the

expression for kinetic energy or through the introduction of a magnetic field.

5.1.4 Example: Kepler Motion

It is well-known that the bounded trajectories of Kepler orbits are ellipses. We therefore know, a

priori, that ∆φ = ±2π, where φ is the polar angle in the plane of motion and the radial coordinate r

is taken as the periodic coordinate. Kepler motion thus provides a non-trivial check of Eq. (5.4) and

provides an example where the periodic and ignorable coordinates are coupled via the expression for

kinetic energy.
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The Hamiltonian for Kepler motion is

H =
P 2
r

2m
+

P 2
φ

2mr2
− mMG

r
, (5.18)

where m is the mass of the object in orbit, M is the central mass, and G is the gravitational constant.

Pφ is the canonical angular momentum, Pφ = mφ̇r2, which is conserved along trajectories. The φ

coordinate is ignorable, but the evolution of φ is coupled to the radial coordinate, since φ̇ = Pφ/mr
2.

The action variable,

J =

∮ √
2mH − P 2

φ/r
2 + 2m

mMG

r
dr, (5.19)

can be efficiently evaluated by contour integration [92, pg. 468] [97, Appendix II] in the complex

r-plane:

J = −2π |Pφ|+ 2π
m2MG√

2m |H|
. (5.20)

∆φ and ∆t can now be found by applying Eq. (5.4) to Eq. (5.20),

∆φ = − ∂J

∂Pφ
= ±2π, (5.21)

∆t =
∂J

∂H
= π

m2MG√
2m |H|3

. (5.22)

The first equation tells us that φ always changes by 2π over a radial cycle no matter the energy

or angular momentum; the ± sign is determined by the sign of Pφ, i.e., the direction of rotation.

This neatly proves that all Kepler orbits are closed and degenerate.2 The second equation is the

well-known formula for the period of a Kepler orbit.

Kepler orbits demonstrate how the periodic and ignorable coordinates can couple through the

expression for kinetic energy. In Cartesian coordinates, kinetic energy takes a simple form:

T =
m

2

(
ẋ2 + ẏ2 + ż2

)
, (5.23)

for which there is no coupling. In a more general coordinate system, however, the kinetic energy

must be expressed in terms of a position-dependent metric:

T =
1

2
mgij(q)q̇

iq̇j . (5.24)

2Degeneracy, in the setting of classical mechanics, is when the frequencies of two coordinates are not independent
of each other [92, pg. 465].
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For instance, in the polar coordinate system used for Kepler orbits,

T =
1

2
m
(
ṙ φ̇

) 1 0

0 r2

 ṙ

φ̇

 . (5.25)

If the Lagrangian is of the form L = T − U = (1/2)gij(q)q̇
iq̇j − U(q), then the canonical momenta

are Pi = mgij(q)q̇
j , and one can solve for the velocities q̇i as

q̇i =
1

m
gij(q)Pj , (5.26)

where gij is the inverse matrix of the metric. It is the q dependence of gij that couples the periodic

variable to the ignorable coordinate’s velocity. In Kepler motion, φ̇ = Pφ/mr
2, so that the evolution

of φ is coupled to the motion in the radial direction.

5.1.5 Example: Vector Potentials and Charged Particles

The coordinates may couple through the vector potential term of the Lagrangian for a charged

particle in a magnetic field:

L =
m

2
v2 + qv ·A. (5.27)

In Cartesian coordinates, the expression for the canonical momenta is Pi = mvi + qAi, so

vi =
Pi − qAi(r)

m
. (5.28)

The vector potential depends on the periodic variable and can thus couple the periodic motion to

the ignorable coordinate’s velocity. Particle motion in magnetic fields is not the only instance of

such terms in the Lagrangian that are proportional to velocity. For instance, the transformation to

a non-inertial frame introduces similar terms [34, sec. 39], and the Coriolis force 2mv ×Ω, where

Ω is the angular velocity of the non-inertial frame, has a form suggestive of the magnetic Lorentz

force qv ×B.

5.1.6 Example: Relativistic Mechanics and Relativistic E×B Drift

As a final example, coupling can occur in relativistic expression for kinetic energy. For a velocity-

independent potential, the relativistic Lagrangian [92, Ch. 7.9] is

L = −mc2
√

1− β2 − V (x) = −mc
2

γ
− V (x), (5.29)
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where β = v/c and γ =
(
1− β2

)−1/2
. The canonical momenta, in Cartesian coordinates, are

Pi =
∂L

∂vi
= −mc2 1

2

−2vi√
1− v2/c2

= γmc2vi. (5.30)

Since γ depends on the magnitude of velocity, the relationship between vi and Pi for any Cartesian

direction also involves the velocities in the other directions. Suppose that z is ignorable, so Pz is

conserved. The z velocity,

ż =
Pz
γmc2

, (5.31)

is not necessarily constant because changes in vx and vy will change γ and hence vz. Thus, the

motion in different Cartesian directions can be coupled.

As an example of this coupling, we study the relativistic motion of a charged particle in crossed

electric and magnetic fields. We find that the motion along the magnetic field is not constant but

rather is modulated at the cyclotron frequency. Let E = Ex̂ and B = Bẑ with E/B < c; Fig. 5.3

shows the configuration of the fields and a sample trajectory. Recall that in the non-relativistic

case [2, Sec. 3.5.1] [93, Sec. 2.2.2], the particle drifts in the −ŷ direction with a velocity vE×B

independent of its charge or mass,

vE×B =
E×B

B2
= −E

B
ŷ. (5.32)

Furthermore, the velocity in the z direction is uniform and independent of the motion is the xy plane.

Relativistic effects, however, couple the motion in the z direction to the motion in the xy plane so

that vz modulates at the cyclotron frequency, as shown in Fig. 5.4. This modulation contains a net

drift that is computable with the Hamiltonian formalism. The full Lagrangian is

L = −mc2
√

1− v2/c2 − qφ+ qv ·A (5.33)

= −mc2
√

1− v2/c2 + qEx+ qvyBx, (5.34)

where φ = −Ex and A = Bxŷ are the appropriate potentials for the fields. The relativistic canonical

momenta are the same as Eq. (5.30) with the addition of the vector potential term: Pi = mγvi+qAi.

The relativistic Hamiltonian can be found by performing the Legendre transform:

H = c

√
(P− qA)

2
+m2c2 + qV = c

√
P 2
x + P 2

z + (Py − qBx)
2

+m2c2 − qEx. (5.35)

The x action,

J =

∮
Pxdx =

∮ √
(H + qEx)2

c2
− (Py − qBx)

2 − P 2
z −m2c2 dx, (5.36)
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can be evaluated in closed form by expanding the quadratics and completing the square in x:

J =

∮ √(
H2

c2
− P 2

y − P 2
z −m2c2

)
+ 2q

(
EH

c2
+BPy

)
x− q2

(
B2 − E2

c2

)
x2 dx (5.37)

=

∮ √
c2 − a2 (x− b)2

dx, (5.38)

where

a = q
√
B2 − E2/c2, (5.39)

b =
1

q

EH/c2 +BPy
B2 − E2/c2

, (5.40)

c2 =
H2

c2
− P 2

y − P 2
z −m2c2 +

(
EH/c2 +BPy

)2
B2 − E2/c2

. (5.41)

This integral represents the area of an ellipse of half-height c and half-width c/a. The area of the

ellipse is πc2/a, so the action is

J = π

[
H2/c2 − P 2

y − P 2
z −m2c2

q
√
B2 − E2/c2

+

(
EH/c2 +BPy

)2
q(B2 − E2/c2)3/2

]
. (5.42)

From this somewhat gruesome expression, the quantities ∆t and ∆z follow by partial differentiation:

∆t =
∂J

∂H
(5.43)

= π

(
B2 − E2/c2

) (
2H/c2

)
+ 2

(
EH/c2 + PyB

)
E/c2

q (B2 − E2/c2)
3/2

(5.44)

= 2π
PyBE/c

2 +B2H/c2

q (B2 − E2/c2)
3/2

(5.45)

∆z = − ∂J

∂Pz
=

2π

q
√
B2 − E2/c2

Pz. (5.46)

Together, these two quantities give the parallel drift:

∆z

∆t
=

B2 − E2/c2

PyBE/c2 +B2H/c2
Pz. (5.47)

Eq. (5.47) simplifies by writing Py, Pz, and H in terms of initial conditions:

Py = mγ0vy0 + qBx0, (5.48)

Pz = mγ0vz0, (5.49)

H = γ0mc
2 − qEx0. (5.50)
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Substitution into Eq. (5.47) gives

∆z

∆t
=

B2 − E2/c2

(mγ0vy0 + qBx0)BE/c2 +B2(γ0mc2 − qEx0)/c2
Pz (5.51)

=
B2 − E2/c2

(mγ0vy0)BE/c2 +B2(γ0mc2)/c2
Pz (5.52)

=
B2 − E2/c2

vy0BE/c2 +B2
vz0, (5.53)

a simplified form of Eq. (5.47). The x0 dependence has canceled out as expected. Also, taking the

non-relativistic limit by letting c→∞, we recover the non-relativistic result ∆z/∆t = vz0.

Figure 5.3: In a uniform electric and magnetic field, a charged particle will execute cycloid motion in
the plane normal to B and also move parallel to B. Here, the solid blue line is the actual trajectory,
and the dashed line is the projection of this trajectory, showing the cycloid motion. What is not
apparent in this plot, though, is the fact that the velocity along B is not uniform.

This unexpected modulation of the parallel velocity can be understood from Lorentz transfor-

mations. In the non-relativistic case, the E×B drift velocity is the velocity of a frame in which the

electric field is transformed to zero, leaving only a magnetic field. In this frame, kinetic energy is
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thus conserved, and the charged particle undergoes simple Larmor motion. The cycloid trajectory

observed in the lab frame is a superposition of the uniform E × B drift and the circular Larmor

motion. In the relativistic case, kinetic energy is likewise conserved in the E×B drift frame with no

modulation of γ and hence no modulation of vz. However, the transformation back to the lab frame

involves a non-linear transformation of time, resulting in the modulation of the parallel velocity.

To see this effect, we first note that a Lorentz boost with velocity vd along the y direction

transforms the electric and magnetic fields as [98, Eq. (12.108)]

E′x = γd(Ex + vdBz), (5.54)

B′z = γd(Bz +
vd
c2
Ex), (5.55)

where γd =
(
1− (vd/c)

2
)−1/2

. Since E/B < c, we can choose vd = −E/B so that the electric field

vanishes in the boosted frame: E′x = 0. The magnetic field becomes

B′z = γd

(
B − E2

Bc2

)
=

B − E2/(Bc2)√
1− E2/B2c2

=
√
B2 − E2/c2. (5.56)

Without an electric field, the particle undergoes simple cyclotron motion, and the trajectory will

look something like 
ct′

x′(t′)

y′(t′)

z′(t′)

 =


ct′

r0 cos Ωt′

r0 sin Ωt′

v′z0t
′

 , (5.57)

with Ω = qB′z/mγd the cyclotron frequency in the drift frame [92, Eq. (7.154)]. We transform this

solution back to the lab frame with the inverse Lorentz boost:
ct

x

y

z

 =


γd 0 γdβd 0

0 1 0 0

γdβd 0 γd 0

0 0 0 1




ct′

r0 cos Ωt′

r0 sin Ωt′

v′z0t
′

 (5.58)

=


γd(ct

′ + βdr0 sin Ωt′)

r0 cos Ωt′

γd(βdt
′ + r0 sin Ωt′)

v′z0t
′

 (5.59)

The z velocity is not uniform because we have to express z as a function of t rather than t′, which
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is achieved by inverting the zeroth component of the above transformation:

ct = γd (ct′ + βdr0 sin Ωt′) . (5.60)

It is interesting to note that z evolves linearly with t′ but not with t. We shall return to this curious

fact in Sec. 5.1.7.

5.1.7 Drifts and Averaged Coordinates

The quantity ∆η is the net change in η over the course of a ξ cycle. In general, η may have oscillated

greatly over this cycle, but, whatever the particulars of its motion, it ends up changing by ∆η. This

allows us to define an averaged η velocity, or drift, as

∆η

∆t
= − ∂J/∂Pη

∂J/∂H
. (5.61)

This velocity is constant and equal to limt→∞ η(t)/t. It captures the net rate of change of η without

the details of the η evolution. Equation (5.61) generalizes the particle drifts associated with guiding

center theory.

The velocity in Eq. (5.61) can be derived from Hamilton’s equations by writing H as a function

of J . That is, the functional form J = J(H,Pη) can be inverted for H as a function of Pη and J :

H = H(J, Pη). Then, the differential of J = J(H,Pη),

dJ =
∂J

∂H
dH +

∂J

∂Pη
dPη, (5.62)

implies that, by setting dJ = 0,

∂H(J, Pη)

∂Pη
= −∂J/∂Pη

∂J/∂H
=

∆η

∆t
. (5.63)

Equation (5.63) has a form suggestive of Hamilton’s equation: an η velocity was obtained by differ-

entiation of the Hamiltonian with respect to Pη. However, the velocity obtained is the average one,

where as Hamilton’s equations applied to the original system H = H(ξ, Pξ, Pη) gives the instanta-

neous η velocity:
∂H(ξ, Pξ, Pη)

∂Pη
= η̇ 6= ∆η

∆t
=
∂H(J, Pη)

∂Pη
. (5.64)

Thus, when H is written as a function of J in place of ξ and Pξ, the velocity furnished by Hamilton’s

equations is the average or drift velocity. This result is discussed in Appendix C where it is seen

that a canonical transformation from (ξ, Pξ) to action-angle coordinates simultaneously transforms

η to its average version.



116

Let us recall the peculiar hour hand of Sec. 5.1.1 that has a non-uniform speed even though it

moves the requisite 30 degrees every hour. This hour hand is analogous to the ignorable coordinate

η, whose evolution is likewise not necessarily uniform. We have seen that writing H = H(J, Pη)

instead of H = H(ξ, Pξ, Pη) transforms the ignorable coordinate into its averaged form; continuing

the analogy, this is like transforming the peculiar hour hand into a well-behaved version that moves

at a uniform rate and is much more reliable for reading time, as suggested by Fig. 5.5. Similarly,

the relativistic example in Sec. 5.1.6 shows that boosting to the drift frame causes the z coordinate

to evolve linearly in drift frame time whereas its evolution in lab frame time is non-uniform. In

general, replacing the periodic coordinates ξ and Pξ with the constant of motion J eliminates the

oscillatory components of η.

5.1.8 Adiabatic Evolution and Reduced Systems

Eq. (5.4) is proved under the assumption that η is ignorable. Here, we relax the requirement that η

is ignorable and instead allow the oscillations to evolve adiabatically. By adiabatic, we mean that

the orbits with η dependence resemble the orbits of the ignorable case but that the orbit parameters

slowly change over the course of many periods. This relaxation of assumptions not only allows a

broader class of systems to be studied but also yields a new result: the action integral J serves as

an effective Hamiltonian for a reduced system in which all the remaining non-periodic coordinates

are replaced by their averaged versions.

We proceed by adding η dependence to the Hamiltonian, H = H(ξ, Pξ, η, Pη), but regard (η, Pη)

as slowly varying parameters of the ξ oscillation. This assumption allows the action integral J to be

defined3, in which case it will be an adiabatic invariant [34, pg. 154] [94, pg. 297]. To make these

statements precise, we separate H into two parts:

H(ξ, Pξ, η, Pη) = Hloc(ξ, Pξ, η, Pη) +Hext(η, Pη). (5.65)

Hloc is a local Hamiltonian that describes the ξ oscillations; because Hloc contains all the ξ and Pξ

dependence, the ξ and Pξ evolution depend only on Hloc

dξ

dt
=
∂Hloc

∂Pξ

dPξ
dt

= −∂Hloc

∂ξ
. (5.66)

We presume that η and Pη play the role of slowly varying parameters in Hloc; that is, over the

course of a single ξ period, η and Pη can be held fixed to good approximation. The evolution of

3Arbitrary η dependence could result in large variations over a single ξ period to the point where ξ is no longer
periodic. In such cases, the action integral, or any first integral of motion, will not exist, and such systems are
termed non-integrable. The transition from an integrable system to an non-integrable system through introduction of
a perturbation, such as the η dependence described here, is the topic of KAM theory [94, Appendix 8] [96, Sec. 1.4].
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these “parametric coordinates” is determined by both the local and the external Hamiltonian Hext:

dη

dt
=
∂H

∂Pη

dPη
dt

= −∂H
∂η

(5.67)

In essence, then, Hext describes the way in which the ξ oscillations interact with the outside world

by influencing the evolution of the oscillation parameters. This scheme, by construction, ensures

the existence and adiabatic invariance of J , defined as in Eq. (6.20) but now with η dependence,

as follows. Traditionally, the adiabatic invariance of the action integral is demonstrated by adding

a time-dependent parameter, say λ(t), to a Hamiltonian system, H = H(ξ, Pξ;λ(t)) [34, pg. 154].

Here, we treat η and Pη as the slowly varying parameters of the ξ oscillation and thereby effectively

reduce the present system H = H(ξ, Pξ, η, Pη) to the traditional case H = H(ξ, Pξ;λ(t)). As

in Ref. [34, pg. 154], we assume it is a good approximation to hold the parametric coordinates

η and Pη fixed while evaluating the ξ action integral. However, an important distinction of our

treatment is that Eq. (5.65) is time-independent and thus conservative, whereas the Hamiltonian

H = H(ξ, Pξ;λ(t)) is time-dependent and hence not conservative. Of course, the local and external

systems exchange energy but the total energy, E = Eloc(t) + Eext(t), is conserved.

The added η dependence in J allows the derivation of ∆Pη, the net change in the previously

conserved canonical momentum, in addition to ∆η. Indeed,

∂J

∂η
=

∮
∂Pξ
∂η

dξ = −
∮

∂H/∂η

∂H/∂J
dξ = −

∮
− Ṗη
ξ̇
dξ = ∆Pη (5.68)

Equation (5.68) together with Eq. (5.4) yields the following system of equations:

∂J

∂η
= ∆Pη,

∂J

∂Pη
= −∆η. (5.69)

Equations (5.69) have the makings of a Hamiltonian system with −J serving as the Hamiltonian.

They are precisely Hamiltonian as follows. We define discretized derivatives dη/dt = ∆η/∆t and

dPη/dt = ∆Pη/∆t that capture the net rates of change of η and Pη. Upon invocation of a rescaled

time τ normalized by the ξ period:

dτ =
dt

∆t
, (5.70)

Eqs. (5.69) become

dη

dτ
=

∂

∂Pη
(−J) , (5.71)

dPη
dτ

= − ∂

∂η
(−J) . (5.72)

This system of equations is Hamiltonian with −J playing the role of the Hamiltonian and τ playing
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the role of time. We note that τ is the angle variable conjugate to J ; it evolves linearly in time and

increments by one for every cycle.

We show that ∆η and ∆Pη can both be split into two terms, local and external. This observation

is not needed for the proof that J is a Hamiltonian for the reduced system but does offer some insight.

We evaluate J =
∮
Pξdξ by first solving for Pξ in the Eq. (5.65); this means inverting the equation

Hloc(ξ, Pξ, η, Pη) = H − Hext(η, Pη). In this equation, H and Hext appear in the combination

H −Hext, so Pξ and J depend only on H −Hext, which is just Hloc. In a more intuitive sense, J

depends only on Hloc because Hloc is sufficient to prescribe the ξ dynamics. Up to now, we have

written J as J = J(H, η, Pη), but the above discussion suggests that J is rather a function of Hloc:

J = J(H, η, Pη) = J̃(Hloc(η, Pη), η, Pη) = J̃(H −Hext(η, Pη), η, Pη). (5.73)

The symbol J̃(Hloc, η, Pη) is used simply to denote the difference in functional dependence from

J(H, η, Pη). This distinction may appear to be a matter of semantics, but we note that J̃(Hloc, η, Pη)

depends on η and Pη both implicitly through Hext and also explicitly. Accordingly, ∆η and ∆Pη

have two terms: one term comes from the explicit dependence and one from the implicit dependence.

The former is the drift of the system, e.g., the displacements suffered by η and Pη as a result of the

ξ motion completing a full cycle, while the latter is the slow change of η and Pη due to Hext. In the

example provided in Sec. 5.1.9, these two terms will be computed explicitly.

We obtain a Hamiltonian for the averaged system in regular time in which partial differentiation

of H, written as a function of J , gives the discretized derivatives defined above. To see this, we use

the differential of J = J(H, η, Pη),

dJ =
∂J

∂H
dH +

∂J

∂η
dη +

∂J

∂Pη
dPη, (5.74)

to evaluate partial derivatives of H(J, η, Pη):

∂H

∂Pη
= −∂J/∂Pη

∂J/∂H
=

∆η

∆t
=

dη

dt
(5.75)

−∂H
∂η

= − ∂J/∂η

∂J/∂H
=

∆Pη
∆t

=
dPη
dt

, (5.76)

giving the discretized derivatives. As in Sec. 5.1.7, writing H as a function of J rather than (ξ, Pξ)

turns the velocities given by Hamilton’s equations into the drift velocities. We can further refine H =

H(J, η, Pη) into local and external parts by solving Eq. (5.73) for Hloc, i.e., Hloc = Hloc(J, η, Pη).

Since Hloc = H −Hext,

H = Hloc(J, η, Pη) +Hext(η, Pη). (5.77)

The term Hloc(J, η, Pη) is an adiabatic potential [99] and is, in essence, the residue of averaging the
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periodic ξ motion. In fact, for systems approximating a harmonic oscillator, J = 2πHloc/ω(η, Pη),

so the adiabatic potential is Hloc = Jω/(2π), showing that J acts like an electrostatic charge and

ω(η, Pη) acts like an electrostatic potential. The magnitude of this effective “J charge” depends on

the amplitude of the ξ oscillation. The use of −J as a Hamiltonian with normalized time τ and the

use of H, written as a function of J , with regular time are entirely equivalent4. Practically, though,

there are techniques to evaluate J directly [97, Appendix II], so using −J as the Hamiltonian spares

one from inverting J for H, which might not be analytically feasible, as will be in the case in Sec. 6.1.

5.1.9 Example: Particle in a Groove

The following system was proposed by Prof. Bellan as a mechanical analog of magnetic mirroring [2,

Sec. 3.5.6] [93, pg. 29], a phenomenon where charged particles are reflected from regions of strong

magnetic field strength. It is well-known that µ-invariance is responsible for this mirroring phe-

nomenon: as the field strength increases, the energy of the particle’s Larmor motion also increases

as per Eq. (1.10) to the point when the Larmor energy equals the particle’s total kinetic energy.

The particle then has no kinetic energy left to move along the field line and is thus reflected. We

shall show that this principle is not restricted to charged particles in magnetic fields.

Consider a marble in a long groove where the steepness of the groove varies with position, as

shown in Fig. 5.6. The height h of the groove can be expressed as a function of x and y, where y is

the distance along the groove and x is the distance across the groove,

h(x, y) =
1

2
κx2

(
1 + αy2

)
+

1

2
λy2. (5.78)

The concavity and steepness of the groove is determined by the curvature λ in the y direction and κ in

the x direction. α couples the steepness of the x direction to the y coordinate. The exact Lagrangian

and Hamiltonian for a marble in such a groove is not trivial5, but, in the same approximation in

which a pendulum can be considered a harmonic oscillator, the Hamiltonian for this system is

H =
P 2
x

2m
+
P 2
y

2m
+

1

2
mgκx2

(
1 + αy2

)
+

1

2
mgλy2. (5.80)

Presuming that the particle’s y position changes slowly relative to the oscillations across the groove

4In fact, in Hamiltonian mechanics, one can use any momentum as a Hamiltonian for the system so long as the
associated coordinate is used as the “time,” or orbit parameter [96, pg. 15][100].

5The exact Lagrangian equals the Lagrangian for a particle in gravitational field with the constraint that the
particle remain on the groove. Using the Lagrange multiplier Λ to enforce the constraint:

L =
m

2

(
ẋ2 + ẏ2 + ż2

)
−mgz + Λ (z − h(x, y)) , (5.79)

for which the z equation of motion is mz̈ = −mg+ Λ. The approximation used here, like approximating a pendulum
as a simple harmonic oscillator, ignores the acceleration in the z direction, so Λ = mg. Using this value of Λ in the
exact Lagrangian gives the approximate Hamiltonian in Eq. (5.80).
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(i.e., |α| and |λ| are small compared to κ), the y-dependent frequency of x oscillation is

ω(y) =
√
gκ
√

1 + αy2. (5.81)

We identify Hloc = P 2
x/2m+mω2x2/2, the energy of x oscillations. The x action is then that of a

harmonic oscillator, J = 2πHloc/ω(y), and Eq. (5.77) becomes

H(J, y, Py) =
P 2
y

2m
+

1

2
mgλy2 + 2πω(y)J. (5.82)

Equation (5.76) gives

Ṗy = −∂H(J, y, Py)

∂y
= −mgλy + 2π

dω(y)

dy
J. (5.83)

The first term in Eq. (5.83) is the average force of the external Hamiltonian, in this case the pull of

gravity along the groove. The second term, though, comes from differentiating the local Hamiltonian

and is due to the adiabatic invariance of J . This average force in the y direction is due to the change

in x-oscillation energy as the particle finds itself in a narrower or wider groove.

The adiabatic term in Eq. (5.83) can oppose the pull of gravity, leading to surprising behavior.

Suppose that λ is negative so that the groove is concave down along in the y direction. Intuition

dictates that a marble placed in such a groove will rattle its way down the groove with increasing

velocity, as shown in Fig. 5.7. However, with the right choice of initial conditions, the adiabatic

force can have a negative value, meaning it acts as a restoring force in the y direction and, if

sufficiently strong, can overwhelm the contribution from λ and give oscillatory y motion! This is

the mechanical analog of a magnetic mirror and has been verified by direct numerical integration as

shown in Fig. 5.8.

For oscillatory y motion, Eq. (5.82) admits an action integral in the y direction. Denote this

second action by K, which can be considered a new Hamiltonian for the x averaged system. This is

an example of a two-tier heirachy of action variables, or a wheel within a wheel [91]. For the reduced

system, J plays the role of a conserved quantity, so we develop an analog of Eq. (5.4):

∂K

∂J
=

∮
∂Py(H,J, y)

∂J
dy =

∮
1

∂J/∂Py
dy (5.84)

=

∮
−1

dy/dτ
dy = −∆τ, (5.85)

where Eq. (5.74) has been used to evaluate ∂Py/∂J and Eq. (5.72) has been used to evaluate ∂J/∂Py.

Since τ counts x cycles, −∂K/∂J gives the number of x cycles per y cycle. If this quantity is rational,

then the trajectory is closed, which is of interest when quantizing the system, as there is sometimes

a one-to-one correspondence between periodic classical trajectories and quantum energy levels [101].
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5.2 Charged Particle Motion in a Magnetic Field

Having discussed at length the general theory, we now focus on charged particle motion in magnetic

fields. Sec. 5.2.1 shows that, in the guiding center approximation, the action integral J reduces to

the first adiabatic invariant µ. Since J acts as a Hamiltonian for the reduced system, it follows that

µ is a Hamiltonian for the guiding center drifts, and we shall explicitly recover several of the guiding

center drifts from the general theory. Sec. 5.2.5 show an unexpected application of the theory:

computing the magnetic flux enclosed by a particle’s orbit by differentiating the action variable with

respect to the particle’s charge. We finally conclude the chapter with a theorem that relates these

various partial derivatives of J .

5.2.1 The Connection Between J and µ

The action integral J is clearly important but often difficult to evaluate in closed form. In the same

limit as the guiding center approximation, however, the integral for J can be approximated and is

proportional to µ, the first adiabatic invariant [33, p. 16]. This approximation also shows that the

guiding center limit is really a harmonic-oscillator approximation to the full problem.

Consider a magnetic field in the z direction and with x dependence: B = Bz(x)ẑ. A charged

particle will drift in the y direction due to the gradient in the magnetic field strength [2, Sec.

3.5.2] [93, Sec. 2.3] and will move freely in the z direction. The action J can be written in integral

form using the vector potential

A = Ay(x)ŷ =

(∫ x

x0

Bz(x
′)dx′

)
ŷ, (5.86)

and Hamiltonian

H =
P 2
x

2m
+

(Py − qAy(x))2

2m
+
P 2
z

2m
, (5.87)

from which

J(H,Py, Pz) =

∮
Pxdx =

∮ √
2mH − P 2

z − (Py − qAy(x))2dx. (5.88)

To help with notation, let us define H⊥ as the kinetic energy in the Larmor motion (e.g. not in the

z direction):

H⊥ = H − P 2
z

2m
. (5.89)

We evaluate J by first defining the guiding center position xgc and then performing a Taylor

expansion about this point. Let xgc be the x location where the y velocity vanishes:

0 = mẏ(xgc) = Py − qAy(xgc). (5.90)
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If the orbit were perfectly circular, as is assumed in guiding center theory, then xgc would coincide

with the center of the circle. xgc is a function of Py, and, for future reference, a partial differentiation

of Eq. (5.90) with respect to Py gives

∂xgc

∂Py
=

1

qBz(xgc)
. (5.91)

We now perform a Taylor expansion of Ay around xgc:

Ay(x) ≈ Ay(xgc) +
dAy
dx

∣∣∣∣
xgc

(x− xgc) (5.92)

= Ay(xgc) +Bz(xgc)(x− xgc). (5.93)

This expansion allows us to approximate J . Letting x′ = x− xgc,

J ≈
∮ √

2mH⊥ −
(
qBz(xgc)x′

)2
dx′ (5.94)

=
∣∣qBz(xgc)

∣∣ ∮ √ 2mH⊥
q2Bz(xgc)2

− (x′)2dx′ (5.95)

The integral now represents the area enclosed by a circle of radius
√

2mH⊥/ |qB|, so

J ≈ π
2mH⊥∣∣qBz(xgc)

∣∣ = 2π
m

|q|

(
mv2

L

2
∣∣Bz(xgc)

∣∣
)

= 2π
m

|q|
µ, (5.96)

where µ is defined as in Eq. (1.10). Thus, J is proportional to, but not equal to, µ in the guiding

center limit. The importance of this derivation is the functional dependence of B on xgc and hence

on Py; this dependence is key in deriving the grad-B drift below. Note that the absolute value of q

guarantees that the action J is positive6 for both positively and negatively charged particles.

In reducing J to µ, we have used the same approximations that reduce any potential well to a

harmonic oscillator. To see this, note that the Hamiltonian in Eq. (5.87) can be viewed as a one-

dimensional system with an effective potential energy Ueff = (Py − qAy(x))2/2m = (m/2)vy(x)2 [2,

pg. 119]. That is, the effective potential is equal to the kinetic energy in the y direction, and xgc is

clearly the location of the minimum of this potential well. As any potential well can be approximated

as a harmonic oscillator by performing a second-order Taylor expansion of the potential around the

minimum, Eq. (5.94) is equivalent to the action integral for a harmonic oscillator. The action for

a harmonic oscillator is J = 2πωH, and, indeed, the Eq. (1.10) is proportional7 to 2πωH with ω

equal to the gyrofrequency. The guiding center limit is thus a harmonic-oscillator approximation.

6J must be positive for such systems because J =
∮
Pxdx and Px = mẋ. Therefore, the contour of integration for

J is clockwise in the rPr plane, corresponding to a positive value of J , regardless of the particle charge.
7The constant of proportionality between between J and µ is m/ |q|, which is suggestive of the gyromagnetic ratio

which related the angular momentum of a charged rotating rigid body to its magnetic moment [98, pg. 252].
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Section 5.1.8 shows that the action J can be used as a Hamiltonian for the reduced system.

Having shown that J reduces to µ in the guiding center limit, we expect that µ will serve as a

Hamiltonian for the guiding center motion. Section 5.2.2 shows that Eq. (5.94) for µ does indeed

contain the grad-B drift of guiding center theory thanks to the definition of xgc in Eq. (5.90).

Sec. 5.2.3 extends the analysis to include parallel dynamics and the magnetic mirror force, and

Sec. 5.2.4 adds an electrostatic field to study the E×B drift.

5.2.2 The Grad-B Drift

For the magnetic fields used in the previous section, a charged particle will drift in the y direction

due to the gradient in field strength. We show that this grad-B drift, which is well-established in

guiding center theory, can be computed using the Hamiltonian formalism . ∆t is given by Eq. (5.13)

and (5.96),
∂J

∂H
= 2π

m

|q|Bz(xgc)
= ∆t, (5.97)

and is the usual gyroperiod. ∆y is given by a partial derivative with respect to Py:

∆y = − ∂J

∂Py
= 2πm

H⊥
|q|Bz(xgc)2

∂Bz
∂x

dxgc

dPy
(5.98)

= 2πm
H⊥

|q|Bz(xgc)2

∂Bz
∂x

(
1

qBz(xgc)

)
, (5.99)

where Eq. (5.91) was used to evaluate dxgc/dPy. The drift velocity in the y direction, computed

through the Hamiltonian formalism, is

∆y

∆t
=

H⊥
qBz(xgc)2

∂Bz
∂x

. (5.100)

Let us compare Eq. (5.100) to the grad-B drift [2, eq. 3.89] from the guiding center approximation:

v∇B = −H⊥
qB3
∇B ×B (5.101)

= −H⊥
qB3

(
∂Bz
∂x

x̂

)
× (Bz ẑ) (5.102)

=
H⊥
qB2

z

∂Bz
∂x

ŷ, (5.103)

which is in perfect agreement with Eq. (5.100).

5.2.3 Parallel Dynamics: The Magnetic Mirror Force

We now consider a magnetic field whose strength slowly changes in the z direction as well as in the

x direction. The parallel dynamics become non-trivial: the gyrofrequency changes with the field
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strength, the parallel motion can slow down, and magnetic mirroring can occur. We show that µ

serves as a Hamiltonian for both the parallel dynamics in addition to the grad-B drift discussed

above.

We first make some assumptions on the magnetic field. Because ∂zBz 6= 0, there must be a

second component of B to ensure ∇ · B = 0. We therefore allow Bx to be non-zero. Since the z

dependence of Bz is mild, Bx must be small. All of this can be encapsulated by the vector potential

A = Ay(x, z)ŷ = Ã(x, εz)ŷ; (5.104)

that is, the vector potential is some function of x and εz. The ε in the z dependence allows us to

keep track of the relative magnitudes of terms. For instance, the magnetic field components are

Bz =
∂Ay
∂x

, Bx = −∂Ay
∂z

, (5.105)

so that Bz is zeroth order but Bx is small to first order. Likewise, ∂zBz is first order, and ∂zBx is

second order. We shall only work to first order. In this limit, the magnitude of the magnetic field is

B =
√
B2
z +B2

x ≈ Bz, (5.106)

and the unit vector of B is

B̂ =
Bz ẑ +Bxx̂

B
≈ ẑ +

Bx
Bz

x̂. (5.107)

To proceed with the Hamiltonian formalism, we modify our definition of xgc to be a function of

both Py and z defined by

0 = ẏ
(
xgc(Py, z)

)
= Py − qAy

(
xgc(Py, z), z

)
. (5.108)

Implicit differentiation gives a modified version of Eq. (5.91):

∂xgc

∂Py
=

1

qBz
, (5.109)

∂xgc

∂z
= −∂Ay/∂z

∂Ay/∂x
=
Bx
Bz

. (5.110)

The form of J remains the same,

J = 2π
m

|q|
H⊥

Bz(xgc(Py, z), z)
, (5.111)

but there is now z dependence both in the magnetic field and also in the guiding center position.

Neither ∂J/∂H nor ∂J/∂Py change in form except for the z dependence added to Bz, so the grad-
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B drift is the same as Eq. (5.100). The calculation of ∆Pz, however, becomes interesting, as the

evaluation of ∂J/∂z must include differentiation of the z dependence of both Bz and also xgc. Using

Eqs. (5.109) and (5.110), we get

∂J

∂z
= −2π

m

|q|
H⊥
B2
z

dBz(xgc, z)

dz
(5.112)

= −2π
m

|q|
H⊥
B2
z

[
∂Bz
∂x

∂xgc

∂z
+
∂Bz
∂z

]
(5.113)

= −2π
m

|q|
H⊥
B2
z

[
∂Bz
∂x

Bx
Bz

+
∂Bz
∂z

]
(5.114)

= −2π
m

|q|
H⊥
B2
z

[
Bx
Bz

∂

∂x
+

∂

∂z

]
Bz (5.115)

= −2π
m

|q|
µ

Bz
B̂ · ∇Bz. (5.116)

Then
∆Pz
∆t

=
∂J/∂z

∂J/∂H
= −µB̂ · ∇Bz. (5.117)

We can work out the dynamics as predicted by the guiding center approximation and compare

them with the conclusions of the previous paragraph. We start with the ∇B drift and show that it is

unaltered by the added z dependence. While the gradient of the magnetic field strength is modified

to first order ε:

∇B ≈ ∇Bz =
∂Bz
∂x

x̂+
∂Bz
∂z

ẑ, (5.118)

the grad-B drift remains the same as Eq. (5.103) to first order:

v∇B = −H⊥
qB3
∇B ×B (5.119)

= −H⊥
qB3

(
∂Bz
∂x

x̂+
∂Bz
∂z

ẑ

)
× (Bxx̂+Bz ẑ) (5.120)

=
H⊥
qB2

∂Bz
∂x

ŷ. (5.121)

The term Bx · ∂zBz is second order ε and thus is dropped. Guiding center theory predicts a second

drift, the curvature drift [2, Sec. 3.5.2] [93, Sec. 2.3.2], but this is zero to first order:

vc = −
mv2
‖

qB2
B̂ · ∇B̂ ×B (5.122)

= −
mv2
‖

qB2
z

[(
∂

∂z
+
Bx
Bz

∂

∂x

)(
ẑ +

Bx
Bz

x̂

)]
× (Bz ẑ +Bxx̂) , (5.123)

because the term in square brackets is second order ε. The parallel dynamics comes from µ conser-
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vation:

µB = H − P 2
z /2m. (5.124)

Taking a total time derivative of both sides,

µvd · ∇B = −PzṖz/m, (5.125)

where vd is the drift velocity. Since B does not vary in the y-direction, vd ·∇B = ż∂zB, and dividing

by Eq. (5.125) by ż = Pz/m gives

µB̂ · ∇B = −Ṗz, (5.126)

which agrees with Eq. (5.117).

5.2.4 E×B Drifts

This section incorporates an electrostatic field E(x, y) = −∇V (x, y) in addition to a magnetic field

of the form B = Bz(x)ẑ. The Hamiltonian becomes

H =
P 2
x

2m
+

(Py − qAy(x))2

2m
+ qV (x, y), (5.127)

and the action integral is

J(H, y, Py) =

∮ √
2m(H − qV (x, y))− (Py − qAy(x))2 dx. (5.128)

We would like to approximate this integral and express the result in a form similar to the action J0

for the purely magnetic case:

J0(H,Py) =

∮ √
2mH − (Py − qAy(x))2 dx ≈ π 2mH

|q|Bz(xgc)
. (5.129)

The coarsest approximation to Eq. (5.128) is sufficient to recover the E×B drift [2, ch. 3.5.1] [93,

Sec. 2.2.2] in addition to the grad-B drift. More accurate approximations of Eq. (5.128) produce

higher-order corrections to the E × B velocity. We relate one such higher-order correction to a

finite Larmor radius effect. In Appendix D, we relate a second such higher-order correction with a

pondermotive-like force induced by the cyclotron motion.

The coarsest approximation to Eq. (5.128) is to assume that, over the course of a gyro-orbit,

V (x, y) can be approximated by its value at the guiding center, V (x, y) ≈ V (xgc, y). With this

approximation,

J(H, y, Py) ≈ J0(H − qV (xgc, y), Py), (5.130)
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The period ∆t is the same as with no potential, but ∆y has a new term that comes from the Py

dependence of xgc in V:

∆y = − ∂J

∂Py
= −∂J0

∂H

∂

∂Py
(H − qV )− ∂J0

∂Py
=
∂J0

∂H

∂xV

Bz
− ∂J0

∂Py
, (5.131)

where Eq. (5.91) has been used. The drift in the y direction is thus

∆y

∆t
=
∂xV

Bz
− ∂J0/∂Py
∂J0/∂H

. (5.132)

The second term is the grad-B drift discussed in Sec. 5.2.2, and we denote this quantity as v∇B .

The first term, ∂xV/B, is readily identified as the y component of the E×B drift:

(
E×B

B2

)
y

=
(Exx̂)× (Bz ẑ)

B2
z

=
∂xV

Bz
. (5.133)

The x component of the E×B drift is also contained in the Hamiltonian formalism and can be com-

puted by taking ∆xgc and using the definition of xgc from Eq. (5.90) to obtain ∆Py = qBz(xgc)∆xgc.

Then, since

∆Py =
∂J

∂y
=
∂J0

∂H

(
−q ∂V

∂y

)
, (5.134)

the drift in the x direction is
∆xgc

∆t
= −∂yV

Bz
. (5.135)

We can retain the two next higher-order terms of the expansion of V to yield more accurate

forms of the action integral. We proceed by using the expansion V (x, y) ≈ V (xgc, y) + ∂xV δx in the

integrand of Eq. (5.128) and then completing the square in δx:

J ≈
∮ √

2m(H − qV − ∂xV δx)− (qBzδx)2 dx (5.136)

=

∮ √√√√2m

(
H − qV +

m

2

(
∂xV

Bz

)2
)
− q2B2

z

(
δx+

m∂xV

qB2
z

)2

dx. (5.137)

This integral for J resembles Eq. (5.128) but with two modifications. First, the oscillation center

is shifted by the amount m∂xV/qB
2
z . As discussed in Appendix D, this shift occurs because our

definition of guiding center no longer minimizes the effective potential once a potential has been

added. However, in evaluating Eq. (5.137), this shift will have no bearing on the value of the action

integral8. The second modification is the addition of a new potential term (m/2)(∂xV/Bz)
2, which

is the kinetic energy of the E × B drift. In Appendix D, this new potential is proposed to be a

8Put succinctly, J is the phase space area enclosed by the trajectory in the xPx plane and thus is clearly not
changed by an offset.
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pondermotive-like potential induced by the cyclotron motion. Eq. (5.137) allows us to express J in

terms of J0:

J(H,Py) = J0

(
H − qV (xgc, y, t) +

m

2

(
∂xV

Bz

)2

, Py

)
, (5.138)

which serves as a Hamiltonian for the guiding center motion. The effect of the new potential term

on the drift will be discussed shortly.

If the potential V (x, y) is expanded one term further, V (x, y) ≈ V (xgc, y)+∂xV δx+(1/2)∂xxV (δx)2,

then the second-order term effectively modifies the magnetic field strength:

J ≈
∮ √

2m

(
H − qV − ∂xV δx−

1

2
q∂xxV δx2

)
− (qBzδx)2 dx (5.139)

=
√

2m (H − qV − ∂xV δx)− (q2B2
z +mq∂xxV )(δx)2 dx (5.140)

=
√

2m (H − qV − ∂xV δx)− (qB∗zδx)2 dx, (5.141)

where B∗z is

B∗z =

√
B2
z +

m

q
∂xxV . (5.142)

One can then proceed as before and obtain Eq. (5.138) with Bz replaced with B∗z .

J(H,Py) = J0

(
H − qV (xgc, y, t) +

m

2

(
∂xV

B∗z

)2

, Py

)
, (5.143)

This is the most accurate approximation of the action integral and has many instances of implicit

Py dependence through xgc in V and B∗z .

The added potential term in Eq. (5.138) contributes a new term to ∆y, leading to a higher-order

drift. The new term in ∆y is obtained by differentiating the (m/2)(∂xV/Bz)
2 in Eq. (5.138) with

respect to Py. To organize the growing number of terms, we write ∆y = (∆y)0 + (∆y)1, where

(∆y)0 consists of the terms from Eq. (5.131) and (∆y)1 is the new higher-order term. Then

(∆y)1 = −∂J0

∂H

∂

∂Py

(
m

2

(
∂xV

Bz

)2
)

(5.144)

= −∂J0

∂H

(
∂xV

Bz

)
∂

∂Py

(
m
∂xV

Bz

)
(5.145)

= −∂J0

∂H

(
∂xV

Bz

)
dxgc

dPy

∂

∂x

(
m
∂xV

Bz

)
. (5.146)

We then rewrite ∂xV/Bz as vE×B and also use Eq. (5.91) to write dxgc/dPy = 1/qBz. Then

(∆y)1 = −∂J0

∂H
vE×B

m

qBz

∂

∂x
(vE×B) . (5.147)



129

This new term in ∆y leads to new terms in the drift velocity ∆y/∆t. Combining Eq. (5.131) with

Eq. (5.147) gives

vd = v∇B + vE×B − vE×B
m

qBz

∂

∂x
(vE×B) . (5.148)

Since the higher-order drift involves a gradient of vE×B , one might regard it as a “grad-E” drift.

However, in Appendix D.1 we show that the existence of this higher-order drift really depends on

how one defines the guiding center.

Finally, we show that Eq. (5.143) can be used to derive a finite Larmor radius effect discussed

by Chen in [93, sec. 2.4]. A finite Larmor radius effect is a higher-order correction to guiding center

theory due to the fact that the particle’s orbit has non-zero size. Following Chen, we assume that

the magnetic field is uniform and work in the guiding center limit so that J0 is given by Eq. (5.96)

with the modified field strength B∗. Then

J(H,Py) = 2πm
H − qV (xgc) + (m/2)(∂xV/Bz)

2

|q|B∗z
. (5.149)

We have already computed the contribution to ∆y from differentiation of both qV and (m/2)(∂xV/Bz)
2.

Here, we will focus on the contribution from differentiating B∗z :

(∆y)2 = − ∂J

∂Py
= 2πm

H − qV (xgc)

|q|B∗2z
∂B∗z
∂Py

. (5.150)

Using the definition of B∗z from Eq. (5.142) and bearing in mind that Bz is constant, we have

∂B∗z
∂Py

=
1

2B∗2z

m

q

∂(∂xxV )

∂Py
(5.151)

=
m

2qB∗z

∂3V

∂x3

∂xgc

∂Py
(5.152)

=
m

2q2B∗zBz

∂3V

∂x3
, (5.153)

where Eq. (5.91) has been used to evaluate ∂xgc/∂Py. At this point, we take B∗z ≈ Bz and evaluate

the resulting drift:
(∆y)2

∆t
=
H − qV (xgc)

|q|B∗2
m

2qBz

∂3V

∂x3
. (5.154)

Since Bz is constant and H − qV = (m/2)v2
⊥, we can write

∆y

∆t
=

m2v2
⊥

|q|B∗2
1

4qB∗
∂2

∂x2

(
Ex
Bz

)
(5.155)

=
1

4
r2
L

∂2

∂x2

(
Ex
Bz

)
, (5.156)

which is equal to the finite Larmor radius correction to the E×B drift given in Ref. [93, sec. 2.4].
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5.2.5 Magnetic Flux Enclosed by a Gyro-Orbit

Here, we show that the action integral J can be used to compute the magnetic flux enclosed by a

gyro-orbit. As magnetic flux is only defined through a closed surface and charged particle trajectories

are typically not closed, we evaluate the flux using the orbit in the drift frame. We give an alternate

derivation of the same formula in Appendix C.

For any orbit in an electromagnetic field for which one coordinate, say ξ, is periodic, we have

∂J

∂q
=

∮
∂Pξ
∂q

dξ =

∮
∂H(r,P; q)/∂q

∂H(r,P; q)/∂Pξ
dξ (5.157)

= −
∮ [
−p− qA

m
·A + V

]
dξ

ξ̇
(5.158)

= −
∫ t0+∆t

t0

[−v ·A + V ] dt (5.159)

=

∫
A · dl−

∫ t0+∆t

t0

V dt. (5.160)

The line integral of A is over one period of motion; since the motion is in general not periodic, we

cannot identify this integral as the magnetic flux enclosed by the orbit. However, in the drift frame,

the orbit is closed by definition, and the integral of A over the orbit in the drift would indeed yield

a well-defined flux. We extract this integral from Eq. (5.159) by writing the lab frame velocity as

v = v′ + vd, where vd is the drift velocity and v′ is the particle velocity as seen in the drift frame.

We then have

∂J

∂q
= −

∫ t0+∆t

t0

[− (v′ + vd) ·A + V ] dt (5.161)

=

∮
A · dl′ +

∫ t0+∆t

t0

vd ·Adt−
∫ t0+∆t

t0

V dt. (5.162)

The first term is the flux, which we denote by Φ. The second term9 can be rewritten using qA =

P−mv. As the drift is in a direction of symmetry, the component of P along the drift is conserved.

We then obtain

∂J

∂q
= Φ +

1

q
(P−mvd) ·∆r−

∫ t0+∆t

t0

V dt, (5.163)

showing the relationship between ∂J/∂q and Φ. If there is a non-zero potential V , then its average

over one period must be computed.

We mention in passing that
∮

A · dl is related to the phase shift due to the Aharonov-Bohm

effect [102], so the quantity ∂J/∂q, when no potential is present, could be of particular value in

9We note that, if one had formally boosted to the drift frame in the non-relativistic limit, then the potential V
would be transformed precisely by the amount −vd ·A while the vector potential would not be transformed. This
can be seen by boosting the four-vector (−V, cA) in the non-relativistic limit.



131

quantum systems.

5.2.6 Drift, Action, and Euler’s Formula

We conclude this chapter with a formula that relates the various partial derivatives of J . The

derivation here utilizes Euler’s formula for homogenous functions. An alternate derivation that

integrates the action over special phase space contours is included in Appendix D.5; the derivation

there uses a technique developed by Montgomery in the case of rigid body dynamics [103].

Suppose that, for a charged particle in a magnetic field, the x coordinate is periodic and the

y and z coordinates are ignorable. We write H, which is kinetic energy, as (m/2)v2. Then J is a

homogenous function of degree one in the variables v, Py, Pz, and q:

J =

∮ √
m2v2 − (Py − qAy)2 − (Pz − qAz)2dx. (5.164)

Applying Euler’s theorem of homogenous functions to J , we obtain

J(v, Py, Pz; q) = v
∂J

∂v
+ q

∂J

∂q
+ Py

∂J

∂Py
+ Pz

∂J

∂Pz
, (5.165)

or

J(H,Py, q) = 2H∆t+ q
∂J

∂q
+ Py

∂J

∂Py
+ Pz

∂J

∂Pz
. (5.166)

The flux enclosed by a gyro-orbit is given by Eq. (D.26), which can be rewritten as

qΦ = q
∂J

∂q
+ Py

∂J

∂Py
+ Pz

∂J

∂Pz
+mv2

d

∂J

∂H
. (5.167)

Using Eq. (5.167) in Eq. (5.165),

J = qΦ + 2

(
H − 1

2
mv2

d

)
∆t. (5.168)

This formula ties together the action integral, the flux, and the period, and the drift velocity. As

discussed in Sec. 5.2.1, J becomes proportional to µ in the guiding center limit. In the same limit,

the drift-velocity energy is negligible compared to the total energy H, so

2π
m

|q|
µ = qΦ + 2H∆t. (5.169)

5.3 Conclusions

We have shown that, in any Hamiltonian system where one coordinate undergoes periodic evolution,

the action integral for that coordinate encodes the evolution of the system once the periodic motion
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has been averaged over. In fact, this action integral acts as a Hamiltonian for the reduced system

and provides the averaged equations of motion provided that time is measured in periods of motion.

This formalism can be used to rederive the drifts of the guiding center approximation using µ as a

Hamiltonian and can even be used to derive the flux enclosed by a gyro-orbit, but the scope of the

results goes far beyond charged particle motion in magnetic field.

In regards to future work, the curvature drift from guiding center theory has not yet been derived

from the Hamiltonian formalism, and this could a very interesting problem. As the curvature drift

involves motion along curved field lines, one approach would be to rotate the coordinate system to

align with the magnetic field after each period of motion. It is conceivable that the Hamiltonian

formalism could be used to compute the required rotation matrix; this framework is reminiscent

of an SO3 fiber bundle [104, ch. 1] over the ξPξ plane. Another application would be to situa-

tions where the guiding center approximation breaks down. Guiding center theory is essentially a

harmonic-oscillator approximation, but the Hamiltonian theory depends on periodic motion that

is not necessarily harmonic. Therefore, the latter is more robust and may supplant guiding center

theory in cases of large orbit sizes or vanishing magnetic fields. Indeed, the beginnings of such work

are seen in the next chapter.
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Figure 5.4: The top plot shows the cycloid motion in the xy plane. γ is large at the top of the cycloid,
where the electric field has accelerated the particle to relativistic velocities. γ is approximately one
at the bottom of the cycloid where the particle is nearly at rest. The middle plot shows the z velocity
as a function of time. When γ is large, vz is small in accordance with Eq. (5.28), but when γ ≈ 1
vz is large. The bottom plot show the effects of this modulated velocity on z position, draw with a
solid red line. The dashed line is the theoretical drift value predicted by Eq. (5.47); the agreement
is perfect.
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Figure 5.5: A peculiar hour hand with a non-uniform rate is plotted in red; it is analogous to
the η motion. Although the hour hand moves at the correct average rate, the dashed black line,
representative of the drift ∆η/∆t, is much more convenient for reading time.

Figure 5.6: A side view of the groove. The green line runs along the spine of the groove which is
in the y direction; you can clearly see that the groove is concave down in this direction. The red
parabola is a cross-section of the groove at its apex where the groove is widest. The pink parabolas
are cross-sections further down the groove and are steeper and more narrow than the red one.
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Figure 5.7: Intuition dictates that a particle placed in a saddle-like groove will eventually roll down
the groove with increasing velocity. Indeed, this is observed in this numerical simulation. y the
direction along the groove, and z the vertical direction. The Hamiltonian is given by Eq. (5.80)
with m = 1, κ = 1, α = 1 and λ = −0.01, and particle starts at x = y = 0 with vx(0) = 0.1 and
vy(0) = −0.004.
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Figure 5.8: With the right initial conditions, a particle in a thin saddle-like groove can undergo
oscillatory motion due to the narrowing of the groove. x is the direction across the groove, y the
direction along the groove, and z the vertical direction. The Hamiltonian is given by Eq. (5.80)
with m = 1, κ = 1, α = 1 and λ = −0.01, and particle starts at x = y = 0 with vx(0) = 0.25 and
vy(0) = −0.1.
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Chapter 6

Plasma Loop Merging and the
Two-Wire Problem

Chapter 5 presents a general theorem of Hamiltonian mechanics concerning the role of action inte-

grals in systems with periodic motion. Keeping this formalism in mind, we now attempt to explain

the coalescence of the spider legs in the Caltech Spheromak Experiment into a single axisymmetric

structure. Recall from Sec. 1.4.2 that Taylor’s theory of magnetic relaxation predicts this evolution

towards the axisymmetry of the magnetic field boundary conditions. This explanation is macro-

scopic and based on helicity-conservation arguments; our approach will be microscopic to identify

the mechanism behind the transition. We will study the trajectories of particles at the edge of or

just outside of a spider leg; the behavior of such particles will be taken as indicative of the evolution

of the spider leg boundary. We find that, when multiple plasma loops are present, the trajectories

can be divided into two classes: those that are essentially confined to the vicinity of one loop and

those that are shared more symmetrically between loops. When time dependence is added to the

system, trajectories can transition from one class to the other. Obviously, transitions from confined

to symmetric orbits would indicate the onset of loop merging, but such transitions occur only when

the induced electric field takes a particular form. The ultimate success of the model in explaining

the merging thus depends critically on the actual induced electric field in the experiments, which,

in all likelihood, must be determined experimentally. Note that this same analysis also applies to

dual-loop merging experiments on the Caltech Solar Loop Experiment.

The electromagnetic fields of the Caltech experiments are quite complex, and we will employ

several approximations to make the problem tractable. Both the Spheromak and Solar experiments

produce plasma loops arching from anode to cathode. These loops carry time-dependent currents

and helical magnetic field lines. On the Spheromak Experiment, the spider legs are more tightly

spaced on the inner disk than the outer annulus, while on the Solar Loop Experiment the two loops

attract each other. Even establishing the electric and magnetic fields in either experiment is quite

a challenge; determining the particle orbits in such fields is even more difficult. We seek model
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magnetic and electric fields that capture the essential physics while remaining tractable. To this

end, we begin with a modest model: straight plasma loops with no bias (axial) magnetic field. This

approximation essentially treats the plasma loops as straight current-carrying wires and ignores the

curved geometry and helical nature of the magnetic field lines.

In Sec. 6.1, we begin by analyzing a single wire, for which the particle trajectories all have

the same qualitative behavior. We compute the action integral for planar motion and develop

approximations for non-planar motion. We broach the difficulties of determining the induced electric

field when the wire current changes in time, and we show how the Hamiltonian formalism of Chapter 5

applies to particles trajectories in such time dependent fields. In Sec. 6.2, we add a second wire,

parallel to the first, and find a richer set of trajectories that fall into several classes: some are

confined to one wire, and some are shared between both wires. When time-dependence is added to

the two-wire scenario in Sec. 6.3, the induced electric field can cause transitions of confined orbits

to shared orbits, but only if the induced electric field is anti-parallel to the wire current. We discuss

the plausibility of such a field and show exactly how it would induce transitions.

6.1 Single Wire and B ∼ φ̂/r Fields

Before attempting to study particle orbits in a system of plasma loops, it is best to first understand

orbits about a solitary wire. Such orbits are of the type described in Chapter 5: the particle executes

periodic radial motion but increments in the axial and angular coordinates. Fig. 6.1.a depicts planar

electron motion about a wire for which there is no angular motion while Fig. 6.1.b depicts electron

motion with non-zero angular momentum. We shall first discuss various occurrences of the magnetic

field B ∼ φ̂/r. The action integral for planar orbits will then be evaluated in closed form, leading

to an exact expression for the drift velocity. Approximate results are derived for non-planar orbits.

The case of a time-dependent current is then explored, and issues concerning the induced electric

field are discussed.

The magnetic field of a straight, infinitely thin wire carrying a current I is given by Ampere’s

law:

B =
µ0I

2πr
φ̂. (6.1)

However, this magnetic field is not limited to infinitely thin wires. In general, the magnetic field for

any axisymmetric, poloidal current density is B(r) = µ0I(r)/(2πr)φ̂, where I(r) =
∫ r

0
2πr′Jz(r

′)dr′,

which scales as 1/r wherever Jz(r) = 0. This includes the vacuum region outside any axisymmetric

current channel as well as the interior of a toroidal solenoid. More generally, B decays like a 1/r

field when Jz(r)� I(r)/(2πr2), for then

dBφ
dr

= −µ0I(r)

2πr2
+ µ0Jz(r) ≈ −

µ0I(r)

2πr2
. (6.2)
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Figure 6.1: (a) An electron executes planar motion in the magnetic field of a current-carrying wire
(b) A three-dimensional plot of an electron orbit with non-zero angular momentum.

The term µ0I(r)/2πr of Eq. (6.2) is µ0/2 times the average current density up to a radius r, so

the condition Jz(r) � I(r)/(2πr2) requires that the local current density be much smaller than

the average current density up to that radius. This condition will most likely be satisfied at the

edge of current channels such as those described in Ref. [105]. Thus, B ∼ φ̂/r both in the vacuum

region outside of a current channel and also at the channel’s edge. We also expect the field outside

a filamentary but curved current channel to scale as B ∼ φ̂/r wherever the distance to the channel

is much smaller than the channel’s radius of curvature. Clearly, many physical scenarios can have

magnetic fields that behave approximately like 1/r fields, and the results presented here may have

broad applications.

6.1.1 The Action and Drift Velocity for Planar Orbits

We now calculate the action variable J , the drift velocity, and magnetic flux of planar trajectories

around a wire. For any toroidal magnetic field, there exists a class of planar orbits that is confined to

a plane containing the wire [106]. This follows from conservation of angular momentum Pφ = mr2φ̇

because planar orbits have Pφ = 0, which immediately implies φ̇ = 0. For such trajectories, we

relate results obtained in Chapter 5 for fields B = Bz(x)ẑ to orbits in toroidal fields B = Bφ(r)φ̂ by

making the identifications x↔ r, y ↔ −z, and ẑ ↔ φ̂.

We first establish the Hamiltonian and basic orbit properties. We use the vector potential

A = Az(r)ẑ = −
(∫ r

R

B(r′)dr′
)
ẑ = −µ0I

2π
ln
r

R
ẑ, (6.3)

where R is an arbitrary radius that affects A only by the addition of a constant. To simplify

constants, we introduce the characteristic velocity β := µ0Ie/2πm [106]. The canonical momenta
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are

Pr = mṙ, (6.4)

Pφ = mr2φ̇, (6.5)

Pz = mż + (−e)Az(r) = mż +mβ ln
r

R
, (6.6)

and the Hamiltonian is

H =
P 2
r

2m
+

P 2
φ

2mr2
+

(Pz −mβ ln(r/R))2

2m
. (6.7)

Pz, Pφ, and H are conserved along trajectories. For planar orbits, we set Pφ = 0 and use the

Hamiltonian

H =
P 2
r

2m
+

(Pz −mβ ln(r/R))2

2m
. (6.8)

Every orbit has two radial turning points where vr = 0 and a single radius at which vz = 0.

Denoting the inner turning point by r− and the outer one by r+, we set Pr = 0 in Eq. (6.8) and

solve for r to obtain

r± = R exp

[
Pz ±

√
2mH

mβ

]
. (6.9)

These turning points allow us to determine whether the guiding center approximation holds true for

a particular trajectory. The guiding center approximation requires that the fractional change in the

magnetic field be small over the course of a gyration: δB/B � 1. The fractional change from the

outer turning point to the inner one is

δB

B
=
B(r−)−B(r+)

B(r+)
= e2v/β − 1, (6.10)

which gives the simple condition v � β. Note that, due to the lack of an inherent length scale

associated with the magnetic field, this condition is completely independent of the electron’s position.

We define the guiding center radius rgc in analogy to Eq. (5.90) as the radius at which the axial

velocity vz vanishes:

rgc = R exp

(
Pz
mβ

)
. (6.11)

For orbits with v � β, this radius coincides with the gyrocenter radius [106]. This definition relates

R and Pz, neither of which is a physical quantity, to a physical location along an orbit.

For planar orbits, the action integral,

J(H,Pz) =

∮ √
2mH −

(
Pz −mβ ln

r

R

)2

dr, (6.12)
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can be evaluated exactly using the substitution

cos θ =
Pz −mβ ln r/R√

2mH
. (6.13)

θ is simply the angle the velocity vector makes with the z axis; note that θ = 0 at r−, θ = π/2 at

rgc, and θ = π at r+. We can solve Eq. (6.13) for r as a function of θ:

r = rgc exp

[
− v
β

cos θ

]
. (6.14)

The action variable can be evaluated by observing that Pr = mvr = mv sin θ and then integrating

by parts:

J =

∮
Prdr =

∮
mv sin θ

dr

dθ
dθ = −

∮
mv cos θrdθ. (6.15)

Then, using Eq. (6.14) and the integral representation of the modified Bessel function:
∫ π

0
ex cos θ cos(nθ)dθ =

πIn(x) [107, Eq 9.6.19], we find that

J = 2πrgcmvI1

(
v

β

)
. (6.16)

∆t and ∆z can both be computed by partial differentiation as per Eq. (5.4):

∆z = − ∂J

∂Pz
= −2π

v

β
rgcI1

(
v

β

)
, (6.17)

∆t =
∂J

∂H
= 2π

rgc

β
I0

(
v

β

)
. (6.18)

Note that Eqs. (6.17), (6.18), and (6.16) have a simple dependence on rgc that could have been

predicted beforehand using only dimensional analysis. This is so because the vacuum magnetic field

lacks an inherent length scale. The substitution of Eq. (6.13) was apparently known to Wouters,

who derived similar formulae for the betatron half-wavelength in his charge/mass separator [108].

The exact drift velocity, computed without appealing to the guiding center approximation, is

vd =
∆z

∆t
ẑ = −v I1(v/β)

I0(v/β)
ẑ. (6.19)

This formula is exact and holds for orbits where the guiding center approximation breaks down. The

v � β limit of Eq. (6.19) is vd = −v2/(2β), obtained by the small argument limit of the modified

Bessel functions: In(x) ≈ (x/2)n [107, Eq. 9.1.7]. Of course, this agrees with the grad-B drift

of the guiding center approximation as discussed in Sec. 5.2.2. The v � β limit of Eq. (6.19) is

vd ≈ −vẑ, obtained by the large argument limit of the modified Bessel functions: Iα(x) ≈ ex/
√

2πx

when x�
∣∣α2 − 1/4

∣∣ [107, Eq. 9.7.1]. Such electrons drift downward with a drift speed approaching
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their full trajectory speed. We draw two conclusions from this. First, all electrons drift downward

regardless of their velocity or the wire current, and, similarly, all ions drift upwards. The current

driven by the drift flows in the same direction as the original wire current, so the wire current

“bootstraps” itself. Secondly, larger currents have larger values of β and hence smaller drift velocities,

so the bootstrap effect is actually greatest for small wire currents. Similar observations were made

by Alfven on the limit of current channels [109].

6.1.2 Non-Planar Orbits

For non-planar orbits, the action integral,

J(H,Pz, Pφ) =

∮ √
2mH − P 2

φ/r
2 − (Pz −mβ ln(r/R))

2
dr, (6.20)

cannot be evaluated exactly as in the planar case, but we can perform a Taylor expansion about

Pφ = 0. This treats the kinetic energy of the angular motion as a perturbation of the planar problem.

The first-order expansion is

J(J, Pz, Pφ) ≈ J0(H,Pz) +
1

2

∮
(−P 2

φ/r
2)dr√

2mH − (Pz −mβ ln(r/R))2
, (6.21)

where J0(H,Pz) is the planar action integral given by Eq. (6.16). Using the substitution u/R = R/r,

we get

J(J, Pz, Pφ) ≈ J0(H,Pz) +
1

2

∮
(P 2
φ/R

2)du√
2mH − (Pz +mβ ln(u/R))2

, (6.22)

which can then be evaluated with the substitution
√

2mH cos θ = Pz +mβ ln(u/R),

J(H,Pz, Pφ) ≈ J0(H,Pz)−
πP 2

φ

mβrgc
I0

(√
2mH

mβ

)
(6.23)

= J0(H,Pz)−
P 2
φ

2mr2
gc

∆t0. (6.24)

∆t0 is the period for planar motion given by Eq. (6.18). Note that the correction term in Eq. (6.24)

contains the kinetic energy of angular motion, P 2
φ/(2mr

2), evaluated at r = rgc. Indeed, Eq. (6.24)

could have been derived from Eq. (6.21) by approximating P 2
φ/r

2 as P 2
φ/r

2
gc and then evaluating the

resulting integral:

1

2

∮
(−P 2

φ/r
2
gc)dr√

2mH − (Pz −mβ ln(r/R))2
= −

P 2
φ

2mr2
gc

∮
dr

ṙ0
= −

P 2
φ

2mr2
gc

∆t0, (6.25)

where ṙ0 is the unperturbed radial velocity. We can think of Eq. (6.21) as an averaging of the

perturbation over an unperturbed orbit, in which case Eq. (D.22) could be used to obtain an even
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more accurate estimate of J .

The Pφ term in Eq. (6.24) provides the first-order correction to all quantities derived from J due

to angular motion. For instance, in the v � β limit, the drift velocity agrees with the guiding center

approximation once the curvature drift is added to the dominant grad-B drift.

6.1.3 Time-Varying Currents

In preparation for the time-dependent two-wire problem, we consider particle motion in a time-

varying 1/r magnetic field. The primary difficulty in this case is actually not the particle orbits

themselves but rather determining the appropriate electric field to use. It is well-known that a time-

varying magnetic field induces an electric field, but Faraday’s law, ∇×E = −∂tB, only specifies the

curl of E, leaving E undetermined up to the addition of the gradient of a scalar. In the single-wire

case, we can write E in terms of the potentials

E = −∂A

∂t
−∇V =

µ0İ

2π
ln
r

R
ẑ −∇V, (6.26)

using the vector potential of Eq. (6.3). We cannot proceed, however, because we have no prescription

for determining V : there are no boundary conditions for E due to the infinite extend of the wire,

its infinite thinness, and its lack of return current. In order to determine the electric field, these

details, which could be ignored in the static case, must be specified [110, 111]; a solitary infinite wire

carrying a time-dependent current is an ill-posed problem. In this section, we present two return

currents for the wire and their possible relevance to the Caltech experiments.

Consider the configuration shown in Fig. 6.2.a, where the wire current is fed by two large planar

disks; this configuration is similar to a toroidal solenoid. We also assume that the wire has a non-zero

radius r = a. If all surfaces are perfectly conducting, then the tangential component of the electric

field must vanish on the surface. The appropriate electric field is obtained from Eq. (6.26) by setting

V = 0 and R = a:

E =
µ0İ

2π
ln
r

a
ẑ. (6.27)

E then satisfies the boundary conditions at the plates because it is axial, and it satisfies the boundary

condition on the wire surface because it vanishes at r = a. This electric field is aligned with the wire

current, and the associated Poynting flux in radially inward, suggesting that the source of energy

for the circuit is located at r =∞.

Now consider the configuration shown in Fig. 6.2.b where the current returns coaxially at radius

r = b. For perfectly conducting surfaces, the axial electric field must vanish at both r = a and r = b.
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Figure 6.2: Two different possible returns for a wire: (a) two planar plates radially feed the wire
and (b) a coaxial return. The direction of current flow is drawn in black, the electric field is drawn
in green, and the Poynting vector is drawn in blue.

Evaluating Eq. (6.26) on these surfaces implies

Ez(r = a) = 0 → ∂V

∂z

∣∣∣∣
r=a

=
µ0İ

2π
ln
a

R
, (6.28)

Ez(r = a) = 0 → ∂V

∂z

∣∣∣∣
r=b

=
µ0İ

2π
ln
b

R
, (6.29)

V must also satisfy Laplace’s equation because E satisfies Poisson’s equation: ∇ · E = 0. For

azimuthal symmetry, ∇2V = 0 has solutions of the form V ∼ z ln r. Matching the boundary

condition, we have

V =
µ0İ(t)

2π
z ln

r

R
. (6.30)

The axial component of the electric field vanishes, leaving a radial radial electric field,

E = −µ0İ(t)

2π

z

r
r̂, (6.31)

which is independent of R and the radii of the cable. Note that V breaks the axial symmetry of

the configuration, and in particular there is a z position at which E vanishes. This location might

be physically set by placing an electrical short between the inner and outer conductors. A zero in

the radial (normal) electric field is also seen in the electrostatic field of a circuit, and the location of

the zero depends on the circuit geometry [112]. Also note that the Poynting vector directs energy

axially towards the zero of the electric field.

Neither the fields in Eq. (6.27) nor Eq. (6.31) are entirely accurate. Both fields are unbounded

and rise to arbitrarily high values. Also, neither field truly satisfies Ampere’s law because the dis-

placement current ε0∂tE does not vanish. However, if we work in the limit of adiabatic slowness,

then the displacement current, which is proportional to Ï in both cases, can be ignored. For com-
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pleteness, we note that the fields that fully satisfy Ampere’s and Faraday’s law are TEM modes; the

electric field in Eqs. (6.27) and (6.31) are approximately equal to the sum of an ingoing wave and

a reflected wave, the waves traveling radially and axially, respectively, and being reflected at r = a

and z = 0, respectively.

Which of these two field configurations most closely resembles the actual fields in the Caltech

experiments is an open question. On the one hand, the plates that radially feed the wire in Fig. 6.2.a

resemble the plasma electrodes on which each flux tube starts and ends. The boundary conditions

imposed by these plates cannot be satisfied by the radial electric field in Eq. (6.31), and, from this

argument, the field is likely to resemble the axial field of Eq. (6.27) bent into a curved geometry as

depicted in Fig. 6.3. On the other hand, plasmas are liable to form thin sheaths at all the boundaries,

and the electric field in the sheath is likely to be normal to the surface. In this case, the plasma

might have a field structure shown in Fig. 6.4. Given the possible existence of sheaths, it is unlikely

that the correct electric field can be easily derived from first principles, and in all likelihood an

experimental measurement will be needed to determine the actual field.

Figure 6.3: The Solar Loop Experiment might have an induced electric field that is “axial,” as
shown here by the green lines. The electric field begins and ends on the electrodes. The associated
Poynting flux, shown by the blue lines, transports energy radially through the gap in the electrodes.

The induced electric field thus depends on the particulars of the setup, but we can still establish

a reduced Hamiltonian for particle orbits and derive general properties without going into the full

details. We leaving V arbitrary except for two requirements: that V is proportional to İ and hence

vanishes when the current is static, and that the current changes very slowly so that terms involving

Ï and İ2 can be ignored. The exact Hamiltonian for particle motion is

H =
P 2
r

2m
+

(Pz −mβ(t) ln(r/R))2

2m
− eV (r, z, t), (6.32)
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Figure 6.4: Alternatively, the Solar Loop Experiment might have an induced electric field that is
“radial,” as shown here by the green lines. The electric field lines are normal to the plasma surface.
The associated Poynting flux transports energy axially along the flux tube.

The Hamiltonian now contains explicit time and z dependence, so H and Pz are no longer conserved

quantities but instead evolve as

Ḣ =
∂H

∂t
=
Pz −mβ ln(r/R)

m

(
−mβ̇ ln

r

R

)
− e∂V

∂t
(6.33)

≈ −mβ̇ż ln
r

R
(6.34)

Ṗz = −∂H
∂z

= −e∂V
∂z

. (6.35)

The term ∂tV in Eq. (6.33) is dropped because it is proportional to Ï. These equations give the

instantaneous evolution of H and Pz and fluctuate over the course of a gyro-orbit. In Chapter 5, we

developed a formalism to obtain the orbit-averaged equations of motion. Using Eq. (5.137) with J0

being the action given by Eq. (6.16) for the static magnetic field:

J(H,Pz) ≈ J0

(
H − qV (rgc, z, t) +

m

2

(
∂rV

Bz

)2

, Pz +m
∂rV

Bz
;β(t)

)
(6.36)

≈ J0

(
H + eV (rgc, z, t), Pz + e

r

β
∂rV ;β(t)

)
. (6.37)

The term (m/2) (∂rV/Bz)
2

is dropped because it was proportional to İ2. Also, we have explicitly

written the β dependence of J0 because it will be needed below. We use Eq. (6.37) to compute the

average evolution ∆H/∆t and ∆Pz/∆t. We can compute ∆Pz and hence ∆Pz/∆t from Eq. (5.4):

∆Pz =
∂J

∂z
=
∂J0

∂H

(
e
∂V

∂z

)
+
∂J0

∂Pz

(
e
r

β

∂2V

∂r∂z

)
= ∆t

(
e
∂V

∂z

)
−∆z0

(
e
r

β

∂2V

∂r∂z

)
, (6.38)
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∆Pz
∆t

=

(
1 +

r

β

∆z0

∆t

∂

∂r

)(
e
∂

∂z

)
V. (6.39)

This is the average evolution of Pz, which is related to the instantaneous evolution in Eq. (6.35) by

the averaging formula Eq. (D.22).

We can also work out the change in energy ∆H over one period of motion. We briefly return

to the general Hamiltonian theory of Chapter 5 and assume that the Hamiltonian contains explicit

time dependence, H = H(ξ, Pξ, η, Pη; t), but that adiabatic invariance of J is maintained. Then the

action integral J contains explicit time-dependence, and

∂J

∂t
=

∮
∂Pξ
∂t

dξ =

∮
− ∂H/∂t

∂H/∂Pξ
dξ = −

∮
Ḣ

ξ̇
dξ (6.40)

= −
∮
Ḣdt = −∆H. (6.41)

We have made use of the fact that the total time derivative of H along a trajectory is equal to its

partial time derivative. Applying this theorem to Eq. (6.37),

∆H = −∂J
∂t

= −∂J0

∂H

(
e
∂V

∂t

)
− ∂J0

∂Pz

(
e
r

β

∂2V

∂r∂t

)
− ∂J0

∂t
≈ −∂J0

∂t
= −β̇ ∂J0

∂β
, (6.42)

since all other terms are proportional to β̈. The relationship between ∆H and Ḣ may not be

apparent, but integrating Eq. (6.34) with respect to time over one period of unperturbed motion

gives

∆H =

∮
−mβ̇ż ln

r

R
dt = −mβ̇

∮
ln
r

R
dz = −2πmβ̇

µ0I

∮
A · dr. (6.43)

As discussed in Sec. 5.1.8, we can pull β̇ and I(t) out of the integral sign because we can effectively

hold these quantities constant over the course of a single period. Applying Eq. (5.160) with V = 01

to Eq. (6.43) and obtain

∆H = −q β̇
β

∂J0

∂q
= −β̇ ∂J0

∂β
, (6.44)

where the last step follows because q only appears the expression for J0 in Eq. (6.16) through β.

We could further pursue the nature of particle orbits in these time-dependent fields, but this

is not a fruitful task. The lessons that should be taken from this section are that time-dependent

currents induce electric fields that can be difficult to compute and that require the global circuit

geometry to be specified. Furthermore, the electric field might break some of the symmetries present

in the static problem, causing previously conserved momenta to gradually evolve in time.

1We set V = 0 here because we are integrating Eq. (6.34) over an unperturbed trajectory.
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6.2 The Two-Wire Problem

The previous section described particle orbits around a single solitary wire. We now turn our

attention to trajectories in the magnetic field generated by two parallel wires carrying equal currents.

Planar orbits still exist in the plane containing both wires, but now these planar orbits fall into several

distinct classes. Some of these orbits are localized to one wire and resemble the orbits observed in

the previous section for a single wire. Other orbits, however, are shared symmetrically between the

two wires. This distinction between confined and symmetric orbits is exactly what is needed to

describe the merging of two parallel plasma loops.

We will work in Cartesian coordinates with the z axis aligned with the wires and x being the

direction separating the wires. Let the wires be located at x = ±a/2 so that the wire separation

distance is a. The magnetic field in the plane containing the wires is

B =
µ0I

2π

[
1

a/2 + x
− 1

a/2− x

]
ŷ =

µ0I

2π

−2x

a2/4− x2
ŷ. (6.45)

We note that there is a magnetic null at x = 0 where the field vanishes; this null will play an

important role is the classification of orbits. The vector potential can be chosen such that

A = −µ0I

2π

[
ln
a/2 + x

R
+ ln

a/2− x
R

]
ẑ = −µ0I

2π
ln
a2/4− x2

R2
ẑ, (6.46)

where R is again arbitrary. The canonical z momentum for an electron of charge q = −e is

Pz = mvz +mβ ln
a2/4− x2

R2
, (6.47)

and is conserved, yielding vz as a function of x:

vz(x) =
1

m

[
Pz −mβ ln

a2/4− x2

R2

]
. (6.48)

We will work with scaled variables, scaling distance by a/2, velocity by β, and momentum by mβ.

Since R is arbitrary, we set it equal to a/2 so that it is scaled to unity. Then, in scaled variables,

Eq. (6.47) becomes

Pz = vz + ln
(
1− x2

)
. (6.49)

From Eq. (6.49), we can derive the existence and location of turning points where the x motion

reverses. These turning points exist because the magnitude of the z velocity vz can never exceed the

magnitude v of the total velocity, so the locations where Eq. (6.49) predicts |vz| = v denote turning

points. We can find these turning points by setting vz in Eq. (6.49) equal to either ±v and solving
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for x:

x = ±
√

1− ePz±v. (6.50)

The choice of + and − is independent between the two ± signs, so up to four turning points exist

for any given orbit. These turning points come in mirrored pairs about the magnetic null x = 0.

We shall show that one of these pairs exists for all orbits, while the second pair only exists if certain

conditions are met.

When Pz + v < 1, all four turning points exists, and the orbit resembles those of a single wire.

One set of turning points, which we denote by x+, is given by choosing the + sign in the exponential

of Eq. (6.50):

x+ = ±
√

1− ePz+v. (6.51)

Since Pz + v < 0 by assumption, we have exp(Pz + v) < 1, and the argument of the radical in

Eq. (6.51) is positive. The second set of turning points, which we denote by x−, is given by choosing

the − sign in the exponential in Eq. (6.50),

x− = ±
√

1− ePz−v. (6.52)

The argument of the radical in Eq. (6.52) is also positive, because Pz − v < Pz + v, so

1− exp(Pz − v) > 1− exp(Pz + v) > 0. (6.53)

This argument also establishes that |x−| > |x+|, so the turning points ±x+ lie between the turning

points ±x−. In such orbits, the particles rattle back and forth between an inner and outer turning

point and never crosses the magnetic null at x = 0. Such a particle is thus “trapped” in one half of

the plane and is “confined” to one of the two wires. These orbits resemble the orbits seen in Sec. 6.1,

and an example of such an orbit is plotted in Figs. 6.5.a and 6.5.b.

When Pz + v > 0, the inner turning points ±x+ given by Eq. (6.51) fail to exist, and the particle

is instead confined by the two outer turning points ±x− given by Eq. (6.52). This constitutes a

new class of trajectories not seen in the single wire case. The non-existence of the inner turning

points x+ follows simply by noting that the argument of the radical in Eq. (6.51) is negative because

Pz + v > 0. The two outer turning points are still defined; to see this, we prove that Pz − v < 0 for

any orbit using Eq. (6.49),

Pz − v > Pz − vz(x) = ln(1− x2) < 0. (6.54)

In physical terms, the outer turning points always exist because the magnetic field becomes infinitely



150

strong at the wires2, so all orbits are deflected from the wires. The inner turning points, however, are

not always defined because some particles reach the magnetic null at x = 0. As the particle crosses

the null, the sign of field reverses, reversing the radius of curvature of the trajectory as well. The

particle then moves back and forth between the two outer turning points; such an orbit is symmetric

between the two wires and is not confined to a single flux tube; compare Figs. 6.5.b and 6.5.c.

We can further classify symmetric orbits based on the direction of their drifts. Figures. 6.5.c

through 6.5.f show several examples of symmetric orbits; some orbits, such as that shown in Fig. 6.5.c,

have the same drift direction as in the single wire case, but other orbits, such as that shown in

Figs. 6.5.e and 6.5.f, have the opposite drift. To derive this distinction, we first solve for the x

positions where vz(x) = 0:

x = ±
√

1− ePz . (6.55)

These x positions are not defined when Pz > 0. For such cases, vz is never zero but rather always

positive. The particle never turns around in the z direction; it bounces back and forth between

the two turning points while snaking its way up the z axis as shown in Fig. 6.5.f. This drift is in

the opposite direction as the drift of a particle around a single wire. If, however, Pz < 1, then the

particle has vz < 0 for part of its orbit. Such particles can drift in either the positive or negative z

direction, as demonstrated by Fig. 6.5.c and 6.5.e. There is a special class of orbits that have no net

movement in the z direction but rather make figure-eight motion; an example is shown in Fig. 6.5.d.

The distinction between confined and symmetric orbits can be explained using effective poten-

tials [2, sec. 119]. The Hamiltonian for a planar orbits between two wires is, for an electron of

charge q = −e

H =
P 2
x

2m
+

(P 2
z + eAz(x))2

2m
. (6.56)

This is a two-dimensional Hamiltonian system, but, because z is ignorable, we can instead view it

as a one-dimensional system in x with a parameter Pz. In this one-dimensional system, the particle

is confined in an effective potential

Ueff =
1

2m

(
Pz −mβ ln

a2/4− x2

R2

)2

, (6.57)

where Eq. (6.46) has been used. We can express this effective potential in terms of scaled coordinates,

with scaled energy as U = U/(mβ2),

U eff =
(
Pz − ln(1− x2)

)2
(6.58)

The shape of this potential is determined by the value of Pz. Fig. 6.6.a plots Ueff when Pz > 0; in

this case the potential well is always concave up, and the magnetic null at x = 0 is a minimum of the

2If the wires were not infinitely thin, this would not be the case, and orbits could also pass into the wire.
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potential. Fig. 6.6.b, however, plots Ueff when Pz < 0. The potential well develops a central bump,

and the null is now a local maximum. It is also clear that particles of low energy will be confined to

one of the smaller side wells, whereas particles of sufficient energy will travel over the null and will

not be confined to either side well.

In summary, we have five types of motion:

• Snaking motion, shown in Fig. 6.5.f, where the orbit always moves in the positive z direction

and bounces back and forth symmetrically between the two wires

• Jigsaw motion, shown in Fig. 6.5.e, in which the orbit still bounces symmetrically between the

wires and has a positive drift but also travels in the negative z direction for certain periods of

time

• Closed figure-eight orbits, shown in Fig. 6.5.d where the electron has no net z motion

• Loopy motion, shown in Fig. 6.5.c, in which the orbit is symmetrical but has a negative z drift

• Confined motion, shown in Fig. 6.5.a and 6.5.b, where the orbit never crosses the magnetic

null at x = 0 and drifts downward as in the single-wire case

These results are also summarized in a parameter space plot in Fig. 6.7. To make the plot more

intuitive, we express Pz in terms of x− via Eq. (6.52). For instance, the condition Pz + v < 0 can

be recast as v < −(1/2) ln(1−x2
−) < 0, and the condition Pz > 0 can be recast as v < − ln(1−x2

−).

Also plotted in Fig. 6.7 are several isolated points where the conditions for a closed orbit have been

calculated numerically.

6.3 Time Dependence and Orbit Transitions

The previous section established distinct classes of orbits in the plane between two parallel current-

carrying wires. However, in this static system, orbits cannot transition between the different classes.

We therefore seek a mechanism that causes orbits confined to one-half of the plane to drift inward

towards the magnetic null where they can transition to symmetric orbits. An axial electric field

induced by two plasma loops attracting one another provides exactly such a mechanism.

6.3.1 Axial Electric Fields

Trajectories will be drawn to the magnetic null line if an axial electric field points in the negative

z direction anti-parallel to the current because the E×B drift will be inward towards x = 0. This

scenario is similar to Speiser’s current sheet [113] where an electric field anti-parallel to the current

causes particle to drift towards the null sheet where they are then accelerated by the electric field
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along the null sheet. In order to achieve such a transition, we must have an electric field that is (i)

axial and (ii) pointing in the negative z direction anti-parallel to the wire current.

In Sec. 6.1.3, we discussed possible electric fields associated with a single wire carrying a time-

dependent current. In particular, we considered two configurations, shown in Fig. 6.2, for which

the induced electric fields are entirely different, as shown by comparing Eqs. (6.27) and (6.31). An

argument was made for the axial field, Eq. (6.27), based on the fact that the radial component must

vanish at the electrodes, which cannot be satisfied by the radial electric field in Eq. (6.31). Also,

as we shall see below, there must be an axial component to the electric field when the wires attract

and move towards each other, so a purely radial electric field is not possible. However, the actual

experiment has curved, finite geometry, as suggested by Figs. 6.3 and 6.4, and also probably involves

sheaths, which makes determining the actual field configuration very difficult. We will proceed using

an axial electric field but acknowledge that the actual field may be different.

Even if E is assumed to be axial, relative motion between the wires is necessary for E to be

anti-parallel. To see this, assume that E is axial and that the current I(t) is increasing but that

the wires are stationary; we shall show that the induced electric field is parallel to the current and

draws particles away from the magnetic null. For a current profile I(t), we have, from the vector

potential Eq. (6.46),

E = −∂A

∂t
=
µ0İ

2π
ln
a2/4− x2

R2
ẑ. (6.59)

ρ must be selected so that E satisfies the boundary condition at the plasma surface. If the plasma

has radius ρ, then the boundaries of the loops are x = ±(−a/2 + ρ); see Fig. 6.8. If E is to vanish

at these locations, then we must set R = a2/4− (a/2− ρ)2. Then

E =
µ0İ

2π
ln

a2/4− x2

a2/4− (a/2− ρ)2
ẑ, (6.60)

and E points in the positive z direction everywhere. An increasing plasma current cannot explain

the merging of the two loops; if anything, the increase in current would cause the orbits to constrict

radially.

One can have an anti-parallel electric field if the inner boundaries of the plasma loops move

towards each other; that is, if ρ increases or a decreases in Fig. 6.8. This is certainly the case in the

Solar Loop Experiment, where the plasma loops attract. This is also true on the Spheromak side for

plasma moving towards the cathode because the loops are more tightly spaced there. We assume

that the plasma loops are perfectly conducting so that the electric field in the co-moving frame of

the loop edge must vanish. Since this surface is moving due to the loops’ attraction, the electric field

in the lab frame is not zero but is related to the field in the co-moving frame by E′ = E+v×B = 0,

where E′ denotes the electric field in the moving boundary’s frame. Since E′ = 0 by assumption,

the lab frame electric field at the boundary is E = −v×B. The boundary located at x = −a/2 + ρ
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has a velocity of v = (−ȧ/2 + ρ̇)x̂; using this v and the magnetic field of Eq. (6.45) gives E at the

boundary

E = −v ×B = − [(−ȧ/2 + ρ̇)x̂]×
[
µ0I

2π

−2(−a/2 + ρ)

a2/4− (−a/2 + ρ)2
ŷ

]
(6.61)

= −(−ȧ/2 + ρ̇)
µ0I

2π

2(a/2− ρ)

ρ(a− ρ)
ẑ. (6.62)

This electric field is anti-parallel to the current and induces drifts towards the magnetic null.

6.3.2 Computing the Field

To continue, we assume that the electric field is entirely axial and has the boundary condition given

by Eq. (6.62). We then use Faraday’s law to compute E everywhere in the plane. Using the magnetic

field in Eq. (6.45) and an axial electric field, we have

∇×E = −∂Ez
∂x

ŷ = −∂B

∂t
=

[
µ0İ

2π
ln

2x

a2/4− x2
− µ0I

2π

2x

(a2/4− x2)2

aȧ

2

]
ŷ. (6.63)

Performing the x integral,

Ez =
µ0İ

2π
ln
(
a2/4− x2

)
+ ȧ

µ0I

2π

a/2

a2/4− x2
+ C, (6.64)

where C is a constant of integration that must be determined by the boundary conditions. Indeed,

the value of C will determine the ultimate polarity of Ez and hence the direction of the E×B drift!

Evaluating Eq. (6.64) at x = −a/2 + ρ and setting it equal to Eq. (6.62) determines C:

µ0İ

2π
ln (ρ(a− ρ)) + ȧ

µ0I

2π

a/2

ρ(a− ρ)
+ C = −(−ȧ/2 + ρ̇)

µ0I

2π

2(a/2− ρ)

ρ(a− ρ)
. (6.65)

Solving for C and substituting into Eq. (6.64) gives

Ez =
µ0İ

2π
ln
a2/4− x2

ρ(a− ρ)
+ ȧ

µ0I

2π

(
a/2

a2/4− x2
− 1

a− ρ

)
− ρ̇µ0I

2π

2(a/2− ρ)

ρ(a− ρ)
, (6.66)

the induced electric field between two wires when the current, wire separation, and wire radius

change in time.

The ultimate polarity of the electric field cannot be determined until the three quantities İ, ȧ,

and ρ̇ are specified. We can see that the İ term of Eq. (6.66) is positive when İ is positive, but the

ȧ and ρ̇ terms can make the induced electric field negative. Unfortunately, a and r are not easily

determined to great accuracy. For the purposes of this analytic study, however, we shall assume
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that each of these three quantities changes self-similarly on the same time scale. That is,

İ =
I

τ
ȧ = −a

τ
ρ̇ =

ρ

τ
. (6.67)

This allows us to rewrite Eq. (6.66) as

Ez =
µ0I

2πτ

[
ln
a2/4− x2

ρ(a− ρ)
−
(

a2/2

a2/4− x2
− a

a− ρ

)
− 2(a/2− ρ)

(a− ρ)

]
. (6.68)

We now introduce normalized lengths x̄ = x/(a/2) and ρ̄ = ρ/(a/2) and a normalized field strength

E = 2πτE/µ0I and rewrite Eq. (6.68) as

Ez = ln
1− x̄2

ρ̄(2− ρ̄)
−
(

2

1− x̄2
− 2

2− ρ̄

)
− 2(1− ρ̄)

(2− ρ̄)
. (6.69)

The electric field profile then depends on the dimensionless quantity ρ̄. We plot this profile for

several values of ρ̄ less than one in Fig. 6.9. For a wide range of ρ̄, the electric field is everywhere

negative in the plane between the two wires. Indeed, we can prove that for any ρ̄ > 0.076, the

electric field is nowhere positive. We determine this critical value by first observing that the electric

field achieves its maximum value at x̄ = 0. Setting x̄ = 0 in Eq. (6.69) gives this maximum value of

Ez as

ln
1

ρ̄(2− ρ̄)
− 2 +

2

2− ρ̄
− 2(1− ρ̄)

(2− ρ̄)
. (6.70)

Setting Eq. (6.70) equal to zero and numerically solving gives ρ̄ = 0.076. Even when ρ̄ < 0.076, only

the electric field in the central region becomes positive; the electric field close to the wires remains

negative.

Eq. (6.69) was derived by making assumptions concerning the values of İ, ȧ, and ρ̇ and should

not be expected to hold rigorously. However, the conclusion that the effects of an expanding wire

radius and decreasing wire separation cause a negative electric field for a large set of parameters is

probably robust and can be expected to hold in general. Indeed, on the Solar Loop Experiment, the

initial loop separation is about 8 cm and the initial loop radius is about 1.5 cm, giving ρ̄ = 0.375.

On the Spheromak Experiment, the spider legs are flared and have different radii and separation

distances at the cathode than at the anode. At the cathode, the spiders legs have have a radius of

0.2 cm and a separation of 4 cm, giving ρ̄ ≈ 0.1. At the anode, the spider leg radius is 0.6 cm, and

their separation is about 14 cm, so ρ̄ ≈ .09. From these values, it seems likely that the dimensions

of the Caltech plasma loops are such that the induced electric field, if axial, will be anti-parallel to

the current and draw orbits inwards towards the magnetic null.
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6.3.3 Drift Velocity

The purpose of this study was to determine how two adjacent plasma loops can merge into a single

structure. It might seem somewhat circuitous, then, to assume that the plasma loops are expanding

and to then show that the E × B drift is inward. We therefore compare the E × B drift with the

velocity of the loops’ boundaries. For larger values of ρ̄, the E×B drift is larger than the boundary

velocity, and we conclude that the merging process is accelerated the closer the loops get to each

other because the E×B becomes larger.

The E×B drift is given by combining Eqs. (6.69) and (6.45),

vExB =
E×B

B2
=
a/2

τ

1− x2

2x

[
ln

1− x̄2

ρ̄(2− ρ̄)
−
(

2

1− x̄2
− 2

2− ρ̄

)
− 2(1− ρ̄)

(2− ρ̄)

]
x̂. (6.71)

We will compare Eq. (6.71) with the velocity of the plasma boundaries given by−ȧ/2+ρ̇ = (a/2τ)(1+

ρ). To start, we note that the two velocities are equal at the plasma surface. This is hardly

coincidental; the electric field at the boundary is E = v ×B, so the E×B drift at the boundary is

E×B

B2
= − (v ×B)×B

B2
= v. (6.72)

However, away from the boundary, the E×B velocity may be greater or less than v depending on

the value of ρ̄. We plot Eq. (6.71) for several values of ρ̄ in Fig. 6.10. When ρ = 0.5, the E × B

drift velocity is indeed greater than the speed of the plasma wall. However, at ρ = 0.15, the two

velocities have nearly the same value except at the vicinity of the null. For even lower values of ρ,

there are regions where the E × B drift is slower than the expansion rate of the tube. Of course,

when ρ̄ < 0.076, the electric field becomes positive in the region around the null, and particle orbits

are drawn away from the null rather than towards it.

This analysis suggests that the merging of two tubes may be a self-enhancing process. As the

loops approach each other, the value of ρ increases, giving a faster and faster E ×B drift towards

the null. The particles on the outside of the flux tube are thus drawn to the null at a faster and

faster rate.

6.4 Conclusions and Directions for Future Work

To explain the coalescence of the spider legs in the Caltech Spheromak Experiment into a single

axisymmetric structure, we have studied the particle trajectories in a simplified model that treats

the arched helical plasma loops as straight current-carrying wires. For a single wire, the particle

trajectories all have the same qualitative behavior, but the addition of a second wire opens up new

classes of trajectories: those that are confined to one wire, and those that are shared between both



156

wires. The time dependence of the Solar Loop and Spheromak experiments can cause transitions

of confined orbits to shared orbits if the induced electric field is anti-parallel to the wire current.

Unfortunately, we cannot presently determine the exact nature of the induced electric field from first

principles, but we have argued that the induced electric field must be anti-parallel in the vicinity of

the plasma loops when the loops move towards one another.

To further this work, the nature of the induced electric field in the actual experiments should be

studied experimentally, as it seems unlikely that it can be determined by first principles alone due

to the likely presence of plasma sheaths. If an experiment can determine the direction of the field,

then the analysis of this chapter can proceed with confidence. The second set of information needed

in the model is the experimental determination of the rate at which the plasma loops expand and

attract. Once these parameters are determined, the analysis can proceed to determine exactly how

fast orbits from the edge of the plasma loops are sucked into the magnetic null.

Finally, the current model does not investigate non-planar orbits. Analysis of such orbits is

clearly more difficult than the study of planar orbits given the extra dimension of motion, and such

studies of such orbits would probably proceed numerically. Note, though, that if an axial magnetic

field were added to the model, then the field lines would be helical, and the planar orbits of the

model presented in this chapter would not exist at all. Therefore, studies of non-planar orbits will

be essential to more sophisticated models.
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Figure 6.5: Several sample trajectories in the plane of two parallel wires. All orbits begin at x = −0.8
but with different velocities. (a) v = 0.4, well below the threshold to cross the magnetic null. The
orbit is confined to the left wire. (b) v = 0.51, just below the threshold to cross the magnetic null.
(c) v = 0.511, just above the threshold to cross the null. The orbit is symmetric between the two
wires. (d) v = 0.687994, for which the orbit is closed. (e) v = 0.8, for which the z drift becomes
positive. (f) v = 1.4, for which the particle never travels in the negative z direction.
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Figure 6.6: The effective potential for (a) Pz < 0 (b) Pz > 0. In (a), the potential forms a well
with infinite walls, and the magnetic null x = 0 is a minimum. Pz = 0.5 for this particular plot. In
(b), the potential well develops a central bump, and the magnetic null is a local maximum. Orbits
with small energy can be trapped in one of the small wells, while orbits with sufficient energy can
pass over the maxima at the null. This particular plot has Pz = −0.75.

Figure 6.7: A parameter space plot of the different types of orbits. The bounding curves are
determined by the values of the total velocity v and the canonical z momentum Pz. The points for
which the orbits are closed are determined numerically at isolated points.
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Figure 6.8: We align the z axis parallel to the current and denote the separation distance between
the loops as a. We also give the loops a non-zero radius ρ, so the locations of the loops’ edges, in
the y = 0 plane, are x = ±(−a/2 + ρ).

Figure 6.9: The electric field profile for different values of ρ̄. Starting from the bottom curve, the
ρ̄ values are 0.5, 0.15, 0.076, and 0.05. ρ̄ = 0.076 is the critical value at which the electric field
becomes positive for part of the domain.
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Figure 6.10: The E × B drift is plotted for a three different values of ρ̄. The horizontal dashed
lines denote the value of the plasma surface velocity. The top dark plot is for ρ = 0.5; the E × B
drift is quite large. The middle blue plot is for ρ = .015; the drift velocity is nearly equal to the
surface velocity over much of the domain. The bottom light-blue plot is for ρ = 0.1; the E×B drift
is slower than the surface velocity except near the null and the plasma surface.
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Chapter 7

Conclusion

In this thesis, we have presented two very different projects: experimental work developing vacuum

photodiodes for measurements of extreme ultraviolet radiation during the dual-loop experiments on

the Caltech Solar Loop Experiment, and theoretical work on Hamiltonian mechanics and particle

orbits to explore the coalescence of the spider legs in the Caltech Spheromak Experiment. Common

to both projects is the merging of two or more plasma loops into a single structure, a process

that is highly influenced by the amount of helicity injected into the plasma. On the Caltech Solar

Loop Experiment, the initial helicity content, either co- or counter-helicity, leads to very different

phenomena during the merging. On the Caltech Spheromak experiment, the eight-fold symmetry of

the spider legs quickly gives way to the axisymmetry demanded by the Taylor state as the current

ramps up and the helicity content increases. In essence, this thesis is not particularly concerned

with the final state of the plasma after merging but what happens as the plasma evolves towards

that state.

The vacuum photodiode array responds primarily to extreme ultraviolet radiation, an important

radiation band for low-temperature plasmas that lose much of their thermal energy to extreme

ultraviolet line emission. Each individual vacuum photodiode has a fast time response that allows

for the observation of the rapid radiation bursts. The array has twelve detectors arranged to observe

both variations both along the loop and also at the loop apex as it expands outward. In addition to

the cathode and anode, the array includes an enclosure to shield the detectors, collimators to narrow

the field of view of each detector, powerful permanent magnets to protect the array from plasma

particles, and a bias voltage to help overcome space charge limitations. Electromagnetic interference

can completely distort and obscure the desired signals, and several techniques are employed for noise

reduction. These include reduction of capacitive coupling and use of semi-rigid cables. Perhaps most

importantly, a major source of noise, radio-frequency ground currents that magnetically couple to

the signal, has been identified, and a technique for diverting these currents has been developed to

drastically eliminate the associated noise. Many of the solutions devised here can be applied to

other diagnostics. The vacuum photodiode signals are extremely clean and free of spurious signals.
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Now that the issues that once prevented the use of vacuum photodiodes have been resolved, and

because the material costs of a vacuum photodiode are quite low, there is very little to stop one from

implementing many such detectors on the Solar Loop Experiment, the Spheromak Experiment, and

any future plasma experiments housed at Caltech.

With the spurious signals removed from the vacuum photodiode signals, the array has unveiled

several interesting findings. The total power radiated from the plasma can now be estimated and can

be up to a megawatt and higher. We believe that the plasma is shedding any heat deposited by Ohmic

dissipation in the form of extreme ultraviolet radiation, and plotting the vacuum photodiode signal

against the plasma current for a number of shots shows that, even at different discharge voltages,

the vacuum photodiode signal is a function of current. The source of these large radiation levels

might be hydrogen emission, for filtered photodiode data suggests that hydrogen optical emission is

quite strong. This contradicts the usual notion that the hydrogen in such a plasma is completely

ionized and has very low line emission. We invoke non-equilibrium effects, including the fast time

scale of the experiment and the strong flow of plasma from the gas inlet, to explain the large fraction

of neutral hydrogen that must accompany strong hydrogen emission. Impurity emission might be a

significant contributor to the radiation losses but is not expected to be quite as important for the

Solar Loop Experiment due to its lower temperatures and reduced interaction with the walls. If

the large radiative losses are indeed due to hydrogen emission, then this has significant implications

for the heating and temperature of fast hydrogen plasma experiments, namely, such experiments

will not burn through the hydrogen as quickly as predicted by the electron temperature and will

radiate more intensely as a consequence; such a plasma might not heat up to the carbon or oxygen

radiation barrier. This could actually be useful in tokamak divertors, where radiative losses can be

beneficial in cooling the hot plasma to temperatures safe for the divertor plates. The Solar Loop

Experiment even suggests that it might be possible to pump cool and neutral-rich plasma from the

wall region along magnetic field lines into the divertor volume to provide temporary cooling as the

injected plasma ionizes. Another application might be the generation of abundant hydrogen Lyman

α lines for lithography purposes.

Co- and counter-helicity dual loop plasma experiments produce nearly identical vacuum pho-

todiode signals up until a certain time, at which point counter-helicity merging produces large

extreme ultraviolet bursts. The onset of the bursts are believed to be the onset of the merging

and magnetic reconnection. The bursts may be shedding of heat deposited by strong current sheets

in counter-helicity merging that convert magnetic energy from the annihilated fields into particle

thermal energy, which is then radiated away as line emission. Energetic electrons might also be

produced, and interactions with the chamber wall might also generate ultraviolet radiation and soft

x-rays. The radiation bursts observed in counter-helicity experiments are accompanied by other phe-

nomena: brightening of the upper legs, plasma detachment from the electrodes, a rise and sudden
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drop in the electrode voltage, and a noise pulse in the electronics. However, these effects diminish

as the gas valve is pulsed harder to admit more gas into the experiment. Strangely, though, as the

gas valve is pulsed harder, a new radiation burst is observed at the loop apex; this burst is believed

to originate from the bright spot. Thus, these studies, with the aid of the vacuum photodiode array,

have determined that dual-loop merging experiments depend just as strongly on the amount of gas

admitted by the fast gas valve as they do on the helicity content of the loops.

The second project discussed in this thesis, theoretical work into particle orbits, has led to a new

theorem of Hamiltonian dynamics. Chapter 5 shows that, in any Hamiltonian system where one

coordinate undergoes periodic evolution, the action integral for that coordinate encodes the evolution

of the system once the periodic motion has been averaged. In fact, this action integral acts as a

Hamiltonian for the reduced system and provides the averaged equations of motion provided that

time is measured in periods of motion. With this formalism, one can rederive the guiding center

drift equations using µ as a Hamiltonian, and one can even derive the flux enclosed by a gyro-orbit,

but the scope of the results goes far beyond charged particle motion in magnetic field.

Chapter 6 presented a model to explain how two current-carrying plasma loops might start to

merge together. In the model, two classes of particle trajectories in the region between the two

loops are found: those that are localized to one loop and those shared symmetrically between the

two loops. If the loops are attracted to each other due to their parallel currents, then the induced

electric field will point in such a direction as to make the E×B drift inwards towards the magnetic

null where an orbit can transition from being localized to being shared. To pursue this model, the

induced electric field should be studied experimentally, as it seems unlikely that it can be determined

by first principles alone. From there, non-planar orbits should be studied numerically to see if they

exhibit the same general behavior as the planar orbits, namely, that they transition from being

localized to a single loop to being shared among two or more loops. More sophisticated models

would include the axial magnetic field as well.
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Appendix A

Improvements to the Plasma
Current and Electrode Voltage
Diagnostics

The plasma current and electrode voltage are extremely important measurements, and this section

outlines steps taken to improve both sets of data. The main result is the connection of the grounding

clip of the HV probe to the lower electrode and proper attenuation of the voltage signal. These

improvements are vital is studying the detachment of the plasma from the electrode in Chapter 4.

We also discuss the optoelectric converters that transmit the current and voltage (IV) data, spurious

signals due to ground loops, and noise-reduction techniques.

A.1 Optoelectric Modules

The HV probe and Rogowski coil transmit their signals to the DAQ via optoelectric modules [Analog

Modules, Inc., Model 732T-2.5-33K-10M]. Each module consists of two devices: a transmitter, which

converts an electrical signal into an optical one, and a receiver, which receives the optical signal and

converts it back into an electrical one. The transmitter and receiver communicate via a fiber optic

cable. The two transmitters, one each for the Rogowski coil and the HV probe, are located by the

vacuum chamber and connect their respective probe, while the two receivers are located by the DAQ.

The modules transmit frequencies from 10 MHz down to DC. They have a 33 kΩ input resistance

and can transmit signals in the range of ±2.5 V; beyond this voltage range, the modules clip the

signal.

The optoelectric modules offer several advantages. First, both the HV probe and the Rogowski

coil are designed to be read by a high-impedance device such as an oscilloscope. The DAQ, however,

has a built-in 50 Ω termination that would distort the probes’ signals. For instance, if the Rogowski

coil circuit of Fig. 2.6 were terminated in 50 Ω, the integrating capacitor would see its resistor R in

parallel with the 50 Ω termination, so the circuit time constant would be (R ‖ 50 Ω)C. This new



165

time constant is much shorter than the intended time RC, and the signal would suffer distortion. A

similar argument applies to the HV probe. The optoelectric modules therefore act as a buffer circuit;

the transmitter input impedance is 33 kΩ, providing both probes with a relatively high impedance,

and the receivers, powered by active electronics, can drive the 50 Ω termination of the DAQ that

would load the probes. Second, signal transmission via fiber optic cables is less susceptible to noise

than transmission via braided coaxial cable. While the modules do introduce some noise, this noise

is smaller than that associated with transmitting the signal via braided coaxial cable. Finally, the

modules offer electrical isolation as the fiber optic cables do not electrically connect the transmitter

and receiver. This prevents the formation of ground loops and allows the use of the HV probe

grounding clip, as is discussed next.

A.2 The HV Probe Grounding Clip

The HV probe has a grounding clip relative to which it measures large potential differences. As the

HV probe measures the electrode voltage and the probe itself is connected to the upper electrode,

the grounding clip should be connected to the lower electrode. However, it had been long-standing

practice to leave the grounding clip of the HV probe detached from the lower electrode and not

connected to anything. In this configuration, the probe measures the voltage of the upper electrode

relative to some unknown floating potential. Ostensibly, the omission of the grounding clip was done

to prevent the formation of a ground loop as follows. The lower electrodes are electrically connected

to the chamber through the grounding cables of the main capacitor bank; connecting the grounding

clip to the lower electrodes would form a second electrical connection to the chamber through the

DAQ as discussed in Sec. 3.3.2; this second connection would form a large ground loop spanning the

laboratory. However, the grounding clip can be safely attached to the lower electrodes because the

optoelectric module provide electrical isolation, preventing the second ground loop from forming.

Indeed, attaching the grounding clip changed the nature of the voltage signal; Fig. A.1 compares

the voltage data with and without the clip in use. The clipping at 1.5 kV is due to the optoelectric

module and is avoided by adding a frequency-compensated voltage divider as will be described in

Sec. A.4. However, even with the clipping, the difference in the HV probe output with and without

the grounding clip is apparent, and the signal with the grounding clip in use is believed to be more

accurate.

A.3 Ground Loops and Isolation Transformers

Large spurious signals started appearing in both the IV data, seemingly spontaneously. Ultimately,

the source of these signals was traced to a small ground loop formed by the I and V cables at the
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Figure A.1: Use of the HV probe grounding clip on the lower electrode causes significant changes
in the signal. Here, the electrode voltage is compared with and without the grounding clip so that
the effects of leaving the grounding clip floating can be seen. The clipping is due to the optoelectric
modules and will be resolved in Sec. A.4.

DAQ. The cables share a common ground at the DAQ but also at the receiver modules because

both modules are powered off the same power supply. To break up the ground loop, a 1:1 isolation

transformer was added to the voltage line. However, the low-frequency response of the transformer

was quite poor, and to understand this problem we need to look at the equations for a transformer.

Ideally, a 1-1 transformer transmits the signal without distortion or attenuation. From the circuit

diagram in Fig. A.2, the voltage loop equations in the left and right circuits are

V = iωLI1 − iωMI2 +R1I1, (A.1)

0 = iωLI2 − iωMI1 +R2I2, (A.2)

where M is the mutual inductance of the transformer and is assumed to be nearly equal to L. Ideal

operation occurs when we assume M = L and ωL � R1R2/(R1 + R2). Defining the difference

δI = I1 − I2, Eq. (A.2) becomes iωLδI = R2I2, and Eq. (A.1) becomes

V = iωLδI +R1 (I2 + δI) (A.3)

= R2I2 +R1I2 +
R1R2

iωL
I2 (A.4)

≈ R2I2 +R1I2. (A.5)

It follows that the output voltage, which is the voltage across R2, is

Vout =
R2

R1 +R2
V, (A.6)

which is the equation for a simple voltage divider. In this ideal case, the transformer couples the

two circuits so well that the circuit behaves as if the transformer were not present. Moreover,
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the internal resistance of the optoelectric module is probably quite small, meaning that R1 ≈ 0.

hence, the condition for ideal operation, ωL� R1R2/(R1 +R2), will almost always be met because

R1R2/(R1 +R2) ≈ 0.

However, when R2 ≥ ωL � R1R2/(R1 + R2), the optoelectric module becomes severely loaded

and cannot provide the current necessary to maintain ideal operation. Let us compute the theoretical

output requirement of the module in this regime. We showed that iωLδI = R2I2, so

I1 = δI + I2 =

(
1 +

R2

iωL

)
I2 ≈

(
1 +

R2

iωL

)
V

R1 +R2
, (A.7)

where Eq. (A.5) has been used in the last line. I1 therefore increases as ω decreases below R2/L. We

suspect that the receiver module becomes extremely loaded at low frequencies and cannot provide

this theoretical current. To remedy the problem, a 100 Ω resistor was placed in series in the voltage

line in between the receiver module and the transformer, effectively changing R1 from 0 to 100 Ω.

This changes the denominator in Eq. (A.7) from 50 Ω to 150 Ω, cutting the current requirement

by a factor of three. This is sufficient to relieve loading of the module in the frequency range of

interest, and the transformer faithfully transmits the voltage signals. The added 100 Ω resistance

forms an effective voltage divider with the 50 Ω of the DAQ, and this voltage attenuation factor of

50/150 = 1/3 must be incorporated into the voltage signal.

The reason why the ground loop started misbehaving was not identified. The cause may have

been a change in the cabling in other diagnostics, particularly the magnetic probes, which had been

recently swapped around the time the spurious signals appeared. The magnetic probes contain many

cables that could bear large ground currents (see discussion in Sec. 3.3.5) that could couple to the

ground loop.

Figure A.2: A circuit diagram for the transmitter module coupled to the DAQ via a 1-1 transformer.
The low frequency response of the circuit is poor unless extra resistance is added to R1.
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A.4 HV Probe Termination, Compensation, and Attenua-

tion

The optoelectric modules can only transmit signals up to ±2.5 V, beyond which they clip the signal.

The HV probe attenuates the signal by a factor of roughly 9231, so that a 6 kV electrode voltage is

attenuated to about 6 V and would be clipped by the transmitter. To avoid clipping, a simple voltage

divider was implemented by placing a 50 kΩ resistor in series with the 33 kΩ input resistance of the

transmitter, as shown in Fig. A.3. This provides a theoretical attenuation of 33/(50 + 33) ≈ 0.4.

However, adding this resistance caused the HV probe to integrate the input signal. To understand

why, we need to look into the probe’s design.

The HV probe has a compensation circuit whose purpose is cancel the effects of stray capacitance

across the probe’s 10 MΩ and also the oscilloscope’s 1 MΩ resistor. By adjusting the components in

the compensation circuit, the distortion from the stray capacitance can be minimized such that, for

example, a square-wave signal is attenuated without distortion such as rounding the corners (poor

high frequency transmission) or drooping (poor low frequency transmission). The compensation

circuit is optimized for use with an oscilloscope of 1MΩ impedance and thus is not compatible

with different termination impedances such as the 33 kΩ of the transmitter module. To check this

experimentally, the probe was terminated in 33 kΩ and given a 100 KHz square-wave input; the

square wave was clearly seen to droop as is shown in Fig. A.4.a, indicating less than ideal transmission

of low frequencies. This poor low-frequency transmission had always been present in the voltage data

even before any of the modifications described here were enacted. However, when the 50 kΩ resistor

described above was added, the output changed from less-than-ideal to completely distorted. This

is probably because the 50 kΩ resistor combined with both the input capacitance of the optoelectric

module and a capacitor in the compensation circuit to form an RC-circuit that integrated the input

signal.

To remove this unwanted integration, a small capacitor was added in parallel to the 50 kΩ

resistor, as shown in Fig. A.3. This trick is exploited in oscilloscope probes. Consider the circuit in

Fig. A.5; and let the complex impedances Z1 and Z2 be the parallel combination of R1 and C1 and

the parallel combination of R2 and C2 respectively:

Z1 =
R1

1 + iωR1C1
, (A.8)

Z2 =
R2

1 + iωR2C2
. (A.9)

If R1C1 = R2C2, then it is seen that Z1 and Z2 are proportional to each other with the proportion-

1This calibration was done independently by Deepak Kumar and Mark Kendall
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ality constant Z1/Z2 = R1/R2. The output voltage, measured across R2, is then

Vout =
Z2

Z1 + Z2
Vin =

R2

R1 +R2
Vin, (A.10)

which is the equation for a simple voltage divider. When R1C1 = R2C2, the effects of the capacitors

cancel each other in the output. Indeed, when a 7 pF capacitor was added across the 50 kΩ resistor,

the HV probe attenuated square-wave inputs more accurately than had previously been achieved

with the probe going straight into the module as shown in Fig A.4.b. The value of 7 pF was

determined by trial and error and can, perhaps, be improved.

Figure A.3: A resistor R is inserted between the HV probe and the transmitter module creates a
voltage divider to avoid signal clipping. The capacitor C is needed for frequency compensation.

Figure A.4: (a) The HV probe output given a 100 kHz square-wave input when the probe is termi-
nated in 33 kΩ. The output is seen to droop, indicated poor low-frequency response. This distortion
had always been present in the signal before any of the modifications outlined here were enacted;
however, adding the 50 kΩ resistor shown in Fig. A.3 without the compensating capacitor produced
far worse distortion. (b) The probe’s output once the 50 kΩ resistor and its compensating capacitor
have been added. The signal is attenuated by the appropriate amount, and the frequency response
is actually a little better than in (a).

Finally, both the 50 kΩ resistor and 7 pF capacitor are soldered directly into the HV probe’s

compensation circuit box rather than being placed in a separate electrical box in between the com-
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Figure A.5: Given R2, C2, and R1, C1 can be chosen so that the capacitive effects vanish in the
output voltage. The output, as measured across R2, is then frequency-independent.

pensation circuit and the transmitter. This was done because using a separate box caused arcing at

the transmitter due to the large potential difference between the HV probe cable, which is connected

to the lower electrode, and the chamber frame on which the transmitter rests. This is not a problem

when the HV probe connected directly to the module because the probe is equipped with a high

voltage connector. Thus, this arcing is avoided by placing the extra resistor and capacitor inside the

compensation circuit.

A.5 Reducing Noise

Some of the modification described so far introduced extra noise into the signals. The isolation

transformer added to the voltage signal line introduced high-frequency noise. The attachment of the

grounding clip to the lower electrode exascerbated oscillations in the current data that occur at the

beginning and middle of the shot. This section describes several attempts to reduce these unwanted

side-effects.

Noise reduction in both the IV signals was achieved by moving the receiver modules closer to the

DAQ and using shorter lengths of cable to transmit the signals. In general, braided coaxial cable

are susceptible to high-frequency noise via transfer impedance as discussed in Sec. 3.3.3, and using

less cable sometimes results in less noise. Another possible reason for the noise reduction is that

the IV cables were moved further away from the large bundle of cables for the spheromak magnetic

probe array, which is suspected to carry large ground currents. Whatever the reason, this relocation

mollified the high frequency noise on the voltage traces. The current data improved as well, although

this improvement may be due to the added ferrite cores, discussed below.

Large oscillations of about 1 - 2 MHz in the current data are mitigated by the use of ferrite cores.

For instance, a ferrite core placed on the HV probe cable offers significant oscillation reduction.

Connecting the grounding clip to the lower electrodes connects the local ground of the transmitter
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modules; the Rogowski coil ground is also connected to the lower electrodes. We believe that

the increased oscillation amplitude on the Rogowski coil is related to sudden changes in the lower

electrode voltage which suddenly change the coil ground. The added ferrite around the HV cable

makes the connection between the Rogowki coil ground and the lower electrodes high impedance and

hence reduces the degree of coupling between lower electrode voltage and transmitter ground voltage.

We note that powering the transmitters module with different power supplies could completely isolate

the two diagnostics and reduce the oscillations; however, oscillations are still present even when the

HV probe is completely detached. Also, adding a ferrite core around the current signal line between

the receiver and the DAQ results in modest noise reduction, although the reason for this is not clear.

The remaining oscillations on the current data are probably caused by electrostatic coupling

of the Rogowski coil to the main capacitor. The coil sits on top of a copper plate bolted to the

capacitor; when the capacitor fires, the voltage of the plate changes drastically, which could induce

charge flow on the Rogowski coil [114]. These oscillations are seen at the beginning of the experiment

when the voltage is switched on and in the middle of the experiment when the plasma detaches.

Indeed, changing the length of braided cable between the coil and the integrating circuit changed

the nature of these oscillations. Using a shorter length of cable to connect the coil to the integrating

circuit increased the oscillation frequency, presumably because of the reduced stray capacitance

of the cable. However, additional spurious signals simultaneously appeared, probably because the

integrating circuit was significantly closer to the main capacitor. For the time being, the best place

for the integrating circuit appears to be at the transmitter module. To eliminate the oscillation, a

shield might be added to the Rogowski coil as per Ref. [114].
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Appendix B

Magnetic Scattering of Charged
Particles

The vacuum photodiodes described in Chapter 3 utilize permanent magnets to deflect charged

particles from the array’s interior. In this section, we determine how effectively such magnets shield

the array and what particle energies would be required to penetrate through the magnetic field to

the detectors. We consider two regimes: the first applies when the particle remains far enough

away from the magnet so that the field can be approximated as a pure dipole field. One can then

calculate a forbidden region into which particles cannot enter, and the dimensions of this forbidden

region measure the deflecting capabilities of the magnet. From these calculations, we determine that

electrons are deflected by the magnets but that ions penetrate close to the magnet where the dipole

approximation fails. This latter case constitutes the second regime, and we derive a simple formula

relating direct measurements of the field close to the magnet to the deflective power of the magnetic

geometry.

B.1 The Stormer Region

At large distances from a magnet, the field approximates that of a pure dipole. Particle motion in

a dipole field is an old problem first considered by Stormer [115], who established the existence of

forbidden regions into which particles of particular energies cannot enter. This region, commonly

called the Stormer region, offers an easy criteria for deciding whether or not a particle can enter the

detector. The analysis can be extended to other axisymmetric multipole fields [116] and has even

been considered for shielding spacecraft [117].

Stormer regions arise through conservation of both kinetic energy and canonical angular momen-

tum. The expression for canonical angular momentum comes from the Lagrangian for a particle in
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a magnetic field:

L =
m

2
v2 + qv ·A (B.1)

=
m

2

(
ρ̇2 + ρ2φ̇2 + ż2

)
+ q

(
ρ̇Aρ + ρφ̇Aφ + żAz

)
, (B.2)

Pφ =
∂L

∂φ̇
= mρ2φ̇+ qρAφ, (B.3)

where (ρ, φ, z) form a cylindrical coordinate system. An ideal magnetic dipole m = mdẑ has a vector

potential

A =
µ0

4π

m× r̂
r3

=
µ0md

4π

ρ

(ρ2 + z2)3/2
φ̂, (B.4)

where r is the spherical radius, r2 = ρ2 + z2. By azimuthal symmetry, Pφ is conserved. Eqs. (B.3)

and (B.4) allow us to express the kinetic energy of φ motion as a function of position:

m

2
v2
φ =

m

2
ρ2φ̇2 =

1

2m

(
Pφ
ρ
− qµ0md

4π

ρ

(ρ2 + z2)3/2

)2

. (B.5)

For a particle moving in a time-independent magnetic field, kinetic energy is also conserved. Of

course, the particle’s φ kinetic energy can never exceed the total kinetic energy, so those spatial

locations where Eq. (B.5) predicts an energy greater than (m/2)v2 are forbidden to the particle. It

thus follows that the boundary of the forbidden region is where Eq. (B.5) equals (m/2)v2, or

m

2
v2 =

1

2m

(
Pφ
ρ
− qµ0md

4π

ρ

(ρ2 + z2)3/2

)2

. (B.6)

Dividing Eq. (B.6) by (m/2)v2 gives

1 =

(
Pφ
mvρ

− qµ0md

4πmv

ρ

(ρ2 + z2)3/2

)2

. (B.7)

The coefficient of the second terms has the units of length squared and defines the Stormer length

C as

C :=

√
qµ0md

4πmv
. (B.8)

We normalize length by C so that

1 =

(
Pφ/mvC

ρ
− ρ

(ρ2 + z2)3/2

)2

. (B.9)

The size of the forbidden region thus depends on the dimensionless parameter Pφ/mvC, which we
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shall call k. We can solve Eq. (B.9) for z as a function of ρ,

± 1 =
k

ρ
− ρ

(ρ2 + z2)3/2
, (B.10)

ρ

(ρ2 + z2)3/2
=

k

ρ
∓ 1, (B.11)

(ρ2 + z2)3/2 =
ρ2

k ∓ ρ
, (B.12)

z2 =

(
ρ2

k ∓ ρ

)2/3

− ρ2. (B.13)

There are two curves: an upper curve and a lower curve given by the minus sign and the plus sign

in Eq. (B.13 respectively. We plot these curves for several value of the parameter k in Fig. B.1,

which shows that the lower curve defines a toroidal forbidden region for all k whereas the upper

curve undergoes a morphological change at k = 2. We will discuss each region in turn.

We first analyze the lower curve, which defines a toroidal forbidden region. The k → 0 case cor-

responds to particle trajectories with vanishingly small value of canonical angular momentum; these

trajectories can be considered “head-on” such that the particle is aimed directly at the collimator

with φ̇(t = 0) ≈ 01. For such trajectories, the upper curve, to be discussed below, is vanishingly

small, and the only forbidden region is that defined by the lower curve, as shown in Fig. B.1.a. The

size of this region is set by C alone, as can be seen by setting Pφ = 0 in Eq. (B.6). The height of

this toroidal region is 0.17C and the radial extent is C. Therefore, if 0.17C is greater than or equal

to the diameter of the collimator, the toroidal regions will deflect head-on trajectories aimed at the

collimator.

However, as k increases, the toroidal region shrinks, as can be seen graphically in Fig. B.1.

Analytically, the lower curve has precisely one root, which defines the radial extend of the forbidden

region:

ρmax =

√
k2 + 4− k

2
. (B.14)

ρmax approaches ρ = 0 as k increases, confirming that the toroidal region diminishes with increasing

angular momentum. Fig. B.2 plots the height and radial extent of the toroidal region as a function of

k. From this analysis, one might conclude that particles of non-zero angular momentum could pass

the magnet even when 0.17C is greater than or equal to the diameter of the collimator. However,

we shall now show that the second forbidden region, defined by the upper curve, will deflect such

particles for larger k.

The second forbidden region vanishes for small k but grows in extent for larger k, eventually

enveloping the toroidal region considered above and defining a very large forbidden region. For

1By Eq. (B.3), the condition φ̇(t = 0) = 0 does not mean that Pφ vanishes but rather Pφ = qµ0md/4πρ0. However,
we assume that such “head-on” particle begins at sufficiently large ρ0 that Pφ can be taken to be zero.
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k < 2, the upper curve has no roots but instead has a singularity at ρ = k, so the upper forbidden

region is topologically conical as suggested by Fig. B.1.b. This singularity also defines the radial

extend of the upper region, which then clearly grows as k increases. As k → 2, the upper curve

begins to dip down and eventually meets the z = 0 plane as shown in Fig. B.1.c. For k > 2, the

forbidden region is cylindrical and shaped like an hourglass; additionally, there is a hollow torus

inside, as shown in Fig. B.1.d. This hollow space between the upper and lower regions can confine

particles in the dipole field, and such trajectories are of particular interest to geophysicists, but this

region in accessible to the trajectories considered here which begin far away from the magnets. We

note that the upper curve has two roots when k > 2:

ρ =
k ±
√
k2 − 4

2
. (B.15)

The − sign is the radial extend of the hollow region while the + sign is the minimum radius of the

cylindrical forbidden region (e.g. the narrowest radius of the hourglass). When this latter quantity

is equal to or larger than the radius of the collimator, the cylindrical region protects the detector

from the charged particle. Since (k+
√
k2 − 4)/2 ≥ 1, this minimum radius of the cylindrical region

is greater than or equal to the Stormer length C.

We thus conclude that particles with a Stormer length 0.17C greater than or equal to the colli-

mator radius will most likely be deflected regardless of the particle’s canonical angular momentum.

For small values of k, the particle is deflected by the toroidal region, and for large k the particle is

instead deflected by the cylindrical forbidden region. Fig. B.2 plots the size of both the toroidal and

cylindrical region as a function of k and clearly shows this transition for k > 2. We acknowledge

that, even if 0.17C is nearly equal to the collimator radius, a small population of particles may have

initial conditions such that the forbidden region is slightly smaller than the collimator radius, and

these particles could in principle slip past the magnets. However, we also note that such particles

may still acquire some degree of angular deflection and may subsequently crash into the collimator

wall after passing the magnetic. Thus, we will still use the Stormer length as the appropriate scale

in determining whether a particle is deflected or not.

B.2 Estimates of the Dipole Moment

To compute the Stormer length, we need an estimate of the dipole moment of the deflector magnets.

This is estimated both analytically and experimentally; the two results agree well enough to proceed

with order-of-magnitude calculations.

The data sheets for the magnets do not give the dipole moment but instead provide the remanence

field Br, which is the field left in the magnet after the external magnetizing field is removed. Ideally,
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Figure B.1: The forbidden regions plotted for different values of k. (a) At k = 0, the upper curve is
essentially non-existent, leaving only a toroidal forbidden region. (b) For 0 < k < 2, the upper curve
becomes apparent a defines a cylindrical forbidden region while the toroidal regions diminishes in
size. (c) As k → 2, the upper curve begins to bend down towards the z = 0 plane. (d) For k > 2,
the upper curve forms a large cylindrical forbidden region that encloses the smaller toroidal region.

this remanence field is uniform, axial, and of constant strength Br inside the magnet. Such a field is

equivalent to that of an infinite solenoid, and we therefore estimate the dipole moment by treating

the magnet like a solenoid. To produce an interior field of strength Br, the linear current density

would have to be λ = Br/µ0. The magnetic dipole moment density per unit length is then λ times

the magnet’s area πR2, and the total dipole moment is

md = λ(πR2)h =
Br
µ0

Vol, (B.16)

where Vol is the volume of the magnet. This formula implies a magnetization M = Br/µ0. Indeed,

for a uniformly magnetized sphere, the dipole moment is proportional to the product of the interior

magnetic field times the sphere’s volume [98, pg. 264], although in the case of a sphere there is an

additional multiplicative factor due to the different geometry. The magnets originally used on the

vacuum photodiodes were neodymium disks of radius R = 0.75 cm and height h = 0.30 cm and

remanence field Br = 0.68 T. This gives an estimated dipole moment of

md = 0.287 Am2. (B.17)

To validate Eq. (B.17), the on-axis field of several disk magnets was measured using a 5100
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Figure B.2: The spatial extend of the forbidden regions as a function of k. We see that even though
the toroidal region diminishes both in radial extent and in height, the larger cylindrical region forms
at k = 2 and continues to deflect particles as the toroidal region continues to shrink for large k.

Series Gauss meter from F.W. Bell for various heights above the magnet. The height measurements

are accurate to within ±2 mm. At every height, the magnet was placed both face up and face

down. Subtracting the two values and dividing by two then removes any offsets due to Earth or lab

fields. The measurements were done on two of the disk magnets described above. Additionally, a

third magnet was measured to check the scaling of magnetic moment with volume; this magnet had

R = 0.75 cm and height of h = 0.50 cm.

We fit the measured magnetic field with the analytical formula for a dipole field. The magnetic

field of a pure dipole is

B =
µ0md

4π

2 cos θr̂ − sin θθ̂

r3
, (B.18)

which means that its on-axis value is

B(ρ = 0) =
µ0md

2π

1

z3
ẑ. (B.19)

In principle, z3 ·B(z) should be constant and proportional to the dipole moment. This is not observed

in the actual data, indicating that B is not a pure dipole field but weakens as one approaches the

magnet. An octupole multipole moment is therefore added to the fit2. We write the octupole field

2 A quadrupole moment does not obey the symmetry of a disk magnet.
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as

Boct = −∇
(
mo

µ0

4π

P3(cos θ)

r4

)
(B.20)

= −mo
µ0

4π

(
−4

P3(cos θ)

r5
r̂ − sin θ

P ′3(cos θ)

r4
θ̂

)
. (B.21)

For on-axis measurements, θ = 0. The θ̂ component vanishes, and for all Legendre polynomials,

Pn(1) = 1, so

Boct(ρ) =
µ0mo

π

1

z5
ẑ. (B.22)

When this octupole field is added to the dipole field, our analytic formula is

B(z) =
µ0md

2π

1

z3
+
µ0mo

π

1

z5
. (B.23)

The resulting fit gives a dipole moment of md = 0.2275 ± 0.0031 Am2 and an octupole moment of

mo = (−1.371±0.15)·10−5 Am4 for the first of the 5902K61 magnets and md = 0.2292±0.0031 Am2

and mo = (−1.4034±0.15) ·10−5 Am4 for the second. The χ2 values for these fits are 1.15 and 1.19,

indicating a good fit. The analytical estimate of the dipole moment given by Eq. (B.17) is thus fair

but too large; the discrepancy might be due imperfect magnetization or the approximate nature of

the analytical estimate. The octupole moments determined by the fits tells us how the field deviates

from a pure dipole field; the distance at which the octupole field strength equals the dipole field is 1.1

cm. If a particle’s Stormer length is much larger than 1.1 cm, then we can safely ignore the octupole

field as the particle never enters regions where the octupole field becomes significant. However, for

Stormer lengths close to or less than 1.1 cm, the actual field is not as strong as predicted by the

dipole approximation, and the predictions based on Stormer analysis cannot be used.

Finally, the dipole moment of the larger 5902K62 magnet is determined by the fit to be 0.4049±

0.0037 Am2. The ratio of the dipole moments of the two magnets is 1.8, while the ratio of their

volumes is 1.7, confirming that the dipole moment scales linearly with volume.

B.3 Estimates of Stormer Lengths

Having determined a formula for the Stormer length and the dipole moment of the deflector magnets,

we can now estimate the Stormer lengths of plasma particles in the Solar Experiment. We find that,

with the original magnets used on the array, electrons were assuredly deflected but that energetic

ions might penetrate through the magnetic field into the array. Motivated by these results, we

installed a new set of magnets into increase the Stormer length to safer values.

The typical plasma temperature on the Solar Experiment is 1 − 4 eV [19]. We shall take the

kinetic energy of the average plasma particle to be 5 eV but keep in mind that a population of
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high-energy particles may be present. 5 eV corresponds to velocities of 9.4 · 105m/s for electrons nd

2.2 · 104m/s for protons, and the associated Stormer lengths for these velocities are

Ce = 7.3 cm, (B.24)

Cp = 1.1 cm. (B.25)

The collimator has a diameter of roughly 1.0 cm, so the Stormer length for a 5 eV electron is nearly

an order of magnitude greater than the collimator diameter, and we conclude that 5 eV electrons

are successfully deflected by the magnets. However, the Stormer length of a 5 eV ion is on the order

of the collimator diameter. Since the field close to the magnet is weaker than a pure dipole field,

we expect the Stormer length to overestimate the deflective power of the magnet near the magnet

and hypothesize that the spurious signals discussed in Sec. 3.4 could be created by energetic ions

streaming past the deflector magnets. Substantial populations of energetic ions might be expected

in counter-helicity experiments, as anomalously high ion energies have been observed in merging

spheromak experiments [23], as have fast ionic jets [118].

To eliminate the possibility of ions entering the detector, the following upgrades were made on

the magnetic deflecting system. Powerful neodymium magnets were ordered; they have a remanence

field of Br = 1.24 T, a radius of R = 0.79 cm, and a height of 0.64 cm, and an estimated dipole

moment of md = 1.2 A m2 from Eq. B.16. Furthermore, two magnets were used per collimator,

doubling the dipole moment. The Stormer lengths for 5 eV particles become Ce = 22 cm and

Cp = 3.3 cm, both of which are larger than the collimating diameter. However, another major

change was the geometry of the magnets in the collimator. The original magnets sat on the outer

diameter of the collimator. In this setup, the height of the toroidal Stormer region would have to

equal the diameter of the collimator in order to completely cover the collimator region. In the new

setup, shown in Fig. (3.17), the Stormer region is now centered in the collimator, so the height of

the toroidal region only has to exceed the collimator radius to entire cover the collimator interior.

Note that the Stormer length scales with particle velocity as v−1/2 and thus with kinetic energy

as KE−1/4. Thus, the Stormer length does not vary much with particle energy. Also, C scales with

m−1/4 once v has been written in terms of energy, so more massive ions penetrate further into the

magnetic field. A singly charged nitrogen ion has a Stormer length that is 1.9 times smaller than a

hydrogen ion of the same energy, and the Stormer length for a singly charged argon ion is 2.5 times

smaller than that of a hydrogen ion of the same energy.
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B.4 Deflection Near Magnets

In the region close to the magnets, the magnetic field is not as strong as that predicted by the dipole

approximation, and Stormer analysis cannot be expected to hold. To determine the deflection of

an energetic ion that penetrates into this region, consider an extremely energetic ion that is only

slightly deflected by the magnets. Let the ion travel primarily in the x direction along the axis of

the collimator, and let the magnetic field point in the z direction. The Lorentz force will deflect the

ion in the y direction, and

m
dv

dt
= qvBŷ, (B.26)

from which dv = (q/m)Bdx, and

∆v =
q

m

∫
Bdxx̂, (B.27)

where the integration follows the ion trajectory through the field. In the case of slight deflection,

though, we can take the trajectory to be a straight line through the collimator. The figure of merit

for particle deflection is
∫
Bdx along the path through the collimator. If ∆v � v, then deflection

angle is approximately ∆v/v. We thus consider the ion deflected when

v ∼ ∆v =
q

m

∫
Bdxx̂. (B.28)

That is, when ∆v becomes of the same order as v, the ion is significantly deflected. Of course,

the actual trajectory of such particles is significantly different from a straight line through the

collimator, so the exact deflection cannot be easily determined, but Eq. (B.28) estimates the onset

of significant deflection. To calculate this deflection parameter, the magnetic field of the upgraded

deflection system was measured with a Hall probe as a function of distance into the collimator; the

measurements were made as close to the collimator axis as possible with the probe aligned as nearly

as possible with the axis of the magnets. These measurements are shown in the lefthand columns

of Table B.1. The righthand columns tabulate ∆v for each singly charged ion species up to the

specified distance into the collimator and express these velocities in units of electron volts. An ion

of the given species must have at least that much energy to penetrate that far into the collimator.

It is thus predicted that ions would need energies of keV to penetrate through the magnetic field

and reach the collimator. We note that since the deflection parameter depends on
∫
Bdx rather

than just the maximum value of B, the deflection can be improved by increasing the length of the

magnetic field without necessarily increasing the maximum field strength. Longer strips of magnets

could be laid along the collimator, potentially increasing
∫
Bdx even if the maximum value of B is

not as strong.

We note that, if both ions and electrons approach the collimator together, collective effects may

enable the charged particles to pass the magnets even if single-particle analysis forbids each particle
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Distance (mm) Field Strength (T) ∆vH+ (keV) ∆vN+ (keV) ∆vAr+ (keV)
6.4 0.463 0.41 0.029 0.010
9.5 0.583 3.4 0.25 0.086
12.7 0.599 12 0.89 0.31
17.1 0.587 33 2.3 0.82
19.1 0.456 58 4.2 1.5

Table B.1: Measurements of the magnetic field as a function of distance through the collimator
provide an estimate of the energies of particles needed to penetrate through the field. The right
three columns give the energies of ions for which the deflection parameter (q/m)

∫
Bdx is equal to

the ion velocity at that distance into the collimator.

from passing individually. As the upgraded magnetic deflection system has successfully eliminated

the spurious signals, we do not believe collective effects are in action.



182

Appendix C

Review of Action-Angle Variables

Action-angle variables are a useful set of phase space coordinates in Hamiltonian mechanics. The

action variable is synonymous with the action integral, whose utility is discussed at length in Chap-

ter 5. However, classical mechanics texts usually introduce action-angle variables only after a long

discussion of Hamilton-Jacobi theory [92][34]. The purpose here is to introduce action-angle vari-

ables through a more direct presentation. We shall briefly review canonical transformations and

generating function so that the full significance of the action-angle pair can be understood. At the

end of the section, we formally demonstrate the claim made in Sec. 5.1.7 that the canonical trans-

formation that introduces action-angle variables for the ξPξ variables simultaneously transforms the

ηPη pair into their averaged versions.

C.1 Canonical Transformations

We first discuss canonical transformations, a set of changes in phase space coordinates that preserve

Hamilton’s equations. Suppose we have a one-dimensional time-independent system H = H(q, p).

The equations of motion for q and p follow from Hamilton’s equations:

q̇ =
∂H

∂p
, (C.1)

ṗ = −∂H
∂q

. (C.2)

Suppose that we want to use a different set of coordinates QP that are some function of the old

coordinates, i.e., Q = Q(q, p) and P = P (q, p). We then wish to determine the evolution of Q and

P . One approach would be to take time derivatives of Q = Q(q, p) and P = P (q, p),

Q̇ =
∂Q

∂q
q̇ +

∂Q

∂p
ṗ, (C.3)

Ṗ =
∂P

∂q
q̇ +

∂P

∂p
ṗ, (C.4)
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and then substitute Eqs. (C.1) and (C.2) for q̇ and ṗ, taking care to express q and p in terms of

Q and P . This approach is guaranteed to produce the correct equations of motion for Q and P .

A second tack would be to first express H in terms of Q and P : H = H(q(Q,P ), p(Q,P )) and

then invoke Hamilton’s equations. This approach does not work, in general; that is, the equations

of motion Q̇ = ∂H/∂P are not correct. However, there is a special subclass of transformations for

which this second procedure does work, and such transformations are called canonical.

The reason why Hamilton’s equations will not apply in general to the QP coordinates can be

seen in the derivation of Hamilton’s equation from the principle of least action, which states that

small variations of system trajectories do not change the action, e.g., δS = δ
∫
Ldt = 0. For the

canonical coordinates q and p, the Lagrangian can be written as a function of q and p through the

Legendre transform: L = pq̇−H. To derive Hamilton’s equations, we set the variation of the action

to zero:

0 = δ

∫ t2

t1

[pq̇ −H(q, p)] dt (C.5)

=

∫ t2

t1

[
q̇δp+ pδq̇ − ∂H

∂q
δq − ∂H

∂p
δp

]
dt (C.6)

=

∫ t2

t1

[
q̇δp− ṗδq − ∂H

∂q
δq − ∂H

∂p
δp

]
dt, (C.7)

where the third line is derived from the second through integration by parts and from the usual

assumption of no variations of the end points. Requiring that the δq and δp terms vanish indepen-

dently yields Hamilton’s equation. Thus, we see that Hamilton’s equations are equivalent to the

Lagrangian having the form L = pq̇−H. However, when we rewrite the Lagrangian in terms of the

new coordinates (Q,P ), we will not, in general, obtain PQ̇−H:

L = pq̇ −H 6= PQ̇−H, (C.8)

as can be seen by expanding the time derivative of PQ̇:

PQ̇ = P
∂Q

∂q
q̇ + P

∂Q

∂p
ṗ 6= pq̇. (C.9)

However, the new phase space coordinates QP are canonical if one can find a so-called generating

function for the transformation. We show this by exploiting a peculiar facet of the principle of least

action: namely, the variation of the action S =
∫ t2
t1
Ldt is unchanged if we add to L the total time

derivative of some other function, say F , because the contribution of F to the action,

∫ t2

t1

dF

dt
dt = [F (t2)− F (t1)] , (C.10)
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depends only on F evaluated at the end points, and variations of the action keep the end points

fixed. This function F will become the generating function used to enact canonical transforms. As

discussed above, the Lagrangian L, when written in terms of QP , is different than PQ̇−H. However,

if these two quantities differ only by a total derivative, then variations of PQ̇−H are equivalent to

variations of L = pq̇ −H, and Hamilton’s equations will hold for the QP coordinates. We therefore

require

PQ̇−H(P,Q) +
dF

dt
= pq̇ −H(p, q). (C.11)

If we let F have the following form,

F = F1(q, P )− PQ, (C.12)

then
dF

dt
=
∂F1

∂q
q̇ +

∂F1

∂P
Ṗ − ṖQ− PQ̇, (C.13)

and using this expression in Eq. (C.11),

− ṖQ+
∂F1

∂q
q̇ +

∂F1

∂P
Ṗ = pq̇. (C.14)

If F1 is chosen such that

Q =
∂F1

∂P
, (C.15)

p =
∂F1

∂q
, (C.16)

then the lefthand side of Eq. (C.14) will indeed be equal to the righthand side, and the Lagrangians

will be equivalent. Equations (C.15) and (C.16) then define the transform (q, p) → (Q,P ). When-

ever a generating function is specified, the resulting coordinates will be canonical, and Hamilton’s

equations will apply.

C.2 Action-Angle Variables

We introduced the action integral J =
∮
pdq for periodic motion in Chapter 5, but J is only one

half of a canonical set of variables called action-angle variables. The second coordinate is the angle

variable φ, which shall be explained in this section. We will also explicitly show the generating

function to obtain action-angle coordinates.

We begin by discussing the action variable. For a one-dimensional system, H = H(q, p), the
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action variable is

J(H) =

∮
p(H, q)dq, (C.17)

That is, given a trajectory of energy H = H(q, p), we solve for p as a function of H and q and

integrate p(H, q) over q along the orbit. J is a function of H, which is a constant of motion, so J is

a likewise a constant of motion. Moreover, we have, in analogy to the proof given in Sec. 5.1.2,

dJ

dH
=

∮
∂p

∂H
dq =

∮
1

∂H/∂p
dq =

∮
dq

q̇
= ∆t. (C.18)

For this one-dimensional system, the Hamiltonian H uniquely labels each trajectory by its energy.

As J is a function of H, it also labels each trajectory, but this label is the phase space area enclosed

by the orbit as is seen from Eq. (C.17).

If we assume that (J, φ) are canonical, then Hamilton’s equations show that the angle coordinate

φ essentially counts period of motion. We write the Hamiltonian H as a function of the action-angle

coordinates J and φ by inverting the expression J(H) for H = H(J). Thus, H written in action-

angle coordinates only depends on J and not φ. By Hamilton’s equation, then, J̇ = ∂H/∂φ = 0,

which confirms that J is a constant of motion. Hamilton’s equation also yields φ̇:

φ̇ =
∂H

∂J
=

1

∆t
. (C.19)

∆t is itself a constant of motion, so φ̇ is likewise constant along a trajectory, and

φ(t) =
t

∆t
+ φ(0). (C.20)

At the moment when the particle has completed its nth orbit, t = n∆t and φ = n + φ(0), so φ

essentially counts cycles of the trajectory. As noted by Littlejohn [119], the different orbits in phase

space may have different periods, and thus particles traverse the orbits at different rates, but if

the motion is parametrized by the angle variable φ then all particle complete a single period as φ

approaches one.

Indeed, using (J, φ) as phase space coordinates has a simple analogy. Suppose we have a set

of perfectly circular trajectories in the xy plane: x = r cos(ωt) and y = r sin(ωt). We know that

these trajectories are greatly simplified by switching to polar coordinates (r, θ), for, along a circular

trajectory, the radial coordinate r is constant while θ = ωt. Put another way, the r coordinate

labels the particular circle, while the θ coordinate measures position along the circle. Action-angle

variables are simply a generalization of this situation to non-circular curves. J is analogous to r and

labels every trajectory by a geometric quantity, namely the phase space area enclosed by the curve.

Similarly, φ, like θ, measures the location along the trajectory in terms of the fraction of time taken
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to reach that point compared to the period of that orbit.

We now demonstrate a canonical transformation from (q, p) to action-angle coordinates. The

appropriate generating function is

F1(q, J) =

∫ q

q0(J)

p(H(J), q′)dq′. (C.21)

Several points must be explained. First, since our generating function depends on J , we must write

H as a function of J . Second, q0 denotes a reference point on each trajectory from which we begin

integration; the choice of q0 is quite arbitrary and will be seen to affect the motion only in a minor

fashion. This generating function is the so-called abbreviated action1 for motion starting at q0 up

to the point q. For a complete cycle of motion, the value of the generating function is J .

We now evaluate the transformation through Eqs. (C.15) and (C.16) with J playing the role of

the new momentum P and φ playing the role of the new coordinate Q. From Eq. (C.16),

p =
∂F1

∂q
= p(H(J), q), (C.22)

which simply re-expresses p as a function of q and J . Using Eq. (C.21) in Eq. (C.15) and remembering

to differentiate the integral bounds, we obtain:

φ =
∂F1

∂J
=

∫ q

q0

∂p

∂H

∂H

∂J
dq′ +

∂q0

∂J
· p(H(J), q0) (C.23)

=
1

∆t

∫ q

q0

1

q̇
dq′ + φ0(J), (C.24)

where φ0 is defined as

φ0 =
∂q0

∂J
· p(H(J), q0). (C.25)

Eq. (C.24) defines the angle variable φ. The integral in Eq. (C.24) is really just an expression for the

time it takes the particle to travel from q0 to q. Thus, φ evolves linearly with time and increments

by unity for every period of motion, as anticipated above.

C.3 Action-Angle Transformations for Multi-Dimensional Sys-

tems

Here, we verify the claim made in Sec. 5.1.7 that, in multi-dimensional systems, the transformation

of a periodic coordinate to action-angle variables simultaneously removes the periodic oscillations

from the other coordinates. As in Chapter 5, we let ξ be a periodic coordinate and η be an ignorable

coordinate. In this notation, the claim is that writing H as H = H(J, Pη) rather than H =

1The action is
∫
Ldt =

∫
(piq̇

i −H)dt, whereas the abbreviated action is just
∫
piq̇

idt.
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H(ξ, Pξ, Pη) transforms the η coordinate to an averaged version of η that evolves linearly in time at

the drift velocity, and we will make this statement more rigorous by treating the substitution of J for

(ξ, Pξ) as a canonical transformation. Because J is also a function of Pη, the transformation (ξ, Pξ)→

(J, φ) simultaneously transforms the (η, Pη) pair into a new set of coordinates, say, (η, P η). That is,

the action-angle transformation for one pair of coordinates cannot be carried out independently of

the second pair of coordinates. The situation is similar to a gauge transformation. Given the vector

potential A = yx̂+ x2ŷ, we can enact a transformation to eliminate the x component; for instance,

we can add the gradient of χ = −xy to A. However, this simultaneously transforms the y component

of the vector potential. By analogy, one cannot transform the pair (ξ, Pξ) → (φ, J) without also

transforming (η, Pη)→ (η, P η). The remarkable fact about this “incidental” transformation is that

η is the averaged version of η that evolves linearly in time at the drift velocity. One can think of η

as an angle variable conjugate to P η since its evolution is linear in time.

We develop a generating function that enacts (ξ, Pξ)→ (φ, J). The generating function will be

F = S(ξ, J, η, P η)− φJ + ηPη, (C.26)

with S to be specified shortly. Equating Lagrangians in analogy to Eq. (C.11),

Jφ̇+ P η η̇ −H +
dF

dt
= Pξ ξ̇ + Pη η̇ −H, (C.27)

and expanding dF/dt gives the following transformation equations:

φ =
∂S

∂J
, Pξ =

∂S

∂ξ
, (C.28)

η = − ∂S

∂Pη
, P η = −∂S

∂η
. (C.29)

We chose S to be the abbreviated action integrated along the trajectory,
∫
Pηdη+ Pξdξ, in analogy

to the case above. We must take care to express S as a function of (ξ, J, η, P η):

S(ξ, J, η, P η) =

∫ ξ

ξ0(J,Pη)

Pξ (H(J, Pη), Pη, ξ
′) dξ′ − ηP η. (C.30)

ξ0 is again some arbitrary function which instructs us where to begin integration along a trajectory.

We now evaluate the transformation. We have

P η = −∂S
∂η

= Pη, (C.31)
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so the transformation leaves the η momentum the same. We also have

Pξ =
∂S

∂ξ
= Pξ(H(J, Pη), Pη, ξ), (C.32)

which is simply expressing Pξ along a trajectory as a function of J , Pη, and ξ. The angle variable is

φ =
∂S

∂J
=

∫ ξ

ξ0

∂Pξ
∂H

∂H

∂J
dξ′ − ∂ξ0

∂J
Pξ(H(J, Pη), Pη, ξ0) (C.33)

=
1

∆t

∫ ξ

ξ0

1

ξ̇
dξ′ − φ0(J, Pη) (C.34)

=
t

∆t
− φ0(J, Pη), (C.35)

where

φ0(J, Pη) =
∂ξ0
∂J

Pξ(H(J, Pη), Pη, ξ0). (C.36)

Again, φ equals the amount of time taken to reach ξ from ξ0 divided by the period of motion.

Finally, using Eq. (5.4) to evaluate ∂H(J, Pη)/∂Pη, we have

η = − ∂S

∂Pη
= −

∫ ξ

ξ0

[
∂Pξ
∂H

∂H(J, Pη)

∂Pη
+
∂Pξ
∂Pη

]
dξ′ − ∂ξ0

∂Pη
Pξ(H(J, Pη), Pη, ξ0) + η (C.37)

= −
∫ ξ

ξ0

[
1

ξ̇

∆η

∆t
− η̇

ξ̇

]
dξ′ − η0(J, Pη) + η (C.38)

=

∫ ξ

ξ0

η̇

ξ̇
dξ′ − ∆η

∆t
t− η0(J, Pη) + η, (C.39)

where

η0(J, Pη) =
∂ξ0
∂Pη

Pξ(H(J, Pη), Pη, ξ0). (C.40)

The integral evaluates to η, and canceling η from both sides of Eq. (C.39) gives

η =
∆η

∆t
t+ η0(J, Pη). (C.41)

This shows that η evolves linearly in time at the drift velocity ∆η/∆t. This fact was derived as

consequence of effecting a transformation to action-angle coordinates for the (ξ, Pξ) pair.
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Appendix D

Additional Calculations

The following sections contain several calculations that can be omitted from Chapter 5 on a first

read but that may be of interest to those desiring more detail.

D.1 First-Order Correction and Guiding Center Definitions

In Sec. 5.2.4, we retained the first-order term in the expansion of the potential V and obtained

J(H,Py) = J0

(
H − qV (xgc, y, t) +

m

2

(
∂xV

Bz

)2

, Py

)
, (D.1)

where J0 is the action integral when V = 0. We observed that the effects of retaining the δx term of

V is to add to the energy the term (m/2)(∂xV/B)2, which leads to a higher-order correction to the

drift velocity shown in Eq. (5.147). However, we shall now see that this terms can be viewed as a

consequence of the the definition of guiding center. We highlight this fact because any comparison

of higher-order drifts derived in Ch. 5 with other work on guiding center drifts needs to take into

account the possibility of a discrepancy guiding center definitions.

We defined the guiding center as the x location where the y velocity vanished. In Sec. 5.2.1, this

definition was consistent with the fact that the guiding center approximation is a harmonic-oscillator

approximation because xgc is the minimum of the effective potential

Ueff =
(Py − qAy)2

2m
. (D.2)

In Sec. 5.2.4, we continued to use this definition of guiding center even after introducing the potential

V . However, the effective potential is now different:

Ueff =
(Py − qAy)2

2m
+ qV, (D.3)

so that xgc, as previously defined, is no longer the minimum of Ueff .
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If we assume that the electric field is a perturbation to the problem of a charged particle in a

magnetic field, then we expect that the true location of the minimum, which we will denote xm, is

not very different from xgc, that is, xm = xgc + δxgc, where δxgc is assumed small. We determine

δxgc by requiring that xm minimizes Ueff :

0 =
dUeff

dx

∣∣∣∣
x=xm

=

[
−qBz

Py − qAy
m

+ q
dV

dx

]
x=xm

. (D.4)

We do a Taylor expansion about xgc

0 = −q
(
Bz(xgc) +

dBz
dx

(xgc)δxgc

)
Py − qAy(xgc)− qBz(xgc)δxgc

m
+ q

dV

dx
+ q

d2V

dx2
δxgc, (D.5)

where all derivatives are evaluated at xgc. We now recall that, by definition, Py = qAy(xgc) (see

Eq. (5.90)), so, keeping terms up to first order in δxgc,

0 =
q2

m
B2
zδxgc + q

dV

dx
+ q

d2V

dx2
δxgc. (D.6)

Solving for δxgc,

δxgc = − ∂xV

qB2
z/m+ ∂xxV

. (D.7)

In the case where the second derivative of V is small enough to be dropped, we would have δxgc =

−m∂xV/qB2
z .

We now show that the corrected drift velocity in Eq. (5.148) is actually the value of the E×B

velocity evaluated at xm rather than xgc. Indeed,

E(xm)×B(xm)

B2(xm)
=

∂xV (xm)

Bz(xm)
(D.8)

≈ ∂xV (xgc)

Bz(xgc)
+ δxgc

d

dx

[
∂xV

Bz

]
x=xgc

(D.9)

=
∂xV (xgc)

Bz(xgc)
− m∂xV

qB2
z

d

dx

[
∂xV

Bz

]
x=xgc

(D.10)

=
∂xV (xgc)

Bz(xgc)
− vE×B

m

qBz

d

dx

[
∂xV

Bz

]
x=xgc

. (D.11)

Hence, the higher-order term term in Eq. (5.148) can be viewed as a correction to the E ×B that

corrects for the fact that the E×B was evaluated at xgc rather than xm.

D.2 Cyclotron-Driven Pondermotive-Potential

In Eq. (5.138), the energy is modified by the addition of the term (m/2)(∂xV/B)2. Here, we show

that this added term is a pondermotive-like potential that arises due to the cyclotron motion.
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Pondermotive potentials arise when a charged particle is placed in an oscillating electric field when

the field amplitude varies with position. By averaging the equation of motion for the charged particle,

it is seen that there is a effective force that drives the particle away from the large field regions and

that this force can be described by an effective pondermotive potential [120]:

Upon =
q2E(x)2

4m(ω − k · v)
. (D.12)

ω is the wave frequency, k is the wave vector of the wave generating the electric field, and v is the

averaged velocity of the charged particle. For a particle in a crossed electric and magnetic field, there

are no waves, but the particle experiences an oscillating electric field due to the cyclotron motion.

We take Eq. (D.12) and set k = 0, since we are not dealing with a wave, and set ω = qBz/m, the

cyclotron frequency. Since the oscillations are in the x direction, we use E = Ex = −∂xV . Then

Eq. (D.12) becomes

Upon =
q2(∂xV )2

4m(qBz/m)
=
m

4

(
∂xV

Bz

)2

, (D.13)

which equals the added term in Eq. (5.138) up to a factor of two. This factor of two can be explained

as follows. In the wave case, the particle experiences a sinusoidal electric field, but in the cyclotron-

driven case the particle experiences a square-wave-like E. The E that appears in Eq. (D.12) is the

field amplitude of a sinusoidal field; if we rewrite Eq. (D.12) in terms of the root mean square of the

field, we would have

Upon =
q2(2ERMS(x))2

4m(ω − k · v)
, (D.14)

in which case Eq. (D.13) is

Upon =
m

2

(
ERMS

Bz

)2

. (D.15)

Since, in the cyclotron-driven case, ERMS = E = ∂xV , Eq. (D.15) is precisely the extra potential

term in Eq. (5.138).

D.3 A Lemma on Averaging

We develop a lemma concerning the averaging of a scalar function f(x) over a gyro-orbit again for

the case of a magnetic field B = Bz(x)ẑ. Let the average of f(x) be defined as

f̄ =

∫ t0+∆t

t0
f(x(t))dt

∆t
, (D.16)

and define δx = x− xgc. Using Eq. (5.91), we can relate δx to ẏ:

mẏ(x) = Py − qAy(xgc + δx) (D.17)



192

≈ Py − qAy(xgc)− q dAy
dx

∣∣∣∣
xgc

δx (D.18)

= qBz(xgc)δx. (D.19)

We exploit Eq. (D.19) in a Taylor expansion f(x) so that the average of f becomes

f̄ =
1

∆t

∫ t0+∆t

t0

[
f(xgc) +

f ′(xgc)

qBz(xgc)
mẏ(x)

]
dt (D.20)

= f(xgc) +
m

qBz(xgc)
f ′(xgc)vd, (D.21)

where vd = ∆y/∆t is the drift velocity in the y direction. The second term is a correction term

which involves the y drift. Because m/qBz = ∆t/2π, we also have

f̄ = f(xgc) +
1

2π
f ′(xgc)∆y, (D.22)

and it is interesting to note that the correction involve an x derivative of f times the net y displace-

ment.

D.4 Flux Enclosed by an Orbit: Lab Frame Calculation

In this section, we rederive the magnetic flux enclosed by one gyration of a charged particle in a

magnetic field through a different technique than that presented in Sec. 5.2.5. In the lab frame,

the flux is not well-defined because the trajectory does not close on itself, so we do not have a

definite surface through which to compute flux. We surmount this difficulty by artificially closing

the trajectory, computing the flux, and then judicious averaging the answer over a period of motion.

The flux obtained is equal to that given in Eq. (D.26). For clarity, we shall work with magnetic

fields B = Bz(x)ẑ so that the only drift is the grad-B drift, which is in the y direction.

While the trajectory does not close on itself, we can define a flux value for each point along the

trajectory. Given a point (x0, y0) on the trajectory, the regions through which we will measure flux

are bounded by two curves defined as follows. The first curve follows the trajectory for one period

as the particle moves from (x0, y0) to (x0, y0 +∆y). The second curve is a vertical segment of length

∆y that joins the starting point with the endpoint. Fig. D.1 shows several such regions for different

starting locations; it is apparent that every region encloses a different amount of flux.

We now evaluate the flux, which we denote by Φ(x0), through each region defined above for a

point (x0, y0). The surface integral for flux can, by Stokes’ theorem, be converted into a line integral

of A, and this line integral is split into two parts: the segment that follows the trajectory and the
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Figure D.1: In the lab frame, the flux of a gyration depends on how one defines the starting point;
this figure explicitly shows four possibilities. The dotted lines represents an electron trajectory, and
the solid red and blue lines together bound the region through which we measure flux. The solid
red lines trace one period of motion, while the solid blue lines are the connecting paths used to close
the gyro-orbits. Clearly, the amount of flux enclosed is different for each region.

vertical segment that joins the starting and ending points.

Φ(x0) =

∮
A · dl =

∫
trajectory

A · dl +

∫
connecting

A · dl, (D.23)

The first integral is equal to ∂J/∂q by virtue of Eq. (5.160) with V = 0. Therefore

Φ(x0) =
∂J

∂q
−Ay(x0)∆y. (D.24)

The first term is the contribution from the trajectory itself and is independent of x0. The second term

comes from the connecting path and clearly depends upon x0. This x0 dependence is undesirable,

for we would like flux to be a property of the entire orbit just as the area of a geometric shape has

nothing to do with any particular point along the perimeter.

To obtain a flux that is independent of starting point and representative of the entire orbit, we
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take the democratic approach and average Φ(x0) over all points on a trajectory. The averaging will

be weighted by the amount of time the particle in orbit spends at position x0, just as in Eq. (D.16).

Ay(x) is easily averaged by considering Py = mvy + qAy(x) and observing that the average of vy is

the drift velocity vd = ∆y/∆t, from which

Āy =
1

q

(
Py −m

∆y

∆t

)
. (D.25)

Strangely, this is the same answer as would have been obtained from the approximate averaging

formula given by Eq. (D.22), which apparently holds exactly for the function Ay(x). Substituting

Āy from Eq. (D.25) into Eq. (D.24) gives

Φ =

∫
Φ(x(t))dt

∆t
=
∂J

∂q
− 1

q

(
Py −m

∆y

∆t

)
∆y. (D.26)

This result will be verified in the following section, where we will evaluate the flux by a different

technique.

D.5 Phase Space Contours

We rederive Eq. (5.168) by integrating over special phase space contours using techniques from

differential geometry as described by Montgomery [103]. The contours lie entirely within the sub-

manifolds of phase space defined such that Py is constant. Such submanifolds have three dimensions

with coordinates (x, Px, y). The contours consist of two parts: the first part follows the trajectory

over one gyration, while the second part travels in the y direction to rejoin its starting point. Fig. D.2

depicts such a contour. The contours used in Sec. D.4 to compute the flux are the projections of

these contours onto the xy plane.

The proper way of proceeding would be to invoke techniques from differential geometry [94, pg.

174]. Differential geometry generalizes concepts from multivariate calculus to manifolds of arbitrary

dimensions, and these generalizations often do not require a metric, or definition of distance, on the

manifold. Phase space, for example, is an abstract space in which we cannot talk about notions

of distance, but differential geometry allows us to talk about integrals over lines and surfaces.

Fortunately, the manifolds we will consider have three dimensions, and this allows us to identify

techniques from differential geometry with those from three-dimensional calculus. For instance, a

one-form is a mathematical object from differential geometry that is integrated over lines, and a two-

form is integrated over two-dimensional surface. On a three-dimensional manifold, however, these

are analogous to line and surface integrals of vector fields. Montgomery provides a very readable

explanation of differential forms in this context.

With that preamble, we integrate the canonical one-form, also known as Poincare’s form [94, pg.
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Figure D.2: The phase space contour under consideration follows the trajectory for one period, as
shown by the red line, and then rejoins its starting point by traveling straight up the y axis, as
shown by the blue line.

238], over the contours discussed above. The canonical one-form is

θ = Pxdx+ Pydy, (D.27)

but we can identify θ with a phase space vector field V:

V = Pxx̂+ Py ŷ. (D.28)

We now perform the integration. Over the first part of the contour, kinetic energy is constant, so

∫
I

θ =

∫
I

V · dl (D.29)

=

∫
I

[mvxdx+mvydy + qA(x)dy] (D.30)

=

∫
I

m
[
v2
x + v2

y

]
dt+ q

∫
I

A(x)dy (D.31)

= 2H∆t+ q
∂J

∂q
. (D.32)

Integrating over the second branch,

∫
II

θ =

∫
II

V · dl =

∫
II

Pydy = −Py∆y. (D.33)

The minus sign occurs because we are traveling backwards in the sense opposite to ∆y. Since

the total contour is closed, we apply Stokes’ theorem. In differential geometry, we would take the

differential of θ and obtain the two-form dθ = dPx ∧ dx, since Py is constant on the submanifold.

Thinking in terms of vector calculus, taking the differential of θ is equivalent to taking the curl of
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V, ∇×V = ŷ. Either way, we integrate over the surface spanned by the contour:

∫
I+II

V · dl =

∫
∇×V · dS =

∫
ŷ · dS = J(H,Pz), (D.34)

because ŷ · dS is the project of the area element onto the xPx plane, and this area is indeed the

x action. Equating the line integral, which is the sum of Eqs. (D.32) and (D.33), with the surface

integral given by Eq. (D.34), gives

J(H,Py, q) = 2H∆t+ q
∂J

∂q
+ Py

∂J

∂Py
. (D.35)

which is equivalent to Eq. (5.168).
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