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Abstract

Shock compression experiments provide access to extreme pressures in a laboratory setting. Matter
at these pressures is often studied by utilizing a well controlled planar impact between two flat plates
to generate a one dimensional shock wave. While these experiments are a powerful tool in equation
of state (EOS) development, they are inherently limited by the velocity of the impacting plate. In
an effort to dramatically increase the range of pressures that can be studied with available impact
velocities, a new experimental technique is examined. The target plate is replaced by a composite
assembly consisting of two concentric cylinders and is designed such that the initial shock velocity
in a well characterized outer cylinder is higher than in the inner cylinder material of interest. After
impact, conically converging shocks are generated at the interface due to the impedance mismatch
between the two materials and the axisymmetric geometry. Upon convergence, an irregular reflection
occurs and the conical analog of a Mach reflection develops. The Mach reflection grows until it
reaches a steady state, for which an extremely high-pressure state is concentrated behind the Mach
stem.

The Mach lens composite target comprising of the concentric cylinders is studied using a com-
bination of analytical, numerical, and experimental techniques. A simple analytical method for
calculating the form of the Mach reflection is determined through classic concepts in gas dynamics.
Traditionally, oblique shock reflection phenomena in gases can be treated through a shock polar
analysis, which provides an intuitive graphical method for solving such problems. By translating
the classic Lagrangian treatment of a 1-D plane shock wave in a solid to the Eulerian oblique shock
framework for gases, a similar methodology is developed to treat shock reflections in solids. Nu-
merical simulations using a hydrocode are also conducted to gain further insight into the problem.
These simulations reveal quantitative details about the shock propagation and interaction in the
Mach lens and are used to both validate the shock polar analysis and design the experiments.

The Mach lens concept is validated experimentally by examining a copper inner cylinder in con-
junction with outer materials of either 6061-T6 aluminum or molybdenum. Since, in the steady
state, the axial velocity of the Mach reflection is equal to the far field shock velocity in the outer
cylinder, the shock velocity can be calculated through impedance matching between the well char-

acterized impactor and outer cylinder materials from a measurement of the projectile velocity. A



vi
second measurement of the Mach reflection is made through velocity interferometry at the rear
surface of the target using either VISAR, which provides a point measurement of the velocity, or
ORVIS, which provides the velocity spatially resolved along a line. The VISAR experiments provide
a time resolved free surface velocity measurement at the center of the target which allows for an
inference of the in situ particle velocity, and, in conjunction with the calculated shock velocity, pro-
vides the necessary information to calculate the shocked state behind the Mach stem. Measurements
of this shocked state have been found to be in excellent agreement with Hugoniot measurements in
copper using traditional plane shock techniques. These Hugoniot states illustrate multiplications in
the pressure between 1.7 and 4.4 over the equivalent plate impact experiments. These types of high
pressures traditionally require impact velocities between 2 and 5 km/s, which can only be obtained
with two-stage launcher technology. The spatial properties of the Mach reflection are investigated
using either multiple VISAR point measurements or the ORVIS diagnostic. The measurements are
found to be in good agreement with both the shock polar analysis, and numerical simulations. The
possibilities of using this type of full field information to extract an entire Hugoniot curve in a single
experiment are also discussed. The effects of phase transitions on the Mach lens target are also
examined through the use of an iron inner cylinder. Iron undergoes a well known « (bcc) - € (hep)
polymorphic transition along the Hugoniot, and the effects of this response are examined through

the use of numerical simulations and VISAR measurements.
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Chapter 1

Introduction

1.1 Background

At the most fundamental level, the philosophy in experimental solid mechanics is rather simple:
apply a load to the material and measure a response of deformation and/or force. In studying the
dynamic behavior of materials, the experimentalist may choose, for example, an impactor to apply
the load on a long slender bar or plate. In the case of low velocity impact, the stress induced in the
solid is below the material’s yield strength and the behavior is governed by elastic wave propagation.
For a wide range of materials, particularly metals, the elastic response is linear and Hooke’s law may
be applied to model the response of the system. When the impact is at high velocities, the material
can be driven to the point of plastic deformation and the description of the response becomes much
more difficult. This regime involves the propagation of elastic-plastic waves, and nonlinearities can
arise from both the material response and geometric considerations of finite deformations [31]. On
the most extreme end of this example, impact at very high velocities can result in extreme pressures
that can exceed the strength of the material by an order of magnitude or more, particularly if the
target is in a state of uni-axial strain. Under these conditions, the solid behaves in a fluid-like manner
and a hydrodynamic description of the response is appropriate. These three regimes exemplify the
important aspects of the physics in various dynamic impact experiments and related applications
[65]. Typically, the rate of loading is quantified by strain rate. Low strain rates, on the order of
10/s, result in elastic wave propagation so acoustics is the primary consideration. Intermediate
strain rates, between 10? and 10%/s, generally explore elastic-plastic wave propagation where the
rate-dependent constitutive response of the material can be characterized. Extreme strain rates,
above 10°/s, result in highly nonlinear wave propagation and are the primary focus of this thesis.
The nonlinear response of matter when subjected to high pressures plays a key role in the
description of wave propagation in this regime. In general, the wave speed of a gas, fluid, or solid
increases monotonically with pressure. As a result, the highest pressure portion of the wave will

propagate the fastest and the wave will steepen into a shock. This makes the study of shock waves
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vital to a complete description of wave propagation, evidenced by the fact that this has been an
active area of research for well over a century. Early work focused on shock propagation in gases
since the high temperatures and pressures associated with shock waves provide suitable conditions for
application of the ideal gas law. The use of this equation of state allows for the study of more complex
shock phenomena such as shock wave interaction, reflection, and non-equilibrium thermodynamics.

Of course, there is nothing that limits the propagation of shocks to gases, and an interest in the
shock compression of condensed matter developed during the 1940s. During this time, the tech-
nology was developed to explosively load materials in a well controlled and repeatable experiment.
Observations in these experiments led a group of scientists to shift their fundamental view of shock
waves. In 1958, Melvin Rice, John Walsh, and Robert McQueen published their groundbreaking
work on the subject [72]. In this article, the shock wave is viewed as a tool to study matter in an
entirely new regime of pressures. They realized that the propagation of simple plane shock waves
could be used to infer information about the behavior of the material. Typically, a shock front is
on the order of a few tenths of a millimeter in thickness while the velocity of the wave is on the
order of a few km/s [72]. This means equilibrium over the shock front is typically achieved within
10~ s. As a result, two thermodynamic properties of the shocked state can be measured, and the
use of mass, momentum, and energy conservation laws allow for the complete characterization the
shocked state. Thus, these experiments provide the means to access the state of matter at extreme
pressures.

A visualization of the value of using shock waves as an avenue for the experimental testing of
materials is given in Figure 1.1. This illustration shows a phase diagram for a typical material
and considers the various experiments that are currently used to examine high pressure behavior.
Quasistatic compression experiments, using a diamond anvil cell, are generally limited to pressures
on the order of 300 GPa and relatively low temperatures. Additionally, rate effects cannot be
examined so these experiments are generally ill-suited to characterize dynamic behavior. On the
other end of the temperature spectrum, the high energy-density states associated with plasmas can be
generated using lasers. As shown, there are only two experimental paths that cut through the phase
space between these regimes, both of which utilize nonlinear wave propagation. The first method
is to introduce a high amplitude ramp wave through techniques such as the impact of a graded
density flyer [26] or magnetic loading [44]. The properties of these nonlinear waves are measured
before they steepen into a shock and, hence, the measured material response is assumed to lie along
the material’s isentrope. The second method utilizes shock waves, which are fundamentally easier
to generate and are generally produced using mechanical impact or explosives [38]. The entropy
generated in a shock results in much high temperatures in the shocked states. A locus of shocked
states for a given material is referred to as the Hugoniot curve and, as shown in Figure 1.1, can be

used to provide valuable thermodynamic information at high temperatures and pressures.
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Figure 1.1: Current experimental techniques used to probe the high pressure response of materials,
taken from [70]. Pressures between compression by diamond anvil cell and laser driven plasmas can
be accessed by nonlinear wave propagation. Shock compression results in the Hugoniot while ramp
compression loads along the isentrope.

1.2 Motivation

Most scientific endeavors involve experimentally observing a physical phenomenon, developing a
theory to describe the observations, and applying the theory to gain further insights or solve a
practical problem. The phenomena of interest here are dynamic events such as high velocity impacts
and material interactions with explosives. These types of events inherently lend themselves to
military applications [65], so it is not a coincidence that significant developments in the field of
shock compression were made during the height of World War II. In fact, shock compression research
today still has strong ties to these same applications. A few of the primary examples include ballistic
impact, shaped charges, and, ultimately, nuclear weapons. Ballistic impact, for example, may involve
the design of an armor or, on the other side of the problem, an armor defeating projectile. Shaped
charges are another area of interest. Upon detonation, an explosive in contact with a hollow metal
cone deforms the cone into a rod that is accelerated to velocities of up to 10 km/s, which provides
tremendous penetration capabilities. Of particular importance is the detonation of nuclear weapons.
The implosion triggering system requires a deep understanding of shock wave physics to precisely
control and direct the compression of the core. Similar understanding is at the core of achieving
ignition in inertial confinement fusion.

While shock compression has its roots in weapons development, many important civilian ap-

plications have also been developed [65]. One example is the shock synthesis and consolidation of
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materials. The application of a shock wave to carbon (graphite) has been shown to synthesize dia-
mond powder. Similarly, passing a shock through a fine metal powder can cause melting and bonding
between the particles, consolidating the powder and producing materials with unique mechanical
properties. A second example is characterizing the shielding on space structures for micrometeorite
impacts. Micrometeorites often travel at velocities well in excess of material wave speeds, on the
order of 10-20 km/s. Such collisions are referred to as hypervelocity impacts and can result in
complex physical processes such as melting, vaporization, and fragmentation. High pressure shock

waves can provide access to these extreme processes and aid in the development of material models.

1.3 Outline

The structure of the thesis is as follows. A modern theory of the description of shock propagation
in both gases and solids is presented in Chapter 2. As with most problems in fluid mechanics, an
Eulerian description of the flow provides a useful framework in which to work. The focus in this
section is on how oblique shock equations are used to solve shock reflection problems. Particular
emphasis is placed on the well established method of using shock polars to solve such problems.
Next, the theory moves to the analysis of wave propagation in solids. The classic theory of shock
behavior in solids is restricted to 1-D plane shock waves and a Lagrangian description of the motion.
Generally, oblique shocks are not considered for material characterization because the analysis is
complicated. As seen in gas dynamics, however, the nonlinear nature of interacting shocks can
produce extremely high pressures. Similarly, converging shock waves can be used to create high
pressure states in solids. This motivates the study of an experimental design that can be used to
extend classic shock compression loading techniques to higher pressures through the use of converging
shocks. The design presented in this dissertation is the so-called Mach lens and is an extension of
a similar explosive configuration [41]. The Mach lens, illustrated in 2.18, consists of two concentric
cylinders such that the axial direction of the lens corresponds to the direction of shock loading. The
materials for the cylinders are chosen such that, on loading, the shock speed of the outer cylinder
is higher than that of the inner cylinder. The ensuing impedance mismatch results in reflected
converging waves at the interface. Upon convergence on the axis of the target, the axisymmetric
nature of the assembly results in an irregular wave reflection in the form of a Mach wave. This Mach
reflection results in a nearly planar high pressure state at the center of the target for which Hugoniot
measurements can be made. A simple solution for the configuration of the Mach reflection is found
by examining a connection between the classic Lagrangian and Eulerian descriptions of shock motion
in solids and gases, respectively. The extension of the well known shock polar techniques developed
in gas dynamics to the equation of state for solids [64] results in an analogous framework to describe

oblique shock waves in solids.
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Chapter 3 describes the experimental methods used to validate the Mach lens technique and
make high pressure Hugoniot measurements. Powder gun systems are used to explosively launch
projectiles to velocities of up to 2 km/s . The projectile impacts the Mach lens target and several
diagnostics are used to monitor the response of the resulting shock waves. Electric shorting pins
on the impact surface provide a time of impact and can be used to estimate any tilt between
the impactor and target. Velocity interferometry (VISAR) is the primary means of quantifying the
Mach reflection and provides a measurement of the time resolved rear free surface velocity at a point.
The setup of a second interferometer system (ORVIS), which provides free surface velocity along a
line, is also described. The chapter concludes with a description of the materials chosen for use in
the experiments along with the increase in pressure expected over traditional shock experiments.
Copper and iron targets were chosen as the inner materials to validate the technique. Copper
serves as an ideal material, while iron contains the complication of a polymorphic phase transition.
Outer materials of either aluminum or molybdenum were chosen to study the effect of the confining
material. With the aluminum confinement, a magnification in pressure of over 4 times can be
achieved.

Chapter 4 contains the numerical simulations used to gain further insight into the problem. The
simulations are performed with the CTH hydrocode and confirm the expected behavior of the wave
propagation in the Mach lens target. A representative simulation is presented which provides further
details on both the qualitative and quantitative response of the system. More specific examples are
also presented which illustrate the subtle details of the effect of the Mach reflection structure in
copper when using either the aluminum or molybdenum confinement. The simulations are compared
to the shock polar solutions, where the behavior of the differing outer materials is captured well.
The use of an iron target greatly complicates the response of the system because the Mach reflection
shocks through the phase transition. Simulations detailing the behavior of the reflection under these
conditions are also presented.

Chapter 5 contains the experimental results and discussion that validates the Mach lens tech-
nique. The results on the copper target are examined first. Two experiments utilizing VISAR
measurements at several points along the rear free surface are presented which illustrate the behav-
ior of the Mach reflection. The rest of the experiments contain a single VISAR measurement and
the waveforms that are obtained are shown to be consistent and repeatable. A simple analysis is
presented through which the impact conditions along with the VISAR measurement can be used
to calculate the high pressure Hugoniot state obtained at the center of the target. These measure-
ments are shown to be in good agreement with data obtained in classic planar shock experiments.
Further experiments on copper using the ORVIS diagnostic are also presented. These experiments
were unable to maintain contrast in the interferometer after shock arrival and as a result only the

structure of the Mach reflection is captured. The original intent of the experiments was to capture
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both the structure of the wave and also the free surface particle velocity. With this information,
it is possible to make multiple Hugoniot measurements in a single experiment. To demonstrate
the idea, the analysis is applied to a synthetic numerically simulated data set that idealizes what
would be obtained using ORVIS. The chapter is concluded with the results for the iron experiments.
These experiments are monitored with single-point VISAR from which the properties of the phase
transition can be measured.

Chapter 6 summarizes the key points in this thesis and presents several ideas for possible future
work. The original contributions presented are the numerical simulations of the Mach lens target,
application of the shock polar method to solve for the Mach wave configuration, and the use of classic
interferometric techniques to measure the shocked states associated with the reflection. The primary
advantages of the Mach lens technique over traditional 1-D shock experiments is the ability to
measure not only much higher shock pressures but also multiple Hugoniot states. Since the technique
is not specific to how the load is generated, it is not difficult to translate the Mach lens target to other
shock loading systems. An example Mach lens configuration for use with a two-stage gun projectile
velocity (6 km/s) is presented. Selecting beryllium as an outer material for use with a copper inner
material suggests a feasible two-stage gun experiment results in pressures of over 650 G Pa. Current
experimental capabilities limit Hugoniot measurements to under 350 GPa. Thus, it is possible
to greatly extend the pressures that can be accessed in most of the experimental systems which
generate shock loading. An equally valuable use of the configuration would be the measurement
of an entire Hugoniot curve in a single experiment. As such, suggestions are made to improve
the ORVIS implementation in these experiments, which may allow the interferometer to maintain
contrast after the arrival of the wave. As an example, a numerical simulation is presented in which
the Hugoniot for copper between 10 and 60 GPa can be estimated with a single experiment. For
comparison, there are over 70 Hugoniot data points in the literature from plane shock experiments
over this range. As a final consideration for future work, the feasibility of generating combined
pressure-shear waves using oblique shock wave interactions is examined. A possible experimental

configuration is presented and a numerical simulation is conducted to illustrate the concept.



Chapter 2

Shock Waves

This chapter presents the background and concepts in shock waves that are needed to understand
the shock focusing and high pressure Mach reflections which are the subject of this dissertation. The
first section relates the classic shock wave theories developed in gas dynamics for a perfect gas. An
emphasis is placed on the concepts involved with the development of the oblique shock equations and
the use of these equations in the solution of shock reflection problems, including Mach reflections.
The second section begins with a solid mechanics perspective on the propagation of plane shock
waves in a solid medium, and a general treatment of the Mie-Griineisen equation of state. This
equation of state is applied, using ideas from gas dynamics, to the treatment of 2-D supersonic flow
in solids. This framework is then used to construct the solution of oblique shock reflection problems
in a solid. At this point, the Mach lens configuration will be introduced which utilizes converging
shock waves and the subsequent Mach reflection to create a useful high pressure region for which
Hugoniot information can be extracted. The chapter concludes with a brief discussion on the effect

of phase transitions on this configuration.

2.1 Gas Dynamics

In the most simple of terms, gas dynamics is the study of compressible fluid mechanics. Of primary
concern here is the propagation of finite amplitude waves within the fluid medium, where for most
normal fluids the nonlinear nature of the wave speed will result in a propagating discontinuity or
shock. Ernst Mach, for whom many of the phenomena in gas dynamics are named, was the first to
note that the nonlinear nature of shock waves in air can result in irregular reflections. In 1943, Von
Neumann quantified the effect by examining the reflection of an incident plane shock wave off of an
inclined planar surface [82]. He notes that the purpose of the resulting reflected shock in this type
of configuration is to turn the flow behind the incident shock such that it is parallel to the wedge.
However, he also observes that the reflected shock has a maximum turning angle, which he defines

as the extreme condition, and introduces the notion of a triple shock solution, later termed a Mach



reflection.

A comprehensive review of the theory of shock wave interaction in gases was first given by
Bleakney and Taub [19] , and a modern theory, focused on more intuitive graphical methods, can
be found in Hornung’s review of the material [50]. The results of the latter review will be briefly
summarized in the following sections in an effort to present a classical framework for shock reflection

theory, which will later be used to solve reflection problems in solids.

2.1.1 Perfect Gas Equation of State

A perfect gas is the simplest idealization of a compressible fluid in thermodynamics and will be used
to provide detailed analytic solutions in shock reflection problems. To begin, it will be useful to

define a few quantities often used in gas dynamics:

E
speci fic heat at constant volume cy =T <8S> = (3)
v v

. oS OH
specific heat at constant pressure cp=T|=— ==
P P

oT oT
. c . cp
ratio of specific heats v=—=
cy
gas constant R=cp—cy

P
sound speed c= (8) ,
S

where T is the absolute temperature, S is the entropy, E is the internal energy, V is the specific
volume, P is the pressure, and H is the enthalpy. Measurements of the thermal properties of gases

show that for low densities the thermal equation of state of all gases approaches the form

PV = RT, (2.1)

where R is a characteristic constant for a particular gas. For the region over which Eqn. 2.1 is valid,
the gas is said to be ideal. A further approximation can be made to an ideal gas by assuming the

specific heats, ¢y and cp , are constant, in which case the fluid is a so-called perfect gas. Beginning
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with fundamental thermodynamics, changes in the energy, F , and enthalpy, H , may be written as

dE = TdS — PdV, (2.2)

dH = TdS + VdP. (2.3)

Solving for dS , substituting for the specific heats and ideal gas law, and integrating gives

T 1%
— Sy = eylno— A 2.4
S — Sy cvlnTO—FRanO, (2.4)
T P

Rearranging Eqns. 2.4 and 2.5 with the caloric forms of the equation of state, H = ¢pT and

E = ¢,T, gives the canonical forms of the perfect gas equation of state [59]

H (S, P) = kycpe?r P7r, (2.6)

E(S,V) = kaeyev Vav, (2.7)

where k1 and k5 are constants. Further, for isentropic processes, dS = 0 , hence Eqns. 2.4 and 2.5
reduce to
T R R P
—n—

T cv Vo cecp Py (28)

which can be rewritten as a useful form for perfect gas isentropes

() -

Differentiating this expression for the isentrope gives the sound speed of a perfect gas, ¢ , as

c=+/7yRT. (2.10)

A propagating ramp wave of finite amplitude in thermodynamic equilibrium will contain states
lying on the isentrope defined by Eqn. 2.9 . Since the temperature is proportional to the magnitude
(pressure) of the wave, Eqn. 2.10 immediately shows that the highest pressure portion of the
wave will be propagating the fastest. As such, the peak will eventually overdrive the rest of the

wave and the wave will steepen into a shock wave. Of course, this is a very simplistic view of the
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Figure 2.1: Passage of fluid through a normal shock wave.

phenomenon and is generally treated in detail by considering one dimensional wave motion [59],
where the governing equations form a partial differential equation known as the wave equation. The
solution of the wave equation shows that the initial disturbance propagates along characteristic lines
dependent on the wave speed, and the breakdown of the solution occurs at the unique point where
equation’s characteristics intersect in space and time. An admissible solution after this breakdown
takes the form of a shock wave. This type of solution is typical of any nonlinear wave propagation

problem, and is presented in more detail for wave propagation in a solid in Section 2.2.

2.1.2 Normal Shock Jump Equations

The problem of a propagating steady normal shock wave is generally examined in the Eulerian
reference frame such that the shock appears stationary, as shown in Fig. 2.1. This results in
a known upstream state with an initial velocity normal to the shock wave, uq, density, p;, and
temperature, T;. The downstream state (2) can be determined by examining a control volume
around the shock wave, resulting in the following conservation equations of mass, momentum, and

energy[33], respectively,

pP1uUl = pP2u2, (211)
Pl + plu% = PQ + pgui (212)

1 1
Hy + -u} = Hy + -

5 2u§. (2.13)

In deriving relationships between the upstream and downstream states, it is convenient to use a

dimensionless parameter, the Mach number, as the primary variable describing the flow. The Mach
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number is the ratio of the flow velocity to sound speed,
M="1 (2.14)
c

and manipulation of Eqns. 2.11-2.13 and the thermodynamic relations governing a perfect gas allow
for the derivation of the relationships between the jump in a flow parameter as a function of the
upstream Mach number and ratio of specific heats. These normal jump conditions may be written

as [59]

—:1+v2—(M12—1), (2.15)

pp_m WA DM 2.16
pi uz (Y= 1)MP+2 (216)
g _ Ty 2y - yME+1
2 _22_ 4, M2 1), 2.17
14+ =12
My = — = —T (2.18)
TMy = T
So— S P\ 7T 7T
2 — 01 2\ P2\
=In — —= . 2.19
(37 (8)7 @19

The change in entropy, Eqn. 2.19, provides some final insights into flows involving shock waves.

Expanding the expression in a series about M7 = 1 results in

SQ - 51 o 2’}/ (M12 —1
B (y+1® 3

Applying the second law of thermodynamics, the entropy cannot decrease in adiabatic flow,

) +O{(M1271)4}. (2.20)

hence M; > 1. This means that the flow must be supersonic in order to support a shock wave,
and as seen in Eqns. 2.15, 2.16, and 2.17, the jumps in pressure, density, and temperature are from
lower to higher values. Further, the flow velocity must decrease across the shock wave, and some
manipulation of Eqn. 2.18 will show that My < 1. Thus, the velocity change across a normal shock
must be from supersonic to subsonic. Finally, substituting Eqn. 2.15 into 2.20 shows the change in

entropy is third order in the shock strength

52—51 ’Y+1 APl 3 APl 4
= 1o ( B ) +00( 5 . (2.21)

Thus, for small finite shock waves there is a first-order correspondence between the change in

pressure, velocity, density, and temperature, but only a third-order change in the entropy. This is
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the reason an isentropic expansion wave can be treated as a series of weak shocks, as will be done

in Section 2.2.

2.1.3 Oblique Shock Jump Equations

For cases in which the flow is not normal to the shock wave, the configuration shown in Figure
2.2 provides useful insights into the geometry of the problem. To avoid confusion with the previous
results, the notation of Courant and Friedrichs [33] is adopted, in which § is the angle of obliquity
(defined to be the angle between the shock wave and the upstream flow), ¢ is the flow velocity, N
is the component of velocity normal to the shock wave, L is the component of velocity tangent to
the shock wave, and € is the angle the flow is deflected in the downstream state. Since there is no
pressure change tangent to the shock wave, the conservation equations can be used to show that
the tangential velocity is not altered, hence Ly = Lo . Further, the normal components of velocity
must follow the normal shock jump conditions, and Eqns. 2.15-2.18 are valid for N; and N,. Since
M, = %’ and N1 = ¢1sinfs ,

Ny

— = M;jsing. (2.22)
C1

Thus, a factor of sinf should be appended to M; whenever it occurs in Eqns. 2.15-2.18 . Eqn.

2.15, for example, becomes

P2 2’}/

= =14+ = (M?sin?8-1). 2.2
P +7+1( fsin“p ) (2.23)

The relationship between 3 and 6 can be determined once again through the geometry, by noting

N
tanf = Tl’ (2.24)

tan (8 —0) = —. (2.25)

q;

Stationary Shock
Front

AV

“

Figure 2.2: Passage of fluid through an oblique shock wave.
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Figure 2.3: Oblique shock solutions for various shock strengths for v = 1.4.

Dividing Eqns. 2.24 and 2.25 and using conservation of mass, Eqn. 2.11, results in

tan(6—6) Ny pr_ (y—1) Misin®B+2

= = 2.26
tanf3 N1 p2 (v + 1) MEsin2f (2:26)
Some trigonometric manipulation gives the explicit dependence on the angles as
M?2sin?p — 1
tan® = 2cot ! : 2.27
an « 5M12 (7 + cos2B) + 2 (2:27)

Equations 2.23 and 2.27 form a set of nonlinear equations for which the pressure, angle of
obliquity, and angle of flow deflection form a unique set of curves for a given upstream Mach number.
This is typically referred to as the P — 6 — 3 relationship for oblique shocks. For reference, examples
of these curves, referred to as shock polars, are plotted in Fig. 2.3.

A few of the key features of the shock polars should be noted. First, there is a minimum shock
angle for which solutions exist. Examining Eqn. 2.23, as the shock strength goes to zero, P, — Py,

and the so-called Mach angle, p , is obtained as

p=sin"! (J\}IJ : (2.28)

The Mach angle represents the weak limit of the oblique shock wave, essentially resulting in an
infinitely small disturbance. The other limit, of course, is at 8 = 90°, which yields the normal shock
solution. The form of the shock polar also results in a maximum deflection angle, 0,44, as seen in
Figure 2.3 . The inability of an oblique shock to turn the flow past 6,,... plays a key role the reflection
phenomena discussed later. The final feature of the shock polar solution is the non-uniqueness of
the wave angle. For a given Mach number and flow deflection, two unique solutions exist. The first

is the lower pressure solution in which the downstream flow is supersonic, and is called the weak



14

solution. The second is the higher pressure solution, which results in subsonic downstream flow and
is called the strong solution. The appropriate selection of the solution often depends directly on the

downstream conditions as will be shown in the following sections.

2.1.4 Shock Polar Analysis of Reflection Phenomena
2.1.4.1 Regular Reflection

The simplest reflection to characterize is that of the a regular reflection such as the one shown
in Figure 2.4. In the steady configuration, the gas at its initial state, characterized by M; and
moving in a direction parallel to the wedge, encounters the incident shock at the wedge angle, £
. Equations 2.23 and 2.27 are now sufficient to solve for the resulting downstream state. This is
represented graphically in Figure 2.4(c) as point (2) , where P» and 65 correspond to the correct
angle of obliquity. Since the angle of the wedge is constant, the downstream conditions require
another shock wave to turn the flow to back to its original orientation. In this case, the Mach
number and flow deflection are specified, and Eqns. 2.23 and 2.28 can be used to solve for the shock
angle. Again, the graphical solution provides an intuitive solution, and the polar for this second
shock wave, known as the reflected shock, is shown in Figure 2.4(c). The intersection of the reflected
shock polar with § = 0 gives the reflected shock solution, state (3), where the correct choice of f is

immediately obvious.

2.1.4.2 Mach Reflection

The Mach reflection is an irregular reflection phenomenon that results from the limitations on how
much an oblique shock can alter the flow angle. In the example shown in Figure 2.5, a solution
similar to that of a regular reflection is attempted. As demonstrated in Figure 2.5 (c), however,
the reflected shock is no longer strong enough to turn the flow the back to its original orientation.
Thus, instead of a simple reflected solution, a 3 shock solution develops where a so-called Mach
stem branches off from the wedge and forms a triple point with the incident and reflected waves.
Since the flow behind the reflected shock and the Mach stem must still satisfy mass and momentum
conservation laws, the pressure and flow deflection in both states must be the same. This makes the
P — 0 shock polar a very useful tool in solving the problem graphically. As shown in Figure 2.5 (c),
the point at which both the reflected wave and Mach stem polar (which is identical to the incident
shock polar under a plane wave approximation) meet in P — 6 space is the solution of the wave
configuration and is labeled as states (3) and (4). While, by construction, P; = P, and 63 = 0, ,
there are still discontinuities in the velocity, density, and entropy between the two states. As such,
a vortex sheet, or slipstream, is generated to account for these discontinuities and separate the two

states.



15

Incident Shock ’

Incident Shock —> (1)

(2)
Reflected Shock

3)

(b)

1.5¢

(2)

5 1b 1‘5 20
0 (deg)

(c)
Figure 2.4: Regular shock wave reflection with M; = 1.7 and § = 40°. The wave configuration is

shown in (a), where the dotted line is a typical streamline of the flow. A holographic interferogram
from [16] is shown in (b), and the corresponding shock polar diagram is shown in (c).
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Figure 2.5: Regular shock wave reflection with M; = 1.7 and 8 = 65°. The wave configuration is
shown in (a), where the dotted lines are typical streamlines of the flow. A holographic interferogram
from [16] is shown in (b), and the corresponding shock polar diagram is shown in (c).
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2.2 Solids

The theory of normal shock waves in solids is discussed briefly. The Lagrangian equations of motion
are used to derive both the shock jump conditions and the differential forms governing simple wave
motion. After introducing the Mie-Griineisen EOS, the shock polar analysis from gas dynamics
presented in the earlier section is developed for analyzing oblique shocks in solids. An application of
the polar analysis in oblique shock reflection is given and then the Mach lens configuration is intro-
duced and discussed. This configuration forms the basis of the work presented in this dissertation.
A simple impedance matching solution to the configuration is given before the shock polar analysis

of the steady state Mach wave configuration is presented.

2.2.1 Normal Shock Waves

Experiments involving the normal impact of plane parallel surfaces result in plane longitudinal waves.
At times before the arrival of release waves from the lateral boundaries, the loading conditions
produce a condition of uniaxial strain [31, 35, 42, 63, 65, 86]. The properties of the propagating
wave are governed by the Lagrangian conservation equations of mass, momentum, and energy in the

direction of the uniaxial motion given, respectively, by [35]:

ou ov

oX POE’ (2:29)
60’11 - 8’(1,
ax = P (2.30)
OF ou  0Q
o gx T T ax (231)

where X denotes the Lagrangian position of a particle, ¢ is time, u is the particle velocity, pg is
the initial density, V is the specific volume of a material element, 017 is the Cauchy stress taken
to be positive in compression, F is the specific internal energy, and @ is the heat flux vector. The
jump between two states for a steady wave such as the one shown in Figure 2.6 can be examined by

introducing a similarity variable,

£=X - Ct, (2.32)

where C' is the speed of the wave. The initial and final states of the wave are taken to be
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Figure 2.6: Steady plane wave propagating at velocity C, with clearly defined starting and ending
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Equations 2.29-2.31 can be rewritten under this transformation as

d
dié- (’U, + pOCV) B

d
€ (011 — poCu),

d d
iz (poCE + Q) =011 (§) dig’

(2.33)

(2.34)

(2.35)

(2.36)

which are immediately integrable since py and C are constant. Using the limits of integration given

by Eqn. 2.33, the jump conditions can be written as

ut —um = —poC (V+ — V_) ,

ofi —on = —poC (um —u7).

The energy equation, Eqn. 2.36, can be solved using integration by parts and yields

1

(2.37)

(2.38)

(2.39)

It should be noted that the derivation of these jump conditions describes the jump from an
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initial to a final state at any point in the waveform. Therefore, another useful result can be seen in
the limit of W~ — W™, where a differential form of the Lagrangian conservation equations under
self-similar motion is obtained. These equations can be used to describe simple isentropic processes

such as release waves and isentropic loading [5].

du

dV = -Vo— 2.4
14 VOCa ( 0)

d0'11 = p()Cd'LL (241)

In general, however, the structure of the wave is usually ignored, and the jump between the
shocked and unshocked state is idealized as a discontinuous transition. Additionally, the transition
is assumed to be adiabatic, hence Q = 0, and Eqns. 2.37-2.39, with the wave speed being the
shock velocity, form the standard shock jump equations. The most commonly used form of these
equations in the shock literature is for a shock propagating into a quiescent material [36], in which

case conservation of mass and momentum are given by

poUs = p (Us — up) , (2.42)

0 — 00— pOUsuzn (243)

where U, is the shock velocity, u, is the downstream particle velocity, and for simplicity, o is
understood to be the o1; component of stress. Equation 2.39 can be manipulated using Eqns. 2.42

and 2.43 to eliminate the velocities and write conservation of energy as

E—E():%(U—i—ao)(‘/b—V). (2.44)

It can be seen in Eqns. 2.42, 2.43, and 2.44 that there are five unknown properties of the shock
wave: Us , up , 0,V ,and E . If any two of these five parameters are known, then, the jump
conditions allow for the complete characterization of the shocked state. If a series of these shocked
states are measured for a given material, the resulting locus of points is called the Hugoniot. If the
initial state is the undeformed material at standard temperature and pressure, the locus of points is
referred to as the principal Hugoniot. Since, experimentally, it is easiest to measure velocities, most
material Hugoniots are characterized by measuring the shock and particl