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Abstract

Solid state electrochemical reactions play a crucial role in many energy
conversion devices, yet the pathways of many reactions remain unknown. The
elusiveness of the reaction mechanisms is due, in part, to the complexity of
electrochemical reactions; because electrochemical reactions require the interaction of
many species (e.g., ions, electrons, and adsorbates) across multiple phases (e.g.,
electrolyte, catalyst, and gas phases), elucidation of the reaction pathway can quickly
become complicated. In this work, we develop and utilize model catalyst | electrolyte
systems, that is, structures of reduced complexity, to study electrode reactions in solid
acid fuel cells which operate at intermediate temperatures of ~ 250 °C. We employ AC
impedance spectroscopy to explore the reaction pathway for hydrogen electro-oxidation
over Pt thin films sputter-deposited atop the proton-conducting solid acid electrolyte
CsH,PO,. We observed that hydrogen electro-oxidation occurs by diffusion of hydrogen
through Pt, taking advantage of the entire Pt | CsH,POy, interfacial area rather than being
confined to the triple-phase sites. This insight opens up new avenues for developing high
performance electrodes with low Pt loadings by eliminating the requirement that Pt-based
electrodes be comprised of high triple-phase site densities long considered to be critical
for Pt electrocatalysis. Indeed, even for flat, planar electrodes of very thin Pt films, we
obtained a Pt utilization that is significantly higher than in typical composite electrodes.

We also demonstrate the efficacy of a new tool for probing the spatial
heterogeneity of electrochemical reactions at the metal | electrolyte interface. We
characterized oxygen electro-reduction kinetics at the nanoscale Pt | CsSHSO, interface at

~150°C wusing conducting atomic force microscopy in conjunction with cyclic
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voltammetry and AC impedance spectroscopy. Not only did we find the electrochemical
activity for oxygen electro-reduction to vary dramatically across the electrolyte surface
but the current-voltage data, when analyzed in the Butler-Volmer framework, exhibited a
strong counter-correlation between two key kinetic parameters, the exchange coefficient
and exchange current. Specifically, the exchange current spanned five orders of
magnitude while the exchange coefficient ranged between 0.1 and 0.6. Such a correlation
has not been observed before and points to the power of atomic force microscopy for
electrochemical characterization at electrolyte | metal | gas boundaries in general.

As reduction in microstructural complexity is a key advantage in model
electrode | electrolyte systems, we also sought to understand the bulk properties of solid
acid compounds, specifically, the relationship between microstructure and the
superprotonic phase transition, the latter of which lends solid acid compounds their high
proton conductivities at intermediate temperatures. We found a correlation between phase
transformation hysteresis and crystallographic compatibility of the high- and low-
temperature phases of the Cs;_xRbyH2,PO,4 solid solution series. Therefore, it is to be
expected that hysteresis, and therefore microcrack formation, can be minimized during
phase transformation via the principle of crystallographic compatibility. This is
confirmed in single crystals of CsHSO,4, which was found to have higher crystallographic
compatibility, lower hysteresis, and significantly fewer microcracks formed during phase
transition compared to CsH,PO,. The apparent applicability of the theory of
crystallographic compatibility implies a new tool for identifying solid acid compounds
with suitable microstructures for fuel cell application and for model electrode | electrolyte

systems.
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