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Abstract

In this thesis, we consider two aspects of the conjectured gauge theory/string theory correspondence

between three-dimensional maximal supersymmetric conformal �eld theories, which describe the

world-volume theory of multiple M2-branes in �at space, and M-theory on AdS4 × S7.

First we study three classes of N = 6, 8 superconformal Chern-Simons theories that are related

to the gauge theory side of the correspondence: the Bagger-Lambert (BL) theories based on 3-

algebras, the Lorentzian signature 3-algebra theories, and the Aharony-Bergman-Ja�eris-Maldacena

(ABJM) theories. We verify the superconformal symmetry of the BL theory, prove that it is parity

conserving and conjecture the (by now proven) uniqueness of its SO(4) realization. We then consider

the Lorentzian signature 3-algebra theories and show that although the ghosts can be removed to

ensure unitarity by gauging certain global symmetries, the resulting theories spontaneously break

the conformal symmetry and reduce to maximally supersymmetric three-dimensional Yang-Mills

theories. After this, we recast the ABJM theory in a form for which the SU(4) R-symmetry of the

action is manifest; then we use this form to verify in complete detail the OSp(6|4) superconformal

symmetry of the theory and to express the scalar potential as a sum of squares.

Next, we study the one-loop correction to the energy of a point-particle and circular string

solutions to type IIA string theory on AdS4 × CP 3. We compute the spectrum of �uctuations for

each of these solutions using two techniques, known as the algebraic curve approach and the world-

sheet approach. We propose a new prescription for computing the one-loop corrections that gives

well-de�ned results and agrees with the predictions of the all-loop Bethe ansatz for our point-particle

and circular string solutions as well as for previous folded-spinning string solutions.
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Chapter 1

Introduction

String theory was initially introduced in an attempt to describe hadrons and their strong interactions.

As this theory was developed, and with the formulation of Quantum Chromodynamics (QCD), string

theory was ruled out as a theory of hadrons but became a very promising candidate for a quantum

theory of gravity.

The idea of string theory as a dual description of QCD was still desired, but it was unclear

how to construct it. On one hand, there are fundamental di�erences between the theories, while in

gauge theories local �elds are fundamental objects, in string theory, gauge �elds are derived as low

energy excitations of fundamental open strings and therefore nonfundamental. On the other hand,

the idea of a possible duality was supported by the fact discovered by 't Hooft that in the large N

limit the Feynman diagrams of the perturbative expansion of the SU(N) gauge �eld theory organize

themselves in terms of a genus expansion of two-dimensional Riemann surfaces that resemble the

perturbative expansion of an interacting string theory.

The �rst concrete example of the gauge theory/string theory duality was proposed by Maldacena

in reference [1]. By considering stacks of D3-branes, Maldacena found that in certain limits the

gauge theory on the world-volume of the branes describes the same physics as the string theory in

the near-horizon geometry created by the branes. The precise Maldacena's conjecture was that type

IIB super string theory on the AdS5 × S5 curved background is dual to N = 4 four-dimensional

super Yang-Mills theory with gauge group SU(N) (N = 4 SYM) [2, 3, 4].

A basic check of the duality is that the symmetries match. In each case the complete symmetry

is given by the superalgebra PSU(2, 2|4). In the string theory this supergroup is the isometry group

of the AdS5 × S5 background, while in the gauge theory side it corresponds to the superconformal

symmetry group of the theory.

An important part of the duality is how the parameters of both theories are related. The N = 4

SYM is parametrized by the rank N of the gauge group and the coupling constant gYM , or equivalent

the 't Hooft parameter λ = g2
YMN . The string theory, on the other hand, depends on the string

coupling constant gs, and the e�ective string tension R2/λ′ where R is the common radius of the
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AdS5 and S5 geometries. Maldacena proposed that the precise correspondence is given by

gs =
4πλ

N
,

√
λ =

R2

α′
.

From this relations we can see that when the string theory geometry is weakly curved (
√
λ � 1),

and the low energy e�ective �eld theory description of AdS5 × S5 in terms of type IIB supergravity

is justi�ed, the dual gauge theory is strongly coupled. Conversely, when the gauge theory is weakly

coupled (λ� 1), and we have control of the perturbative regime, the dual string theory geometry is

strongly curved. Therefore, Maldacena's conjecture is of the strong/weak type. Unfortunately, it is

not known how to fully access the strong coupling regime in either theory, or even how to rigorously

quantize string theory on a curved background. We can simplify both theories by considering the

't Hooft limit (N � 1 at �xed λ). In this limit the quantum corrections in the string theory side

(given by string loops) are suppressed, and in the gauge theory side only planar diagrams become

relevant. But even in this limit the strong/weak correspondence is still present.

To check the duality we also need to understand the relation between the excitations of the two

theories. The correspondence identi�es the string energy eigenstates |OQ > with the gauge invariant

local operators OQ of the gauge theory, where Q denote the set of conserved charges, and both states

and operators transform under the same representation of the superconformal group. However, the

conjecture goes beyond the kinematics and claims the full dynamical agreement of both theories.

Speci�cally, the duality requires that the spectrum of scaling dimensions ∆ in the conformal gauge

theory should coincide with the spectrum of energies E of the string states. This is

〈OA (x)OB (y)〉 ≈ δAB

|x− y|2∆A
⇐⇒ HString |OA〉 = EA |OA〉 , (1.1)

with

∆A

(
λ,

1

N
,Q

)
= EA

(
R2

α′
, gs, Q

)
. (1.2)

In the special sector of BPS states/operators the energies/dimensions are protected by supersymme-

try, i.e., do not depend on λ, and therefore the relation equation (1.2) can be con�rmed. However,

checking the duality beyond the BPS sector remains a challenge because to the fundamental problem

of the strong/weak duality remained.

However, a remarkable development was introduced by Berenstein, Maldacena, and Nastase

(BMN) [5] in 2002. Because the energy and scaling dimension are not only functions of λ but also of

the conserved charges Q, BMN proposed that for a special subset of states/operators parameterized

by large quantum numbers, the string sigma model corrections may be suppressed in the limit in

which these quantum numbers became large. The important point from the string perspective is

that such a limit can make the semiclassical computations of the string energy also quantum exact.
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In this BMN limit, the gauge theory operators of interest will have a large number of constituent

�elds, and this make the calculation of the anomalous dimensions complicated. This technical

problem was solved using the interpretation of the anomalous dimension matrix as an integrable

spin-chain Hamiltonian [6, 7]. This allowed to calculate the one loop anomalous dimension by

applying the Bethe ansatz techniques [8].

These seminal ideas trigged a tremendous and rapid progress in exploring the AdS5 × S5 gauge

theory/string theory duality, a complete review collection of all this progress can be found in [9].

Based on the AdS5 × S5 gauge theory/string theory duality, it is possible to conjecture other

AdS/CFT dualities. For example, one can consider stacks of N M2-branes or M5-branes instead

of D3-branes. In this case, the corresponding world-volume theories are three and six-dimensional

superconformal �eld theories (SCFT), while the dual M-theory is the product of an anti�de Sitter

spacetime and a sphere. Speci�cally, the M2-brane duality conjecture that M-theory on AdS4 × S7

(with N units of �ux threading the sphere) is dual to a three-dimensional SCFT. The supergroup

for this case is OSp(8|4). The M5-brane duality conjecture that M-theory on AdS7 × S4 is dual to

a six-dimensional SCFT, and the supergroup is OSp(6, 2|4).

One of the reasons that make the M-brane dualities more challenging than the D3-brane duality

is that the M-theory background does not contain a dilaton �eld, and therefore there is no weak-

coupling limit. Also, it is not obvious that a classical action describing the conformal �eld theory

that is dual to the M-theory solution needs to exist. For example, in the case of the M2 duality,

we can consider the maximally supersymmetric SU(N) Yang-Mills theory that describes the world-

volume theory on a collection of N coincident D2-branes as a weak coupling �description� in the

UV of the desired SCFT. To be speci�c, this three-dimensional SU(N) Yang-Mills theory while

maximally supersymmetric it is not conformal, i.e., it has a dimensionfull coupling. But if we �ow

to the infrared of this gauge theory, the coupling becomes in�nite and one reaches the conformally

invariant �xed point of the theory. Although, there is no guarantee that this �xed point has a

dual Lagrangian description. The M5 case is even worst since there is not even a weak coupling

�description� in the ultraviolet of the required SCFT because the theory is six-dimensional.

For these reasons the M-brane dualities have been explored in much less detail than the D3-brane

case. However, few years ago Bagger and Lambert [10, 11] and Gustavsson [12] introduced new ideas

that triggered a revolution in our understanding of the M2-brane duality.

Following the suggestions by J. H. Schwarz [13] that the desired three-dimensional SCFT should

be a Chern-Simons theory, Bagger and Lambert [10, 11] constructed for the �rst time a Lagrangian

description of a class of three-dimensional N = 8 superconformal Chern-Simons of theories. The

construction is based on the use of an interesting new type of algebra called 3-algebra. Although

their theory was not the desired dual to M-theory on AdS4×S7, it introduced important new ideas

in this subject.
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Soon after this, Aharony, Bergman, Ja�eris and Maldacena (ABJM) [14] obtained the correct

construction. By considering only 3/4 maximal supersymmetry, ABJM found a three-dimensional

N = 6 superconformal Chern-Simons theory with gauge group U(N)k×U(N)−k where the subscripts

are the level of the Chern-Simons terms. ABJM conjecture that this gauge theory is dual to M-

theory on AdS4 × S7/Zk, with N units of �ux. For k > 2 this M-theory is 3/4 maximal as the

proposed gauge theory, however for k = 1, 2 the M-theory is maximal supersymmetric. In the gauge

theory side the enhancement of the supersymmetry for k = 1, 2 is a nontrivial property of this

quantum theory [15]. The ABJM theory has two parameters, the rank of the gauge group N and

the Chern-Simons level k. In the large N limit with N/k �xed the e�ective 't Hooft coupling of

the planar diagrams is λ = N/k. In the limit N1/5 � k � N the dual theory reduces to type IIA

string theory on AdS4 × CP 3. In this limit the string coupling constant and the CP 3 radius of the

geometry are related to the ABJM theory by

gs =
λ5/4

N
,

√
λ =

R2

α′
.

From this relations we can see that this duality is again of the strong/weak type.

In this thesis, we study few aspects of this M2-brane duality between three-dimensional super-

symmetric conformal Chern-Simons �eld theories and M-theory on AdS4 × S7.

First, in chapter 2, we study the Bagger-Lambert theories based on 3-algebras. We verify the

OSp(6|4) superconformal symmetry of the BL theory, and prove that it is parity conserving. And

after describing several unsuccessful attempts to construct theories of this type for other gauge

groups and representations, we conjecture the (by now proven) uniqueness of its SO(4) realization.

In chapter 3, we study a realization of the BL theory based on a Lorentzian signature 3-algebra. Here,

we show that although the ghost degrees of freedom can be removed to ensure unitarity by gauging

certain global symmetries, the resulting theories spontaneously break the conformal symmetry and

reduce to maximally supersymmetric three-dimensional Yang-Mills theories. In chapter 4, we recast

the ABJM theory in a form for which the SU(4) R-symmetry of the action is manifest. Then we

use this form to verify in complete detail the OSp(6|4) superconformal symmetry of the theory and

to express the scalar potential as a sum of squares.

After this, in chapter 5, we study the one-loop correction to the energy of a point-particle and

circular string solutions (with support in CP 3) to type IIA string theory on AdS4 × CP 3. We

compute the spectrum of �uctuations for each of these solutions using two techniques, known as

the algebraic curve approach and the world-sheet approach. We proposed a new prescription for

computing the one-loop corrections that gives well-de�ned results and agrees with the predictions

of the all-loop Bethe ansatz for our point-particle and circular string solutions with support in CP 3

as well as for previous folded-spinning string solutions with support in AdS4.
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Chapter 2

N = 8 Superconformal Chern-Simons
Theories

Following earlier studies of coincident M2-brane systems [16], Bagger and Lambert (BL) [10, 11] have

constructed an explicit action for a new maximally supersymmetric superconformal Chern-Simons

theory in three dimensions. The motivation for their work, like that in [13], was to construct the

superconformal theories that are dual to AdS4 × S7 solutions of M-theory. Such theories, which are

associated to coincident M2-branes, should be maximally supersymmetric, which in three-dimensions

means that they have N = 8 supersymmetry. More precisely, the superconformal symmetry group

should be OSp(8|4), which is also the symmetry of the M-theory solution. It is not obvious that

a classical action describing the conformal �eld theory that is dual to the M-theory solution needs

to exist. In fact, there are good reasons to be skeptical: These �eld theories can be de�ned as the

infrared conformal �xed points of nonconformal SU(N) N = 8 Yang-Mills theories, but there is no

guarantee that any of these �xed points has a dual Lagrangian description.

J. H. Schwarz in [13] attempted to construct three-dimensional theories with OSp(8|4) supercon-

formal symmetry and SU(N) gauge symmetry using scalar and spinor matter �elds in the adjoint

representation of the gauge group. These would be analogous to N = 4 SU(N) gauge theory in four

dimensions, with one crucial di�erence, the F 2 gauge �eld kinetic term has the wrong dimension for

a conformal theory in three-dimensions. Also, it would give propagating degrees of freedom, which

are not desired. To address both of these issues, [13] proposed using a Chern-Simons term for the

gauge �elds instead of an F 2 term. The conclusion reached in [13] was that such an action, with

N = 8 supersymmetry, does not exist. This was consistent with the widely held belief (at the time)

that supersymmetric Chern-Simons theories in three-dimensions only exist for N ≤ 3.1

The work of Bagger and Lambert [10] presents an explicit action and supersymmetry transforma-

tions for an N = 8 Chern-Simons theory in three-dimensions evading the N ≤ 3 bound mentioned

above. Their construction can be described in terms of an interesting new type of algebra, which

1Theories of this type with N = 2 supersymmetry were �rst constructed by Ivanov [17] and by Gates and Nishino
[18]. For a recent discussion see [19].
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we call a BL algebra.2 It involves a totally antisymmetric triple bracket analog of the Lie bracket3

[T a, T b, T c] = fabcdT
d.

There should also be a symmetric invertible metric hab that can be used to raise and lower indices.

The structure constants fabcd de�ned in this way are required to have total antisymmetry. Further-

more, this tensor is also required to satisfy a quadratic constraint, analogous to the Jacobi identity,

which BL call the �fundamental equation.�

An important question, of course, is whether BL algebras have any nontrivial realizations. BL

settle this question by noting that a solution is provided by a set of four generators T a that transform

as a four-vector of an SO(4) gauge group. In this example fabcd = εabcd and hab = δab. After

reviewing the free theory in section 2.1, we review the BL SO(4) theory in section 2.2 making a

couple of new observations in the process. The �rst is an explicit veri�cation that the action is

invariant under the conformal supersymmetries as well as the Poincaré supersymmetries. Taken

together, these generate the entire OSp(8|4) symmetry. The second is a careful demonstration in

section 2.3 of a fact noted in [11], namely that the theory is parity conserving. This feature, which

is essential for a dual to the M-theory solution, involves combining a spatial re�ection with an

SO(4) = SU(2)×SU(2) re�ection. The latter re�ection can be interpreted as interchanging the two

SU(2) factors.

We also explore whether there exist BL theories for other choices of gauge groups and matter

representations. Motivated by the SO(4) example, section 2.4 considers parity-conserving theories

with gauge group G × G and matter �elds belonging to a representation (R,R), where R is some

representation of G. Two classes of such examples that have been examined carefully are based on

G = SO(n) and G = USp(2n) with R chosen to be the fundamental representation in each case.

The �rst of these two classes is described in detail. The free theory (appropriate for a single M2-

brane) appears in this classi�cation as G = SO(1), and the SO(4) theory appears as G = USp(2).

An invariant totally antisymmetric fourth-rank tensor fabcd, where a, b, c, d label components of the

representation (R,R), can be constructed. However, it turns out that the fundamental equation is

satis�ed only for the free theory, the SO(4) theory, and the G = SO(2) case. The SO(2) case does

not give a new theory, however, for reasons that are explained later in this chapter.

BL suggested that there may be other theories with OSp(8|4) superconformal symmetry based

on nonassociative algebras. Following up on this suggestion, section 2.4 attempts to utilize the

algebra of octonions in this manner. This leads to a seven-dimensional BL-type algebra. However,

once again it turns out that the fundamental identity is not satis�ed. Thus, this approach also does

2Gustavsson, studying the same problem in [12], was independently led to formulate conditions that are equivalent
to BL algebras. The equivalence is described in [11].

3Such brackets, regarded as generalizations of Poisson brackets, were considered by Nambu in 1973 [20]. For a
recent discussion of Nambu brackets see [21].
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not lead to other consistent �eld theories with OSp(8|4) superconformal symmetry. Based on these

studies, we conjecture that the SO(4) BL-theory is the only nontrivial three-dimensional Lagrangian

theory with OSp(8|4) superconformal symmetry, at least if one assumes irreducibility and a �nite

number of �elds.

It is a curious coincidence that three-dimensional gravity with a negative cosmological constant

can be formulated as a twisted Chern-Simons theory based on the gauge group SO(2, 2). Aside from

the noncompact form of the gauge group, this is identical to the Chern-Simons term that is picked

out by the BL-theory. This is discussed in section 2.5.

2.1 The Free Theory

Let us start with the well-known free N = 8 superconformal theory. It contains no gauge �elds, so

it is not a Chern-Simons theory. The action is

S =
1

2

∫ (
−∂µφI∂µφI + iψ

A
γµ∂µψ

A
)
d3x. (2.1)

This theory has OSp(8|4) superconformal symmetry. The R-symmetry is Spin(8) and the conformal

symmetry is Sp(4) = Spin(3, 2). The index I labels components of the fundamental 8v representation

of Spin(8) and the index A labels components of the spinor 8s representation. In particular, ψA

denotes 8 two-component Majorana spinors. The Poincaré and conformal supersymmetries belong

to the other spinor representation, 8c, whose components are labeled by dotted indices Ȧ, etc.

The three inequivalent eight-dimensional representations of Spin(8) can couple to form a singlet.

The invariant tensor (or Clebsch-Gordan coe�cients) describing this is denoted ΓI
AȦ

, since it can

be interpreted as eight matrices satisfying a Dirac algebra. We also use the transpose matrix, which

is written ΓI
ȦA

without adding an extra symbol indicating that it is the transpose. These matrices

have appeared many times before in superstring theory.

Our conventions for the three-dimensional and Spin(8) Dirac Algebras are summarized in ap-

pendix A.1 and A.2. Note that in our conventions γµ are 2× 2 matrices and ΓI are 8× 8 matrices.

They act on di�erent vector spaces and therefore they trivially commute with one another. BL

use a somewhat di�erent formalism in which γµ and ΓI are 11 anticommuting 32 × 32 matrices.

We �nd this formalism somewhat confusing, since the three-dimensional theories in question cannot

be obtained by dimensional reduction of a higher-dimensional theory (in contrast to N = 4 super

Yang-Mills theory).
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The action (2.1) is invariant under the supersymmetry transformations

δφI = iεȦΓI
ȦA
ψA = iεΓIψ = iψΓIε, (2.2)

δψ = −γ · ∂φIΓIε. (2.3)

One can deduce the conserved supercurrent by the Noether method, which involves varying the

action while allowing ε to have arbitrary x dependence. This gives

δS = −i
∫
∂µεΓ

Iγ · ∂φIγµψd3x.

Thus the conserved supercurrent is iΓIγ · ∂φIγµψ. The conservation of this current is easy to verify

using the equations of motion.

Let us now explore the superconformal symmetry. As a �rst try, let us consider taking εȦ(x) =

γ · xηȦ, since this has the correct dimensions. Using ∂µε(x) = γµη and γµγργµ = −γρ, this gives

δS = i

∫
ψγ · ∂φIΓIηd3x.

This can be canceled by including an additional variation of the form δψ ∼ ΓIφIη. Thus the

superconformal symmetry is given by

δφI = iψΓIγ · xη, (2.4)

δψ = −γ · ∂φIΓIγ · xη − φIΓIη. (2.5)

One can deduce the various bosonic OSp(8|4) symmetry transformations by commuting ε and η

transformations. Of these only the conformal transformation, obtained as the commutator of two

η transformations, is not a manifest symmetry of the action. It is often true that scale invariance

implies conformal symmetry. However, this is not a general theorem, so it is a good idea to check

conformal symmetry explicitly as we have done.

2.2 The SO(4) Theory

The SO(4) gauge theory contains scalar �elds φIa and Majorana spinor �elds ψAa each of which

transforms as four-vectors of the gauge group (a = 1, 2, 3, 4). In addition there are SO(4) gauge

�elds Aabµ with �eld strengths F abµν . The �eld content of the SO(4) theory is summarized in table 2.1

and the index notation in table 2.2. Since four-vector indices are raised and lowered with a Kronecker

delta, we do not distinguish superscripts and subscripts.
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Table 2.1. Field content of the BL SO(4) theory

Field Description Units

φIa Scalar Field 1/2
ψAaσ Spinor Field 1
Aµab Gauge Field 1

QȦσ SUSY generator 1/2

εȦσ SUSY parameter −1/2

SȦσ Super conformal generator 1/2

ηȦσ Super conformal parameter −1/2

The action is a sum of a matter term and a Chern-Simons term:

Sk = k (Sm + SCS) .

We choose normalizations such that the level-k action Sk is k times the level-one action S1. Then k,

which is a positive integer, is the only arbitrary parameter. Perturbation theory is an expansion in

1/k. So the theory is weakly coupled and can be analyzed in perturbation theory when k is large.

The goal here is to construct and describe the classical action.

The required level-one Chern-Simons action is given by

SCS = α

∫
ω̃3,

where the �twisted� Chern-Simons form ω̃3 is constructed so that

dω̃3 =
1

2
εabcdFab ∧ Fcd.

This implies that

ω̃3 =
1

2
εabcdAab ∧ (dAcd +

2

3
Ace ∧Aed).

When SO(4) is viewed as SU(2) × SU(2), this is the di�erence of the Chern-Simons terms for the

two SU(2) factors. The coe�cient α is chosen so that these Chern-Simons terms have standard

Table 2.2. Index notation for the BL SO(4) theory

Index Values Group Representation

I 1, 2,. . ., 8 Spin(8) 8v

A 1, 2,. . ., 8 Spin(8) 8s

Ȧ 1, 2,. . . , 8 Spin(8) 8c

a 1, 2, 3, 4 SO(4) 4− dim
σ 1, 2 SO(1,2) Spinor
µ 1, 2, 3 SO(1,2) Vector
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level-one normalization. Varying the gauge �eld by an amount δA, one has (up to a total derivative)

δω̃3 = εabcdδAab ∧ Fcd,

or

δSCS =
α

2

∫
εabcd ε

µνρδAabµ F
cd
νρd

3x.

The SO(4) matter action is a sum of kinetic and interaction terms

Sm = Skin + Sint,

where

Skin =

∫
d3x

(
−1

2
(Dµφ

I)a(DµφI)a +
i

2
ψaγ

µ(Dµψ)a

)
,

and

Sint =

∫
d3x

(
ic εabcdψaΓIJψbφ

I
cφ
J
d −

4

3
c2
∑

(εabcdφ
I
bφ
J
c φ

K
d )2

)
.

The supersymmetry transformations that leave the action invariant are

δφIa = iεΓIψa, (2.6a)

δψa = −γµ(Dµφ
I)aΓIε+

2c

3
εabcdΓ

IJKεφIbφ
J
c φ

K
d , (2.6b)

δAµab = 4ic εabcd ψcγµΓIφIdε, (2.6c)

for the identi�cation

c =
1

16α
.

The formulas agree with BL for c = 3, which corresponds to α = 1/48. Any apparent minus-sign

discrepancies are due to the di�erent treatment of the Dirac matrices discussed earlier.

The conformal supersymmetries also hold. They can be analyzed in the same way that was

discussed for the free theory. The result, as before, is to replace ε by γ · xη and to add a term

−φIaΓIη to δψa. We have veri�ed the Poincaré and the conformal supersymmetries of this theory

in complete detail. Thus this theory has OSp(8|4) superconformal symmetry and SO(4) gauge

symmetry. It also has parity invariance, which we explain in the next section.

2.3 Parity Conservation

The relative minus sign between the two SU(2) contributions to the Chern-Simons term has an

interesting consequence. Normally, Chern-Simons theories are parity violating. In this case, however,

one can de�ne the parity transformation to be a spatial re�ection together with interchange of the
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two SU(2) gauge groups. Then one concludes that the Chern-Simons term is parity conserving.4

To conclude that the entire theory is parity conserving, there is one other term that needs to be

analyzed. It is the one that has the structure

εabcdψ̄aΓIJψbφ
I
cφ
J
d .

The interchange of the two SU(2) groups gives one minus sign (due to the epsilon symbol), so

invariance will only work if a spinor bilinear of the form ψ̄1ψ2 = ψ†1γ
0ψ2 is a pseudoscalar in three-

dimensions. So we must decide whether this is true. Certainly, in four dimensions such a structure

is usually considered to be a scalar. The R-symmetry labels are irrelevant to this discussion.

Let us review the parity analysis of spinor bilinears in four dimensions. The usual story is that

the parity transform (associated to spatial inversion ~x→ −~x) of a spinor is given by ψ → γ0ψ. There

are two points to be made about this. First, spatial inversion is a re�ection in four dimensions. This

di�ers from the case in three-dimensional spacetime, where spatial inversion is a rotation, rather

than a re�ection. Therefore, it is more convenient for generalization to the three-dimensional case

to consider a formula for the transformation of a spinor under re�ection of only one of the spatial

coordinates (xi, say). Under this re�ection, the formula in four dimensions is ψ → iγiγ5ψ. For

this choice re�ecting all three coordinates gives the previous rule ψ → γ0ψ (up to an ambiguous

and irrelevant sign). With this rule, one can easily show that ψ̄1ψ2 is a scalar and ψ̄1γ5ψ2 is a

pseudoscalar, as usual.

The second point is that the Dirac algebra for four-dimensional spacetime has an automorphism

γµ → iγµγ5. In other words,

{iγµγ5, iγ
νγ5} = {γµ, γν} = 2ηµν .

This automorphism squares to γµ → −γµ, which is also an automorphism. The kinetic term, which

involves ψγ · ∂ψ, is invariant under this automorphism, since iγ0γ5iγ
µγ5 = γ0γµ. In view of this

automorphism, it is equally sensible to de�ne a re�ection by the rule ψ → γiψ. However, if one

makes this choice, then one discovers that ψ̄1ψ2 is a pseudoscalar and iψ̄1γ5ψ2 is a scalar. This

makes sense, since they (and their negatives) are interchanged by the automorphism.

In the case of three-dimensions, there is no analog of γ5, and so the automorphism discussed

above has no analog. As a result, the only sensible rule for a re�ection is ψ → γiψ. Then one is

forced to conclude (independent of any conventions) that ψ̄1ψ2 is a pseudoscalar. This is what we

saw is required for the SO(4) super Chern-Simons theory to be parity conserving.

4This was pointed out to us by A. Kapustin before the appearance of [11]. This way of implementing parity
conservation, including the odd parity of a spinor bilinear, was understood already in [22].
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2.4 The Search for Generalizations

Possible generalizations of the SO(4) theory are suggested by the fact that SO(4) = SU(2)×SU(2) =

USp(2)× USp(2) and that a four-vector �eld φa can be reexpressed as a bifundamental �eld φαα
′
.

An in�nite class of candidate theories with the same type of structure is based on the gauge

group SO(n)× SO(n) with matter �elds φαα
′
assigned to the bifundamental representation (n,n).

In this case one takes the gauge �eld to be

Aαα′ββ′ = δαβA
′
α′β′ + δα′β′Aαβ ,

where Aαβ = −Aβα and A′α′β′ = −A′β′α′ are SO(n) gauge �elds. The n = 1 case is the free theory

with 8 scalars and 8 spinors and no gauge �elds, which was discussed in section 2.1.

The BL structure constants vanish for n = 1, and for n > 1 they are given by

fαα
′ββ′γγ′δδ′ =

1

2(n− 1)

(
− δαβδγδδα

′δ′δβ
′γ′ + δαβδγδδα

′γ′δβ
′δ′ − δαγδδβδα

′β′δγ
′δ′

+ δαγδδβδα
′δ′δγ

′β′ − δαδδβγδα
′γ′δδ

′β′ + δαδδβγδα
′β′δδ

′γ′
)
. (2.7)

For this choice one �nds that the dual gauge �eld is

Ãαα
′ββ′ = fαα

′ββ′γγ′δδ′Aγγ′δδ′ = δαβA′α
′β′ − δα

′β′Aαβ .

Therefore the twisted Chern-Simons term again is proportional to the di�erence of the individual

Chern-Simons terms, as required by parity conservation. However, the BL fundamental equation is

not satis�ed for n > 2, and there are a number of inconsistencies in the supersymmetry algebra.

This leaves the n = 2 case as the only remaining candidate for a new theory. This theory (if it exists)

has the same matter content as the BL-theory, but fewer gauge �elds. Even though the BL algebra

is okay in this case, the elimination of four gauge �elds gives a violation of another requirement.

Speci�cally, the antisymmetric tensor fabcd is not SO(2)×SO(2) adjoint valued in a pair of indices.

This is an essential requirement, because the formula for the supersymmetry variation of the gauge

�eld has the form

δAµab = 4ic fabcd ψcγµΓIφIdε.

This equation does not make sense when the right-hand side introduces unwanted degrees of freedom

that do not belong to the adjoint representation. This problem arises for all cases with n > 1

including the n = 2 case in particular. One could try to remove the nonadjoint pieces of the

right-hand side, but that leads to other inconsistencies.

A completely analogous analysis exists for candidate theories based on the gauge group USp(2n)×
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USp(2n) with matter �elds belonging to the bifundamental representation. For the choice n = 1

this is the SO(4) theory of section 2.2. Again, one can construct a totally antisymmetric tensor

fabcd for all n. However, this does give any new theories, because the BL fundamental equation is

not satis�ed for n > 1.

Let us now describe another attempt to construct new examples. BL describe a systematic

way to obtain totally antisymmetric triple brackets based on nonassociative algebras. However, the

examples they discuss all involve adjoining �a �xed Hermitian matrix G� that does not seem to be

compatible with a conventional Lie algebra interpretation. Here we explore dispensing with such

an auxiliary matrix and applying their procedure to the most familiar nonassociative algebra we

know, namely the algebra of octonions. The question to be addressed is then whether this gives a

new superconformal theory with the gauge group G2 and with the matter �elds belonging to the

seven-dimensional representation.

Let us denote the imaginary octonions by ea with a = 1, 2, . . . , 7. These have the nonassociative

multiplication table

eaeb = tabcec − δab.

The totally antisymmetric tensor tabc has the following nonvanishing components

t124 = t235 = t346 = t457 = t561 = t672 = t713 = 1.

Note that these are related by cyclic permutation of the indices (a, b, c) → (a + 1, b + 1, c + 1). It

is well known that tabc can be regarded as an invariant tensor describing the totally antisymmetric

coupling of three seven-dimensional representations of the Lie group G2.

Let Tab denote a generator of an SO(7) rotation in the ab plane. The SO(7) Lie algebra is

[Tab, Tcd] = Tadδbc − Tbdδac − Tacδbd + Tbcδad.

The generators of G2 can be described as a 14-dimensional subalgebra of this Lie algebra. A possible

choice of basis is given by

X1 = T24 − T56 and Y1 = T24 − T37,

and cyclic permutations of the indices. This gives 14 generators XA consisting of Xa and Xa+7 = Ya.

By representing the generators Tab by seven-dimensional matrices in the usual way, one can represent

the G2 generators by antisymmetrical seven-dimensional matrices. These can then be used in the

usual way to express G2 gauge �elds as seven-dimensional matrices Aab.

The group G2 is a subgroup of SO(7) in which the 7 of SO(7) corresponds to the 7 of G2. Thus,
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the seven-index epsilon symbol, which is an invariant tensor of SO(7), is also an invariant tensor of

G2. It can be used to derive an antisymmetric fourth-rank tensor of G2:

fabcd =
1

6
εabcdefgtefg.

This tensor has the following nonzero components

f7356 = f1467 = f2571 = f3612 = f4723 = f5134 = f6245 = 1.

These are also related by cyclic permutations. This tensor is the same (up to normalization) as the

one given by the construction based on associators that was proposed by BL.

If one de�nes

[abc, def ] =
∑
x

fabcxfdefx,

the BL fundamental equation takes the form

[abw, xyz]− [abx, yzw] + [aby, zwx]− [abz, wxy] = 0.

Note that the left-hand side has antisymmetry in the pair (a, b) and total antisymmetry in the four

indices (w, x, y, z). One can verify explicitly that these relations are not satis�ed by the tensor fabcd

given above.5 Thus, the tensor fabcd does not de�ne a seven-dimensional BL algebra, and we do not

obtain a new theory for the gauge group G2.

2.5 Relation to anti�de Sitter Gravity?

Pure three-dimensional gravity with a negative cosmological constant can be formulated as a twisted

Chern-Simons theory based on the gauge group SO(2, 2) [23, 24, 25]. The BL-theory, on the other

hand, requires a twisted Chern-Simons term for the gauge group SO(4). Aside from the signature,

these are exactly the same! What should one make of this coincidence?6

The BL-theory was motivated by the desire to construct conformal �eld theories dual to gravity

in four-dimensional anti�de Sitter space. So the notion that it might be possible to interpret it as a

gravity theory in three-dimensional anti�de Sitter space is certainly bizarre. The BL-theory can be

modi�ed easily to the gauge group SO(2, 2), though this introduces some disturbing minus signs into

half of the kinetic terms of the scalar and spinor �elds. If one makes this change anyway, the Chern-

Simons term is exactly that for gravity. However, there is a serious problem with a gravitational

interpretation in addition to the problem of the negative kinetic terms: a gravity theory should

5BL did not claim that it necessarily would satisfy the fundamental equation.
6This section was motivated by a question raised by Aaron Bergman at a seminar given by JHS.
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have di�eomorphism symmetry. The Chern-Simons term has this symmetry, but the matter terms

in the Lagrangian contain the three-dimensional Lorentz metric to contract indices, so they are not

di�eomorphism invariant. Thus, we believe that there is no sensible interpretation of the BL-theory

as a three-dimensional gravity theory. Nonetheless, it is striking that its Chern-Simons term is so

closely related to the one that arises in the Chern-Simons description of three-dimensional gravity

with a negative cosmological constant.

The SO(2, 2) Chern-Simons formulation of three-dimensional gravity in anti�de Sitter space has

supergravity generalizations, which can be formulated as Chern-Simons theories for the supergroups

[23]

OSp(p|2)×OSp(q|2).

The pure gravity case corresponds to p = q = 0. The existence of these supergravity theories,

together with the bizarre coincidence noted above, suggests trying to generalize the BL-theory to

the corresponding supergroup extensions of SO(4). This idea encounters problems with spin and

statistics, since the odd generators of this supergroup are not spacetime spinors.
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Chapter 3

Ghost-Free Superconformal Action
for Multiple M2-Branes

In the last chapter we studied the classical Lagrangian theories in three-dimensions with OSp(8|4)

superconformal symmetry discovered by Bagger and Lambert [16, 10, 11], as well as Gustavsson [12,

26]. The general rules for constructing such actions are based on a 3-algebra, which is characterized

by structure constants fABCD and a metric hAB . The initial assumption was that the metric should

be positive de�nite. This led to the discovery of the BL SO(4) theory with SO(4) gauge symmetry

[10]. In the last chapter and in [27] we veri�ed the full superconformal symmetry of this theory

and conjecture it uniqueness, i.e, that there are no other such theories, at least if one assumes a

�nite number of �elds. This conjecture was subsequently proved in [28, 29]. Also a proposal for

the physical interpretation of the BL SO(4) theory in terms of M2-branes in M-theory at an M-fold

singularity has been given in [30, 31].

However, these developments left unresolved the question whether it is possible to give a La-

grangian description of the conformal �eld theory associated with coincident M2-branes in �at

11-dimensional spacetime. That theory is known to correspond to the IR �xed point of N = 8

super Yang-Mills theory. The question is whether there is a dual formulation of this �xed point

theory. The only apparent way of evading the uniqueness theorem is to consider 3-algebras with an

inde�nite signature metric. This possibility was examined by three di�erent groups [32, 33, 34], who

proposed a new class of theories based on a 3-algebra with Lorentzian signature. The generators

of the 3-algebra are the generators of an arbitrary semisimple Lie algebra plus two additional null

generators T±. The theory based on the 3-algebra associated to the gauge group SU(N) or U(N)

looks like a good candidate for the theory of N coincident M2-branes, except for the fact that it

contains unwanted negative norm states in the physical spectrum. This makes the theory nonunitary

even though these states do not contribute to loops. Subsequent papers discussing the interpretation

and application of Lorentzian 3-algebras include [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. In

particular, [46] proved that the Lorentzian 3-algebras considered in [32, 33, 34] are the only inde-



17

composable Lorentzian 3-algebras (aside from the obvious SO(3, 1) variant of the Bagger-Lambert

theory).

In this chapter we propose modifying the construction in [32, 33, 34] by gauging certain global

symmetries.1 We claim that this eliminates the unwanted ghost degrees of freedom while preserving

all of the other symmetries. In section 3.1 we describe the BL-theory for general Lie algebras. In

section 3.2 we explain the basic idea of our construction in a simpli�ed model. And in section 3.3

we apply the same procedure to the theory of interest.

3.1 Lorentzian Metric BL-Theory for General Lie Algebras

In this section we describe the BL-theory for general Lie algebras based on a family of 3-algebras with

Lorentzian metric proposed in [32, 33, 34]; we will follow the notation of [33]. The Lagrangian of a

BL-theory is completely speci�ed once a 3-algebra with a metric is given. The structure constants of

the 3-algebra fABCD must satisfy the fundamental identity and fABCE = fABCDh
DE , where hDE

is the 3-algebra metric, must be totally antisymmetric. In [33], the 3-algebra is constructed from an

ordinary Lie algebra g by adding two generators to g called T+ and T− so that the 3-algebra has

dimension dim (g) + 2. Its structure constants are given in terms of the g-structure constants fabc

as

f+ab
c = fabc, (3.1)

with all other nonzero components of fABCD related by permuting, raising, or lowering indices. The

generators of g satisfy

[
T a, T b

]
= fabcT

c,

Tr
(
T aT b

)
= δab.

(3.2)

The invariant metric of the 3-algebra is given by

h+− = −1, h++ = 0, h−− = 0, hab = δab. (3.3)

The �eld content of the theory is summarized in the following table:

1After this work had been completed, Hirosi Ooguri informed us that Masahito Yamazaki is also considering this
possibility.



18

Field 3d World-Volume SO(8) g Dimension

XI
± Scalar 8v Singlet 1/2

XI Scalar 8v Adjoint 1/2

Ψ± Spinor 8s Singlet 1

Ψ Spinor 8s Adjoint 1

Aµ Gauge �eld 1 Adjoint 1

Bµ Gauge �eld 1 Adjoint 1

With the choice of structure constants and 3-algebra metric given above, the BL-theory reduces to

the following Lagrangian,

L = − 1

2
Tr
(
DµX

IDµXI
)

+DµX
I
+D

µXI
− +

i

2
Tr
(
Ψ̄ΓµDµΨ

)
− i

2
Ψ̄+ΓµDµΨ− −

i

2
Ψ̄−ΓµDµΨ+

+ εµνλTr (Bλ (∂µAν − [Aµ,Aν ]))− 1

12
Tr
(
XI

+

[
XJ , XK

]
+XJ

+

[
XK , XI

]
+XK

+

[
XI , XJ

])2
+
i

2
Tr
(
Ψ̄ΓIJX

I
+

[
XJ ,Ψ

])
+
i

4
Tr
(
Ψ̄ΓIJ

[
XI , XJ

]
Ψ+

)
− i

4
Tr
(
Ψ̄+ΓIJ

[
XI , XJ

]
Ψ
)
, (3.4)

where I = 1, ..., 8 are the transverse coordinates and XI
± = 1√

2

(
XI

0 ±XI
1

)
. The covariant derivatives

are de�ned as

DµX
I = ∂µX

I − 2
[
Aµ, XI

]
− BµXI

+, (3.5a)

DµX
I
− = ∂µX

I
− − Tr

(
BµXI

)
, (3.5b)

DµX
I
+ = ∂µX

I
+, (3.5c)

and similarly for the fermions. The gauge transformations are

δXI = 2
[
Λ, XI

]
+MXI

+, (3.6a)

δXI
− = Tr

(
MXI

)
, (3.6b)

δXI
+ = 0, (3.6c)

δΨ = 2 [Λ,Ψ] +MΨ+, (3.6d)

δΨ− = Tr (MΨ) , (3.6e)

δΨ+ = 0, (3.6f)

δAµ = ∂µΛ + 2 [Λ,Aµ] , (3.6g)

δBµ = ∂µM + 2 [M,Aµ] + 2 [Λ,Bµ] , (3.6h)

where Λ and M are in�nitesimal matrices in the adjoint of g. The matrix Λ generates the G gauge

transformations while M generates the noncompact subgroup transformations.
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Finally, the N = 8 supersymmetry transformations (consistent with scale invariance) are

δAµ =
i

2
ε̄ΓµΓI

(
XI

+Ψ−XIΨ+

)
, (3.7a)

δBµ = iε̄ΓµΓI
[
XI ,Ψ

]
, (3.7b)

δXI
± = iε̄ΓIΨ±, (3.7c)

δXI = iε̄ΓIΨ, (3.7d)

δΨ+ = ∂µX
I
+ΓµΓIε, (3.7e)

δΨ− = DµX
I
−ΓµΓIε− 1

3
Tr
(
XIXJXK

)
ΓIJKε, (3.7f)

δΨ = DµX
IΓµΓIε− 1

2
XI

+

[
XJ , XK

]
ΓIJKε. (3.7g)

Note that this theory has a noncompact gauge group whose Lie algebra is a semidirect sum of

any ordinary Lie algebra g of a compact Lie group G, and dim(g) abelian generators. The gauge �eld

Aµ is associated with the compact part, while the gauge �eld Bµ is associated with the noncompact

part. Like all BL theories, it has N = 8 supersymmetry, scale invariance, conformal invariance, and

SO(8) R-symmetry. These combine to give the supergroup OSp(8|4). The theory also has parity

invariance. At the same time, it does not admit any tunable coupling constant, since any coupling

constant can be absorbed in �eld rede�nitions. Furthermore G can be chosen to be any compact

Lie group. These are special features that are not shared by the SO(4) BL-theory described in

chapter 2, which is based on a 3-algebra with a positive-de�nite metric.

3.2 The Basic Idea

After integrating out certain auxiliary �elds, the Lorentzian metric BL-theory described in section 3.1

contains terms of the form

S ∼
∫
d3x

(
−φ−2

+ Tr(F 2) + ∂µφ+∂µφ−
)
.

This has manifest scale invariance if φ± have dimension 1/2. This theory has a ghost degree of

freedom, which (ignoring the �rst term) is reminiscent of the one contained in the covariant gauge-

�xed string world-sheet theory prior to imposing the Virasoro constraints. In the present case, there

are no Virasoro constraints, so the theory needs to be modi�ed if we wish to make sense of it.

An important clue is that this theory has a global symmetry given by a constant shift of the

�eld φ−. Our proposal is to modify this theory by gauging this symmetry through the inclusion of
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a dimension 3/2 Stückelberg �eld Cµ

S ∼
∫
d3x

(
−φ−2

+ Tr(F 2) + ∂µφ+(∂µφ− − Cµ)
)
.

The gauge symmetry is simply given by

δφ− = Λ and δCµ = ∂µΛ.

Classically, this theory is conformally invariant. (In the case of the M2-brane theory in the next

section the conformal symmetry is expected to survive in the quantum theory.) This theory can be

gauge �xed by setting φ− = 0. Integrating out Cµ gives a delta functional imposing the constraint

∂µφ+ = 0. Thus, φ+ is a constant, which is determined by a boundary condition. Calling the

constant gYM, we are left with pure Yang-Mills theory,

S ∼ −g−2
YM

∫
d3xTr(F 2).

The Yang-Mills theory is not conformally invariant, of course, since gYM is dimensionful. How-

ever, this construction shows that it arises from spontaneous breaking of the conformal symmetry.

3.3 Modifying the Lorentzian Metric BL-Theory

Despite the numerous properties that make the Lorentzian metric BL-theory described in section 3.1

a promising candidate for describing multiple M2-branes in �at space, it has one very troubling

feature. To see this, consider the �elds XI
− and Ψ−. Note that the full dependence on these �elds

is given by

L− = −iΨ̄+Γµ∂µΨ− + ∂µXI
+∂µX

I
−. (3.8)

As it stands, these terms describe propagating ghost degrees of freedom, which makes the theory

unsatisfactory, since it is not unitary. At this point, it is useful to observe that the action has the

following global shift symmetries (pointed out in [33]):

δXI
− = ΛI and δΨ− = η.

Also note that Ψ− and XI
− do not appear in any of the gauge or supersymmetry transformations

of the other �elds. We will show that it is possible to eliminate the ghosts from the theory, while

preserving all of its desirable properties, by promoting these global shift symmetries to local sym-

metries.

To gauge the global shift symmetries described above we introduce two new gauge �elds: a
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vector �eld CIµ in the vector representation of SO(8), and a 32-component Majorana-Weyl spinor χ

satisfying Γ012χ = −χ. These appear in two new terms that we add to the Lagrangian:

Lnew = Ψ̄+χ− ∂µXI
+C

I
µ. (3.9)

Note that CIµ must have dimension 3/2 and χ must have dimension 2 to preserve scale invariance.

The new local shift symmetries are

δXI
− = ΛI , δCIµ = ∂µΛI , (3.10)

and

δΨ− = η, δχ = iΓµ∂µη. (3.11)

There is one additional local symmetry of equation (3.9), which is relatively trivial, namely

δCIµ = ∂ρΛ̃Iµρ, where Λ̃Iµρ = −Λ̃Iρµ. (3.12)

CIµ and χ are invariant under the original gauge symmetries.

Now let us consider the supersymmetry of the modi�ed theory. The supersymmetry transforma-

tions of all the old �elds are unchanged. In particular,

δXI
+ = iε̄ΓIΨ+,

and

δΨ+ = Γµ∂µX
I
+ΓIε.

The supersymmetries of the new gauge �elds must be de�ned in such a way that Lnew is invariant.

We will �nd that the resulting supersymmetry algebra closes on shell when one takes account of the

new gauge symmetries. Under supersymmetry

δCIµ = ε̄ΓIΓµχ,

and

δχ = iΓIε ∂µCIµ.

Using these four transformation rules, it is easy to see that both Lnew and the equations of motion

are supersymmetric.

We will now check the closure of all the algebras. The fact that the supersymmetry variations of

CIµ and χ are not invariant under the new gauge transformations implies that the supersymmetry
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transformations do not commute with these gauge transformations. Speci�cally, one �nds that

[δ(Λ), δ(ε)] = δ(η), where η = ΓµΓI∂µΛIε,

and

[δ(η), δ(ε)] = δ(Λ) + δ(Λ̃) where ΛI = iε̄ΓIη and Λ̃Iµρ = iε̄ΓIΓµρη.

The supersymmetry algebra is slightly a�ected, as well. Speci�cally, we �nd that

[δ(ε1), δ(ε2)]CIµ = δ(ξ)CIµ + δ(Λ̃)CIµ,

where ξρ = 2iε̄1Γρε2, as usual, and Λ̃Iµρ = ξµC
I
ρ − ξρCIµ. Similarly, for χ we �nd that

[δ(ε1), δ(ε2)]χ = δ(ξ)χ+ δ(η)χ,

where η =
(
−ε̄1Γµε2Γµ + 1

4 ε̄1ΓLM ε2ΓLM
)
χ. One also �nds that requiring the on-shell closure of

the commutator [δ(ε1), δ(ε2)]Ψ− gives the expected equation of motion for Ψ− after noting that

the commutator receives a contribution from δ(η)Ψ−. In summary, we have veri�ed that the su-

persymmetries close on shell into translations, the old gauge transformations, and the new gauge

transformations given by Eqs (3.10)�(3.12).

3.4 Discussion

After modifying the theory by introducing the new gauge �elds Cµ and χ, it still has scale invariance,

N = 8 supersymmetry, no coupling constant, and can accommodate any Lie group in its gauge group,

which are all desirable properties for describing multiple M2-branes in �at space. In addition, we

can use the new gauge symmetries to make the gauge choices

XI
− = Ψ− = 0.

This removes the kinetic terms for the ghosts and changes the supersymmetry transformations for

Cµ and χ by induced gauge transformations, i.e., δCIµ = ε̄ΓIΓµχ+∂µΛI and δχ = iΓIε∂µCIµ+iΓµ∂µη

for appropriate choices of ΛI and η. Furthermore, the equations of motion that come from varying

the new �elds are

∂µX
I
+ = 0, Ψ+ = 0.

The �rst equation implies thatXI
+ is a constant. Any nonzero choice spontaneously breaks conformal

symmetry and breaks the R-symmetry to an unbroken SO(7) subgroup. On the other hand, the
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choice XI
+ = 0 gives a free theory.

We can use the SO(8) R-symmetry to choose the nonzero component of XI
+ to be in the 8

direction, XI
+ = vδI8. Also, the noncompact gauge �elds, B, which appear quadratically can be

integrated out. This leaves a maximally supersymmetric three-dimensional Yang-Mills theory with

SO(7) R-symmetry:

L = − 1

4v2
Tr (FµνF

µν)− 1

2
Tr
(
D′µX

iD′µX
i
)

+
i

2
Tr
(
Ψ̄ΓµD′µΨ

)
+
i

2
Tr
(
Ψ̄Γ8i

[
Xi,Ψ

])
− v2

4
Tr
([
Xi, Xj

])2
, (3.13)

where the index i = 1, ..., 7, and D′µ and Fµν depend only the massless gauge �eld A associated with

the maximally compact subgroup of the original gauge group. Note that this is an exact result�not

just the leading term in a large-v expansion. This is a supersymmetric generalization of the toy

model described in section 3.2.

To summarize, in this chapter we have proposed a modi�cation of the Bagger-Lambert theory that

removes the ghosts when the 3-algebra has a Lorentzian signature metric, thus ensuring unitarity.

Such theories evade the no-go theorem, which states that there is essentially only one nontrivial 3-

algebra with positive-de�nite metric. Our modi�cation of the Lorentzian 3-algebra theories in [32, 33,

34] breaks the conformal symmetry spontaneously and reduces them to maximally supersymmetric

three-dimensional Yang-Mills theories.2 This result is somewhat disappointing inasmuch as it means

that we are no closer to the original goal of understanding the v → ∞ IR �xed point theory that

describes coincident M2-branes in 11 noncompact dimensions.

As things stand, it appears that the BL SO(4) theory is the only genuinely new maximally

supersymmetric superconformal theory.

2Reference [34] observed that if one chooses XI
+ to be constant and Ψ+ to be zero, then the theory reduces to

N = 8 SYM. However, they did not deduce these choices from an action principle.
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Chapter 4

Studies of the ABJM Theory in a
Formulation with Manifest SU(4)
R-Symmetry

As we saw in the previous chapters the BL theory was conjectured [27] and proved [28, 29] to

be the unique three-dimensional superconformal �eld theory with maximal supersymmetry. The

generalizations based on Lorentzian 3-algebras [32, 33, 34] turned out to be equivalent to the original

super Yang-Mills theories once the ghosts were eliminated [47, 48, 49]. At that point, it looked like

the only possibility left to explore was whether there are other 3-algebras (whose metric is neither

positive-de�nite not Lorentzian) that open new possibilities. However, Aharony, Bergman, Ja�eris,

and Maldacena (ABJM) in reference [14] showed that a better way to open new possibilities was to

consider theories with reduced supersymmetry.

In this chapter we examine the class of three-dimensional superconformal �eld theories discov-

ered by ABJM [14]. These theories are superconformal Chern-Simons gauge theories with N = 6

supersymmetry. When the gauge group is chosen to be U(N) × U(N) and the Chern-Simons level

is k, these theories are conjectured to be dual to M-theory on AdS4 × S7/Zk with N units of

�ux. More precisely, this is the appropriate dual description for N1/5 >> k. In the opposite limit,

N1/5 << k << N , a dual description in terms of type IIA string theory on AdS4 × CP 3 is more

appropriate. A large-N expansion for �xed 't Hooft parameter λ = N/k can be de�ned. These

developments raise the hope that this duality can be analyzed in the same level of detail as has

been done for the duality between N = 4 super Yang-Mills theory with a U(N) gauge group in four

dimensions and type IIB superstring theory on AdS5 × S5 with N units of �ux.

After the ABJM paper appears, quite a few papers examined several of its properties as well as

possible generalizations. Among the �rst are [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63].

New superconformal Chern-Simons theories with N = 5 supersymmetry have been constructed

in [59]. Some of these N = 5 theories should be dual to the Dk+2 orbifolds described in [60].
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In reference [61], Bagger and Lambert show that the ABJM theories correspond to a class of 3-

algebras in which the bracket [T a, T b, T c] is no longer antisymmetric in all three indices. The

actions and supersymmetry transformations that are derived in [59, 61] appear to be equivalent to the

actions and supersymmetry transformations that are obtained in this chapter (without reference to

3-algebras). Also, a large class of superconformal Chern-Simons theories with N = 4 supersymmetry

was constructed by Gaiotto and Witten [64]. This was generalized to include twisted hypermultiplets

in [59, 43]. This generalization includes the Bagger-Lambert theory as a special case. Moreover, all

the ABJM theories turn out to be special cases of the generalized Gaiotto-Witten theories in which

the supersymmetry is enhanced to N = 6.

The purpose of this chapter is to recast the ABJM theory in a form for which the SU(4) R-

symmetry of the action and the supersymmetry transformations is manifest and to use this form

to study some of its properties. The existence of such formulas is a consequence of what was

found in [14]. We also verify the conformal supersymmetry of the action, which is not a logical

consequence of previous results. Since this symmetry is a necessary requirement for the validity

of the proposed duality, its veri�cation can be viewed as an important and nontrivial test of the

duality. We also recast the potential, which is sixth order in the scalar �elds, in a new form.1 This

new form should be useful for studying the moduli space of supersymmetric vacua of the theory, as

well as the vacuum structure of various deformations of the ABJM theory. Although we discuss the

gauge group U(N) × U(N), all of our analysis also holds for the straightforward generalization to

U(M)× U(N).

Some of our results are new and others con�rm results that have been obtained previously. The

ABJM theories were formulated in [14] using auxiliary �elds associated with N = 2 super�elds. In

this formulation only an SU(2) × SU(2) subgroup of the SU(4) R-symmetry is manifest, though

the full SU(4) symmetry has been deduced. In addition, [14] deduced a manifestly SU(4) invariant

form of the scalar �eld potential, which is sixth order in the scalar �elds. The quartic interaction

terms that have two scalar and two spinor �elds were also recast in an SU(4) covariant form in [50].

Our results are in agreement with both of these.

4.1 The U(1)×U(1) Theory

The �eld content of ABJM theories consists of scalars, spinors, and gauge �elds. The U(1) × U(1)

theory has fewer indices to keep track of, and it is quite a bit simpler, than the full U(N) × U(N)

theory; so it is a good place to start.

There are four complex scalars XA and their adjoints XA. (We choose not to use adjoint or

complex conjugation symbols to keep the notation from becoming too cumbersome.) A lower index

1A similar formula also appears in [61].
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labels the 4 representation of the global SU(4) R-symmetry and an upper index labels the complex-

conjugate 4̄ representation.

Similarly, the Fermi �elds are ΨA and ΨA. These are also two-component spinors, though that

index is not displayed. As usual, the notation Ψ̄A or Ψ̄A implies transposing the spinor index and

right multiplication by γ0. Note, however, that for our de�nition there is no additional complex

conjugation, so in all cases a lower index indicates a 4 and an upper index indicates a 4̄. With these

conventions various identities that hold for Majorana spinors can be used for these spinors, as well,

even though they are complex (Dirac), for example, Ψ̄AΨB = Ψ̄BΨA. The 2 × 2 Dirac matrices

satisfy {γµ, γν} = 2ηµν . The index µ = 0, 1, 2 is a 3-dimensional Lorentz index, and the signature

is (−,+,+). It is convenient to use a Majorana representation, which implies that γµ is real. We

also choose a representation for which γµνλ = εµνλ. In particular, this means that γ0γ1γ2 = 1. For

example, one could choose γ0 = iσ2, γ1 = σ1, and γ2 = σ3.

The U(1) gauge �elds are denoted Aµ and Âµ. The �elds XA and ΨA have U(1) charges (+,−),

while their adjoints have charges (−,+). Thus, for example,

DµXA = ∂µXA + i(Aµ − Âµ)XA,

and

DµX
A = ∂µX

A − i(Aµ − Âµ)XA.

We choose to normalize �elds so that the level-k Lagrangian is k times the level-1 Lagrangian.

With this convention, the N = 1 action is

S =
k

2π

∫
d3x

(
−DµXADµXA + iΨ̄Aγ

µDµΨA +
1

2
εµνλ(Aµ∂νAλ − Âµ∂νÂλ)

)
.

The claim is that this action describes an N = 6 superconformal theory with OSp(6|4) supercon-

formal symmetry. The R-symmetry is Spin(6) = SU(4) and the conformal symmetry is Sp(4) =

Spin(3, 2). The supercharges transform as the 6 representation of SU(4). Both the Poincaré and

conformal supercharges are 6-vectors. Each accounts for 12 of the 24 fermionic generators of the

superconformal algebra.

The antisymmetric product of two 4s gives a 6. The invariant tensor (or Clebsch-Gordan co-

e�cients) describing this is denoted ΓIAB = −ΓIBA, since these can be interpreted as six matrices

satisfying a Cli�ord algebra. More precisely, if one also de�nes Γ̃I = (ΓI)†, or in components

Γ̃IAB =
1

2
εABCDΓICD = −

(
ΓIAB

)∗
,



27

then2

ΓI Γ̃J + ΓJ Γ̃I = 2δIJ . (4.1)

Note that γµ are 2× 2 matrices and ΓI are 4× 4 matrices. They act on di�erent vector spaces, and

therefore they trivially commute with one another.

The supersymmetry transformations of the matter �elds are

δXA = iΓIABΨ̄BεI , (4.2)

δΨA = ΓIABγ
µεIDµX

B , (4.3)

and their adjoints, which are

δXA = −iΓ̃IABΨ̄Bε
I , (4.4)

δΨA = −Γ̃IABγµεIDµXB . (4.5)

For the gauge �elds we have

δAµ = δÂµ = −ΓIABΨ̄Aγµε
IXB − Γ̃IABΨ̄Aγµε

IXB . (4.6)

The veri�cation that these leave the action invariant is given in the appendix C.

Note that the covariant derivatives only involve A−, where

A± = A± Â.

Therefore, let us rewrite the Chern-Simons terms using [65]

∫
(A ∧ dA− Â ∧ dÂ) =

∫
A+ ∧ dA− =

∫
A− ∧ dA+.

Since this is the only appearance of A+ in the action, it can be integrated out to give the delta

functional constraint

F− = dA− = 0.

The A− equation of motion, on the other hand, just identi�es F+ with the dual of the charge

current. Since the kinetic terms are de�ned with a �at connection A−, this is just a free theory

when the topology is trivial, which is the case for k = 1. Then this theory has N = 8 superconformal

symmetry.

ABJM proposes to treat F+ as an independent variable and to add a Lagrange multiplier term

2An explicit realization in terms of Pauli matrices is given by Γ1 = iσ2⊗1, Γ2 = σ2⊗σ1, Γ3 = σ2⊗σ3, Γ4 = 1⊗σ2,
Γ5 = iσ1 ⊗ σ2, Γ6 = iσ3 ⊗ σ2.
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to ensure that F+ is a curl

Sτ =
1

4π

∫
τεµνλ∂µF+νλd

3x.

Then the quantization condition on F+ requires that τ has period 2π. They then explain that after

gauge �xing τ = 0 one is left with a residual Zk gauge symmetry under which XA → exp(2πi/k)XA

and similarly for ΨA. Thus one is left with a sigma model on C4/Zk. This breaks the supersymmetry

from N = 8 to N = 6 for k > 2. The reason for this is that the 8-component Spin(8) supercharge

decomposes with respect to the SU(4) × U(1) subgroup as 60 + 12 + 1−2. Because of their U(1)

charges, the singlets transform under a Zk transformation as Q→ exp(±4πi/k)Q. Therefore two of

the supersymmetries are broken for k > 2.

This analysis of the U(1) factors continues to apply in the U(N) × U(N) theories with N > 1.

The Bagger-Lambert theory corresponds to the gauge group SU(2) × SU(2). Since it has no U(1)

factors, no discrete Zk gauge symmetry arises, and this theory has N = 8 superconformal symmetry

for all values of k. So, it is di�erent from the U(2) × U(2) ABJM theory, and its interpretation in

terms of branes or geometry (see [66, 31]) must also be di�erent.

4.2 The U(N)×U(N) Theory

The �eld content of the U(N) × U(N) ABJM theory consists of four N × N matrices of complex

scalars (XA)aâ and their adjoints (XA)âa. These transform as (N̄,N) and (N, N̄) representations

of the gauge group, respectively. Similarly, the spinor �elds are matrices (ΨA)aâ and their adjoints

(ΨA)âa. The U(N) gauge �elds are hermitian matrices Aab and Ââb̂. In matrix notation, the

covariant derivatives are

DµXA = ∂µXA + i(AµXA −XAÂµ),

and

DµX
A = ∂µX

A + i(ÂµX
A −XAAµ),

with similar formulas for the spinors. In�nitesimal gauge transformations are given by

δAµ = DµΛ = ∂µΛ + i[Aµ,Λ], (4.7a)

δÂµ = DµΛ̂ = ∂µΛ̂ + i[Âµ, Λ̂], (4.7b)

δXA = −iΛXA + iXAΛ̂, (4.7c)

and so forth.

The action consists of terms that are straightforward generalizations of those of the U(1)×U(1)

theory, as well as new interaction terms that vanish for N = 1. The kinetic and Chern-Simons terms
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are

Skin =
k

2π

∫
d3x tr

(
−DµXADµXA + iΨ̄Aγ

µDµΨA
)
,

and

SCS =
k

2π

∫
d3x εµνλtr

(1

2
Aµ∂νAλ +

i

3
AµAνAλ −

1

2
Âµ∂νÂλ −

i

3
ÂµÂνÂλ

)
.

Additional interaction terms of the schematic form X2Ψ2 and X6 remain to be determined. These

terms are not required to deduce the equations of motion of the gauge �elds, which are

Jµ =
1

2
εµνλFνλ and Ĵµ = −1

2
εµνλF̂νλ,

where

Jµ = iXAD
µXA − iDµXAX

A − Ψ̄AγµΨA,

and

Ĵµ = iXADµXA − iDµXAXA − Ψ̄Aγ
µΨA.

Note that in the special case of U(1)× U(1) one has Jµ = −Ĵµ, and hence the equations of motion

imply Fµν = F̂µν .

In matrix notation, the supersymmetry transformations of the matter �elds are

δXA = iΓIAB ε̄
IΨB ,

and

δΨ̄A = −ΓIAB ε̄
IγµDµX

B + δ3Ψ̄A,

or equivalently

δΨA = ΓIABγ
µεIDµX

B + δ3ΨA,

and their adjoints, which are

δXA = −iΓ̃IABΨ̄Bε
I ,

and

δΨA = −Γ̃IABγµεIDµXB + δ3ΨA,

or equivalently

δΨ̄A = Γ̃IAB ε̄IγµDµXB + δ3Ψ̄A.

The terms denoted δ3 are cubic in X and are given below. The supersymmetry transformations of

the gauge �elds are

δAµ = ΓIAB ε̄
IγµΨAXB − Γ̃IABXBΨ̄Aγµε

I ,
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δÂµ = ΓIABX
B ε̄IγµΨA − Γ̃IABΨ̄Aγµε

IXB .

Note that δAµ 6= δÂµ for N > 1. They are matrices in di�erent spaces.

In the appendix C we show that supersymmetry requires the choice

δ3ΨA = N IAεI and δ3ΨA = N I
Aε

I , (4.8)

where

N IA = Γ̃IAB(XCX
CXB −XBX

CXC)− 2Γ̃IBCXBX
AXC , (4.9)

and

N I
A = (N IA)† = ΓIAB(XCXCX

B −XBXCX
C)− 2ΓIBCX

BXAX
C . (4.10)

Note that these expressions vanish when the matrices XA (and their adjoints XA) are diagonal.

All the possible structures for the Ψ2X2 terms are

L4a = iεABCDtr(Ψ̄AXBΨCXD)− iεABCDtr(Ψ̄AXBΨCXD), (4.11a)

L4b = itr(Ψ̄AΨAXBX
B)− itr(Ψ̄AΨAXBXB), (4.11b)

L4c = 2itr(Ψ̄AΨBXAXB)− 2itr(Ψ̄BΨAXBX
A). (4.11c)

The coe�cients are chosen so that L4 = L4a +L4b +L4c is the correct result required by supersym-

metry, as is demonstrated in the appendix C.

The Lagrangian also contains a term L6 = −V that is sixth order in the scalar �elds. The scalar

potential V is expected to be nonnegative and to vanish for a supersymmetric vacuum. An SU(4)

covariant formula for V in terms of the �elds XA and XA has been given in [14, 50]

V = −1

3
tr
[
XAXAX

BXBX
CXC +XAX

AXBX
BXCX

C

+ 4XAX
BXCX

AXBX
C − 6XAXBX

BXAX
CXC

]
,

(4.12)

a result that we con�rm in the appendix C.

This formula for V is not expressed as a sum of squares, which makes it inconvenient for deter-

mining the extrema. For a supersymmetric vacuum, δΨA = δΨA = 0. In particular, for a solution

in which the scalar �elds XA and XA are constant, and the gauge �elds vanish, the variations δ3ΨA

and δ3ΨA should vanish. This implies that N IA = 0 and N I
A = (N IA)† = 0. The way to ensure

these requirements, as well as manifest SU(4) symmetry, is for the potential to take the form

V =
1

6
tr(N IAN I

A). (4.13)
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The de�nitions of N IA and N I
A are given in equations (4.9) and (4.10). It is straightforward to

verify the equivalence of equations (4.12) and (4.13) for this choice of the coe�cient by using the

key identity

ΓIABΓ̃ICD = −2δCDAB .

The indicated relationship between the potential and δ3Ψ in equation (4.13) should be quite general

in theories of this type. As has already been noted, N IA and N I
A vanish when the scalar �elds are

diagonal matrices. To get the expected moduli space, these should be the only choices for which

they vanish (modulo gauge transformations).

4.3 Conclusion

The study of ABJM theories has become a hot topic. The technology that has been developed in

the study of the duality between four-dimensional superconformal gauge theories and AdS5 vacua

of type IIB superstring theory can now be adapted to a new setting. It should now be possible to

study the duality between three-dimensional superconformal Chern-Simon theories and AdS4 vacua

of type IIA superstring theory and M-theory. A great deal should be learned in the process, and

there may even be applications to other areas of physics.

The contributions of this chapter to this subject are modest: We have veri�ed the Poincaré

supersymmetries of the ABJM theory in a formalism with manifest SU(4) symmetry. The action

that we obtained agrees with results given in [14, 50, 61]. We have also veri�ed by explicit calculation

that this action has the conformal supersymmetries that are required by the proposed duality.

Since this is not implied by any previous calculations, it is an important (and nontrivial) test of

the duality. Taken together with the Poincaré supersymmetries, this implies the full OSp(6|4)

superconformal symmetry of the action. We have also recast the sextic potential as a sum of squares

in equation (4.13), a form that should prove useful in future studies.
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Chapter 5

One-Loop Corrections to Type IIA
String Theory on AdS4 ×CP3

As we saw in the previous chapter, ABJM discovered a new example of the AdS/CFT correspondence

that relates type IIA string theory on AdS4 × CP 3 to a three-dimensional N = 6 Chern-Simons

theory [14].

Since then, much of the analysis that was done to test the AdS5/CFT4 duality has been repeated

for the AdS4/CFT3 duality. For example, various sectors of the planar Chern-Simons theory were

shown to be integrable up to four loops in perturbation theory, i.e., it was shown that the dilatation

operator in these sectors corresponds to a spin-chain Hamiltonian that can be diagonalized by

solving Bethe equations [55, 67, 68, 69]. Moreover, the classical string theory dual to the planar

gauge theory was also shown to be integrable, i.e., the equations of motion for the string theory

sigma model were recast as a �atness condition for a certain one-form known as the Lax connection

[70, 71, 72, 73]. It should be noted that classical integrability has only been demonstrated in the

subsector of the AdS4 × CP 3 superspace described by the OSp(6|4)/(U(3) × SO(3, 1)) supercoset,

and that κ-symmetry in the coset sigma model breaks down for string solutions that move purely in

AdS4 [72]. Demonstrating integrability in the full superspace requires more general methods [74].

The pure spinor string theory on AdS4 × CP 3 was studied in [75, 76]. An important consequence

of the Lax connection is that any classical solution to the sigma model equations of motion can

be mapped into a multisheeted Riemann surface known as an algebraic curve [77, 78, 79]. The

AdS4/CFT3 algebraic curve was constructed in [80]. Following these developments, a set of all-loop

Bethe equations, which interpolate between the gauge theory Bethe equations at weak coupling and

the string theory algebraic curve at strong coupling, were proposed in [81]. The all-loop Bethe ansatz

is a powerful tool for testing the AdS/CFT correspondence.

While the AdS4/CFT3 duality shares certain features with the AdS5/CFT4 duality, it also

exhibits several new features. For example, when one looks at quantum excitations to the string

theory sigma model in the Penrose limit of type IIA string theory on AdS4 × CP 3, one �nds
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that half of the excitations are twice as massive as the other half [52, 58, 57]. The latter are

subsequently referred to as �light� and the former are referred to as �heavy.� This is in contrast to

what was found when looking at the Penrose limit of type IIB string theory on AdS5 × S5, where

all the excitations have the same mass [5]. Various properties of the heavy and light modes were

studied in [82, 83, 84]. Furthermore, the AdS4/CFT3 magnon dispersion relation was found to

be ε = 1
2

√
1 + 8h(λ) sin2 p

2 where h(λ) = λ for λ � 1 and h(λ) = 2λ2 for λ � 1. This is in

contrast to the magnon dispersion relation for AdS5/CFT4, where h(λ) =
√
λ

4π for all values of λ.

One possible reason why the AdS4/CFT3 magnon dispersion receives corrections at strong coupling

is that the theory only has 3/4 maximal supersymmetry. Another consequence of the less than

maximal supersymmetry is that the radius of AdS4 × CP 3 varies as a function of λ, although this

only becomes relevant at two loops in the sigma model [85].

Perhaps the most puzzling new feature of the AdS4/CFT3 correspondence arises when computing

the one-loop correction to the energy of classical solutions to type IIA string theory in AdS4×CP 3.

Note that the one-loop corrections we are describing correspond to quantum corrections to the world-

sheet theory and α′ corrections to the classical string theory. In particular, several groups found a

disagreement with the all-loop Bethe ansatz after computing the one-loop correction to the energy of

the folded spinning string in AdS4 ×CP 3. In computing the one-loop correction, these groups used

the same prescription for adding up �uctuation frequencies that was used in AdS5×S5 [86, 87, 88].

The authors of [89] subsequently proposed an alternative summation prescription that achieves

agreement with the all-loop Bethe ansatz by treating the frequencies of heavy and light modes on

unequal footing. This prescription is not applicable to type IIB string theory on AdS5×S5 because

there is no distinction between heavy and light frequencies in this theory. Hence, the prescription

proposed in [89] is special to the AdS4/CFT3 correspondence. Reference [90] pointed out that the

discrepancy can also be resolved if one takes
√
h(λ) =

√
λ+a1 +O

(
1/
√
λ
)
with a1 6= 0 when doing

world-sheet calculations. Although the algebraic curve calculation in [91] found that this correction

should be zero, the authors in [90] argue that di�erent values of a1 can be consistent because a1

may be scheme dependent.

In this chapter we extend the study of one-loop corrections in AdS4 × CP 3 by computing one-

loop corrections for solutions with nontrivial support in CP 3 and trivial support in AdS4, notably a

rotating point-particle and a circular string with two equal angular momenta in CP 3, which we refer

to as the spinning string. The latter solution is the AdS4/CFT3 analogue of the SU(2) circular string

that was discovered in [92] and studied extensively in the AdS5/CFT4 correspondence [93, 94, 95].

The point-particle and spinning string solutions are especially interesting to study in the AdS4/CFT3

context because they avoid the κ-symmetry issues described above (since they have trivial support

in AdS4). Various string solutions with support in CP 3 were also constructed in [96, 97], however

one-loop corrections were not considered in those papers.
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In order to compute the one-loop correction to the energy of a classical solution, we must �rst

compute the spectrum of �uctuations about the solution. This can be computed by expanding the

Green-Schwarz (GS) action to quadratic order in the �uctuations and �nding the normal modes

of the resulting equations of motion. We refer to this method as the world-sheet (WS) approach.

Alternatively, the spectrum can be computed from the algebraic curve corresponding to this solution

using semiclassical techniques. We refer to this as the algebraic curve (AC) approach. This approach

was developed for type IIB string theory in AdS5 × S5 in [98] and then adapted to type IIA string

theory in AdS4 × CP 3 in [80]. In this chapter, we compute the spectrum of �uctuations about the

point-particle and spinning string using both approaches and �nd that the algebraic curve frequencies

agree with the world-sheet frequencies up to constant shifts and shifts in mode number.

Although the algebraic curve and world-sheet spectra look very similar, they have very di�erent

properties. In particular, the algebraic curve spectrum gives a divergent one-loop correction if we

use the same prescription for adding up the frequencies that was used in AdS5×S5. Since the point-

particle is a BPS solution we expect that its one-loop correction should vanish. Furthermore, since

the spinning string solution becomes near-BPS in a certain limit, we expect its one-loop correction

to be nonzero but �nite. Hence the algebraic curve does not give one-loop corrections that are

compatible with supersymmetry if one uses the standard summation prescription.

We propose a new summation prescription that gives a vanishing one-loop correction for the

point-particle and a �nite one-loop correction for the spinning string when used with both the

algebraic curve spectrum and the world-sheet spectrum. This prescription has certain similarities to

the one that was proposed by Gromov and Mikhaylov in [89], however our motivation for introducing

it is somewhat di�erent. Whereas they proposed a new summation prescription in order to get a one-

loop correction to the energy of the folded spinning string that agrees with the all-loop Bethe ansatz,

we �nd that a new summation prescription is required for a much more basic reason: consistency

of the algebraic curve with supersymmetry. In principle, we obtain three predictions for the one-

loop correction to the spinning-string energy; one coming from the algebraic curve and two coming

from the world-sheet (since the world-sheet spectrum gives �nite results using both the old and new

summation prescriptions). However, if we expand in the large-J limit (where J = J√
2π2λ

and J

is the spin) and evaluate the sums at each order of J using ζ-function regularization, we �nd that

all three predictions are the same (up to so-called nonanalytic and exponentially suppressed terms,

which are subdominant). In this way we get a single prediction for the one-loop correction to the

spinning string energy. Furthermore, we show that this result is consistent with the predictions of

the Bethe ansatz.

The structure of this chapter is as follows. In section 5.1, we review the world-sheet approach,

the algebraic curve approach, and summation prescriptions. It should be noted that our versions

of the world-sheet and algebraic curve formalisms have some new features. In particular, we recast
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the quadratic GS action in the AdS4 ×CP 3 supergravity background in a way that removes half of

the fermionic degrees of freedom explicitly and we reformulate the algebraic curve approach using

o�-shell techniques that make calculations much more e�cient. In section 5.2.1, we present the

classical solution for a point-particle rotating in CP 3 and describe the gauge theory operator dual

to this solution. In the rest of section 5.2 we summarize the �uctuation frequencies for the point-

particle solution and compute the one-loop correction using the standard summation prescription

used in AdS5 × S5 as well as our new summation prescription.1 In section 5.3.1, we present the

classical solution for a spinning string with two equal angular momenta in CP 3 and propose the

gauge theory operator dual to this solution. In the rest of section 5.3 we summarize the �uctuation

frequencies for the spinning-string solution, analyze various properties of the one-loop correction to

its energy, and make a prediction for the anomalous dimension of its dual gauge theory operator.2

In section 5.4, we use the Bethe ansatz to compute the leading two contributions to the anomalous

dimension of operator dual to the spinning and verify that they agree with the prediction we obtain

using string theory. section 5.5 presents our conclusions. Appendix D reviews some basic properties

of the dual gauge theory. Appendices E and A.3 review the geometry of AdS4 ×CP 3 as well as our

Dirac matrix conventions.

5.1 Review of Formalism

5.1.1 World-Sheet Formalism

The world-sheet approach for computing the spectrum of �uctuations about a classical solution

in AdS5 × S5 was developed in [99]. In this section we review how to compute the spectrum of

�uctuations around a classical solution to type IIA string theory in a supergravity background

which consists of the following string frame metric, dilaton, and Ramond-Ramond forms [14]:

ds2 = GMNdx
MdxN = R2

(
1

4
ds2
AdS4

+ ds2
CP 3

)
, (5.1a)

eφ =
R

k
, (5.1b)

F4 =
3

8
kR2V olAdS4 , (5.1c)

F2 = kJ, (5.1d)

where R2 is the radius of curvature in string units, J is the Kähler form on CP 3, and k is an integer

corresponding to the level of the dual Chern-Simons theory. Note that the AdS4 space has radius

1Although the spectrum of the point-particle was already computed using the algebraic curve in [80], we present
it again using more e�cient techniques.

2The authors in [96] made similar conjectures for the gauge theory operators dual to the point-particle and spinning
string, however the classical solutions considered in that paper have di�erent charges than the ones constructed in
this chapter.
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R/2 while the CP 3 space has radius R. The metric for a unit AdS4 space given by

ds2
AdS4

= − cosh2 ρdt2 + dρ2 + sinh2 ρ
(
dθ2 + sin2 θdφ2

)
, (5.2)

and the metric for a unit CP 3 space is given by

ds2
CP 3 = dξ2 + cos2 ξ sin2 ξ

(
dψ +

1

2
cos θ1dϕ1 −

1

2
cos θ2dϕ2

)2

+
1

4
cos2 ξ

(
dθ2

1 + sin2 θ1dϕ2
1

)
+

1

4
sin2 ξ

(
dθ2

2 + sin2 θ2dϕ2
2

)
,

(5.3)

where 0 ≤ ξ < π/2, 0 ≤ ψ < 2π, 0 ≤ θi ≤ π, and 0 ≤ ϕi < 2π. More details about the geometry of

AdS4 × CP 3 are given in appendix E.

Using the metric in equation (5.1), the bosonic part of the string Lagrangian in conformal gauge

is given by

Lbose =
1

4π
ηabGMN∂aX

M∂bX
N , (5.4)

where a, b = τ, σ are world-sheet indices, ηab = diag [−1, 1], and we have set α′ = 1. Because AdS4

has two Killing vectors and CP 3 has three Killing vectors, any solution to the bosonic equations of

motion has at least �ve conserved charges. In particular, the two AdS4 charges are given by

E =
√
λ/2

∫ 2π

0

dσ cosh2 ρṫ, (5.5)

S =
√
λ/2

∫ 2π

0

dσ sinh2 ρ sin2 θφ̇, (5.6)

and the three CP 3 charges are given by

Jψ = 2
√

2λ

∫ 2π

0

dσ cos2 ξ sin2 ξ

(
ψ̇ +

1

2
cos θ1φ̇1 −

1

2
cos θ2φ̇2

)
, (5.7a)

Jφ1 =
√
λ/2

∫ 2π

0

dσ cos2 ξ sin2 θ1φ̇1 (5.7b)

+
√

2λ

∫ 2π

0

dσ cos2 ξ sin2 ξ

(
ψ̇ +

1

2
cos θ1φ̇1 −

1

2
cos θ2φ̇2

)
cos θ1,

Jφ2
=

√
λ/2

∫ 2π

0

dσ sin2 ξ sin2 θ2φ̇2 (5.7c)

+
√

2λ

∫ 2π

0

dσ cos2 ξ sin2 ξ

(
ψ̇ +

1

2
cos θ1φ̇1 −

1

2
cos θ2φ̇2

)
cos θ2,

where E is the energy and S, Jψ, Jφ1 , and Jφ2 are angular momenta.

A solution to the bosonic equations of motion is said to be a classical solution if it also satis�es
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the Virasoro constraints

GMN

(
∂τX

M∂τX
N + ∂σX

M∂σX
N
)

= 0, GMN∂τX
M∂σX

N = 0. (5.8)

Note that these are the only constraints that relate motion in AdS4 to motion in CP 3.

The spectrum of bosonic �uctuations around a classical solution can be computed by expanding

the bosonic Lagrangian in equation (5.4) to quadratic order in the �uctuations and �nding the

normal modes of the resulting equations of motion. In the examples we consider, we �nd that two

of the bosonic modes are massless and the other eight are massive. While the eight massive modes

correspond to the physical transverse degrees of freedom, the two massless modes can be discarded.

One way to see that the massless modes can be discarded is by expanding the Virasoro constraints

to linear order in the �uctuations [99].

To compute the spectrum of fermionic �uctuations, we only need the quadratic part of the

fermionic GS action for type IIA string theory. This action describes two 10-dimensional Majorana-

Weyl spinors of opposite chirality that can be combined into a single non-chiral Majorana spinor

Θ. The quadratic GS action for type IIA string theory in a general background can be found in

[100]. For the supergravity background in equation (5.1), the quadratic Lagrangian for the fermions

is given by

LFermi = Θ̄
(
ηab − εabΓ11

)
ea

[
(∂b +

1

4
ωb) +

1

8
eφ (−Γ11Γ · F2 + Γ · F4) eb

]
Θ, (5.9)

where Θ̄ = Θ†Γ0, ετσ = −εστ = 1, ea = ∂aX
MeAMΓA, ωa = ∂aX

MωABM ΓAB , and Γ · F(n) =

1
n!Γ

N1...NnFN1...Nn . Note that M is a base-space index while A,B = 0, ..., 9 are tangent-space

indices. Explicit formulas for eAM , ωABM , Γ · F2, and Γ · F4 are provided in appendix E. Explicit

formulas for the Dirac matrices are provided in appendix A.3.

We will now recast the fermionic Lagrangian in equation (5.9) in form that allows us to compute

the fermionic �uctuation frequencies in a straightforward way. First we note that after rearranging

terms, equation (5.9) can be written as

LFermi
2K

= −Θ̄+Γ0

[
∂τ − Γ11∂σ +

1

4
(ωτ − Γ11ωσ)

]
Θ− 2KΘ̄+Γ0Γ · FΓ0Θ+, (5.10)

where we de�ne K = ∂τX
Me0

M , Θ+ = P+Θ, and

P+ = − 1

2K
Γ0 (eτ + eσΓ11) , (5.11)

Γ · F =
1

8
eφ (−Γ11Γ · F2 + Γ · F4) . (5.12)
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Note that P+ = P †+ and if the classical solution satis�es

∂σX
Me0

M = 0, (5.13)

then P+ is a projection operator, i.e., P 2
+ = P+. In addition, if the classical solution satis�es

P+ [P+, ωτ − Γ11ωσ] = 0, (5.14)

then the fermionic Lagrangian simpli�es to

LFermi
2K

= −Θ̄+Γ0

[
∂τ − Γ11∂σ +

1

4
(ωτ − Γ11ωσ) + 2K (Γ · FΓ0)

]
Θ+. (5.15)

Finally, if we consider the Fourier mode Θ (σ, τ) = Θ̃ exp (−iωτ + inσ), where Θ̃ is a constant spinor,

then the equations of motion for the fermionic �uctuations are given by

{
P+

[
iω + inΓ11 −

1

4
(ωτ − Γ11ωσ)− 2K (Γ · FΓ0)

]
P+

}
Θ̃ = 0. (5.16)

One can choose a basis where P+ has the form

 1 0

0 0

 (where each element in the 2× 2 matrix

corresponds to a 16× 16 matrix). In this basis, the matrix on the left-hand side of equation (5.16)

will have the form

 A 0

0 0

. The fermionic frequencies are determined by taking the determinant

of A and �nding its roots.

Only half of the fermionic components appear in the Lagrangian in equation (5.15). Hence,

a natural choice for �xing kappa-symmetry is to set the other components to zero by imposing

the gauge condition Θ = Θ+. This gives the desired number of fermionic degrees of freedom. In

particular, before imposing the Majorana condition, Θ has 32 complex degrees of freedom. When

the classical solution satis�es equations (5.13) and (5.14), the quadratic GS action can be recast

in terms of projection operators that remove half of Θ's components, leaving 16 complex degrees

of freedom. After solving the fermionic equations of motion, one then �nds that only half the

solutions have positive energy, leaving eight complex degrees of freedom. Finally, after imposing the

Majorana condition we should be left with eight real degrees of freedom, which matches the number

of transverse bosonic degrees of freedom. Explicit calculations of the fermionic frequencies for the

classical solutions studied in this chapter are described in sections 5.2.2 and 5.3.2.
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5.1.2 Algebraic Curve Formalism

The procedure for computing the spectrum of excitations about a classical string solution using the

AdS4/CFT3 algebraic curve was �rst presented in [80]. In this section, we reformulate this procedure

in terms of an o�-shell formalism similar to the one that was developed for the AdS5/CFT4 algebraic

curve in [101]. The o�-shell formalism makes things much more e�cient. First we describe how to

construct the classical algebraic curve. Then we describe how to semiclassically quantize the curve

and obtain the spectrum of excitations.

5.1.2.1 Classical Algebraic Curve

For type IIA string theory in AdS4 × CP 3, any classical solution can be encoded in a 10-sheeted

Riemann surface whose branches, called quasi-momenta, are denoted by

{q1, q2, q3, q4, q5, q6, q7, q8, q9, q10} .

This algebraic curve corresponds to the fundamental representation of OSp(6|4), which is ten-

dimensional. Furthermore, the quasi-momenta are not all independent. In particular

(q1(x), q2(x), q3(x), q4(x), q5(x)) = − (q10(x), q9(x), q8(x), q7(x), q6(x)) , (5.17)

where x is a complex number called the spectral parameter. To compute the quasi-momenta, it is

useful to parameterize AdS4 and CP 3 using the following embedding coordinates

n2
1 + n2

2 − n2
3 − n2

4 − n2
5 = 1,

4∑
I=1

∣∣zI ∣∣2 = 1, zI ∼ eiλzI ,

where λ ∈ R. A classical solution in the global coordinates of equations (5.2) and (5.3) can be

converted to embedding coordinates using equations (E.2) and (E.7) provided in appendix E. One

can then compute the following connection:

ja(τ, σ) = 2

 ni∂anj − nj∂ani 0

0 z†IDaz
J − zJDaz

†
I

 , (5.18)

where a ∈ {τ, σ}, Da = ∂a + iAa, and Aa = i
∑4
I=1 z

†
I∂az

I [80]. This connection is a 9 × 9 matrix

and transforms under the bosonic part of the supergroup OSp(6|4), notably SU(4) × SO(3, 2) ∼

O(6)×Sp(4). A key property is that it is �at, which allows us to construct the following monodromy
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matrix:

Λ(x) = P exp
1

x2 − 1

∫ 2π

0

dσ [jσ(τ, σ) + xjτ (τ, σ)] , (5.19)

where P is the path-ordering symbol and the integral is over a loop of constant world-sheet time τ .

It can be shown that the eigenvalues of Λ(x) are independent of τ .

The quasi-momenta are related to the eigenvalues of the monodromy matrix. In particular, if we

diagonalize the monodromy matrix we will �nd that the eigenvalues of the AdS4 part are in general

given by {
eip̂1(x), eip̂2(x), eip̂3(x), eip̂4(x), 1

}
, (5.20)

where p̂1(x) + p̂4(x) = p̂2(x) + p̂3(x) = 0, while the eigenvalues from the CP 3 part are given by

{
eip̃1(x), eip̃2(x), eip̃3(x), eip̃4(x)

}
, (5.21)

where
∑4
i=1 p̃i(x) = 0. The classical quasi-momenta are then de�ned as

(q1, q2, q3, q4, q5) =

(
p̂1 + p̂2

2
,
p̂1 − p̂2

2
, p̃1 + p̃2, p̃1 + p̃3, p̃1 + p̃4

)
, (5.22)

where we have suppressed the x-dependence. From this formula, we see that q1(x) and q2(x) corre-

spond to the AdS4 part of the algebraic curve, while q3(x), q4(x), and q5(x) correspond to the CP 3

part of the algebraic curve.

5.1.2.2 Semiclassical Quantization

The algebraic curve will generically have cuts connecting several pairs of sheets. These cuts encode

the classical physics. To perform semiclassical quantization, we add poles to the algebraic curve

which correspond to quantum �uctuations. Each pole connects two sheets. In particular the bosonic

�uctuations connect two AdS sheets or two CP 3 sheets and the fermionic �uctuations connect an

AdS sheet to a CP 3 sheet. See �gure (5.1) for a depiction of the �uctuations. In total there are

eight bosonic and eight fermionic �uctuations, and they are labeled by the pairs of sheets that their

poles connect. The labels are referred to as polarizations and are summarized in table 5.1.

Notice that every �uctuation can be labeled by two equivalent polarizations because every pole

connects two equivalent pairs of sheets as a consequence of equation (5.17). Fluctuations connecting

sheet 5 or 6 to any other sheet are de�ned to be light. Notice that there are eight light excitations.

All the others are de�ned to be heavy excitations. The physical signi�cance of this terminology will

become clear later on. When we compute the spectrum of �uctuations about the point particle in

section 5.2 for example, we will �nd that the heavy excitations are twice as massive as the light

excitations.
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Figure 5.1. Depiction of the �uctuations of the AdS4 × CP 3 algebraic curve. Each �uctuation
corresponds to a pole that connects two sheets.

Table 5.1. Labels for the �uctuations (heavy, light) of the AdS4 × CP 3 algebraic curve

Polarizations (i, j)

AdS (1,10/1,10); (2,9/2,9); (1,9/2,10)

Fermions
(1,7/4,10); (1,8/3,10); (2,7/4,9); (2,8/3,9)
(1,5/6,10); (1,6/5,10); (2,5/6,9); (2,6/5,9)

CP 3 (3,7/4,8)
(3,5/6,8); (3,6/5,8); (4,5/6,7); (4,6/5,7)

When adding poles, we must take into account the level-matching condition

∞∑
n=−∞

n
∑
ij

N ij
n = 0, (5.23)

where N ij
n is the number of excitations with polarization ij and mode number n. Furthermore, the

locations of the poles are not arbitrary; they are determined by the following equation:

qi
(
xijn
)
− qj

(
xijn
)

= 2πn, (5.24)

where xijn is the location of a pole corresponding to a �uctuation with polarization ij and mode

number n.

In addition to adding poles to the algebraic curve, we must also add �uctuations to the classical

quasi-momenta. These �uctuations will depend on the spectral parameter x as well as the locations of

the poles, which we will denote by the collective coordinate y. The functional form of the �uctuations

is determined by some general constraints:
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• They are not all independent:

δq1(x, y)

δq2(x, y)

δq3(x, y)

δq4(x, y)

δq5(x, y)


= −



δq10(x, y)

δq9(x, y)

δq8(x, y)

δq7(x, y)

δq6(x, y)


.

• They have poles near the points x = ±1 and the residues of these poles are synchronized as

follows:

lim
x→±1

(δq1(x, y), δq2(x, y), δq3(x, y), δq4(x, y), δq5(x, y)) ∝ 1

x± 1
(1, 1, 1, 1, 0) . (5.25)

• There is an inversion symmetry:

δq1(1/x, y)

δq2(1/x, y)

δq3(1/x, y)

δq4(1/x, y)

δq5(1/x, y)


=



−δq2(x, y)

−δq1(x, y)

−δq4(x, y)

−δq3(x, y)

δq5(x, y)


. (5.26)

• The �uctuations have the following large-x behavior:

lim
x→∞



δq1(x, y)

δq2(x, y)

δq3(x, y)

δq4(x, y)

δq5(x, y)


' 1

2gx



∆(y) +N19 + 2N1 10 +N15 +N16 +N17 +N18

∆(y) + 2N29 +N2 10 +N25 +N26 +N27 +N28

−N35 −N36 −N37 −N39 −N3 10

−N45 −N46 −N48 −N49 −N4 10

N35 +N45 −N57 −N58 −N15 −N25 +N59 +N5 10


,

(5.27)

where g =
√
λ/8, Nij =

∑∞
n=−∞N ij

n , and ∆(y) is called the anomalous part of the energy

shift. Whereas the N ij
n are inputs of the calculation, ∆(y) will be determined in the process

of determining the �uctuations of the quasi-momenta. The factor of two that appears in front

of N1 10 and N29 is a consequence of the symmetry in equation (5.17). The coe�cients of

the other terms on the right-hand side of equation (5.27) can be determined using arguments

similar to those in [98].

• Finally, when the spectral parameter approaches the location of one of the poles, the �uctua-
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Table 5.2. Relations between heavy and light o�-shell frequencies

Heavy Light

Ω29 =
Ω1 10 =

Ω19 =

2Ω25

2Ω15

Ω15 + Ω25

AdS

Ω27 =
Ω17 =
Ω28 =
Ω18 =

Ω25 + Ω45

Ω15 + Ω45

Ω25 + Ω35

Ω15 + Ω35

Fermions

Ω37 = Ω35 + Ω45 CP3

tions have the following form:

lim
x→xij

n

δqk ∝
α(xijn )N ij

n

x− xijn
, α(x) =

1

2g

x2

x2 − 1
, (5.28)

where the proportionality constants can be read o� from the coe�cient of Nij in the kth row

of equation (5.27).

After computing the anomalous part of the energy shift, the �uctuation frequency is given by

Ω(y) = ∆(y) +
∑
AdS4

N ij +
1

2

∑
ferm

N ij . (5.29)

It is useful to consider the �uctuation frequency without �xing the value of y. In this case, the

�uctuation frequency is said to be o�-shell.

Using arguments similar to those in [101], we �nd all the relations among the o�-shell frequencies.

First, all the light o�-shell frequencies are related by

Ωi6(y) = Ωi5(y), (5.30)

where i = 1, 2, 3, 4.

Second, all the heavy o�-shell frequencies can be written as the sum of two light o�-shell fre-

quencies as summarized in table 5.2.

Finally, any o�-shell frequency Ωij is related to its mirror o�-shell frequency Ωij by

Ωij (y) = −Ωij (1/y) + Ωij (0) + C,

where C = 1, 1/2, or 0 for AdS, Fermionic, or CP 3 polarizations respectively. The mirror polarization(
i, j
)
of the polarization (i, j) can be readily found using equation (5.26), e.g.,

(
1, 10

)
= (2, 9) ,(

2, 5
)

= (1, 5) ,
(
4, 5
)

= (3, 5) ,
(
3, 7
)

= (3, 7) , etc. Using these relations, only two of the eight light
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o�-shell frequencies are independent. For example,

Ω35 (y) = −Ω45 (1/y) + Ω45 (0) , (5.31a)

Ω25 (y) = −Ω15 (1/y) + Ω15 (0) + 1/2. (5.31b)

In conclusion, if we compute the o�-shell frequencies Ω15 and Ω45, then we can determine all the

other o�-shell frequencies automatically from the relations in equations (5.30), (5.31) and table 5.2.

The on-shell frequencies are then obtained by evaluating the o�-shell frequencies at the location of

the poles which are determined by solving equation (5.24), i.e., ωijn = Ωij
(
xijn
)
. It will be convenient

to organize them into the following linear combinations:

ωL(n) = ω35
n + ω36

n + ω45
n + ω46

n − ω15
n − ω16

n − ω25
n − ω26

n , (5.32)

ωH(n) = ω19
n + ω29

n + ω1 10
n + ω37

n − ω17
n − ω18

n − ω27
n − ω28

n , (5.33)

where L stands for light and H stands for heavy. It should be noted that heavy and light frequencies

are not as well-de�ned in the world-sheet approach. In general, the only way to identify heavy

and light frequencies in the world-sheet approach is by comparing the world-sheet spectrum to the

algebraic curve spectrum, i.e., a world-sheet frequency is said to be heavy/light if the corresponding

algebraic curve frequency is heavy/light.

5.1.3 Summation Prescriptions

Given the spectrum of �uctuations about a classical string solution, we compute the one-loop cor-

rection to the string energy by adding up the spectrum. The standard formula is

δE1−loop,old = lim
N→∞

1

2κ

N∑
n=−N

(
8∑
i=1

ωBn,i −
8∑
i=1

ωFn,i

)
, (5.34)

where κ is proportional to the classical energy (the exact formula is given in sections 3 and 4), B/F

stands for bosonic/fermionic, n is the mode number, and i is some label. For example, if we are

dealing with frequencies computed from the algebraic curve, then they will be labeled by a pair

of integers called a polarization, as explained in section 2.2. Although this formula works well for

string solutions in AdS5 × S5, it gives a one-loop correction which disagrees with the all-loop Bethe

ansatz when applied to the folded-spinning string in AdS4 × CP 3. In [89] Gromov and Mikhaylov

subsequently proposed the following formula for computing one-loop corrections in AdS4 × CP 3:

δE1−loop,GM = lim
N→∞

1

2κ

N∑
n=−N

Kn, Kn =

 ωH(n) + ωL(n/2) n ∈ even

ωH(n) n ∈ odd
, (5.35)
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where ωLn/ω
H
n are referred to as heavy/light frequencies and are de�ned in equations (5.32) and

(5.33). For later convenience, we note that equation (5.34) can be written in terms of heavy and

light frequencies as follows:

δE1−loop,old = lim
N→∞

1

2κ

N∑
−N

(ωL(n) + ωH(n)) . (5.36)

In the large-κ limit, equation (5.35) can be approximated as the following integral:

δE1−loop ≈ lim
N→∞

1

2κ

∫ N

−N

(
ωH(n) +

1

2
ωL(n/2)

)
dn. (5.37)

In [89] it was shown that equation (5.37) gives a one-loop correction which agrees with the all-loop

Bethe ansatz when applied to the spectrum of the folded spinning string.

In this chapter we propose a new summation prescription:

δE1−loop,new = lim
N→∞

1

2κ

N∑
−N

(2ωH(2n) + ωL(n)) . (5.38)

This sum can be motivated physically using the observation in [89] that heavy modes with mode

number 2n can be thought of as bound states of two light modes with mode number n. This suggests

that only heavy modes with even mode number should contribute to the one-loop correction. The

formula for the one-loop correction should therefore have the form

δE1−loop,new = lim
N→∞

1

2κ

N∑
−N

(AωH(2n) +BωL(n)) .

The coe�cients A and B can then be �xed uniquely by requiring that the integral approximation to

this formula reduces to equation (5.37) in the large-κ limit, ensuring that this summation prescription

gives a one-loop correction to the folded spinning string energy which agrees with the all-loop Bethe

ansatz. One then �nds that A = 2 and B = 1.

One virtue of the new summation prescription in equation (5.38) compared to the one in equa-

tion (5.35) is that it gives more well-de�ned results for one-loop corrections. For example, consider

the case where ωL(n) = −2ωH(n) = C, where C is some constant (the AC frequencies for the point-

particle will have this form). In this case, equation (5.35) does not have a well-de�ned N →∞ limit;

in particular the sum alternates between ±C/(4κ) depending on whether N is even or odd. On the

other hand, equation (5.38) vanishes for all N .
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5.2 Point-Particle

5.2.1 Classical Solution and Dual Operator

In terms of the coordinates of equations (5.2) and (5.3), the solution for a point-particle rotating

with angular momentum J in CP 3 is given by

t = κτ, ρ = 0, ξ = π/4, θ1 = θ2 = π/2, ψ = J τ, φ1 = φ2 = 0, (5.39)

where J = J
4πg and g =

√
λ/8. This version of the solution will be useful for doing calculations in

the world-sheet formalism. Alternatively, we can write this solution in embedding coordinates by

plugging equation (5.39) into equations (E.2) and (E.7):

n1 = cosκτ, n2 = sinκτ, n3 = n4 = n5 = 0, z1 = z2 = z†3 = z†4 =
1

2
eiJ τ/2. (5.40)

This version of the solution will be useful for doing calculations in the algebraic curve formalism. The

energy and angular momenta of the particle can be read o� from equations (5.5)�(5.7): E = 4πgκ,

S = 0, Jψ = J , Jφ1
= Jφ2

= 0. Furthermore, the Virasoro constraints in equation (5.8) give κ = J ,

or equivalently E = J . Note that this is a BPS condition. We therefore expect that the dimension

of the dual gauge theory operator should be protected by supersymmetry.

The gauge theory operator dual to the point-particle rotating in CP 3 should have the form

O = tr

[(
Z1Z†3

)J]
.

This can be understood heuristically by associating the scalars Z1,Z2, Z3, Z4 with the embedding

coordinates z1, z2, z3, z4 and noting that

1

2


eiJ τ/2

eiJ τ/2

e−iJ τ/2

e−iJ τ/2

 =


1/
√

2 −1/
√

2 0 0

1/
√

2 1/
√

2 0 0

0 0 1/
√

2 −1/
√

2

0 0 1/
√

2 1/
√

2


1√
2


eiJ τ/2

0

e−iJ τ/2

0

 .

Since the transformation on the right-hand side is an SU(4) transformation, the solution in equa-

tion (5.40) is equivalent to z1 = z†3 = 1√
2
eiJ τ/2, z2 = z4 = 0. Furthermore, the engineering

dimension of this operator is J , which matches the energy of the point-particle solution, and the

two-loop dilatation operator in equation (D.1) vanishes when applied to this operator, which is

consistent with our expectation that the anomalous dimension of the operator should vanish.
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5.2.2 Point-Particle Spectrum from the World-Sheet

Bosonic Spectrum

To compute the spectrum of bosonic �uctuations about the point-particle, �rst we add �uctuations

to the classical solution in equation (5.39):

t = κτ + δt(τ, σ), ηi = δηi(τ, σ), ξ = π/4 + δξ(τ, σ),

θj = π/2 + δθj(τ, σ), ψ = κτ + δψ(τ, σ), φj = δφj(τ, σ),

where i = 1, 2, 3 and j = 1, 2. Expanding the bosonic Lagrangian in equation (5.4) to quadratic

order gives

4πLbos = −1

4
(∂δt)

2
+

1

4
(∂δψ)

2
+

3∑
i=1

[
(∂δηi)

2
+ κ2δη2

i

]
+ (∂δξ)

2
+ κ2δξ2

+
1

8
(∂δθ1)

2
+

1

8
(∂δθ2)

2
+

1

8
(∂δφ1)

2
+

1

8
(∂δφ2)

2
+

1

4
κδθ1δφ̇1 −

1

4
κδθ2δφ̇2,

where (∂f)
2

= − (∂τf)
2

+ (∂σf)
2
. We immediately see that the �uctuations δt and δψ are massless,

while δηi and δξ have mass κ. If we consider Fourier modes of the form f(τ, σ) = f̃ ei(ωτ+nσ), then

the equations of motion for the remaining �elds reduce to
ω2 − n2 −iωκ 0 0

iωκ ω2 − n2 0 0

0 0 ω2 − n2 iωκ

0 0 −iωκ ω2 − n2




δθ̃1

δφ̃1

δθ̃2

δφ̃2

 = 0.

The dispersion relations for the normal modes of this system are obtained by taking the determinant

of the matrix on the left-hand side, setting it to zero, and solving for ω. The positive solutions are

ω

κ
=

√
1

4
+
n2

κ2
± 1

2
. (5.41)

Each of these solutions has multiplicity two, giving a total of four positive solutions.

In summary, we �nd that there are eight massive modes and two massless modes. Three of the

massive modes come from AdS4. Their dispersion relations are given by

ω

κ
=

√
1 +

n2

κ2
.

The remaining �ve massive modes come from CP 3. One of them has the dispersion relation in

the equation above and the other four have the dispersion relations in equation (5.41). The two
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massless modes are longitudinal and can be discarded. This can be seen by expanding the Virasoro

constraints in equation (5.8) to linear order in the perturbations. Doing so gives

∂τ (δt− δψ) = ∂σ (δt− δψ) = 0.

Noting that (∂δt)
2 − (∂δψ)

2
= ∂ (δt− δψ) ∂ (δt+ δψ), we see that the equation above implies that

all terms in the action involving δt and δψ vanish.

Fermionic Spectrum

In order to compute the spectrum of fermionic �uctuations about the point-particle solution given

by equation (5.39), we only need to know the pullback of the vielbein and the spin connection in

the background of this classical solution. These are given by

eτ =
R

2
J
(
−Γ0 + Γ4

)
, eσ = 0, (5.42)

and

ωτ = J
(
Γ89 − Γ67

)
, ωσ = 0. (5.43)

Plugging these expressions into equation (5.11) gives

P+ =
1

2

(
1 + Γ0Γ4

)
, (5.44)

where we used K = ∂τX
µe0
µ = (R/2)J . It is straightforward to check that equations (5.13), (5.14)

are satis�ed for the point-particle solution. Therefore, by plugging equations (E.10), (5.43), (5.44)

into equation (5.16) and using the Dirac matrices in appendix E, we obtain an explicit form of the

equation of motion for the fermionic �uctuations. The frequencies are then determined using the

procedure described at the end of section 2.1. In particular, the positive fermionic frequencies are

given by

ω1 =
√
κ2 + n2,

ω2 =
1

2

√
κ2 + 4n2 +

κ

2
,

ω3 =
1

2

√
κ2 + 4n2 − κ

2
,

where ω2 and ω3 have multiplicity two while ω1 has multiplicity four, for a total of 8 fermionic

frequencies.
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Figure 5.2. Classical algebraic curve for the point-particle rotating in CP 3.

5.2.3 Point-Particle Algebraic Curve

Classical Quasi-momenta

In this section, we compute the algebraic curve for the classical solution given in equation (5.40).

First we plug this solution into equation (5.18):

(jτ )AdS4
= 2κ



0 1 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, (jτ )CP 3 = iJ


1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

 , jσ = 0.

Note that this connection is independent of σ, so it is trivial to compute the monodromy matrix in

equation (5.19) since path ordering is not an issue. Diagonalizing the monodromy matrix and com-

paring the eigenvalues to equations (5.20) and (5.21) then gives p̂1 = −p̂4 = 4πκx
x2−1 , p̃1 = −p̃4 = 2πJx

x2−1 ,

and p̂2 = p̂3 = p̃2 = p̃3 = 0. Recalling that κ = J and plugging these results into equation (5.22),

we �nd that the classical quasi-momenta are

q1 = q2 = q3 = q4 =
2πJ x
x2 − 1

, q5 = 0. (5.45)

The algebraic curve corresponding to these quasi-momenta is depicted in �gure (5.2). Note that all

sheets except those corresponding to q5 and q6 have poles at x = ±1.
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O�-shell Frequencies

Recall from equations (5.30,5.31) and table 5.2 that if we know the o�-shell frequencies Ω15(y) and

Ω45(y), then all the others are determined. Let us begin by computing Ω15(y). Suppose we have

two �uctuations between q1 and q5. To satisfy level-matching, let us take one of these �uctuations

to have mode number +n and the other to have mode number −n. Each �uctuation corresponds to

adding a pole to the classical algebraic curve. The locations of the poles are determined by solving

equation (5.24). We will denote the pole locations by x15
±n. We then make the following ansatz for

the �uctuations:

δq1(x, y) =
∑
±

α
(
x15
n

)
x− x15

n

, δq2(x, y) = −δq1(1/x, y),

δq5(x, y) = −
∑
±

α (x)

x− x15
n

−
∑
±

α (1/x)

1/x− x15
n

,

where α(x) is de�ned in equation (5.28), ± stands for the sum over the positive and negative mode

number, and y is a collective coordinate for the positions of the two poles x15
±n. We have not

made an ansatz for δq3 and δq4 because they are not needed to compute Ω15(y). Notice that this

ansatz satis�es the inversion symmetry in equation (5.26) and has pole structure in agreement with

equation (5.28). In the large-x limit, the �uctuations reduce to

lim
x→∞

δq1(x, y) ∼ 1

x

∑
±
α
(
x15
n

)
,

lim
x→∞

δq2(x, y) ∼ 1

2gx

∑
±

1

(x15
n )

2 − 1
,

lim
x→∞

δq5(x, y) ∼ − 1

gx
,

where we neglect O
(
x−2

)
terms. Comparing these expressions to equation (5.27) implies that the

anomalous energy shift is given by

∆(y) =
∑
±

1

(x15
n )

2 − 1
.

The o�-shell �uctuation frequency is then obtained by plugging this into equation (5.29) and recalling

that the (1,5) �uctuation is fermionic:

Ω15(y) = ∆(y) +
1

2
N15 = ∆(y) + 1 =

∑
±

1

2

(
x15
n

)2
+ 1

(x15
n )

2 − 1
.
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This implies that the o�-shell frequency for a single �uctuation between q1 and q5 is given by

Ω15(y) =
1

2

y2 + 1

y2 − 1
.

Now let us compute Ω45(y). Once again, let us suppose that we have two �uctuations between q4

and q5 which have opposite mode numbers ±n. We make the following ansatz for the �uctuations:

δq1(x, y) =
α+(y)

x+ 1
+
α−(y)

x− 1
, δq2(x, y) = −δq1(1/x, y),

δq4(x, y) = −
∑
±

α (x)

x− x45
n

, δq3(x, y) = −δq4(1/x, y),

δq5(x, y) =
∑
±

α (x)

x− x45
n

+
∑
±

α (1/x)

1/x− x45
n

,

where α±(y) are some functions to be determined. Note that this ansatz satis�es the inversion

symmetry in equation (5.26) and has pole structure in agreement with equation (5.28). Taking the

large-x limit gives

lim
x→∞

δq1(x, y) ∼ α+(y) + α−(y)

x
, lim
x→∞

δq2(x, y) ∼ α−(y)− α+(y) +
α+(y) + α−(y)

x
,

lim
x→∞

δq3(x, y) ∼ 0, lim
x→∞

δq4(x, y) ∼ − 1

gx
, lim
x→∞

δq5(x, y) ∼ 1

gx
.

Comparing these limits with equation (5.27) implies that

α+(y) = α−(y) =
∆(y)

4g
. (5.46)

Furthermore, the residues of the poles at x = ±1 must be synchronized according to equation (5.25).

For example, if we equate the residues of δq1 and δq4 near x = +1 we �nd that

lim
x→+1

δq1(x, y) ∼ α−(y)

x− 1
= lim
x→+1

δq4 ∼

(
1

4g

∑
±

1

x45
n − 1

)
1

x− 1
→ α−(y) =

1

4g

∑
±

1

x45
n − 1

.

Combining this with the equation (5.46) implies that

∆(y) =
∑
±

1

x45
n − 1

. (5.47)

At this point it is useful to recall that x45
n is a root of the following equation (which comes from

plugging equation (5.45) into equation (5.24)):

2πJ x45
n

(x45
n )

2 − 1
= 2πn.
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Table 5.3. O�-shell frequencies for �uctuations about the point-particle solution

Ω(y) Polarizations

AdS y2+1
y2−1

(1,10); (2,9); (1,9)

Fermions
y2+3

2(y2−1)
y2+1

2(y2−1)

(1,7); (1,8); (2,7); (2,8)
(1,5); (1,6); (2,5); (2,6)

CP3
2

y2−1
1

y2−1

(3,7)
(3,5); (3,6); (4,5); (4,6)

Note that this equation has two roots. The convention that we will follow is to assign the pole

to the root with larger magnitude. Hence, if n < 0 then x45
n = J

n −
√

1 + J 2

n2 and if n > 0 then

x45
n = J

n +
√

1 + J 2

n2 . The point to take away from this discussion is that

x45
+n = −x45

−n.

Using this fact, equation (5.47) can be written as follows:

∆(y) =
1

x45
+n − 1

− 1

x45
+n + 1

=
2(

x45
+n

)2 − 1
=
∑
±

1

(x45
n )

2 − 1
.

The o�-shell �uctuation frequency is then obtained by plugging this into equation (5.29) and recalling

that the (4, 5) �uctuation is a CP 3 �uctuation:

Ω45(y) = ∆(y) =
∑
±

1

(x45
n )

2 − 1
.

It follows that the o�-shell frequency for a single �uctuation between q4 and q5 is given by

Ω45(y) =
1

y2 − 1
.

The remaining o�-shell frequencies are now easily computed from equations (5.30,5.31) and

table 5.2. We summarize the o�-shell frequencies in table 5.3.

On-shell Frequencies

To compute the on-shell frequencies, we must compute the locations of the poles by solving equa-

tion (5.24). Recall that �uctuations that connect q5 or q6 to any other sheets are referred to as

light, and all the others are referred to as heavy. A little thought shows that for light �uctuations,

equation (5.24) reduces to
J xn
x2
n − 1

= n,
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Table 5.4. Spectrum of �uctuations about the point-particle solution computed using the world-sheet
(WS) and algebraic curve (AC) formalisms (ωn =

√
n2 + κ2)

WS AC Polarizations

AdS ωn ωn (1,10); (2,9); (1,9)

Fermions
ωn ± κ

2
1
2ω2n

ωn − κ
2

1
2ω2n

(1,7); (1,8); (2,7); (2,8)
(1,5); (1,6); (2,5); (2,6)

CP3 ωn
1
2ω2n ± κ

2

ωn − κ
1
2ω2n − κ

2

(3,7)
(3,5); (3,6); (4,5); (4,6)

and for heavy �uctuations it reduces to

J xn
x2
n − 1

=
n

2
.

Each of these equations admits two solutions. We will assign the location of the pole to the solution

with greater magnitude. Assuming n > 0, the location of the pole for light excitations is then given

by

xn =
J
2n

+

√
J 2

4n2
+ 1,

and the location of the pole for heavy excitations is given by

xn =
J
n

+

√
J 2

n2
+ 1.

Plugging these solutions into the o�-shell frequencies in table 5.3 readily gives the on-shell algebraic

curve frequencies in table 5.4.

5.2.4 Excitation Spectrum

We summarize the spectrum of �uctuations obtained with the algebraic curve and the world-sheet

in table 5.4, the polarizations (heavy/light) indicate which pairs of sheets are connected by a

�uctuation in the AC formalism, and ± indicates that half of the frequencies have a + and the

other half have a −. The algebraic curve frequencies have been rescaled by a factor of κ in order

to compare them to the world-sheet frequencies. The derivations of these frequencies are described

in sections 5.2.2 and 5.2.3. Note that the �uctuations in this table are labeled by polarizations.

Although this notation was only de�ned for the algebraic curve formalism, we �nd that the world-

sheet frequencies match the algebraic curve frequencies up to constant shifts, so it is convenient to

label the world-sheet frequencies with polarizations as well. Also note that both sets of frequencies

agree with the spectrum of �uctuations that were found in the Penrose limit (up to constant shifts)

[52, 58, 57].
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While the constant shifts in the world-sheet spectrum occur with opposite signs and can be

removed by gauge transformations, this is not the case for the algebraic curve frequencies. In

fact, the constant shifts in the algebraic curve frequencies have physical signi�cance, which can

be seen by taking the mode number n = 0. In this limit, the AdS frequencies reduce to κ, the

CP 3 frequencies reduce to 0, and the Fermi frequencies reduce to κ/2. In this sense, the n = 0

algebraic curve frequencies have ��at-space� behavior. This property was also observed for algebraic

curve frequencies computed about solutions in AdS5 × S5 [98]. On the other hand, the world-sheet

frequencies do not have this property. In the next subsection, we will see that the constant shifts in

the algebraic curve spectrum have important implications for the one-loop correction to the classical

energy.

5.2.5 One-Loop Correction to Energy

Using equations (5.32) and (5.33) we see that ωH and ωL are constants for both the world-sheet

and algebraic curve spectra. In particular, for the world-sheet spectrum we �nd that ωH(n) =

ωL(n) = 0. As a result, both the standard summation prescription in equation (5.36) and the

new summation prescription in equation (5.38) give a vanishing one-loop correction to the energy.

On the other hand, for the algebraic curve we �nd that ωH(n) = κ and ωL(n) = −2κ. For these

values of ωH and ωL, the new summation prescription gives a vanishing one-loop correction but the

standard summation prescription gives a linear divergence:

δE1−loop,old = lim
N→∞

−(N + 1/2).

Thus we �nd that both summation prescriptions are consistent with supersymmetry if we use the

spectrum computed from the world-sheet, but only the new summation is consistent with supersym-

metry if we use the spectrum computed from the algebraic curve.

5.3 Spinning String

5.3.1 Classical Solution and Dual Operator

In the global coordinates of equations (5.2) and (5.3), the solution for a circular spinning string with

two equal nonzero spins in CP 3 is

t = κτ, ρ = 0, ξ = π/4, θ1 = θ2 = π/2, ψ = mσ, φ1 = φ2 = 2J τ, (5.48)
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where J = J/4πg and m is the winding number. Using equations (E.2) and (E.7), we can also write

this solution in embedding coordinates (which are useful for doing algebraic curve calculations):

n1 = cosκτ, n2 = sinκτ, n3 = n4 = n5 = 0, z1 = z†4 =
1

2
ei(J τ+mσ/2), z3 = z†2 =

1

2
ei(J τ−mσ/2).

(5.49)

Equations (5.5-5.7) imply that E = 4πgκ, S = 0, Jψ = 0, and Jφ1
= Jφ2

= J . Furthermore, the

Virasoro constraints in equation (5.8) give κ =
√
m2 + 4J 2, or equivalently E = 2J

√
1 + π2m2λ

2J2 . In

the limit J � m, this reduces to the BPS condition E = 2J , so we expect that the dual operator

should have engineering dimension 2J and a �nite but nonzero anomalous dimension. Furthermore,

the dispersion relation has a BMN expansion in the parameter λ/J2, which allows us to make a

prediction for anomalous dimension of the dual operator. Expanding the dispersion relation to �rst

order in the BMN parameter gives

E = 2J +
π2m2λ

2J
+O

(
λ2/J3

)
. (5.50)

To extrapolate this formula to the gauge theory, we must make the replacement λ→ 2λ2. One way

to understand this replacement is by comparing the magnon dispersion relation at strong and weak

't Hooft coupling, as explained in the introduction. We therefore get the following prediction for the

anomalous dimension of the dual gauge theory operator

∆− 2J =
π2λ2m2

J
+O

(
λ2/J2

)
. (5.51)

The higher-order terms in the expansion of the classical string energy in equation (5.50) correspond

to O
(
λ4/J3

)
corrections to the anomalous dimension, but the one-loop correction to the energy

provides O
(
λ2/J2

)
corrections to the anomalous dimension (see equation (5.77)).

The dual gauge theory operator should have the form

O = tr

[(
Z1Z†2

)J (
Z3Z†4

)J
+ ...

]
, (5.52)

where the dots stand for permutations of
(
Z1Z†2

)
and

(
Z3Z†4

)
. Note that the engineering dimension

of the operator is 2J , as expected. When we apply the two loop dilatation operator in equation (D.1)

to the operator in equation (5.52), it reduces to

∆− 2J = λ2
2J∑
i=1

(1− P2i−1,2i+1 + 1− P2i,2i+2) . (5.53)

This is the Hamiltonian for two identical Heisenberg spin chains; one located on the even sites and

the other on the odd sites. If one thinks of Z1 and Z†2 as being up spins and Z3 and Z†4 as being
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down spins, then each spin chain has J up spins and J down spins. In section 5.4, we use the Bethe

ansatz to show that the anomalous dimension is indeed given by equation (5.51).

5.3.2 Spinning String Spectrum from the World-Sheet

Bosonic Spectrum

In this section we calculate the spectrum of bosonic �uctuations about the circular spinning string

in AdS4 × CP 3. Let us begin by adding �uctuations to the solution in equation (5.48):

t = κτ + δt(τ, σ), ηi = δηi(τ, σ), ξ = π/4 + δξ(τ, σ),

θj = π/2 + δθj(τ, σ), ψ = mσ + δψ(τ, σ), φj = 2J τ + δφj(τ, σ),

where i = 1, 2, 3, j = 1, 2, and κ =
√

4J 2 +m2. Expanding the bosonic Lagrangian in equation (5.4)

to quadratic order in the �uctuations gives

4πLbos = m2/2− 1

4
(∂δt)

2
+

3∑
i=1

[
(∂δηi)

2
+ κ2δη2

i

]
+∂
(
δψ̄
)2

+ ∂
(
δξ̄
)2 −m2δξ̄2 + ∂ (δθ+)

2
+ 4J 2 (δθ+)

2
+ ∂ (δθ−)

2

+∂ (δφ+)
2

+ ∂ (δφ−)
2

+ 4J
(
δθ−∂τδψ̄ + δξ̄∂τδφ̄−

)
−2m (δθ−∂σδφ+ + δθ+∂σδφ−) ,

where δψ̄ =
√

2δψ, δξ̄ = 2
√

2δξ, δθ± = 1√
2

(δθ1 ± δθ2), δφ± = 1√
2

(δφ1 ± δφ2), and (∂f)
2

=

− (∂τf)
2

+ (∂σf)
2
. Note that the AdS4 �uctuations are the same as those of the point-particle.

In particular, we see that δt is massless and δηi have mass κ. If we consider Fourier modes of the

form f(τ, σ) = f̃ ei(ωτ+nσ), then the equations of motion for the CP 3 �uctuations reduce to



ω2 − n2 +m2 2iJω 0 0 0 0

−2iJω ω2 − n2 −imn 0 0 0

0 imn ω2 − n2 − 4J 2 0 0 0

0 0 0 ω2 − n2 0 −2iJω

0 0 0 0 ω2 − n2 −imn

0 0 0 2iJω imn ω2 − n2





δ˜̄ξ
δφ̃−

δθ̃+

δ ˜̄ψ
δφ̃+

δθ̃−


= 0.

(5.54)

The �uctuations
(
δ˜̄ξ, δφ̃−, δθ̃+

)
and

(
δ ˜̄ψ, δφ̃+, δθ̃−

)
are decoupled because the matrix in equa-

tion (5.54) is block diagonal. The frequencies are determined by taking the determinant of the
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matrix and �nding its roots. The equation we must solve is

(
n2 − ω2

) (
4J 2 −m2 + n2 − ω2

) (
n4 −m2n2 −

(
4J 2 + 2n2

)
ω2 + ω4

)2
= 0.

This polynomial has 12 roots, which come in opposite signs. Of the six positive roots, three corre-

spond to the �uctuations
(
δ˜̄ξ, δφ̃−, δθ̃+

)
:

ω =
√

4J 2 + n2 −m2,

√
2J 2 + n2 ±

√
4J 4 + n2κ2,

and three correspond to the �uctuations
(
δ ˜̄ψ, δφ̃+, δθ̃−

)
:

ω = |n| ,
√

2J 2 + n2 ±
√

4J 4 + n2κ2.

Note that the solution ω = |n| corresponds to a massless mode, which can be discarded along with

the other massless mode δt. The remaining eight modes are massive and correspond to the transverse

degrees of freedom.

Fermionic Spectrum

In this section we compute the spectrum of fermionic �uctuations about the spinning string solution

in equation (5.48). The pullback of the vielbein and the spin connection in the background of this

classical solution are given by

eτ = R

(
−κ

2
Γ0 +

J√
2

(
Γ6 + Γ8

))
, eσ =

RmΓ4

2
, (5.55)

and

ωτ =
√

2J
(
Γ74 + Γ85 + Γ49 + Γ56

)
, ωσ = m

(
Γ89 + Γ76

)
. (5.56)

Plugging these expressions into equation (5.11) then gives

P+ =
1

2

(
1 +

√
2J
κ

Γ0
(
Γ6 + Γ8

)
+
m

κ
Γ0Γ4Γ11

)
, (5.57)

where we used K = ∂τX
µe0
µ = (R/2)κ. It is straightforward to check that equations (5.13,5.14)

are satis�ed for the spinning string solution. Therefore, by plugging equations (E.10,5.56,5.57) into

equation (5.16) and using the Dirac matrices in appendix E, we obtain an explicit form of the

equation of motion for the fermionic �uctuations. The frequencies are then determined using the

procedure described at the end of section 2.1. In this way, the positive fermionic frequencies are
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given by

ω1 =
√

4J 2 + n2 +
κ

2
,

ω2 =
√

4J 2 + n2 − κ

2
,

ω3 =
1

2

√
κ2 + 4n2,

where ω1 and ω2 have multiplicity two while ω3 has multiplicity four, for a total of 8 fermionic

frequencies. In obtaining these expressions, equation 5.61 is useful.

5.3.3 Spinning String Algebraic Curve

Classical Quasi-momenta

Since the spinning string has the same motion in AdS4 as the point particle, the AdS4 quasi-momenta

have the same structure and are given by

q1(x) = q2(x) =
2πκx

x2 − 1
,

where κ =
√

4J 2 +m2 for the spinning string. Therefore, we just have to �nd the CP 3 quasi-

momenta. For the classical solution in equation (5.49), one �nds that the connection in equa-

tion (5.18) is given by

(j0)CP 3 = iJ


1 e−imσ 0 0

eimσ 1 0 0

0 0 −1 −e−imσ

0 0 −eimσ −1

 ,

(j1)CP 3 = im


1 0 e−2iJ τ 0

0 −1 0 −e−2iJ τ

e2iJ τ 0 1 0

0 −e2iJ τ 0 −1

 .

Using equation (5.19), the CP 3 part of the monodromy matrix is given by

Λ(x) = P exp
1

x2 − 1

∫ 2π

0

dσJ(σ, x),
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where

J(σ, x) =


i (J x+m/2) iJ xe−imσ im/2 0

iJ xeimσ i (J x−m/2) 0 −im/2

im/2 0 −i (J x−m/2) −iJ xe−imσ

0 −im/2 −iJ xeimσ −i (J x+m/2)

 . (5.58)

and we set τ = 0 since the eigenvalues of Λ(x) are independent of τ . At this point, it is useful to

observe that under a gauge transformation of the form J(σ, x)→ g−1(σ)J(σ, x)g(σ)−g−1(σ)∂σg(σ),

the monodromy matrix transforms as Λ(x)→ g−1(0)Λ (x) g(2π). If g(0) = ±g(2π), then the eigen-

values of Λ(x) are gauge invariant up to a sign. Furthermore, if we can choose g(σ) such that the

σ-dependence of J(σ, x) is removed, then the monodromy matrix would be trivial to evaluate since

path-ordering would not be an issue. This can be accomplished using the gauge transformation

g (σ) = diag(e−imσ/2, eimσ/2, e−imσ/2, eimσ/2) [102]. Under this transformation, J(σ, x) becomes

J(σ, x)→ J(0, x) + i
m

2
diag[1,−1, 1,−1]. (5.59)

When m is odd, g(0) = −g(2π) so we must supplement this gauge transformation with Λ(x) →

−Λ(x).

Diagonalizing Λ(x) and comparing to equation (5.21) gives

p̃1 = 2πx
x2−1 [K(x) +K(1/x)]− πm,

p̃2 = 2πx
x2−1 [K(x)−K(1/x)]− πm,

p̃3 = −p̃2, p̃4 = −p̃1,

(5.60)

where K(x) =
√
J 2 +m2x2/4. In deriving equation (5.60), we made use of the following identity:

√
A±
√
B =

1

2

(√
2A+ 2

√
A2 −B ±

√
2A− 2

√
A2 −B

)
. (5.61)

Furthermore, we subtracted πm from p̃1 and p̃2 and added πm to p̃3 and p̃4 so that the quasi-

momenta are O(1/x) in the large-x limit. This also implements the transformation Λ(x) → −Λ(x)

when m is odd. The quasi-momenta q3(x), q4(x), and q5(x) are then given by plugging equa-

tion (5.60) into equation (5.22)

q3(x) = 4πx
x2−1K(x)− 2πm,

q4(x) = −q3(1/x)− 2πm = 4πx
x2−1K(1/x),

q5(x) = 0.

(5.62)

From these quasi-momenta, we see that the spinning string algebraic curve has a cut between q3
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Figure 5.3. Classical algebraic curve for the circular spinning string in CP 3.

and q8 and between q4 and q7 (by inversion symmetry). The classical algebraic curve is depicted in

�gure (5.3).

O�-shell Frequencies

Since q1 and q5 have the same structure as they did for the point-particle solution, a little thought

shows that Ω15(y) should be the same as we found for the point-particle. In particular,

Ω15(y) =
1

2

y2 + 1

y2 − 1
.

From equations (5.30,5.31) and table 5.2, it follows that the only o�-shell frequency we need to

compute is Ω45(x).

Let us suppose that we have two �uctuations between q4 and q5; one with mode number +n

and the other with mode number −n. These �uctuations correspond to adding poles to the classical

algebraic curve. The locations of the poles will be denoted x45
±n. Looking at equation (5.62), we

see that q4 is proportional to a square root coming from K(1/x). We therefore expect that δq4(x)

should be proportional to ∂xK(1/x) ∝ 1/K(1/x) and make the following ansatz for the �uctuations:

δq1(x, y) =
α+(y)

x+ 1
+
α−(y)

x− 1
, δq2(x, y) = −δq1(1/x, y),

δq5(x, y) =
∑
±

α(x)

x− x45
n

+
∑
±

α(1/x)

1/x− x45
n

,

δq4(x, y) = h(x, y)/K(1/x), δq3(x, y) = −δq4(1/x, y),

where
∑
± stands for the sum over positive and negative mode number, y is a collective coordinate

for x45
±n, α(x) is de�ned in equation (5.28), and α±(y) are some functions to be determined. Note



61

that this ansatz is consistent with the inversion symmetry in equation (5.26). We also make the

following ansatz for h(x, y):

h(x, y) =
α+(y)K(1)

x+ 1
+
α−(y)K(1)

x− 1
−
∑
±

α(x45
n )K(1/x45

n )

x− x45
n

.

For this choice of h(x, y), the residue of δq4 at x = x45
±n agrees with equation (5.28) and the residues

of all the �uctuations are synchronized x = ±1 according to equation (5.25). To compute the

anomalous energy shift, we must look at the large-x behavior of the �uctuations and compare it to

equation (5.27). At large x, δq2 and δq4 are given by

lim
x→∞

δq2(x, y) ∼ α−(y)− α+(y) +
1

x
(α+(y) + α−(y)) ,

lim
x→∞

δq4(x, y) ∼ 1

J x

[
K(1) (α+(y) + α−(y))−

∑
±
α(x45

n )K(1/x45
n )

]
.

where we neglect terms of O(x−2). Comparing the asymptotic forms of δq2 and δq4 with equa-

tion (5.27) gives

α+(y) = α−(y) =
∆(y)

4g
=

1

κ

[
−J
g

+
∑
±
α
(
x45
n

)
K
(
1/x45

n

)]
,

where κ = 2K(1). Recalling that the (4,5) �uctuation is a CP 3 �uctuation, equation (5.29) implies

that

Ω45(y) =
1

K(1)

[∑
±

(
x45
n

)2
K(1/x45

n )

(x45
n )

2 − 1

]
− 2J
K(1)

.

This implies that for a single �uctuation

Ω45(y) =
2

κ

y2K(1/y)

y2 − 1
− 2J

κ
.

Now it is trivial to write down all the other o�-shell frequencies using the relations in equa-

tions (5.30,5.31) and table 5.2. The o�-shell frequencies are summarized in table 5.5.

On-Shell Frequencies

The structure of this section is as follows: for each row of table 5.5, we �nd the solutions of the

equation in the second column, plug the solution with greatest magnitude into the o�-shell fre-

quency in the �rst column, and simplify the resulting expression to obtain the on-shell algebraic

curve frequency in the corresponding row in table 5.6. We use the following notation for on-shell

frequencies:

ωn = Ω (xn) .
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Table 5.5. O�-shell frequencies for the �uctuations about the spinning string solution

Ω(y) Pole Location Polarizations

y2+1
y2−1

2κxn = n
(
x2n − 1

) (1,10); (2,9)
(1,9)

1
2
y2+1
y2−1

+ 2
κ

(
y2K(1/y)

y2−1
− J

)
1
2
y2+1
y2−1

+ 2
κ
K(y)

y2−1
1
2
y2+1
y2−1

xn (κ+ 2K(1/xn)) = n
(
x2n − 1

)
xn (κ+ 2K(xn)) = (n+m)

(
x2n − 1

)
κxn = n

(
x2n − 1

)
(1,7); (2,7)

(1,8); (2,8)
(1,5); (1,6);
(2,5); (2,6)

2
κ

[
y

y2−1
(K(y)/y + yK(1/y))− J

]
2
κ
K(y)

y2−1

2
κ

(
y2K(1/y)

y2−1
− J

) 2xn (K(xn) +K(1/xn)) = (n+m)
(
x2n − 1

)
2xnK(xn) = (n+m)

(
x2n − 1

)
2xnK(1/xn) = n

(
x2n − 1

) (3,7)
(3,5); (3,6)
(4,5); (4,6)

• (1,9); (2,9); (1,10)

The equation for the pole location implies that 1
x2
n−1 = n

2κxn
. Plugging this into the formula

for the o�-shell frequency implies that

ωn =
n

2κ
(xn + 1/xn) . (5.63)

Solving for the pole location gives

xn =
1

n

(
κ±

√
κ2 + n2

)
.

Choosing solution with larger magnitude and plugging it into equation (5.63) then leads to

ωn =

√
1 +

n2

κ2
.

• (1,7); (2,7)

The equation for the pole location implies that xnK(1/xn)
x2
n−1 = n

2 −
κxn

2(x2
n−1) . Plugging this into

the o�-shell frequency and doing a little algebra gives

ωn =
n

κ
xn −

2J
κ
− 1/2. (5.64)

Solving for the pole location gives

xn =
1

n

(
κ±

√
4J 2 + n2

)
.
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Taking the solution with larger magnitude and plugging it onto equation (5.64) then gives

1

κ

(√
4J 2 + n2 − 2J

)
+

1

2
.

• (1,8); (2,8)

From the equation for the pole location we �nd K(xn)
x2
n−1 = 1

2xn
(n+m)− κ

2(x2
n−1) . Plugging this

into the o�-shell frequency and doing a little algebra gives

ωn =
n+m

κxn
+ 1/2. (5.65)

The solutions to the equation for the pole location are

xn =
(m+ n)

n(2m+ n)

(
κ±

√
4J 2 + (m+ n)2

)
.

Taking the solution with larger magnitude and plugging it into equation (5.65) gives

ωn =
n(2m+ n)

κ

1

κ+
√

4J 2 + (m+ n)2
+ 1/2.

Finally, multiplying the numerator and denominator in �rst term by κ −
√

4J 2 + (m+ n)2

and doing a little more algebra gives

ωn =
1

κ

√
4J 2 + (m+ n)

2 − 1

2
.

• (1,5); (1,6); (2,5); (2,6)

This is very similar to the calculation for 19, 29, 1 10, so we omit it.

• (3,7)

From the equation for the pole location, we have 2xn

x2
n−1 = n+m

K(xn)+K(1/xn) . Plugging this into

the o�-shell frequency gives

ωn =
1

κ
[(n+m)β − 2J ] , β =

1
xn
K(xn) + xnK(1/xn)

K(xn) +K(1/xn)
. (5.66)

Let us focus on the term β. Multiplying the numerator and denominator by K(xn)−K(1/xn)

gives

β =
1
xn
K(xn)2 − xnK(1/xn)2 + (xn − 1/xn)K(xn)K(1/xn)

m2(xn − 1/xn)(xn + 1/xn)/4
. (5.67)
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By squaring the equation for the pole location, we �nd that

K(xn)K(1/xn) =
1

2

[
1

4
(n+m)

2
(xn − 1/xn)2 −K(xn)2 −K(1/xn)2

]
.

Plugging this into equation (5.67) and doing some algebra gives

β =
1
2m

2
[
3(xn − 1/xn) + 1/x3

n − x3
n

]
+ 8J 2(1/xn − xn) + 1

2 (n+m)
2

(xn − 1/xn)3

m2(xn − 1/xn)(xn + 1/xn)
.

Noting that x3 − 1/x3 =
(
x2 + 1/x2 + 1

)
(x− 1/x) and doing some more algebra then gives

β =
−8J 2 + n

(
n
2 +m

)
(xn − 1/xn)

2

m2(xn + 1/xn)
.

Noting that (x− 1/x)2 = (x+ 1/x)2 − 4 �nally gives

β =
n (n/2 +m)

m2
(x+ 1/x)− 4n (n/2 +m) + 8J 2

m2 (x+ 1/x)
.

Combining this with equation (5.66), we �nd

ωn =
1

κ

n+m

m2

 n(m+ n/2)(xn + 1/xn)

−
(
8J 2 + 2n(2m+ n)

)
(xn + 1/xn)−1

− 2J

 . (5.68)

The solutions for the pole location are

xn = ± 1

n(2m+ n)

 8J 2(m+ n)2 + n(2m+ n)
(
2m2 + n(2m+ n)

)
±4|m+ n|

√
(4J 2 + n(2m+ n)) (J 2(m+ n)2 +m2n(2m+ n)/4)

1/2

.

Taking the solution with + sign out front, we see that for either choice of sign inside square

root we have

xn + 1/xn =
2(m+ n)

n(2m+ n)

√
4J 2 + n(2m+ n).

Plugging this into equation (5.68) and doing a little more algebra �nally gives

ωn =
1

κ

(√
4J 2 −m2 + (m+ n)2 − 2J

)
.

• (3,5); (3,6)

The equation for the pole location implies that K(xn)
x2
n−1 = (n+m) 1

2xn
. Using this in the formula

for the o�-shell frequency leads to

ωn =
1

κ
(n+m)

1

xn
. (5.69)
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Solving the equation for the pole location gives

xn = ± m+ n√
2J 2 + (m+ n)

2 ±
√

4J 4 + 4κ2 (m+ n)
2

.

The solution with larger magnitude is the one with relative − sign in denominator. Taking the

solution with greater magnitude and + sign out front and plugging this into equation (5.69)

gives

ωn =
1

κ

√
2J 2 + (m+ n)

2 −
√

4J 4 + (m+ n)
2
κ2.

• (4,5); (4,6)

Plugging the equation for the pole location into the o�-shell frequency gives

ωn =
n

κ
xn −

2J
κ
. (5.70)

The solutions for the pole location are

xn = ± 1

n

√
2J 2 + n2 ±

√
4J 4 + n2κ2.

If we choose the solution with greater magnitude and plug it into equation (5.70), we have

1

κ

(√
2J 2 + n2 +

√
4J 4 + n2κ2 − 2J

)
.

5.3.4 Excitation Spectrum

We summarize the spectrum of �uctuations about the spinning string in table 5.6, the notation

for the frequencies is given in table 5.7 and the polarizations (heavy/light) indicate which pairs of

sheets are connected by a �uctuation in the AC formalism. The algebraic curve frequencies have been

rescaled by a factor of κ in order to compare them to the world-sheet frequencies. The derivations

are presented in sections 5.3.2 and 5.3.3. We �nd that the algebraic curve spectrum matches the

world-sheet spectrum up to constant shifts and shifts in mode number. Furthermore, if we set the

winding number m = 0 and take J → J /2, we �nd that all the frequencies in table 5.6 reduce

to the corresponding frequencies in table 5.4, which is expected since setting the winding number

to zero reduces the string to a point-particle.3 This is an important check of our results for the

spinning string. On the other hand, if we set the mode number n = 0, we �nd that the algebraic

curve frequencies once again have �at-space behavior, i.e., the AdS frequencies reduce to κ, the CP 3

frequencies reduce to 0, and the Fermi frequencies reduce to κ/2.

3In showing that the (3,5), (3,6), (4,5), and (4,6) frequencies in table 5.6 reduce to those in table 5.4, the identity
in equation (5.61) is useful.
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Table 5.6. Spectrum of �uctuations about the spinning string solution computed using the world-
sheet (WS) and algebraic curve (AC) formalisms

WS AC Polarizations

AdS ωAn ωAn (1,10); (2,9); (1,9)

Fermions
ωFn + κ

2
ωFn − κ

2
ωA2n/2

ωFn + κ
2 − 2J

ωFm+n − κ
2

ωA2n/2

(1,7); (2,7)
(1,8); (2,8)
(1,5); (1,6); (2,5); (2,6)

CP 3

ωCn
ω
C−
n

ω
C+
n

ωCm+n − 2J
ω
C−
m+n

ω
C+
n − 2J

(3,7)
(3,5); (3,6)
(4,5); (4,6)

Table 5.7. Notation for spinning string frequencies

eigenmodes notation√
2J 2 + n2 ±

√
4J 4 + n2κ2

√
4J 2 + n2 −m2

ω
C±
n

ωCn
√
n2 + κ2 ωAn
√

4J 2 + n2 ωFn

Finally, we would like to point out that both the algebraic curve and world-sheet spectra have

instabilities when |m| ≥ 2. For example if we set m = 2, then the algebraic curve frequencies labeled

by (3,5) and (3,6) become imaginary for n = −3 and n = −1 and the corresponding world-sheet

frequencies become imaginary for n = ±1.4

5.3.5 One-Loop Correction to the Energy

For the spinning string, ωH(n) and ωL(n) de�ned in equations (5.32) and (5.33) are nontrivial:

ωWS
H (n) = 3ωAn + ωCn − 4ωFn ,

ωWS
L (n) = 2ωC+

n + 2ωC−n − 2ωA2n,

ωACH (n) = 3ωAn + ωCn+m − 2ωFn − 2ωFn+m + 2J ,

ωACL (n) = 2ωC+
n + 2ω

C−
n+m − 2ωA2n − 4J ,

where WS stands for world-sheet, AC stands for algebraic curve, and we used the notation in

table 5.7.

4We would like to thank Victor Mikhaylov for showing us his unpublished notes on the spinning string algebraic
curve [102]. In these notes, he also derives the algebraic curve for the spinning string and uses it to compute
the �uctuation frequencies, however the asymptotics that he imposes on the algebraic curve are di�erent from the
asymptotics we use in equation (5.27). The di�erences occur in the signs of several terms on the right-hand side of
equation (5.27). As a result, we obtain frequencies with di�erent constant shifts.
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To compute the one-loop correction, we must evaluate an in�nite sum of the form

δE1−loop =

∞∑
n=−∞

Ω (J , n,m) . (5.71)

Note that the frequency Ω in this equation should not be confused with the o�-shell frequencies

de�ned in section 5.1. Since we have two summation prescriptions (the old one in equation (5.36)

and the new one in equation (5.38)) and two sets of frequencies (world-sheet and algebraic curve)

there are four choices for Ω (J , n,m):

Ωold,WS =
1

2κ

(
ωWS
H (n) + ωWS

L (n)
)
, (5.72a)

Ωnew,WS =
1

2κ

(
2ωWS

H (2n) + ωWS
L (n)

)
, (5.72b)

Ωold,AC =
1

2κ

(
ωACH (n) + ωACL (n)

)
, (5.72c)

Ωnew,AC =
1

2κ

(
2ωACH (2n) + ωACL (n)

)
, (5.72d)

where old/new refers to the summation prescription.

To gain further insight, let us look at the summands in equation (5.72) in two limits: the large-n

limit and the large-J limit. By looking at the large-n limit, we will learn about the convergence

properties of the one-loop corrections, and by looking at the large-J limit and evaluating the sums

over n using ζ-function regularization, we will be able to compute the J−2n contributions to the

one-loop corrections. These are referred to as the analytic terms. In general there can also be

terms proportional to J−2n+1, which are referred to as the non-analytic terms, and exponentially

suppressed terms, i.e., terms that scale like e−J . These terms are subdominant compared to the

analytic terms in the large-J limit.

Large-n Limit

Note that in all four cases Ω (J ,−n,m) = Ω (J , n,−m), so the one-loop correction in equation (5.71)

can be written as

δE1−loop = Ω (J , 0,m) +

∞∑
n=1

(Ω (J , n,m) + Ω (J , n,−m)) . (5.73)

The large-n limit of Ω (J , n,m) + Ω (J , n,−m) for the four choices of Ω (J , n,m) is summarized in

table 5.8.

From this table we see that all one-loop corrections are free of quadratic and logarithmic diver-

gences because terms of order n and order 1/n cancel out in the large-n limit. At the same time,

we �nd a linear divergence when we apply the old summation prescription to the algebraic curve
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Table 5.8. Large-n limit of Ω (J , n,m) + Ω (J , n,−m) for the old summation (where Ω (J , n,m) =
ωH(n) + ωL(n)) and the new summation (where Ω (J , n,m) = 2ωH(2n) + ωL(n)) applied to the
world-sheet (WS) spectrum and algebraic curve (AC) spectrum

WS AC

Old Sum −m
2(5m2/4+3J 2)

2κn3 +O
(
n−5

)
− 2J

κ −
m2(11m2/4+5J 2)

2κn3 +O
(
n−4

)
New Sum − m4

4κn3 +O
(
n−5

) m2(J 2−5m2/4)
2κn3 +O

(
n−4

)

spectrum since the summand has a constant term. In all other cases however, the summands are at

most O(n−3), which suggests that the one-loop corrections are convergent. Hence we �nd that both

summation prescriptions give �nite one-loop corrections when applied to the world-sheet spectrum,

but only the new summation prescription gives a �nite result when applied to the algebraic curve

spectrum. This is the same thing we found for the point-particle. The new feature of the spinning

string is that the one-loop correction is nonzero and therefore provides a nontrivial prediction to be

compared with the dual gauge theory.

Large-J Limit

In the previous section we found that when Ω (J , n,m) = Ωold,AC (J , n,m), the one-loop correction

is divergent but for the other three cases in equation (5.72), it is convergent. This means we have

three possible predictions for the one-loop correction, however by expanding the summands in the

large-J limit and evaluating the sums over n at each order of J using ζ-function regularization, we

�nd that all three cases give the same result. The technique of ζ-function regularization is convenient

for computing the analytic terms in the large-J expansion of one-loop corrections but does not

capture nonanalytic and exponentially suppressed terms [103]. We now describe this procedure in

more detail.

If we expand in the summand in the large-J limit, only even powers of J appear:

∞∑
n=−∞

Ω (J , n,m) =

∞∑
k=1

J−2k
∞∑

n=−∞
Ωk(n,m). (5.74)

For each power of J , the sum over n can be written as follows

∞∑
n=−∞

Ωk(n,m) = Ωk(0,m) +

∞∑
n=1

(Ωk(n,m) + Ωk(n,−m)) . (5.75)

If we expand Ωk(n,m) in the limit n→∞, we �nd that it splits into two pieces:

Ωk(n,m) =

2k∑
j=−1

ck,j(m)nj + Ω̃k(n,m),
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where Ω̃k(n,m) is O
(
n−2

)
. We will refer to Ω̃k(n,m) as the �nite piece because it converges when

summed over n, and
∑2k
j=−1 ck,j(m)nj as the divergent piece because it diverges when summed over

n. Furthermore, we �nd that Ω̃k(n,m) = Ω̃k(n,−m) and ck,j(m) ∝ m2k−j . Hence, the odd powers

of n cancel out of the divergent piece when we add Ωk(n,m) to Ωk(n,−m) and we get

Ωk(n,m) + Ωk(n,−m) = 2

 k∑
j=0

ck,2j(m)n2j + Ω̃k(n,m)

 .
Noting that ζ(0) = −1/2 and ζ (2j) = 0 for j > 0, we see that only the constant term in the

divergent piece contributes if we evaluate the sum over n using ζ-function regularization:

∞∑
n=1

(Ωk(n,m) + Ωk(n,−m))→ −ck,0 + 2

∞∑
n=1

Ω̃k(n,m).

Combining this with equations (5.74) and (5.75) then gives

δE1−loop =

∞∑
k=1

J−2k

[
Ωk(0,m)− ck,0 + 2

∞∑
n=1

Ω̃k(n,m)

]
.

Using the procedure described above, we obtain a single prediction for the one-loop correction

to the energy of the spinning string:

δE1−loop =
1

2J 2

[
m2/4 +

∞∑
n=1

(
n
(√

n2 −m2 − n
)

+m2/2
)]

(5.76)

− 1

8J 4

3m4/16 +

∞∑
n=1

 3m4/8− n4

+n
√
n2 −m2

(
m2/2 + n2

)
+O

(
1

J 6

)
.

In showing that equation (5.71) gives this prediction when Ω(J , n,m) = Ωnew,AC(J , n,m), it is

convenient to shift the index of summation as follows: Ωnew,AC(J , n,m)→ Ωnew,AC(J , n−m,m).

Since the sum is convergent, this shift does not change its value. Recalling that J = J/
√

2π2λ and

making the replacement λ → 2λ2 in equation (5.76) then gives a prediction for the 1/J correction

to the anomalous dimension of the gauge theory operator in equation (5.52):

∆− 2J =

(
π2λ2m2

J
+ ...

)
+

1

J

(
2aπ2λ2

J
+ ...

)
, (5.77)

where

a = m2/4 +

∞∑
n=1

(
n
(√

n2 −m2 − n
)

+m2/2
)
.
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Note that the �rst term in equation (5.77) came from expanding the classical dispersion relation

for the spinning string to �rst order in the BMN parameter λ/J2 and then making the replacement

λ→ 2λ2.

5.4 Comparison with Bethe Ansatz

In this section we verify equation (5.77) from the gauge theory side by computing the leading two

contributions to the anomalous dimension of the operator dual to the spinning string in AdS4×CP 3.

First let us consider the operator dual to the SU(2) spinning string in AdS5×S5 which has the form

O = tr
[
ZJW J + permutations

]
, (5.78)

where Z andW are complex scalar �elds inN = 4 SYM. In this sector, the one-loop planar dilatation

operator corresponds to the Hamiltonian of a Heisenberg spin chain of length 2J [7]:

∆− 2J =
λ

8π2

2J∑
i=1

(1− Pi,i+1) . (5.79)

The dilatation operator can be diagonalized by solving a set of Bethe ansatz equations [8]:

(
uj + i/2

uj − i/2

)2J

=

J∏
k 6=j

uj − uk + i

uj − uk − i
, (5.80a)

J∏
j=1

(
uj + i/2

uj − i/2

)
= 1 =⇒

J∑
j=1

ln

(
uj + i/2

uj − i/2

)
= −2πmi, (5.80b)

∆− 2J =
λ

8π2

J∑
j=1

1

u2
j + 1/4

, (5.80c)

where m is an integer which is introduced after taking the log of both sides of equation (5.80b). In

the large-J limit, the Bethe equations simplify and can be solved using the methods described in

[78, 104, 95]. In particular, [95] found that the anomalous dimension is given by

∆− 2J =

(
λm2

4J
+ . . .

)
+

1

J

(
aλ

8J
+ . . .

)
, (5.81)

a = m2 +

∞∑
n=1

(
n
√
n2 − 4m2 − n2 + 2m2

)
.

Now let us turn to the operator in equation (5.52). In this case, the two-loop planar dilatation

operator is given by equation (5.53). As explained in section 5.3.1, this corresponds to the Hamilto-

nian for two identical Heisenberg spin chains of length 2J which are only coupled by a momentum
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constraint. With this in mind, the Bethe equations are

(
uj + i/2

uj − i/2

)2J

=

J∏
k 6=j

uj − uk + i

uj − uk − i
, (5.82a)

 J∏
j=1

(
uj + i/2

uj − i/2

)2

= 1 =⇒
J∑
j=1

ln

(
uj + i/2

uj − i/2

)
= −πmi, (5.82b)

∆− 2J = 2λ2
J∑
j=1

1

u2
j + 1/4

. (5.82c)

Comparing both sets of Bethe equations we see that equation (5.80) can be mapped into equa-

tion (5.82) by making the following relabeling:

m→ m/2, λ→ 16π2λ2.

Making these substitutions in equation (5.81) gives equation (5.77), which we obtained using string

theory.

5.5 Conclusions

In this chapter, we studied various methods for computing one-loop corrections to the energies of

classical solutions to type IIA string theory in AdS4 × CP 3. Previous studies which computed the

one-loop correction to the folded spinning string in AdS4 found that agreement with the all-loop

AdS4/CFT3 Bethe ansatz is not achieved using the standard summation prescription that was used

for type IIB string theory in AdS5×S5. Rather, a new summation prescription seems to be required,

which distinguishes between so-called light modes and heavy modes. We extended this investigation

by analyzing the one-loop correction to the energy of a point-particle and a circular spinning string,

both of which are located at the spatial origin of AdS4 and have nontrivial support in CP 3. The

spinning string considered in this chapter has two equal nonzero spins in CP 3 and is the analogue

of the SU(2) spinning string in AdS5 × S5. The point-particle and spinning string are important

examples to analyze because they have trivial support in AdS4 and therefore avoid the κ-symmetry

issues that arise for solutions which purely have support in AdS4, such as the folded spinning string.

We used two techniques to compute the spectrum of �uctuations about these solutions. One

technique, called the world-sheet approach, involves expanding the GS action to quadratic order

in the �uctuations and computing the normal modes of the resulting action. The other technique,

called the algebraic curve approach, involves computing the algebraic curve for the classical solutions

and then carrying out semiclassical quantization. For the point-particle, we found that the world-

sheet and algebraic curve �uctuation frequencies match the spectrum of �uctuations obtained in the
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Penrose limit up to constant shifts. Furthermore, for the spinning string we found that the algebraic

curve spectrum matches the world-sheet spectrum up to constant shifts and shifts in mode number.

In particular, the AC and WS frequencies for the spinning string both reduce to the corresponding

point-particle frequencies when the winding number is set to zero and become unstable when the

winding number |m| ≥ 2. This is familiar from the SU(2) spinning string in AdS5×S5 [92, 4], which

has instabilities for |m| ≥ 1.

Although the algebraic curve spectrum looks very similar to the world-sheet spectrum, it exhibits

some important di�erences. For example, we �nd that the algebraic curve frequencies have �at-

space behavior when the mode number n = 0. This was also found for algebraic curve frequencies

in AdS5 × S5. More importantly, if we compute one-loop corrections by adding up the algebraic

curve frequencies using the standard summation prescription that was used in AdS5 × S5, then

we get a linear divergence. This is inconsistent with supersymmetry because we expect the one-

loop correction to vanish for the point-particle and to be nonzero but �nite for the spinning string.

We propose a new summation prescription in equation (5.38) which gives precisely these results

when applied both to the algebraic curve spectrum and the world-sheet spectrum. This summation

prescription has certain similarities to the one that was proposed in [89]. In particular, it also gives a

one-loop correction to the folded spinning string which agrees with the all-loop Bethe ansatz. At the

same time, it has some important di�erences which are described in section 2.3. For example, we �nd

that our summation prescription generally gives more well-de�ned results for one-loop corrections.

In principle we can get three predictions for the one-loop correction to the spinning string (one

coming from the algebraic curve and two coming from the world-sheet, because the world-sheet gives

�nite results using both the old summation prescription in equation (5.36) and the new summation

prescription in equation (5.38)), but by expanding the one-loop corrections in the large-J limit

(where J = J/
√

2λπ and J is the spin) and evaluating the sum at each order in J using ζ-

function regularization, we �nd that all three cases actually give the same result. This is very

nontrivial considering that our new summation prescription looks very di�erent than the old one.

Furthermore, we show that this result agrees with the predictions of the Bethe ansatz. Thus, while

the old summation prescription only seems to work when applied to the world-sheet frequencies

of solutions with trivial support in AdS4, our summation prescription works more generally. Fully

understanding why the old summation prescription breaks down for solutions with nontrivial support

in AdS4 warrants further study.

It would be useful to con�rm our results using methods more rigorous than ζ-function regular-

ization. This can be done using the contour integral techniques developed in [105], which can also

be used to compute 1/J 2n+1 and exponentially suppressed terms in the large-J expansion of the

one-loop corrections. It would also be interesting to evaluate the one-loop correction to the spinning

string energy in a way that does not rely on summation prescriptions. The basic idea would be
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to identify the one-loop correction with a normal ordering constant which can be then determined

by demanding that the quantum generators of certain symmetries preserved by the classical solu-

tion have the right algebra. Something along these lines was done for the type IIB superstring in

plane-wave background in [106]. Ultimately, fully understanding how to compute one-loop correc-

tions to type IIA string theory in AdS4 × CP 3 may lead to important tests of the AdS4/CFT3

correspondence.
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Appendix A

Dirac Algebras

A.1 Three-dimensional Dirac Algebra

The three-dimensional Dirac algebra is de�ned by

{γµ, γv} = 2gµν .

We chose the following representation

γ0 = iσ2, γ1 = σ1, γ2 = σ3,

where the σ's are the Pauli matrices

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (A.1)

The following relations are useful

[γµ, γv] = 2εµνργ
ρ,

γµγνγµ = −γν ,

γµγµ = 3,

(γ ·D) (γ ·D) = D2 +
1

2
γµνFµν ,Ψ1Ψ2 = Ψ2Ψ1,

Ψ1ΓIJΨ2 = −Ψ2ΓIJΨ1,

Ψ1ΓIJKLΨ2 = Ψ2ΓIJKLΨ1,

Ψ1γ
µ1...µmΨ2 = (−1)

m
Ψ2γ

µm...µ1Ψ1.
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A.2 Spin(8) Dirac Algebra

The Spin(8) Dirac algebra is de�ned by

{
γI , γJ

}
= 2δIJ .

We chose the following representation (from reference [107])

γI =

 0 ΓI
AȦ(

ΓI
)T
ȦA

0

 .

The Dirac algebra is satisfy if Ḃ

ΓI
AȦ

(
ΓJ
)T
ȦB

+ ΓJ
AȦ

(
ΓI
)T
ȦB

= 2δIJδAB .

A speci�c set of matrices ΓI
AȦ

that satisfy these equations, expressed as direct products of 2 × 2

blocks, are

Γ1 = iσ2 × iσ2 × iσ2, Γ2 = I × σ1 × iσ2,

Γ3 = I × σ3 × iσ2, Γ4 = σ1 × iσ2 × I,

Γ5 = σ3 × iσ2 × I, Γ6 = iσ2 × I × σ1,

Γ7 = iσ2 × I × σ3, Γ8 = I × I × I.

Some useful identities

[
ΓIJ ,ΓLM

]
= 2δIMΓJL − 2δILΓJM + 2δJLΓIM − 2δJMΓIL,

ΓIJ = ΓI
(
ΓJ
)T − δIJ ,

ΓJΓLMNO
(
ΓJ
)T

= 0,

ΓJΓIK
(
ΓJ
)T

= 4ΓIK ,

ΓIJΓKLM = ΓIJKLM + 6ΓNOP δ
[IJ]
NQδ

[KLM ]
QOP + 6ΓNδ

[KLM ]
[JI]N ,

ΓIJΓJ = 7ΓI ,

ΓIJΓLMΓJ = 3ΓLMΓI − 8ΓLδIM + 8ΓMδIL,

ΓIJΓLMNOΓJ = −ΓLMNOΓI ,

ΓIΓLMN = ΓILMN + 3ΓM
′N ′δ

[LMN ]
IM ′N ′ .
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A.3 Ten-dimensional Dirac Algebra

We use the following representation of the 10d Dirac matrices (
{

ΓA,ΓB
}

= 2ηAB):

Γ0 = iγ0 ⊗ I⊗ I⊗ I, Γ1 = iγ1 ⊗ I⊗ I⊗ I Γ2 = iγ2 ⊗ I⊗ I⊗ I,

Γ3 = iγ3 ⊗ I⊗ I⊗ I, Γ4 = γ5 ⊗ σ2 ⊗ I⊗ σ1, Γ5 = γ5 ⊗ σ2 ⊗ I⊗ σ3,

Γ6 = γ5 ⊗ σ1 ⊗ σ2 ⊗ I, Γ7 = γ5 ⊗ σ3 ⊗ σ2 ⊗ I, Γ8 = γ5 ⊗ I⊗ σ1 ⊗ σ2,

Γ9 = γ5 ⊗ I⊗ σ3 ⊗ σ2,

where I is the 2× 2 identity matrix, the γ′s are 4d Dirac matrices given by

γ0 = σ1 ⊗ I, γ1 = iσ2 ⊗ σ1,

γ2 = iσ2 ⊗ σ2, γ3 = iσ2 ⊗ σ3,

γ5 = iγ0γ1γ2γ3,

and the Pauli matrices are given by equation (A.1).

Finally, we de�ne the 10d chirality operator as

Γ11 = Γ0Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9.
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Appendix B

Poincaré and Conformal
Supersymmetries of the BL SO(4)
Theory

In this appendix we veri�ed in complete detail the Poincaré and conformal supersymmetries of the

BL SO(4) theory.

The BL SO(4) Lagrangian is given by

L = −1

2

(
Dµφ

I
)
a

(
DµφI

)
a

+
i

2
ψ
A

a γ
µ
(
Dµψ

A
)
a

+ ic1ε
abcdψ

A

a

(
ΓIJ

)
AB

ψBb φ
I
cφ
J
d − c2εabcdεefgdφIaφJb φKc φKg φIeφJf

+ c3ε
µνλεabcd

(
Aµab∂νAλcd +

2

3
AµabAνcgAλgd

)
,

where the ci, i = 1, 2, 3, 4 will be �xed by supersymmetry. The �eld content and the index notation

are given in tables 2.1 and 2.2. The supersymmetry transformations are

δφIa = iψ
A

a ΓI
AȦ
εȦ = iεȦΓI

ȦA
ψAa, (B.1)

δψAa = −γµ
(
Dµφ

I
)
a

ΓI
AȦ
εȦ + c4ε

abcd
(
ΓIJK

)
AȦ

εȦφIbφ
J
c φ

K
d − φIaΓI

AȦ
ηȦ, (B.2)

δAµab = iεabcdψ
A

c γµΓI
AȦ
εȦφId, (B.3)

and

εȦ(x) = εȦ0 + γµxµη
Ȧ,

where εȦ0 is a constant 8c-spinor that correspond to the Poincaré supersymmetry parameter while

ηȦ correspond to the superconformal parameter.
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Variations

Now, we will take the supersymmetry variations of the Lagrangian by separating it in �ve terms: A,

B, C, D and the Chern-Simons term.

• Term A=− 1
2

(
Dµφ

I
)
a

(
DµφI

)
a

First, we can write A up to boundary terms in the following way

A = −1

2

(
Dµφ

I
)
a

(
DµφI

)
a

=
1

2

(
DµDµφ

I
)
a
φIa.

Then variation is

δ(A) =
1

2
δ
((
DµDµφ

I
)
a
φIa
)

= DµDµφ
I
aδφ

I
a +

1

2
δAµab

(
Dµφ

I
)
b
φIa +

1

2
Dµ

(
δAµabφ

I
b

)
φIa

= DµDµφ
I
aδφ

I
a + δAµab

(
Dµφ

I
)
b
φIa

= iDµDµφ
I
a

(
ψaΓIε

)
+ iεabcd

(
ψcγµΓJε

)
φJd
(
Dµφ

I
)
b
φIa.

• Term B= i
2ψ

A

a γ
µ
(
Dµψ

A
)
a

δ(B) = δ

(
i

2
ψaγ

µ (Dµψ)a

)
= iψaγ

µ∂µδψa + iAµabψaγ
µδψb +

i

2
δAµabψaγ

µψb

= iψaγ
µDµδψa +

i

2
δAµabψaγ

µψb

= −i
(
ψaγ

µγvΓ
Iε
) (
DµDvφ

I
)
a

+ 3ic4ε
abcd

(
ψaγ

µΓIJKε
)
Dµφ

I
bφ
J
c φ

K
d

− i
(
ψaγ

µΓIη
)
Dµφ

I
a − i

(
ψaγ

µγvΓ
IDµε

) (
Dvφ

I
)
a

+ ic4ε
abcd

(
ψaγ

µΓIJKDµε
)
φIbφ

J
c φ

K
d +

i

2
δAµabψaγ

µψb

− 2ic4ε
abcd

(
ψeγ

µΓIJKε
)
Aµaeφ

I
bφ
J
c φ

K
d

= −i
(
ψaγ

µγvΓ
Iε
) (
DµDvφ

I
)
a

+ 3ic4ε
abcd

(
ψaγ

µΓIJKε
)
Dµφ

I
bφ
J
c φ

K
d

+ 3ic4ε
abcd

(
ψaΓIJKη

)
φIbφ

J
c φ

K
d − 2ic4ε

becd
(
ψaγ

µΓIJKε
)
Aµabφ

I
eφ
J
c φ

K
d

− 1

2
εabcd

(
ψcγµΓIε

) (
ψaγ

µψb
)
φId

= −i
(
ψaΓIε

) (
DµD

µφI
)
a
− i1

2

(
ψaγ

µγvΓIε
)
Fµvabφ

I
b

+ 3ic4ε
abcd

(
ψaγ

µΓIJKε
) (
Dµφ

I
)
b
φJc φ

K
d

+ 3ic4ε
abcd

(
ψaΓIJKη

)
φIbφ

J
c φ

K
d − 2ic4ε

becd
(
ψaγ

µΓIJKε
)
Aµabφ

I
eφ
J
c φ

K
d

− 1

2
εabcd

(
ψcγµΓIε

) (
ψaγ

µψb
)
φId.
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• Term C=ic1ε
abcdψ

A

a

(
ΓIJ

)
AB

ψBb φ
I
cφ
J
d

δ(C) = 2ic1ε
abcdψ

A

a

(
ΓIJ

)
AB

δψBb φ
I
cφ
J
d + 2ic1ε

abcdψ
A

a

(
ΓIJ

)
AB

ψBb δφ
I
cφ
J
d ,

= 2ic1ε
abcdψ

A

a

(
ΓIJ

)
AB

[−γµ
(
Dµφ

K
)
b

ΓKε+ c4ε
befgΓLMN εφLe φ

M
f φ

N
g

− φKb ΓKη]φIcφ
J
d − 2c1ε

abcdψaΓIJψbψcΓ
IεφJd ,

= −2ic1ε
abcd

(
ψaΓIJγµΓKε

) (
Dµφ

K
)
b
φIcφ

J
d

+ 2ic1c4ε
abcdεbefg

(
ψaΓIJΓKLM ε

)
φIcφ

J
dφ

K
e φ

L
f φ

M
g

− 2ic1ε
abcd

(
ψaΓIJΓKη

)
φKb φ

I
cφ
J
d

− 2c1ε
abcd

(
ψaΓIJψb

) (
ψcΓ

Iε
)
φJd .

• Term D= −c2εabcdεefgdφIaφJb φKc φIeφJfφKg

δ(D) = −3c2ε
abcdεefgdδ

(
φIaφ

I
e

)
φJb φ

J
fφ

K
c φ

K
g

= −3ic2ε
abcdεefgd

(
ψ̄aφ

I
e + ψ̄eφ

I
a

)
ΓIεφJb φ

J
fφ

K
c φ

K
g .

After relabeling dummy indices we get

δ(D) = −6ic2ε
abcdεbefg

(
ψ̄aΓKε

)
φIcφ

J
dφ

K
c φ

J
fφ

I
g.

• Chern-Simons term=c3ε
µνλεabcd

(
Aµab∂νAλcd + 2

3AµabAνcgAλgd
)

δ(CS) = 2c3ε
µνλεabcd (δAµab∂νAλcd + δAµabAνcgAλgd)

= c3ε
µνλεabcdFνλδAµab

= ic3ε
µνλεabcdεabef

(
ψeγµΓIε

)
φIfFνλ

= ic34εµνλ
(
δcdef
) (
ψeγµΓIε

)
φIfFνλcd

= ic34εµνλ
(
ψcγµΓIε

)
φIdFνλcd,

where we used the fact that

εµνλÃµcdδAνcgAλgd = εµνλδÃµcdAνcgAλgd.

Cancellations

We can classify the terms we obtain from the supersymmetries variations in �ve di�erent types as

shown in table B.1. Now we will show how these di�erent types of contributions cancel by choosing

the right ci's parameters.
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Table B.1. Classi�cation of the supersymmetry variations of the BL SO(4) Lagrangian

DDφψ Fφψ ψ (Dφ)φ2 ψφ3η ψ3φ φ5ψ
A × 0 × 0 0 0
B × × × × × 0
C 0 0 × × × ×
D 0 0 0 0 0 ×
CS 0 × 0 0 0 0

• Term DDφψ

This cancelation is trivial

iDµDµφ
I
a

(
ψaΓIε

)
− i
(
DµD

µφI
)
a

(
ψaΓIε

)
= 0.

• Term Fφψ

We �rst simplify the contribution from the B term as

−i1
2

(
ψaγ

µγvΓIε
)
Fµvabφ

I
b = −i1

2
εµvρ

(
ψaγρΓ

Iε
)
φIbFµvab,

then for the cancelation we need

−iκc34εµvρ
(
ψaγρΓ

Iε
)
φIbFµvab − i

1

2
εµvρ

(
ψaγρΓ

Iε
)
φIbFµvab = 0,

therefore this implies that

c3 =
1

8
.

• Term ψφ3η

First, let us simplify both contributions in the following way

3ic4ε
abcd

(
ψaΓIJKη

)
φIbφ

J
c φ

K
d = 3ic4ε

abcd
(
ψaΓIΓJΓKη

)
φIbφ

J
c φ

K
d ,

−2ic1ε
abcd

(
ψaΓIJΓKη

)
φKb φ

I
cφ
J
d = −2ic1ε

abcd
(
ψaΓIΓJΓKη

)
φIbφ

J
c φ

K
d ,

then we need

c4 =
2

3
c1.

• Term ψ (Dφ)φ2

We want

iεabcd
(
ψaγµΓJε

) (
Dµφ

I
)
b
φIdφ

J
c + 3ic4ε

abcd
(
ψaγ

µΓIJKε
) (
Dµφ

I
)
b
φJc φ

K
d
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− 2ic1ε
abcd

(
ψaγ

µΓIJΓKε
) (
Dµφ

K
)
b
φIcφ

J
d = 0,

expanding the second and third contributions we get

iεabcd
(
ψaγµΓJε

)
φJb
(
Dµφ

I
)
d
φIc

+ ic4ε
abcd

(
ψaγ

µ
(
ΓKΓTI ΓJ + ΓIΓ

T
J ΓK − ΓIΓ

T
KΓJ

)
ε
) (
Dµφ

K
)
b
φIcφ

J
d

− 2ic1ε
abcd

(
ψaγ

µΓIΓTJ ΓKε
) (
Dµφ

K
)
b
φIcφ

J
d = 0,

and using the following simpli�cation of the second term

εabcd
(
ψaγ

µ
(
2δIKΓJ + 3ΓIΓ

T
J ΓK − 4ΓIδ

KJ
)
ε
) (
Dµφ

K
)
b
φIcφ

J
d =

3εabcd
(
ψaγ

µΓIΓ
T
J ΓKε

) (
Dµφ

K
)
b
φIcφ

J
d − 6εabcd

(
ψaγ

µΓJε
) (
Dµφ

I
)
d
φIcφ

J
b ,

we �nd that the coe�cients are

c1 =
1

4
,

c4 =
1

6
.

• Term ψ3φ

The required cancellation is

0 = −1

2
εabcd

(
ψaγ

µψb
) (
ψcγµΓIε

)
φId + 2c1ε

abcd
(
ψaΓIJψb

) (
ψcΓ

Jε
)
φId

= −1

2
T1 + 2c1T2.

Then, we have two structures

T1 = εabcd
(
ψaγ

µψb
) (
ψcγµΓIε

)
φId,

and

T2 = εabcd
(
ψaΓIJψb

) (
ψcΓ

Jε
)
φId,

and we want to prove they are equivalent.

We decompose the �rst structure in the following way

T1 = εabcd
(
ψaγ

µ
b ψb

) (
ψcγµΓIε

)
φId =

1

3
εabcd

 ψaγ
µ
(
ψbψc − ψcψb

)
γµΓIε

+
(
ψaγ

µψb
) (
ψcγµΓIε

)
φId.
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Using the following Fierz transformation

ψbψc − ψcψb =
1

8
γµψbγµψc −

1

16
ΓIJψbΓ

IJψc +
1

384
ΓIJKLγµψbΓ

IJKLγµψc,

we get

T1 =
1

3
εabcd


− 1

8

(
ψaΓIγνε

) (
ψbγνψc

)
− 3

16

(
ψaΓLMΓIε

) (
ψbΓ

LMψc
)

− 1
384

(
ψaΓLMNOΓIγνε

) (
ψbΓ

LMNOγνψc
)

+
(
ψaΓIγµε

) (
ψbγ

µψc
)

φId,

=
1

3
εabcd

 7
8

(
ψaΓIγνε

) (
ψbγνψc

)
− 3

16

(
ψaΓLMΓIε

) (
ψbΓ

LMψc
)

− 1
384

(
ψaΓLMNOΓIγνε

) (
ψbΓ

LMNOγνψc
)

φId.

For the second structure we get

T2 = εabcd
(
ψaΓIJψb

) (
ψcΓ

Jε
)
φId =

1

3

εabcd
 ψaΓIJ

(
ψbψc − ψcψb

)
ΓJε

+
(
ψaΓIJψb

) (
ψcΓ

Jε
)

φId

 .
Using the Fierz transformation and the following identities

ΓIJΓJ = 7ΓI ,

ΓIJΓLMΓJ = 3ΓLMΓI − 8ΓLδIM + 8ΓMδIL,

ΓIJΓLMNOΓJ = −ΓLMNOΓI ,

we get

T2 =
1

3

εabcd


7
8

(
ψaΓIγνε

) (
ψ̄bγνψc

)
−
(
ψaΓJε

) (
ψbΓ

IJψc
)

− 1
384

(
ψaΓLMNOΓIγνε

) (
ψbΓ

LMNOγνψc
)

− 3
16

(
ψaΓLMΓIε

) (
ψbΓ

LMψc
)

+
(
ψcΓ

Jε
) (
ψaΓIJψb

)
φId


=

1

3
εabcd

 7
8

(
ψaΓIγνε

) (
ψ̄bγνψc

)
− 3

16

(
ψaΓLMΓIε

) (
ψbΓ

LMψc
)

− 1
384

(
ψaΓLMNOΓIγνε

) (
ψbΓ

LMNOγνψc
)

φId.

Therefore T1 = T2, and

c1 =
1

4
.

• Term φ5ψ

We want

2ic1c4ε
abcdεbefgψ

a
ΓIJΓKLM εφIcφ

J
dφ

K
e φ

L
f φ

M
g − 6ic2ε

abcdεbefgψ
a
ΓKεφIcφ

J
dφ

K
e φ

J
fφ

I
g = 0,
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then we would like to show that

3c2ε
abcdεbefgΓKφIcφ

J
dφ

K
e φ

J
fφ

I
g = c1c4ε

abcdεbefgΓIJΓKLMφIcφ
J
dφ

K
e φ

L
f φ

M
g .

The right-hand side can be simpli�ed by noting that ΓIJΓKLM can be written as

ΓIJΓKLM = ΓIJKLM + 6ΓNOP δ
[IJ]
NQδ

[KLM ]
QOP + 6ΓNδ

[KLM ]
[JI]N .

and εbacdεbefg = 6δ
[acd]
efg then

εabcdεbefgΓIJΓKLMφIcφ
J
dφ

K
e φ

L
f φ

M
g

= −6ψ̄a
(

6ΓNOP δ
[IJ]
NQδ

[KLM ]
QOP + 6ΓNδ

[KLM ]
[JI]N

)
εφIcφ

J
dφ

K
a φ

L
c φ

M
d

= −36ψ
a
ΓM

′
δ

[KIJ]
[ML]M ′φ

I
cφ
J
dφ

K
a φ

L
c φ

M
d

= −36ψ
a
ΓM

′
δ

[KIJ]
MLM ′φ

I
cφ
J
dφ

K
a φ

L
c φ

M
d

= 36ψaΓM
′
δIJKLMM ′δ

[acd]
efg φ

K
e φ

J
fφ

I
gφ

L
c φ

M
d

= 36ψaδ
[acd]
efg ΓKφKe φ

J
fφ

I
gφ

I
cφ
J
d ,

where the term ΓNOP δ
[IJ]
NQδ

[KLM ]
QOP in the second line cancel since only its symmetric part in

I ←→ L and J ←→M contribute but this part is clearly zero if we rewrite this term as

ΓNOP δ
[IJ]
NQδ

[KLM ]
QOP =

(
2ΓILMδKJ + 2ΓIKLδMJ

)
+ 2

(
ΓIMKδLJ − ΓLJKδIM

)
−
(
2ΓJLMδKI + 2ΓJMKδLI

)
.

Now, the left-hand side can be written like

3c2ε
abcdεbefgΓKφIcφ

J
dφ

K
e φ

J
fφ

I
g = 18c2δ

[acd]
efg ΓKφIcφ

J
dφ

K
e φ

J
fφ

I
g.

Finally, for the cancellation we need

c2 = 2c1c4.

• Parameters of the Lagrangian

Finally the constraints on the parameters of the Lagrangian that come from supersymmetry

are

c1 =
1

4
,

c2 =
1

12
,
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c3 =
1

8
,

c4 =
1

6
.

Note that they agree exactly with those of Bagger and Lambert up to minus signs.
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Appendix C

Veri�cation of Superconformal
Symmetry

C.1 The U(1)×U(1) Theory

Let us check the supersymmetry of the U(1)×U(1) theory. We only analyze half of the terms, since

the other half are just their adjoints. Omitting the factor of k/2π, the variation of the Lagrangian

contains (dropping total derivatives)

∆1 = −DµXADµδXA = iD2XAε̄IΓIABΨB ,

and

∆2 = iδΨ̄Aγ ·DΨA = −iΓIAB ε̄Iγ ·DXBγ ·DΨA

= iΓIAB ε̄
ID2XBΨA − 1

2
ΓIAB ε̄

Iγρµ(Fρµ − F̂ρµ)XBΨA.

Note that the gauge �elds only appear in the covariant derivatives in the combination A− Â, which

has a vanishing supersymmetry variation. The variation of the Chern-Simons term, using the �rst

term in equation (4.6), contributes

∆3 =
1

2
εµνλε̄IγµΨAΓIABX

B(Fνλ − F̂νλ).

Using εµνλγµ = γνλ, we see that ∆1 + ∆2 + ∆3 = 0. The other half of the terms in the variation of

the action, which are the adjoints of the ones considered here, cancel in the same way. The conserved

supersymmetry current can be computed by the standard Noether procedure. This gives (aside from

an arbitrary normalization)

QIµ = ΓIABγ ·DXAγµΨB − Γ̃IABγ ·DXAγµΨB .
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One can check this result by computing the divergence. This vanishes as a consequence of the

equations of motion γ ·DΨB = 0, D ·DXA = 0, and Fµν − F̂µν = 0.

Let us now explore the conformal supersymmetry, with an in�nitesimal spinor parameter ηI ,

using the method explained in [27]. As a �rst try, consider replacing εI by γ · xηI in the preceding

equations, since this has the correct dimensions. Using ∂µε(x) = γµη and γµγργµ = −γρ, this gives

a variation of the action that almost cancels, except for a couple of terms. These remaining terms

can be canceled by including an additional variation of the spinor �elds. It has the form

δ′ΨA = −Γ̃IABηIXB and δ′ΨA = ΓIABη
IXB .

Correspondingly, the conserved superconformal current is

SIµ = γ · xQIµ + ΓIABX
AγµΨB − Γ̃IABXAγµΨB .

As a check, one can compute the divergence using the conservation of QIµ and the spinor �eld

equation of motion

∂µSIµ = γµQIµ + ΓIABγ ·DXAΨB − Γ̃IABγ ·DXAΨB = 0.

The various bosonic OSp(6|4) symmetry transformations are obtained by commuting ε and η

transformations. Of these only the conformal transformation, obtained as the commutator of two

η transformations, is not a manifest symmetry of the action. It is often true that scale invariance

implies conformal symmetry. However, this is not a general theorem, so it is a good idea to check

the conformal symmetry (or the conformal supersymmetry) explicitly.

C.2 The U(N)×U(N) Theory

Let us now examine the supersymmetry of the U(N)× U(N) theory. Some of the terms are simple

generalizations of those examined in the N = 1 case and will not be described here. Rather, we

focus on those that only arise for N > 1. We will �rst determine the quartic Ψ2X2 term (called L4)

in the action by requiring that the variation of its X �elds cancels the terms that arise from varying

the gauge �elds in the spinor kinetic term. Since these terms are cubic in Ψ, various Fierz identities

are required. The second step is to determine the variation δ3Ψ by requiring that this variation

of the spinor kinetic term cancels against the lowest-order variation of the Ψ �elds in L4 and the

variation of the gauge �elds in the scalar kinetic term. The third and �nal step is to determine L6 by

arranging that its variation cancels against the δ3Ψ variation of L4. After this has been completed,

we verify the conformal supersymmetry.
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Determination of L4

A useful identity involving four two-component Majorana spinors, obtained by a Fierz transforma-

tion, is

ψ̄1γµψ2ψ̄3γ
µε = −2ε̄ψ1ψ̄2ψ3 − ψ̄1ψ2ε̄ψ3.

Juggling the indices this can be recast in the form

ε̄γµψ1ψ̄2γ
µψ3 = −2ψ̄1ψ2ε̄ψ3 − ε̄ψ1ψ̄2ψ3.

These will be useful for eliminating Dirac matrices from equations that arise later. As written, these

relations preserve the 123 sequence of the spinors, which is convenient if they are matrices that are to

be multiplied. However, the right-hand sides can be rewritten in other ways without Dirac matrices

using the relation

ψ1ψ̄2ψ3 + ψ2ψ̄3ψ1 + ψ3ψ̄1ψ2 = 0. (C.1)

This equation will also be useful.

Varying the gauge �elds in the spinor kinetic term of the U(N)×U(N) theory (dropping a factor

of k/2π) gives

tr
(

Ψ̄Aγ
µ(−δAµΨA + ΨAδÂµ)

)
.

Keeping only the terms with two superscripts on spinor �elds, since the other terms are just their

adjoints, leaves

ΓIBCtr(−Ψ̄AγµΨAΨ̄Bγµε
IXC + ε̄IγµΨBΨ̄AγµΨAXC).

Inserting the identities above, so as to eliminate Dirac matrices while retaining the order of the

matrices, which are implicitly multiplied, leaves

ΓIBCtr
(

2ε̄IΨAΨ̄AΨBXC + Ψ̄AΨAε̄
IΨBXC − 2Ψ̄BΨAε̄

IΨAXC − ε̄IΨBΨ̄AΨAXC
)

= itr(Ψ̄AΨAδXBX
B)− itr(Ψ̄AΨAXBδXB) + 2ΓIBCtr(ε̄IΨA[Ψ̄AΨBXC −XCΨ̄BΨA]).
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Now consider varying the X �elds in the second term in L4a. This gives

−2iεABCDtr(Ψ̄AδXBΨCXD) = −2Γ̃IBEεABCDtr(Ψ̄Aε̄IΨEΨCXD)

= −εBEFGεABCDΓIFGtr(Ψ̄Aε̄IΨEΨCXD)

= δEFGACDΓIFGtr(Ψ̄Aε̄IΨEΨCXD)

= −δEFGACDΓIFGtr(Ψ̄AΨE ε̄
IΨCXD + Ψ̄AεIΨ̄EΨCXD)

= −2itr(Ψ̄AΨAδXBX
B) + 2itr(Ψ̄AΨAXBδXB)

+ 2itr(Ψ̄AΨBδXAX
B)− 2itr(Ψ̄AΨBXAδXB)

− 2ΓIBCtr(ε̄IΨA[Ψ̄AΨBXC −XCΨ̄BΨA]),

where we have used equation (C.1). Here we have used the de�nition

δDEFABC = 6δ
[D
A δEBδ

F ]
C .

These two sets of terms combine to leave

−itr(Ψ̄AΨAδXBX
B) + itr(Ψ̄AΨAXBδXB) + 2itr(Ψ̄BΨAδXBX

A)− 2itr(Ψ̄AΨBXAδXB).

These terms are canceled in turn by varying XB in L4b and L4c. Thus, terms of this structure in the

supersymmetry transformations cancel for the choice of L4 given in section 4.2. The adjoint terms

cancel in the same way.

Since we now have the complete dependence of the action on spinor �elds, we can deduce the

spinor �eld equations of motion. They are

γ ·DΨA = −2εABCDXBΨCXD −XBX
BΨA + ΨAXBXB

− 2ΨBXAXB + 2XBX
AΨB ,

(C.2)

and its adjoint

γ ·DΨA = 2εABCDX
BΨCXD +XBXBΨA −ΨAXBX

B

+ 2ΨBXAX
B − 2XBXAΨB .

(C.3)

Determination of δ3Ψ

Having determined L4, we are now in a position to determine δ3Ψ by computing terms of the

schematic structure tr(ΨADXBX
CXD), tr(ΨAXBDX

CXD), and tr(ΨAXBX
CDXD) that arise

from varying the gauge �elds in the X kinetic term and varying the spinor �elds in L4. The

adjoint terms work the same way. The terms of the indicated structure that arise from varying the
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gauge �elds in the X kinetic term are

iΓ̃IBCtr
[
Ψ̄Bγ

µεI(XCX
ADµXA −DµXAX

AXC +XADµX
AXC −XCDµX

AXA)
]
.

The terms of the indicated structure that arise from varying L4a are

−2iεABCDtr(δΨ̄DXAΨBXC) = −2iεABCDΓIDEtr(Ψ̄Bγ
µεIXCDµX

EXA)

= iδABCEFGΓ̃IFGtr(Ψ̄Bγ
µεIXCDµX

EXA)

= 2iΓ̃IBCtr

 Ψ̄Bγ
µεIXCDµX

AXA

+Ψ̄Cγ
µεIXADµX

AXB + Ψ̄Aγ
µεIXBDµX

AXC

 .

The terms of the indicated structure that arise from varying L4b are

itr(δΨ̄BΨBXAX
A)− itr(Ψ̄BδΨ

BXAXA)

= iΓ̃IBCtr
[
Ψ̄Bγ

µεI(DµXCX
AXA −XAX

ADµXC)
]
. (C.4)

The terms of the indicated structure that arise from varying L4c are

2itr(Ψ̄AδΨ
BXAXB)− 2itr(δΨ̄BΨAXBX

A)

= 2iΓ̃IBCtr
[
Ψ̄Aγ

µεI(XBX
ADµXC +DµXBX

AXC)
]
. (C.5)

Adding these up, we obtain

2iΓ̃IBCtr
[
Ψ̄Aγ

µεIDµ(XBX
AXC)

]
+ iΓ̃IBCtr

[
Ψ̄Bγ

µεI
(
Dµ(XCX

AXA)−Dµ(XAX
AXC)

)]
. (C.6)

Thus, this can cancel against a variation of the spinor �eld in the spinor kinetic term for the choice

δ3ΨA = Γ̃IABεI(XCX
CXB −XBX

CXC)− 2Γ̃IBCεIXBX
AXC . (C.7)

Determination of V = −L6

The next step is to determine L6 by requiring that its δX variation cancels against the δ3Ψ variation

of L4. A key identity in the analysis is

ΓIABΓ̃ICD = −2δCDAB . (C.8)
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This is veri�ed by showing that the two sides agree when contracted with δBC as well as with (Γ̃JΓK−

Γ̃KΓJ)BC . Since these are 16 linearly independent 4× 4 matrices, this constitutes a complete proof.

The supersymmetry variation of L4, keeping all terms containing ΨA but not ΨA (since the ΨA

terms work in the same way) is

δL4 = −2iεABCDtr
(
δ3Ψ̄AXBΨCXD

)
+ itr

(
δ3Ψ̄A

(
XBX

BΨA −ΨAXBXB + 2ΨBXAXB − 2XBX
AΨB

))
,

(C.9)

where, as derived previously,

δ3Ψ̄A = ΓIHK

[
1

2
εACHK

(
XDX

DXC −XCX
DXD

)
− εFGHKXFX

AXG

]
ε̄I , (C.10)

δ3Ψ̄A =
[
−ΓIAC

(
XCXDX

D −XDXDX
C
)

+ 2ΓIHKX
KXAX

H
]
ε̄I . (C.11)

Expanding δL4 is straightforward algebra and gives

tr
(
3XAδXAX

BXBX
CXC + 3δXAX

AXBX
BXCX

C − 2XAδXBX
BXAX

CXC

− 2XAXBX
BδXAX

CXC − 2XAXBX
BXAX

CδXC + 4iΓIHK ε̄
IΨA

[
XHXAX

BXBX
K

+XBXBX
HXAX

K +XHXBX
KXAX

B −XHXBX
BXAX

K −XBXAX
HXBX

K

−XHXAX
KXBX

B
]

+2iεABCDε
FGHKΓIHK ε̄

IΨAXBXFX
CXGX

D
)
. (C.12)

The �rst two lines can be reproduced by varying

V1 = tr
(
XAXAX

BXBX
CXC +XAX

AXBX
BXCX

C − 2XAXBX
BXAX

CXC

)
. (C.13)

The last line cancels the third and fourth lines and contributes additional terms to V1, as we will

now show. For this purpose, the following identity is useful:

2εABCDε
FGHKΓIHK = εLBCDε

FGHKΓJHK
(
2δIJδLA

)
= εLBCDε

FGHKΓJHK

(
ΓIAM Γ̃JML + ΓJAM Γ̃IML

)
= 4δFGMBCD ΓIAM + 2

(
δGPQBCDδ

F
A − δ

FPQ
BCDδ

G
A

)
ΓIPQ,

where we have used (C.8) to go from the second line to the third line. Plugging this identity into

the last line of (C.12) gives

tr
(
− 4δFGMBCD δXMX

BXFX
CXGX

D

+ 2iΓIHK ε̄
IΨA

(
δGHKBCD δ

F
A − δFHKBCD δ

G
A

)
XBXFX

CXGX
D
)
. (C.14)
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Expanding the �rst term in (C.14) gives

4tr
[
−XDδXDX

FXFX
GXG − δXBX

BXCX
CXDX

D − δXCX
GXDX

CXGX
D

+δXCX
FXFX

CXDX
D + δXBX

BXDX
GXGX

D + δXDX
GXCX

CXGX
D
]
,

which also comes from varying

V2 = tr
(
− 4

3
XAXAX

BXBX
CXC −

4

3
XAX

AXBX
BXCX

C

− 4

3
XAX

BXCX
AXBX

C + 4XAXBX
BXAX

CXC

)
.

Adding this potential to equation (C.13) gives the total potential

V = −1

3
tr
[
XAXAX

BXBX
CXC +XAX

AXBX
BXCX

C

+ 4XAX
BXCX

AXBX
C − 6XAXBX

BXAX
CXC

]
.

Furthermore, straightforward algebra shows that the second term in equation (C.14) precisely cancels

the terms in the third and fourth lines of equation (C.12). So we conclude that the variation of L4 is

completely canceled by varying −V . This expression agrees with the potential obtained in [14, 50].

It is also interesting to note that V is proportional to the trace of the absolute square of the X3

expression that appears in δ3Ψ. Speci�cally,

V =
1

6
tr(N IAN I

A),

which is straightforward to verify using equation (C.8).

Conserved Supersymmetry Current

The conserved supersymmetry current of the U(N)×U(N) theory, generalizing the expression given

earlier for the U(1)× U(1) theory, is

QIµ = tr
(
M I
AγµΨA

)
+ tr

(
M IAγµΨA

)
.

Here

M I
A = −ΓIABγ ·DXB +N I

A,

and

M IA = Γ̃IABγ ·DXB +N IA,
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are quantities that appear in the supersymmetry variations of the spinor �elds Ψ̄A and Ψ̄A, re-

spectively. The quantity N I
A and its adjoint N IA were de�ned in equations (4.9) and (4.10). The

veri�cation that this current is conserved as a consequence of the equations of motion is rather

tedious. In any case, it would be redundant, since it is equivalent to the veri�cation of the super-

symmetry of the action, which we have just carried out.

Conformal Supersymmetry

In the U(1)×U(1) case, we found that the conformal supersymmetries can be described by replacing

εI in the Poincaré supersymmetries by γ · x ηI and by adding an additional term to the spinor �eld

transformations

δ′ΨA = ΓIABX
BηI ,

and its adjoint. Let us now verify that the same rule continues to work for N > 1. Most terms

cancel as a consequence of the Poincaré supersymmetry. The remaining ones that need to cancel

separately are those that arise from the derivative in iΨ̄Aγ ·DδΨA acting on the explicit xµ in the

ηI transformation. This gives

iΨ̄A

[
Γ̃IAB(γ ·DXB + 3XCX

CXB − 3XBX
CXC)− 6Γ̃IBCXBX

AXC

]
ηI .

The �rst term in this expression is canceled by the δ′ΨA variation of the spinor kinetic term. The

remaining terms need to cancel against the δ′Ψ variation of L4. The relevant terms that arise in

this way are

2iεABCDtr(δ′Ψ̄AXBΨCXD) + itr(δ′Ψ̄AΨAXBX
B)− itr(Ψ̄Aδ

′ΨAXBXB)

+ 2itr(Ψ̄Aδ
′ΨBXAXB)− 2itr(δ′Ψ̄BΨAXBX

A). (C.15)

By manipulations similar to those described previously, the �rst term in this expression can be recast

in the form

2iΓ̃IBCtr(Ψ̄AXBX
AXC + Ψ̄BXCX

AXA + Ψ̄CXAX
AXB)ηI .

Combining this with the other four terms leaves

iΨ̄A

[
Γ̃IAB(−3XCX

CXB + 3XBX
CXC) + 6Γ̃IBCXBX

AXC

]
ηI .

This provides the desired cancellation, which proves that the theory has conformal supersymmetry.

Taken together with the N = 6 Poincaré supersymmetry, the conformal supersymmetry implies

that the theory has the full OSp(6|4) superconformal symmetry. Even though this result is necessary
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for a dual AdS interpretation, it was not at all obvious that this symmetry would hold. After all, it

is not a logical consequence of the other symmetries that have been veri�ed.

Accordingly, the conserved conformal supersymmetry currents in the U(N) × U(N) theory are

given by

SIµ = γ · xQIµ − ΓIABtr
(
XBγµΨA

)
+ Γ̃IABtr

(
XBγµΨA

)
.

As a check on our analysis, let us compute the divergence. The DXB terms cancel leaving

∂µSIµ = tr
(

3N I
AΨA + 3N IAΨA − ΓIABX

Bγ ·DΨA + Γ̃IABXBγ ·DΨA

)
,

where N I
A and N IA are as before. Using the spinor �eld equations of motion (C.2) and (C.3) to

eliminate γ ·DΨA and γ ·DΨA, the terms in ∂µSIµ that involve ΨA are

3tr
(
N I
AΨA

)
+ 2εACDEΓ̃IABtr

(
XBX

CΨDXE
)

− ΓIABtr
(
XB [−XCX

CΨA + ΨAXCXC − 2ΨCXAXC + 2XCX
AΨC ]

)
. (C.16)

A short calculation, similar to previous ones, shows that this vanishes.
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Appendix D

Review of ABJM

The ABJM theory is a three-dimensional superconformal Chern-Simons gauge theory with N = 6

supersymmetry. The bosonic �eld content consists of four complex scalars Z1,Z2, Z3, Z4 and their

adjoints Z†1 ,Z
†
2 , Z

†
3 , Z

†
4 (which transform in the (N̄ ,N) and (N, N̄) representations of the gauge

group U(N)× U(N)) as well as two U(N) gauge �elds Aµ and Âµ. The kinetic and Chern-Simons

terms for these �elds are

Lkin = − k

2π
tr
(
DµZ

IDµZ†I

)
,

LCS =
k

2π
εµνλtr

(
1

2
Aµ∂νAλ +

i

3
AµAνAλ −

1

2
Âµ∂νÂλ −

i

3
ÂµÂνÂλ

)
,

where DµZ
I = ∂µZ

I + i
(
AµZ

I − ZIÂµ
)
and k is called the level. For the complete action see

[108, 50]. The scalars have mass dimension 1/2 and transform in the fundamental representation of

the R-symmetry group SU(4). Their adjoints transform in the antifundamental representation of

SU(4). The theory has a large-N expansion with 't Hooft parameter λ = N/k. For k = 1, 2, the

theory is conjectured to have N = 8 supersymmetry. For k � N � k5, the theory is conjectured to

be dual to type IIA string theory on AdS4 × CP 3.

For operators of the form

O = W i1...iJ
k1...kJ

tr
(
Zk1Z†i1 ...Z

kJZ†iJ

)
,

the two-loop dilatation operator is given by

∆− J =
λ2

2

2J∑
i=1

(2− 2Pi,i+2 + Pi,i+2Ti,i+1 + Ti,i+1Pi,i+2) , (D.1)

where λ = N/k, P is the permutation operator, and T is the trace operator [55]. Note that the

indices are periodic, i.e., 2J + 1 ∼ 1 and 2J + 2 ∼ 2.
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Appendix E

AdS4 ×CP3 Geometry

We use M,N = (0,1, . . . ,9) to label base-space indices and A,B = (0, 1, . . . , 9) to label tangent-

space indices. We assign the �rst four indices to AdS4 and the last six indices to CP 3. In this

appendix, we take the AdS4 and CP 3 spaces to have unit radii. A radius R can be readily incorpo-

rated by ds2 → R2ds2 and eM
A → ReM

A.

E.1 AdS4

The metric for an AdS4 space with unit radius in global coordinates (t, ρ, θ, φ) is given by

ds2
AdS4

= − cosh2 ρdt2 + dρ2 + sinh2 ρ
(
dθ2 + sin2 θdφ2

)
,

where −∞ < t <∞, 0 ≤ ρ <∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.

The embedding coordinates are de�ned by

n2
1 + n2

2 − n2
3 − n2

4 − n2
5 = 1, (E.1)

and they are related to the global coordinates by

n1 = cosh ρ cos t,

n2 = cosh ρ sin t,

n3 = sinh ρ cos θ sinφ,

n4 = sinh ρ sin θ sinφ,

n5 = sinh ρ cosφ.

(E.2)

Because the global coordinates are not well de�ned at ρ = 0, it is useful to de�ne Cartesian coordi-
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nates (t, η1, η2, η3) = (0,1,2,3) for which the metric is given by

ds2
AdS4

= gAdS4

MN dXMdXN =
1

(1− η2)
2

[
−
(
1 + η2

)2
dt2 + 4d~η · d~η

]
. (E.3)

Note that this metric is only valid for η2 = ~η · ~η = η2
1 + η2

2 + η2
3 < 1. These coordinates are related

to the global coordinates by cosh ρ = (1 + η2)/(1− η2).

The vielbein (de�ned by gAdS4

MN = eM
AeN

BηAB where ηAB = diag (−1, 1, 1, 1)) is given by

eMA =



(1+η2)
(1−η2) 0 0 0

0 2
(1−η2) 0 0

0 0 2
(1−η2) 0

0 0 0 2
(1−η2)

 ,

where M = (0,1,2,3) labels the rows and A = (0, 1, 2, 3) labels the columns.

The nonzero components of the spin connection
(
ωM

AB = −ωMBA
)
are

ω0
01 = 2η1/

(
1− η2

)
, ω0

02 = 2η2/
(
1− η2

)
, ω0

03 = −2η3/
(
1− η2

)
,

ω1
12 = 2η2/

(
1− η2

)
, ω1

13 = 2η3/
(
1− η2

)
,

ω2
21 = 2η1/

(
1− η2

)
, ω2

23 = 2η3/
(
1− η2

)
,

ω3
31 = 2η1/

(
1− η2

)
, ω3

32 = 2η2/
(
1− η2

)
.

E.2 CP3

The metric for a unit radius CP 3 space in global coordinates (ψ, ξ, ϕ1, θ1, ϕ2, θ2) = (4,5,6,7,8,9)

is given by

ds2
CP 3 = gCP

3

MN dX
MdXN = dξ2 + cos2 ξ sin2 ξ

(
dψ +

1

2
cos θ1dϕ1 −

1

2
cos θ2dϕ2

)2

(E.4)

+
1

4
cos2 ξ

(
dθ2

1 + sin2 θ1dϕ2
1

)
+

1

4
sin2 ξ

(
dθ2

2 + sin2 θ2dϕ2
2

)
,

where 0 ≤ ξ < π/2, 0 ≤ ψ < 2π, 0 ≤ θi ≤ π, and 0 ≤ ϕi < 2π [109, 52, 85]. The CP 3 Kähler form

is given by J= dA where

A =
1

2

(
cos θ1 cos2 ξdφ1 + cos θ2 sin2 ξdφ2 + cos 2ξdψ

)
. (E.5)
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The embedding or homogeneous coordinates (zI ∈ C) are de�ned by

4∑
I=1

∣∣zI ∣∣2 = 1, zI ∼ eiλzI , (E.6)

where λ ∈ R. The embedding coordinates are related to the global coordinates by

z1 = cos ξ cos θ12 exp
(
iψ+ϕ1

2

)
,

z2 = cos ξ sin θ1
2 exp

(
iψ−ϕ1

2

)
,

z3 = sin ξ cos θ22 exp
(
i−ψ+ϕ2

2

)
,

z4 = sin ξ sin θ2
2 exp

(
i−ψ−ϕ2

2

)
.

(E.7)

Note that the metric in equation (E.4) can be written in terms of embedding coordinates as follows:

ds2
CP 3 = dz · dz† −

(
z† · dz

) (
z · dz†

)
,

where z · z† =
∑4
I=1 z

Iz†I .

The vielbein (de�ned by gCP
3

MN = eM
AeN

BδAB) is

eM
A =



cos ξ sin ξ 0 0 0 0 0

0 1 0 0 0 0

cos ξ sin ξ cos θ1/2 0 cos ξ sin θ1/2 0 0 0

0 0 0 cos ξ/2 0 0

− cos ξ sin ξ cos θ2/2 0 0 0 sin ξ sin θ2/2 0

0 0 0 0 0 sin ξ/2


,

where M = (4,5,6,7,8,9) labels the rows and A = (4, 5, 6, 7, 8, 9) labels the columns.

The nonzero components of the spin connection
(
ωM

AB = −ωMBA
)
are

ω4
45 = cos (2ξ) , ω4

76 = sin2 ξ, ω4
89 = cos2 ξ,

ω6
45 = cos θ1 cos (2ξ) /2, ω6

74 = ω6
56 = sin θ1 sin ξ/2,

ω6
67 = − cos θ1(sin2 ξ − 2)/2, ω6

89 = cos θ1 cos2 ξ/2,

ω7
46 = ω7

57 = sin ξ/2,

ω8
54 = cos θ2 cos (2ξ) /2, ω8

49 = ω8
85 = sin θ2 cos ξ/2,

ω8
67 = cos θ2 sin2 ξ/2, ω8

98 = cos θ2(cos2 ξ − 2)/2,

ω9
84 = ω9

95 = cos ξ/2.
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E.3 Fluxes

Using the vielbein, we can convert between base-space and tangent-space coordinates. In particular,

by writing the four-form �eld strength in equation (5.1c) in tangent-space coordinates, one �nds

that

FABCD =
6k

R2
εABCD, (E.8)

where ε0123 = 1 and all other non-zero components are related by antisymmetry. Furthermore, if

one takes the exterior derivative of equation (E.5), plugs this into equation (5.1d), and converts to

tangent-space coordinates, one �nds that

FAB =
2k

R2
εAB , (E.9)

where ε45 = ε67 = ε89 = 1 and all other non-zero components are related by antisymmetry. Equations

(5.1b), (E.8), and (E.9) then imply that

eφΓ · F2 =
2

R

(
Γ45 + Γ67 + Γ89

)
,

eφΓ · F4 =
6

R
Γ0123.

Plugging these expressions into equation (5.12) then gives

Γ · F =
1

4R

[
−Γ11

(
Γ45 + Γ67 + Γ89

)
+ 3Γ0123

]
. (E.10)
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