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Abstract 

 

This thesis describes research towards understanding surface chemical and physical 

processes, as well as their effects on the underlying substrate properties, at the nanometer 

and atomic scales. We demonstrate a method to tune the density of etch pits on Si(111) 

during the chlorination process so as to change the surface reactivity. Subsequent grafting 

of an azide group to replace chlorine demonstrates an example of non-oxidative 

passivation of silicon surfaces with new functionalities. Depending upon the solvent used 

in the azidation process, it is shown to yield different azidation kinetic rates, different 

final azide coverages, and different surface-area distributions. Scanning tunneling 

spectroscopy studies show that both chlorination and azidation processes significantly 

modify the surface electronic structures, with the former leading to a non-zero density of 

states at the Fermi level. 

Our studies on a new class of corrugation, i.e., wrinkles, in exfoliated graphene on 

SiO2 show that a “three-for-six” triangular pattern of atoms is exclusively and 

consistently observed on wrinkles, suggesting the local curvature of the wrinkle is a 

perturbation that breaks the six-fold symmetry of the graphene lattice. Lower electrical 

conductance is also found on the top of wrinkles compared to other regions of graphene. 

The wrinkles are characterized by the presence of midgap states, which is in agreement 

with recent theoretical predictions. A general method is also reported for reliably 

fabricating ultrahigh-density graphene nanoribbon (GNR) arrays. We have clearly 

observed how the properties of GNRs evolve as a function of number of graphene layers. 
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The band gap (and so the on-off ratio) decreases as the number of layers increases. These 

results suggest that, in addition to single layer graphene, properties of GNRs of different 

thicknesses can also be harnessed for engineering GNRs as different building blocks 

towards FET applications. 

A novel imaging technique, graphene-templated scanning probe microscopy, has 

been developed and applied for the study on the condensation process of water and small 

organic molecules on mica. We found that these molecular adlayers grow epitaxially on 

the mica substrate in a layer-by-layer fashion. In particular, submonolayers of water form 

atomically flat, faceted islands of height 0.37±0.02 nm, in agreement with the height of a 

monolayer of ice. The second adlayers also appear ice-like, and thicker layers appear 

liquid-like. This general mechanism, however, is not universal. Exclusively three-

dimensional droplets of water are observed on chemically modified (hydrophobic) mica 

surfaces, suggesting a 3D growth mechanism. 

This thesis also includes my work on the design of a quartz-tuning-fork-based 

force sensor and related electronics for applications on low-temperature atomic force 

microscopy. Results show that the force-sensor-global-feedback circuit detector system 

induced lowest noise floor. The high detection sensitivity of this system demonstrates its 

ability to be used in frequency-modulated AFM at cryogenic temperatures. Surface 

topographic imaging of H-terminated Si(111) has been achieved at low temperatures. 
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