
Systematic Design and Formal Verification of Multi-Agent
Systems

Thesis by

Concetta Pilotto

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011

(Defended March 28, 2011)

ii

c© 2011

Concetta Pilotto

All Rights Reserved

iii

To my family and friends.

iv

Acknowledgements

I would like to thank my advisor, Professor K. Mani Chandy, for providing guidance and assistance

throughout the period of my PhD research. I would like to thank Professor John O. Ledyard for

serving on my committee and giving me the possibility to present the results of my research work at

the Social and Information Sciences Laboratory (SISL) seminar series on a regular basis. I would like

to thank Professor Richard M. Murray for serving on my committee, proving feedback on my work

and giving me the possibility to present some of my work at the Verification & Validation MURI

hands-on workshop. I would also like to thank Professor Steven H. Low, Professor John C. Doyle,

and Dr. Gerard J. Holzmann for serving on my committee.

I would also like to thank all colleagues and friends who made my life at Caltech more enjoyable,

including all members of the Infosphere group. They have always provided support and assistance

during my Ph.D. studies. A special thanks goes to Jerome White, the colleague with whom I have

worked more closely during my graduate studies at Caltech.

Lastly, but not least, I would like to thank the SISL and Multidisciplinary Research Initiative

(MURI) from the Air Force Office of Scientific Research that supported my PhD research during all

these years at Caltech.

v

Abstract

This thesis presents methodologies for verifying the correctness of multi-agent systems operating in

hostile environments. Verification of these systems is challenging because of their inherent concur-

rency and unreliable communication medium. The problem is exacerbated if the model representing

the multi-agent system includes infinite or uncountable data types.

We first consider message-passing multi-agent systems operating over an unreliable communica-

tion medium. We assume that messages in transit may be lost, delayed or received out-of-order.

We present conditions on the system that reduce the design and verification of a message-passing

system to the design and verification of the corresponding shared-state system operating in a friendly

environment. Our conditions can be applied both to discrete and continuous agent trajectories.

We apply our results to verify a general class of multi-agent system whose goal is solving a

system of linear equations. We discuss this class in detail and show that mobile robot linear pattern-

formation schemes are instances of this class. In these protocols, the goal of the team of robots is

to reach a given pattern formation.

We present a framework that allows verification of message-passing systems operating over an

unreliable communication medium. This framework is implemented as a library of PVS theorem

prover meta-theories and is built on top of the timed automata framework. We discuss the appli-

cability of this tool. As an example, we automatically check correctness of the mobile robot linear

pattern formation protocols.

We conclude with an analysis of the verification of multi-agent systems operating in hostile

environments. Under these more general assumptions, we derive conditions on the agents’ protocols

and properties of the environment that ensure bounded steady-state system error. We apply these

results to message-passing multi-agent systems that allow for lost, delayed, received out-of-order

or forged messages, and to multi-agent systems whose goal is tracking time-varying quantities. We

show that pattern formation schemes are robust to leaders dynamics, i.e., in these schemes, followers

eventually form the pattern defined by the new positions of the leaders.

vi

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 Thesis Contributions . 1

1.2 Multi-Agent Systems . 3

1.3 Communication Models for Multi-Agent Systems . 4

1.4 Multi-Agent Systems in the Presence of Exogenous Inputs 5

1.5 Motivating Example . 6

1.6 Structure of the Thesis . 10

2 Formal Models for Multi-Agent Systems 15

2.1 Automata . 15

2.1.1 Automaton Model . 15

2.1.2 Line-Up Automaton . 16

2.2 Automata with Timed Actions . 18

2.2.1 Automaton Model . 20

2.2.2 Executions and Reachability . 22

2.2.3 Temporal Operators . 26

2.2.4 Line-Up automaton with dynamics . 30

2.3 Fairness . 32

2.4 Automata in the Presence of Exogenous Inputs . 34

2.5 Discussion . 36

3 Stability and Convergence Properties of Automata 38

3.1 Equilibria in Automata . 38

3.2 Lyapunov Function and Level Sets . 42

3.3 Stable Equilibria . 47

vii

3.4 Asymptotically Stable Equilibria . 49

3.5 Properties of Automata in the Presence of Exogenous Inputs 52

3.6 Discussion . 54

4 Stability and Convergence Properties of Multi-Agent Systems 56

4.1 Shared-State Multi-Agent Systems . 56

4.1.1 Shared-State Automaton . 57

4.1.2 Shared-State Automaton with Explicit Arbitrary Dynamics 59

4.2 Shared-State Multi-Agent System with Sliding Window 65

4.2.1 Automaton with sliding window . 65

4.2.2 Line-Up with Sliding Window . 69

4.2.3 Line-Up with Explicit Arbitrary Dynamics and Sliding Window 69

4.2.4 Lyapunov Function and Level Sets . 70

4.2.5 Stability . 72

4.2.6 Convergence . 73

4.3 Message-Passing Multi-Agent Systems . 74

4.3.1 Message-Passing Communication Model . 74

4.3.2 Message-Passing Automaton . 76

4.3.3 Stability and Convergence . 77

4.4 Multi-Agent Systems with Concurrent Actions . 77

4.4.1 Shared-State Multi-Agent Systems with Concurrent Actions 78

4.4.1.1 Shared-State Multi-Agent Systems with Discrete Actions 78

4.4.1.2 Shared-State Multi-Agent Systems with Timed Actions 80

4.4.2 Shared-State Multi-Agent Systems with Sliding Window and Concurrent Actions 83

4.5 Discussion . 86

5 An Application to Distributed Control 88

5.1 Systems of Linear Equations via Shared Variables . 88

5.1.1 MAS solving Systems of Linear Equations . 88

5.1.2 System of Linear Equations Shared-State Automaton 89

5.1.3 Proof of Correctness . 90

5.1.3.1 Matrix A . 90

5.1.3.2 Communication Graph G . 90

5.1.3.3 Strictly Diagonally Dominant Rooted Forest F 91

5.1.3.4 Error Function e . 91

5.1.3.5 Agents Weights . 92

5.1.3.6 Totally Ordered Set P . 93

viii

5.1.3.7 Lyapunov Function and Level Sets 95

5.1.3.8 Properties of Level Sets of V . 96

5.1.3.9 Convergence Property . 101

5.1.4 Solving Systems of Linear Equations with Dynamics 101

5.2 Solving Systems of Linear Equations via Message-Passing 102

5.2.1 MAS solving Systems of Linear Equations . 103

5.2.2 System of Linear Equations Message-Passing Automaton 103

5.2.3 Proof of Correctness . 104

5.3 Linear Robot Pattern Formation Protocol . 105

5.3.1 Linear Robot Patter Formation Multi-Agent System 105

5.3.2 Solving a System of Linear Equations . 105

5.3.3 Proof of Correctness . 106

5.4 Discussion . 108

6 PVS Verification Framework 111

6.1 Systems of Linear Equations PVS Verification Framework 111

6.2 Mathematical Library . 112

6.2.1 Vector PVS meta-theory . 112

6.2.2 Matrix PVS meta-theory . 115

6.3 Message-Passing System PVS Library . 116

6.3.1 System state . 116

6.3.2 Communication Medium . 117

6.3.3 System actions . 118

6.4 Verification PVS Library . 120

6.4.1 Error Model . 120

6.4.2 Proof of Correctness PVS meta-theory . 121

6.4.2.1 Inputs and Assumptions . 121

6.4.2.2 Proof of Correctness Theorems . 123

6.5 Framework Discussion . 124

6.6 Verification of the Linear Robot Pattern Formation Protocol in PVS 125

6.6.1 Parameters . 125

6.6.2 PVS Instantiations . 125

6.6.3 Proving Correctness of the Protocol . 127

6.6.4 Discharging Library Assumptions . 127

ix

7 Properties of Automata in the Presence of Exogenous Inputs 130

7.1 Assumptions . 131

7.2 Properties of Executions of Exogenous Automata . 132

7.3 Properties of the Exogenous Automaton . 134

7.4 Solving Systems of Linear Equations in the Presence of Exogenous Inputs 135

7.4.1 Solving Systems of Linear Equations with Discrete Actions 136

7.4.1.1 Exogenous Automaton . 136

7.4.1.2 Properties of the Exogenous Automaton 137

7.4.1.3 Bounded Exogenous Automaton . 139

7.4.1.4 Discussion . 140

7.4.2 Solving Systems of Linear Equations with Dynamics 142

7.4.2.1 Exogenous Automaton . 142

7.4.2.2 Properties of the Exogenous Automaton 142

7.4.2.3 Bounded Exogenous Automaton . 143

7.4.3 Solving Systems of Linear Equations via Message-Passing 144

7.5 Discussion . 144

8 Conclusions 146

8.1 Thesis Contributions . 146

8.2 Summary . 147

8.3 Future Work . 147

Bibliography 152

x

List of Figures

1.1 Representation of a feasible and corresponding desired configuration of the load bal-

ancing multi-agent system. 5

1.2 Examples of regular grids. 7

1.3 Snapshots of the execution of a multi-agent system whose goal is to form and maintain

a time-varying spatial configuration. 7

1.4 The dynamics of the leader agents in the execution presented in Figure 1.3. 7

1.5 Examples of regular grids. 8

1.6 Snapshots of an execution of the multi-agent in Figure 1.3. 8

1.7 The dynamics of the leader agents in the execution presented in Figure 1.6. 8

2.1 A Line-Up multi-agent system consisting of 10 agents. 17

2.2 Pre- and post configurations of the updating rule in the case when the identifiers of

the agents are i = 2, l = 1 and r = 4. 17

2.3 PVS representation of the Line-Up multi-agent system. 19

2.4 Pictorial representation of behavior of timed action. 21

2.5 Pictorial representation of an end-state execution fragment. 22

2.6 Pictorial representation of the function describing the end-state execution fragment

depicted in Figure 2.5. 23

2.7 Pictorial representation of a finite sub-fragment of the end-state execution fragment

depicted in Figure 2.6. 25

2.8 Pictorial representation of a prefix of the end-state execution fragment depicted in Fig-

ure 2.6. 26

2.9 Pictorial representation of a suffix of the end-state execution fragment depicted in Fig-

ure 2.6. 27

2.10 Execution fragment where 2 P holds. 27

2.11 Execution fragment where 3 P hold. 28

2.12 Execution fragment where 3 P does not hold . 28

2.13 Execution fragment where 32 P holds . 29

2.14 Execution fragment where 2 (P ⇒ 3 Q) holds. 30

xi

2.15 Agent i executes the updating rule and moves from its current position to the newly

computed one. 31

2.16 Feasible dynamics for agent i when executing action a = âvgl,i,r in state s with s(j) = 0,

∀j ∈ {0, . . . , N}. 32

2.17 A multi-agent system consisting of three agents. 32

3.1 Pictorial representation of examples of sets . 45

3.2 Pictorial representation of a stable level set Lp . 46

3.3 Pictorial representation of stable equilibrium state in terms of ε and δ balls around ŝ. 48

3.4 A graphical representation of the proof of Theorem 8. 49

3.5 Pictorial representation of asymptotical stability of ŝ. 50

3.6 The system eventually enters Lp in Theorem 9. 51

3.7 Lp̂ ⊆ Lp in Theorem 9. 51

3.8 Pictorial representation of a L-bounded execution π of Aexog with respect to function g. 53

3.9 Pictorial representation of a 0-bounded execution π of Aexog with respect to function g. 54

4.1 An execution of a multi-agent system consisting of three agents A1, A2 and A3. 58

4.2 An example of shared-state multi-agent system and the corresponding automaton. . . 59

4.3 Generic PVS model of a shared-state multi-agent system. 60

4.4 Pictorial representation of the conditions of Theorem 10. 63

4.5 Pictorial representation of the conditions of Theorem 11. 63

4.6 An execution of a multi-agent system consisting of three agents where at time t, each

agent can access past states of other agents. 64

4.7 An execution of a multi-agent system consisting of three agents where at time t, agent

A1 reads past states of agent A2 and A3. 65

4.8 Pictorial representation of two non-overlapping windows 67

4.9 Pictorial representation of two overlapping windows. 68

4.10 Pictorial representation of the message-passing communication model. 75

4.11 An execution of a multi-agent system consisting of three agents where at time t, agent

A1 receives the two messages m2 and m3. 77

4.12 An execution of a multi-agent system consisting of three agents where agents execute

discrete actions concurrently. 78

4.13 An execution of a multi-agent system consisting of three agents where agents execute

actions concurrently. 80

4.14 An execution of a multi-agent system consisting of three agents where agents execute

actions concurrently and agent can read past states. 84

xii

5.1 Representation of a tree. The Breadth-first traversal ordering is i <BF m <BF j <BF

l <BF k. 94

5.2 Examples of q(k1,j1) for the tree in Figure 5.1. 95

5.3 The communication graph G = (V,E) corresponding to matrix A when N = 5. 107

5.4 A strictly diagonally dominant rooted forest of the communication graph in Figure 5.3. 108

5.5 Pictorial representation of Lk,3 in the case when the system consists of 5 agents . . . 109

6.1 Architecture of the PVS Verification Framework. 112

6.2 Predicates and Operators defined in the PVS Vector meta-theory. 114

6.3 Predicates and Operators defined in the PVS Matrix meta-theory. 116

6.4 System state. Refer to Figure 6.5 for the definition of Pset. 117

6.5 Channel Types Components of the system automaton. 117

6.6 Actions of the system. 118

6.7 Error values of agent i. 121

6.8 Maximum error of agent i within its out-going channels and within agent states. . . . 121

6.9 Assumptions on matrix A. 122

6.10 Assumptions on the forest of trees. 123

8.1 Pictorial representation of a multi-agent system whose goal is to solve a system of

non-linear equations. 148

8.2 Pictorial representation of a two-player potential game. 149

8.3 Pictorial representation of a multi-agent system where the protocol of the agents is linear.150

xiii

List of Tables

6.1 Number of proof steps needed for discharging the assumptions of the tool. 127

1

Chapter 1

Introduction

In this Chapter, we introduce the main ideas of this Thesis. Definitions and theory are presented in

later Chapters.

1.1 Thesis Contributions

This Thesis provides a theory for a new problem space and gives a mechanism to reason about it

using the tools of computer science – automata and mechanical theorem proving.

Theory for a new problem domain

The Thesis introduces new theoretical tools for proving properties of multi-agent systems with con-

tinuous state spaces, where states change continuously with time and where agents communicate

asynchronously at discrete points over a faulty communication medium. The novel aspects of the

problem domain deal with the combination of (a) continuous dynamics of agents and (b) asyn-

chronous communication with discrete messages that may be delayed or lost.

Much of the research on verifying distributed systems in computer science deals with proving that

eventually some property will hold; for example, verification theory helps to prove that a collection

of agents will eventually sort themselves in increasing order of identifiers. By contrast, this Thesis

deals primarily with either (a) convergence properties showing that the actual state trajectory will

get arbitrarily close to a desired trajectory, though it may never actually reach it, or (b) bounds on

the deviation of the actual state trajectory from the desired one. Research in the computer science

literature deals primarily with systems in which only one agent changes its state at a time, while

the states of all other agents remain unchanged, and where state changes are discrete. This Thesis

presents theory about multi-agent systems in which all agents may change their states concurrently

and continuously.

2

An Example. A simple example of this problem space is a system with N agents, N > 2, indexed

0, 1, .., N −1, where agents 0 and N −1, called leaders, move in the space in some arbitrary manner,

and the goal of the remaining agents is to form a straight line with equal spacing between agents

(see Figure 2.1). Agents move according to some dynamics – for example with constant velocity or

constant acceleration or some other control law. All the agents may be moving at the same time.

Agents send messages containing their current positions, and these messages may be delayed or

lost. When an agent receives messages, it changes its heading based on the information about other

agents. If agents 0 and N − 1 are stationary, a question studied in this Thesis is: “Will the system

converge to the desired state?”. If agents 0 and N − 1 are moving, a question is: “What is a bound

(if any) between the actual state of the system and the desired state?” “How do message delay and

the motion of the leaders impact the bound?”

Nondeterminism and Control. Nondeterminism is an important aspect of the problems stud-

ied in this Thesis. “How should systems in which messages are lost be modeled?” For example, if

one set of agents can never communicate with another set of agents because all messages between

the two sets are lost, then the two sets cannot collaborate, and nothing interesting can be proven

about the combined system. Models in which every k-th message gets through are too restrictive.

Models in this Thesis use an assumption of “fairness” from temporal logic that a message from one

set to the other gets through “eventually”. A challenge is to integrate nondeterministic models of

communication with agents that change their states continuously. For example, a mobile agent that

is moving from one location to another may accelerate for the first half of the movement and deceler-

ate for the second half (see Figure 2.16(b)); or it may move at constant velocity (see Figure 2.16(a));

or, it may choose some other control law. When this agent receives a message from another agent,

the receiver cannot determine when the sender sent the message because the agents do not share a

clock; the receiver may need to change direction based on the messages it receives. An agent may

receive a message while it is traveling from one location to another, and the precise time and location

at which the message will be received cannot be predicted. These models are very general and make

weak assumptions, so that it is hard to deduce interesting properties; however, this Thesis presents

theorems about convergence and stability of such systems.

Time-Varying Goal Configuration. The Thesis presents theory for cases in which the environ-

ments where systems operate may or may not change. The goal state of a system depends on the

environment; when the environment is unchanging the goal state is constant, and when the environ-

ment changes the goal state changes as well. In the simple example of the N moving agents given

earlier, the environment is represented by the locations of the leaders – agents 0 and N − 1. When

the leaders move the line between them changes and the follower agents (indexed 1, . . . , N−2) follow

3

the changing line. The requirement that an agent will receive a message eventually (i.e., in some

arbitrary, but finite, time) is too weak because the leaders may move arbitrarily far in arbitrarily

long time. Therefore, we introduce the concept of an “epoch” – a bounded time interval during

which the fairness constraints are satisfied; in other words instead of merely requiring that some

condition holds eventually we require that the condition holds within some time interval ∆, and we

present theorems for the distance between the actual state and the goal state as a function of ∆.

Worst-Case Analysis. The Thesis analyzes worst cases rather than average cases. A worst case

can be thought of in terms of a competitive game between the system and its environment. The

environment knows the algorithm used by the system and the state of the system at all times. The

environment takes actions to frustrate the system - for instance to maximize the distance between the

actual and desired states of the system. For instance, the environment may choose to delay messages,

lose messages, and reorder messages, given its knowledge of the system state. The environment must,

however, satisfy the constraints imposed by the fairness assumptions.

Formalization of Systems as Automata and Mechanical Theorem Proving

Proofs of the properties can be completely axiomatic so that a theorem-proving program can check

proofs mechanically. Alternatively, proofs can skip some detailed steps. In the latter case, people

with knowledge of the underlying mathematical domain can check the proof, but programs may be

unable to do so. Most proofs in mathematics are not provided at the level of detail that enable

current theorem-proving programs to verify them. We present a theory, based on prior work on

automata, which allows proofs to be verified mechanically. Automatic verification can be extremely

time consuming, and we do not mechanically verify all the proofs in this Thesis. We do mechanically

verify some theorems to demonstrate that the theoretical framework can be used for this purpose. A

contribution of this Thesis is an automaton – theoretic representation of multi-agent systems with

continuous dynamics in which agents communicate with each other through faulty communication

media.

1.2 Multi-Agent Systems

In this Section, we informally describe multi-agent systems. A multi-agent system (MAS) is a

collection of agents that interact with each other. Agents may cooperate towards some collective

task or they may compete, each trying to achieve its individual goal. Agents may be robots, devices,

software components, or, even, people.

Multi-agent systems are decentralized systems as they achieve their goal without global coordi-

nation. In multi-agent systems, the interactions between agents are local. Agents usually interact

4

with a subset of the system. Agents in the system may execute their actions concurrently and at

different rates.

Many applications may be modeled as multi-agent systems. Homeland security [54], health

monitoring [6], and habitat and environmental monitoring ([12, 60]) applications are examples of

multi-agent systems. For example, in environmental applications agents may be motes, with some

processing capabilities, whose goal is monitoring some quantity of the environment, such as temper-

ature. Other examples of multi-agent systems can be found in robotics, where agents are team of

robots; examples of these applications are agents playing some game, such as soccer [70] or “capture

the flag” [23, 71]. Examples from biology are flocks of birds or shoals of fishes ([20, 10]), where

agents are birds or fishes whose goal is to form and maintain a specific spatial pattern.

In this Thesis, we focus on collaborative multi-agent systems where agents interact using very

simple nearest-neighbor rules. We consider hybrid systems, i.e., systems where agents may have both

discrete and continuous components. For example, we consider a multi-agent system consisting of

vehicles whose goal is to reach a specific desired spatial configuration. In this multi-agent system,

the variables describing the state of a vehicles can be discrete or continuous. For example, a discrete

variable may represent the mode of the vehicle, e.g. straight or maneuvering; this variable can drive

the dynamics of the vehicles, e.g. position and acceleration, that are represented using continuous

variables.

1.3 Communication Models for Multi-Agent Systems

In this Section, we present two communication models for multi-agent systems. In the first model,

agents communicate via shared variables, while in the second model agents communicate by ex-

changing messages over an unreliable communication medium.

In a shared-state system, agents share memory and use this memory to communicate with each

other. Using this common memory, each agent exposes some variables of its own local state to other

agents. Each agent is responsible for its exposed variables, as it can read and write them; an agent

can only read the exposed variables of other agents. Examples of these systems are multi-threaded

systems, where threads store local variables in the stack memory, while storing exposed variables in

the heap memory.

In a message-passing system, agents communicate with each other by sending messages. An

agent can send messages containing the current values of its local variables to other agents. Agents

can read and write their local variables and access the values in the received messages. Messages

may be lost, delayed or received out of order. Examples of these systems are processes on different

machines communicating over the Internet. We consider message-passing systems with bounded

transmission delay.

5

The same algorithm executed over these two communication models can lead to different final

system configurations. When communicating via shared variables, agents update their states using

the current state of other agents. When communicating via message-passing, each agent updates

its state using the latest received message. This message may contain information from an old copy

of the state of some other agent, since messages may be delayed or received out-of-order. As a

consequence, properties of configurations of a shared-state multi-agent system may not hold for the

corresponding message-passing systems.

(a) A feasible configuration of the
load balancing multi-agent system.

(b) Corresponding desired configura-
tion of the load balancing multi-agent
system.

Figure 1.1: Representation of a feasible and corresponding desired configuration of the load balancing
multi-agent system. Nodes represent processors, edges represent dedicated communication between
nodes and bars represent workload at each processor. The total amount of workload in Figure 1.1(a)
and Figure 1.1(b) is the same.

1.4 Multi-Agent Systems in the Presence of Exogenous In-

puts

In this Section, we introduce the notion of exogenous inputs for multi-agent systems. These inputs

are arbitrary quantities injected into the system. When injected, they can change the state of the

system.

For example, consider a load balancing multi-agent system [21]. This system consists of a network

of processors, and the goal of the system is to distribute the workload evenly across the network

in a decentralized manner. We refer to Figure 1.1 for a pictorial representation of this multi-agent

system. In this Figure, processors are depicted as nodes, communication links between processors

are represented as edges and the amount of workload at each node is represented as a rectangle.

In Figure 1.1(a), we present a configuration of the system, where each processor stores a given amount

6

of workload; in Figure 1.1(b), we present the corresponding desired configuration where all processors

store the same amount of workload. The total workloads in Figure 1.1(a) and Figure 1.1(b) are the

same. We first study systems in which we are given an initial workload at each agent and no work

is added or completed; the question of interest is: “Can agents interact locally so that the system

state converges to the desired state?”. Exogenous inputs change the work at each agent while the

load balancing algorithm is executing. New work is added and work may be completed. In this case

the system may never converge to the desired state in which all agents have the same workload. The

problem of interest is determining a bound (if one exists) of the error given by the distance between

the actual state and the desired state.

As another example, we consider a system consisting of a network of sensors that exchange

messages in an inaccessible environment. The goal of the system is to track some object traveling

across some area. A system without exogenous inputs estimates the location of a stationary object.

The movement of the object is modeled by exogenous inputs.

Other examples, include distributed coordination and flocking [34], vehicle formation [25, 61, 19]

and sensor fusion [52, 49] systems. In the presence of exogenous inputs, the goal state of the system

can change with time. We present conditions that ensure that the system is able to track these

time-varying quantities.

1.5 Motivating Example

In this Section, we present theory for proving that a general class of multi-agent systems satisfy their

specifications. Agents communicate via message-passing over an unreliable communication medium.

We allow for lost, delayed, duplicated, and received out-of-order messages. The goal of agents in

these systems is to form and maintain a time-varying regular spatial configuration starting from

some arbitrary positions.

For example, in Figure 1.3 we present a sequence of snapshots of a multi-agent system whose

goal is to form and maintain a regular grid. Examples of regular grids are presented in Figure 1.2

and Figure 1.5. This specific system consists of four leader agents and 76 follower agents. The

desired configuration is a regular grid with corners given by the four leader agents. In this specific

execution, leaders move according to the dynamics presented in Figure 1.4; in Figure 1.6, we present

another sequence of snapshots of the same multi-agent systems. In this case, the dynamics of the

leaders are presented in Figure 1.7.

We consider very simple protocols for agents where the new position of an agent is computed

as the weighted average of the positions of the agents in its neighborhood. Agents move from their

current locations to the newly computed one according to some dynamics. The specific dynamics

depends on the current state of the agent. An agent may not reach its newly computed target

7

2
1

4
3

1
2

4

3

(b)

1

(a)

1

2

3
2

4

(d)

4

(c)

3

Figure 1.2: Examples of regular grids. The cor-
ner agents are depicted as dark filled circles and
have identifiers ranging from 1 through 4.

(c) (d)

4
4

2

2
2

1
1

1
1

(b)(a)

4
4

2

3
3

3
3

Figure 1.3: Snapshots of the execution of a
multi-agent system whose goal is to form and
maintain a time-varying spatial configuration.
Leader agents having have identifiers ranging
from 1 through 4 and are depicted as dark filled
circles. The goal configuration, depicted in Fig-
ure 1.2 in the case of snapshots (a)-(d), is a
regular grid with extremes given by the leader
agents. The dynamics of the four leader agents
is presented in Figure 1.4.

(a)

(a)

(a)

(c)

(b)

(c)

(b)

(c)

(b)

(c)

(d)

(d)
(d)

(d)

(a)

(b)

Agent 1
Agent 2

Agent 4

Agent 3

Figure 1.4: The dynamics of the leader agents
in the execution presented in Figure 1.3. For
each leader agent we emphasize the position of
the leader agent at the snapshots (a)-(d) of Fig-
ure 1.3.

8

(b)

(d)(c)

(a)

2
121

3 4 3
4

1
1

2

4

3

4

2
3

Figure 1.5: Examples of regular grids. The cor-
ner agents are depicted as dark filled circles and
have identifiers ranging from 1 through 4.

(c) (d)

1 1

1

(b)(a)

1

2
2

2
2

3

3
3

3

4
4

44

Figure 1.6: Snapshots of an execution of the
multi-agent in Figure 1.3. The goal configura-
tion, depicted in Figure 1.5 in the case of snap-
shots (a)-(d), is a regular grid with extremes
given by the leader agents. The dynamics of
the leader agents are presented in Figure 1.7.

(a)
(b)

(c)

(d)

(a)

(c)

(d)

(a)
(b)

(c)

(d)

(a)

(b)

(c)

(d)

Agent 4

Agent 3

Agent 2

Agent 1

(b)

Figure 1.7: The dynamics of the leader agents
in the execution presented in Figure 1.6. For
each leader agent we emphasize the position of
the leader agent at the snapshots (a)-(d) of Fig-
ure 1.6.

9

position, because it may receive a message from a neighbor while it is traveling, and this may

change its target position. An agent updates its target state using the positions stored in the

received messages that are potentially old, corrupted and computed at different times.

As a specific example, we consider the case where the positions of the agents are points on the

real line. The system consists of two leader agents and N−1 follower agents. The goal of the follower

agents is to form an equi-spaced line with extremes given by the two leader agents. The specific

equi-spaced line changes with time, since leader agents can move with arbitrary dynamics. This is

the 1-dimensional version of the multi-agent system presented in Figure 1.3 and Figure 1.6. In this

specific system, we assume that agents have unique identifiers: the identifiers of the leader agents are

0 and N , while the identifiers of the follower agents are in the set {1, . . . , N − 1}. Agents exchange

messages containing agents locations. Each follower agent keeps the last message that it received

from any agent with lower identifier and it also keeps the last message from any agent with higher

identifier. The updating rule of the follower agent is very simple. It computes its target position as

the weighted average of the values stored in these two last received messages. The weights depend

on the identifiers of the senders of these two messages. It then moves towards it according to some

dynamics.

Proving the correctness of systems in this class is very challenging. We must prove that the

distance between the current configuration of the system and the corresponding time-varying desired

configuration is bounded. In this Thesis, we present a strategy for proving correctness of these

systems. We next describe the main ideas discussed in this Thesis:

1. We start by proving the correctness of a shared-state multi-agent system where agents instan-

taneously update their current position with the newly computed one. In these systems, agents

update their positions using the current positions of other agents. We assume that the desired

final configuration does not change with time. This defines a shared-state multi-agent system

with discrete, instantaneous actions. For this system, we prove that the system eventually

reaches the desired configuration.

For example, in the case of the multi-agent system whose goal is forming a equi-spaced line, we

have that the leader agents are stationary and, in a nondeterministic fashion, an agent chooses

two other agents and updates its location with the weighted average of these other two agents.

We refer to this shared-state multi-agent system as the Line-Up multi-agent system.

2. We then relax the assumption on the agent dynamics. We allow agents to evolve their state

from their current to the newly computed one according to some explicit dynamics. The proof

of correctness of the shared-state multi-agent system with discrete actions remains valid in

this system assuming specific dynamics for agents. For example, agents may move from their

current locations towards their newly computed with constant velocity and straight trajectory.

10

3. We then relax the assumption on the communication. Agents do not operate over a perfect

communication medium. The medium is unreliable. We allow for messages that can be

lost, delayed, duplicated or received out-of-order. Values stored in the messages in transit

correspond to potentially old locations of the agents. The proof of correctness of the shared-

state system remains valid in the case of message-passing systems. This is not true in general;

in this Thesis, we derive conditions on the shared-state systems that ensure it. As shown in

this Thesis, this class of multi-agent systems satisfies these conditions.

4. We finally model noise in the transmission and time-varying formations using exogenous inputs.

This general system is able to track the time-varying final configuration. This is not true in

general; in this Thesis, we derive conditions on the agents protocol in the absence of exogenous

inputs and on the exogenous inputs that ensure this property.

1.6 Structure of the Thesis

In this Section, we discuss the structure of the Thesis.

Chapter 2

In Chapter 2, we introduce the automaton with timed actions model. We use this model for repre-

senting multi-agent systems and exogenous inputs.

An automaton with timed actions consists of a set of states, a set of initial states, a set of timed

actions, an enabling predicate and a transition function. In the case of the multi-agent system,

the state space of the automaton models the state of its agents and, in case of message-passing

communication, the state of the communication medium. The set of actions along with the enabling

condition and transition function models the behaviour of the agents of the system. In the case

of exogenous inputs, the state space of the automaton models the state space of the multi-agent

system and its set of actions models the behaviour of these exogenous injections. We assume that

exogenous inputs can modify any agent in the system.

We prove the correctness of a multi-agent system by showing properties of its executions. These

properties are described using the linear logic operators always 2 and eventually 3 [59]. For exam-

ple, the proof of correctness of the Line-Up multi-agent system requires to prove that the error of

the system never increases, that is a safety property, and that the error of the system eventually

decreases, that is a progress property. We also define fairness for multi-agent systems.

11

Chapter 3

In Chapter 3 we discuss properties of automata with timed actions. We use these properties for

proving correctness of the corresponding multi-agent systems.

In this Chapter, we introduce the notion of equilibrium state. An equilibrium state is a fixed

point of the executions of the automaton. Equilibrium states model goal configurations of multi-agent

systems. For example, the goal configuration of the Line-Up multi-agent system is an equilibrium

state of the corresponding Line-Up automaton.

In this Chapter, we introduce stability and convergence properties. Informally, an equilibrium

state is stable if every execution of the automaton that starts close to the equilibrium state remains

close to it. The system converges to an equilibrium state if any fair execution of the automaton

that starts close to the equilibrium state converges to it. In this Chapter, we provide sufficient

conditions on the automaton that ensure stability and convergence. We also discuss properties of

automata in the presence of exogenous inputs. When injecting exogenous inputs, we are interested

in the robustness of the system. We model this robustness property with the notion of bounded

automaton. An automaton in the presence of exogenous inputs is bounded if eventually-always the

distance between the system and the set of equilibrium states of the automaton in the absence of

exogenous inputs is bounded.

The material covered in this Chapter has been published in [14]. Our work extends the work

of [66] to systems with timed actions, in the special case of metric state space.

Chapter 4

In Chapter 4 we discuss stability and convergence properties of multi-agent systems. We consider

both shared-state and message-passing multi-agent systems.

We first discuss properties of shared-state multi-agent systems. We model these systems as

automata with discrete or timed actions. We prove correctness of these systems using the results

of Chapter 3.

We, then, introduce a generalization of the shared-state multi-agent system model, where agents

can update their state using the states of other agents computed at some times in the past. This

is different from the shared-state automaton model where agents use the current state of the other

agents. In this new model, called shared-state multi-agent system with sliding window, agents cannot

read arbitrary old values; if t is the current time of the execution, agents can read the state of other

agents up to t − B. We present conditions on the shared-state system that preserve correctness

when transforming the shared-state automaton into a shared-state with sliding window. We show

that message-passing multi-agent systems with bounded delay can be modeled using shared-state

automata with sliding window.

12

We finally discuss multi-agent systems with concurrent actions. In these systems, agents can

execute actions concurrently. For example, in the Line-Up multi-agent system with concurrent

actions, multiple agents can move at the same time. We model both shared-state and message-

passing systems with concurrent actions and derive conditions that ensure stability and convergence

of these systems.

The material of this Chapter has been partially presented in [16] and extends the work of [66, 8]

where they prove stability and correctness of multi-agent systems with concurrent discrete actions.

Chapter 5

In Chapter 5 we discuss the correctness of a general class of iterative schemes. The goal of systems

in this class is solving a system of linear equations of the form A · x = b. These systems iteratively

compute vector x starting from an initial guess vector x0. These are decentralized schemes where

each agent is responsible for solving a specific variable using a specific equation of the system of

linear equations. For example, agent i would be responsible for computing x(i) using as updating

rule the i-th equation of the system. We consider both shared-state and message-passing multi-agent

systems.

We, first, consider shared-state multi-agent systems. We prove the correctness of schemes in this

class using the results in Chapter 3. We require the matrix A to satisfy specific assumptions. We,

then, consider message-passing multi-agent systems. In these systems, agent i repeatedly broadcasts

a message containing the current value of x(i). Agent i uses the i-th equation as its updating rule.

In this equation, variable x(i) is the only unknown, since agent i uses the last message received from

agent j to represent x(j) for all j 6= i. We prove correctness of message-passing systems using results

of Chapter 4.

In this Chapter, we discuss a linear robot pattern formation protocol that can be modeled as a

multi-agent system whose goal is solving a system of equations. This protocol is a special case of

the Line-Up multi-agent system. We derive its proof of correctness from the convergence property

of systems in this class.

The material covered in this Chapter has been published in [14]. It extend the work of [28] in

the linear case, and the work of [18] relaxing some assumptions on the equations in the system.

Chapter 6

In Chapter 6 we present a library of PVS [53] meta-theories that can be used to verify message-

passing multi-agent systems discussed in Chapter 5. Our framework can be downloaded from [58]

and consists of over 200 lemmas and approximately 8700 proof steps. It consists of a library of PVS

meta-theories built on the top of I/O automata [42, 3, 2, 4] with the extension for timed and hybrid

13

systems [36, 46, 45, 35, 38].

In this Chapter, we detail the structure of the framework. It consists of three main libraries.

The first library describes the state space, initial states, actions, enabling condition and transition

function of the message-passing multi-agent system. The state of the system consists of the state

of the agents and the state of the communication medium. The second library encodes the proof

of correctness of these systems in PVS. The third library presents auxiliary lemmas on predefined

data structures such as vectors and matrices.

When using this framework, the end-user is required to discharge some assumptions on the matrix

A. As an example, we apply our verification framework for proving correctness of the robot pattern

formation protocol described in Chapter 5.

The material covered in this Chapter has been published in [56, 57]. Our work follows a very

large body of literature where theorem provers have been used for modeling [29, 30, 11, 37] and

verification [33, 27, 44]. A theorem prover is an appropriate tool when modeling nondeterministic

systems with dense state spaces. Other tools that rely on exhaustive state space exploration, such

as model checkers, may present difficulties when dealing with this issue. However, there are some

exceptions. For example, in [31], the author checks the time to reach agreement of a consensus

protocol using the UPPAAL model checker [7]. The author is able to reduce the state space of the

system using a key compositional property of the protocol.

Chapter 7

In Chapter 7 we discuss properties of the multi-agent systems in the presence of exogenous inputs.

We prove that the system in the presence of exogenous inputs is bounded, if the multi-agent

system in the absence of exogenous inputs and the exogenous inputs injected in the system satisfy

specific properties. These conditions require the system in the absence of exogenous inputs to execute

additive protocols and require the exogenous inputs to be uniformly bounded quantities added to

the agents.

We apply these results to the class of systems presented in Chapter 5. The goal of systems in

this class is solving systems of linear equations. We obtain that in the presence of exogenous inputs

systems in this class are bounded. For example, we consider the robot pattern formation protocol

discussed in Chapter 5. For this system, we discuss two exogenous inputs models. In the first

one, we consider exogenous inputs that modify the locations of the leader agents. This corresponds

to modeling a system where the goal configuration changes with time. We prove that the system

eventually-always is closed to an equi-spaced line. In the second model, we consider exogenous

inputs that modify the locations of follower agents. This corresponds to modeling a system where

the communication between agents is noisy. In this case, we also prove that the system eventually-

always gets close to the goal configuration, assuming that the transmitting noise is bounded.

14

The material covered in this Chapter has been published in [55]. Our work extends previous work

on multi-agent systems in the presence of adversarial conditions such as [62, 63, 65, 26, 68, 69]. In

these papers, authors focus on shared-state multi-agent systems solving consensus-type problems [17,

22, 64, 9], i.e. the goal of these systems is tracking time-varying quantities.

15

Chapter 2

Formal Models for Multi-Agent
Systems

In this Chapter, we present formal models for multi-agent systems. We use these models to formally

represent multi-agent systems and describe their behaviors.

In Section 2.1 we review the automaton model. In Section 2.2 we present a new extension of the

automaton model, that allows modeling systems with continuous-time actions. In Section 2.3 we

introduce a novel notion of fairness for automata. This notion of fairness will be used throughout the

Thesis. In Section 2.4 we discuss an automaton that models multi-agent systems in the presence of

exogenous inputs. Finally, in Section 2.5 we relate the main results of this Chapter to the literature.

2.1 Automata

In this Section, we review the automaton model and present an example.

2.1.1 Automaton Model

We refer to [5] for a discussion of the concept of automata. Formally, an automaton has the following

structure.

Definition 1. An automaton is a quintuple (S, S0, A,E, T) consisting of

• nonempty set of states S

• nonempty set of start (initial) states S0

• a set of actions A

• an enabling predicate E : S ×A→ B,

• a transition function T : S ×A→ S

16

The set B denotes the set of boolean values, B = {true, false}. For s ∈ S and a ∈ A, E(s, a)

holds if and only if action a can be executed in the state s. If this is the case, we say that a is

enabled in s. For convenience, we write s
a−→ s′ to denote (s, a, s′) ∈ T .

The semantic of an automaton is defined in terms of its executions; these describe the behavior

of the system.

Definition 2. An execution fragment is a possibly infinite alternating sequence of states and actions

s0, a0, s1, a1, . . . such that si+1 = T (si, ai) and E(si, ai) holds.

An execution fragment is a system execution if s0 ∈ S0.

Given an execution π of the system, we denote by π.fstate the first state of the execution. If π

is finite, we denote by π.lstate the last state of the execution.

We next introduce the concept of reachability. Given s, s′ ∈ S, we say that s′ is reachable from

s, if there exists a finite (possibly empty) execution fragment starting from s that reaches s′. We

denote by RF (s) the set of states reachable from s, defined formally as:

Definition 3. Given s ∈ S, the set RF (s) is defined as

RF (s) = {s′ ∈ S | ∃π : π.fstate = s ∧ π.lstate = s′}

We can extend this definition to a set of states Ŝ. The set of reachable states from Ŝ is the union

of the set of reachable states from its elements. Formally,

Definition 4. Given Ŝ ∈ S,

RF (Ŝ) = {s′ ∈ S | ∃ŝ ∈ Ŝ, ∃π : π.fstate = ŝ ∧ π.lstate = s′}

We introduce the reachable predicate as follows:

Definition 5. Given s ∈ S,

r(s) ≡ (s ∈ RF (S0))

The predicate holds if s is reachable from some initial state. If r(s) holds, we say that s is reachable.

Automata are used for formalizing discrete-time systems. Actions of the automaton have constant

discrete execution times. When an action is executed by the automaton, the clock of the system is

advanced by some fixed discrete time. For this reason, these automata are usually called discrete

automata.

2.1.2 Line-Up Automaton

In this Section, we present an example of discrete automaton. We consider a system consisting of N+

1 agents, each having a unique identifier i ∈ {0, 1, . . . , N}. These agents start at arbitrary positions

17

(stored in the vector x0), and, through interactions, their goal is to converge to a configuration

where agents are located, in order, at equidistant points on a straight line with extremes x0(0) and

x0(N). Without loss of generality, we present the one-dimensional version of the protocol, where

agent positions are real values. Figure 2.1 shows two configurations of the Line-Up multi-agent

system when the system consists of ten agents; Figure 2.1(a) represents a generic configuration

while Figure 2.1(b) represents the desired final configuration, where all agents are in order and

equispaced on the line.

0 1 2 3 4 5 6 7 8 9

(a) Pictorial representation of an initial state of the Line-Up multi-agent system.

0 1 2 3 4 5 6 7 8 9

(b) Pictorial representation of the corresponding goal state.

Figure 2.1: A Line-Up multi-agent system consisting of 10 agents.

Agents update their state in a nondeterministic fashion. Agent i chooses nondeterministically

two agents l, r with l < i < r and sets its new position x′ as the weighted average of the positions

of l, r:

x′ =
r − i
r − l

x(l) +
i− l
r − l

x(r) (2.1)

where x is the vector of agent positions. We denote this updating rule by avgl,i,r. Figure 2.2

pictorially represents this updating rule for a given example; Figure 2.2(a) represents agents l, i, r

before i executes the updating rule and Figure 2.2(b) represents the same agents after the execution

of the rule. As discussed before, only agent i modifies its position; its new position is a linear

combination of the positions of l, r. Notice that, in the case when l = i− 1 and r = i+ 1, we have

that x′ is the average of the positions of x(i− 1) and x(i+ 1), since r−i
r−l = i−l

r−l = 1
2 .

The goal configuration of the Line-Up system is the vector x̂ where ∀i ≤ N

x̂(i) =
N − i
N

x0(0) +
i

N
x0(N) (2.2)

li r

(a) Configuration of agents l, i and r.

l i r

(b) Configuration of agents l, i and r after agent i exe-
cutes the updating rule.

Figure 2.2: Pre- and post configurations of the updating rule in the case when the identifiers of the
agents are i = 2, l = 1 and r = 4.

18

We refer to Figure 2.1(b) for a pictorial representation of the desired goal configuration for a system

of 10 agents.

The automaton modeling the Line-Up multi-agent system has the following structure:

• S = RN+1, since the state space of each agent is R.

• S0 = {s0}, with s0 = x0,

• A = {Ai}i∈I with Ai = {avgl,i,r}l<i<r,

• E : S ×A→ true

• T : S ×A→ S, defined as ∀a = avgl,i,r ∈ A, ∀s ∈ S,

T (s, a) =

(
s(0), s(1), s(2), . . . ,

r − i
r − l

s(l) +
i− l
r − l

s(r), . . . , s(N)

)

For this model, agents 0 and N are stationary.

As presented in Equation 2.1, the goal configuration of the Line-Up system is the state ŝ where

∀i ≤ N

ŝ(i) =
N − i
N

s0(0) +
i

N
s0(N) (2.3)

with s0 ∈ S0.

In Figure 2.3, we present a formalization of the system in the PVS theorem prover. The system

consists of N + 1 agents, with N > 0. Each agent has a unique identifier. This is a natural number

in the interval [0, N]. In PVS, the type of agent identifiers is I. The state space of each agent is

the set of real numbers. The state space of the system is defined by the function S, that maps

each agent identifier to a real value. This theory has an input parameter given by the state s0.

This parameter stores the initial configuration of the system. The set of initial states is encoded

in PVS using the initial state predicate start?. The set of actions A of the system consists of the

action avg. This action has three parameters; these are identifiers of three agents: i,left,right.

As encoded in the enabling condition predicate E, this action can be executed only if agent i is

properly contained in the interval [left, right]. When executing this action, the post-state of

the action is equal to the pre-state, with the exception of the i-th coordinate. This entry stores the

weighted average of s(left) and s(right). The execution of this action is encoded in PVS by the

transition function T.

2.2 Automata with Timed Actions

In this Section, we present a novel model, called automaton with timed actions. It extends the

model presented in Section 2.1. It allows for actions with non-constant time duration. It can be

19

% Number of agents of the system.

N: posnat

% Agent Identifier.

% It is a natural number in the interval [0,N].

I: TYPE = upto(N)

% State definition.

% A state maps each agent identifier into a real value.

S: TYPE = [I -> real]

% PVS meta -theory.

% s0 is an input of the theory.

% s0 represents the initial configuration of the system.

LineUP[s0: S]: THEORY

BEGIN

i,left ,right: VAR I

% Action set of the system.

A: DATATYPE

BEGIN

% avg action

% its parameters are left , i, right

avg(left ,i,right): avg?

END A

s: VAR S

a: VAR A

% Initial State Predicate.

start?(s): bool = (s = s0)

% Enabling Predicate.

E(s,a): bool =

CASES a OF

% avg is enabled if left <i<right

avg(left ,i,right): (left <i) AND (i<right)

ENDCASES

% Transition Function.

T(s,a): S =

CASES a OF

% Agent i sets its value to the weighted average of

% the values of left and right

avg(left ,i,right): LET

w_left: posreal = (right -i)/(right -left),

w_right: posreal = (i-left)/(right -left)

IN

s WITH [(i):= w_left*s(left) + w_right*s(right)]

ENDCASES

END LineUP

Figure 2.3: PVS representation of the Line-Up multi-agent system.

20

used for modeling systems with continuous-time dynamics, such as mobile multi-robot systems.

We first present the model and discuss it. We then define the concepts of executions and reach-

ability for this automaton. We then extend the meaning of the temporal operators always 2 and

eventually 3 to this class. We finally present an example and relate this model to other timed

system models.

2.2.1 Automaton Model

Informally, an automaton with timed actions is a generalization of the discrete automaton model

presented in Section 2.1. An automaton with timed actions has a state space S, a set of initial

states S0 and a set of actions A. Unlike the discrete automaton model, actions have time duration.

Formally,

Definition 6. A automaton with time actions A is a tuple (S, S0, A,E, T) consisting of

• nonempty set of states S,

• nonempty set of start (initial) states S0,

• a set of actions A,

• an enabling predicate E : S ×A→ B,

• a transition function T : S ×A→ (T→ S) with

T = {[0, τ] | ε ≤ τ <∞}

such that ∀s ∈ S, a ∈ A,

T (s, a)(0) = s

The duration and behaviour of the actions of A are encoded in the transition function T . Parameters

of T are a state in S and an action in A. By construction of the transition function, we have that the

same action can have different time duration and behaviour when executed at different states. The

transition function T specifies the behaviour of the action throughout its duration. Given a state s

and an action a, T (s, a) defines a mapping from a closed finite time interval to the state space of A.

The state T (s, a)(0) is equal to state s, since T (s, a)(0) specifies the behavior of the action at the

beginning of the interval. The closed finite interval is lower bounded by some constant ε > 0, i.e.

we do not allow for Zeno executions. As an example, Figure 2.4 presents a pictorial representation

of the behaviour of a timed action a. The system consists of a single real-valued variable. When a

is executed in state s = 0, the action has time duration equal to 1 time unit and evolves the state

21

1

1

0
t

T(s=0,a)(t)

state

time

Figure 2.4: Pictorial representation of behavior of a timed action. The system consists of variable
x, that evolves with constant velocity from value 0 to value 1 for 1 time unit.

with constant velocity v = 1. Mathematically, the behaviour of the timed action a can be expressed

using the function T as follows: ∀t ∈ [0, 1], T (s, a)(t) = s+ v · t, with s = 0 and v = 1.

In our model, the set of actions has a special action, called no-op action. This action advances

the time of the automaton, in the case when the execution of the system reaches a state where no

action is enabled. We require this action since the execution cannot move forward in time if no

action is enabled. This is analogous to the skip action in UNITY [15]. This action is enabled in

state s ∈ S if no other action is enabled in s, i.e.

E(s,no-op) = (∀a ∈ A, a 6= no-op, ¬(E(s, a)))

The time duration of this action in s is ε

T (s,no-op) = [0, ε]→ S

When executed in s, it does not modify s, i.e. ∀t ∈ [0, ε] we have that

T (s,no-op)(t) = s

This action advances the execution of the automaton by ε time units.

This model generalizes the discrete automaton model presented in Section 2.1. An automaton

A can be encoded as an automaton with timed actions Atime. Automaton Atime has the same state

space, initial states and actions of A. Actions of A can be modeled as actions in Atime as follows.

The time duration of each action of A in Atime is 1 unit of time. When executing action a from state

s, the system remains in state s for all t < 1 and moves to T (s, a) at time 1. This action models the

discrete behaviour of the execution of a in A. Formally, A = (S, S0, A,E, T) can be modeled as the

timed automaton Atime = (Stime, S0time, Atime, Etime, Ttime) as follows:

22

• Stime = S

• S0time = S0

• Atime = A

• ∀s ∈ Stime, a ∈ Atime, Etime(s, a) = E(s, a)

• ∀s ∈ Stime, a ∈ Atime, T (s, a) : [0, 1]→ S with

∀t < 1 : Ttime(s, a)(t) = s

Ttime(s, a)(1) = T (s, a)

2.2.2 Executions and Reachability

In this Section, we extend the concepts of executions and reachability to automata with timed

actions. Throughout the Thesis, given an automaton with timed actions A = (S, S0, A,E, T), given

s ∈ S, a ∈ A, we denote by fs,a the function T (s, a), and by τs,a the right extreme of the domain of

fs,a, i.e. fs,a : [0, τs,a]→ S; by construction, τs,a is finite. We denote by ends,a the state fs,a(τs,a),

i.e. it is the state resulting into the evaluation of the function fs,a at the right extreme of the

interval. For convenience, we denote (s, a, fs,a) ∈ T as s
a−→ ends,a.

s
0

a
0

s
0
,

τ
s

1
a

1
,

τ
a

0
s

0
,

τ +

a
0 a

1

s
1 s

0
a
0

= end ,

s
2 s

1
a
1

= end ,

0 time

state

Figure 2.5: Pictorial representation of an end-state execution fragment. Dark filled circles represent
end-states of the execution and arrows represent the execution of the actions. This end-state ex-
ecution fragment starts at state s0 and executes actions a0, a1, When executed from state s0,
action a0 has time duration τs0,a0 . Action a1 has time duration τs1,a1 when executed from state
s1 = ends0,a0 .

We next define the concept of execution fragment. We first consider a special set of executions,

called end-state execution fragments. These executions are the natural generalization of the notion

of execution fragments of discrete-action automata. Formally,

23

Definition 7. An end-state execution fragment π is a possibly infinite alternating sequence of states

and actions π = s0, a0, s1, a1 . . . such that si+1 = endsi,ai , and E(si, ai) holds.

If the execution is finite, i.e. π = s0, a0, s1, a1 . . . aN−1, sN , then its time duration is τ =
∑N−1
i=0 τsi,ai .

An end-state execution fragment starts from a state s0 and executes action a0 from state s0. The

execution of a0 has a time duration τs0,a0 and end-state equal to s1. In state s1, it executes action

a1 that has time duration τs1,a1 and end-state equal to s2 and so on. If 0 is the time of the execution

π at state s0, we have that the time of π at state s1 is τs0,a0 , the time of the execution at state s2

is τs0,a0 + τs1,a1 and so on. Given π we denote by t0, t1, . . . the possibly infinite sequence of times

with ti being the time of π at state si. This sequence of times can be defined recursively: t0 = 0 and

ti = ti−1 + τsi,ai . Figure 2.5 presents an example of end-state execution fragment; this fragment

starts at s0 and executes actions a0, a1,

s
0

s
1
a

1
,f

a
0

s
0
,f

s
1

a
0

s
0
,

τ
s

1
a

1
,

τ
a

0
s

0
,

τ +

s
2

0
a

1
a

2
a

0 time

state

action action action

Figure 2.6: Pictorial representation of the function describing the end-state execution fragment
depicted in Figure 2.5. In this specific example, t̂ = 0. Dark filled circles represent end-states of
the execution. The curve in the time interval [0, τs0,a0] represents the behavior of action a0 when
executed in state s0. This behaviour is described by function fs0,a0 . The curve in the time interval
[τs0,a0 , τs0,a0 + τs1,a1] represents the behavior of action a1 when executed in state s1. This behavior
is described by function fs1,a1 .

In general, given an end-state infinite execution fragment π = s0, a0, s1, a1 . . ., and a time t̂ we

have that π can be represented as a function π̂ : [t̂,∞)→ S such that ∀i ∈ N:

(π̂(ti) = si) ∧ (E(π̂(ti), ai)) ∧ (∀t ∈ [ti, ti+1] : π̂(t) = fsi,ai(t))

where the infinite sequence of times t0, t1, . . . is recursively defined as t0 = t̂ and ti = ti−1 + τsi,ai .

We next briefly discuss these three conditions: (1) the first condition ensures that si is the state

of the execution at time ti, (2) the second condition ensures that action ai is enabled in state si,

(3) the third condition ensures that action ai is executed in state si and, together with the first

condition, that the post-state of the execution is si+1. For example, Figure 2.6 represents the

function corresponding to the end-state execution fragment in Figure 2.5.

Similarly, if the execution fragment π is finite, i.e. π = s0, a0, s1, . . . , sN−1, aN−1, sN we have

24

that the function corresponding to π is defined as π̂ : [t̂, t̂+ τ]→ S, with τ being the time duration

of π. In this specific case, we have that the sequence of times is finite, and given by t0, t1, . . . , tN

with t0 = t̂ and ti = ti−1 + τsi,ai . The conditions on the function are the same as the conditions for

the case of the infinite execution fragment, and, thus, they are not reported.

We denote by Eend−state the set of all functions corresponding to end-state execution fragments

of the system. Throughout this Thesis, we do not distinguish between execution fragments and their

functional representations. We use them interchangeably.

In our model, actions have time duration. For this reason, feasible execution fragments may start

during the execution of some action of the fragment. Also, in case of finite fragments, they may end

during the execution of some action or they may start and end during the execution of some action.

We refer to Figure 2.7, Figure 2.8 and Figure 2.9 for a pictorial representation of these three cases.

The finite fragment in Figure 2.8 starts at state s0 and executing action a0 in state s0 reaches

state s1. It then initiates action a1 starting from s1 for only t− τs0,a0 time units. It stops before the

action is completed at time τs0,a0 +τs1,a1 . In our model, this fragment is a valid execution fragment.

The fragment in Figure 2.9 starts from a state s′0 with s′0 = T (s0, a0)(t) and t > 0. The fragment

starts while action a0 is executing. Then, it reaches s1 and executes a1, and so on. In our model,

also this fragment is a valid execution fragment.

We next introduce the sub-fragment operator.

Definition 8. Given an end-state execution fragment π : ∆ → S and a time interval ∆̂, the sub-

fragment of π with respect to ∆̂, denoted by sub(π, ∆̂), is a function π̂ : ∆̂→ S such that

• ∆̂ is a sub-interval of ∆ and

• π̂ is the restriction of π to ∆̂.

Figure 2.7, Figure 2.8 and Figure 2.9 are examples of sub-fragments of the end-state execution

fragment presented in Figure 2.6. In the sub-fragment depicted in Figure 2.7 the time interval

∆̂ is [t1, t2]; in the sub-fragment depicted in Figure 2.8, ∆̂ = [0, t]; in the sub-fragment depicted

in Figure 2.9, ∆̂ = [t,∞).

If ∆̂ is a prefix of ∆, we say that π̂ is a prefix of π. For example, the execution fragment

in Figure 2.8 is a prefix of the end-state execution fragment presented in Figure 2.6 since ∆̂ = [0, t]

is a prefix of [0,∞). Instead, if ∆̂ is a suffix of ∆, we say that π̂ is a suffix of π. For example, the

execution fragment in Figure 2.9 is a suffix of the end-state execution fragment presented in Figure 2.6

since ∆̂ = [t,∞) is a suffix of [0,∞).

Given this operator, we next define the notion of execution fragment.

Definition 9. A function π̂ : ∆̂→ S is an execution fragment if there exists an end-state execution

fragment π such that π̂ = sub(π, ∆̂).

25

s
0

a
0

s
0
,f

s
1

s
2

a
0

s
0
,

τ s
1
a

1
,τ+

s
1
a

1
,f

a
0

s
0
,

τ
1
t 2

t

s
0
’

’s
2

∆
^

0 time

state

Figure 2.7: Pictorial representation of a finite sub-fragment of the end-state execution fragment
depicted in Figure 2.6. This sub-fragment has domain ∆̂ = [t1, t2]. It starts in state s′0 with
s′0 = T (s0, as)(t1) and it ends in state s′2 with s′2 = T (s1, a1)(t2 − τs0,a0). It executes action a0

starting from time t1, then it executes action a2 for t2 − τs0,a0 time units. The dark solid line
represents the behavior of the actions in this sub-fragment, while the dashed lines represent the
behavior of the actions in the end-state execution fragment presented in Figure 2.6.

Given an execution fragment π, we denote by π.fstate the first state of π and π.lstate the last

state of π, if the execution π is finite. If π is a finite execution fragment, then the time interval ∆̂

is closed and finite. Instead, if π is an infinite end-state execution fragment, then ∆̂ can be either

closed and finite or left-closed and infinite. The function in Figure 2.8 is an execution fragment since

it is the restriction of the end-state execution fragment presented in Figure 2.6 to the interval [0, t].

Similarly, the function in Figure 2.9 is an execution fragment since it is restriction of the end-state

execution fragment presented in Figure 2.6 to the interval [t,∞).

Given an end-state execution fragment π we denote by Suffix (π) the set of suffix execution

fragments of π. If π is an infinite execution fragment, we have that the set Suffix (π) is infinite.

Instead, if π is a finite execution fragment, we have that the set Suffix (π) contains a finite number

of execution fragments.

We denote by E the set of execution fragments and by E∞ the set of infinite execution fragments

(i.e. E∞ ⊂ E). By construction, E is the closure of Eend−state under the sub-fragment operator. An

execution fragment π : ∆→ S is an execution, if 0 is the left extreme of ∆ and π.fstate ∈ S0. We

denote by ES0 the set of executions and by ES0,∞ the set of infinite executions.

Given a state s ∈ S, we next define the set of reachable states from s.

Definition 10. Given s ∈ S, the set of reachable states from s is

RF (s) = {s′ | ∃π ∈ E : π.fstate = s ∧ π.lstate = s′}

A state is reachable if there exists a finite execution fragment that reach it. Given Ŝ ⊆ S, we can

generalize the notion of reachability to set of states.

26

s
0

a
0

s
0
,f

s
1

s
2

a
0

s
0
,

τ s
1
a

1
,τ+

s
1
a

1
,f

a
0

s
0
,

τ

s
2
’

∆
^

0 t time

state

Figure 2.8: Pictorial representation of a prefix of the end-state execution fragment depicted in Fig-
ure 2.6. This prefix has domain ∆̂ = [0, t]. It starts in state s0 and it ends in state s′2 with
s′2 = T (s1, a1)(t− τs0,a0). It executes action a0 starting from state s0, it then executes action a2 for
t− τs0,a0 time units. The dark solid line represents the behavior of the actions in this sub-fragment,
while the dashed line represents the behavior of the actions in the end-state execution fragment
presented in Figure 2.6.

Definition 11. Given Ŝ ∈ S, the set of reachable states from the set Ŝ is

RF (Ŝ) = {s′ | ∃ŝ ∈ Ŝ,∃π ∈ E : π.fstate = ŝ ∧ π.lstate = s′}

2.2.3 Temporal Operators

In this Section, we extend the definitions of the temporal operators always (2) and eventually (3).

Before proceeding with these definitions, we review the concept of predicate. A predicate P on

the state space of the automaton A is a function that returns a boolean value, i.e. P : S → B.

We say that predicate P holds in state s ∈ S, if P (s) = true. We next extend this definition to

execution fragments and automata. Predicate P holds for an execution fragment π, denoted by Pπ,

if P holds at π.fstate, i.e. if predicate P holds at the initial state of π. A predicate P holds for an

automaton A if P holds for all system executions.

The 2 operator is defined as follows.

Definition 12. Given a predicate P ,

• 2 P holds for an execution fragment π, denoted by 2π P , if ∀π̂ ∈ Suffix (π) : Pπ̂

• 2 P holds for an automaton A = (S, S0, A,E, T), if ∀π ∈ ES0,∞ : 2π P

2 P holds for an execution fragment π if the predicate P holds for all suffix execution fragments

of π. Therefore, 2 P holds for π if P holds for every state in π. The execution π can be finite or

infinite. Figure 2.10 presents an execution fragment where 2 P holds, while Figure 2.11 presents an

execution fragment where 2 P does not hold. 2 P holds for an automaton A if it holds for all its

infinite executions.

27

s
1
a

1
,f

a
0

s
0
,f

s
0

s
1

s
2

s
1
a

1
,

τ
a

0
s

0
,

τ +
a

0
s

0
,

τ

s
0’

∆
^

0 t time

state

Figure 2.9: Pictorial representation of a suffix of the end-state execution fragment depicted in Fig-
ure 2.6. This suffix has interval ∆̂ = [t,∞). This is an infinite sub-fragment that starts in state
s′0 with s′0 = T (s0, a0)(t). It executes action a0 starting from time t, then it executes action a2

and so on. The dark solid line represents the behavior of the actions in this sub-fragment, while
the dashed line represents the behavior of the actions in the end-state execution fragment presented
in Figure 2.6.

s
0

s
1
a

1
,f

a
0

s
0
,f

s
1

s
2

a
0

s
0
,

τ
s

1
a

1
,

τ
a

0
s

0
,

τ +

s
0

<

s
1

<

0

P

time

state

Figure 2.10: Execution fragment where 2 P holds; predicate P holds in s if s ∈ [ŝ0, ŝ1]. The shaded
area represents the region where predicate P holds.

Similarly, the eventually operator is defined as follows.

Definition 13. Given a predicate P ,

• 3 P holds for an execution fragment π, denoted by 3π P , if ∃π̂ ∈ Suffix (π) : Pπ̂

• 3 P holds for an automaton A = (S, S0, A,E, T), if ∀π ∈ ES0,∞ : 3π P

3 P holds for a possibly infinite execution fragment π if the predicate P holds for some suffix

execution fragments of π. Therefore, 3 P holds for π if P holds in some state of π. In Figure 2.11,

we presents an execution fragment satisfying 3 P and in Figure 2.12, we represent an execution

fragment where 3 P does not hold. 3 P holds for an automaton A if it holds for all its infinite

executions.

From the definition of reachability, it follows that

28

s
0

s
1
a

1
,f

a
0

s
0
,f

s
1

s
2

a
0

s
0
,

τ
s

1
a

1
,

τ
a

0
s

0
,

τ +

s
0

<

s
1

<

0

P

time

state

Figure 2.11: Execution fragment where 3 P hold; predicate P holds in s if s ∈ [ŝ0, ŝ1]. The shaded
area represents the region where predicate P holds.

s
0

s
1
a

1
,f

a
0

s
0
,f

s
1

s
2

a
0

s
0
,

τ
s

1
a

1
,

τ
a

0
s

0
,

τ +

s
0

<

s
1

<

P

0 time

state

Figure 2.12: Execution fragment where 3 P does not hold; predicate P holds in s if s ∈ [ŝ0, ŝ1].
The shaded area represents the region where predicate P holds.

Lemma 1.

2 P ≡ (RF (S0) ⊆ P)

Proof. It follows directly from the definition of 2 P and reachability.

We next discuss the meaning of the main temporal logic formulas used in this Thesis. These are

32 P , 2 (P ⇒ 3 Q) and 2 (P ⇒ 2 P).

We start discussing 32 P . Informally, 32 P holds for an execution if there exists a time t in

the execution such that the predicate P holds after time t. Formally, given an execution π, 32 P

holds for π if ∃t′ ≥ 0 such that ∀t ≥ t′, P (π(t)). In Figure 2.13, we present an execution where

32 P holds. Similarly, the temporal logic formula 32 P holds for an automaton A if it holds for

29

s
0

a
0

s
0
,f

s
1

a
0

s
0
,

τ
s

1
a

1
,

τ
a

0
s

0
,

τ +

s
1
a

1
,f

s
2

s
1

<

s
0

<

0

P

time

state

Figure 2.13: Execution fragment where 32 P holds; predicate P holds in s if s ∈ [ŝ0, ŝ1]. The
shaded area represents the region where predicate P holds.

all its executions. We next formally derive the meaning of this formula:

32 P ≡ (∀π ∈ ES0,∞ : 3π(2 P))

≡ (∀π ∈ ES0,∞ : ∃π̂ ∈ Suffix (π) : 2π P)

≡ (∀π ∈ ES0,∞ : ∃π̂ ∈ Suffix (π) : ∀π̄ ∈ Suffix (π̂) : P (π̄.fstate))

≡ (∀π : R≥0 → S, π(0) ∈ S0 : ∃t′ ≥ 0 : ∀t ≥ t′ : P (π(t)))

We next discuss the meaning of the temporal logic formula 2 (P ⇒ 3 Q). Informally, the formula

2 (P ⇒ 3 Q) holds for an execution fragment, if for all states in the execution satisfying P there

exists a state later in the execution satisfying Q. Formally, given an execution π, 2 (P ⇒ 3 Q) holds

for π if for all t ≥ 0, such that P (π(t)), there exists t′ ≥ t, such that Q(π(t′)). In Figure 2.14, we

present an execution where 2 (P ⇒ 3 Q) holds. Similarly, the temporal logic formula 2 (P ⇒ 3 Q)

holds for an automaton A if it holds for all its executions. We next formally derive the meaning of

this formula:

2 (P ⇒ 3 Q) ≡ (∀π ∈ ES0,∞ : 2π (P ⇒ 3 Q))

≡ (∀π ∈ ES0,∞ : ∀π̂ ∈ Suffix (π) : (P ⇒ 3 Q)π̂)

≡ (∀π ∈ ES0,∞ : ∀π̂ ∈ Suffix (π) : (Pπ̂ ⇒ 3π̂ Q))

≡ (∀π ∈ ES0,∞ : ∀π̂ ∈ Suffix (π) : (P (π̂.fstate)⇒ ∃π̄ ∈ Suffix (π̂) : Q(π̄.fstate)))

≡ (∀π : R≥0 → S, π(0) ∈ S0 : ∀t ≥ 0 : (P (π(t))⇒ ∃t′ ≥ t : Q(π(t′))))

We finally discuss the meaning of temporal formula 2 (P ⇒ 2 P). Informally, the formula

2 (P ⇒ 2 P) holds for an execution fragment, if for all states in the execution fragment if P holds

in the state then P continues to hold forever. Formally, given an execution π, 2 (P ⇒ 2 P) holds

π if for all t ≥ 0, if P (π(t)) holds, then ∀t′ ≥ t, P (π(t′)) holds. In Figure 2.13 and Figure 2.12, we

30

s
0

a
0

s
0
,f

s
1

a
0

s
0
,

τ
s

1
a

1
,

τ
a

0
s

0
,

τ +

s
1
a

1
,f

s
2

<

s
1

s
0

<
<

s
2

<

s
3

0

Q

P

time

state

Figure 2.14: Execution fragment where 2 (P ⇒ 3 Q) holds; predicate P holds in s if s ∈ [ŝ0, ŝ1]
and predicate Q holds in s if s ∈ [ŝ2, ŝ3]. The shaded areas represent the regions where predicate P
and predicate Q hold.

present two execution where 2 (P ⇒ 2 P) holds. Similarly, the temporal logic formula 2 (P ⇒ 2 P)

holds for an automaton A if it holds for all its executions. We next formally derive the meaning of

this formula:

2 (P ⇒ 2 P) ≡ (∀π ∈ ES0,∞ : 2π (P ⇒ 2 P))

≡ (∀π ∈ ES0,∞ : ∀π̂ ∈ Suffix (π) : (P ⇒ 2 P)π̂)

≡ (∀π ∈ ES0,∞ : ∀π̂ ∈ Suffix (π) : (Pπ̂ ⇒ 2π̂ P))

≡ (∀π ∈ ES0,∞ : ∀π̂ ∈ Suffix (π) : (P (π̂.fstate)⇒ ∀π̄ ∈ Suffix (π̂) : P (π̄.fstate)))

≡ (∀π : R≥0 → S, π(0) ∈ S0 : ∀t ≥ 0 : (P (π(t))⇒ ∀t′ ≥ t : P (π(t′))))

2.2.4 Line-Up automaton with dynamics

In this Section, we present the Line-Up multi-agent system with dynamics and model it using the

automaton with timed actions framework. This multi-agent system generalizes the Line-Up multi-

agent system presented in Section 2.1.2. The system consists of N + 1 agents whose goal is to

converge to a configuration where agents are located, in order, at equidistant points on a straight

line with extremes given by the initial positions of agent 0 and agent N .

In the Line-Up multi-agent system with dynamics, the updating rule of agent i, presented in Fig-

ure 2.15, is defined as follows. Agent i chooses two other agents l, r with l < i < r, it computes

its new position x′ using the formula defined in Equation 2.1, and continuously moves from its

current location to its destination position x′. We suppose that agent i reaches x′ in finite time.

For example, agent i can move towards x′ with constant velocity or it can instantaneously jump

from its current position to its newly computed one. The jump dynamics models the protocol of

the Line-Up multi-agent system presented in Section 2.1.2.

The automaton with timed actions modeling the Line-Up multi-agent system with dynamics has

31

li r

(a) Positions of agents l, i and r before executing the
updating rule.

li r

(b) Positions of agents l, i and r while agent i executes the
updating rule. Agent i moves towards its new computed
position.

l i r

(c) Positions of agents l, i and r while agent i executes the
updating rule. Agent i moves towards its newly computed
position.

l i r

(d) Positions of agents l, i and r after executing the up-
dating rule.

Figure 2.15: Agent i executes the updating rule and moves from its current position to the newly
computed one.

the following structure:

• S = RN+1, since the state space of each agent is R.

• S0 = {s0}, with s0 = x0,

• A = {Ai}i∈I with Ai = {âvgl,i,r}l<i<r,

• E : S ×A→ true

• T : S ×A→ (T→ S), defined as ∀s ∈ S, ∀a ≡ âvgl,i,r ∈ A,

∀j 6= i,∀t ≤ τs,a : (T (s, a)(t))(j) = s(j)

∀t ≤ τs,a : (T (s, a)(t))(i) = fs,a(t)

with fs,a : [0, τs,a]→ S having

fs,a(0) = s(i)

fs,a(τs,a) =
r − i
r − l

s(l) +
i− l
r − l

s(r)

In this automaton, agents 0 and N are stationary. The remaining agents move toward their destina-

tion positions computed using the formula in Equation 2.1. The function fs,a models the dynamics

of agent i. While agent i moves, the other agents are stationary. In this automaton, we do not

model concurrent agent movement. Function fs,a of agent i depends on the pre-state of the action;

32

this means that agent i can have different dynamics when starting from different states. In gen-

eral, in our model, different agents can have different dynamics and the duration of their actions

can be different as well. Examples of feasible dynamics for agent i are presented in Figure 2.16(a)

and Figure 2.16(b).

The goal state of the automaton is the same goal state of the automaton presented in Section 2.1.2.

We refer to Equation 2.3 for its definition.

f
s ,a

τs ,a

R

time0

(a) Agent i moves with constant
velocity for τs,a time units.

τs ,a

f
,as

0

R

time

(b) Agent i moves with constant
acceleration for

τs,a
2

time units,
then it moves with constant de-
celeration for

τs,a
2

time units.

Figure 2.16: Feasible dynamics for agent i when executing action a = âvgl,i,r in state s with s(j) = 0,
∀j ∈ {0, . . . , N}.

2.3 Fairness

In this Section, we present the fairness criterion used in this Thesis. This is a new fairness criterion,

that we have formally introduced in [14]. Before describing this criterion, we introduce an example

that motivates our definition.

Consider the multi-agent system presented in Figure 2.17. This system consists of three agents,

u, v, w and three bidirectional communication channels, one for each pair of agents. Suppose that

u

v w

Figure 2.17: A multi-agent system consisting of three agents. Circles represent agents, lines represent
communication channels.

33

the goal of the system is to compute some function of its initial state. For example, agents may

want to compute the average or the minimum of their initial values. If any agent is permanently

partitioned from the other two, the system will be not able to compute the desired quantity. Hence,

feasible infinite executions of the system must satisfy the requirement that there are no permanent

partitions in the system. This requirement can be encoded as follows. Denote by

(a) au,v the action resulting in the interaction between u and v,

(b) au,w the action resulting in the interaction between u and w, and

(c) av,w the action resulting in the interaction between v and w,

and by

(d) Fu the set of actions {au,v, au,w},

(e) Fv the set of actions {au,v, av,w},

(f) Fw the set of actions {au,w, av,w}.

The no-permanently partitioned requirement on u holds if in any infinite execution, actions from the

set Fu occur infinitely often; for example, au,v executes infinitely often or au,w executes infinitely

often. Similar conditions hold for agents v, w. Hence, the no-permanent partition requirement holds

if in any infinite execution, actions from the sets Fu, Fv, Fw occur infinitely often. An example of

feasible execution is an execution where au,v, au,w are executed infinitely often, but av,w is never

executed.

The no-permanent partition criterion cannot be specified using weak fairness. Under weak fair-

ness, we can only model executions where each action is executed infinitely often. Weak fairness

criterion is too strong. It rules out feasible executions, such as the one mentioned before. We need

a fairness criterion weaker than weak fairness. In this new fairness criterion, we require fairness to

be defined with respect to set of actions, instead of single actions.

We next formally define this concept of fairness in the context of automaton with timed actions

A.

Definition 14. Given an automaton A and a family of actions F = {F}, with F ⊆ A, an infinite

execution s0, a1, s1, a2, . . . is F-fair if for all F ∈ F , actions in F occur infinitely often in the

execution, i.e.,

∀F ∈ F , ∀m, ∃k : k > m : ak ∈ F (2.4)

The family F is called a fairness condition for A.

This notion of fairness is weaker than weak fairness. It reduces to weak fairness when ∀F ∈ F ,

F has cardinality 1. Recalling our previous example, we have that the no-permanent partition

34

requirement can be encoded as

F = {{au,v, au,w}, {au,v, av,w}, {au,w, av,w}}

while weak fairness condition can be encoded as

Fweak = {{au,v}, {au,w}, {av,w}}

In the Line-Up automaton, presented in Section 2.1.2, and its generalization with dynamics,

presented in Section 2.2.4, fair executions consist of infinite sequences of actions where each agent is

not permanently partitioned. For this two automata, the set Fi = Ai for all i and F = {Fi}0<i<N .

2.4 Automata in the Presence of Exogenous Inputs

In this Section, we present a model for formally describing multi-agent systems in the presence of

exogenous inputs. Exogenous inputs have been introduced in Chapter 1. Our goal is to investigate

properties of the exogenous inputs that ensure robustness of the overall system.

These inputs help modeling quantities of the system that vary with time due to external or inter-

nal conditions. For example, consider a multi-agent system where agents store temperature readings

at several locations. Sensors produce new readings at regular time intervals. As a consequence, the

temperatures stored in the agents need to be updated at regular intervals of time. We model these

updates as external inputs.

We next discuss another example. Consider a generalization of the Line-Up multi-agent system

where agent 0 and N can move arbitrarily. The goal of the agents is to form and maintain an

equispaced spatial configuration that changes with time. In this example, the positions of agents 0

and N , stored in the system, need to be updated periodically. We model their updates as external

inputs.

These exogenous inputs can be modeled as discrete or timed actions. For example, the tempera-

ture update can be modeled as a discrete action while the evolution of the positions of agent 0 and

N in the Line-Up multi-agent system can be modeled using a timed action. The state space of the

system with and without exogenous inputs are the same. Each action of the exogenous inputs has

an enabling condition and a transition function, describing the behaviour of the input. For example,

an action modeling the movements of agents 0 and N in the Line-Up system can be the action move

defined as follows. It operates over the set of RN+1; it is always enabled, i.e.

∀s ∈ RN+1 : E(s,move) = true (2.5)

35

When executed, agents 0 and N may, for example, evolve their position linearly for an interval of

time ∆:

∀s ∈ RN+1,∀t ∈ ∆ : T (s,move)(t) = (s+ v · t) (2.6)

where v is a vector of real numbers, modeling velocities, with v(i) 6= 0 for i ∈ {0, N} and 0 otherwise.

Action move models an exogenous input where agents 0 and N move at constant independent

velocities.

In this Thesis, we model the set of exogenous input and the system in the presence of exogenous

inputs as automata with timed actions. We denote by A = (S, S0, A,E, T) the automaton model for

the system in the absence of exogenous inputs. We, first, model the set of exogenous inputs as an

automaton. We denote this automaton by Ā. This automaton has the same state space and initial

conditions of A. It defines a set of actions Ā that is disjoint from the set of actions of A. This set

of actions has an enabling predicate Ē and transition function T̄ . Formally, the automaton of the

exogenous inputs Ā is as follows:

Definition 15. Given A = (S, S0, A,E, T), the automaton of the exogenous inputs Ā is the tuple

(S, S0, Ā, Ē, T̄), with Ā ∩A = ∅.

For example, the automaton with timed actions modeling the exogenous input of the Line-Up system

is ĀLine−Up = (RN+1, {x0}, {move}, E, T) where x0 is the vector of initial positions, E and T have

been defined in Equation 2.5 and Equation 2.6.

Giving this automaton, we can define the automaton modeling a system in presence of exogenous

inputs. This automaton, called exogenous automaton, is a composition of A and Ā as follows.

Definition 16. Given A = (S, S0, A,E, T) and Ā = (S, S0, Ā, Ē, T̄) with A∩ Ā = ∅, the exogenous

automaton Aexog = (S, S0, Aexog, Eexog, Texog) where

• Aexog = A ∪ Ā,

• the enabling predicate Eexog defined as, ∀s ∈ S, a ∈ Aexog,

Eexog(s, a) =

 E(s, a) a ∈ A

Ē(s, a) a ∈ Ā

• the transition function Texog defined as, ∀s ∈ S, a ∈ Aexog,∀t ∈ [0, τs,a],

Texog(s, a)(t) =

 T (s, a)(t) a ∈ A

T̄ (s, a)(t) a ∈ Ā

This automaton operates on the same state space of the automaton in the absence of exogenous

inputs and executes actions from both A and Ā.

36

Executions of Aexog can be projected on A and Ā. In the case of A, the projection is obtained

by removing all actions of the automaton of the exogenous input Ā and executing the remaining

actions starting from the same initial state. Similarly, the projection on Ā is obtained by considering

only the actions of Ā.

2.5 Discussion

In this Section, we discuss the automaton model with timed actions and relate it to other models

for timed systems.

In Section 2.2, we have introduced the automaton model with timed actions. This model extends

the automaton model; it allows for actions with different time durations. We have defined the notion

of executions and reachability for this model, and we have defined the meaning of the temporal

operator 2 and 3 for automata with timed actions. We have also modeled the Line-Up multi-agent

systems with explicit dynamics using this framework.

The automaton with timed actions models action-deterministic systems, i.e. systems where the

behaviour of the action is determined by the action and the pre-state of the action. We can easily

extend the definition and model action nondeterministic systems. In this case, given a state and an

action, the execution of the action can have different behaviors and/or different time durations.

This model extends the ideas discussed in [13], where the author informally presents a model for

continuous systems and discusses the structure of a logic for reasoning about them. It can be used

for modeling system where some portions of the system have discrete behavior and other portions

of the systems have continuous behaviour, i.e. hybrid systems.

As an example of hybrid system, we may consider the single agent timed system presented

in Example 1.1 of [32]. This system models the controller of the temperature of a room. The

system consists of a thermostat controlling the temperature of a room. When the heater is off, the

temperature of the room falls according to the differential equation d1. When the heater is on the

temperature rises according to the differential equation d2. The heater may go on as soon as the

temperature falls below ton degree and may go off as soon as the temperature rise above toff . We

assume ton < toff . We assume that the temperature of the room is always in the interval [tmin, tmax].

A possible nondeterministic automaton with timed actions modeling this system is the following.

Its state space S consists of two variables: x storing the temperature of the room with domain

[tmin, tmax], and heater storing the state of the heater. The variable heater is a binary (discrete)

variable; its value is 1, if the heater is on and 0 if the heater is off. The set of actions A of the

system consists of three actions heater on, heater off and update. The heater on action toggles

the heater variable from 0 (off) to 1 (on). It is enabled in state s ∈ S if s.x < ton. The heater off

action toggles the heater variable from 1 (on) to 0 (off). It is enabled in state s ∈ S if s.x > toff .

37

The update action evolves the temperature and it is always enabled. When executed in state s, if

the heater is on, i.e. s.heater = 1, it evolves x according to the differential equation d2 for some

arbitrary time; instead, if the heater is off, i.e. s.heater = 0, it evolves x according to the differential

equation d1 for some arbitrary time.

This model is different from other models for hybrid systems, such as hybrid automata [32] and

hybrid I/O [41] and timed I/O automata [36] models. Our model is similar to the [41, 36]. In [41] and

its extension [36], the authors distinguish between discrete actions and actions with time duration,

called trajectories. Executions are alternating sequences of actions and trajectories. They assume

that the set of feasible trajectories is closed under prefix, suffix and concatenation. This implies

that given a state, the system can execute the complete action or any prefix of it. They need these

assumptions to model composed systems where any trajectory of any component automaton may

be interrupted at any time by a discrete transition of another component. In our model, actions

cannot be interrupted and we do not require the action set to be closed under prefix, suffix and

concatenation. For example, these automata models would not be able to model the behaviour of

the multi-agent system described in Section 2.2.4, The main limitation is that agents can stop before

reaching their locations, since trajectories are closed under prefix. Hence, these systems can model

executions where portions of the evolutions of the states of different agents may interleave. This

implies that when an agent moves, its new location may be computed using locations of other agents

that have not been computed by the algorithm.

This model cannot be used for time-critical systems [1]. In a future continuation of this work,

we would like to extend the automaton and the meaning of the temporal operators to time-critical

systems.

38

Chapter 3

Stability and Convergence
Properties of Automata

In this Chapter, we discuss properties of states of automata with timed actions. We use these

properties to prove correctness of multi-agent systems.

In Section 3.1 we present the concept of equilibrium state for automata with timed actions.

In Section 3.2 we present the concept of Lyapunov function and level sets; we use these concepts

for proving properties of equilibrium states. In Section 3.3 we define the notion of stability for

equilibrium states and present conditions for proving it while in Section 3.4, we define the notion of

asymptotically stability and present conditions for proving it. In Section 3.5 we discuss properties

of states in the presence of exogenous inputs. Finally, in Section 3.6 we relate the definitions and

theorems of this Chapter to other works on stability and convergence.

Throughout this Chapter, A denotes the automaton with timed actions (S, S0, A,E, T), and ŝ a

state of A, i.e., ŝ ∈ S.

3.1 Equilibria in Automata

In this Section, we define the concept of equilibrium state of automata. Informally, an equilibrium

state is a stationary configuration of the system with respect to its action set. Formally,

Definition 17. ŝ is an equilibrium state of A if RF (ŝ) = {ŝ}.

An equilibrium state is a trapping state of the system. The definition of equilibrium state can be

generalized to set of states.

Definition 18. Ŝ ⊆ S is a set of equilibrium states of A if RF (Ŝ) = Ŝ.

The set RF (Ŝ) denotes the set of all reachable states from Ŝ. We refer to Section 2.2.2 for the

definition of RF (Ŝ).

39

We next discuss two specific examples. We first present the set of equilibrium states of the

Line-Up automaton defined in Section 2.1.2. This is an example of discrete automaton. We then

discuss the equilibrium states of the Line-Up automaton with dynamics presented in Section 2.2.4.

This is an example of automaton with timed actions.

We consider the Line-Up automaton defined in Section 2.1.2. We show that the state defined

in Equation 2.3 is an equilibrium state of this automaton. We briefly recall the multi-agent system.

This system consists of N + 1 agents and the goal of the agents is to form a configuration where

agents are located, in order, at equidistant points on a straight line. The end points of this line are

the initial positions of agent 0 and N . We refer to Figure 2.1(b) for a pictorial representation of the

final configuration state.

The goal state of the system is:

ŝ(i) =
N − i
N

s0(0) +
i

N
s0(N) ∀i ∈ {0, . . . , N}

where s0 is the initial state of the automaton. We next show that ŝ is an equilibrium state.

Lemma 2. ŝ is an equilibrium state of the Line-Up automaton.

Proof. Our goal is to show that ∀a ∈ A, with a = avgl,i,r and l < i < r, we have that

ŝ = T (ŝ, avgl,i,r)

Consider an arbitrary action a = avgl,i,r, with l < i < r. By construction, we have that ∀j 6= i,

ŝ(j) = T (ŝ, avgl,i,r)(j)

This is because action avgl,i,r modifies only component i of the state.

We next prove that ŝ(i) = T (ŝ, avgl,i,r)(i). By algebra manipulation and definition of ŝ, the

following chain of inequalities holds

T (ŝ, avgl,i,r)(i) =
r − i
r − l

ŝ(l) +
i− l
r − l

ŝ(r)

=
r − i
r − l

(
N − l
N

s0(0) +
l

N
s0(N)

)
+

i− l
r − l

(
N − r
N

s0(0) +
r

N
s0(N)

)
=

(r − l)(N − i)
(r − l)N

s0(0) +
i(r − l)

(r − l)N
s0(N)

=
N − i
N

s0(0) +
i

N
s0(N)

= ŝ(i)

40

Furthermore, any equilibrium state of the Line-Up automaton is a straight equidistance line.

Lemma 3. s̄ ∈ S is an equilibrium state of the Line-Up automaton if and only if ∀i ≤ N

s̄(i) =
N − i
N

s̄(0) +
i

N
s̄(N)

Proof. Assume that s̄ ∈ S is not straight equidistance line, i.e. ∃j, with 0 < j < N , such that

s̄(j) 6= N − j
N

s̄(0) +
j

N
s̄(N)

We prove that s̄ is not an equilibrium state. We next show that ∃l, r ∈ {0, 1, . . . , N}, such that

T (s̄, avgl,j,r) 6= s̄.

Consider the action avg0,j,N . When executing this action, the state of agent j is modified as

follows:

T (s̄, avg0,j,N)(j) =
N − j
N

s̄(0) +
j

N
s̄(N)

Putting all together, we have that

s̄(j) 6= N − j
N

s̄(0) +
j

N
s̄(N)

= T (s̄, avg0,j,N)(j)

Hence, s̄ is not an equilibrium state.

Assume, instead, that s̄ ∈ S is a straight equidistance line, i.e. ∀i ≤ N ,

s̄(i) =
N − i
N

s̄(0) +
i

N
s̄(N)

The proof of this case is similar to the proof of Lemma 2 and not reported.

We next consider the Line-Up automaton with dynamics introduced in Section 2.2.4. We

prove that state ŝ defined in Equation 2.3 is an equilibrium state of the automaton under specific

assumptions on the dynamics of the agents. Similarly to Lemma 2, we can show that ∀a ∈ A,

state T (ŝ, a)(τŝ,a) is equal to ŝ. In order to prove that ŝ is an equilibrium state, we require that

T (ŝ, a)(t) is equal to ŝ, for all t ∈ (0, τŝ,a). This means that we require agents to be stationary when

executing actions in state ŝ. For example, ŝ is an equilibrium state if the dynamics of the agents

satisfy the following condition: ∀s ∈ S, ∀a ∈ A, ∀t ∈ (0, τs,a), T (ŝ, a)(t) is a convex combination

of s and T (ŝ, a)(τs,a). This is because any convex combination of ŝ and T (ŝ, a)(τŝ,a) remains in ŝ,

since T (ŝ, a)(τŝ,a) = ŝ.

41

Lemma 4. ŝ is an equilibrium state of the Line-Up automaton with dynamics if and only if

∀a ∈ A,∀t ∈ (0, τŝ,a) : fŝ,a(t) = fŝ,a(τŝ,a) (3.1)

Proof. By construction of the action set, we have that

∀a = âvgl,i,r ∈ A : fŝ,a(τŝ,a) = ŝ(i) (3.2)

This is because,

fŝ,a(τŝ,a) =
r − i
r − l

ŝ(l) +
i− l
r − l

ŝ(r)

=
r − i
r − l

(
N − l
N

s0(0) +
l

N
s0(N)

)
+

i− l
r − l

(
N − r
N

s0(0) +
r

N
s0(N)

)
=

(r − l)(N − i)
(r − l)N

s0(0) +
i(r − l)

(r − l)N
s0(N)

=
N − i
N

s0(0) +
i

N
s0(N)

= ŝ(i)

Hence, by construction of the action set, we have that

∀a ∈ A : T (ŝ, a)(τŝ,a) = ŝ

We first assume that the conditions defined in Equation 3.1 hold. Our goal is to show that

∀a = âvgl,i,r ∈ A, ∀t ∈ (0, τŝ,a] : fŝ,a(t) = ŝ(i)

since by construction we require that ŝ is the only reachable state from ŝ and agent i is the only

agent modified by the execution of action a = âvgl,i,r.

Consider an arbitrary a = âvgl,i,r ∈ A. From Equation 3.2, we have that fŝ,a(τŝ,a) is equal to

ŝ(i). Using conditions defined in Equation 3.1, we derive that fŝ,a(t) = ŝ(i) for all t ∈ (0, τŝ,a).

We then assume that ŝ is an equilibrium state. Our goal is to show that the conditions in Equa-

tion 3.1 hold.

Consider an arbitrary a = âvgl,i,r ∈ A. By definition of equilibrium state, we have that

∀t ∈ (0, τŝ,a] : T (ŝ, a)(t) = ŝ

42

By construction of action a, we have that

∀t ∈ (0, τŝ,a] : (T (ŝ, a)(t))(i) = fŝ,a(t)

Combining previous equations with Equation 3.2, we have that Equation 3.1 holds.

We next prove that any equilibrium state of the Line-Up automaton with dynamics can be

represented as a equi-spaced straight line.

Lemma 5. s̄ ∈ S is an equilibrium state of the Line-Up automaton with dynamics if and only if

∀i ≤ N : s̄(i) =
N − i
N

s̄(0) +
i

N
s̄(N)

and

∀a ∈ A,∀t ∈ (0, τŝ,a) : fŝ,a(t) = fŝ,a(τŝ,a)

Proof. The proof is similar to the proof of Lemma 3 and Lemma 4. Therefore it is not reported.

3.2 Lyapunov Function and Level Sets

In this Section, we discuss Lyapunov functions [43, 39] for automata. This tool is used for proving

stability and convergence of equilibrium states. A Lyapunov function for A is a mapping V : S → P,

where P is a totally ordered set. The set P may be the set of non-negative reals (R≥0), the set of

natural numbers (N) or a set of tuples, where elements of the tuples are compared using lexicographic

order. For example, a Lyapunov function for the Line-Up automaton with dynamics, discussed

in Section 2.2.4, can be the function V̂ : S → R≥0 defined as follows: ∀s ∈ S

V̂ (s) =

N∑
i=0

(ŝ(i)− s(i))2

This function maps a state s to a non-negative real number, that represents the square of the

distance of the state from the equilibrium state ŝ. This metric is computed as the sum of squares of

the distances of the single agents from their corresponding goal positions.

We next introduce the concept of level sets of the Lyapunov function V . We will use this concept

throughout the thesis. We define the level sets of V , as follows.

Definition 19. For each p ∈ P, the level set Lp is defined as

Lp = {s ∈ S : V (s) ≤ p}

This set includes all states mapped by V to a value upper bounded by p.

43

For example, in the case of the Line-Up automaton with dynamics, we have that this family

of level sets denoted by {L̂p}p∈R≥0
is defined as follows. The level set L̂0 of V̂ is equal to the set

consisting of the equilibrium state ŝ, i.e. L̂0 = {ŝ}. For all p > 0, L̂p includes all states of S such

that V̂ (s) ≤ p.

The family of level sets {Lp}p∈P of the Lyapunov function V is monotonic, by construction, i.e.,

∀p, q ∈ P, q < p, Lq ⊆ Lp

We say that {Lp}p∈P is strictly monotonic, if each level set Lq of the family is strictly contained

in all level sets Lp with q < p, i.e.,

∀p, q ∈ P, q < p, Lq (Lp

For example, in the case of the Line-Up automaton with dynamics with the given Lyapunov function,

it is easy to show that the family of level sets of V̂ is strictly monotonic. This is because, for all

p ∈ R≥0, we can construct a state having distance from ŝ equal to p.

In the special case of multi-agent systems, we introduce the notion of set of states in conjunctive

form. In the case of multi-agent systems, the state space S of a system is defined as the Cartesian

product of the state spaces of its agents, i.e. S = S1 × S2 × . . . SN with Si being the state space of

agent i and N being the total number of agents in the system. We refer to Section 4.1 for a detailed

discussion of multi-agent systems. Informally, a set of states Q is in conjunctive form if it can be

expressed as the Cartesian product of Q1, Q2, . . . QN with Qi ⊆ Si. Formally,

Definition 20. A set of states Q ⊆ S is in conjunctive form if ∃Q1, Q2, . . . QN with Qi ⊆ Si such

that

Q =

N⋂
i=1

{s ∈ S | s(i) ∈ Qi}

The set of state Q can be expressed as the intersection of sets, where the i-th set restricts the state

space of agent i to Qi, i.e. the i-th set is equal to

S1 × . . .×Qi × SN

By construction, the state space S of the system is in conjunctive form: the set Qi is equal to Si for

all i = {1, . . . , N}. Figure 3.1 presents examples of sets in conjunctive form and sets that are not in

conjunctive form.

For example, in the case of the Line-Up automaton with dynamics, we can define the following

Lyapunov function and family of level sets in conjunctive form. The Lyapunov function V̄ : S →

44

RN+1
≥0 maps each state of the automaton into a tuple of non-negative real numbers such that ∀s ∈ S

V̄ (s) =
(
V̄0(s(0)), . . . , V̄i(s(i)), . . . , V̄N (s(N))

)
where V̄i(s(i)) = (s(i)− ŝ(i))2. This function maps state s into a tuple of N + 1 elements, where the

i-th entry stores the distance between the current position of agent i and its goal position. Given

p = (p0, . . . , pi, . . . , pN), we have that the level set L̄p of V̄ is defined as

L̄p = {s′ ∈ S | ∀i ∈ {0, . . . , N} : V̄i(s
′(i)) ≤ pi}

The state L̄p is in conjunctive form, since it can be written as the intersection of the following sets

L̄p =
N⋂
i=1

{s′ ∈ S | V̄i(s′(i)) ≤ pi}

For all p ∈ P, we say that Lp is stable if any execution that starts in Lp remains in Lp, formally,

Definition 21. Lp is stable if

RF (Lp) ⊆ Lp

The set RF (Lp) denotes the set of all reachable states from Lp. We refer to Section 2.2.2 for

its definition. The concept of stability for a level set is pictorially represented in Figure 3.2. For

example, in the case of the Line-Up automaton with dynamics, we have that L̂0 is stable, since L̂0

is a set of cardinality one, consisting of an equilibrium state.

We say that the family {Lp}p∈P is stable if all its level sets are stable. We next derive sufficient

and necessary conditions for proving stability of a family of level sets. We require that the execution

of any enabled action does not increase the value of the Lyapunov function.

Lemma 6. {Lp}p∈P is stable if and only if

∀s ∈ S, a ∈ A : E(s, a) =⇒ (∀t ∈ τs,a : V (fs,a(t)) ≤ V (s))

Proof. Suppose that the family of level sets {Lp}p∈P is stable. Consider an arbitrary state s ∈ S

and an arbitrary action a ∈ A, such that E(s, a). By assumption, the level set Lp with p = V (s) is

stable. By definition of reachability, we have that

∀t ∈ τs,a : fs,a(t) ∈ RF (Lp)

45

x
1

x
2

x
3

x
4

y

x

(a) An example of set in conjunctive
form. The set is the union of the
shaded areas. This set can be rep-
resented as Qx × Sy , where Qx is
the set containing all x ∈ Sx with
x1 ≤ x ≤ x2 or x3 ≤ x ≤ x4.

y
1

y
4

y
2

y
3

y

x

(b) An example of set in conjunctive
form. The set is the union of the
shaded areas. This set can be rep-
resented as Sx × Qy , where Qy is
the set containing all y ∈ Sy with
y1 ≤ y ≤ y2 or y3 ≤ y ≤ y4.

x
1

x
2

x
3

x
4

y
1

y
4

y
2

y
3

y

x

(c) An example of set in conjunctive
form. The set is the union of the
shaded areas. This set can be ex-
pressed as the intersection of Qx×Sy
(defined in Figure 3.1(a)) and Sx×Qy
(defined in Figure 3.1(b)).

y
1

y
2

x
1

x
2

y

x

(d) An example of set that is not con-
junctive. The set is the shaded area.

Figure 3.1: Pictorial representation of examples of sets. In these examples, the system consists of
two agents x and y. The state space of agent x is denoted by Sx and the state space of agent y
is denoted by Sy. Figure 3.1(a), Figure 3.1(b) and Figure 3.1(c) are examples of conjunctive sets
while Figure 3.1(d) is an example of set that is not conjunctive.

and by definition of stability, we have that RF (Lp) ⊆ Lp. Hence,

∀t ∈ τs,a : fs,a(t) ∈ Lp

or equivalently,

∀t ∈ τs,a : V (fs,a(t)) ≤ V (s)

and this part of the Lemma follows.

Suppose, instead, that

∀s ∈ S, a ∈ A : E(s, a) =⇒ (∀t ∈ τs,a : V (fs,a(t)) ≤ V (s))

46

Lp

Figure 3.2: Pictorial representation of a stable level set Lp. Dark filled circles contained in the
level set Lp represent states of the systems, while arrow lines represent execution fragments. In this
Figure, any execution fragment starting from states in Lp remains in Lp.

Consider an arbitrary p ∈ P. Our goal is to show that Lp is stable, i.e. RF (Lp) ⊆ Lp. We next

show that

∀s ∈ Lp, ∀s′ ∈ RF (s) : V (s′) ≤ V (s) ≤ p

Consider an arbitrary s ∈ Lp and s′ ∈ RF (s). By definition of reachability, there exists a

execution fragment π such that π.fstate = s and π.lstate = s′. Iterating the assumption along the

actions of π, we get that V (s′) ≤ V (s). Furthermore, since s ∈ Lp we have that V (s′) ≤ V (s) ≤ p

and the Lemma follows.

We next present a property of stable level sets.

Lemma 7. If Lp with p ∈ P is stable then

∀U ⊆ Lp : RF (U) ⊆ Lp

Proof. It follows from the definitions of reachability and stability.

Suppose that the state space S is a metric space, i.e. we can define a function d : S × S → R≥0

satisfying ∀s, s′, s̄ ∈ S,

• d(s, s′) = 0 if and only if s = s′,

• d(s, s′) = d(s′, s) and

• d(s, s′) ≤ d(s, s̄) + d(s̄, s′).

In the case of the Line-Up automaton, a feasible distance function is the two-norm of the distance

between pair of states, i.e. the function d : S × S → R≥0 defines as, ∀s, s′ ∈ S

d(s, s′) =

N∑
i=0

(s(i)− s′(i))2

47

Assuming the state space to be a metric space, we can define the concept of ε-ball around a state

with ε ≥ 0 as follows

Definition 22. The ε-ball around s ∈ S, denoted by Bε(s), is

Bε(s) = {s′ ∈ S | d(s, s′) ≤ ε}

The ε-ball around s consists of the set of states having at most distance ε from s. For example, in

the case when ε = 0, the 0-ball consists only of the state s itself; this follows from the definition of

distance function. The concept of ε-ball is unrelated to the concept of reachability; states in Bε(s)

do not have to be reachable from s. The concept of ε-ball around s ∈ S can be extended to set of

states as follows, given Ŝ ⊆ S:

Bε(Ŝ) = {s ∈ S | ∃ŝ ∈ Ŝ : d(ŝ, s) ≤ ε}

3.3 Stable Equilibria

In this Section, we present a formalization of the concept of stable equilibrium points in the context

of automata. Informally, ŝ ∈ S is stable if every execution fragment that starts close to ŝ remains

close to ŝ. Formally,

Definition 23. ŝ is a stable state of A if ∀ε > 0 ∃δ > 0 such that

RF (Bδ(ŝ)) ⊆ Bε(ŝ)

From automaton reachability definition, it follows that 0 < δ ≤ ε. This is because, by construction,

a state is always reachable from itself. From this definition, it follows that any execution fragment

starting from a state at distance at most δ from ŝ remains within distance ε from ŝ. We refer

to Figure 3.3 for a pictorial representation of the definition of stability.

The definition of stability is extended to set of states. Informally, Ŝ ⊆ S is stable if every

execution fragment that starts close to Ŝ remains close to Ŝ. Formally,

Definition 24. Ŝ is a stable set of A if ∀ε > 0 ∃δ > 0 such that

RF (Bδ(Ŝ)) ⊆ Bε(Ŝ)

We next discuss sufficient conditions that ensure stability of equilibrium states of the automaton.

These conditions are defined in terms of a Lyapunov function V : S → P. Specifically, if the family

of level sets {Lp}p∈P is stable and ∀ε ≥ 0, ∃p ∈ P, δ ≥ 0 such that Bδ(ŝ) ⊆ Lp ⊆ Bε(ŝ), then ŝ is

48

<

(s)BεBδ

<

(s)

Figure 3.3: Pictorial representation of stable equilibrium state in terms of ε and δ balls around
ŝ. Dark filled circles represent states contained in the δ-ball around ŝ, while arrow lines represent
execution fragments. In this Figure, we have that all execution fragments starting from states in
the δ-ball around ŝ remain inside the ε-ball around ŝ.

stable. This is because all states reachable from Bδ(ŝ) belong to the stable set Lp. We state these

conditions formally in the following theorem:

Theorem 8. If there exists V : S → P that satisfies the following conditions:

B1. ∀ε > 0, ∃p ∈ P : Lp ⊆ Bε(ŝ),

B2. ∀p ∈ P, ∃ε > 0 : Bε(ŝ) ⊆ Lp,

B3. {Lp}p∈P is stable

then ŝ is a stable state of A.

Before proceeding with the proof, we briefly discuss these assumptions. B1 requires that every ε-ball

around ŝ contains a level set Lp. B2 is a symmetric assumption that requires that every level set of

V contains an ε ball. These two conditions ensure the existence of Lp, with Bδ(ŝ) ⊆ Lp ⊆ Bε(ŝ). B3

states that for any state s ∈ S the set of reachable states from s is inside LV (s). This is a sufficient

condition for ensuring stability of the level sets.

We next prove the theorem and refer to Figure 3.4 for a graphical representation of the proof.

Proof. Let us fix an ε > 0. We have to show that there exists a δ > 0, such that any execution

fragment that starts in Bδ(ŝ) remains within Bε(ŝ). From Assumption B1,

∃p ∈ P : Lp ⊆ Bε(ŝ)

From Assumption B2,

∃ν ≥ 0 : Bν(ŝ) ⊆ Lp

49

(s)

<

Bε

(s)

<

B
δ=ν

Lp

Figure 3.4: A graphical representation of the proof of Theorem 8.

Set δ = ν. From Assumption B3, Lp is stable, hence, since Bδ(ŝ) ⊆ Lp, we get that

RF (Bδ(ŝ)) ⊆ Lp ⊆ Bε(ŝ)

where the first inclusion follows from Lemma 7.

3.4 Asymptotically Stable Equilibria

In this Section, we model asymptotically stable equilibrium states. Informally, ŝ ∈ S is an asymp-

totically stable equilibrium state or, equivalently, A converges to ŝ, if every fair infinite execution of

the automaton eventually gets and remains arbitrarily close to ŝ. Formally,

Definition 25. A converges to ŝ if ∀ε > 0: 32 (s ∈ Bε(ŝ))

We refer to Chapter 2 for the meaning of the two temporal operators, 2 and 3. These two operators

together ensure that ∀ε > 0, ∃tε such that for all fair infinite execution π, and t ≥ tε, d(π(t), ŝ) < ε.

Figure 3.5 presents a graphical representation of this definition.

We next provide sufficient conditions for proving convergence in terms of a Lyapunov function

V : S → P. Specifically, if the family of levels set {Lp}p∈P of V is stable and ∀ε > 0, ∃p ∈ P such

that Lp ⊆ Bε(ŝ), then it is sufficient to show that the system eventually enters Lp. This is because,

by stability of Lp, the system remains in Lp and, hence, it converges to ŝ. Next we give sufficient

conditions that allow us to prove that the systems eventually reaches Lp. Suppose that (1) P is

a well-ordered set, meaning that every nonempty subset of P has a least element, (2) the family

{Lp}p∈P is strictly monotonic and (3) for each level set there is an action, such that, when executed,

the system moves from the level set to a strictly contained one. Under these assumptions, we can

prove that the systems eventually reaches Lp. We state these conditions in the following theorem.

50

B
ε
(s)

<

0
s

0
s

0
s

Figure 3.5: Pictorial representation of asymptotical stability of ŝ. Dark filled circles represent initial
states of the system and arrow lines represent system executions. In this Figure, any execution
eventually enters and remains in the ε-ball around ŝ.

Theorem 9. If there exists V : S → P, with P a totally ordered set that satisfies the following

conditions:

C1. {Lp}p∈P is strictly monotonic,

C2. ∀ε > 0,∃p ∈ P such that Lp ⊆ Bε(ŝ),

C3. {Lp}p∈P is stable,

C4. ∀p ∈ P, with Lp 6= {ŝ}, ∃q < p such that 2 (Lp =⇒ 3 Lq)

C5. P is a well-ordered set

then A converges to ŝ.

Proof. Consider an arbitrary ε > 0. Using Assumption C2, we know that ∃p ∈ P such that

Lp ⊆ Bε(ŝ)

Our goal is to show that 3 (s ∈ Lp). This is enough for proving convergence to ŝ, since, by

Assumption C3, Lp is stable. We refer to Figure 3.6 for a pictorial representation of the goal of the

proof.

Consider an arbitrary fair execution π of the automaton and denote by p0, p1, . . . p̂ the sequence

of level sets visited when executing actions in π. Specifically, execution π starts in Lp0 , i.e. s0 ∈

Lp0 , then, executing actions from π, eventually enters the set Lp1 and so on. This sequence is

a decreasing sequence of values with minimum element p̂. The decreasing property follows from

Assumptions C1, C3 and C4 while the minimum element property follows from Assumption C5.

51

B
ε
(s)

<

0
s

0
s

0
s

pL

Figure 3.6: The system eventually enters Lp in Theorem 9. Dark filled circles represent initial states
of the system and arrow lines represent executions of the system.

B
ε
(s)

<

pL

pL

<

0
s

π

Figure 3.7: Lp̂ ⊆ Lp in Theorem 9.

We want to show that

Lp̂ ⊆ Lp

or equivalently that p̂ ≤ p. This condition ensures that execution π enters Lp. We pictorially

represent this condition in Figure 3.7.

If Lp̂ = {ŝ}, then π converges to ŝ, and this concludes the proof.

Assume, instead, that

Lp̂ 6= {ŝ}

The proof proceeds by contradiction. Assume that p̂ > p. Using Assumption C4, we have that

∀s ∈ Lp̂ there exists a fair action such that when executed the execution enters in a level set Lq

with q < p̂. This is a contradiction since p̂ is assumed to be the minimum of the sequence. Hence,

p̂ ≤ p and the Lemma follows.

52

In certain applications, the distance function d of the metric space can itself be used as a Lyapunov

function for proving convergence. Given d, we can define the Lyapunov function to be V (s) = d(s, ŝ)

with ŝ.

Corollary 1. Given a function V : S → R≥0 defined as V (s) = d(s, ŝ), ∀s ∈ S, if there exists a

strictly decreasing infinite sequence p0, p1, . . . ∈ R>0 of valuations of V that converges to 0 satisfying

D1. {Lpi}pi∈R>0
is strictly monotonic

D2. {Lpi}pi∈P is stable

D3. ∀i, with pi 6= 0, 2
(
Lpi ⇒ 3Lpi+1

)
Then A converges to ŝ.

Proof. Condition C1-5 follow from Assumptions D1-3 of the decreasing sequence.

In the special case when the decreasing sequence is of the form C,Cα,Cα2, Cα3, . . . with C being

some positive constant and 0 ≤ α < 1, we have that the automaton converges linearly to ŝ:

Corollary 2. If there exists α, with 0 ≤ α < 1, such that conditions D1-3 hold for the sequence

C,Cα,Cα2, . . . with C ∈ R>0, then A converges to ŝ.

Proof. Follows from the previous Corollary where the sequence C,Cα,Cα2, Cα3, . . . is strictly de-

creasing.

We next introduce the notion of convergence to a function.

Definition 26. Given g : S → Ŝ, A converges to g if ∀s ∈ S the automaton As = (S, {s}, A, T,E)

converges to g(s).

A converges linearly to g with rate α, 0 ≤ α < 1, if ∀s ∈ S the automaton As = (S, {s}, A, T,E)

converges linearly to g(s) with rate α.

In this definition, for all s ∈ S the automaton As has the same state space, same set of actions,

same enabled condition and transition function of automaton A. However, the two automata differ

for the set of initial states: the set of initial states of As consists only of state s.

3.5 Properties of Automata in the Presence of Exogenous

Inputs

In this Section, we discuss properties of automata with timed actions in the presence of exogenous

inputs. Given A, we denote by Aexog the corresponding exogenous automaton. We denote by Ŝ the

set of equilibrium states of A. We refer to Section 2.4 for the definition of Aexog.

53

< L
< L < L

execution π

time

state

goal

T0

Figure 3.8: Pictorial representation of a L-bounded execution π of Aexog with respect to function
g. In this Figure, for all t ∈ R≥0, the goal function at time t is defined as goal(t) = g(π(t)). We
assume that the automaton in the absence of exogenous input A converges to g. By definition of
bounded exogenous automaton, there exists a time T , such that ∀t ≥ T , the distance between the
state π(t) and goal(t) is bounded by L. The shaded area represent the time interval [T,∞).

In the presence of exogenous inputs, states in Ŝ may not be equilibrium states for Aexog. Also,

Aexog may not have equilibrium states at all. For example, we consider the generalization of the Line-

Up multi-agent system presented in Section 2.4. In this system, agent 0 and N can move arbitrarily

and the goal of the system is to form and maintain a equi-spaced straight line with extreme points

given by the time-varying positions of agents 0 and N . The corresponding exogenous automaton

Aexog combines the Line-Up automaton in absence of exogenous inputs described in Section 4.1 and

the automaton of the exogenous inputs for the Line-Up multi-agent system described in Section 2.1.2.

The exogenous automaton modeling the Line-Up multi-agent system in presence of exogenous inputs

has no equilibrium states. This is because the execution of the action of the exogenous automaton

modifies the positions of agents 0 and N .

In the presence of exogenous inputs, we are not interested in equilibrium states. Instead, we are

interested in tracking the distance between the current state of the exogenous automaton and the set

of equilibrium states of A. This time-varying quantity measures how close the system in the presence

of exogenous inputs is to Ŝ. In particular, we are interested in systems where eventually-always this

time-varying quantity is bounded by some finite constant. Formally,

Definition 27. Given a function g : S → Ŝ on A such that A converges to g, and given L ∈ R≥0,

the exogenous automaton Aexog is L-bounded with respect to g if

32 (d(s, g(s)) ≤ L)

The exogenous automaton Aexog is bounded with respect to g if ∃L ∈ R≥0 such that Aexog is L-

bounded with respect to g.

54

execution π

time

state

T0

goal

Figure 3.9: Pictorial representation of a 0-bounded execution π of Aexog with respect to function
g. In this Figure, for all t ∈ R≥0, the goal function at time t is defined as goal(t) = g(π(t)). We
assume that the automaton in the absence of exogenous input A converges to g. By definition of
0-bounded exogenous automaton, there exists a time T , such that ∀t ≥ T , π(t) = goal(t).

We recall that d : S × S → R≥0 is a distance function on the state space S. We briefly discuss

this definition. It requires that the states of the automaton Aexog eventually get close and remain

close to g(s). Figure 3.8 presents a pictorial representation of this definition. If L = 0, we say

that the automaton Aexog is 0-bounded with respect to g. We refer to Figure 3.9 for a pictorial

representation of a 0-bounded automaton.

In Chapter 7, we provide conditions on g and on the set of actions of the system in the absence of

exogenous inputs and on the actions of the exogenous inputs that ensure the system in the presence

of exogenous inputs to be bounded or 0-bounded with respect to g. For example, in Chapter 7, we

show that if the exogenous input are bounded, the Line-Up system in the presence of exogenous

inputs is bounded with respect to the function g : S → Ŝ defined as: ∀s ∈ S, ∀i ≤ N , g(s)(i) =

N−i
N · s(0) + i

N · s(N).

3.6 Discussion

In this Section, we discuss the concepts of stability and convergence of automata with timed actions

and relate them to the literature.

Throughout this thesis, stability and convergence are key concepts. We use them for proving

correctness of multi-agent systems. We model multi-agents system as automata, and prove their

correctness by showing that their goal configurations are asymptotically stable equilibrium states,

or equivalently, that these systems converge to their goal states.

The correctness of distributed systems is usually defined in terms of termination, rather than

convergence. A distributed system terminates, if it eventually reaches its goal configuration. We

refer to [40] for a discussion of terminating distributed systems; for example, in the Byzantine

55

consensus problem the components of the system reach consensus in a finite number of rounds.

Many of the terminating distributed systems have discrete state spaces. In distributed systems with

dense state spaces, termination does not always hold, while the weaker convergence property may

hold. The Line-Up multi-agent system, presented in Section 2.1.2, is an example of non terminating

distributed systems with dense state space. For this example, we can show that the executions of

the system get closer and closer to the goal configuration, but never reach it, i.e. that the system

converges to the equilibrium state.

The definitions and theorems of this Chapter extend the work of [66] to systems with timed

actions where the state space is a metric space. In [66], the author considers a discrete-time system

and defines stability and convergence for this system in terms of a topological structure around ŝ,

called a neighborhood system around ŝ. The author assumes weak fairness of the action set. We

generalize the definitions and the theorems in [66] to systems with the weaker notion of fairness

presented in Section 2.3. Our generalization assumes a specific neighborhood system, defined by

the ε-balls around ŝ. This topological structure assumes the state space to be a metric space. The

definitions and results presented in this Chapter are similar to [14, 47]; in this papers, authors

generalize in a similar way the results of [66] to hybrid and timed I/O automata and formalize these

properties in the PVS theorem prover.

56

Chapter 4

Stability and Convergence
Properties of Multi-Agent Systems

In this Chapter, we present a general result for proving stability and convergence properties of

equilibrium states of multi-agent systems.

In Section 4.1 we discuss stability and convergence properties of shared-state multi-agent systems

where agents are not allowed to execute concurrent actions. In Section 4.2 we present a generalization

of the shared-state multi-agent system where agents can read the state of other agents at some time

in the past. In this Section, we derive conditions for proving stability and convergence properties of

these systems. In Section 4.3 we model message-passing multi-agent systems with bounded delay and

derive conditions for proving stability and convergence properties of theses systems. In Section 4.4 we

discuss stability and convergence properties of multi-agent systems with concurrent actions. Finally,

in Section 4.5 we relate the main results of this Chapter to the literature.

Throughout this Thesis, given a function f : [t1, t2]→ S, we denote by f∆ the function f shifted

by ∆. The function f∆ has domain [t1 + ∆, t2 + ∆] and it is defined as ∀t ∈ [t1 + ∆, t2 + ∆],

f∆(t) = f(t−∆).

4.1 Shared-State Multi-Agent Systems

In this Section, we model shared-state multi-agent systems. We have informally presented these

systems in Chapter 1. A shared-state system consists of a collection of agents that communicate

via shared variables. In this Section, we model systems where at any given time only one agent can

perform an action: concurrent actions by multiple agents are not allowed. A more general model

where agents can execute actions concurrently is discussed in Section 4.4.

In this Thesis, we consider shared-state systems where actions of an agent can read the state

of all agents in the system, but only modify its own state. This is a restriction on the general

shared-state multi-agent system class, where the action of an agent can modify a group of agents.

57

4.1.1 Shared-State Automaton

We model a multi-agent system using the automaton with the timed action model. In shared-state

systems, the state of the system S is defined as the Cartesian product of the states of the agents

composing the system. Similarly, the set of initial state S0 is the cartesian product of the sets of

initial states of the agents in the system. Each agent has its own set of actions. Actions of an agent

can read the states of other agents, but only modify its own state. Formally,

Definition 28. A shared-state MAS with N agents can be modeled as an automaton with timed

actions A = (S, S0, A,E, T) with:

• S = S1 × S2 × . . . SN , where Si is the state of agent i,

• S0 = S01 × S02 × . . . S0N , where S0i is the initial state of agent i,

• A =
⋃N
i=1Ai, where Ai is the set of actions of agent i

• ∀s ∈ S, ai ∈ Ai, ∀t ∈ [0, τs,ai], only agent i’s state changes:

T (s, ai)(t) = (s(1), s(2), . . . , s(i− 1), fs,ai(t), s(i+ 1), . . . , s(N))

In Figure 4.1, we represent an execution of an automaton consisting of 3 agents.

Example. We next discuss an example of multi-agent system and corresponding automaton.

The system and automaton are depicted in Figure 4.2. As shown in Figure 4.2(a), the system

consists of two agents: u and v. The state of agent u consists of a single real-valued variable x, with

x ∈ [0, 2]. The set of initial states of u is the interval [0, 1]. We refer to Figure 4.2(b) for a pictorial

representation of the state of u. Similarly, the state of agent v consists of the real-valued variable

y, with y ∈ [0, 2], and its set of initial states is the interval [0, 1]. The state of the overall system is

defined as the cartesian product of the agents states, i.e. S = [0, 2]× [0, 2]. This set corresponds to

the shaded (green) area in Figure 4.2(c). Similarly, the set of initial states is the cartesian product

of the agents initial states, i.e. S0 = [0, 1]× [0, 1]. This set corresponds to the light shaded rectangle

in Figure 4.2(c). The set of actions consists of the set of actions of u and the set of actions of v.

Actions of u (respectively v) read the states of u and v, but change only the state of u (respectively

u). In Figure 4.2(d), we represent a feasible execution of the system.

The Line-Up multi-agent system presented in Section 2.1.2 and its generalization with dynamics

presented in Section 2.2.4 are examples of shared-state multi-agent systems. In these systems, the

state space of the system is the cartesian product of the state spaces of the agents and each action

of the system reads the state of the system, but only modifies the state of a single agent.

58

t
2

t
3

t
4

t
5

t
6

t
1

1
S

2
S

3
S

π
3

A
3

execution of

π
2

A
2

execution of

π
1

A
1

execution of

time

state

3
A

1
A

2
A

1
A

2
A

3
A

0

Figure 4.1: An execution of a multi-agent system consisting of three agents A1, A2 and A3. For each
agent i, function πi is the projection of the system execution on agent Ai. The state of the system
at time t is given by the triple (π1(t), π2(t), π3(t)). The system start at state (π1(0), π2(0), π3(0)).
In this state, agent A3 executes an action. This action updates the state of agent A1 and leaves
the state of the other agents unchanged. The end-state of this action is state (π1(t1), π2(t1), π3(t1))
with π1(t1) = π1(0), π2(t1) = π2(0). Then, starting from this state, agent A1 executes an action and
so on. The complete sequence of actions executed is a1, a2, a3, a4, a5, a6, . . . with a1 ∈ A3, a2 ∈ A1,
a3 ∈ A2, a4 ∈ A1, a5 ∈ A2, a6 ∈ A3 and so on. The three shaded areas represent the state spaces of
the three agents denoted by S1, S2 and S3.

Theorem Proving Model. In Figure 4.3, we encode a generic multi-agent shared-state system

in PVS. In this model, we assume that the system is represented by a discrete automaton. This

system consists of N + 1 agents, with N > 0. In this generic system, each agent has an identifier.

These identifiers are natural numbers in the interval [0, N]. In PVS, the type of agent identifiers is I.

This generic multi-agent system models homogenous systems, i.e. systems where all agents have the

same state space. The type of the state space of the agents is represented by the PVS type L. This

is an uninterpreted type, i.e. it is a generic type, that can be instantiated to any concrete type. For

example, the state space of an agent can be the set of real numbers. The state space of the system

is the cartesian product of the states of its agents; this is encoded using the PVS array function S.

This function maps each agent identifier to its state space. The set of initial states is encoded in

PVS using the predicate start?. This predicate is defined as a conjunction of boolean conditions.

Each condition checks properties of a single agent. This predicate is in conjunctive form, since the

set of starting states of the system is the cartesian product of the set of starting states of the single

agents. In the PVS meta-theory, the type A defines the set of actions of the system. Each action has

an enabling condition, encoded by the predicate E, and a body, encoded in PVS by the function T.

For each state s in the state space and action a of the system, predicate E holds if action a can be

executed in state s. The resulting state of this execution is given by T(s,a).

59

u v

(a) A multi-agent system
consisting of agents u and v.

x : [0, 2]

x

start(x) : (x in [0, 1])

(b) State space of agent u.

y
2

1

0
1 2 x

S

S0

(c) State space of the multi-agent
system.

0

0.5

1

1.5

2

0

0.5

1

1.5

2
0

5

10

15

20

25

x
y

tim
e

(d) An execution of the system.

y
2

1

0
1 2 x

S

S0

(e) Projection of the execution
in Figure 4.2(d) on the state
space of the system.

Figure 4.2: An example of shared-state multi-agent system and the corresponding automaton.

4.1.2 Shared-State Automaton with Explicit Arbitrary Dynamics

In this Section, we construct a generic shared-state multi-agent system given a discrete multi-agent

system. We denote by AD = (SD, S0D, AD, ED, TD) a discrete automaton modeling a shared-state

multi-agent system, by ŝD an equilibrium of AD and by VD : SD → P a Lyapunov function on AD.

Actions of AD are instantaneous. Given AD, we next construct a generic automaton with timed

actions A = (S, S0, A,E, T) and present conditions that ensure stability and convergence properties

of A.

Automaton A relaxes the assumption of AD and explicitly models the dynamics of the agents.

When A executes an action, it evolves the current state of some agent i towards its newly computed

one according to some dynamics. In this more general automaton, an agent, when evolving its state,

can stop before reaching the newly computed value. At each time of the execution, the state of the

system stores both the current state of the multi-agent system and the newly computed one. In this

model, we refer to the newly computed state as the destination state. Initially, the destination state

is equal to the initial state of the automaton.

We next describe the structure of the automaton. A state s of A consists of a pair of states

60

% Number of agents of the system.

N: posnat

% Agent Identifier.

% It is a natural number in the interval [0,N].

I: TYPE = upto(N)

% Agent Type.

% It is an uninterpreted type and can store any type.

L: TYPE

% PVS meta -theory.

SharedState: THEORY

BEGIN

% State definition.

% A state maps each agent identifier into a value.

S: TYPE = [I -> L]

% Action set of the system.

A: DATATYPE

BEGIN

% Action definition.

% This definition includes the input paramenters of the action.

END A

s: VAR S

a: VAR A

% Initial State Predicate.

% This predicate defines the set of initial states.

start?(s): bool = % conditions in conjunctive form

% Enabling Predicate.

E(s,a): bool =

CASES a OF

% For each action of the system , this predicate defines

% a set of enabling conditions.

ENDCASES

% Transition Function.

T(s,a): S =

CASES a OF

% For each action of the system ,

% this function encodes the body of the action.

ENDCASES

END SharedState

Figure 4.3: Generic PVS model of a shared-state multi-agent system.

61

of AD, where the first component represents the current state of the automaton and the second

component represents its destination state. Given s we refer to the first component of s as s.x and

to the second component as s.z. A state s ∈ S is an initial state of A, if both s.x and s.z are equal

to the same initial state of AD. The set of actions of A is equal to the set of actions of AD. Given

a state s ∈ S, and an action a ∈ A, the action is enabled in s, if the corresponding discrete action is

enabled in state s.x. This is because, by construction, s.x stores the current state of the multi-agent

system. In the automaton A, for all s ∈ S, a ∈ A, the execution of action a in state s has duration

τs,a. We denote by i the agent executing action a. When a is executed, agent i updates its current

and destination states, then evolves its current state towards its newly computed destination state.

The other agents do not change their state.

Formally, the automaton representation follows.

Definition 29. Given AD = (SD, S0D, AD, ED, TD), the automaton with time actions A = (S, S0, A,E, T)

modeling a shared-state MAS with N agents and explicit arbitrary dynamics has:

• S = (SD, SD),

• S0 = {s ∈ S | ∃s0 ∈ S0D : s.x = s.z = s0},

• A = AD

• ∀s ∈ S, ∀a ∈ A, E(s, a) = ED(s.x, a),

• ∀s ∈ S, ∀a ∈ A, action a is executed by agent i, has duration τs,a and its behaviour is as

follows, ∀t ∈ (0, τs,a],

(T (s, a)(t)).x(i) = fs,a(t)

(T (s, a)(t)).z(i) = TD(s.x, a)(i)

and ∀j 6= i,

(T (s, a)(t)).x(j) = s.x(j)

(T (s, a)(t)).z(j) = s.z(j)

The fairness criterion of A is equal to the fairness criterion of AD. Given an equilibrium state

ŝD of AD, the corresponding equilibrium state in S, denoted by ŝ, satisfies the property that ŝ.x =

ŝ.z = ŝD. We next present conditions on the structure of the level sets of VD and condition on the

function f that ensure stability and convergence of A. Given VD, we construct a Lyapunov function

V : S → P for A. For each state s ∈ S, the value V (s) = max{V (s.x), V (s.z)}.

62

Line-Up example. We can construct a generic Line-Up multi-agent system with explicit dynam-

ics. We refer to Section 2.1.2 for a detailed description of the Line-Up multi-agent system and

corresponding discrete automaton.

Given the discrete Line-Up automaton AD = (SD, S0D, AD, ED, TD) defined in Section 2.1.2, the

automaton with time actions A = (S, S0, A,E, T) modeling the Line-Up shared-state MAS with N

agents and explicit arbitrary dynamics has:

• S = (RN+1,RN+1),

• S0 = {(s0, s0)} with s0 the initial state of AD,

• A = {Ai}i∈I with Ai = {avgl,i,r}l<i<r,

• E : S ×A→ true

• ∀s ∈ S, ∀a = avgl,i,r ∈ A, action a is executed by agent i, has duration τs,a and its behaviour

is as follows, ∀t ∈ (0, τs,a],

(T (s, a)(t)).x(i) = fs,a(t)

(T (s, a)(t)).z(i) =
r − i
r − l

s(l) +
i− l
r − l

s(r)

and ∀j 6= i,

(T (s, a)(t)).x(j) = s.x(j)

(T (s, a)(t)).z(j) = s.z(j)

In the case of stability we show that the following Theorem holds.

Theorem 10. If

E1. VD satisfies Assumptions B1-3 of Theorem 8,

E2. ∀k ∈ P, level set LkD of VD is a convex set,

E3. ∀s ∈ S,∀a ∈ A, ∀t ∈ [0, τs,a], (T (s, a)(t)).x is a convex combination of s.x and TD(s.x, a),

then ŝ is a stable equilibrium state of A.

We briefly discuss these Assumptions. E1 requires that VD is a certificate of stability for ŝD in

AD. E2 requires that the level sets of VD are convex sets. E3 requires that ∀s ∈ S,∀a ∈ A, the states

of the execution fragment π, having π.fstate = s.x, π.lstate = TD(s.x, a) and obtained by executing

a on s.x, are linear combinations of s.x and TD(s.x, a). This condition is pictorially represented

63

Agent 2

Agent 1

D

D

T (s.x,a)

Lp

s.x

(T(s,a)(t)).x

Figure 4.4: Pictorial representation of the conditions of Theorem 10. We consider a system consisting
of two agents. E2 requires that the level sets of AD are convex. E3 requires that (T (s, a)(t)).x is a
convex combination of s.x and TD(s.x, a). In this Figure, s.x and TD(s.x, a) belong to LpD and are
represented as dark filled circles; (T (s, a)(t)).x is represented as a white filled circle.

Agent 2

Agent 1

D

D

D

T (s.x,a)

Lp

Lq

s.x

(T(s,a)(t)).x

Figure 4.5: Pictorial representation of the conditions of Theorem 11. We consider a system consisting
of two agents. In this Figure, state s.x ∈ LpD −LqD and TD(s.x, a) ∈ LqD . F2 requires that the level
sets of AD are convex. F3 requires that (T (s, a)(t)).x is a convex combination of s.x and TD(s.x, a).
F4 requires that ∃t ∈ [0, τs,a], such that (T (s, a)(t)).x ∈ LqD . In this Figure, s.x and TD(s.x, a) are
represented as dark filled circles, and (T (s, a)(t)).x is represented as a white filled circle.

in Figure 4.4. In Section 3.1, we have used condition E3. Specifically, in Lemma 4, we have shown

that Equation 2.3 is an equilibrium state equilibrium state of the Line-Up automaton with dynamics

if and only if the Line-Up automaton with dynamics satisfies E3.

Proof. We want to show that V on A satisfies Assumptions B1-3 of Theorem 8. Conditions B1

and B2 hold by hypothesis. We next show that the family of level sets {Lk}k∈P of V is stable.

Fix an arbitrary k ∈ P. Consider an arbitrary state s ∈ Lk and action a ∈ A with E(s, a). We

next show that ∀t ∈ [0, τs,a], T (s, a)(t) ∈ Lk.

By Assumption B3 of function VD, TD(s.x, a) ∈ LkD , since by construction of VD, s.x ∈ LkD .

Hence, by construction, ∀t ∈ [0, τs,a], (T (s, a)(t)).z ∈ LkD . By Assumption E2, LkD is a convex set;

hence, any convex combination of s.x and TD(s.x, a) is in LkD . By Assumption E3, ∀t ∈ [0, τs,a],

(T (s, a)(t)).x is a convex combination of s.x and TD(s.x, a). Hence, ∀t ∈ [0, τs,a], (T (s, a)(t)).x ∈

LkD . Putting all together, by construction of V , we have that ∀t ∈ [0, τs,a], T (s, a)(t) ∈ Lk.

In the case of convergence the following Theorem holds.

64

time

state

execution of A
1

execution of A
2

execution of A
3

0 tt−B

Figure 4.6: An execution of a multi-agent system consisting of three agents where at time t, each
agent can access the state of other agents in the interval [t − B, t]. We refer to Figure 4.1 for a
description of this execution. The shaded area represents the time interval [t− B, t].

Theorem 11. If

F1. VD satisfies Assumptions C1-5 of Theorem 9,

F2. ∀k ∈ P, level set LkD of VD is a convex set,

F3. ∀s ∈ S, ∀a ∈ A, ∀t ∈ [0, τs,a], (T (s, a)(t)).x is a convex combination of s.x and TD(s.x, a),

F4. ∀s ∈ S, ∀a ∈ A, if ∃p, q ∈ P, with q < p, such that s.x ∈ LpD − LqD and TD(s.x, a) ∈ LpD then

∃t ∈ [0, τs,a] such that T (s, a)(t).x ∈ LqD

then A converges to ŝ.

Before proceeding with the proof we briefly discuss Assumptions F1 and F4. Assumption F1

requires that VD is a certificate of convergence of ŝD in AD. Assumption F3 is the same as Assump-

tion E3 of Theorem 10. F4 requires that ∀s ∈ S,∀a ∈ A, if, when executing action a in state s.x,

AD moves from level set LpD to LqD , with LqD (LpD , then, when executing action a in state s, A

enters a strictly contained level set. This condition is pictorially represented in Figure 4.5.

Proof. We want to show that V on A satisfies Assumptions C1-5 of Theorem 9. Conditions C1, C2

and C5 hold by hypothesis. The proof of Assumption C3 is similar to the proof of condition B3

in Theorem 10 and not reported. We next show that condition C4 holds.

Fix an arbitrary k ∈ P and consider an arbitrary state s ∈ Lk. Using Assumption C4 on AD,

we have that AD eventually reaches a state s̄ with s̄ ∈ Lq and Lq ⊂ Lk. By construction and

Assumption F4, A eventually reaches s̄ as well. Hence, condition C4 holds.

65

t
2

t
3

time

state

execution π of A
33

execution π of A
22

π of A
11

execution

0 tt−B

Figure 4.7: In the execution of Figure 4.6, agent A1 at time t reads past states of agent A2 and
A3. It reads the state of agent A2 at time t2 and of agent A3 at time t3. Agent A1 executes an
action at time t on the state (π1(t), π2(t2), π3(t3)). The behaviour of this action is different from
the behavior of the same action in the execution depicted in Figure 4.1. This is because the two
actions are executed on different states. In Figure 4.1 the action is executed on the current state
(π1(t), π2(t), π3(t)) of the system.

4.2 Shared-State Multi-Agent System with Sliding Window

In this Section, we introduce a generalization of the shared-state multi-agent systems. By construc-

tion, in a shared-state system agents update their state using the current state of the other agents.

We next introduce a more general shared-state model where agents can update their state using the

past states of other agents. In this new model, called shared-state system with sliding window, if t

is the current time of the execution, agents can read the state of other agents in the time interval

[t − B, t] where B is a constant and B ≥ 0. For example, Figure 4.6 presents the execution of a

multi-agent system where agent A1 at time t can access the state of agents A2 and A3 in the interval

[t−B, t]. As shown in Figure 4.7, agent A1 reads the state of agent A2 at time t2 and of agent A3 at

time t3, with t2, t3 ∈ [t− B, t]. In these figures, the shaded area emphasizes the execution fragment

from time t− B to t. This area is a window of size B.

4.2.1 Automaton with sliding window

We denote by A = (S, S0, A,E, T) the shared state automaton and by AB = (SB, S0B, AB, EB, TB)

the corresponding shared-state automaton with sliding window. We next informally present the

structure of AB.

A state in AB is a finite execution fragment of A. The duration of this fragment is B and the

final state of the fragment is the state of the shared-state multi-agent system at some time t. Hence,

66

a state sB ∈ SB can be represented as a function that maps the interval [−B, 0] to S, where sB(0)

represents the state of the multi-agent system at some time t and sB(t̂), with −B ≤ t̂ < 0, represents

the state of the multi-agent system at time t − t̂. Given sB ∈ SB we denote by siB the projection

of the state sB on agent i. Formally, siB is a function from the interval [−B, 0] to Si, defined as

∀t ∈ [−B, 0], siB(t) = sB(t)(i). We next discuss the set of initial states of AB. For initial state

s0 ∈ S0, the past is not defined, since the execution starts at s0 at time 0. For these states, the

corresponding initial state s0B ∈ S0B repeats s0 throughout the interval [−B, 0], i.e. ∀t ∈ [−B, 0],

s0B(t) = s0.

Agents read past states. For example, in the execution π of the multi-agent system presented

in Figure 4.7, agent A1 at time t chooses a time t2 for agent A2 and a time t3 for agent A3,

with t2, t3 ∈ [t − B, t]. Given this sequence of times, agent A1 executes an action on the state

(π(t)(1), π(t2)(2), π(t3)(3)), where π(t)(1) is the state of agent A1 at time t, π(t2)(2) is the state of

agent A2 at time t2 and π(t3)(3) is the state of agent A3 at time t3.

In general, given a state sB ∈ SB, and given a N -tuple of times t ∈ [−B, 0]N , we call the tuple

(s1B(t(1)), . . . , sNB(t(N))) an asynchronous view of sB. In an asynchronous view, the i-th value of

the tuple is the state of agent i in sB at time t(i). Intuitively, this view is a tuple where the state of

each agent can either be its current state or some state in the past. In an asynchronous view, the

times in t are independent from each other. If t = (t̂, t̂, . . . , t̂) for all i, then the asynchronous view

corresponds to the state of the system at time t̂. An asynchronous view of sB is a valid state of S.

This is because, by construction, S is defined as the cartesian product of the states of the agents of

the system. Given a state s ∈ S and a state sB ∈ SB, we introduce the asynchronous view relation

H ⊆ S × SB as follows:

(s, sB) ∈ H ≡
(
∃t ∈ [−B, 0]N : ∀i ≤ N : siB(t(i)) = s(i)

)
We denote (s, sB) ∈ H as H(s, sB). These two states are in the asynchronous view relation if state s

is an asynchronous view of state sB. Given this relation, we define the set of all asynchronous view

of sB ∈ SB. We denote this set by H(sB). Formally, this set is

H(sB) = {s ∈ S |H(s, sB)}

The notion of asynchronous view is used for defining the behaviour of the actions of AB. The set

of actions of AB is constructed from the set of actions of A. For each action ai ∈ Ai, we construct

action aiB ∈ AB. Given a state sB, the execution of action aiB consists of the execution of action

ai on an asynchronous view of sB. The specific asynchronous view s of sB is nondeterministically

chosen by aiB. The only constraint on s is that the state of agent i in s is equal to the current state

of i in s̄, i.e. s(i) = siB(0). In the shared-state model with sliding window, the automaton is non-

67

τT+

execution of A
2

time

state

execution of A
1

execution of A
3

0

−B −B 0

TT−B T+tT+t−B

0

Figure 4.8: Pictorial representation of two non-overlapping windows defined on the execution in Fig-
ure 4.6. The time interval of the first window is [T − B, T], while the time interval of the second
window is [T − B + t, T + t] with t > B. These two time intervals do not overlap. The quantity τ
denotes the time duration of the action executed by agent A2 at time T . The shaded areas represent
the two time intervals, i.e. the two windows.

deterministic, because given a state sB and an action aiB, the execution of the action does not have

a unique behaviour. It depends on the asynchronous view chosen by the action. The duration of aiB

is equal to τs,ai, which denotes the duration of ai when executed from state s; and the behaviour of

agent i is given by fs,ai. Given sB, aiB and the asynchronous view s, the transition function TB at

time t, for all t ∈ [0, τs,ai], is defined as follows. As represented in Figure 4.8, if t > B, the window of

size B ending at time t and the window of size B ending at time 0 do not overlap. In this case, the

state TB(sB, aB)(t) corresponds to the sequence of states of T (s, ai) from time t− B to t. If t ≤ B,

the window at time t and the window ending at time 0 overlap. As represented in Figure 4.9, in

this case the portion of the state TB(sB, aB)(t) from time −B to −t is given by the portion of state

sB from time −B + t to 0; the portion of the state TB(sB, aB)(t) from time −t to 0 is given by the

portion of state T (s, ai) from time 0 to time t.

The definition of shared-state automaton with sliding window follows.

Definition 30. Given an shared-state automaton with time action A = (S, S0, A,E, T), and given

a non-negative real constant B, we define the shared-state automaton with sliding window AB =

(SB, S0B, AB, EB, TB) with:

• SB = [−B, 0]→ S,

• S0B = { s0B ∈ SB | ∃s0 ∈ S0,∀t ∈ [−B, 0] : s0B(t) = s0 }

• ∀ai ∈ Ai we construct action aiB ∈ AB,

68

execution of A
3

execution of A
2

execution of A
1

time

state

τT+0 T

−B 0

T+t

0
−B

T−B T+t−B

Figure 4.9: Pictorial representation of two overlapping windows defined on the execution in Fig-
ure 4.6. The time interval of the first window is [T − B, T], while the time interval of the second
window is [T − B + t, T + t] with t < B. These two time intervals overlap. The quantity τ denotes
the time duration of the action executed by agent A1 at time T . The shaded area represents the
two overlapping time intervals.

• ∀sB ∈ SB, ∀aiB ∈ AB,

EB(sB, aiB) = (∀s ∈ H(sB) : E(s, ai))

• ∀sB ∈ SB, ∀aiB ∈ AB, agent i chooses a state s ∈ S, with H(s, sB) and s(i) = siB(0)

∀t ∈ [0, τs,ai], t ≤ B

(TB(sB, aB)(t))[−B,−t] = (sB[t− B, 0])−t

(TB(sB, aB)(t))[−t, 0] = (T (s, ai)[0, t])−t

∀t ∈ [0, τs,ai], t > B

(TB(sB, aB)(t))[−B, 0] = (T (s, ai)[t− B, t])−t

We notice that if B = 0, then the system reduces to a shared-state system.

We next discuss equilibrium states of the shared-state automaton with sliding window. Given an

equilibrium state ŝ ∈ S, the state ŝB ∈ SB consisting of the repetition of ŝ, i.e. ŝB(t) = ŝ, ∀t ∈ [−B, 0]

is an equilibrium state of SB. This follows by construction of the state space and action set. In

general, an equilibrium state of AB requires that all its asynchronous views are equilibrium states

of A.

69

4.2.2 Line-Up with Sliding Window

For example, consider the Line-Up multi-agent system presented in Section 2.2.4. We next present

the generalization of this automaton.

In the Line-Up automaton with sliding window, SB maps the interval [−B, 0] to RN+1; this is

because, by construction, S = RN+1. The initial set of states S0B consists of the state s0B, defined

as ∀t ∈ [−B, 0], s0B(t) = s0. For each action a = âvgl,i,r ∈ A, we construct an action âvgl,i,rB .

By construction, this action is always enabled. When executed in state sB, agent i chooses an

asynchronous view s of sB with s(i) = siB(0) and executes action âvgl,i,r in state s. The time

duration of aB is τs,âvgl,i,r . For all t ∈ [0, τs,âvgl,i,r], if t > B, then the state of TB(sB, aB) at time t is

given by T (s, âvgl,i,r) restricted to the interval [t−B, t]. Instead, if t ≤ B, we have that TB(sB, aB)(t)

restricted to the interval [−B,−t] is equal to sB restricted to the interval [−B + t, 0]; TB(sB, aB)(t)

restricted to the interval (−t, 0] is equal to T (s, âvgl,i,r) restricted to the interval (0, t]

The automaton modeling the Line-Up multi-agent system with dynamics and sliding window

follows:

• SB = [−B, 0]→ RN+1

• S0B = {s0B}, with ∀t ∈ [−B, 0] : s0B(t) = s0,

• AB = {AiB}i∈{0,...,N} with AiB = {âvgl,i,rB}l<i<r,

• EB : SB ×AB → true

• TB : SB ×AB → SB, defined as ∀aB = âvgl,i,rB ∈ AB, ∀sB ∈ SB, agent i chooses a state s ∈ S,

with H(s, sB) and s(i) = siB(0)

∀t ∈ [0, τs,âvgl,i,r], t ≤ B

(TB(sB, aB)(t))[−B,−t] = (sB[t− B, 0])−t

(TB(sB, aB)(t))[−t, 0] = (T (s, âvgl,i,r)[0, t])
−t

∀t ∈ [0, τs,ai], t > B

(TB(sB, aB)(t))[−B, 0] = (T (s, âvgl,i,r)[t− B, t])−t

4.2.3 Line-Up with Explicit Arbitrary Dynamics and Sliding Window

In this Section, we generalize the automaton for the Line-Up multi-agent system presented in Sec-

tion 4.1.2. In the automaton presented in Section 4.1.2 agents have arbitrary dynamics. When the

system executes action avgl,i,r, agent i computes its new destination state using Equation 2.1 and

evolves its current state towards its destination state.

70

In the Line-Up automaton with explicit arbitrary dynamics and sliding window, SB maps the

interval [−B, 0] to the pair (RN+1,RN+1). For each action a = avgl,i,r ∈ A, we construct an action

avgl,i,rB . By construction, this action is always enabled. When executed in state sB, agent i chooses

an asynchronous view s of sB with s(i) = siB(0) and executes action avgl,i,r in state s.

The automaton modeling the Line-Up multi-agent system with explicit arbitrary dynamics and

sliding window follows:

Definition 31. The automaton AB = (SB, S0B, AB, EB, TB) modeling the Line-Up MAS with ex-

plicit arbitrary dynamics and sliding window has:

• SB = [−B, 0]→ (RN+1,RN+1)

• S0B = {s0B}, with ∀t ∈ [−B, 0] : s0B(t) = s0,

• AB = {avgl,i,r}l<i<r,

• EB : SB ×AB → true

• TB : SB × AB → SB, defined as ∀aB = avgl,i,r ∈ AB, ∀sB ∈ SB, agent i chooses a state s ∈ S,

with H(s, sB) and s(i) = siB(0)

∀t ∈ [0, τs,avgl,i,r], t ≤ B

(TB(sB, aB)(t))[−B,−t] = (sB[t− B, 0])−t

(TB(sB, aB)(t))[−t, 0] = (T (s, avgl,i,r)[0, t])
−t

∀t ∈ [0, τs,ai], t > B

(TB(sB, aB)(t))[−B, 0] = (T (s, avgl,i,r)[t− B, t])−t

4.2.4 Lyapunov Function and Level Sets

In this Section, we present a feasible Lyapunov function for AB and discuss the structure of its level

sets. This Lyapunov function is derived from a Lyapunov function defined on the automaton A.

Given a Lyapunov function V : S → P on A, we next construct a Lyapunov function VB : SB → P

on AB using the notion of asynchronous view.

The evaluation of VB at state sB ∈ SB is the maximum of the evaluations of V at the asynchronous

views of sB. Formally,

Definition 32. Given a Lyapunov function V : S → P for A, the Lyapunov function VB : SB → P

for AB is as follows, ∀sB ∈ SB,

VB(sB) = max
s∈H(sB)

V (s)

71

Functions VB and V have the same range P.

We next discuss the structure of the level sets of VB. We next show that the level sets of VB can

be rewritten in terms of the level sets of V . We denote by LkB the k-level set of VB, and by Lk the

k-th level set of V . We have that LkB can be expressed as

LkB = {sB ∈ SB | ∀s ∈ H(sB) : Lk(s)}

i.e. sB ∈ LkB if all its asynchronous views are in Lk. This holds because:

LkB = {sB ∈ SB | VB(sB) ≤ k}

= {sB ∈ SB | ∀s ∈ H(sB) : V (s) ≤ k}

= {sB ∈ SB | ∀s ∈ H(sB) : Lk(s)}

where the first inequality follows by construction; the second inequality follows by definition of VB

and the last inequality follows by definition of Lk. Furthermore, if Pk denotes the predicate defining

Lk, we have that

LkB = {sB ∈ SB | ∀s ∈ H(sB) : Pk(s)}

i.e. sB ∈ LkB if Pk holds in all asynchronous views of sB. This holds because:

LkB = {sB ∈ SB | ∀s ∈ H(sB) : Lk(s)}

= {sB ∈ SB | ∀s ∈ H(sB) : Pk(s)}

We denote by PkB the predicate corresponding to the k-th level set of VB. This predicate is defined

as ∀s ∈ SB
PkB(sB) ≡ (∀s ∈ H(sB) : Pk(s))

We next discuss some properties of the family of level sets of VB. We prove that is the family of

level sets Lkk∈P is in conjunctive form, then family of level sets of VB is in conjunctive form as well.

The Lemma follows:

Lemma 12. If {Lk}k∈P is in conjunctive form then {LkB}k∈P is in conjunctive form.

Proof. Consider an arbitrary k ∈ P. By construction,

LkB = {sB ∈ SB | ∀s ∈ H(sB) : Pk(s)}

72

where Pk is the predicate of Lk. By assumption, Pk is in conjunctive form, i.e. ∀s ∈ S,

Pk(s) ≡

 ∧
i∈{1,...,N}

P(k,i)(s(i))


Hence, LkB can be rewritten as

LkB =

sB ∈ SB | ∧
i∈{1,...,N}

P(k,i)B(siB)

 (4.1)

where P(k,i)B is defined as

P(k,i)B(siB) ≡
(
∀t ∈ [−B, 0] : P(k,i)(siB(t))

)
The predicate P(k,i)B depends only on the state of the i-th agent. Hence, LkB is in conjunctive form.

Equation 4.1 holds, since,

LkB =

sB ∈ SB |
∀s ∈ H(sB) :

∧
i∈{1,...,N}

(P(k,i)(s(i)))

 
=

sB ∈ SB | ∧
i∈{1,...,N}

(∀t ∈ [−B, 0] : Pk,i(siB(t)))


=

sB ∈ SB | ∧
i∈{1,...,N}

P(k,i)B(siB)


where the first inequality follows by construction; the second inequality follows by definition of the

set of asynchronous views and the third inequality follows by definition of P(k,i)B.

4.2.5 Stability

In this Section, we present a stability result for shared-state automata with sliding window. The

stability property of an equilibrium state of AB is derived from the stability of the corresponding

equilibrium state in A. Specifically, given an equilibrium state ŝ ∈ S and a Lyapunov function V

for A, we derive conditions on the structure of V that ensure that VB is a certificate of the stability

of ŝB ∈ SB. These conditions require the level sets of V to be in conjunctive form. The main result

follows.

Theorem 13. If

G1. V satisfies Assumptions B1-3 of Theorem 8,

G2. family {Lk}k∈P of V is in conjunctive form

73

then ŝB is a stable equilibrium state of AB.

Proof. Our goal is to show that VB satisfies Assumptions B1-3 of Theorem 8. By construction and

assumptions on V , B1-2 hold. We next prove that Assumption B3 holds, i.e. the family of level sets

of VB is stable.

We denote the family of level set of VB by {LkB}k∈P. Using Assumption G2 and Lemma 6, the

family {LkB}k∈P is stable if and only if ∀sB ∈ SB,∀aiB ∈ AB, with EB(sB, aiB), ∀s ∈ H(sB), with

s(i) = siB(0)

∀t ∈ [0, τs,ai] : VB(TB(sB, aiB)(t)) ≤ VB(sB)

We next show that this condition holds.

Consider an arbitrary state sB ∈ SB, an arbitrary action aiB ∈ AB, with EB(sB, aiB), and an

arbitrary asynchronous view s, with s(i) = siB(0). Denote by s′B(t) the state TB(sB, aiB)(t) for

all t ∈ [0, τs,ai]. Our goal is to show that s′B(t) ∈ LkB, where k = VB(sB). This implies that

VB(s′B(t)) ≤ VB(sB)

Using Lemma 12, since {Lk}k∈P is in conjunctive form, we have that LkB is in conjunctive form

and has the following structure

LkB =

s̄ ∈ SB | ∧
j∈{1,...,N}

P(k,j)B(s̄iB)


with

P(k,j)B(s̄iB) ≡
(
∀t ∈ [−B, 0] : P(k,j)(s̄iB(t))

)
where P(k,j) is the j-th predicate in Pk. Hence,

s′B ∈ LkB ⇔
(
∀j ∈ {1, . . . , N} : P(k,j)B(sj

′
B)
)

By construction, predicate P(k,j)B depends only on agent j. Consider an arbitrary agent j ∈

{1, . . . , N}, with j 6= i. When action aiB is executed, no new values for agent j are added to

the system. Hence, P(k,j)B(sj
′
B) holds, since P(k,j)B(sjB) holds. Consider agent i. By construction

of VB, s ∈ Lk. By assumption, function V satisfies B3; hence, all new values of i added to the system

satisfy predicate P(k,i), i.e. P(k,i)B(si
′
B) holds.

4.2.6 Convergence

In this Section, we discuss convergence property of shared-state automata with sliding window.

Similarly to the previous subsection, we derive convergence of the equilibrium state ŝB ∈ SB from

the convergence property of the equilibrium state s ∈ S. In this case, we require the level sets of V

74

to be in conjunctive form as well.

Theorem 14. If

H1. V satisfies Assumptions C1-5 of Theorem 9,

H2. family {Lk}k∈P of V is in conjunctive form

then AB converges to ŝB.

Proof. Our goal is to show that VB satisfies the assumptions of Theorem 9. Assumptions C1-2

and C5 hold, by hypothesis and by construction of VB. Proof of C3 is similar to the proof of B3

in Theorem 13 and, therefore, is not reported. We next prove Condition C4.

Fix an arbitrary k ∈ P. We denote by Lk the k-th level set of V and by LkB the k-th level set

of VB.

Using Assumption H2 and Lemma 12, we have that LkB is in conjunctive form.

Using Assumptions H2 and C4, we have that if A starts in Lk, then it eventually enters and

remains in Lq ⊂ Lp. We denote by ai the action executed when the system enters Lq, and i denotes

the agent executing the action. By Assumption H2, P(q,i) ⇒ P(k,i) and P(q,j) = P(k,j) for all j 6= i.

Using Assumption C4 on V , we have that if AB starts in LkB, then eventually enters in sB ∈

LkB where it executes ai on an asynchronous view s ∈ H(sB) with s(i) = siB(0). Denote by

s̄B the state s̄B = TB(sB, aB)(τs,ai). Predicate P(q,j)(s̄jB(t)) holds ∀j 6= i,∀t ∈ [−B, 0]; this is

because P (k, j)(s̄jB(t)) holds. Furthermore, in any state of any execution fragment starting from

s̄B, predicate P(q,j) holds. Instead, in the case of agent i, there exists t̂ ∈ [−τs,ai , 0] such that ∀t ≥ t̂,

predicate P(q,i)(s̄iB(t)) holds. Hence, we have that predicate P(q,i) holds in any new state of any

execution fragment starting from s̄B; this is because it holds in the initial state of the execution

and it continues to hold since Pq is stable. Hence, the system eventually enters a state s′B such

that ∀t ∈ [−B, 0], P(q,i)(si
′
B(t)). This implies that predicate LqB holds eventually; this is because

predicate LqB is in conjunctive form.

4.3 Message-Passing Multi-Agent Systems

In this Section, we present message-passing multi-agent systems with bounded delay. We model

them using the automaton with sliding window model and derive conditions on the stability and

convergence properties of their equilibrium states.

4.3.1 Message-Passing Communication Model

Message-passing multi-agent systems, informally presented in Chapter 1, consist of a collection of

agents communicating by means of an unreliable communication medium. In these systems, agents

75

A
1

A
2

A
3

A
4

Communication Medium

Figure 4.10: Pictorial representation of the message-passing communication model. Circles represent
agents and links represent communication channels. Agents send messages to each other using the
communication medium.

communicate via message-passing, i.e. they exchange messages, that may be lost, delayed, duplicated

or received out-of-order.

In our formalization, agents do not interact directly with other agents; instead, as shown in Fig-

ure 4.10, agents interact through a communication medium. They send messages to the medium

and receive messages from the medium. The task of the medium is to implement the communication

protocol. The medium decides on the set of recipients of the message. For example, in the case of a

broadcast communication protocol, the medium sends the message to all agents. The medium can

delete, delay, duplicate or change the order of messages in transit. For example, it can decide to

delete a message in transit, deliver a more recent message before an older one, deliver a message

more than one time, or deliver a message to a proper subset of its recipients. However, it cannot

modify the content of the messages in transit.

This formalization is very general and can model unicast, multicast or broadcast communication

protocols. The content of the messages in transit is some function defined on the state of the agent

sending the message. In our model, each agent stores some set of variables describing its local state.

It also stores for each other agent the last received message.

We assume fairness in the transmission; we do not allow permanent partitions between commu-

nicating agents. If the communication allows agent j to receive messages from agent i, it is not

possible that all messages sent by i are deleted. Fairness ensures that j will receives infinitely many

messages sent from i. We also assume that each agent sends infinitely many messages; however, the

number of messages sent within a finite time interval is finite.

In our model, we assume a communication medium with bounded, but unknown, transmitting

delay. This unknown constant is denoted by b. This class of message-passing systems is called

message-passing systems with bounded delay. A message received by the medium at time t is either

sends to its recipients by time t+ b or deleted.

76

4.3.2 Message-Passing Automaton

In this Section, we model a message-passing system using the shared-state automaton with sliding

window. Throughout this Section, we denote by Amp the automaton of the message-passing system.

In the message-passing system model, the action set of an agent consists of the send, receive

actions and of a set of internal actions. When an agent executes a send action, it broadcasts some

value, that can be its current state or can be some function of its current value. In the case of a send

action, the agent does not need to access the state of the other agents. When an agent executes a

receive action, it receives a message and executes an action based on its current state and the last

received messages from its neighbors. We assume that each agent stores in its local state a vector

of length N , where entry j contains the last message received from agent j. As explained later,

the message-passing communication mechanism is modeled using the notion of asynchronous view.

Intuitively, the local vector storing the last received messages corresponds to the agent accessing the

state of the other agents at some time in the past.

Automaton Amp is defined as the shared-state automaton with sliding window AB having B

equals to the transmitting delay b. In this automaton, a state of Amp describes an execution

fragment of the message-passing system, where the agents execute send, receive or internal actions.

The set of initial states of Amp models a system where all communication channels are initially

empty. When executing a send action in state smp, the system does not change. When executing

a receive action in state smp, agent i constructs the vector of the last received messages using the

notion of asynchronous view. Differently from the general model where the asynchronous view is

chosen nondeterministically, in the message-passing model, the N -tuple of times t ∈ [−B, 0]N , is

such that for all j 6= i, sjB(t(j)) is the state of agent j when executing action send. The nonnegative

value −t(j) represents the delay of the message sent by j and received by i.

In this model, agents do not physically send or receive messages. When an agent executes a

receive action, it constructs the vector of the last received messages using the notion of asynchronous

view. For example, consider the execution in Figure 4.11. Agent A1 executes a receive action and

consider as the last received message the state of agent A2 at time t2 and the state of agent A3 at

time t3. This model is very general and allows modeling delayed, lost, duplicated or received out-of-

order messages. Given an execution fragment, a message sent at time t from agent i is duplicated if

some agent j, with j 6= i, executes two receive actions using as last received message from i the state

of agent i at time t. The message sent at time t is lost if no agent in the interval [t, t+ B] accesses

the state of agent i at time t. Two messages sent by i at time t1 and t2 are received out-of-order

if some agent j, with j 6= i executes two receive actions: the first one with the state at time t2 of

agent i and the second one with the state at time t1 of agent i.

77

t
2

t
3

time

state

execution π
3

of A
3

execution π
2

of A
2

execution π
1

of A
1

m
2

m
3

0 tt−B

Figure 4.11: An execution of a multi-agent system consisting of three agents where at time t, agent
A1 receives the two messages m2 and m3. Message m2 has been sent by agent A2 at time t2 and
message m3 by agent A3 at time t3. Message m2 stores π2(t2) and message m3 stores π3(t3). Agent
A1 executes an action at time t on the state (π1(t),m2,m3). The communication delay is bounded
by B. Agent A1 at time t can receive any message sent in the time interval [t−B, t]. In this Figure,
this interval is represented by the shaded area.

4.3.3 Stability and Convergence

In this Section, we discuss stability and convergence properties of message-passing multi-agent sys-

tems. We show that stability and convergence of a message-passing system can be derived from

the stability and convergence of the corresponding shared-state multi-agent system. This is because

we have shown that a message-passing system with bounded delay is a special case of shared-state

system with sliding window.

We denote by A a shared-state automaton, by ŝ an equilibrium state of A and V a Lyapunov

function on A. We denote by ŝmp the state in Amp corresponding to ŝ. We have that the following

two Theorems hold:

Theorem 15. If G1-2 hold, then ŝmp is a stable equilibrium state of Amp.

Proof. It follows directly from Theorem 13.

Theorem 16. If H1-2 hold, then Amp converges to ŝmp.

Proof. It follows directly from Theorem 14.

4.4 Multi-Agent Systems with Concurrent Actions

In this Section, we model multi-agent systems where agents can execute actions concurrently. We use

the automaton with timed action model to model both shared-state and message-passing systems.

78

π
1

A
1

execution of

π
3

A
3

execution of

1
S

2
S

3
S

time

state

t
1

t
2

t
3

t
8

t
4

t
5

t
6

t
7

π
2

A
2

execution of

0

Figure 4.12: An execution of a multi-agent system consisting of three agents where agents execute
discrete actions concurrently. The three shaded areas represent the state spaces of the three agents
denoted by S1, S2 and S3.

4.4.1 Shared-State Multi-Agent Systems with Concurrent Actions

We model shared-state multi-agent systems where actions of an agent can read the state of all agents

in the system, but only modify its own state.

Before proceeding with the definitions, we denote by Si the state of agent i in the multi-agent

system, and by S the cartesian product of the states of the agents, i.e. S = S1 × . . . × SN . We

denote by S0i the set of initial states of agent i. We assume that associated with each agent there

is a set of actions Ai. For each action ai ∈ Ai, action ai is enabled in state s ∈ S if Ei(s, ai) holds;

when executed, it has time duration τs,ai and it evolves the state of agent i according to the function

fs,ai : [0, τs,ai]→ Si.

We next discuss two shared-state models: a shared-state automaton with discrete concurrent

actions, and a shared-state automaton with time-varying concurrent actions.

4.4.1.1 Shared-State Multi-Agent Systems with Discrete Actions

In this Section, we discuss shared-states multi-agent systems with concurrent discrete actions. At

each point of the execution, all agents pick an action and execute it. For example, in Figure 4.12,

we present an execution of a multi-agent system consisting of three agents.

The automaton ADC = (SDC , S0DC , ADC , EDC , TDC) modeling a shared-state multi-agent system

with concurrent discrete actions is defined as follows. Its state space, set of initial states and set of

action are defined as cartesian products. Specifically, its state space SDC is the cartesian product of

the state spaces of the agents, i.e. SDC = S1 × . . . × SN , with Si being the state space of agent i.

Similarly, its set of initial states S0DC is the cartesian product of the initial sets of states of its agents,

79

i.e. S0DC = S01× . . .×S0N , with S0i being the set of initial states of agent i. Its set of actions ADC

is the cartesian product of the sets of actions of the agents, i.e. ADC = A1× . . .×AN , with Ai being

the set of actions of agent i. An action a ∈ ADC is of the form a = (a1, . . . , aN), where a(i) is the

action executed by agent i. An action a ∈ ADC is enabled in state s ∈ SDC if for each agent i action

a(i) is enabled in state s. When executing action a in state s, the i-th component of the post-state is

given by the execution of a(i) in state s i.e. TDC(s, a) = (T1(s, a(1)), . . . , Ti(s, a(i)), . . . , TN (s, a(N)))

with Ti being the transition function of agent i.

We next formally present the automaton.

Definition 33. The automaton ADC = (SDC , S0DC , ADC , EDC , TDC) modeling a shared-state multi-

agent system with N agents and concurrent discrete actions has:

• SDC = S1 × . . .× SN ,

• S0DC = S01 × . . .× S0N ,

• ADC = A1 × . . .×AN ,

• ∀s ∈ SDC, ∀a ∈ ADC,

EDC(s, a) =
∧

i∈{1,...,N}

Ei(s, a(i))

• ∀s ∈ SDC, ∀a ∈ ADC,

TDC(s, a) = (T1(s, a(1)), . . . , Ti(s, a(i)), . . . , TN (s, a(N)))

As an example, we consider a generalization of the Line-Up multi-agent system presented in Sec-

tion 2.1.2. In this generalization, we allow agents to execute actions concurrently. This generalization

defines a nondeterministic system where at each time of the execution, all agents choose an action.

Agents i, with 0 < i < N , chooses an action in Ai, with Ai = {avgl,i,r}l<i<r where avgl,i,r imple-

ments the updating rule in Equation 2.1. Agent 0 and N are stationary. The automaton follows.

Definition 34. The automaton modeling the Line-Up multi-agent discrete system with concurrent

actions has the following structure:

• SDC = RN+1, since the state space of each agent is R.

• S0DC = {s0}, with s0 being the initial configuration

• ADC = A1 × . . .×AN−1 where Ai = {avgl,i,r}l<i<r

• EDC : SDC ×ADC → true

80

3
execution π

3
of A

S
3

S
2

2
execution π

2
of A

1
execution π

1
of A

S
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
1

1
A

1
A

1
A

1
A

1
A

2
A

2
A

2
A

2
A

2
A

3
A

3
A

3
A

3
A

0 time

state

Figure 4.13: An execution of a multi-agent system consisting of three agents where agents execute
actions concurrently. At time 0, all three agents execute an action. The time duration of the action
executed by agent A1 is t1; the time duration of the action executed by agent A2 is t2 and the time
duration of the action executed by agent A3 is t4. At time t1 agent A1 executes an action for t3− t1
time units; at time t3, it executes an action for t4 − t3 time units; at time t4, it executes an action
for t6− t4 time units. Similarly, at time t2 agent A2 executes an action for t3− t2 time units; at time
t3, it executes an action for t5− t3 time units; at time t5, it executes an action for t6− t5 time units;
at time t6, it executes an action for t8 − t6 time units. At time t4 agent A3 executes an action for
t6 − t4 time units; at time t6, it executes an action for t7 − t6 time units; at time t7, it executes an
action for t8 − t7 time units. The three shaded areas represent the state spaces of the three agents
denoted by S1, S2 and S3. Dark filled circles represent end-states of executions of actions.

• TDC : SDC ×ADC → SDC, defined as ∀a = (a1, . . . , ai = avgl,i,r, . . . , aN−1) ∈ ADC, ∀s ∈ SDC,

TDC(s, a)(i) =

 s(i) i ∈ {0, N}(
r−i
r−ls(l) + i−l

r−ls(r)
)

0 < i < N

4.4.1.2 Shared-State Multi-Agent Systems with Timed Actions

In this Section, we discuss a more general automaton model where actions are executed concurrently

and can have different time durations. We denote by AC = (SC , S0C , AC , EC , TC) the automaton with

timed actions modeling a shared-state system with concurrent timed actions. When concurrent timed

actions are executed, at each time of the execution an agent can either pick an action and execute

it or it can been executing an action started at some time in the past. For example, in Figure 4.13,

we present the execution of a multi-agent system consisting of three agents. In this execution, agent

A1 and agent A2 at time t3 pick an action and execute it; instead, agent A3 at time t3 is executing

an action started at time 0.

This is more general than the model with concurrent discrete actions where at each time of the

81

execution all agents pick an action. For this reason, differently from the automaton with discrete

concurrent actions, a state in AC requires to store the state of each agent and, in case the agent

is executing an action, the function describing the behaviour of the action for the remaining time

interval. This is equivalent to store for each agent a function from a finite closed time interval to Si

with Si being the state space of agent i. The length of the time interval is equal to the remaining

duration of the action, and the function describes the behaviour of the action in this interval. We

assume that the finite time interval has left extreme equals to 0. If the agent is not currently

executing an action, the function maps the interval [0, 0] to its current state. We denote by I the

set of finite closed intervals with left extreme 0, i.e.

I = {[0, t] | t ≥ 0}

A state sC in SC is a tuple of length N , where the i-th entry is a function from I to Si, i.e. sC is

of the form (g1, g2, . . . , gN) where gi is a function with domain [0, ti] and defined as gi : [0, ti]→ Si,

for all i ∈ {1, 2, . . . , N}. Given sC ∈ SC , we denote by sC .gi the i-th entry of sC and by sC .ti

the right extreme of the domain of function sC .gi. Given a state sC , we denote by s(0) the tuple

(s1, . . . , sN) where si = sC .gi(0) for all i ∈ {1, . . . N}; s(0) is the tuple where each entry stores the

evaluation of function sC .gi at time 0. This tuple represents the current state of the multi-agent

system. By construction, this tuple is well-defined. A state sC ∈ SC is an initial state of AC if for all

i ∈ {1, . . . , N} the state of agent i at time 0 is an initial state of agent i and if sC .ti > 0, there exists

an action ai ∈ Ai and time t′ ∈ [0, τs(0),ai] such that function sC .gi corresponds to the behaviour of

action ai in state s(0) in the interval [t′, τs(0),ai]. The set of actions AC is the cartesian product of

the set of actions of the agents, i.e. AC = A1× . . .×AN . By construction, the set of agents that can

execute an action in state sC are the agents with sC .ti = 0; this is because they are the only agents

not executing actions at the current time. Given sC , we define this set of agents as follows:

agents(sC) = {i ∈ {1, . . . , N} | sC .ti = 0}

An action aC ∈ AC is enabled in the state sC ∈ SC if for all agents not already executing an action,

the corresponding action in aC is enabled in s(0). Associated with each agent i, there is a time t̂i.

This time is the time duration of action a(i) in state s(0) if the agent is not currently executing an

action (i.e. i ∈ agents(sC)), and it is the remaining time duration sC .ti otherwise (i 6∈ agents(sC)).

The time duration of aC , denoted by τm, is the minimum of the {t̂i}i∈{1,...,N}. This time defines the

next time instant when there are agents that have completed the execution of some action and are

ready to execute a new one. The behavior of aC depends on the specific agent. If agent i is already

executing an action, i.e i 6∈ agents(sC), then for all t ∈ [0, τs(0),aC(i)], the state of the agent i at time

t is the restriction of function sC .gi in the interval [t, sC .ti]. If agent i is not already executing an

82

action, i.e i ∈ agents(sC), then for all t ∈ (0, τs(0),aC(i)], agent i executes action aC(i) in state s(0) and

the state of the agent i at time t is the restriction of function fs(0),aC(i) in the interval [t, τs(0),aC(i)].

The definition of the automaton follows.

Definition 35. A shared-state MAS with N agents and concurrent actions can be modeled as an

automaton with timed action AC = (SC , S0C , AC , EC , TC) where

• SC = ((I → S1), . . . , (I → SN)), where Si the state of agent i,

• sC ∈ S0C if

∀i ∈ {1, . . . , N} : sC .gi(0) ∈ S0i

∀sC .ti > 0 : ∃ai ∈ Ai, ∃t ∈ [0, τs(0),ai] : sC .gi = (fs(0),ai [t, τs(0),ai])
−t

• AC = (A1 ×A2 × . . .×AN), where Ai is the set of actions of agent i;

• ∀sC ∈ SC, ∀aC ∈ AC,

EC(sC , aC) =
(
∀i ∈ agents(sC) : Ei(s

(0), aC(i))
)

• ∀sC ∈ SC, ∀aC ∈ AC,

let

τm = min
(
{τi | τi = τs(0),aC(i) ∧ i ∈ agents(sC)} ∪ {τi | τi = sC .ti ∧ i 6∈ agents(sC)}

)
then

∀i 6∈ agents(sC), ∀t ∈ [0, τm]

((TC(sC , aC))(t)).gi = (sC .gi[t, τi])
−t

∀i ∈ agents(sC), ∀t ∈ (0, τm]

((TC(sC , aC))(t)).gi = (fs(0),aC(i)[t, τi])
−t

We next present an example of automaton with concurrent timed actions. We consider the

generalization of the Line-Up multi-agent system presented in Section 2.2.4, where we model the

evolution of the state of the agents from their current state to their newly computed one. In this

system, we have that the evolution of action a in state s is defined by the function fs,a with time

duration τs,a. The automaton when we allow for concurrent actions is defined as follows.

83

Definition 36. A shared-state MAS with N agents and concurrent actions for the Line-Up multi-

agent system can be modeled as an automaton with timed action AC = (SC , S0C , AC , EC , TC) where

• SC = ((I → R), . . . , (I → R)),

• sC ∈ S0C if s(0) = s0 and

∀sC .ti > 0 : ∃âvgl,i,r ∈ Ai, ∃t ∈ [0, τs(0),âvgl,i,r] : sC .gi = (fs(0),âvgl,i,r [t, t+ sC .ti])
−t

• AC = A1 ×A2 × . . .×AN ,

• EC = SC ×AC → true,

• ∀sC ∈ SC, ∀aC ∈ AC,

let

τm = min
(
{τi | τi = τs(0),aC(i) ∧ i ∈ agents(sC)} ∪ {τi | τi = sC .ti ∧ i 6∈ agents(sC)}

)
then

∀i 6∈ agents(sC), ∀t ∈ [0, τm]

((TC(sC , aC))(t)).gi = (sC .gi[t, τi])
−t

∀i ∈ agents(sC), ∀t ∈ (0, τm]

((TC(sC , aC))(t)).gi = (fs(0),aC(i)[t, τi])
−t

4.4.2 Shared-State Multi-Agent Systems with Sliding Window and Con-

current Actions

In this Section, we extend shared-state multi-agent systems with concurrent actions. We allow agents

to update their state using the state of other agents computed at some times in the past. Given

the shared-state automaton with concurrent actions, we construct a shared-state automaton with

sliding window and concurrent actions using a procedure similar to the one presented in Section 4.2.

In Section 4.2, we have constructed a sliding window automaton for a shared-state automaton where

concurrent actions are not allowed.

We assume that agents cannot read arbitrary old values. If t is the current time of the execution,

every agent can read the state of other agents in the interval [t − B, t], with B ≥ 0. For example,

in Figure 4.14, agents A1 at time t can read the state of agents A1, A2 and A3 in the interval [t−B, t].

84

3
execution π

3
of A

2
execution π

2
of A

1
execution π

1
of A

0 time

state

tt−B

Figure 4.14: An execution of a multi-agent system consisting of three agents where agents execute
actions concurrently and agent can read past states. For example, at time t, agent A1 can read the
state of agent A2 and A3 in the time interval [t − B, t]. Similarly, agent A2 can read the state of
agent A1 and A3 in the time interval [t−B, t]. At time t agent A3 is executing an action started at
time 0. The shaded area represents the time interval [t−B, t]. Dark filled circles represent end-states
of executions of actions.

GivenAC = (SC , S0C , AC , EC , TC), we next construct the automatonABC = (SBC , S0BC , ABC , EBC , TBC).

This automaton generalizes AC ; in particular, when B = 0, then the two automata ABC and AC
are equal. For each agent i, a state of ABC requires to store: its current state, its past states (for

a bounded time interval of length B), and, in case the agent is executing an action, the function

describing its behaviour. This state structure generalizes the state structure of agent AC , where the

agent state is not required to store past states. We model the state of an agent as a function from a

finite closed time interval to Si. This interval is of the form [−B, t]. The function evaluated at time

0 corresponds to the current state of the agent, the function evaluated in the interval [−B, 0) to the

past states and the function evaluated in the interval (0, ti] to the behavior of the agent when it

executes an action at time 0. We denote by IB the family of finite closed intervals with left extreme

−B, i.e.

IB = {[−B, t] | t ≥ 0}

Hence, a state sBC in SBC is the N -tuple sBC = (g1, . . . , gN) where gi : [−B, ti] → Si, for all

i ∈ {1, 2, . . . , N}. Given sBC ∈ SBC , we denote by sBC .gi the i-th component of sBC and by sBC .ti

the right extreme of the domain of sBC .gi. Given a state sBC ∈ SBC and a state sC ∈ SC , we next

introduce the asynchronous view relation for automata with concurrent actions HC ⊆ SC × SBC as

follows:

(sC , sBC) ∈ HC ≡
(
∃t ∈ [−B, 0]N : ∀i ∈ {1, . . . , N} : sC .gi = (sBC .gi[t(i), sBC .ti])

−t(i)
)

85

This notion of asynchronous generalizes the notion of asynchronous view defined in Section 4.2. In

this more general notion, the asynchronous view describes the state of the system for a time interval.

Given this relation, we define the set of all asynchronous view of sBC ∈ SBC . This set denoted as

HC(sBC) is defined as follows:

HC(sBC) = {sC ∈ SC | HC(sC , sBC)}

The set of actions ABC is constructed using the set AC . For each action aC ∈ AC , we construct an

action aBC . Given a state sBC ∈ SBC , the execution of action aBC consists of the execution of action

aBC(i) on an asynchronous view of sBC . By construction, aBC(i) and aBC(j) can be executed on

different asynchronous views. Action aBC ∈ ABC is enabled in state sBC ∈ SBC , if the corresponding

action aC is enabled in all asynchronous view of sBC . The definition of the automaton with sliding

window follows.

Definition 37. Given AC = (SC , S0C , AC , EC , TC), a shared-state MAS with N agents, concurrent

actions and sliding window of size B can be modeled as an automaton with timed action ABC =

(SBC , S0BC , ABC , EBC , TBC) having

• SBC = ((IB → S1), . . . , (I → SN)),

• sBC ∈ S0BC if

∃sC ∈ S0C : ∀i ∈ {1, . . . , N} : sBC .gi[0, sBC .ti] = sC .gi

∀t ∈ [−B, 0) : sBC .gi(t) = sBC .gi(0)

• ABC = AC,

• ∀sBC ∈ SBC, ∀aBC ∈ ABC,

EBC(sBC , aBC) = (∀sC ∈ HC(sBC) : E(sC , aBC))

• ∀sBC ∈ SBC, ∀aBC ∈ ABC, for all i ∈ {1, . . . , N}, agent i chooses a state sCi ∈ SC with

H(sCi , sBC)

Let

τm = min
(
{τi | τi = τ

s
(0)
i ,aBC(i)

∧ i ∈ agents(sBC)} ∪ {τi | τi = sBC .ti ∧ i 6∈ agents(sBC)}
)

then

86

∀i 6∈ agents(sBC), ∀t ∈ [0, τm]

(TBC(sBC , aBC)(t)).gi = (sBC .gi[t− B, τi])−t

∀i ∈ agents(sBC), ∀t ∈ (0, τm] with t ≤ B,

(TBC(sBC , aBC)(t)).gi[−B,−t) = (sBC .gi[t− B, 0))−t

(TBC(sBC , aBC)(t)).gi[−t, τi − t] = (f
s
(0)
i ,aBC(i)

[0, τi])
−t

and t > B,

(TBC(sBC , aBC)(t)).gi = (f
s
(0)
i ,aBC(i)

[t− B, τi])−t

Theorem 13 and Theorem 14 can be extended to this more general class of systems.

4.5 Discussion

In this Section, we discuss the main results of this Chapter and relate them to the literature.

In this Chapter, we have presented formal models for shared-state and message-passing systems.

We have modeled systems with sequential actions and with concurrent actions. In the case of

shared-state systems, we have restricted our attention on stared-state systems where the execution

of an action can change the state of a single agent. In the case of message-passing systems, we

have focused on systems with bounded transmitting delay where messages may be lost, delayed or

received out-of-order.

We have modeled these systems using the automaton with timed actions model. We model the

state of the multi-agent system at each point of the execution as the cartesian product of the states

of the single agents. We next motivate this specific structure for the state space. In shared-state

systems, we require that the execution of any action can change the state of only one agent. By

construction, when an action is executed, the post-state of the action is equal to the pre-state of the

action except for the agent executing the action. If we assume a cartesian product structure, we can

ensure that the post-state of the action is a valid state. In message-passing systems, we have that

the tuple consisting of the state of an agent and the last received messages is a valid state. This

constraint requires a cartesian product structure for the state space.

We first present the shared-state model with discrete actions. We then generalize this model and,

using the shared-state model with discrete actions, we construct a model for shared-state systems

with explicit arbitrary dynamics. In this model, the state of an agent consists of a pair: its current

state and the newly computed one. We present conditions on the stability and convergence of these

systems. We require a specific structure for the Lyapunov function and for the dynamics for the

87

agents. Specifically, in the case of stability, we require the level sets of the Lyapunov function to be

convex sets (see Assumption E2) and trajectories of the agents to be convex combinations from their

current state and newly computed one (see Assumption E3). This specific structure ensures that,

when executing a timed action, the trajectory of the system remains in the same level set. In the

case of convergence, we also require that an agents eventually moves towards the newly computed

states (see Assumption F4). This requirement ensures that the system eventually enters a strictly

contained level set.

We present message-passing systems as a special case of shared-state automata with sliding win-

dow. In shared-state automata with sliding window, a state describes the behavior of a shared-state

system for a time interval. When executing an action, an agent picks the states of the other agents

nondeterministically in this time interval and executes the action assuming that this asynchronous

view is the current state of the system. We derive conditions on the Lyapunov function that ensure

stability and convergence. We require the level sets of the Lyapunov function to be in conjunctive

form (see Assumptions G2 and H2). Under this assumption, a level set can be represented as a

conjunction of independent predicates, each predicate defined on the state of a single agent. This

structure of the predicate ensures that if the states of a time interval satisfy the predicate, then

any asynchronous view obtained combining these states satisfies the predicate as well. Using the

bounded delay assumption, we have that the system eventually enters in a strictly contained level

set.

We present shared-state and message-passing system with concurrent timed actions. In these

systems, at each point of the computation, an agent is either starting executing a new action or it

is executing some action started at some time in the past. We derive conditions on the Lyapunov

function that ensure stability and convergence. These assumptions are similar to the assumptions

in the case of sequential actions.

The material presented in this Chapter has been partially presented in [16]. Previous work

includes [24, 66, 8]. In [24], the authors investigate a consensus problem in a distributed system with

bounded communication delay. Our work extends [66, 8]. In [66, 8], the authors investigate stability

and convergence of shared-state systems with concurrent discrete actions and sliding window. Our

contribution is to model these systems as automata, extend them to timed actions and extend their

results to concurrent systems with timed actions.

88

Chapter 5

An Application to Distributed
Control

In this Chapter, we discuss correctness of a general class of iterative schemes. The goal of protocols

in this class is solving a system of linear equations in a decentralized way. We are interested in

this class of distributed systems, because it has many practical applications in areas such as in

distributed robot pattern formation protocols [50, 51, 16]. We prove correctness of these schemes

using the results presented in Chapter 3 and Chapter 4.

In Section 5.1 we discuss the class of iterative schemes assuming shared-state communication. In

this Section, we present the class of protocols, model them as automata, and prove their correctness

using results from Chapter 3. In Section 5.2 we generalize this class and allows for unreliable message-

passing communication. In this Section, we model protocols in this class as automata and prove

their correctness. We derive the proof of correctness of these protocols from the proof of correctness

of the corresponding shared-state protocols using results presented in Chapter 4. In Section 5.3

we discuss correctness of a distributed robot pattern formation protocol. Finally, in Section 5.4 we

relate the main results of this Chapter to the literature.

5.1 Systems of Linear Equations via Shared Variables

In this Section, we discuss a class of multi-agent systems whose goal is to solve a system of linear

equations.

5.1.1 MAS solving Systems of Linear Equations

In this Section, we discuss the class of multi-agent systems consisting of shared-state iterative schemes

for solving systems of linear equations of the form A · x = b where A is a real-valued invertible ma-

trix of size N ×N , while x, b are real valued vectors of length N . The matrix is weakly diagonally

dominant (see Assumption L3) and strictly diagonally dominant in at least one row (see Assump-

89

tion L4). The invertibility assumption of A ensures the existence of the solution of the system of

linear equations. The solution of the system of linear equations is given by A−1b. The goal of these

systems is to iteratively compute the vector x starting from an initial guess vector x0. The Gauss,

Jacobi and Gauss-Seidel algorithms are examples of iterative schemes belonging to this class.

We model this class as shared-state multi-agent systems with N agents. The goal of the agents

is to compute the solution of the system of linear equations in a decentralized way. To do so, each

agent is responsible for solving a specific component of the vector x; for example, agent i would be

responsible for solving variable x(i). Agent i computes x(i) by applying the following updating rule:

x(i) := b(i)−
∑
j 6=i

A(i, j) · x(j) (5.1)

where x(j) is the current value of agent j. Agent i can access the value of agent j (for j 6= i), but

not modify it. When executing this updating rule, agent i sets the value of x(i) to the solution of

the i-th equation of the system of linear equations. Within this updating rule and more generally

throughout this Chapter, we assume that the diagonal entries of matrix A are all equal to 1.

We consider shared-state multi-agent systems where concurrent actions are not allowed. Agents

execute the updating scheme in Equation 5.1 in a nondeterministic fashion. We assume weak fairness,

i.e., each agent solves its equation infinitely often. Nondeterministic versions of Jacobi and Gauss-

Seidel algorithms belong to this class.

5.1.2 System of Linear Equations Shared-State Automaton

In this Section, we model this class of system using automata. The discrete automaton is defined as

follows:

Definition 38. The generic discrete shared-state automaton AD = (SD, S0D, AD, ED, TD) with N

agents is as follows:

• A, b and x0 are parameters with A of size N ×N , and b and x0 vectors of length N ,

• SD = RN with Si = R,

• S0D = {x0},

• AD = ∪iAi with Ai = {lei},

• ED : SD ×AD → true,

• ∀sD ∈ SD, ∀aD = lei ∈ AD

TD(sD, lei) =

sD(1), . . . , sD(i− 1),

b(i)−∑
j 6=i

A(i, j) · sD(j)

 , sD(i+ 1), . . . , sD(N)



90

We assume weak fairness, i.e. FD = {lei}i∈{1,...,N}.

We next discuss equilibrium states of AD. Given matrix A and vector b, the automaton has a

unique equilibrium state; this state is the solution of the system of linear equations. The state ŝD

denotes this equilibrium state, i.e. ŝD = A−1b. By definition of equilibrium state, it follows that

∀i ∈ {1, . . . , N},

ŝD(i) = b(i)−
∑
j 6=i

A(i, j) · ŝD(j) (5.2)

We refer to this property as the fixed point property.

5.1.3 Proof of Correctness

In this Section, we discuss the proof of correctness of systems in this class. A system in this class is

correct, if the corresponding automaton converges to ŝD. We next construct a Lyapunov function

around ŝD and prove that, under specific restrictions on the matrix, this function satisfies the

assumptions of Theorem 9.

5.1.3.1 Matrix A

In this Section, we present the Assumptions on matrix A. Later in this Section, we prove convergence

of AD to ŝD under these assumptions on A. We make the following assumptions on A:

Assumptions.

L1. A is invertible,

L2. A has all entries along the main diagonal equal to 1,

L3. A is weakly diagonally dominant, i.e. ∀i ∈ {1, . . . , N}

∑
j 6=i

| A(i, j) | ≤ | A(i, i) |

L4. A is strictly diagonally dominant in at least one row, i.e.

∃k ∈ {1, . . . , N} :
∑
j 6=k

| A(k, j) | < | A(k, k) |

Assumption L2 is made for convenience without loss of generality.

5.1.3.2 Communication Graph G

In this Section, we introduce the notion of communication graph. In this class of systems, agent i

reads the state of agent j for all j 6= i with A(i, j) 6= 0. We formalize this communication between

91

agents using a directed graph. There is a directed edge with source i and destination j if and only

if agent i reads local variables of agent j. The structure of matrix A does not require symmetric

communication. The graph is defined as follows:

Definition 39. Given matrix A, the communication graph G = (V,E) has V = {1, . . . , N} and

(j, k) ∈ E if A(j, k) 6= 0.

We next define the notion of strictly diagonally dominant vertex. A vertex i of G = (V,E) is strictly

diagonally dominant if the corresponding row of matrix A is strictly diagonally dominant. Formally,

Definition 40. Given matrix A and communication graph G = (V,E), i ∈ V is strictly diagonally

dominant if
∑
j 6=i | A(i, j) | < | A(i, i) |.

We make the following assumption on G = (V,E):

Assumptions.

M1. ∀i ∈ V there exists a directed path from i to a strictly diagonally dominant vertex of G.

5.1.3.3 Strictly Diagonally Dominant Rooted Forest F

In this Section, we introduce the notion of strictly diagonally dominant rooted forest. Given the

communication graph G = (V,E), a rooted forest F of G is strictly diagonally dominant if it is

rooted at strictly diagonally dominant vertices of G. Given F and i ∈ V , we denote by p(i) the

parent of i in F and ancestors(i) the set of vertices in the path from i to a root vertex in F. By

construction, i ∈ ancestors(i). If i is a root of the forest, then p(i) = ⊥ and ancestors(i) = {i}. We

introduce the predicate root on the vertices of F; root(i) holds if i is a root of the forest, i.e. row i

of A is strictly diagonally dominant.

5.1.3.4 Error Function e

In this Section, we introduce the notion of error for the agents in the system. Informally, the error of

agent i is the distance between its value and the value of the i-th component of the solution vector.

We next formally define the error function of the agents:

Definition 41. The error function e : SD × {1, . . . , N} → R≥0 is defined as follows, ∀sD ∈ SD,

∀i ∈ {1, . . . , N},

e (sD, i) = | sD(i)− ŝD(i) |

The state ŝD denotes the equilibrium state of the system of equations; it has been defined in Equa-

tion 5.2. The error of the system is defined as the maximum of the errors of the agents.

92

Definition 42. The error function e : SD → R≥0 is defined as, ∀sD ∈ SD,

e(sD) = max
i∈{1,...,N}

e (sD, i)

In the next Lemma, we relate the errors of the agents when executing an action.

Lemma 17. ∀sD ∈ SD, ∀aD = lej ∈ AD,

e (TD(sD, aD), j) ≤
∑
i 6=j

| A(j, i) | · e (sD, i)

Proof. We denote by s′D the state TD(sD, aD). By construction of the transition function, we have

that,

s′D(j) = b(j)−
∑
i6=j

A(j, i) · sD(i)

Using the fixed point property of ŝD, we have that

ŝD(j) = b(j)−
∑
i 6=j

A(j, i) · ŝD(i)

Hence, by definition of e (s′D, j)

e (s′D, j) =

∣∣∣∣∣∣
∑
i 6=j

A(j, i) · (sD(i)− ŝD(i))

∣∣∣∣∣∣
≤

∑
i 6=j

| A(j, i) | · | sD(i)− ŝD(i) |

≤
∑
i 6=j

| A(j, i) | · e (sD, i)

where the first inequality holds by triangle inequality and the last one by definition of the error

function.

This Lemma ensures that when agent j executes an action, the error of j in the post-state

TD(sD, aD) of the action is bounded by the weighted average of the errors of the remaining agents

in the pre-state sD of the action. These weights are the absolute values of the j-th row of matrix A.

5.1.3.5 Agents Weights

In this Section, we define a weight for each agent of the system. These weights are recursively

constructed along a strictly diagonally dominant rooted forest.

Definition 43. Given a strictly diagonally dominant rooted forest F, the weight of agent j in F,

93

denoted by w (j), is:

w (j) =


∑
k 6=j | A(j, k) | root(j)

| A(j, p(j)) | · w (p(j)) +
∑
k 6∈{j,p(j)} | A(j, k) | otherwise

We next show that these weights are nonnegative and strictly smaller than 1.

Lemma 18. Given a strictly diagonally dominant rooted forest F, we have that

∀j ∈ {1, . . . , N} : 0 ≤ w (j) < 1

Proof. We denote by j an arbitrary agent in the system. The proof follows by induction along the

forest.

Base Case. Assume that root(j) holds. By construction, j is a strictly diagonally dominant vertex.

By construction, its weight w (j) is nonnegative, since it is the sum of nonnegative values, and

strictly smaller than 1, since row j of matrix A satisfies Assumption L4.

Induction Case. Assume that ¬root(j) holds. By induction hypothesis, 0 ≤ w (p(j)) < 1. By

construction of w (j), we have that the weight w (j) is nonnegative, since it is the sum of nonnegative

terms. It is strictly smaller than 1, because

w (j) < | A(j, p(j)) |+
∑

k 6∈{j,p(j)}

| A(j, k) |

=
∑
k 6=j

| A(j, k) |

≤ 1

where the first inequality holds, since w (p(j)) < 1 by induction hypothesis, and last inequality holds

since A satisfies Assumptions L2-3.

We conclude this section with the definition of α; this is a nonnegative real constant defined as

the maximum of the weights of the agents.

Definition 44. Given a strictly diagonally dominant rooted forest F,

α = max
j∈I

w (j)

By construction, 0 ≤ α < 1, i.e. α is a contraction factor.

5.1.3.6 Totally Ordered Set P

In this Section, we present a totally ordered set P. This set defines the range of the Lyapunov

function used to prove convergence of the automaton. Without loss of generality, we fix a strictly

94

i

j

kl

m

Figure 5.1: Representation of a tree. The Breadth-first traversal ordering is i <BF m <BF j <BF
l <BF k.

diagonally dominant rooted forest F of the communication graph G, and assume that this forest

consists of only one tree. We denote this tree by T, the set of vertices of T is {1, . . . , N}. We also

fix a nonnegative real constant C.

We consider the Breadth-first traversal of T; this a level-order traversal that ensures that every

node on a level is visited before going to a lower level. The Breadth-first travels defines a total

ordering of the vertices. Given two vertices i and j of T, with i 6= j, we have that vertex i is less

than j with respect to the Breadth-first traversal, denoted by i <BF j, if vertex i precedes vertex

j in the traversal; while i is larger than j with respect to the Breadth-first traversal, denoted by

i >BF j, if vertex i follows j in the traversal, i.e. either i is on the same level on the right hand

side of j or i belongs to a lower level. For example, in the tree presented in Figure 5.1 we have that

i <BF j, k <BF l and k <BF j. We denote by minBF (T) the smallest vertex in T with respect

to the Breadth-first traversal, i.e. minBF (T) ≤BF j, for all j ∈ {1, . . . , N}. By construction of T,

minBF (T) is a root vertex. Similarly, we denote by maxBF (T) the largest vertex in T with respect

to the Breadth-first traversal.

We next define the elements of P. An element in q(k,j) ∈ P is a vector of length N and depends

on two parameters: a natural number k and an agent identifier j. Vector q(k,j) contains nonnegative

real values. If k = 0, then ∀i ≤BF j, the value q(k,j)(i) stores the number C · w (i), while ∀i >BF j,

the value of q(k,j)(i) is C. In this case, we have that all entries smaller or equals to j with respect

to the Breadth-first traversal are strictly smaller of all entries larger than j with respect to the

Breadth-first traversal. An example of the case when k = 0 is presented in Figure 5.2(a). If k > 0,

then ∀i ≤BF j, the value q(k,j)(i) stores the number C ·αk ·w (i), while ∀i >BF j, the value of q(k,j)(i)

is C · αk−1 · w (i). In this case, we have that all entries strictly larger than j (with respect to the

Breadth-first traversal) store numbers upper-bounded by C ·αk−1, while all entries smaller or equals

to j (with respect to the Breadth-first traversal) are upper-bounded by C · αk. By construction,

C · αk < C · αk−1. An example of the case when k > 0 is presented in Figure 5.2(b).

95

i m j l k

C

R

C w(j)

C w(m)

C w(i)

agent

(a) Example of q(k1,j1) for the case when
k1 = 0 and j1 = j; as represented in the
shaded area, agents i, m and j are strictly
smaller than C.

α

k
C

α

k−1
C

α

k−1
C w(k)

α

k−1
C w(l)α

k
C w(m)

α

k
C w(j)

α

k
C w(i)

i m j l k

R R

agent

(b) Example of q(k1,j1) for the case when k1 > 0 and
j1 = j; as represented in the shaded area on the left,
agents i, m and j are strictly smaller than C · αk while,
as represented in the shaded area on the right, agents l
and k are strictly smaller than C · αk−1.

Figure 5.2: Examples of q(k1,j1) for the tree in Figure 5.1.

Formally,

Definition 45. Given k ∈ N and j ∈ {1, . . . , N}, q(k,j) = (q(k,j)(1), . . . , q(k,j)(N)) ∈ P if ∀i ∈

{1, . . . , N},

q(k,j)(i) =


C · αk · w (i) i ≤BF j

C · αk−1 · w (i) (i >BF j) ∧ (k > 0)

C (i >BF j) ∧ (k = 0)

We next define the ordering relation ≤P on P. Given q(k1,j1), q(k2,j2), this ordering is a lexicographic

order on the pairs (k1, j1), (k2, j2), where k1 and k2 are compared using the total ordering on the

naturals, and j1 and j2 are compared using the ≤BF ordering. Formally,

Definition 46. Given q(k1,j1), q(k2,j2) ∈ P,

q(k1,j1) ≤P q(k2,j2) ≡ ((k2 < k1) ∨ ((k1 = k2) ∧ (j2 ≤BF j1)))

The relation ≤P is a total order. Hence, P is a totally ordered set. Set P has the property that

every non-empty subset of P has a least element with respect to ≤P, i.e., P is a well-ordered set.

5.1.3.7 Lyapunov Function and Level Sets

In this Section, we present a Lyapunov function V forAD and its level sets. The function V : SD → P

maps a state sD ∈ SD into the smallest element of P that upper-bounds the error of all the agents

in state sD. Formally,

96

Definition 47. The Lyapunov function V : SD → P is as follows, ∀sD ∈ SD,

V (sD) = min
k∈N,j∈{1,...,N}

{q(k,j) | ∀i ∈ {1, . . . , N} : e (sD, i) ≤ q(k,j)(i)}

We denote by L(k,j) the level set of V corresponding to the value q(k,j) ∈ P. This level set includes

all states of AD where ∀i, with i ≤BF j, the error of agent i is bounded by C · αk · w (i). ∀i, with

i >BF j, the error of agent i is bounded by C · αk−1 ·w (i), if k > 0, and by C otherwise. This level

set is of the form:

L(k,j) =
{
sD ∈ SD | ∀i ∈ {1, . . . , N} : e (sD, i) ≤ q(k,j)(i)

}
We denote by Q(k,j) the predicate associated with L(k,j), defined as ∀sD ∈ SD

Q(k,j)(sD) ≡

 ∧
i∈{1,...,N}

(
e (sD, i) ≤ q(k,j)(i)

)
This predicate is in conjunctive form, since it can be expressed as the conjunction of simpler predi-

cates defined on the state of single agents. Predicate Q(k,j)i
is defined as

Q(k,j)i
(sD) ≡

(
e (sD, i) ≤ q(k,j)(i)

)
5.1.3.8 Properties of Level Sets of V

In this Section, we discuss some properties of the level sets of V . We first show that each level set

L(k,j) is stable.

Lemma 19. For all q(k,j) ∈ P, L(k,j) is stable.

Proof. Our goal is to prove that ∀sD ∈ SD, ∀aD ∈ AD,

sD ∈ L(k,j) ⇒ TD(sD, aD) ∈ L(k,j)

Consider an arbitrary state sD ∈ SD and an arbitrary action aD = lei ∈ AD, with aD ∈ Ai.

Denote by s′D the post-state of the execution of aD, i.e. s′D = TD(sD, aD).

When executing action aD, by construction, the states s′D and sD differ only in the i-th compo-

nent. Hence, ∀l ∈ {1, . . . , N}, with l 6= i, the predicate Q(k,j)l
(s′D) holds.

We next prove that Q(k,j)i
(s′D) holds. Using Lemma 17, we have that the error of i in s′D is

bounded by the weighted average of the errors of its neighbors:

e (s′D, i) ≤
∑
l 6=i

| A(i, l) | · e (sD, l) (5.3)

97

We distinguish two cases, i ≤BF j and i >BF j.

Assume that i ≤BF j. If i is a root of the tree and k > 0, then, using Equation 5.3, we have that

e (s′D, i) ≤ C · αk−1 ·
∑
l 6=i

(| A(i, l) | · w (l))

≤ C · αk ·
∑
l 6=i

| A(i, l) |

≤ C · αk · w (i)

= q(k,j)(i)

where the first inequality follows since, by assumption, sD ∈ L(k,j); the second inequality follows, by

definition of α; the third inequality holds by definition of w (i). Hence, Q(k,j)i
(s′D), if root(i)∧k > 0.

The predicate holds also in the case when k = 0. This case is similar to the case when root(i)∧k > 0

and, therefore, is not reported.

Consider the case when i is not a root of T. In this case, assuming k > 0 and using Equation 5.3,

the error of i in s′D can be bounded as follows:

e (s′D, i) ≤ | A(i, p(i)) | · e (sD, p(i)) +
∑

l 6∈{i,p(i)}

| A(i, l) | · e (sD, l)

≤ C · αk · | A(i, p(i)) | · w (p(i)) +
∑

l 6∈{i,p(i)}

(| A(i, l) | · C · αk−1 · w (l))

≤ C · αk ·

| A(i, p(i)) | · w (p(i)) +
∑

l 6∈{i,p(i)}

| A(i, l) |


≤ C · αk · w (i)

= q(k,j)(i)

The first inequality is equivalent to Equation 5.3 and obtained by rewriting it appropriately; the

second inequality follows since, by assumption, sD ∈ L(k,j); the last inequality follows from definition

of w (i). Hence, Q(k,j)i
(s′D), if ¬root(i) ∧ k > 0. The case when k = 0 is similar and not reported.

This completes the proof of the first case. We have shown that predicate Q(k,j)i
(s′D) holds if

i ≤BF j.

We next consider the case when i >BF j. Using Equation 5.3 and assuming k > 0, we have that

e (s′D, i) ≤
∑
l 6=i

| A(i, l) | · C · αk−1 · w (l)

≤ C · αk

= q(k,j)(i)

98

The first equality follows from the assumption that sD ∈ L(k,j); second inequality follows from

the weakly diagonally dominant assumption of A (see Assumption L3) and definition of α. Hence,

Q(k,j)i
(s′D), if k > 0. The case when k = 0 is similar and not reported.

Putting all together, we have that ∀t ∈ {1, . . . , N}, Q(k,j)t
(s′D) holds, i.e. s′D ∈ L(k,j).

We next prove that each level set is a convex set.

Lemma 20. For all q(k,j) ∈ P, L(k,j) is a convex set, i.e. ∀sD, s′D ∈ SD,∀β ∈ [0, 1],

(β · sD + (1− β) · s′D) ∈ SD

Proof. Consider an arbitrary level set L(k,j) with q(k,j) ∈ P, two arbitrary states sD, s
′
D ∈ SD and

an arbitrary value β ∈ [0, 1]. Denote by s̄D the state given by β · sD + (1− β) · s′D. By definition of

AD, the state s̄D ∈ SD.

We next show that s̄D ∈ L(k,j). The following chain of inequalities holds ∀i ∈ {1, . . . , N},

e (s̄D, i) = | s̄D(i)− ŝD(i) |

= | β · (sD(i)− ŝD(i)) + (1− β) · (s′D(i)− ŝD(i)) |

≤ β · e (sD, i) + (1− β) · e (s′D, i)

≤ q(k,j)(i)

where the first inequality follows by definition of the error function; the second inequality follows by

construction of s̄D; the third inequality follow by triangle inequality and definition of error function;

the last inequality follow since sD, s
′
D ∈ L(k,j). Hence, s̄D ∈ L(k,j).

We next prove that the family of level sets {L(k,j)}q(k,j)∈P is strictly monotonic; we refer to

Section 3.1 for the definition of strictly monotonic families.

Lemma 21. The family {L(k,j)}q(k,j)∈P is strictly monotonic.

Proof. We denote by q(k1,j1), q(k2,j2) two elements of P with q(k1,j1) <P q(k2,j2). By construction,

L(k1,j1) ⊆ L(k2,j2) and our goal is to show that L(k1,j1) (L(k2,j2).

We distinguish two cases, k2 = 0 and k2 > 0.

Consider the case when k2 > 0. We define the state sD ∈ SD as follows, ∀i ∈ {1, . . . , N}

e (sD, i) =

 C · αk2 · w (i) i ≤BF j2

C · αk2−1 · w (i) i >BF j2

By construction, sD ∈ L(k2,j2). We next show that sD 6∈ L(k1,j1). We distinguish two cases. In the

99

first case we assume that k1 > k2. By definition, we have that

∀s′D ∈ L(k1,j1) : e
(
s′D,min

BF
(T)
)
≤ C · αk1 · w

(
min
BF

(T)
)

By construction,

e
(
sD,min

BF
(T)
)

= C · αk2 · w
(

min
BF

(T)
)

Since k2 < k1 we have that αk2 > αk1. Hence, sD 6∈ L(k1,j1).

We consider the case when k1 = k2 and j1 >BF j2. By definition, we have that

∀s′D ∈ L(k1,j1) : e (s′D, j1) ≤ C · αk1 · w (j1)

while

e (sD, j1) = C · αk1−1 · w (j1)

Since αk1−1 > αk1, we have that s 6∈ L(k1,j1). This concludes the case when k2 > 0.

Consider the case when k2 = 0. In this case, we have that k1 = 0 and j2 <BF j1. We define the

state sD ∈ SD as follows, ∀i ∈ {1, . . . , N}:

e (sD, i) =

 C · w (i) i ≤BF j2

C i >BF j2

By construction, sD ∈ L(k2,j2). Instead, the state sD does not belong to L(k1,j1), since e (sD, j1) = C

while ∀s′D ∈ L(k1,j1), e (s′D, j1) ≤ C · w (j1) < C.

We finally prove that for each level set of V , except for the smallest one, there exists an action

that leads the execution in a strictly contained level set.

Lemma 22. ∀q(k,j) ∈ P, with q(k,j) 6= q(∞,maxBF (T)), ∃aD ∈ AD, such that ∀sD ∈ L(k,j),

sD ∈ L(k,j) ⇒ TD(sD, aD) ∈ L(k1,j1)

with q(k1,j1) ∈ P and q(k1,j1) <P q(k,j).

Proof. Consider an arbitrary element q(k,j) ∈ P, and an arbitrary state sD ∈ L(k,j). We distinguish

two cases: j = maxBF (T) and and j <BF maxBF (T).

Assume that j = maxBF (T). We define aD = leminBF (T) and denote by s′D the state TD(sD, aD).

Our goal is to show that s′D ∈ L(k1,j1), with k1 = k + 1 and j1 = minBF (T).

Using Lemma 19, we have that Q(k,j)(s
′
D) holds. By construction, predicate Q(k1,j1) can be

100

rewritten as

Q(k1,j1) ≡ Q(k1,j1)minBF (T)
∧

 ∧
i 6=minBF (T)

Q(k,j)i


Hence, we only need to prove that Q(k1,j1)minBF (T)

(s′D) holds, i.e.

e
(
s′D,min

BF
(T)
)
≤ C · αk1 · w

(
min
BF

(T)
)

Using Lemma 17, we have that the error of agent minBF (T) in s′D can be bounded as follows:

e
(
s′D,min

BF
(T)
)
≤ C · αk ·

∑
i6=minBF (T)

(∣∣∣ A(min
BF

(T), i
) ∣∣∣ · w (i)

)
≤ C · αk · α ·

∑
i6=minBF (T)

∣∣∣ A(min
BF

(T), i
) ∣∣∣

≤ C · αk1 · w
(

min
BF

(T)
)

where the first inequality follows since s′D ∈ L(k,j); the second inequality follows from definition of

α; the last inequality follows from definition of w (minBF (T)). Hence, Q(k1,j1)minBF (T)
(s′D) holds.

We next consider the case when j <BF maxBF (T). We define aD = lej1 where j1 is the smallest

of the agent identifiers that succeed j with respect to the Breadth-first traversal. We denote by s′D

the state TD(sD, aD). Our goal is to prove that s′D ∈ L(k,j1).

Predicate Q(k,j)(s
′
D) holds, since, by Lemma 19, L(k,j) is stable. By construction, predicate

Q(k,j1) can be rewritten as

Q(k,j1) ≡ Q(k,j1)j1
∧

∧
i 6=j1

Q(k,j)i


Hence, we only need to prove that Q(k,j1)j1

(s′D) holds, i.e.

e (s′D, j1) ≤ C · αk · w (j1)

Using Lemma 17, we have that when k1 > 0, the error of agent j1 in s′D can be bounded as follows:

e (s′D, j1) ≤ | A(j1, p(j1)) | · C · αk · w (p(j1)) +
∑

i 6={j1,p(j1)}

| A(j1, i) | · C · αk−1 · w (i)

≤ C · αk ·

| A(j1, p(j1)) | · w (p(j1)) +
∑

i6={j1,p(j1)

| A(j1, i) |


≤ C · αk · w (j1)

The first inequality holds, since, by construction s′D ∈ L(k,j) and p(j1) ≤BF j1; the second in-

equality follows from definition of α; the last inequality follows from definition of w (j1). Hence,

101

Q(k,j1)j1
(s′D). The case when k1 = 0 is similar and not reported. Hence, Q(k,j1)(s

′
D) holds.

5.1.3.9 Convergence Property

In this section, we show that ŝD = A−1b is an asymptotically stable equilibrium state of AD. This

result follows from Theorem 9.

Theorem 23. The automaton AD converges to ŝD.

Proof. The Lyapunov function V satisfies the assumptions of Theorem 9. Assumption C1 holds,

from Lemma 21; Assumption C2, C5 follow from the structure of P; Assumption C3 follows

from Lemma 19 while Assumption C4 from Lemma 22, since the system assumes weak fairness.

We notice that automaton AD converges linearly to ŝD with rate α.

5.1.4 Solving Systems of Linear Equations with Dynamics

In this Section, we further generalize this class of systems. In the schemes presented so far, agents

update their state instantaneously. In this Section, we relax this assumption and explicitly model

the dynamics of agents. We are interested in this generalization, because in real-worlds applications,

it is unrealistic to assume instantaneous updates of the solution vector x. For example, in robotic

applications systems of equations are used in pattern formation protocols, where x can be thought

of as agent positions. When a robot executes an action, the move from its current location to its

newly computed one is not instantaneous. Instead, the robot moves according to some time-related

dynamics.

In this class, when an agent executes the updating scheme in Equation 5.1, it evolves its current

value towards the newly computed one according to some dynamics. Systems in this class allow

an agent to stop before reaching the newly computed value. We model these systems as automata

with time actions. Given AD, we can construct the generic automaton with timed actions Adyn =

(Sdyn, S0dyn,Adyn, Edyn, Tdyn) modeling the shared-state multi-agent system with explicit arbitrary

dynamics using the procedure presented in Section 4.1.2.

We next present the automaton and refer to Section 4.1.2 for the details of its construction.

Definition 48. Given AD = (SD, S0D, AD, ED, TD), the automaton with time actions Adyn =

(Sdyn, S0dyn,Adyn, Edyn, Tdyn) modeling a shared-state MAS with N agents with explicit arbitrary

dynamics solving a system of linear equations has:

• Sdyn = (RN ,RN),

• S0dyn = {(s0, s0)}, with s0 ∈ S0D,

102

• Adyn = AD = ∪iAi with Ai = {lei},

• Edyn : Sdyn ×Adyn → true,

• ∀s ∈ Sdyn, ∀a = lei ∈ Adyn, action a has time duration τs,a and its behaviour is ∀t ∈ (0, τs,a],

(Tdyn(s, a)(t)).x(i) = fs,a(t)

(Tdyn(s, a)(t)).z(i) =

b(i)−∑
j 6=i

A(i, j) · s.x(j)


and ∀j 6= i,

(Tdyn(s, a)(t)).x(j) = s.x(j)

(Tdyn(s, a)(t)).z(j) = s.z(j)

The equilibrium state of Adyn is ŝdyn defined as (ŝD, ŝD). A Lyapunov function for Adyn is the func-

tion Vdyn defined as follows. Given a state sdyn ∈ Sdyn, Vdyn(sdyn) = max{V (sdyn.x), V (sdyn.z)}.

By construction, the level sets of Vdyn are in conjunctive form, they are stable and satisfies condi-

tion C4 of Theorem 9.

Differently from the discrete automaton AD, in this more general automaton, agents may update

their state using values that have not computed using the updating rule. These values derive from

the evolution of the agents state according to some dynamics. Under specific assumptions on the

dynamics of the agents, we next show that systems in this class are correct, i.e. they converge to

the solution of the system of linear equations. Using function Vdyn, we next prove convergence of

Adyn.

Theorem 24. If Adyn satisfies Assumptions F3-4, the Adyn converges to ŝdyn.

Proof. It follows from Theorem 11. Assumption F1 holds from Theorem 23. Assumption F2 holds

from Lemma 20 and Assumptions F3-4 hold by hypothesis.

For example, agents moving with constant velocity from their current state to the desired one

satisfy Assumptions F3-4.

5.2 Solving Systems of Linear Equations via Message-Passing

In this Section, we present a class of message-passing schemes for solving systems of linear equations.

Systems in this class are the message-passing version of the schemes presented in Section 5.1. In

these schemes agents interact by sending messages via an unreliable communication medium. We

allow for lost, delayed, duplicated or delivered out-of-order messages. The message-passing version

103

of the Gauss, Jacobi, and Gauss-Seidel algorithms are examples of iterative schemes belonging to

this class. We assume a message-passing system with bounded delay d. Under this assumption,

messages sent at time t either they are received by time t+ d or they are lost.

5.2.1 MAS solving Systems of Linear Equations

This class consists of message-passing decentralized iterative schemes for solving systems of linear

equations of the form A · x = b. We model this class as message-passing multi-agent systems with

N agents. Each agent is responsible for computing the value of a specific variable using a specific

equation of the system of linear equations. We assume that agent i is responsible for solving variable

x(i). In our model, agent i stores x(i) and repeatedly broadcasts a message containing the current

value of this variable. Agent i also stores a vector yi of length N . The j-th component of yi contains

the content of the last message that i has received from j, for all j 6= i. We assume agents broadcast

their value infinitely often, where the number of messages sent within a finite time interval is assumed

to be finite. Upon receiving a message, agent i updates the corresponding entry in the vector yi,

computes a new value for x(i) as follows

x(i) := b(i)−
∑
j 6=i

A(i, j) · yi(j) (5.4)

and moves towards it according to some dynamics. This updating rule corresponds to the i-th

equation of the system where x(i) is the only unknown: agent i uses the values stored in yi to

represent the values of x(j) for all j 6= i.

In our model, agent i broadcast the value of x(i) infinitely often. That value is subsequently

store in yj , for some j 6= i, as the content of the last message received from i. In our model, for

each agent i, there are several values associated with i in the system: one stored in x(i), another

in yj(i) for all j 6= i and a potentially infinite number of messages in transit. The values stored in

yj(i), for all j 6= i, and messages in transit can be old copies of x(i). Hence, differently from the

shared-state multi-agent system, in this case, an agent can update its value using data that are old

and potentially computed at different times.

5.2.2 System of Linear Equations Message-Passing Automaton

As discussed in Section 4.3, we model this message-passing multi-agent system with bounded delay

using the automaton with sliding window presented in Section 4.2. The construction of the sliding

window automaton requires a shared-state automaton. We consider as shared-state automaton the

automaton Adyn. This allows modeling the most general message-passing scheme, where agents

compute the new value using the updating rule defined in Equation 5.4 and move towards it.

104

The definition of the message-passing automaton Amp follows.

Definition 49. Given Adyn = (Sdyn, S0dyn,Adyn, Edyn, Tdyn), we have that the message-passing

automaton Amp = (Smp, S0mp, Amp, Emp, Tmp) modeling a message-passing multi-agent system with

bounded delay B and explicit arbitrary dynamics solving a system of linear equations has:

• Smp = [−B, 0]→ Sdyn,

• S0mp = {s0mp}, with ∀t ∈ [−B, 0] : s0mp(t) ∈ S0dyn,

• Amp = Adyn

• Emp : Smp ×Amp → true,

• ∀smp ∈ Smp, ∀amp = lei ∈ Amp, agent i chooses a state s ∈ Sdyn, with H(s, smp) and

s(i) = smp(0)

∀t ∈ [0, τs,l̂ei], t ≤ B

Tmp(smp, amp)(t)[−B,−t] = (smp[t− B, 0])−t

Tmp(smp, amp)(t)[−t, 0] = (Tdyn(s, lei)[0, t])
−t

∀t ∈ [0, τs,l̂ei], t > B

Tmp(smp, amp)(t)[−B, 0] = (Tdyn(s, lei)[t− B, t])−t

We denote by ŝmp the equilibrium state of Amp. This state satisfies the property that all its

asynchronous views are equal to ŝdyn.

5.2.3 Proof of Correctness

In this Section, we show that Amp converges to ŝmp. We derive this property from Theorem 16.

Theorem 25. If Adyn satisfies Assumptions F3-4, then Amp converges to ŝmp.

Proof. If follows from Theorem 16. Using Assumptions F3-4, Theorem 24 holds. Hence, Assump-

tion H1 of Theorem 16 holds for Vdyn. Assumption H2 of Theorem 16 holds, since by construction

the level sets of the Lyapunov function Vdyn are in conjunctive form.

For example, agents moving with constant velocity from their current state to the desired one

satisfy Assumptions F3-4.

105

5.3 Linear Robot Pattern Formation Protocol

In this Section, we discuss a specific example. We consider a multi robot system operating over an

unreliable communication medium. The goal of the system is to form an equispaced straight line.

We prove the correctness of this system using the results of the previous Section.

5.3.1 Linear Robot Patter Formation Multi-Agent System

In this Section, we describe the system. The system consists of N + 1 robots, each with a unique

identifier. Robots of the system start at some arbitrary locations and their goal is to form a specific

spatial configuration using simple local rules. We denote by x0 the vector of the initial robot

positions. Without loss of generality, we assume that robot positions are real values. The system

consists of two leaders with identifiers 0 and N and N−1 followers. In the final configuration, robots

form a straight equispaced line with leaders at the extremes of the line. Figure 2.1(a) represents

a generic configuration of the system consists of ten agents, while Figure 2.1(b) represents the

corresponding goal configuration.

Agents in the system use a leader-follower protocol where leaders are stationary while followers

update their positions using their immediate neighbors. The follower agent i with i ∈ {1, . . . , N −1}

computes its new position as the average of the positions of agents i − 1 and i + 1 and moves

towards it. Agents communicate via message-passing where messages may lost, delayed or received

out-of-order.

This system is a special case of the Line-Up multi-agent system. If we restrict the set of actions

of the Line-Up multi-agent system and allow agents to communicate only with their immediate

neighbors, i.e. the action set is {avgi−1,i,i+1}0<i<N , we obtain an automaton modeling the linear

robot pattern formation multi-agent system.

5.3.2 Solving a System of Linear Equations

In this Section, we model this system as a system for solving linear equations. We instantiate matrix

A and vector b; then, we show that the updating rules executed by the robots can be expressed using

the equations of the system of linear equations and we show that final goal of the multi-agent system

is equal to the solution A−1b of the system of equations.

Matrix A ∈ RN+1 × RN+1 is defined as follows. Matrix A is a tri-diagonal matrix with all

elements along the main diagonal are equal to 1, i.e.

∀i ∈ {0, . . . , N} : A(i, i) = 1

106

The entries of the second left diagonal are equal to −0.5, except for entry N that is equal to 0, i.e.

(A(N,N − 1) = 0) ∧ (∀i ∈ {1, . . . N − 1} : A(i, i− 1) = −0.5)

and all entries of the second right diagonal are equal to −0.5, except for entry 1 that is equal to 0,

i.e.

(A(0, 1) = 0) ∧ (∀i ∈ {1, . . . N − 1} : A(i, i+ 1) = −0.5)

For example, in the case when N = 5, the matrix A is

A =



1 0 0 0 0

−0.5 1 −0.5 0 0

0 −0.5 1 −0.5 0

0 0 −0.5 1 −0.5

0 0 0 0 1


Vector b ∈ RN+1 has the following structure. Entries of the leader agents are their initial

positions, i.e. b(0) = x0(0) and b(N) = x0(N); entries of the followers are equal to 0, i.e. ∀i 6=

{0, N} : b(i) = 0. For example, in the case when N = 5, the vector b is (x0(0), 0, 0, 0, x0(N)).

Plugging A, b in the updating rule in Equation 5.1 of agent i, we get that

x(0) := x0(0)

x(i) :=
x(i− 1) + x(i+ 1)

2
∀i, 0 < i < N

x(N) := x0(N)

This protocol ensures that agents 0 and N are stationary; while agent i, with 0 < i < N , computes

its destination location as the average of the positions of agent i− 1 and agent i+ 1.

The solution of the system A−1b is equal to the vector in Equation 2.3. We refer to [67] for

computing the inverse of a tri-diagonal matrix.

5.3.3 Proof of Correctness

In this Section, we present the automaton model for the multi-agent system and prove its correct-

ness. The automaton Almp modeling the robot pattern formation MAS specialized the automaton

presented in Section 5.2.2. It can be also obtained by restricting the set of actions of of the au-

tomaton AB presented in Section 4.2.3. The automaton Almp has the same state and set of initial

states of AB. The set of actions of Almp is a subset of the set of actions of AB; the set of actions of

Almp consists of {avgi−1,i,i+1}0<i<N .

107

2 3 40 1

Figure 5.3: The communication graph G = (V,E) corresponding to matrix A when N = 5.

The correctness of this system can be derived from Theorem 25. This Theorem holds if matrix

A satisfies Assumptions L1-4 and the communication graph of matrix A satisfies Assumption M1.

Lemma 26. Matrix A satisfies Assumptions L1-4

Proof. Matrix A satisfies Assumption L1, since its determinant is non-zero (see [67]). All entries of

its main diagonal are equal to 1, thus satisfying Assumption L2. Matrix A satisfies Assumption L3,

i.e. it is weakly diagonally dominant. This is because the sum of the absolute values of the non-

diagonal entries along row 0 and N is 0 and it is 1 along the remaining rows. These values are

bounded by 1, that is the value along the main diagonal. Matrix A satisfies Assumption L4; it is

strictly diagonally dominant in row 0 and N where the sum of the absolute values of the non-diagonal

entries is 0 and the value along the diagonal is 1.

Graph G = (V,E) is a linear graph with the following structure. The set of vertices V is equal to

{1, . . . N}. Vertices 0 and N are strictly diagonally dominant. The out-degree of these two vertices is

0 and their in-degree is 1; vertex 0 has an incoming edge from vertex 1, and vertex N has an incoming

edge from vertex N − 1. The generic vertex i, with 0 < i < N , has two outgoing edges, towards

i − 1 and i + 1. Vertices 1 and N − 1 have one incoming edges from 2 and N − 2 respectively and

vertex i, with 1 < i < N − 1, has two incoming edges, from i− 1 and i+ 1. For example, Figure 5.3

represents the graph G = (V,E) in the case when N = 5.

Lemma 27. Communication graph G = (V,E) satisfies Assumption M1,

Proof. G satisfies Assumption M1, because from vertex i, with 0 < i < N , there exists a path leading

towards 0 and one leading towards N . These two paths are i, i−1, i−2, . . . , 0 and i, i+1, i+2, . . . , N .

Hence, we can now prove the main theorem.

Theorem 28. If the dynamics of the agents satisfy Assumptions F3-4, then Almp converges to ŝlmp.

Proof. It follows from Theorem 25, since matrix A satisfies Assumptions L1-4 (see Lemma 26) and

graph G satisfies Assumption M1 (see Lemma 27).

We briefly discuss the proof of Theorem 25. This proof requires to fix a strictly diagonally

dominant rooted forest and construct a Lyapunov function using this forest. A feasible forest F

consists of two trees, denoted by T0 and TN . Tree T0, rooted at vertex 0, is of the form (V (T0), E(T0))

with V (T0) = {0, 1, . . . , N − 1} and E(T0) = {(i − 1, i) | 0 < i < N}. In this tree, the parent of

108

2 3 40 1

Figure 5.4: A strictly diagonally dominant rooted forest of the communication graph in Figure 5.3.

vertex i, with i ∈ {1, . . . , N −1} is i−1. Tree TN consists of only vertex N . For example, Figure 5.4

represents F in the case when N = 5.

Given this F, the weights of the agents are as follows. The weight of agents 0 and N are 0. For

agent i, with 0 < i < N , the weight of agent i is

w (i) =

(
1− 1

2i

)

This sequence of weights defines an increasing sequence of values with respect to the Breadth-first

traversal of T0, i.e. given i, j ∈ V (T0) if i <BF j then w (i) < w (j). The value of α is the maximum

of this sequence, i.e. α = w (N − 1). The value of constant C depends on the initial positions of the

robots, and is defined as the maximum error of the initial positions, i.e.

C = max
i∈{0,...,N}

e (x0, i)

Assuming forest F, the execution starts at level set L0,0 where the errors of agent 0 and N are

bounded by 0 and the error of the remaining agents is bounded by C. Then, it eventually enters

level set L0,1 where the errors of agent 0 and N are bounded by 0, the error of agent 1 is bounded

by 0.5 ·C and the error of the other agents is bounded by C. Then it eventually enters level set L0,2

and so on. Hence, any execution is contained in this sequence of level sets given by:

L0,0, L0,1, . . . , L0,N−1, L1,0, L1,0, . . . L1,N−1, L2,0, . . . L2,N−1, L3,0, . . . ,

For example, in Figure 5.5, we represent the level set Lk,3.

5.4 Discussion

In this Section, we discuss the main results of this Chapter and relate them to the literature.

In this Chapter, we have presented a general class of multi-agent systems. Systems in this class

are iterative decentralized schemes whose goal is solving a system of linear equations.

We have shown their correctness using the results presented in the previous Chapters. In the case

of shared-state multi-agent systems, we have applied the results of Chapter 3. In the case of message-

passing systems, we have derive their correctness from the correctness proof of the corresponding

shared-state systems using the results of Chapter 4. The proofs of shared-state and message-passing

109

0 2 3 41

C α

k

C α

k
0.75

C α

k
0.5

R

agent

Figure 5.5: Pictorial representation of Lk,3 in the case when the system consists of 5 agents, i.e.
N = 5. A vector v belongs to Lk,3 if v(0) = v(4) = 0 and v(1) ∈ [0, 0.5 ·C ·αk], v(2) ∈ [0, 0.75 ·C ·αk]
and v(3) ∈ [0, 0.875 · C · αk]. The set Lk,3 corresponds to the shaded area.

systems require a specific structure of matrix A. The matrix has to be weakly diagonally dominant

(see Assumption L3) and strongly diagonally dominant in at least one row (see Assumption L4).

We also require the matrix to be invertible (see Assumption L1) and the main diagonal entries to

be all 0 (see Assumption L2). The invertibility property ensures the existence and uniqueness of the

solution of the system.

In these proofs, we show that the error of the system at each point of the computation eventually

decreases by a factor of α. This property is proven using an induction scheme over the set of

agents. As a base case, we show that eventually the maximum error of agents corresponding to

strictly diagonally dominant rows is reduced by α. Then, assuming that this is the case for agents

at distance k from some agent satisfying Assumption L4, we show that the property holds for all

agents at distance k+ 1. This induction scheme is represented as a Breadth-first visit on a forest of

trees rooted at agents corresponding to strictly diagonally dominant rows. Iterating this property,

we have that, denoting by C the initial error of the system, the error eventually decreases to α · C,

then to α2 · C, α3 · C, and so on, converging to 0 as time tends to infinity.

Assumptions L3-4 are crucial in the proof of correctness. Assumption L3 ensures that the level

sets of the Lyapunov function are stable, and Assumption L4 ensures that the system eventually

enters a strictly contained level set. Informally, Assumption L3 ensures that the error of the system

at each point of the computation does not increase while Assumption L4 ensures that it eventually

decreases by a factor of α.

Schemes in this class can solve the system of linear equations even if they operate over an

unreliable communication medium. When executing these schemes via message-passing, agents

compute a new estimate of the solution vector using values that are potentially old and computed

110

at different times. Hence, the system converges even if the execution is not time-stepped. This is

a desirable property from an implementation point of view. This is because, we do not need to

implement a synchronization mechanism, such as a barrier, to simulate rounds. Agents can proceed

at different speeds and agents with faster computational capabilities do not need to wait on agents

with slower computational capabilities. We assume that an agent cannot be infinitely faster than

the others.

The material covered in this Chapter has been published in [14]. Our work extends previous

work on systems of equations such as [18, 28]. In [18], the authors consider message-passing systems

whose goal is solving systems of linear equations. They prove correctness of these schemes in the case

when matrix A is strictly diagonally dominant, i.e. it is strictly diagonally dominant in all its rows.

Our results relax this assumption; we only require that the matrix is strictly diagonally dominant in

at least one row. In [28], the authors consider shared-state systems whose goal is solving linear and

non-linear systems of equations. They provide conditions that ensure convergence of this general

class of systems. In the case of linear schemes, these conditions require the matrix A to be strictly

diagonally dominant.

111

Chapter 6

PVS Verification Framework

In this Chapter, we present a framework for verifying the class of distributed message-passing systems

discussed in Chapter 5. This tool has been implemented within the PVS theorem prover and can

be downloaded from [58].

Section 6.1 describes the architecture of this framework. Section 6.2, Section 6.3 and Section 6.4

present implementation details of the tool. Section 6.5 discusses the challenges in the implementation

of the tool. Section 6.6 presents an application of our framework to the linear robot pattern

formation multi-agent system.

6.1 Systems of Linear Equations PVS Verification Frame-

work

In this Section, we describe the structure of the tool. It consists of a set of PVS meta-theories,

built on top of I/O automata meta-theories [72, 42, 3, 2, 4] with extensions for timed and hybrid

systems [36, 46, 45]. This tool partially uses the PVS NASA libraries [37].

It consists of three main libraries:

• Mathematical PVS library

• Message-Passing System PVS library

• Verification PVS library

The Mathematical PVS library includes definitions and properties of vectors and square matrices.

The Message-Passing System PVS library models the message-passing distributed system as a I/O

automaton. The Verification PVS library encodes the proof of correctness of the generic protocol

for solving systems of linear equations.

We refer to Figure 6.1 for a pictorial representation of the interactions among these libraries.

Specifically, the Message-Passing System PVS library uses the data structures defined in the Math-

112

Vector

Square Matrix

Mathematical PVS Library

System
state, initial state predicate, actions,
transition function, enabled predicate

System PVS Library

Proof of Convergence

Error Model

Verification PVS Library

Figure 6.1: Architecture of the PVS Verification Framework.

ematical PVS Library. The Verification PVS libraries proves convergence of the I/O automaton

modeled in the Message-Passing System library using theorems from the Mathematical PVS library.

In Section 6.2 we present the Mathematical PVS library, in Section 6.3 we discuss the Message-

Passing System library and in Section 6.4 we discuss the Verification PVS library.

6.2 Mathematical Library

In this Section, we present the mathematical library. It consists of two main meta-theories, Vector

meta-theory and Matrix meta-theory. We first discuss the Vector meta-theory and then the Matrix

meta-theory.

6.2.1 Vector PVS meta-theory

The Vector meta-theory extends the PVS NASA Vector meta-theory. A vector is encoded in PVS

as a function from Index to real numbers:

Index: TYPE = upto(N)

Vector: TYPE = [Index ->real]

where Index, defined in the PVS NASA library [37], is the set {0, 1, . . . , N} with N being the number

of agents of the system.

The Vector library extends the PVS NASA library for vectors. It includes definitions of vector

operators, such as absolute value operator and cross product operator, that are not defined in the

PVS NASA library for Vectors. In this theory, we also prove some properties of these operators.

The main operators defined in this library are presented in Figure 6.2(a). We briefly discuss

their meaning and PVS implementations:

• The abs operator computes the absolute value of a vector, defined as the absolute value of its

113

components. It is encoded in PVS as a function from Vector to Vector; it uses the lambda

PVS operator for accessing the input vector components. This operator is used for defining

diagonally dominant vectors.

• The prod operator computes the dot product of two vectors, i.e., it returns a new vector where

each of its entries consists of the product of the corresponding entries in the input vectors. In

PVS, it is a function from Vector × Vector to Vector and uses the lambda PVS operator

for accessing the components of the input vectors. This operator is used for defining the cross

product of two vectors.

• The sum operator computes the sum of the elements of a vector. In PVS, it is encoded as

a recursive function from Vector to real. Together with prod operator, it defines the cross

product of two vectors.

• The cross product operator computes the cross product of two vectors. We encode it in PVS

as a function from Vector to real. By definition, it combines prod and sum operators. This

operator implements the protocol executed by agents in the system, see Equation 5.1.

The Vector library contains predicates on vectors, as well. In Figure 6.2(b), we present the PVS

definition and implementation of the main ones. We briefly discuss their meaning:

• Predicate eq? holds if the two input vectors v1 and v2 are equal, i.e., all their components are

equal. For example, we can use this predicate for encoding the commutativity property of the

prod operator in PVS.

• Predicate pos? holds if the input vector is nonnegative, i.e., all its components are nonnegative.

For example, this predicate can be used for encoding the positivity property of the abs operator.

• Predicate dd? holds if the input vector v is weakly diagonally dominant with respect to its i-th

component. Specifically this predicate requires that the sum of all components of the vector

except i is bounded by the value of the i-th component. This predicate is extensively used

for encoding the weakly diagonally dominant assumption of the rows of matrix A presented in

Assumption L3.

• Predicate sdd? holds if the input vector v is strictly diagonally dominant with respect to its i-th

component. This predicate is used for encoding the strictly diagonally dominant assumption

of matrix A (see Assumption L4).

114

% absolute value operator

abs(v: Vector): Vector = LAMBDA(i: Index): abs(v(i))

% dot product operator

prod(v1,v2: Vector): Vector = LAMBDA(i: Index): v1(i)*v2(i)

% sum operator

sum(v: Vector , i: Index): RECURSIVE real =

IF (i=0) THEN v(0) ELSE v(i) + sum(v,i-1) ENDIF

MEASURE (i)

sum(v: Vector) : real = sum(v,N-1)

% cross product operator

cross_product(v1 ,v2: Vector): real = sum(prod(v1 ,v2))
(a) Operators in the Vector meta-theory.

% equality predicate

eq?(v1,v2: Vector): bool = FORALL(i: Index): v1(i) = v2(i)

% positivity predicate

pos?(v: Vector): bool = FORALL(i: Index): v(i) >= 0

% diagonally dominance predicate

dd?(v: Vector ,i: Index): bool = sum(v)-v(i) <= v(i)

% strictly diagonally dominance predicate

sdd?(v: Vector ,i: Index): bool = sum(v)-v(i) < v(i)
(b) Predicates in the Vector meta-theory.

Figure 6.2: Predicates and Operators defined in the PVS Vector meta-theory.

115

6.2.2 Matrix PVS meta-theory

The Matrix meta-theory introduces the type Matrix and defines operators and predicates on square

matrices. We define a square matrix in PVS as a function from pair of Index to real numbers, in

PVS

Matrix: TYPE = [Index , Index -> real]

The type Matrix is our extension to the PVS NASA library [37].

This meta-theory encodes operators and predicates on square matrices. Figure 6.3(a) presents

the main and operators, while Figure 6.3(b) presents the main predicates. We discuss their main

features:

• The PVS row operator extracts row r of the input matrix m. The type of the extracted row is

Vector. This operator uses the lambda PVS operator for constructing this vector. Similarly,

the PVS col operator extracts column c of the input matrix m. We use these operators for

encoding properties of rows and columns of the matrix.

• The PVS abs operator computes the absolute value of the input matrix m. It is a function

from Matrix to Matrix. Each entry of the resulting matrix stores the absolute value of the

corresponding entry of matrix m. We use this function for encoding the diagonally dominance

properties.

• The PVS prod operator computes the product of the two input matrices m1 and m2. It

is encoded as a function from Matrix × Matrix to Matrix. Entry (i, j) of the resulting

matrix stores the cross product of row i and column j. We use this function for encoding the

invertibility property of matrix A (see Assumption L1).

• The PVS eq? predicate holds if the two input matrices n and m are equal, i.e. for each entry

they store the same value. We use this predicate for encoding the invertibility property of

matrix A.

• The PVS diag? predicate holds if the input matrix is an identity matrix, i.e. its main diagonal

consists of all 1 and the remaining entries are equal to 0. Together with prod and eq?, we use

this predicate for encoding the invertibility property of matrix A.

• The PVS inv? predicate holds if the input matrix is invertible. We check the invertibility

property by showing the existence of a left and right inverse matrix. This predicate encodes

Assumption L1 of matrix A.

• The PVS dd? predicate holds if the matrix is weakly diagonally dominant, i.e., each row of the

matrix is weakly diagonally dominant. This predicate encodes Assumption L3 of matrix A.

116

% extract row operator

row(m: Matrix , r: Index): Vector = LAMBDA(c: Index): m(r,c)

% extract column operator

col(m: Matrix , c: Index): Vector = LAMBDA(r: Index): m(r,c)

% absolute value operator

abs(m: Matrix): Matrix = LAMBDA(r,c: Index): abs(m(r,c))

% product operator

prod(m1,m2: Matrix): Matrix = LAMBDA (r,c: Index): cross_product(row(m1,r),col(m2,c))
(a) Operators of the Matrix meta-theory.

% identity matrix predicate

diag?(m): bool = FORALL (r,c) : IF r=c THEN m(r,c)=1 ELSE m(r,c)=0 ENDIF

% equality predicate

eq?(m,n): bool = FORALL (r,c) : m(r,c)=n(r,c)

% invertibility predicate

inv?(m): bool = EXISTS(n:Matrix): eq?(prod(m,n),prod(n,m)) AND diag?(prod(n,m))

% diagonally dominant predicate

dd?(m): bool = FORALL(r:Index): dd?(row(abs(m),r),r)

% strictly diagonally dominant predicate

sdd?(m): bool = EXISTS(r:Index): sdd?(row(abs(m),r),r)
(b) Predicates of the Matrix meta-theory.

Figure 6.3: Predicates and Operators defined in the PVS Matrix meta-theory.

• The PVS sdd? predicate holds if the matrix is strongly diagonally dominant, i.e., there exists

a strongly diagonally dominant row. This predicate encodes Assumption L4 of matrix A.

The library includes lemmas on matrices needed in the proof of correctness.

6.3 Message-Passing System PVS Library

In this Section, we model the multi-agent system in PVS. We specialize the automaton meta-

theory [46] for the case of message-passing systems. The automaton models the state of the system,

its set of actions, initial predicate, enabling conditions and transition function.

6.3.1 System state

The state of the system is made up of the state of the agents, along with the state of the commu-

nication channel. An agent is responsible for its current and target values, along with the set of

messages in the communication channel for whom it is the recipient. We define the system state

in PVS with the type S, outlined in Figure 6.4. The fields target, and lastmsg describe the state

of the agents, while buffer describes the state of the channel. The field now corresponds to the

117

S: TYPE = [# target: Vector , % vector of agents

lastmsg: Matrix , % matrix of values

buffer: [Index , Index -> Pset], % state of the channel

now: nonneg_real , % system clock

next: [Index -> nonneg_real] #] % agent send deadlines

Figure 6.4: System state. Refer to Figure 6.5 for the definition of Pset.

Msg :TYPE = [# loc: real ,

id: Index #]

Pkt :TYPE = [# msg: Msg ,

ddl: posreal #]

Pset:TYPE = set[Pkt]

b :posreal

d :posreal

Figure 6.5: Channel Types Components of the system automaton.

clock of the system, storing the current time. The field next is a vector containing, for each agent,

the future time that agent is allowed to execute a send action. The target field stores the target

value of each agent. Finally, lastmsg is a matrix in which its diagonal entries hold the current

value of each agent; the non-diagonal entries store the last message that agent i has received from

agent j. The target and the diagonal entries of lastmsg fields correspond to the variables x and z,

respectively, from the mathematic model outlined in Chapter 5.

The initial condition of the system is described using the predicate starts?. It holds in the state

s if the global clock of this state is set to 0, the target to the initial guess x0, and ensures that

next does not violate the parameter d (defined in Section 6.3.2):

start ?(s: S): bool =

now(s) = 0 AND (FORALL(i: Index): next(s)(i) <= d) AND

target(s) = x0 AND (FORALL(i, j: Index): lastmsg(s)(i,j) = x0(i))

Note that the communication channels are not necessarily empty initially.

6.3.2 Communication Medium

The communication layer is a broadcast channel allowing for lost, delayed, or out-of-order messages.

The architecture of the communication medium has been presented in Section 4.3.1. We briefly

discuss it.

We model the faulty communication medium by defining packets, channels and timing variables.

Figure 6.5 outlines the PVS datatypes used for this purpose. Messages sent between agents (Msg) is

represented as a record, consisting of the agents location and identifier. Messages, along with their

118

ACS: DATATYPE BEGIN

send(p:Pkt , i:Index , d1:posreal): send?

receive(p:Pkt , i:Index): receive?

move(i:Index , delta_t:posreal): move?

msgloss(p:Pkt , i:Index): msgloss?

nu_traj(delta_t:posreal): nu_traj?

END ACS

Figure 6.6: Actions of the system.

delivery deadline, are contained within packets (Pkt). Sets of packets (Pset) make up a dedicated,

directed, channel between two agents. Because a set lacks ordering, it makes it an appropriate type

for a communication channel that allows for out-of-order messages. Timing within the channel are

handled by the constants b and d. The former is an upper bound on packet deadlines—each packet

deadline is at most b units of time—and is used to model message delay. The constant d is an upper

bound on the interval between consecutive send actions. Using 〈d,next〉, we ensure that the send

action is executed infinitely often.

6.3.3 System actions

Actions within our system consist of agent movement and message transmission, channel manipu-

lation, and system clock maintenance. Our PVS definitions are outlined in Figure 6.6. The send,

receive, and move actions are executed by agents, while the msgloss action is used by the commu-

nication channel to simulate packet loss. Finally, the nu traj action updates the system time. This

section describes the behavior of each, as well as when they are enabled.

New trajectory. The nu traj action advances the time variable of the system, now, by delta t

units, where delta t is the input parameter of the action;

nu_traj(delta_t: posreal): s WITH [now := now(s) + delta_t]

It is enabled when the new value of the global clock does not violate a packet deadline:

nu_traj(delta_t): FORALL(p: Pkt): ddl(p) >= now(s) + delta_t

Agent move. The move action models the movement of an agent from its current value to a new

value based on its locally computed solution to the equation of the system. The parameters of the

action are the agent that moves and the time interval. In our implementation, agent i sets z[i]

(stored in lastmsg(i,i)) to x[i] (stored in target(i)) and advances the global clock of delta t

units; in PVS

move(i: Index , delta_t: posreal): s WITH

119

[lastmsg := lastmsg(s) WITH [(i, i) := target(s)(i)],

now := now(s) + delta_t]

This action can be executed only if packet deadlines are violated by the new time of the system:

move(i, delta_t): FORALL(p: Pkt): ddl(p) >= now(s) + delta_t

Agent send. When executing a send action, agent i broadcasts its packet p to all agents in the

system and schedules its next send:

send(p: Pkt , i: Index , d1: posreal): s WITH [

buffer := LAMBDA (k, j: Index):

IF ((k = i) AND (j /= i)) THEN union(p, buffer(s)(k, j))

ELSE buffer(s)(k, j)

ENDIF ,

next := next(s) WITH [(i):= next(s)(i) + d1]]

In updating the buffer, the agent is adding its packet, p, to all of its outgoing channels. Notice that

an agent does not send a message to itself. The send action is executed only if the time when the

agent is allowed to send equals to the global time of the system. Furthermore, the sent packet must

contain the identifier of the agent, its current target location, and correct packet deadline. The

detailed PVS code follows

send(p, i, d1): next(s)(i) = now(s) AND d1 <= d AND

id(msg(p)) = i AND loc(msg(p)) = target(s)(i) AND

ddl(p) = now(s) + b

Agent receive. When agent i receives packet p, it updates the lastmsg variable, computes a new

value for its target, and removes the packet from the channel:

receive(p: Pkt , i: Index):

LET m: Msg = msg(p), j: Index = id(m), l: real = loc(m),

Ci: vector = update(row(lastmsg(s), i), j, l) IN s WITH

[buffer := buffer(s) WITH

[(j,i) := remove(p, buffer(s)(j, i))],

lastmsg := lastmsg(s) WITH [(i, j) := l],

target := target(s) WITH [(i) := gauss(Ci, i)]]

The gauss function implements Equation 5.1. The action can be executed if the p is in the channel

from msg(p) to i, and its deadline does not violate the global time of the system,

120

receive(p, i): buffer(s)(id(msg(p)), i)(p) AND ddl(p) >= now(s)

Message loss. Message loss is modeled by removing a given packet from a directed channel:

msgloss(p: Pkt , i: Index): LET m: Msg = msg(p), j: Index = id(m) IN s

WITH [buffer := buffer(s)

WITH [(j, i) := remove(p, buffer(s)(j, i))]]

It is enabled only if the packet belongs to this channel:

msgloss(p, i): buffer(s)(id(msg(p)), i)(p)

6.4 Verification PVS Library

In this Section, we describe the proof of correctness in PVS. The library carries out the proof for the

message-passing system without reducing it to a shared-state system as described in Chapter 5. We

refer to [14] for details on this proof. We cannot encode the proof of Theorem 16, because it requires

a PVS framework for proving the correctness of generic message-passing multi-agent systems from

the corresponding shared-state ones. The implementation of this general framework is currently

under investigation.

In the following subsections, we discuss error function representation (encoded in Error Model

meta-theory), assumptions of the problem, stability and convergence proofs (encoded in Proof of

Correctness meta-theory).

6.4.1 Error Model

The error model is defined in the Error Model theory. The error of an agent is defined as the

distance between its current value and its desired value. The desired value xstar is an input of the

theory and it satisfies the fixed point Assumption:

xstar_def_ax: ASSUMPTION xstar(i) = gauss(xstar ,i)

During system execution, the value of an agent is represented in three places: within its state,

within the set of packets in transit on its outgoing channels, and within the received message field of

other agents. Although these are all values of the same agent, agent dynamics, message delay and

reordering do not guarantee their equality. In the proof of correctness, we define an error function

for each of these errors. Their definition is presented in Figure 6.7.

We define the error of an agent mes as the maximum of them,

mes(s,i): nonnegative_real = max(mae(s,i), mbe(s,i))

121

% error of target position of agent i

de(s,i): nonnegative_real = abs(xstar(i)-target(s)(i))

% error of current position of agent i

le(s,i): nonnegative_real = abs(xstar(i)-lastmsg(s)(i,i))

% error of the position of agent i stored by agent j

re(s,i,j): nonnegative_real = abs(xstar(i)-lastmsg(s)(j,i))

% error of position of agent i stored in packet p

be(p:Packet): nonnegative_real = abs(xstar(id(msg(p)))-loc(msg(p)))

Figure 6.7: Error values of agent i.

% maximum error function within outgoing channels

% defined axiomatically

mbe : [S,I -> nonnegative_real]

% maximum value is an upper bound on the errors within outgoing channels

mbe_all_error:

AXIOM FORALL(p,j):

buffer(s)(id(msg(p)),j)(p) IMPLIES be(p)<=mbe(s,id(msg(p)))

% maximum value is stored in a packet

mbe_ex_error :

AXIOM FORALL(i):

EXISTS(p,j) : id(msg(p))=i AND buffer(s)(i,j)(p) AND be(p)=mbe(s,i)

% maximum error within agent states

mre(s,i): nonnegative_real = max(LAMBDA (j) : re(s,i,j))

%

mae(s,i): nonnegative_real = max(de(s,i),mre(s,i))

Figure 6.8: Maximum error of agent i within its out-going channels and within agent states.

where mbe is the maximum error of agent i within the set of packets in transit on its outgoing

channels, and mae is the maximum error of agent i within agent states. We refer to Figure 6.8 for

definitions of mbe and mae.

6.4.2 Proof of Correctness PVS meta-theory

In this Section we present the Proof of Correctness meta-theory. This theory has a set of input

parameters, an assuming clause environment and the proof of correctness of the generic message-

passing multi-agent system.

6.4.2.1 Inputs and Assumptions

Inputs to this meta-theory are:

122

ASSUMING

% L1

inverse_exist: ASSUMPTION inv?(A)

% L2

diag_entry: ASSUMPTION FORALL(i: Index): A(i, i) = 1

% L3

diag_dominant: ASSUMPTION dd?(A)

% L4

strictly_diag_dominant: ASSUMPTION sdd?(A)

ENDASSUMING

Figure 6.9: Assumptions on matrix A.

• N of type posnat, storing the number of agents in the system;

• A of type Matrix, storing matrix A;

• b of type Vector, storing vector b;

• x0 of type Vector, storing the initial position vector x0;

• xstar of type Vector, storing the solution of the system of equations, i.e A−1 · b;

• ancs of type I -> list[I], storing the structure of the rooted forest used in the proof of

correctness.

We encode the assumptions of the meta-theory using the PVS assumption environment. This

environment facilities the access of properties within the meta-theory and obligate users of our library

to discharge them. The assuming clause contains assumptions on the structure of the matrix, on

structure of the rooted forest and on solution vector.

Assumptions on matrix A are presented in Figure 6.9 and correspond to conditions L1-4. They

have been encoded in PVS using predicates defined in Matrix meta-theory; the definition and

implementation of these predicates has been presented in Section 6.2.

We encode the arbitrary strictly diagonally dominant rooted forest using the function ancs; this

function maps each input agent i to the complete path from i to a rooted node of the forest. This

path is stored as a PVS list of identifiers. The user checks the validity of the forest data structure

by discharging certain assumptions on it. These assumptions are reported in Figure 6.10.

We briefly discuss these assumptions:

• Assumption root ensures that root vertices are strictly diagonally dominant;

• Assumption edge ensures that an agent and its parent are connected in the underlying com-

munication graph;

123

ASSUMING

root_: ASSUMPTION root?(i) IMPLIES sdd?(A,i)

edge_: ASSUMPTION

not_root ?(i) IMPLIES edge(A,i,parent(i))/=0

path_1: ASSUMPTION

not_root ?(i) IMPLIES ancs(i)=cons(parent(i),ancs(parent(i)))

path_2: ASSUMPTION

not_root ?(i) AND not_root ?(j) AND member(j,ancs(i))

IMPLIES member(parent(j),ancs(i))

no_repetition:

ASSUMPTION not_root ?(i) IMPLIES NOT member(i,ancs(i))

induct_: ASSUMPTION

(FORALL (i|root?(i)) : predic(i)) AND

(FORALL (j|not_root ?(j)): predic(parent(j)) IMPLIES predic(j))

IMPLIES (FORALL(k:I) : predic(k))

ENDASSUMING

Figure 6.10: Assumptions on the forest of trees.

• Assumption path 1,path 2 and no repetition ensure that the input graph is a forest, i.e. it

has no cycles;

• Assumption induct defines an induction scheme along the forest; if some property holds at

the roots of the forest, and, given a node, we prove that it holds at the node, given that it holds

for its parent, then we can safely derive that the property holds for all nodes of the forest.

As stated above, the solution vector xstar of the system of equations satisfies the fixed point

assumption.

As future work, we would remove ancs and xstar as input parameters of the theory. This requires

implementing a Deep-First Search Algorithm for constructing a forest from the communication graph

and implementing matrix inversion algorithms. In this case, assumptions on ancs and xstar would

be properties of these two data-structure to prove.

6.4.2.2 Proof of Correctness Theorems

Reasoning about system convergence requires the analysis of the system throughout an arbitrary

execution. Our responsibility is to show that

• the error of the system does not increase, and that

• it eventually decreases by a lower-bounded amount.

Using the diagonally dominant assumption on A, we can prove the first condition:

not_incr_error: LEMMA enabled(a, s) IMPLIES me(s) >= me(trans(a, s))

124

To prove the second condition, as discussed in Section 5.1.3, we use an arbitrary forest, encoded

in PVS by the input function ancs.

The proof requires to define a factor α by which the system will eventually decrease. Given the

rooted forest, for each node of the forest we recursively define the quantity p value. We prove that

this value is positive and (strictly) upper bounded by 1. The factor α is the maximum of these

quantities. In PVS,

alpha: real = max(LAMBDA (i:I): p_value(i))

We use extensively these two lemmas about α:

alpha_all: LEMMA FORALL(i: Index): p_value(i) <= alpha

alpha_ex: LEMMA EXISTS(j: Index): alpha = p_value(j)

Using induction on the forest (see Assumption induct in Figure 6.10), we prove that the max-

imum error of the system eventually decreases by α. Assuming that the error of the system is

upper-bounded by W , the base case prove that the error of the roots of the tree eventually decreases

by α. From there, we prove, assuming that the error of all ancestors of a node is upper-bounded by

W · α, that eventually the error of the node is upper bounded by the same quantity.

6.5 Framework Discussion

In this section, we offer commentary on our experience using PVS. Our library consists of over 200

lemmas, and approximately 8700 proof steps. We took advantages of PVS pre- and user-defined

types for modeling the system and the proof of correctness.

Vectors, matrices and forests were used extensively throughout our library. Developing a sufficient

infrastructure based around these structures consumed about 15% of our effort (with respect to the

number of proof steps). The PVS NASA libraries provided some relief, but modeling diagonally

dominant matrices and proving lemmas on products of matrices and vectors forced us to extend them.

Although NASA does provide a representation of trees and forests, their recursive implementation

made proving properties we required very difficult. Unlike the NASA implementation, where trees

are traversed starting from the leaves, we needed to prove properties on the tree starting from the

root and induct over the structure as well. For this reason, we preferred to represent the forest

using function ancs and ensure the needed properties using assumptions. The end-user is required

to discharge these assumptions.

We managed the proof of convergence by breaking it into smaller lemmas. This allowed us to

tackle small proofs where the goal was to show that eventually a specific property holds. For example,

proving that the error of the target position of an agent eventually decreases by the constant factor

125

α; then proving that its error in the outgoing channels eventually decreases by this factor; and finally

showing that its error stored in the state of the remaining agents eventually decreases by this factor.

Using this collection of sublemmas, we were able to prove that eventually the maximum error of

each agent decreases by the factor α.

Our libraries did not introduce new PVS proof strategies; the system-defined strategies, such as

grind and induct-and-simplify were sufficient. Future work includes investigation onto how our

libraries can take advantage of the proof strategy capabilities of PVS.

6.6 Verification of the Linear Robot Pattern Formation Pro-

tocol in PVS

In this Section, we prove correctness of the linear robot pattern formation protocol discussed in Sec-

tion 5.3 using the tool presented in this Chapter. The system consists of N +1 robots, with robots 0

and N fixed throughout the execution. Agent i, with 0 < i < N , communicates with its immediate

neighbors, i− 1 and i+ 1. Upon receiving a message from i− 1,i+ 1, i computes its new position as

the average of the left and right received values and moves towards it. As shown in Section 5.3.2,

this system can be expressed as a multi-agent system solving a system of linear equations of the

form A · x = b.

In order to use the tool for proving convergence, we implement a new theory, import and in-

stantiate appropriately the main theory of the tool and discharge its assumptions. We next discuss

the structure of the theory describing the linear robot pattern formation system; this theory can be

downloaded from [58] and it is called Linear System Agents.

6.6.1 Parameters

Parameters of the theory are:

• N, storing the number of agents,

• lx, storing the initial position of agent 0, and

• rx, storing the initial position of agent N .

6.6.2 PVS Instantiations

In this theory, we encode in PVS matrix A, vector b, vector of initial positions x0, vector of final

positions x̂ and spanning forest F, defined in Section 5.3.2. Initial robot positions are stored in

the PVS init vector; without loss of generality, we assume that initial position of agent i, with

0 < i < N , is zero. In PVS,

126

init: Vector = LAMBDA (r):

IF (r=0) THEN lx

ELSIF (r=N) THEN rx

ELSE 0

ENDIF

Matrix A and vector b are encoded in PVS as follows:

A: Matrix = LAMBDA (r,c):

IF (r=c) THEN 1 % main diagonal entries

ELSIF (r>0 AND r<N AND (c=r-1 OR c=r+1))

THEN -0.5 % secondary diagonal entries

ELSE 0

ENDIF

and

b: Vector = LAMBDA (r):

IF (r=0 OR r=N) THEN init(r)

ELSE 0

ENDIF

As discussed in Section 5.3.2, matrix A is a tri-diagonal matrix having value 1 along the main

diagonal, and value −0.5 on the secondary diagonals (with the exception of rows 0 and N , which

have 0 on the secondary diagonals) and b is a vector having only two non-zero entries (entry 0 storing

the initial position of agent 0 and entry N storing the initial position of agent N).

Final robot positions are stored in the xstar vector; in PVS,

xstar: Vector = LAMBDA (r):

init (0) * (N-r) / N + init(N) * r / N

As discussed in Section 5.3, the goal of the robots is to form an equi-spaced line with extremes lx

and rx.

As discussed in Section 5.3.3, we encode in PVS the following spanning forest of the communi-

cation graph rooted at strictly diagonally dominant nodes:

ancs(i:I): RECURSIVE list[I] =

IF (i=0 OR i=N) THEN null

ELSE cons(i-1,ancs(i-1)) ENDIF

MEASURE (i)

127

This forest consists of two trees. The first one is rooted at 0 and contains all nodes except N . In

this tree, the parent of node i, with 0 < i < N , is i− 1. The other tree consists of only node N .

6.6.3 Proving Correctness of the Protocol

In order to prove the correctness of this system in PVS, the Linear System Agents imports Proof

of Correctness meta-theory and instantiates its parameters. As discussed in Section 6.4.2.1, pa-

rameters of Proof of Correctness theory are the number of agents in the system, matrix A, vector

b, vector of initial positions, vector of final positions and a spanning forest of the communication

graph rooted at strictly diagonally dominant nodes. The import clause in the Linear System

Agents theory becomes

IMPORTING ProofofCorrectness[N, A, b, init , ancs , xstar]

When importing this meta-theory, the system generates 11 TCCs. These TCCs correspond to the

assumptions of the Proof of Correctness meta-theory and encode properties of A, F and x̂ needed

to be discharged (see Section 6.4.2.1). We discuss them in the next subsection.

6.6.4 Discharging Library Assumptions

In Table 6.1, we present a summary of our effort in discharging the assumptions of the tool. Almost

57% of our effort went into proving the invertibility property of A, the remaining 43% was equally

divided into proving the remaining assumptions of A, the assumptions on the forest and the fixed-

point assumption on the solution vector. Our total effort can be estimated into 1230 proof steps.

Assumptions Proof Steps Pct.

Invertibility (L1) 702 57.0%
Normalized (L2)

Weakly Diagonally Dominant (L3) 190 15.4%
Strongly Diagonally Dominant (L4)

Structure of Forest (Figure 6.10) 170 13.8%
Fixed point property of xstar (Equation 5.2) 168 13.7%

Total 1230

Table 6.1: Number of proof steps needed for discharging the assumptions of the tool.

We next discuss the invertibility property of A. Assumption L1 has been the most difficult to

discharge, because it required us to explicitly construct the inverse of the matrix and prove that it

is both left and right inverse. To this end, we used the method outlined in [67] for constructing the

inverse. This inverse is a function of the number of agents. The method first computes the principal

minors of matrix A,

minor(i: Index): real =

128

IF (i = N) THEN expt (1/2, N-1) * N

ELSE expt (1/2,i) * (i+1)

ENDIF

where expt is the standard exponential function, defined in the PVS prelude. Using this function it

computes the determinant of A:

det: real = minor(N)

This method then computes the sequence {φi} as follows:

phi(i: Index): real =

IF (N=2) THEN 1

ELSIF (i==0) THEN expt (1/2, N-3) * (N-2)

ELSE expt (1/2, N-1-i) * (N-i)

ENDIF

If finally defines A−1:

invA: Matrix =

LAMBDA(r,c: Index):

IF (r=c) THEN diag_inv(r)

ELSIF (r>c) THEN l_prod(r,c)

ELSE r_prod(r,c)

ENDIF

where

diag_inv(i: Index): real =

(IF (i=0) THEN 1 ELSE minor(i-1) ENDIF) *

(IF (i=N) THEN 1 ELSE phi(i+1) ENDIF) /

det

and

l_prod(i,j: Index): real =

(IF even?(i+j) THEN 1 ELSE -1 ENDIF) *

(IF (i>j) THEN

IF (i=N) THEN 0

ELSE expt(-0.5, i-j)

ENDIF

ELSE 0

ENDIF) *

129

(IF (j=0) THEN 1 ELSE minor(j-1) ENDIF) *

(IF (i=N) THEN 1 ELSE phi(i+1) ENDIF) /

det

and

r_prod(i,j: Index): real =

(IF even?(i+j) THEN 1 ELSE -1 ENDIF) *

(IF (i>j) THEN

IF (i=0) THEN 0

ELSE expt(-0.5, j-i)

ENDIF

ELSE 0

ENDIF) *

(IF (j=0) THEN 1 ELSE minor(i-1) ENDIF) *

(IF (i=N) THEN 1 ELSE phi(j+1) ENDIF) /

det

After constructing the inverse of A, we prove lemmas about the product of matrix A and its inverse

and show that the product matrix is an identity matrix.

130

Chapter 7

Properties of Automata in the
Presence of Exogenous Inputs

In this Chapter, we present theorems about systems in the presence of exogenous inputs, which

represent changes to the environment in which the system operates. We present sufficient conditions

that guarantee that the system converges to a desired state when the environment does not change

(i.e. no exogenous inputs); however, when the environment changes the desired system state may

also change and therefore convergence to a changing desired state may not be possible. We give

sufficient conditions that ensure that the distance between the actual state and the desired state is

eventually bounded. We apply these results to the class of automata presented in Chapter 5. The

automata in this class solve systems of linear equations.

In Section 7.1 we present assumptions on the automaton in the absence of exogenous inputs and

on the automaton of the exogenous inputs. In Section 7.2 we show some properties of the executions

of the automaton in the presence of exogenous inputs. In Section 7.3 we prove the main result of

this Chapter. We show that if the assumptions presented in Section 7.1 hold, then the exogenous

automaton is bounded. In Section 7.4 we apply these results to the class of automata solving systems

of linear equations. Finally, in Section 7.5 we discuss the main result presented in this Chapter and

relate them to the current literature.

Throughout this Chapter, we denote by A an automaton modeling a system in the absence of

exogenous inputs, by Ā an automaton modeling the exogenous inputs and by Aexog the exogenous

automaton, i.e. the automaton modeling the system in the presence of exogenous inputs. We refer

to Section 2.4 for the definitions of the exogenous automaton Aexog and the automaton of the

exogenous inputs Ā. We recall that A, Ā and Aexog operate over the same state space; we denote

this state space by S. We denote the components of A by (S, S0, A,E, T), the set of equilibrium

states of A by Ŝ and the components of Ā by (S, S0, Ā, Ē, T̄). Automaton Aexog is constructed

using the procedure in Section 2.4.

131

7.1 Assumptions

In this Section, we present assumptions on the system without external inputs and on the external

inputs. Later in this Chapter, we prove that if these conditions hold then the distance between the

actual and time-varying desired states of the system is bounded. We make the following assumptions:

Assumptions.

N1. S is closed under + operator, i.e.

∀s, s̄ ∈ S : s+ s̄ ∈ S

N2. transition function T of A is additive with respect to S, i.e.

∀s, s̄ ∈ S, ∀a ∈ A,∀t ∈ [0, τs+s̄,a] : T (s+ s̄, a)(t) = T (s, a)(t) + T (s̄, a)(t)

N3. transition function T̄ of Ā is defined as

∀s ∈ S, ∀a ∈ Ā, ∀t ∈ [0, τs,a], : T̄ (s, a)(t) = s+ vs,a,t

where vs,a,t ∈ S

N4. given function g : S → Ŝ, ∃α, with 0 ≤ α < 1, such that A converges linearly to g with rate α,

N5. the error function e : S → R≥0, defined as e(s) = d(s, g(s)) is sub-additive, i.e.

∀s, s̄ ∈ S : e(s+ s̄) ≤ e(s) + e(s̄)

N6. ∃C ≥ 0 such that ∀s0 ∈ S0, e(s0) ≤ C and ∀s ∈ S, ∀a ∈ Ā,∀t ∈ [0, τs,a], e(vs,a,t) ≤ C

We next discuss these Assumptions. Assumption N1 requires the state space S to be closed under

+ operator. As an example, we consider the state space of the shared-state Line-Up automaton

presented in Section 2.1.2. In this example, the state space is RN+1 and it is closed under +

operator, defined as addition between vectors. Assumption N2 requires the transition function of

A to be additive with respect to the state space of A. This assumption defines a specific structure

for the transition function; it requires that ∀s, s̄ ∈ S, a ∈ A, the time durations of a in state s and

in state s̄ are upper bounds to the time duration of action a in state s+ s̄. Formally, τs+s̄,a ≤ τs,a

and τs+s̄,a ≤ τs̄,a. For example, the transition function of the shared-state Line-Up automaton

presented in Section 2.1.2 is additive with respect to the state space RN+1. In this example, actions

132

are discrete. Assumption N3 requires a specific behaviour of the exogenous inputs injected in the

systems. These inputs model quantities that can be added to or subtracted from the current state

of the system. Throughout this Chapter, ∀s ∈ S, ∀a ∈ Ā, we denote by vs,a,t the input injected at

time t when executed the exogenous action a in state s. As an example, we consider the exogenous

inputs defined in Section 2.4 for the shared-state Line-Up automaton presented in Section 2.1.2.

These exogenous inputs corresponds to the action move defined in Equation 2.5 and Equation 2.6.

When this action is executed on state s ∈ RN , it adds to s the time-varying quantity v · t, with v

constant and t ∈ [0, τs,move]. Assumption N4 requires that for all states s ∈ S the automaton in

the absence of exogenous inputs with initial state s converges linearly to g(s), with g : S → Ŝ. We

refer to Section 3.4 for the definition of convergence of an automaton to a function. The constant

α is such that the error of the system starts in e(s) and eventually decreases to α · e(s), then to

α2 · e(s) and, thus, converging to 0. We refer to Section 3.4 for the definition of linear convergence.

Assumption N5 requires that function e defined on the state space S is sub-additive. We recall that

d is a distance function on the state space S. This assumption restricts the possible behaviour of

function g. In order to show that the automaton in the presence of exogenous inputs is bounded,

this assumption requires that function g together with function d define a sub-additive function e.

For example, if function g is additive and d is a norm function on S, then function e is sub-additive.

Assumption N6 requires that the error of the initial system and the error of the exogenous inputs

are uniformly bounded by C. Together with Assumption N4, we have that the system starting in

any initial state of A or in any vs,a,t (∀s ∈ S, ∀a ∈ A, ∀t ∈ [0, τs,a]) converges linearly to g(s) with

rate α and error bounded by C.

7.2 Properties of Executions of Exogenous Automata

In this Section, we present an upper-bound on the error of the executions of the automaton in the

presence of exogenous inputs.

We denote by πexog an execution fragment of Aexog. By construction, πexog can be finite or

infinite and, as discussed in Section 2.2.2, it can start while executing the first action of the fragment

(see Figure 2.9), or, in case of finite fragment, it can stop before completing the execution of the

last action of the fragment (see Figure 2.8).

We denote by π the projection of πexog on A. This is an execution fragment where actions of

πexog in Ā are treated as no-op operations, i.e. their execution does not change the state of the

system. The initial state of the π is equal to the initial state of πexog. Consider the case when

an exogenous input action a (a ∈ Â) is the first action of πexog. Suppose that πexog starts while

executing action a; by construction, ∃s ∈ S, t ∈ [0, τs,a] such that the execution of action a in πexog

corresponds to T (s, a)[t, τs,a]. In this case, we have that the post-state of the execution of action a

133

in π is s, i.e. π(τs,a − t) = s.

Given an action a ∈ πexog, with a ∈ Ā, we denote by πexog,a the suffix of πexog starting from the

pre-state of the execution of action a in πexog. If a is the first action of πexog and the system starts

while executing action a, we have that πexog,a.fstate = πexog.fstate.

We denote by πa a new execution fragment that has as initial state the exogenous input injected

at the end of the execution of a in πexog,a. The fragment πa executes all actions of A in πexog,a in

the same order as πexog,a. Consider the case when a ∈ Â is the last action of πexog. Suppose that

πexog ends before completing action a, i.e. there exists s ∈ S, t ∈ (0, τs,a), such that πexog.lstate =

T (s, a)(t). In this case the fragment πa has 0 time duration and consists only of the input injected

at state T (s, a)(t).

We next show an upper bound on the error of a finite execution fragment of Aexog.

Lemma 29. Given a finite execution fragment πexog of Aexog,

e(πexog.lstate) ≤ e(π.lstate) +
∑

a∈πexog

a∈Ā

e(πa.lstate)

Proof. We fix an arbitrary finite execution fragment πexog of Aexog. We denote by s′ the final state

of πexog, i.e. s′ = πexog.lstate. Using Assumption N3 and Assumption N2, we have that

s′ = π.lstate+
∑

a∈πexog

a∈Ā

πa.lstate

Using Assumption N5, we have that

e(s′) = e

π.lstate+
∑

a∈πexog

a∈Ā

πa.lstate


≤ e(π.lstate) +

∑
a∈πexog

a∈Ā

e(πa.lstate)

Before computing the bound on the error of an infinite execution, we introduce the concept of

epochs. By Assumption N4, there exists a sequence of consecutive time intervals, called epochs,

such that ∀s ∈ S the error of the automaton (S, {s}, A,E, T) at the end of epoch k, with k ≥ 0, is

bounded by Cs · αk+1, with Cs = e(s). For each epoch k, we denote by L(k) the length of epoch k.

We next consider infinite executions. Given the sequence of epochs, we denote by π[k], k ≥ 0,

the prefix of π ending at the end of epoch k; we denote by πexog[k] the corresponding fragment in

πexog.

134

Lemma 30. Let πexog be an infinite execution of Aexog. Then, for all epoch k, with k ≥ 0,

e(πexog[k].lstate) ≤ (αk+1 · C) +

C · L · k∑
j=0

αk−j


where L = maxj∈{0,...,k} L(j).

Proof. Using Lemma 29, the error of πexog at the end of epoch k can be bounded as follows:

e(πexog[k].lstate) ≤ e(π[k].lstate) +
∑

a∈πexog[k]

a∈Ā

e(πa[k].lstate) (7.1)

Using Assumption N4 and Assumption N6, the error of π[k].lstate is upper bounded as follows

e(π[k].lstate) ≤ αk+1 · C

The summation term of Equation 7.1 can be partitioned into epochs:

∑
a∈πexog [k]

a∈Ā

e(πa[k].lstate) ≤
k∑
j=0

∑
a∈epoch(j)

a∈Ā

e(πa[k].lstate)

Using Assumption N4 and Assumption N6, we have that

e(πa[k].lstate) ≤ αk−j · C

Hence,
k∑
j=0

∑
a∈epoch(j)

a∈Ā

e(πa[k].lstate) ≤
k∑
j=0

αk−j · C · L(j)

where L(j) is an upper bound on the number of adversary actions in epoch j. Hence,

e(πexog[k].lstate) ≤
(
αk+1 · C

)
+

C · L · k∑
j=0

αk−j


where L = maxj=0,...,k L(j).

7.3 Properties of the Exogenous Automaton

In this Section, we present the main result of the Chapter. Under the Assumptions presented in

Section 7.1, we prove the exogenous automaton is bounded with respect to some function g.

135

Theorem 31. If Assumptions N1-6 hold, then Aexog is bounded with respect to g.

Proof. Let πexog an infinite execution of Aexog. Using Lemma 30, we have that

e(πexog[k].lstate) ≤ αk+1 · C + C · L ·
k∑
j=0

αk−j

Taking the limit of the last quantity as k goes to infinity, we obtain that the system is bounded with

respect to g with constant

L =
1

1− α
· C · L

We notice that the value of L in the proof of Theorem 31 is not a strict upper bound. We can con-

struct executions of the system where the distance between the current state and the corresponding

desired state is L.

Assume that ∀s ∈ S, ∀a ∈ Ā,∀t ∈ [0, τs,a], the state vs,a,t injected when executing action a in

state s at time t is an equilibrium state, i.e. vs,a,t ∈ Ŝ. This extra condition leads to the following

stronger result:

Theorem 32. If Assumptions N1-6 hold and

N7. ∀s ∈ S, a ∈ Ā,∀t ∈ [0, τs,a], vs,a,t ∈ Ŝ,

then Aexog is 0-bounded with respect to g.

Proof. Let πexog an infinite execution of Aexog. Using Assumption N7, Equation 7.1 reduces to

e(πexog[k].lstate) ≤ e(π[k].lstate)

since ∀a ∈ π[k], with a ∈ Ā, e(πa[k].lstate) = 0. The quantity e(π[k].lstate) converges to 0 as k goes

to infinity, by Assumption N4.

This theorem ensures that the system in the presence of exogenous automaton converges to Ŝ,

even if the system is driven by non-zero exogenous inputs.

7.4 Solving Systems of Linear Equations in the Presence of

Exogenous Inputs

In this Section, we present properties of the class of systems discussed in Chapter 5 in the presence

of exogenous inputs. This class consists of decentralized schemes whose goal is solving systems of

equations of the form A · x = b. For example, the systems presented in Figure 1.3 and Figure 1.6

136

can be expressed as message-passing multi-agent systems whose goal is to solve a system of linear

equations in the presence of exogenous inputs. We focus on shared-state multi-agent systems. We

construct a generic exogenous automaton for this class and derive conditions on the exogenous inputs

that guarantee the automaton in presence of exogenous inputs to be bounded. We first discuss

exogenous automata for multi-agent systems with discrete actions; then, we consider exogenous

automata for multi-agent systems with timed actions. We conclude the Section with a discussion of

message-passing schemes for solving systems of linear equation in the presence of exogenous inputs.

We refer to Section 5.1 for a detailed discussion of shared-state multi-agent systems solving systems

of linear equations and to Section 5.2 for a discussion of message-passing systems.

7.4.1 Solving Systems of Linear Equations with Discrete Actions

In this Section, we present properties of a generic exogenous automaton for shared-state systems

with discrete actions solving systems of linear equations.

7.4.1.1 Exogenous Automaton

In this Section, we describe the generic exogenous automaton for shared-state systems with discrete

actions. This automaton, denoted by Aexog,D = (Sexog,D, S0exog,D, Aexog,D, Eexog,D, Texog,D), com-

bines the generic discrete automaton AD = (SD, S0D, AD, ED, TD) presented in Section 5.1.2 and

a generic exogenous input automaton Ā = (SD, S0D, ĀD, ĒD, T̄D) using the procedure presented

in Section 2.4.

In this Section, we consider an extension of the automaton AD defined in Section 5.1.2. We

assume that AD explicitly models vector b in its state space. This is because we allow the exogenous

input automaton Ā to modify vector b. A state s ∈ SD becomes of a pair, where the first component

of the pair is vector x and the second component is vector b. A state s ∈ SD is of the form s = (x, b);

we refer to the first component of s as s.x and to the second component of s by s.b. The automaton

AD does not modify component b of the state. This component is set to the input parameter b,

initially. Actions of the system does not change it, they can only change component x of the state.

The proof of convergence of AD of Section 5.1.3 remains valid. A state sD is an equilibrium state of

AD if the x component of the state is the solution of the system of linear equations A ·x = sD.b, i.e.

sD.x = A−1 · sD.b. By construction of the action set, for all vectors of initial guess, AD converges

to the equilibrium state ŝD = (A−1 · b, b), where b is an input parameter. We denote by ŜD the set

of equilibrium states of AD.

137

7.4.1.2 Properties of the Exogenous Automaton

We next discuss some properties of the exogenous automaton Aexog,D. Some of these properties are

derived from properties of the discrete automaton AD.

We first show that the state space SD is closed under addition, where the addition operation

between states is defined as follows:

∀sD, s̄D ∈ SD : sD + s̄D = (sD.x+ s̄D.x, sD.b+ s̄D.b)

The addition between two states defines a pair, where the first component of the pair is the sum

of the x component of the two states, and the second component of the pair is the sum of the b

component of the states.

Lemma 33. The state space SD is closed under addition.

Proof. It follows since RN is a vector space.

We next show that the transition function TD of AD is additive.

Lemma 34. TD is additive with respect to SD.

Proof. Our goal is to prove that ∀sD, s̄D ∈ SD, ∀aD = lei,

TD(sD + s̄D, aD) = TD(sD, aD) + TD(s̄D, aD)

Fix two arbitrary states sD, s̄D ∈ SD and an arbitrary action aD = lei ∈ AD. By construction,

we have that action aD does not modify component b of the state. Hence,

T (sD + s̄D, aD).b = (sD + s̄D).b

= sD.b+ s̄D.b

= TD(sD, aD).b+ TD(s̄D, aD).b

where the first inequality holds by construction of action aD; the second inequality, by definition of

the addition operation; and the third inequality holds by construction of action aD.

We next consider component x of the state. By construction of action aD = lei, only component

x of agent i is modified. Hence, for all j ∈ {1, . . . , N} with j 6= i, we have that

T (sD + s̄D, aD).x(j) = (sD + s̄D).x(j)

= sD.x(j) + s̄D.x(j)

= TD(sD, aD).x(j) + TD(s̄D, aD).x(j)

138

We next consider the i-th component of T (sD + s̄D, aD).x. In this case, we have that

TD(sD + s̄D, aD).x(i) = (sD + s̄D).b(i)−
∑
j 6=i

A(i, j) · (sD + s̄D).x(j)

= sD.b(i) + s̄D.b(i)−
∑
j 6=i

A(i, j) · (sD.x(j) + s̄D.x(j))

=

sD.b(i)−∑
j 6=i

A(i, j) · sD.x(j)

+

s̄D.b(i)−∑
j 6=i

A(i, j) · s̄D.x(j)


= TD(sD, aD).x(i) + TD(s̄D, aD).x(i)

where the first inequality follows from definition of action aD; the second inequality follows from

construction of addition operator; the third inequality rewrites the previous inequality; and the last

inequality follows from definition of the transition function.

We next define an additive function g : SD → ŜD. It is defined as follows: ∀sD ∈ SD,

g(sD) = (A−1 · sD.b, sD.b)

This function maps a state sD into the solution of the system of equations A · x = sD.b. We next

show that function g is additive.

Lemma 35. Function g is additive.

Proof. We next prove that ∀sD, s̄D ∈ SD,

g(sD + s̄D) = g(sD) + g(s̄D)

Fix an arbitrary pair of states sD, s̄D ∈ SD. We have that the following chain of equalities holds

g(sD + s̄D) = (A−1 · (sD + s̄D).b, (sD + s̄D).b)

= (A−1 · (sD.b+ s̄D.b), sD.b+ s̄D.b)

= (A−1 · sD.b, sD.b) + (A−1 · s̄D.b,+s̄D.b)

= g(sD) + g(s̄D)

where the first inequality follows by construction of function g; the second inequality follows by

construction of the addition operator; the third inequality follows from construction of the state

space and last inequality follows from definition of g.

We next define the error function e : SD → R≥0 as the infinity norm of the distance between the

139

input state and corresponding equilibrium state computed using function g: ∀sD ∈ SD,

e(sD) = ||sD.x− g(sD).x||∞

This is because, by construction, sD.b = g(sD).b. This function generalizes the function e defined

in Section 5.1.2. We next show that function e is sub-additive.

Lemma 36. Function e is sub-additive.

Proof. Our goal is to show that ∀sD, s̄D ∈ SD,

e(sD + s̄D) ≤ e(sD) + e(s̄D)

Fix states sD, s̄D ∈ SD. We have that the following chain of inequalities holds:

e(sD + s̄D) = ||sD + s̄D − g(sD + s̄D)||∞

= ||sD + s̄D − g(sD)− g(s̄D)||∞

≤ ||sD − g(sD)||∞ + ||s̄D − g(s̄D)||∞

≤ e(sD) + e(s̄D)

where the first equality follows by definition of function e; the second equality follows by Lemma 35;

the third inequality follows by the triangle equality for the infinity norm and the last inequality

follows by construction of function e.

7.4.1.3 Bounded Exogenous Automaton

In this Section, we show that the exogenous automaton in bounded with respect to function g defined

in Section 7.4.1.2.

Theorem 37. If Ā satisfies Assumptions N3 and N6, then Aexog,D is bounded with respect to func-

tion g.

Proof. This Theorem follows from Theorem 31. Specifically, Assumption N1 follows from Lemma 33,

Assumption N2 from Lemma 34, Assumption N5 from Lemma 36, Assumption N4 from Theorem 23,

Assumptions N3 and N6 hold by assumption of the Theorem.

Furthermore,

Theorem 38. If Ā satisfies Assumptions N3, N6 and N7, then Aexog,D is 0-bounded with respect

to function g.

Proof. This Theorem follows from Theorem 32.

140

7.4.1.4 Discussion

In this Section, we discuss Theorem 37 and Theorem 38 in in the presence of specific exogenous

inputs.

We first consider an exogenous input automaton Āb whose actions can only modify vector b.

This exogenous input automaton models a multi-agent system where vector b is time-varying, i.e.

the final configuration of the system and of the protocol executed by the agents changes with time.

The set of actions of Āb consists of a single action b update. This action is always enabled, i.e.

Ēb(sD, b update) = true, ∀sD ∈ SD. When it is executed in state sD ∈ SD, it adds to the component

b of sD the constant vector b̂, and does not change the component x, i.e.

T̄b(sD, b update) = (sD.x, sD.b+ b̂)

The post-state of this action can be represented as the sum of the states sD and vb update, with

vb update being the pair of vectors (0, b̂). By construction of the state space SD, vb update ∈ SD. By

construction, action b update satisfies assumption N3. We assume that e(vb update) is bounded by

C, where, by definition,

e(vb update) = ||A−1 · b̂||∞

Hence, Āb satisfies Assumption N6. We next show that the automaton in the presence of this specific

exogenous input is bounded.

Theorem 39. If Āb = (SD, S0D, {b update}, Ēb, T̄b), then Aexog,D is bounded with respect to func-

tion g.

Proof. This Theorem follows from Theorem 37. Specifically, the value of the constant L is bounded

by:

L ≤ 1

1− α
· L · ||A−1 · b̂||∞

with α defined in Chapter 5.

We notice that we can construct executions of the system where the upper bound on the value

of constant L in the proof of Theorem 39 is reached.

Given the automaton Āb, the automaton Aexog,D is 0-bounded with respect to function g if and

only if ||A−1 · b̂||∞ = 0. By construction of matrix A, this condition holds if and only if b̂(i) = 0 for

all i ∈ {1, . . . , N}, or equivalently there are no inputs injected into the system.

We next discuss this exogenous input automaton in the case of the linear robot pattern formation

multi-agent system discussed in Section 5.3. We assume that b̂ has all entries equal to 0, with the

exception of entries 0 and N that are positive. In this case, action b update corresponds to agents

0 and N moving with a constant velocity. In this special case, Theorem 39 ensures that Aexog,D is

141

bounded with respect to g. Furthermore, the constant L can be bounded as:

L ≤ 2N−1 · L ·max{b̂(0), b̂(N)}

since A−1 · b̂ = b̃ where

b̃(0) = b̂(0)

b̃(1) = −0.5 · b̂(0)

b̃(i) = 0 ∀i, 1 < i < N − 1

b̃(N − 1) = −0.5 · b̂(N)

b̃(N) = b̂(N)

by construction of matrix A. As shown in the formula, the rate of growth of the system is exponential

in the size of the system and linear in the epoch size and in the leader velocities. We can construct

executions where the error of the system is exponentially large.

We next consider a different exogenous input automaton Āx whose actions of the exogenous

input automaton can only change the x component of the state. This exogenous input automaton

models a multi-agent system where agents change their value due to some external conditions.

The set of actions of Āb consists of a single action x update. This action is always enabled, i.e.

Ēx(sD, x update) = true, ∀sD ∈ SD. When it is executed in state sD ∈ SD, it adds to the component

x of sD the constant vector x̂, i.e.

T̄x(sD, x update) = (sD.x+ x̂, sD.b)

The post-state of this action is the sum of the state sD and the state vx update, with vx update being

the pair of vectors (x̂, 0). By construction, action x update satisfies Assumption N3. The error of

vx update is given by

e(vx update) = ||x̂||∞

We assume that the maximum component of x̂ is bounded. Hence, Āx satisfies Assumption N6. We

next prove bounded-ness of Aexog,D.

Theorem 40. If Āx = (SD, S0D, {x update}, Ēx, T̄x), then Aexog,D is bounded with respect to func-

tion g.

Proof. This Theorem follows from Theorem 37. Specifically, the value of the constant L is bounded

by:

L ≤ 1

1− α
· L · ||x̂||∞

142

with α defined in Chapter 5.

We notice that, given the automaton Āx, the automaton Aexog,D is 0-bounded with respect to

function g if and only if ||x̂||∞ = 0. By construction of vector x̂, this condition holds if and only if

x̂(i) = 0 for all i ∈ {1, . . . , N}, or equivalently there are no inputs injected into the system.

In the special case of the linear robot pattern formation multi-agent system, we have that action

x update corresponds to follower agents moving with constant velocities. Their movement can be

due to exogenous factors. In this special case, Theorem 40 holds with constant L bounded as follows:

L ≤ 2N−1 · L · ||x̂||∞

As expected, the bound on the convergence grows linearly with the exogenous inputs injected in the

system.

7.4.2 Solving Systems of Linear Equations with Dynamics

In this Section, we present a generic exogenous automaton modeling a shared-state system with

dynamics in the presence of exogenous inputs. The shared-state system in the absence of exogenous

inputs has been discussed in Section 5.1.4. This Section generalizes Section 7.4.1.

7.4.2.1 Exogenous Automaton

The exogenous automaton Aexog,dyn combines the automaton Adyn with explicit arbitrary dynamics

presented in Section 5.1.4 and a generic exogenous input automaton Ā.

We explicitly model vector b in the state space of Adyn. As discussed in Section 7.4.1, we extend

the state of the system because we want to model exogenous inputs that can change both the state

space of the agents and vector b. A state s ∈ Sdyn is a triple (x, z, b), where s.x stores the current

state of the system, s.z its destination state and x.b the vector b. Component b is set to the input

parameter b, initially; actions of the automaton Adyn do not change it. Hence, Theorem 24 still

holds.

An equilibrium state ŝdyn is of the form:

ŝdyn.x = ŝdyn.z =
(
A−1 · ŝdyn.b

)
We denote by Ŝdyn the set of equilibrium states of Adyn.

7.4.2.2 Properties of the Exogenous Automaton

We next discuss some properties of Aexog,dyn. These properties generalize properties of the shared-

state discrete automaton presented in Section 7.4.1.2. By construction, the state space is closed

143

under addition. Given two states sdyn, s̄dyn ∈ Sdyn, the state sdyn + s̄dyn is defined as

sdyn + s̄dyn = (sdyn.x+ s̄dyn.x, sdyn.z + s̄dyn.z, sdyn.b+ s̄dyn.b)

In this state, component x is the sum of component x in the two states; similarly for component b

and component z.

Under specific assumptions of function f describing the dynamics of the agents, the transition

function Tdyn is additive. We refer to Section 5.1.4 for the definition of Tdyn.

Lemma 41. If

O1. ∀s ∈ Sdyn, ∀a ∈ Adyn, function fs,a is additive with respect to Sdyn,

then Tdyn is additive with respect to Sdyn.

Proof. The proof is similar to the proof of Lemma 34 and not reported.

We extend function g of Section 7.4.1.2 to Sdyn; function g : Sdyn → Ŝdyn is defined as: ∀sdyn ∈

Sdyn,

g(sdyn) = (A−1 · sdyn.b, A−1 · sdyn.b, sdyn.b)

This function maps a state sdyn into a state where both x component and z component stores the

solution of the system of equations A · x = sdyn.b. By construction, function g is additive.

Lemma 42. Function g is additive.

Proof. The proof is similar to the proof of Lemma 35 and not reported.

We next define the error function e : Sdyn → R≥0, ∀sdyn ∈ Sdyn,

e(sdyn) = ||sdyn.x− g(sdyn).x||∞ + ||sdyn.z − g(sdyn).z||∞

By construction, sdyn.b = g(sdyn).b, for this reason is not reported in the sum. This function

generalizes the function e defined in Section 7.4.1.2 and it is additive.

Lemma 43. Function e is sub-additive.

Proof. The proof is similar to the proof of Lemma 36 and not reported.

7.4.2.3 Bounded Exogenous Automaton

In this Section, we discuss the bounded-ness property of Aexog,dyn with respect to function g. We

have that

Theorem 44. If Ā satisfies Assumptions N3 and N6, and Adyn satisfies Assumptions F3-4 and

Assumption O1, then Aexog,dyn is bounded with respect to function g.

144

Proof. This Theorem follows from Theorem 31. Specifically, Assumption N1 follows by construction,

Assumption N2 from Lemma 41 with Assumption O1, Assumption N5 from Lemma 43, Assump-

tion N4 from Theorem 23, Assumptions N3 and N6 hold by assumption of the Theorem.

Assumptions F3-4 ensure convergence of the automaton in the absence of exogenous inputs.

7.4.3 Solving Systems of Linear Equations via Message-Passing

In this Section, we discuss the applicability of the results of this Chapter to message-passing multi-

agent systems. In Section 5.2, we have detailed the structure of the generic message-passing au-

tomaton Amp = (Smp, S0mp, Amp, Emp, Tmp); this automaton models a message-passing multi-agent

system with bounded delay B and explicit arbitrary dynamics solving a system of linear equations.

As presented in Section 5.2, a state ofAmp is a function from [−B, 0] to Sdyn. In these systems, the

automaton modeling the exogenous inputs can change any entry of the state. These exogenous input

may model noise in the communication. For example, the automaton Āx models a communication

medium where messages may be corrupted. Given smp, s̄mp ∈ Smp, the state smp+ s̄mp is a function

from [−B, 0] to Sdyn defined as ∀t ∈ [−B, 0], smp + s̄mp(t) = smp(t) + s̄mp(t). By construction,

Smp is closed under + operator. By construction of Tmp, it follows that transition function Tmp is

additive. We do not define function g for Amp; instead, we use the linear function g of Adyn defined

in Section 7.4.2. Using the asynchronous view relation, we construct function e as follows. For all

smp ∈ Smp, e(smp) is the maximum of the errors of its asynchronous views, i.e.

e(smp) = max
sdyn∈H(smp)

e(sdyn)

These properties of Amp ensure that Assumptions N1, N2, N5 and N4. Hence, we can derive that

the automaton Aexog is bounded with respect to function g.

7.5 Discussion

In this Section, we discuss the main results of this Chapter and relate them to the current literature.

Our results apply to systems that, in the absence of exogenous inputs, execute additive protocols

(see Assumption N2) and converge linearly with rate α (see Assumption N4). The error function of

the system is sub-additive (see Assumption N5) and the exogenous inputs injected into the system

are uniformly bounded quantities added to the state (see Assumption N3 and N6). For example, a

linear protocol that estimates a linear statistics of the system, such as linear schemes for computing

the average of a system, satisfies these assumptions.

In this Chapter, A represents an arbitrary automaton with timed actions. Automaton A can

model both shared-state multi-agent systems and message-passing multi-agent systems. Further-

145

more, these systems can have fixed or time-varying network topologies. In Section 7.4, we apply

these results to the class of systems solving systems of linear equations. We notice that, by con-

struction of the exogenous inputs, we have that actions of Ā can modify the state of all agents in

the system. This behavior is different from the behavior of actions in A where an action can only

modify the state of a single agent. In the case of message-passing systems the inputs injected into

the system correspond to noise in the communication, for example, they can model forged or cor-

rupted message. Hence, in message-passing systems in the presence of exogenous inputs, messages

may be lost, duplicated, delayed, received out-of-order or corrupted. Under this extremely weak

communication medium we cannot ensure convergence of the system.

By construction of the automaton in the presence of exogenous inputs, execution fragments of

Aexog consist of sequences of states and timed actions where the actions belong to A ∪ Ā. In this

model, actions of A and actions of Ā are sequentially executed. We can generalize the automaton

in the presence of exogenous inputs and model a general system in the presence of exogenous inputs

where actions of the agents are executed concurrently with the exogenous input actions. Concurrency

is modeled using the transition function. The concurrent execution of an action a ∈ A and an action

of ā ∈ Ā corresponds to the execution of the two actions independently; the state of the concurrent

execution of a and ā is the sum of the state obtained by executing action a and the exogenous input

injected when executing action ā.

Our work extends previous work on multi-agent systems in the presence of exogenous inputs such

as [62, 63, 65, 26, 68, 69]. In [62], authors provide conditions on the exogenous inputs for shared-

state concurrent systems with discrete actions and fixed network topology. These systems execute

distributed linear schemes. Results presented in this Chapter and published in [55] extend [62] to a

more general class of multi-agent systems. We allow for systems with timed-actions operating over

an unreliable communication medium. In [65], authors present a specific multi-agent system able

to track the average of time-varying quantities. The work in [26] investigates multi-agent systems

consisting of iterative linear schemes for computing statistics over time-varying topologies. This

work assumes bounded exogenous inputs with bounded derivatives. In [68, 69], authors focus on

discrete shared-state concurrent multi-agent systems. They present a family of systems whose goal

is tracking the average of time-varying quantities; the class of exogenous input functions investigated

in their work include polynomial and periodic functions.

146

Chapter 8

Conclusions

In this Chapter, we summarize the main results obtained in this Thesis and discuss ideas for future

research.

8.1 Thesis Contributions

We developed theory to support verification of multi-agent systems operating on very general en-

vironments. This theory combined nondeterministic models of communication with multi-agent

systems where agents can change their states continuously.

We introduced a general automaton model and used it to represent a very general class of multi-

agent systems. We allowed for continuous dynamics, unreliable message-passing communication and

time-varying goal configurations. For example, in the case of unreliable communication, the model

allowed for lost, delayed, duplicated, or received out-of-order messages. We considered both multi-

agent systems where only one agent at a time can change its state and multi-agent systems where

multiple agents may change their states concurrently.

Models in this Thesis used fairness from temporal logic. They assumed that an agent is never

partitioned from the system. In case of unreliable communication, the fairness requirement trans-

lated into assuming that infinitely many messages sent from one set of agents to the others get

through eventually.

We focused primarily on convergence and stability properties. We provided conditions on the

systems that ensure stability and convergence. A system converges to a desired goal configuration if

it gets arbitrary close to it, although it may never actually reach it. In our theory, proofs of stability

and convergence can be verified mechanically.

We studied robustness properties of multi-agent systems in which the environment is time-varying

and affects the goal configuration of the system. In this case, we derived bounds on the distance be-

tween the actual and desired trajectory of the system. Such bounds require that fairness constraints

hold within a bounded time interval called epoch.

147

8.2 Summary

In Chapter 2 we have presented the automaton with timed action model. This model is used to

formally describe the structure and behaviour of multi-agent systems, along with the structure and

behavior of exogenous inputs. We have introduced a new notion of fairness for multi-agent systems,

which require that the multi-agent system is never permanently partitioned in non-communicating

sub-systems. We have shown that this notion of fairness is weaker than weak fairness.

In Chapter 3 we have discussed the notion of equilibrium states for automata with timed actions.

We have modeled stability and asymptotical stability properties of these equilibrium states. We

have provided conditions on the structure of the Lyapunov function which guarantee stability and

convergence. We have defined a novel property for multi-agent systems in the presence of exogenous

inputs, which ensures that the multi-agent system is eventually-always close to the set of equilibrium

states, i.e. it is bounded.

In Chapter 4 we have modeled shared-state and message-passing systems using the automaton

with timed action model. Stability and convergence properties of message-passing systems have been

derived from the stability and convergence properties of the corresponding shared-state systems.

These conditions ensure that the message-passing system converge to the same equilibrium state

reached by its shared-state counterpart.

In Chapter 5 we have proven correctness for a general class of multi-agent systems, whose goal

is to solve a system of linear equations. This class includes both shared-state and message-passing

systems. We have shown their correctness using the results of Chapter 4. For example, the message-

passing versions of Gauss and Gauss-Seidel methods belong to this class.

In Chapter 6 we have provided a novel verification framework for message-passing multi-agent

systems with dense state space. This framework allows verification of multi-agent systems whose goal

is to solve systems of linear equations, where messages may be lost, delayed or received out-of-order.

The framework consists of a library of PVS meta-theories.

In Chapter 7 we have studied multi-agent systems in the presence of exogenous inputs, and

provided conditions that ensure that the system is bounded. These conditions require the protocol

of the agents to be linear and the exogenous inputs to be uniformly bounded quantities added to

the agents. We have applied this results to the class of system presented in Chapter 5.

8.3 Future Work

There are several directions which we can follow to extend and improve the results of this thesis.

We next outline some of them.

148

Multi-agent solutions to systems of non-linear equations. In Chapter 5 we have presented

shared-state and message-passing multi-agent systems whose goal is to solve systems of linear equa-

tions. In a future continuation of this work, we would like to investigate multi-agent systems whose

goal is to solve non-linear systems of equations. This class would include iterative decentralized

message-passing schemes where agent i is responsible for computing the value of the i-th variable

using the i-th non-linear equation of the system as updating rule. We would like to derive conditions

on the Jacobian of the matrix that ensure convergence. Figure 8.1 presents an example of a multi-

agent system whose goal is to solve a system of non-linear equations. This specific system converges

to the solution of the system of non-linear equations.

f (x)y

f (y)x

y

xx0

Figure 8.1: Pictorial representation of a multi-agent system whose goal is to solve a system of
non-linear equations. This system consists of two equations, these are y = fy(x) and x = fx(y).
The corresponding multi-agent system consists of two agents x and y. Upon receiving a message m
from y, agent x moves evolves its current state towards fx(m). This multi-agent system converges
to the solution of the system of non-linear equations. For example, the dashed line represents a
converging execution of the multi-agent system. This execution starts in state (x0, 0) and alternates
the execution of the updating rule of the two agents.

Multi-agent dynamic message-passing games with continuous dynamics. Classical game

theory studies equilibria of dynamic games where agents, called players, alternate their moves. In

these games, only one player moves at a time and all agents have full information about the system.

It would be interesting to investigate equilibrium properties of dynamic games where agents have

continuous movements and operate over an unreliable communication medium. In this new class of

games, players may move concurrently and have partial information on the system. For example,

we would like to investigate potential games [48]; in this class of games, there is a global function,

called potential, that summarizes the incentive of all players to change their strategy. In the case

of potential games, we can show that if the potential function is strictly concave, then the potential

message-passing game with continuous dynamics converges to the same set of equilibria of the

corresponding classical potential game (see Figure 8.2).

149

potential

x y

Figure 8.2: Pictorial representation of a two-player potential game. In this game, the potential
function is concave. This game converges to the set of Nash equilibria when agents have continuous
dynamics and communicate over an unreliable communication medium.

Multi-agent message-passing optimization. We would like to study distributed optimization

problems where agents communicate over an unreliable communication medium. Those include, for

example, optimization problems arising in electricity demand-response markets. In these problems,

the system consists of N agents. These agents consume some resource; the total amount C of

resource is assumed to be constant. The amount of resource consumed by agent i is denoted by x(i).

The price p of the resource changes with the total amount of resource consumed, i.e. p = f(x,C),

for some function f . Similarly, the amount of resource consumed by agent i depends on the price

of the resource, i.e. x(i) = gi(p) for some gi. The goal of this system is to compute the equilibrium

price. This price may be computed using the following iterative algorithm, at round n

pn+1 = f(xn, C)

xn+1(i) = gi(p
n+1) ∀i ∈ {1, . . . , N}

where xn denotes the amount of resources consumed at round n, and pn denotes the price of the

resources at round n. We would like to consider the corresponding distributed optimization problem,

where agents communicate via message-passing. If agents communicate via an unreliable commu-

nication medium, then the market may compute the price of the resource using old information

regarding the amount of resource consumed by the agents and the agents may decide on the amount

of resource to consume using an old price. The iterative algorithm becomes:

pn+1 = f((x(1)m1 , . . . , x(N)mN), C)

xn+1(i) = gi(p
m) ∀i ∈ {1, . . . , N}

where m ≤ n+ 1 and ∀i ∈ {1, . . . , N}, the value mi ≤ n.

Robustness of multi-agent systems in the presence of exogenous inputs. In this Thesis,

we have introduced the notion of bounded error as a measure of robustness of multi-agent systems in

150

the presence of exogenous inputs, where the goal configuration of the system is a function of the initial

configuration and of the exogenous inputs injected into the system. This notion of robustness can

be used to model systems able to track time-varying quantities. For example, as shown in Figure 1.3

and Figure 1.6, it can be used to model a system able to track a time-varying pattern configuration.

In a future continuation of this work, we would like to investigate other measures of robustness

of multi-agent systems in presence of exogenous inputs. For example, we would like to investigate

robustness properties of systems whose goal configuration is static, i.e. depending only on the initial

configuration. In particular, we would like to give necessary and sufficient conditions on the system in

the absence of exogenous inputs that ensure convergence of the corresponding system in the presence

of exogenous inputs. Such a notion of robustness can be used to model systems where agents can lie

about their current state by sending false signals. For example, in the case of multi-agent pattern

formation systems, they may send messages containing locations that they have never visited. For

the case of linear protocols, as shown in Figure 8.3, we are able to show that the multi-agent system

in the presence of exogenous inputs converges under specific assumptions on the inputs.

f (x)
y

f (y)x

x0
x

y

Figure 8.3: Pictorial representation of a multi-agent system where the protocol of the agents is linear.
This system consists of two agents, x and y. Agent x has protocol fx(y) and agent y has protocol
fy(x). In this specific example, upon receiving a message containing a value x0 from agent x, agent
y can send to agent x any value in the interval [0, x0); the shaded area represents this region for all
choices of x0. Similarly, upon receiving a message containing a value y0 from agent y, agent x can
send any value in the interval [0, y0). If agents exchange values falling within the shaded areas, they
will eventually converge to the equilibrium state (0, 0). For example, the dashed line represents a
converging execution of the multi-agent system.

Verification Framework. The framework presented in Chapter 6 allows verifying multi-agent

systems that solve systems of linear equations where messages may be lost, delayed or received

151

out-of-order. It specializes the automaton and proofs presented in Chapter 4 to message-passing

systems. We would like to construct a more general verification framework, where one can encode

(1) the generic shared-state system, (2) the corresponding shared-state system with sliding window,

and (3) the proofs of Theorem 13 and Theorem 14. Theorem 13 requires that the Lyapunov function

satisfies G1-2; Theorem 14 requires that the Lyapunov function satisfies H1-2. Here, the Lyapunov

function would be encoded as an input of the framework, while conditions G1-2 and H1-2 would be

encoded as PVS assumptions. The end-user of the framework would provide the Lyapunov function

and discharge the Assumptions of the library.

152

Bibliography

[1] R. Alur, and D.L. Dill. A theory of timed automata. Theoretical Computer Science, vol. 126, pp.

183–235, 1994. 37

[2] M. Archer. TAME: Using PVS strategies for special-purpose theorem proving. Annals of Math-

ematics and Artificial Intelligence, vol. 29, no. 4, pp. 139–181, 2000. 12, 111

[3] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS interface to simplify proofs for automata

models. In Proceedings of the 1st International Workshop on User Interfaces for Theorem Provers

(UITP’98), 1998. 12, 111

[4] M. Archer, H. Lim, N. Lynch, S. Mitra, and S. Umeno. Specifying and proving properties of

timed I/O automata using Tempo. Journal of Design Automation for Embedded Systems, vol. 2,

no. 1-2, 2008. 12, 111

[5] C. Baier, and J.P. Katoen. Principles of Model Checking. MIT Press, Cambridge, Mass., 2008.

15

[6] P. Bauer, M. Sichitiu, R. Istepanian, and K. Prematne. The mobile patient: Wireless distributed

sensor networks for patient monitoring and care. In Proceedings of the 2000 IEEE EMBS Inter-

national Conference on Information Technology Applications in Biomedicine, pp. 17–21, 2000.

4

[7] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL in 1995. In Proceed-

ings of the 2nd International Workshop on Tools and Algorithms for Construction and Analysis

of Systems (TACAS’96), pp. 431–434, 1996. 13

[8] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.

Athena Scientific, 1997. 12, 87

[9] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. Convergence in multiagent

coordination, consensus, and flocking. In Proceedings of the Joint 44th IEEE Conference on

Decision and Control and European Control Conference (CDC-ECC), pp. 3387 3392, 2005. 14

153

[10] J. Buhl, D.J.T. Sumpter, I.D. Couzin, J. Hale, E. Despland, E. Miller, and S.J. Simpson. From

disorder to order in marching locusts. Science, pp. 312–406, 2006. 4

[11] L. Bulwahn, A. Krauss, and T. Nipkow. Finding lexicographic orders for termination proofs

in Isabelle/HOL. In Proceedings of the 20th International Conference on Theorem Proving in

Higher Order Logics, (TPHOLs’07), vol. 4732, LNCS, pp. 38–53, 2007. 13

[12] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat monitoring: applica-

tion driver for wireless communications technology. In Proceedings of the 2001 ACM SIGCOMM

Workshop on Data Communications in Latin America and the Caribbean, pp. 20–41, 2001. 4

[13] K.M. Chandy. Reasoning about continuous systems. Science of Computer Programming, vol.

14, pp. 117–132, 1990. 36

[14] K.M. Chandy, B. Go, S. Mitra, C. Pilotto, and J. White. Verification of distributed systems

with local-global predicates. Formal Aspect of Computing, 2010. 11, 12, 32, 55, 110, 120

[15] K.M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1988. 21

[16] K.M. Chandy, S. Mitra, and C. Pilotto. Convergence verification: from shared memory to

partially synchronous systems. In Proceedings of the 5th International Conference on Formal

Modeling and Analysis of Times Systems (FORMATS’08), vol. 5215, LNCS, pp. 217-231, 2008.

12, 87, 88

[17] S. Chatterjee and E. Seneta. Towards consensus: some convergence theorems on repeated av-

eraging. Journal of Applied Probability, vol. 14, no. 1, pp. 89–97, 1977. 14

[18] D. Chazan, and W. Miranker. Chaotic relaxation. Linear algebra and its Applications, vol. 2,

no. 2, pp. 199-222, 1969. 12, 110

[19] S. Clavaski, M. Chaves, R. Day, P. Nag, A. Williams, and W. Zhang. Vehicle networks: achieving

regular formation. In Proceedings of the 2003 American Control Conference (ACC’03), 2003. 6

[20] I.D. Couzin, J. Krause, N.R. Franks, and S.A. Levin. Effective leadership and decision-making

in animal groups on the move. Nature, pp. 433–516, 2005. 4

[21] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal of Par-

allel and Distributed Computing, vol. 7, no. 2, pp. 279–301, 1989. 5

[22] M.H. DeGroot. Reaching a consensus. Journal of American Statistical Association, vol. 69, no.

345, pp. 116–121, 1974. 14

[23] R. D’Andrea, and R. Murray. The RoboFlag Competition. In Proceedings of the 2005 American

Control Conference (ACC’05), pp. 650–655, 2003. 4

154

[24] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal

of ACM, vol. 35, no. 2, pp. 288–323, 1988. 87

[25] J.A. Fax, and R.M. Murray. Information flow and cooperative control of vehicle formations.

IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1465–1476, 2004. 6

[26] R.A. Freeman, P. Yang, and K.M. Lynch. Stability and convergence properties of dynamic

average consensus estimators. In Proceedings of the IEEE Conference on Decision and Control

(CDC’06), pp. 398–403, 2006. 14, 145

[27] P. Frey, R. Radhakrishnan, H.W. Carter, P.A. Wilsey, and P. Alexander. A formal specification

and verification framework for time warp-based parallel simulations. IEEE Transition on Software

Engineering, vol. 28, no. 1, pp. 58–78, 2002. 13

[28] D. Gabay and H. Moulin. On the uniqueness and stability of Nash equilibria in non-cooperative

games. In Applied Stochastic Control of Econometrics and Management Science, pp. 271–293,

North-Holland, 1980. 12, 110

[29] H. Gottliebsen. Transcendental functions and continuity checking in PVS. In Proceedings of the

13th International Conference on Theorem Proving in Higher Order Logics (TPHOLs’00), vol.

1869, LNCS, pp. 197–214, 2000. 13

[30] J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998. 13

[31] M. Hendriks. Model checking the time to reach agreement. In Proceedings of the 3rd Inter-

national Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’05), pp.

98–111, 2005. 13

[32] T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual Symposium

on Logic in Computer Science (LICS’96), pp. 278–292, 1996. An extended version appeared

in Verification of Digital and Hybrid Systems (M.K. Inan, R.P. Kurshan, eds.), vol. 170, pp.

265–292, 2000. 36, 37

[33] P.B. Jackson. Total-correctness refinement for sequential reactive systems. In Proceedings of the

13th International Conference on Theorem Proving in Higher Order Logics (TPHOLs’00), vol.

1869, LNCS, pp. 320-337, 2000. 13

[34] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups of mobile autonomous agents

using nearest neighbor rules. IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–

1001, 2003. 6

[35] D. Kaynar, N. Lynch, S. Mitra, and S. Garland. TIOA Language. MIT Computer Science and

Articial Intelligence Laboratory, Cambridge, MA, 2005. 13

155

[36] D.K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O Automata.

Synthesis Lectures in Computer Science. Morgan Claypool, 2006. 13, 37, 111

[37] D. Lester. NASA Langley PVS library. http://shamesh.larc.nasa.gov/fm/ftp/larc/

PVS-library/pvslib.html 13, 111, 112, 115

[38] H. Lim, D. Kaynar, N.A. Lynch, and S. Mitra. Translating timed I/O automata specifications for

theorem proving in PVS. In Proceedings of the 3rd International Conference on Formal Modelling

and Analysis of Timed Systems (FORMATS’05), vol. 3829, LNCS, Springer-Verlag, 2005. 13

[39] A.M. Lyapunov. Stability of Motion. Academic Press, 1966. 42

[40] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., USA, 1996. 54

[41] N.A. Lynch, R. Segala and F.W. Vaandrager. Hybrid I/O automata. Information and Compu-

tation, vol. 185, no. 1, pp. 105-157, 2003. 37

[42] N.A. Lynch, and M.R. Tuttle. An introduction to Input/Output automata. CWI-Quarterly,

vol. 2, no. 3, pp. 219–246, 1989. 12, 111

[43] D.G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and Applications. John

Wiley and Sons, Inc., New York, 1979. 42

[44] S. Maharaj, and J. Bicarregui. On the verification of VDM specification and refinement with

PVS. In Proceedings of the 12th International Conference on Automated Software Engineering

(ASE’97), pp. 280, 1997. 13

[45] S. Mitra. A verification framework for hybrid systems. PhD thesis. Massachussetts Institute of

Technology, 2007. 13, 111

[46] S. Mitra and M. Archer. PVS strategies for proving abstraction properties of automata. Elec-

tronic Notes in Theoretical Computer Science, vol. 125, no. 2, pp. 45–65, 2005. 13, 111, 116

[47] S. Mitra, and K.M. Chandy. A formalized theory for verifying stability and convergence of

automata in PVS. In Proceedings of the 21st International Conference on Theorem Proving in

Higher Order Logics (TPHOLs’08), vol. 5170, LNCS, pp. 230–245, 2008. 55

[48] D. Monderer. Potential Games. Games and Economic Behavior, vol. 14, pp. 124–143, 1996.

148

[49] R. Olfati-Saber. Distributed Kalman filter with embedded consensus filters. In Proceedings of

the Joint 44th IEEE Conference on Decision and Control and European Control Conference

(CDC-ECC’05), pp. 8179–8184, 2005 6

http://shamesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
http://shamesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

156

[50] R. Olfati-Saber, J. Fax, and R. Murray. Consensus and cooperation in networked multi-agent

systems. In Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007. 88

[51] R. Olfati-Saber, and R.M. Murray. Consensus problems in networks of agents with switching

topology and time-delays. IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–

1533, 2004. 88

[52] R. Olfati-Saber, and J.S. Shamma. Consensus filters for sensor networks and distributed sensor

fusion. In Proceedings of the Joint 44th IEEE Conference on Decision and Control and European

Control Conference (CDC-ECC’05), pp. 6698–6703, 2005. 6

[53] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification system. In Proceedings

of the 11th International Conference on Automated Deduction (CADE’92), vol. 607, LNAI, pp.

748–752, 1992. 12

[54] C. Pilotto, K.M. Chandy, and R. McLean. Networked sensing systems for detecting people carry-

ing radioactive material. In Proceedings of the 5th International IEEE Conference on Networked

Sensing Systems (INSS 2008), 2008. 4

[55] C. Pilotto, K.M. Chandy, and J. White. Consensus on asynchronous communication networks in

presence of external input. In Proceedings of the 49th IEEE Conference on Decision and Control

(CDC’10), pp. 3838–3844, 2010. 14, 145

[56] C. Pilotto, and J. White. Verification of faulty message-passing systems with continuous state

space in PVS. In Proceedings of the 2nd NASA Formal Methods Symposium, 2010. 13

[57] C. Pilotto, and J. White. Towards a verification framework for faulty message passing systems.

To Appear in Innovations in Systems and Software Engineering, pp.1–10, 2011. 13

[58] C. Pilotto, and J. White. Infospheres project. www.infospheres.caltech.edu/nfm, 2010.

[59] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium on

Foundations of Computer Science, pp. 46-57, 1977. 12, 111, 125

[60] J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor networks for habitat

monitoring. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks

and Application, pp. 99–97, 2002. 10

[61] W. Ren. Consensus strategies for cooperative control of vehicle formations. IET Control Theory

& Applications, vol. 1, no. 2, pp. 505–512, 2007. 4

[62] W. Ren, and R.W. Beard. Dynamic Consensus Seeking in Distributed Multi-agent Coordinated

Control. Technical Report, Brigham Young University, available at citeseer.ist.psu.edu/

ren03dynamic.html, 2003. 6

www.infospheres.caltech.edu/nfm
citeseer.ist.psu.edu/ren03dynamic.html
citeseer.ist.psu.edu/ren03dynamic.html

157

[63] W. Ren, and R.W. Beard. Consensus of Information Under Dynamically Changing Interaction

Topologies. In Proceedings of the 2004 American Control Conference (ACC’04), pp. 4939–4944,

2004. 14, 145

[64] W. Ren, R.W. Beard, and E.M. Atkins. A survey of consensus problems in multi-agent coor-

dination. In Proceedings of the 2005 American Control Conference (ACC’05), pp. 1859–1864,

2005. 14, 145

[65] D.P. Spanos, R. Olfati-Saber, and R.M. Murray. Dynamic consensus on mobile networks. In

Proceedings of the IFAC World Congress, 2005. 14

14, 145

[66] J.N. Tsitsiklis. On the stability of asynchronous iterative processes. Theory of Computing Sys-

tems, vol. 20, no. 1, pp. 137–153, 1987. 11, 12, 55, 87

[67] R.A. Usmani. Inversion of Jacobi’s tridiagonal matrix. Computers & Mathematics with Appli-

cations, vol 27, no. 8, pp. 59–66, 1994. 106, 107, 127

[68] M. Zhu, and S. Martinez. Dynamic average consensus on synchronous communication networks.

In Proceedings of the 2008 American Control Conference (ACC’08), pp. 4382–4387, 2008. 14,

145

[69] M. Zhu, and S. Martinez. Discrete-time dynamic average consensus. Automatica, vol. 46, no. 2,

pp. 322-329, 2010. 14, 145

[70] Robocup, www.robocup.org 4

[71] Roboflag, roboflag.mae.cornell.edu 4

[72] Tempo toolset, version 0.2.2 beta, January 2008. http://www.veromodo.com/. 111

www.robocup.org
roboflag.mae.cornell.edu
http://www.veromodo.com/

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Thesis Contributions
	1.2 Multi-Agent Systems
	1.3 Communication Models for Multi-Agent Systems
	1.4 Multi-Agent Systems in the Presence of Exogenous Inputs
	1.5 Motivating Example
	1.6 Structure of the Thesis

	2 Formal Models for Multi-Agent Systems
	2.1 Automata
	2.1.1 Automaton Model
	2.1.2 Line-Up Automaton

	2.2 Automata with Timed Actions
	2.2.1 Automaton Model
	2.2.2 Executions and Reachability
	2.2.3 Temporal Operators
	2.2.4 Line-Up automaton with dynamics

	2.3 Fairness
	2.4 Automata in the Presence of Exogenous Inputs
	2.5 Discussion

	3 Stability and Convergence Properties of Automata
	3.1 Equilibria in Automata
	3.2 Lyapunov Function and Level Sets
	3.3 Stable Equilibria
	3.4 Asymptotically Stable Equilibria
	3.5 Properties of Automata in the Presence of Exogenous Inputs
	3.6 Discussion

	4 Stability and Convergence Properties of Multi-Agent Systems
	4.1 Shared-State Multi-Agent Systems
	4.1.1 Shared-State Automaton
	4.1.2 Shared-State Automaton with Explicit Arbitrary Dynamics

	4.2 Shared-State Multi-Agent System with Sliding Window
	4.2.1 Automaton with sliding window
	4.2.2 Line-Up with Sliding Window
	4.2.3 Line-Up with Explicit Arbitrary Dynamics and Sliding Window
	4.2.4 Lyapunov Function and Level Sets
	4.2.5 Stability
	4.2.6 Convergence

	4.3 Message-Passing Multi-Agent Systems
	4.3.1 Message-Passing Communication Model
	4.3.2 Message-Passing Automaton
	4.3.3 Stability and Convergence

	4.4 Multi-Agent Systems with Concurrent Actions
	4.4.1 Shared-State Multi-Agent Systems with Concurrent Actions
	4.4.1.1 Shared-State Multi-Agent Systems with Discrete Actions
	4.4.1.2 Shared-State Multi-Agent Systems with Timed Actions

	4.4.2 Shared-State Multi-Agent Systems with Sliding Window and Concurrent Actions

	4.5 Discussion

	5 An Application to Distributed Control
	5.1 Systems of Linear Equations via Shared Variables
	5.1.1 MAS solving Systems of Linear Equations
	5.1.2 System of Linear Equations Shared-State Automaton
	5.1.3 Proof of Correctness
	5.1.3.1 Matrix A
	5.1.3.2 Communication Graph G
	5.1.3.3 Strictly Diagonally Dominant Rooted Forest F
	5.1.3.4 Error Function e
	5.1.3.5 Agents Weights
	5.1.3.6 Totally Ordered Set P
	5.1.3.7 Lyapunov Function and Level Sets
	5.1.3.8 Properties of Level Sets of V
	5.1.3.9 Convergence Property

	5.1.4 Solving Systems of Linear Equations with Dynamics

	5.2 Solving Systems of Linear Equations via Message-Passing
	5.2.1 MAS solving Systems of Linear Equations
	5.2.2 System of Linear Equations Message-Passing Automaton
	5.2.3 Proof of Correctness

	5.3 Linear Robot Pattern Formation Protocol
	5.3.1 Linear Robot Patter Formation Multi-Agent System
	5.3.2 Solving a System of Linear Equations
	5.3.3 Proof of Correctness

	5.4 Discussion

	6 PVS Verification Framework
	6.1 Systems of Linear Equations PVS Verification Framework
	6.2 Mathematical Library
	6.2.1 Vector PVS meta-theory
	6.2.2 Matrix PVS meta-theory

	6.3 Message-Passing System PVS Library
	6.3.1 System state
	6.3.2 Communication Medium
	6.3.3 System actions

	6.4 Verification PVS Library
	6.4.1 Error Model
	6.4.2 Proof of Correctness PVS meta-theory
	6.4.2.1 Inputs and Assumptions
	6.4.2.2 Proof of Correctness Theorems

	6.5 Framework Discussion
	6.6 Verification of the Linear Robot Pattern Formation Protocol in PVS
	6.6.1 Parameters
	6.6.2 PVS Instantiations
	6.6.3 Proving Correctness of the Protocol
	6.6.4 Discharging Library Assumptions

	7 Properties of Automata in the Presence of Exogenous Inputs
	7.1 Assumptions
	7.2 Properties of Executions of Exogenous Automata
	7.3 Properties of the Exogenous Automaton
	7.4 Solving Systems of Linear Equations in the Presence of Exogenous Inputs
	7.4.1 Solving Systems of Linear Equations with Discrete Actions
	7.4.1.1 Exogenous Automaton
	7.4.1.2 Properties of the Exogenous Automaton
	7.4.1.3 Bounded Exogenous Automaton
	7.4.1.4 Discussion

	7.4.2 Solving Systems of Linear Equations with Dynamics
	7.4.2.1 Exogenous Automaton
	7.4.2.2 Properties of the Exogenous Automaton
	7.4.2.3 Bounded Exogenous Automaton

	7.4.3 Solving Systems of Linear Equations via Message-Passing

	7.5 Discussion

	8 Conclusions
	8.1 Thesis Contributions
	8.2 Summary
	8.3 Future Work

	Bibliography

