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“The Sun is a mass of incandescent gas...”

—Why Does the Sun Shine? by They Might by Giants
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That thesis has been rendered invalid!”
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Abstract

This work builds theoretical tools to better understand nanoscale systems, and it ex-

plores experimental techniques to probe nanoscale dynamics using nonlinear optical

microscopy. In both the theory and experiment, this work harnesses nonlinearity to

explore new boundaries in the ongoing attempts to understand the amazing world

that is much smaller than we can see. In particular, the first part of this work

proves the upper-bounds on the number and quality of oscillations when the sys-

tem in question is homogeneously driven and has discrete states, a common way of

describing nanoscale motors and chemical systems, although it has application to

networked systems in general. The consequences of this limit are explored in the

context of chemical clocks and limit cycles. This leads to the analysis of sponta-

neous oscillations in GFPmut2, where we postulate that the oscillations must be due

to coordinated rearrangement of the beta-barrel. Next, we utilize nonlinear optics

to probe the constituent structures of zebrafish muscle. By comparing experimental

observations with computational models, we show how second harmonic generation

differs from fluorescence for confocal imaging. We use the wavelength dependence

of the second harmonic generation conversion efficiency to extract information about

the microscopic organization of muscle fibers, using the coherent nature of second
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harmonic generation as an analytical probe. Finally, existing experiments have used

a related technique, sum-frequency generation, to directly probe the dynamics of free

OH bonds at the water-vapor boundary. Using molecular dynamic simulations of

the water surface and by designating surface-sensitive free OH bonds on the water

surface, many aspects of the sum-frequency generation measurements were calcu-

lated and compared with those inferred from experiment. The method utilizes results

available from independent IR and Raman experiments to obtain some of the needed

quantities, rather than calculating them ab initio. The results provide insight into

the microscopic dynamics at the air-water interface and have useful application in the

field of on-water catalysis.
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Chapter 1

Introduction

The nanoscale is the spatial regime at least 10 times larger than atoms and simple

molecules, yet also 10 times too small to be resolved by the unaided human eye. Such

small things are often readily disturbed by the constant jostling of their air and liquid

environments. A grandfather clock that is 50 nm tall will not tick, no matter how

precisely it is machined. A bacteria does not swim by paddling through water like a

fish, instead it moves by spinning a flagella. Making things smaller can make them

different. Gold, when broken down into 10 nanometer crystals, transforms in color

from the familiar shiny metal into a deep red, and silver turns yellow. Hence, nan-

otechnology is exciting not just because we can make big things smaller but because

we can make new things.

A crystal composed of thousands or millions of atoms may have completely differ-

ently properties from its isolated constituent atoms and may also be different from a

larger version of the same crystals. At first, this would be no surprise to someone like

a baker, who transforms unpalatable flour, salt, baking soda, fat, and sugar into deli-

cious doughnuts. But, making a doughnut is a series of chemical reactions, while the

changes in size-dependent properties occur spontaneously. A better analogy would be
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making a doughnut by cutting it out of a pizza, and suddenly it was sweet and savory,

or by squeezing two pieces of rye bread together and ending up with tasty dessert.

These metaphors are drawn from examples in this thesis, where we explore how the

optical properties of water at the water-vapor boundary are different from those in

the liquid bulk. We prove that making a system larger may allow it to oscillate longer

and more predictably. Finally, we consider how the microscopic arrangement of pro-

tein fibers in muscle interact nonlinearly with laser light, yet a different arrangement

of the same proteins on the nanoscale would make such a nonlinear interaction im-

possible. We use this information to learn more about the organization of muscles on

the microscopic level.

Nanoscale systems often contain a limited number of relevant states,1 and we

often want to do something useful with those states, such as operate a motor pro-

tein or convert light into electricity. These require highly correlated dynamics that

persist in time. Unfortunately, damping by the environment, due to buffeting by sol-

vent molecules, tends to prevent oscillatory dynamics which might be necessary for

successful operation of nano-machines or chemical systems. The second law of ther-

modynamics implies that no macroscopic system may oscillate indefinitely without

consuming energy, so dissipation is not surprising prima facie. Yet, the maximum

number of possible oscillations and the coherent quality of these oscillations remain

unknown, until now. The first part of this work proves the upper-bounds on the num-

ber and quality of such oscillations when the system in question is homogeneously

1An obvious exception to this rule would be living biological systems. They are both nanoscale
and have a large number of relevant states, but we try our best to focus on only the most essential
parts.
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driven and has discrete states. In a closed system, the maximum number of oscilla-

tions is bounded by the number of states. In open systems, the system size bounds

the quality factor of oscillation, which is a figure of merit for the predictability of

recurring behavior. This work also explores how the quality factor of macrostate

oscillations, such as would be observed in chemical reactions, are bounded by the

smallest loop in the reaction network, not the size of the entire system. The conse-

quences of this limit are explored in the context of chemical clocks and limit cycles.

This leads to the analysis of spontaneous oscillations in denatured GFPmut2, where,

using these principles, we identify the oscillation mechanism to be the coordinated

rearrangement of the hydrogen bond network of the β-barrel. We further calculate

that the oscillations are touched off by one of the major loops adjoining the β-barrel,

which provide a verifiable means to control the oscillation period.

To optically probe probing nanoscale systems of biological relevance with conven-

tional techniques often requires one to use a focused laser to achieve highest possible

signal contrast and resolution. Fluorescent labels in the sample absorb light from

the laser and emit a photon with less energy. The detection of the low-energy pho-

ton then indicates the presence of the labeled object of interest. Unfortunately, the

diffraction limit leads to a fundamental bound of the resolving power of the conven-

tional microscope. To achieve higher resolution, we utilize nonlinear optics to probe

the constituent structures of zebrafish muscle. In this case, nonlinearity is a tool for

extracting additional information. Because the myosin fibers are asymmetric on the

nanoscale, they have the ability to fuse two photons into one, a process known as sec-
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ond harmonic generation. Instead of looking for a photon with less energy than the

incoming laser, as with fluorescence, we try to detect photons with twice the energy

of the incoming light. Second harmonic generation (SHG) based images can be very

similar to fluorescence but with up to twice the resolution. Additionally, because light

produced via second harmonic generation is coherent, while fluorescence is incoher-

ent, the images have subtle yet significant differences, which we explore and explain.

We use the wavelength dependence of the second harmonic generation conversion ef-

ficiency to extract information about the microscopic organization of muscle fibers,

using the coherent nature of second harmonic generation as an analytical probe.

Second harmonic generation only occurs when the underlying material is asymmet-

ric on the nanometer scale, and this is always the case at the boundary between two

different materials. Existing experiments have used technique related to SHG, called

sum-frequency generation (SFG), to directly probe the dynamics of free OH bonds

at the water-vapor boundary. Using molecular dynamics simulations of the water

surface, and by designating surface-sensitive free OH bonds on the water surface, we

attempt to computationally reproduce the SFG experiment. The corresponding SFG

susceptibility measurements were calculated and compared with those inferred from

experiment. The method utilizes results available from independent IR and Raman

experiments to obtain some of the needed quantities, rather than calculating them

ab initio, allowing us to focus on the components of the water dynamics that best

capture the observed SFG signature. We determine that the rotational dynamics,

with a small quantum correction, are sufficient to produce the observed SFG signal.
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The results provide insight into the microscopic dynamics at the air-water interface,

and has useful application in the field of on-water catalysis.

To properly establish the path through all of these topics, I note my role in

each. The first chapter is work which I have undertaken myself. The research on the

GFPmut2 oscillations was directed by Rudy Marcus and advised by Scott Fraser, but

the work is primarily my own. The work on zebrafish muscle was a close collaboration

with Bill Dempsey, under the direction of Scott Fraser. Bill prepared all of the

zebrafish for imaging, injected the morphants, and produced the transgenic fish. I

imaged the fish and conducted the computations and theory. The SFG project was

directed by Rudy Marcus, and it has since been published [1] and an addendum as

been posted with necessary updates.2 Yanting Wang produced the MD simulations.

Yousung Jung and Professor Marcus spearheaded the project. I helped construct the

theory with Professor Marcus and process the simulation data. Without this help

and guidance from all of these individuals, especially Professors Marcus and Fraser,

I certainly would not have much to report, nor would I know nearly as much as I do

now.

2http://www.rsc.org/suppdata/cp/c0/c0cp02745f/addition.htm
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Chapter 2

Oscillations on Networks

To better understand how to build, design, and operate nanoscale machines, we have

to understand more about what makes dynamics on the smallest scales different

from dynamics we observe in our everyday lives. By dynamics, we refer to the dis-

placements, oscillations, and momentum transformations that give rise to observable

behavior. Although popular science is full of interesting discussions of how the world

of quantum mechanics leads to wonderful and nonintuitive dynamics, this is only part

of the story of why small is different. Classical dynamics, “the science of the 19th

century,” plays a central role. The reason, in short, is “scaling.”

Consider an object in a fluid medium. It is subject to buffeting by molecules of

the medium, which deliver kicks that knock the mass off-course, but conservation

of momentum also causes the same molecules to sap momentum from any directed

motion the body may possess. Newton’s law states that F = ma, but the total force

on the object will be a combination of endogenous forces (which are those forces

still acting on the body even in a vacuum) and the buffeting and damping forces

from the viscous medium. If the endogenous forces are extensive, meaning they are

proportional to the size of the object, they scale as R3, where R is the effective radius
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of the object. In contrast, the fluid medium acts on the surface area of the object,

so the forces from the bath causing buffeting and damping scale as R2. Thus, the

ratio of the endogenous forces, which are the forces we would rely on to do useful

work, to the bath forces, which impart noise, scale as R. The smaller an object gets,

the smaller the endogenous forces become in relation to the bath forces. At a critical

length scale, which would depend on the precise forces involved and the nature of the

immersion medium, the buffeting and damping by the bath would completely swamp

the object’s ability to do persistent work. This scaling has been well explored in fluid

mechanics via a number of ratios to understand the balance of various factors [2].

Reynolds number, in particular, captures the change in viscous dynamics relative to

inertial dynamics as length scales shrink. It is defined as Re = V L/ν, where V is

the velocity of the object, L is a characteristic length scale, and ν is the kinematic

viscosity. When Re is small, inertial forces are overwhelmed by viscous forces, and

any directed motion is rapidly quenched.

Small objects inherently live in the world of small Re. In the low Reynolds number

regime, dynamic motion such as oscillations cannot be sustained. This chapter will

explore ways to create oscillatory behavior in the low Reynolds number regime. It has

direct application to the design of nanoscale machines and the operation of proteins

within the body.
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2.1 The Limits of Oscillations in Overdamped Sys-

tems

Oscillations are ubiquitous. We celebrate them and attempt to harness them. Nat-

urally, this interest drives us to study them. There has been no shortage of analysis

of the simple harmonic oscillator in all of its variations, but much of the periodic-

ity around us is not equivalent to a mass on a spring. For example, the beating

heart is driven by molecular motors which exist in the low-Reynolds number regime,

where viscous damping overwhelms inertial forces. For these molecular constituents,

buffeting by solvent molecules prevents coherent oscillations from persisting on a

timescale longer than the mean time between collisions, which is on order picosec-

onds [3]. Despite this, we observe the coordination of overdamped components to

produce periodic behavior [4]. Studying this coordination on a problem-by-problem

basis has uncovered some conceptual principles to designing oscillatory behavior in

the overdamped regime, but few truly fundamental laws exist [5, 6, 7, 8, 9]. This

work bounds the performance of all discrete-state over-damped oscillatory systems,

providing a new look at the necessary conditions for creating coherent oscillations in

overdamped systems.1

When the energy landscape of an overdamped system can be divided into distinct

basins of attraction with barriers higher than kBT , the system will tend to reach a

local equilibrium within a basin of the energy landscape before fluctuations stochas-

1We all possess an intuitive comfort with oscillations, but we have to formalize this notion for our
analysis. To separate coherent oscillations from random fluctuations, we demand that oscillations
be predictable and have a characteristic timescale. Predictability implies that the autocorrelation
of a signal will have distinct peaks or troughs corresponding to the period of the oscillations.
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tically drive it over a barrier into a neighboring basin. Under these conditions, it is

common and appropriate to model each basin as a distinct state, with a fixed rate

of transitioning from one state to another [10, 11, 12]. These systems are finite state

first-order Markov processes2 and can be modeled by the master equation:

dpi(t)

dt
=

N∑
j

Tijpj(t)−
N∑
j 6=i

Tijpi(t), (2.1)

where Tij is the transition rate from state j to state i. For introductions to the master

equation and its numerous physical applications see [13, 14]. We will assume that all

rates are time-independent, meaning no external factors change the rates (but does

not necessarily mean that the system is closed). We also make the assumption that

T is an irreducible matrix, enforcing the trivial condition that we are not modeling

multiple mutually isolated systems. Finally, we assume that the systems conserve

probability, which can always be enforced by adding states to the system to represent

sinks. The solution to eq. (2.1) is p(t) = exp(Tt)p(0), where T is matrix notation for

Tij, Tii = −
∑

j 6=i Tji and p(t) is vector notation for pj(t) [15]. Systems represented

by the master equation are completely described by the transition rate matrix, T,

and the initial conditions p(0). The complete solution is

p(t) =
∑
j

vje
λjt
(
V−1
j · p(0) + aj(t)

)
, (2.2)

where vj is the jth eigenvector and V−1 is the inverse of the matrix of eigenvec-

2This means we exclude systems with high degrees of quantum coherence or those that are
underdamped and therefore inertial. The systems in question completely thermalizes before changing
states. Without loss of generality, we will only describe the probability of occupying a given state.
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tors.3 Hence, characterizing the properties of T also characterizes the dynamics of

the system [16, 17, 13]. Because the time dynamics of individual modes are ultimately

determined by the eigenvalues of T (see eq. (2.2)), we will be concerned with these

eigenvalues and how they relate to oscillations. We first explore these eigenvalues

and prove how they constrain the possible oscillations to be fewer than the number

of states in the system. Second, I provide examples of these limits by exploring the

quality of oscillations in a hypothetical stochastic clock, showing how both micro-

scopic oscillations and macrostates are constrained by the number of states in the

system. I conclude by proposing some experiments which may cast direct light onto

the physical realization of these bounds on oscillations.

2.2 The Limits on Oscillations

To understand the oscillations in the system represented by T, we consider the rel-

ative contributions of different eigenmodes. From the Perron-Frobenius theorem, all

eigenvalues of T have nonpositive real parts, so all but the λ = 0 equilibrium mode

decay away. Eigenvectors with nonzero imaginary eigenvalues oscillate in magnitude

as they decay. As we see in eq. (2.2), after a time (Reλi)
−1, mode i’s contribution

to p(t) will have substantially diminished. If there is an imaginary part to λi, before

decaying mode i will oscillate |Imλi/Reλi| times. Because each oscillatory mode will

have a resonance independent of the other modes, the overall quality of oscillations

3Dennery, P. & Kryzwicki, A. Mathematics for Physicists, Dover 1996.
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is given by :

Q =
1

2
max
i
|Imλi/Reλi| . (2.3)

In closed systems, Q is the upper bound on the number of oscillations. In an open

and homogeneously driven system, Q describes the coherence of those oscillations, in

analogy to the quality-factor of harmonic oscillators. This work establishes upper-

bounds on Q by showing the eigenvalues of T only exist in specific regions of the

complex plane.

Karpelevich’s Theorem, as clarified by Ito [18, 19], states that all possible eigen-

values of an N -dimensional stochastic matrix with unit spectral radius (maxi |λi| = 1)

are contained in a bounded region, which we call RN , on the complex plane, shown

in figure 2.1. RN intersects the unit circle at points exp(2πia/b), where a and b are

relatively prime and 0 ≤ a < b ≤ N . The curve connecting points z = e2πia1/b1 and

z = e2πia2/b2 is described by the parametric equation

zb2(zb1 − s)bN/b1c = zb1bN/b1c(1− s)bN/b1c, (2.4)

where s runs over the interval [0, 1] and bx/yc is the integer floor of x/y. For example,

the curve that connects z = 1, corresponding to (a1 = 0, b1 = N), with z = e2πi/N

(a2 = 1, b2 = N) is z(s) = (e2πi/N − 1)s+ 1.

The rate matrix from eq. (2.1), T, is not a stochastic matrix. To preserve prob-

ability, the sum of each columns of T is zero, and the diagonal elements are ≤ 0.4

4This may be obtained by letting pi = (1, 0, 0, . . . ), substituting pi into eq. (2.1), and solving for
the condition

∑
i pi = 0.
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Figure 2.1: The region RN contains all possible eigenvalues of N -dimensional stochas-
tic matrices with unit spectral radius. Region RN+1 contains RN . This region is
symmetric to the real axis and circumscribed by the unit circle. The curves defining
each region are given by eq. (2.4), due to Karpelevich’s Theorem.

To transform T into a stochastic matrix, denoted T′, divide T by the sum of its

largest diagonal element and largest eigenvalue, and add the identity matrix. This

transformation allows us to write the eigenvalues of T′ in terms of the eigenvalues of

T:

λ′i =
λi

maxj|Tjj|+ maxj|λi|
+ 1. (2.5)

Because the most positive eigenvalues of the original T are 0 and all others have

negative real parts, the most positive eigenvalue of T′ is 1. This unique normalization

technique ensures all other eigenvalues are less than 1 and fit within the region RN

on the complex plane. Therefore, all of the eigenvalues of T, will fit within the region

(maxi|Tii|+ maxi|λi|)× (RN − 1), where these operations on RN denote scaling and

translation, respectively. Within this transformed region, the maximum number of
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oscillations will be produced by eigenvalues on the line λ ∝ (e±2πi/N − 1), giving

Qmax =
1

2

∣∣∣∣ sin(2π/N)

cos(2π/N)− 1

∣∣∣∣ =
1

2
cot(π/N) <

N

2π
. (2.6)

We can further refine the limit in eq. (2.6) using a result from Kellogg and Stephens [20],

giving

Qmax =
1

2
cot

π

`cyc
<
`cyc
2π

, (2.7)

where `cyc is the longest cycle in the system.

Up to this point in our proof, we have restricted ourselves to systems without

any degeneracy in the eigenvalues of T. With degeneracy, as shown in eq. (2.2) , the

time dependence of eigenvector j may pick up an extra polynomial factor, aj(t), with

degree less than the degeneracy of λj, which is always less than N − 1. Fortuitous

balancing of coefficients could allow a pth-order polynomial to add an additional p/2

oscillations. Examining eq. (2.2), we see that the total maximum oscillation quality

can be

Qmax <
`cyc
π

+
N − 1

2
< N, (2.8)

where the second term is strictly due to degeneracy5

2.3 Oscillations in Macrostates: Chemical Clocks

Oscillations which consist of cycles on the discrete state-space are only possible when

the system in question violates detailed balance [17], which would be the case in a

5Such degeneracy will usually emerge only in hypothetical systems where rates balance perfectly.
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Figure 2.2: (a) When the energy landscape has barriers much larger than kBT , the
system will spend most of its time in the minima of the environment. Approximating
the continuous landscape by discrete states gives the familiar master equation kinetics.
Here we document two examples of systems with unidirectional transition rates. This
cyclical system produces the maximum Q for any given N . (b) As shown in eq. (2.6),
a system with only two states cannot coherently oscillate. It produces only random
jumps. As the number of states in the unidirectional cycle increases (in the same
family as shown in (a)), oscillations become more coherent and more persistent. The
spectral density of the unidirectional cycle shows a distinct peak which becomes
sharper as N increases. The transition rates have been normalized by the number
of states. The Q of the systems are, from bottom to top: 0.75, 1.46, 3.09, 6.40, 12.7,
obtained by fitting Lorentzian functions to the peaks.
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Figure 2.3: Although the linear set of states given by eq. (2.9) does not have any
imaginary eigenvalues, macrostates can oscillate. Macrostates are defined as 〈A〉 =∑N

i A
p
i pi(t). In this case, Api = {1 if modpi = 0; 0 otherwise}. (a) Dynamics for

different values of N for fixed p = 2 (inset) Identical dynamics, but with scaled rates
so expected traversal times are the same. (b) Increasing p increases the number and
coherence of oscillations given fixed N = 61, demonstrating the limit in eq. (2.7).
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system which is driven. Otherwise, conservation of energy prevents the system from

completing a cycle without encountering significant energy barriers. The microstates

of the system, represented by the instantaneous values of p(t), would not show any

oscillatory dynamics or peaks in the spectral density, shown in figure 2.2(a). On the

other hand, oscillations in macrostates, which are the linear superpositions 〈A(t)〉 =∑
iAipi(t), do not require the underlying microstates to oscillate. The microstate

probabilities only need to evolve such that 〈A(t)〉 oscillates. For example, consider a

hypothetical chemical clock6 described by a cycle of states [22, 10]

s1 → · · · → sN → s1. (2.9)

If the clock advances each time the cycle is traversed, adding states to the cycle

improves the quality of the clock, as shown in Fig 2.2(b). A more abstract implemen-

tation could be to consider a clock cycle and a fuel reservoir. We define that the clock

consumes 1 unit of fuel during the transition from sN back to s1, so the cycle is an

open system. This accounting method, in effect, unrolls the cycle into a linear chain of

microstates enumerated by the dyad {f, si}, where f is the amount of fuel remaining.

When f is effectively infinite, the dynamics of the open cycle and the linear chain are

equivalent. As the system moves from one state to another, we count time by keeping

track of the evolution of the macrostate denoted A(t). The macrostate of the clock is

〈A(t)〉 =
∑

i,f Aip(f, si, t) =
∑

iAi〈p(si, t)〉. Therefore, the quality of oscillations in

6The oscillating chemical clock is distinct from the traditional “clock reaction,” where an au-
tocatalytic reaction causes a sudden one-time change in state on a distinct timescale, such as the
iodate-bisulphite system [21].
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the infinite linear chain is bounded by Qs, regardless of the precise amount of fuel.

When Ai = {1 if mod2i = 0; 0 otherwise}, as shown in figure 2.3(a), the total number

of states, N does not effect the quality of the clock. However, if we change Ai to

Api = {1 if modpi = 0; 0 otherwise},

figure 2.3(b) shows increasing oscillation in 〈A(t)〉 with increasing p. That is, adding

more states to the clock directly increases its accuracy.

Texts exploring chemical oscillations state that nonlinearity is a requirement for

oscillations. In fact, nonlinearity is a shorthand for describing extremely large sys-

tems [13]. Under conditions of detailed balance, systems must consume some sort of

fuel to sustain oscillations. If we consider the fuel-free states as being an abstract

engine with N states, the combined engine-fuel system will be in one of the N differ-

ent states and have f units of fuel remaining. Therefore, a fuel reservoir can allow

a total number of oscillations ≈ fN/π. eq. (2.8) implies that the number of inher-

ently unique states, absent fuel consumption, will constrain the possible regularity of

reciprocal motion [10]. Thus, the quality of oscillations appears to be bounded by

the smallest irreducible cycle in the system, although this is not proven. That is, the

topology of the network is inherently related to the ability of the system to sustain

oscillations, and this will be explored in future work.

Similarly, if the system is driven by oscillations in multiple parameters or species,

we can again parameterize the state of the system based on the population of each

component. However, most chemical dynamics are modeled using continuous vari-
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ables, not discrete numbers of states. The microscopic description of the system,

comprised of a discrete number of states, is connected to the continuous mass-action

approximation of chemical dynamics by a system size expansion described by Van

Kampen [13]. Take, as an example, the multidimensional oscillating chemical reac-

tion called the Brusselator. By expanding the mass-action Brusselator into a discrete

state-space, the system size-expansion parameter determines the length of the largest

cycle [23, 24]. Indeed, multiple authors have observed that the quality of the Brussela-

tor limit cycle scales with system size, consistent with this work [23, 22, 25, 26, 27, 24].

This observation is not merely coincidence, but a fundamental efficiency limit of the

master equation.

This efficiency limit of oscillations has obvious implications on how well a high-

dimensional system can be numerically approximated by a smaller system. The ap-

proximation will only be successful if the relevant eigenvalues of the larger system

lie within the allowed region of the smaller system. However, the inverse stochastic

eigenvalue problem has not yet been solved, so we cannot know a priori if a stochastic

matrix exists for a given set of eigenvalues, even if they all reside within the allowed

region [28]. This fact prevents us from constructing the opposite bounds, the con-

ditions for a minimum number of oscillations. Hopefully, future results will further

constrain the present bounds, and we may gain deeper insight into the necessary

conditions for creating oscillations.

The bounds on oscillations can play a key role in interpreting experimental ob-

servations by determining a minimum number of underlying states. For example,
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the oscillation of fluorescence wavelength in fluorescent protein GFPmut2 remains

unexplained [29, 30, 31]. After application of a denaturant, the ionic state of the

fluorophore can switch up to Q ∼ 50 times with high regularity, observed as oscilla-

tions in the emission wavelength [29]. Because eq. (2.7) bounds the number of states

involved in the oscillation to be at least 3 times larger than Q, this predicts that the

oscillations are driven by large-scale rearrangement of the numerous hydrogen bonds

in the β-barrel, not merely exchange between the few amino acids directly connected

to the fluorophore. If the protein were to be mutated to alter the number of bonds in

the β-barrel, we predict that we should see a corresponding alteration in the number

and quality of observed oscillations.

2.4 Oscillations in Green Fluorescent Protein GF-

Pmut2

In a series of recent experiments, a mutant of Green Fluorescent Protein, GFPmut2,

was encapsulated in silica gel and observed under denaturing conditions [32, 33, 31].

Ordinarily, when folded or even during unfolding, GFPmut2 is stable in the anionic

green state, with stochastic transitions to the neutral blue state. At the very end

of the denaturing process, just prior to complete fluorescence quenching, the fluo-

rescence oscillates between green and blue [33]. This resonant oscillation is unique

in fluorescence behavior and unobserved in single-protein dynamics except for the

slow oscillations in activity of the ECTO-NOX protein [34, 35]. In addition to being
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a fascinating window into denaturing dynamics, the observed GFPmut2 oscillations

prompt the question of how a single molecule can be driven to autonomously oscillate.

Although the GFPmut2 oscillations are fascinating, they have not been fully ex-

plored experimentally. Although further experiments could cast new light onto this

unique dynamics, the current body of work suggests these oscillations are autonomous,

meaning that no laser or mechanical driving occurs. Somehow oscillations sponta-

neously emerge late in the denaturing process, and they persist far longer than the

picosecond timescale of natural underdamped motion in protein bonds [36]. No other

groups have reported independent observation of fluorescence observations from GF-

Pmut2 as of early 2011, although we have tried, both at Caltech, and with the help of

Jau Tang at Academia Sinica. The largest hurdle has been avoiding photobleaching.

Additional experimental evidence will of course further inform the accuracy of the

results below.

Because the oscillations take place on the millisecond timescale, and they do not

begin for up to an hour after denaturing starts, MD simulation is impossible. Thus,

there is no hope of brute force replication of the experiment in silico. Furthermore,

the oscillations are only apparent on the single molecule level, so NMR cannot directly

access the chain of events. We are left with an approach where modeling can suggest

new experimental variables and observables to probe.

The timescale of oscillation in GFPmut2 is too long to be attributed to most nor-

mal processes associated with protein dynamics, including bond vibrations, torsional

modes, and isolated residue rotation [37]. For example, in wildtype GFP, Agmon
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has observed that the stochastic blinking in wildtype GFP is due to the rotation of

Thr204, but it characterized by a switching time of tens of nanoseconds [38]. Most

protein dynamics on the millisecond timescale are characterized as two-step processes,

indicating only a single degree of freedom dominates the folding process. However,

Langevin dynamics indicate that self-sustained oscillations in a single degree of free-

dom in a protein would be impossible. In fact, a single degree of freedom cannot

produce any oscillations at all without some external driving, as demonstrated in the

section 2.2.

Given that the oscillations in GFPmut2 are not associated with any known peri-

odic driving, there must be some coordinated interplay between ordinarily unobserv-

able degrees of freedom. Even the nature of the experiment suggests this, because the

fluctuation of any single hydrogen bond normally cannot be observed via the fluores-

cence of the molecule. The denaturants used, urea and guanidinium HCl, attack the

barrel in slightly different ways [39, 40, 41], but the resulting oscillations are identi-

cal [42]. The fluorescence photophysics does not deviate from normal throughout the

vast majority of the denaturing process, except for the moments before quenching.

Because the fluorescence oscillates between anionic and neutral up to 20 times [33],

there must be at least 120 separate internal states coordinating the oscillations. The

only source of this many states within a single protein would be the hydrogen bonds

of the β-barrel. Somehow, the denaturant sets off a cascade of hydrogen bond break-

ing and reforming that is observed in the experiment as the ionization state of the

fluorophore. There is evidence that the oscillations are not due to rearrangements of
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precise bond networks, because these networks are sensitive to salt concentrations.

Protonation rates vary continuously with GdnHCl, but we do not see oscillation pe-

riods vary [43].

Here, we explore our hypothesis of hydrogen bond fluctuations by suggesting a

two variable system where the ionic state of the chromophore alters the stability of

the β-barrel. Without a direct crystal structure of GFPmut2, we cannot know if there

are unique structural features in GFPmut2 to focus on as a starting point. However,

we can draw analogies from other GFP mutants, such as S65T [44]. All mutants in

the green fluorescent protein family fold into the distinctive β-barrel conformation,

shown in figure 2.4. The β-barrel is held tightly closed by dense array of hydrogen

bonds running up and down the sides of the barrel. This protects the chromophore,

shown in figure 2.5, which is quenched by water.

By considering these facts, we attempt to synthesize a model to increase our

understanding of this system.

2.4.1 Limit Cycles

Long term dynamics in closed systems are always driven to equilibrium. This stable

state quenches any oscillations, leading to what Lord Kelvin profoundly called “Heat

Death,” where no more free energy is available to sustain nonstochastic motion [50].

In the case of GFPmut2, we observe this as the fully denatured state where all

fluorescence is quenched. Prior to oscillations, and toward the end of the series of

oscillations, the ionization state of the fluorophore is stochastic. Only during a brief
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Figure 2.4: Ribbon representation of GFP, made using PyMol [45]. The β-barrel is
colored purple. Unstructured regions are pink. α-helix loops are colored blue. White
and yellow rods are hydrogen bonds between residues, which are not shown. The
chromophore is orang, and can been seen edge-on. Original model was PDB entry
2HPW [46, 47, 48].
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assumes that the chromophore exists either in a protonated (band
A, 395 nm) or an deprotonated (band B, 475 nm) state;18 the
latter state exists in a thermodynamically unstable intermediate
form (band I, 493 nm) and a low-energy form.19,20 The hydroxyl
group of wt GFP chromophore is part of an intricate network
of hydrogen bonds that favors the protonated form.2 Deuteration
experiments have shown that the large Stokes shift after
excitation at 395 nm is due to excited state proton transfer of
the GFP chromophore in its neutral state. After excitation the
hydroxyl group of the GFP chromophore is deprotonated within
a few picoseconds and a predominant red-shifted fluorescence
emission from the deprotonated chromophore is observed. At
room temperature this emission is spectrally not distinguishable
from emission upon 475 nm excitation.15,16 The phenolic
hydroxyl of the chromophore is hydrogen bonded through a
water molecule to Ser205, which is also hydrogen bonded to
the γ-carboxylate of Glu222. Electrostatic repulsion in this
network between the γ-carboxylate of Glu222 and the phenolic
chromophore has been proposed to stabilize the protonated state
of the chromophore.17,21

Though wt GFP is relatively insensitive to changes in pH,22
the fluorescence emission of several GFP mutants exhibits
distinct pH dependences.1,2 Among others, mutations involving
Ser65 are of special interest since they lead to the selective
stabilization of the deprotonated form, shifting the pKa around
neutrality.2 The most commonly used mutation to favor ioniza-
tion of the phenol of the chromophore is the replacement of
Ser65 by Thr (S65T),23 though several other aliphatic residues
such as Gly, Ala, Cys, and Leu have roughly similar effects
(class 2 mutants).2,23-25 Based on crystallographic studies it was

assumed that in the S65T mutant the chromophore is fully
deprotonated at pH 8 (Figure 1) and protonated at pH 4.5.26
Furthermore, Glu222 is not in hydrogen-bonding contact with
the phenolate oxygen of the chromophore, showing that, for
this mutant, Glu222 is not able to stabilize the protonated state
of the chromophore.6 Fluorescence excitation spectra of S65T
showed that for this mutant the absorbance band A does not
lead to appreciable fluorescence emission.27,28
Since the initial proposal for the use of a GFP mutant as a

reporter of the pH within cellular compartments,29 several studies
have described the pH sensitivity of other GFP variants27,30-33
and the use of these variants as endogenous intracellular pH
indicators.27,31
A detailed kinetic description of the pH-induced transforma-

tions at the chromophore site is desirable not only for the
understanding of the mechanisms underlying the change in color
but also for the evaluation of how fast the protein can respond
to changes in pH. Stopped flow pH-jump measurements, carried
out to study the kinetics of the acid-induced transformation of
the chromophore in the S65T GFP, demonstrated that the
spectral changes occurred within the instrumental dead time
(about 2 ms).27 Fluorescence correlation spectroscopy (FCS) has
been recently used to monitor pH-dependent fluctuations in
EGFP (F64L-S65T) and S65T GFP.28 The autocorrelation
function was described as arising from a decay with pH-
dependent rate, which was attributed to binding of protons from
solution, and a slower, pH-independent process, assigned to an
intramolecular proton transfer and/or structural rearrangement.
Similar findings were reported for YFP mutants.34 Although
FCS is an extremely powerful tool to investigate dynamic events
in macromolecules, relaxation methods have some advantages
since they require minimal modeling to retrieve kinetic informa-(15) Chattoraj, M.; King, B. A.; Bublitz, G. U.; Boxer, S. G. Proc. Natl. Acad.

Sci. U.S.A. 1996, 93, 8362-8367.
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Figure 1. (Left) Three-dimensional structure of S65T GFP at pH 8 (PDB entry 1EMG). The chromophore is shown in green, His148, in blue, Thr203, in
orange, and Glu222, in yellow. The carboxylic acids present on the protein are shown in red. (Right.) Closeup of the chromophore with the mutated residues.

Kinetics of Acid-Induced Spectral Changes in GFPmut2 A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 127, NO. 2, 2005 627

Figure 2.5: The chromophore is in green, shown in the center of the β-barrel in left,
and in its native H-bond arrangement in the right. Taken from [49].

sub-100 ms window does the ionization state oscillate somewhat deterministically.

A proton determining the ionic state of the chromophore is transported to and

from the fluorescent ligand via proton channels determined by the orientation of amino

acids in the binding pocket and the barrel. Proton channels transport protons on a

picosecond timescale, similar to other breathing modes of amino acids. Therefore,

these local vibrations and rotations average out over the course of an oscillation.

Large scale rearrangements of the hydrogen bond network are much slower. These

“proteinquakes” transpire over milliseconds, the same timescale as the oscillation

dynamics [51, 52].

Matching timescales indicates that the oscillations could be dominated by two

parameters, the ionization of the fluorophore and a proxy for the number of hydrogen

bonds holding the protein together. Because the proton traverses proton-wires that

open and close via rotational modes of amino acids along the wire [53], the proton’s

position will be stochastic over the experimental timescale. We therefore wish to

calculate the time-dependent probability of the proton being on the fluorophore (an-
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ionic), pA(t), as a function of a chemical coordinate of hydrogen bonds D, which shall

act as our proxy measure of the hydrogen bond network.

The internal charge distribution can determine the stable configuration of the

hydrogen bond network, as was also seen in [53]. After exposure to denaturants

for some time, a number of stabilizing hydrogen bonds break down, and denaturant

begins to penetrate into the internal binding cavity [54]. After sufficient time, the

entire β-barrel is broken from the inside-out, leading to a general two-state picture for

denaturing. The precise chain of events during the unfolding process may depend on

the employed denaturant [39], but the resulting oscillation dynamics do not appear

to have any such dependency [31].

Because the observed persistent oscillations are so unusual, we first attempt to

find conditions for totally self-sustained oscillations, i.e.,a limit cycle. If one assumes

that the internal charge distribution alters the local equilibrium of the hydrogen bond

network, and that the internal charge distribution is reported through the ionic state

of the fluorophore, the dynamical equation describing their interdependence must

take the general form:

ṗA(t) =− f1(D)pA(t) + f2(D)(1− pA(t)) (2.10a)

Ḋ(t) =g1(D)pA(t) + g2(D)(1− pA(t)). (2.10b)

Oscillations would be indicated by pA(t) swinging between 0 to 1 and back on

a fixed timescale, representing near certainty of the fluorophore being neutral and

anionic, respectively, and then returning. We see that Eq (2.10a) has the form of a
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Fokker-Planck equation, while eq. (2.10b) describes the ensemble average dynamics

of D. Because eq. (2.10a) is a master equation, detailed balance would suggest f1

and f2 to be

f1(D) = k1e
−D/d0

f2(D) = k2e
D/d0 .

This functional form indicates that the parameter D is affine in the free energy of

the protein. It is also consistent with experimentally observed reprotonation rates in

GFP as a function of denaturant concentration [43]. When in the anionic state, the

charged state favors D growing, consistent with denaturing occuring spontaneously.

In the neutral state, small D becomes unfavorable. Hence, the free energy difference

between the anionic and neutral states would be ∆G = ln(k1/k2)− 2D/d0. Research

by Saxena et al. has shown that the deprotonation process in native EGFP, a mutant

similar to GFPmut2, in nearly barrierless (0.3 kcal/mol), while the reprotonation has

an activation energy of 14.8 kcal/mol [43]. Thus, we posit that denaturation alters

the free energy balance between the two states, ultimately determining the charge

state of the chromophore.

We use eq. (2.10b) to describe the ensemble average of D(t), making g1 and g2

the recruitment rate of newly denatured bonds in the anionic and neutral state,

respectively. When the protein is well folded, denaturant attacks bonds and opens up

the barrel, disrupting cooperative folding. If the state of the chromophore directly or

indirectly determines the local equilibrium fold, denaturant may be squeezed out of
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the β-barrel under certain conditions. We take

g1(D) = k3D

g2(D) = −k4
D

k5 +D
.

That is, under the anionic state, hydrogen bonds decay as a first order process. Upon

the transition from neutral to the anionic charge state, the fold is now no longer

in equilibrium, so the protein undergoes a proteinquake [51]. In the neutral state,

the equilibrium structure is one that catalyzes reforming of hydrogen bonds and

restabilizing the barrel, leading to a Michaelis-Menten expression due to neighboring

amino acids effectively catalyzing bonds with their neighbors. In the neutral state,

amino acids no longer have the central anion competing with the other amino acids

for preferential alignment due to the anion-induced dipole coupling, diagrammed in

figure 2.6. In total, Eqs. (2.10a) and (2.10b) become

ṗA(t) =− k1e
D
d0 pA(t) + k2e

− D
d0 (1− pA(t)) (2.11a)

Ḋ(t) = k3DpA(t)− k4
D

k5 +D
(1− pA(t)). (2.11b)

With a model of this form, we successfully produce oscillations in both charge

state. pA. and structural stability, D. Tools such as Mathematica’s EquationTrekker

allow a rapid visual search of parameter space. figure 2.7 shows a typical set of

phase-space trajectories produced from one combination of parameters, showing that

sustained oscillations can be readily produced when the two charge states favor two
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Figure 2.6: When the chromophore is anionic, left, its excess charge draws its tightly
coupled neighbors into alignment with the chromophore. When neutral, the amino
acids are now free to preferentially align with their neighbors, increasing the structural
rigidity of the β-barrel.

different folds, as hypothesized. figure 2.7 shows the GFP oscillating between pA

between approximately 0.9 and 0.1, corresponding to a 90% probability of being in the

anionic state when highly structured (D small). The anionic state allows denaturing,

and pA swings to 0.1 as D increases, ultimately reaching a 90% chance of being in

the neutral state.

Because eq. (2.11) produce limit cycles, these equations suggest a mechanism

for the dynamics. However, limit cycles that produces the desired oscillations can-

not explain the complete dynamics of GFPmut2, because no system can oscillate

indefinitely. The key assumption is that the energy of the protein spontaneously

increases when the charge state flips, favoring a more robust (or delicate) fold. Al-

though it would not be unusual for an internal degree of freedom to shift the energy

landscape [52], a physically motivated description of the protein dynamics could not

produce indefinite oscillations. Furthermore, GFPmut2 oscillations do not appear
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Figure 2.7: Given the parameters d0 → 19.0, k1 → 0.12, k2 → 3.8, k3 → 4.8, k4 →
124.0, k5 → 1.6, eq. (2.11) shows that the expected charge state of the chromophore
can develop strong oscillations. These parameters are not physically determined, but
indicate that the functional form of eq. (2.10) likely corresponds to some underlying
dynamics.

the instant denaturant is applied. It can take an hour of denaturing before any os-

cillations are observed [30, 31]. Our model should be able to suggest an explanation

for this as well as predict a finite resolution to the oscillations. To address this, we

consider more closely the dynamics of our model system and how the limit cycle forms

from eq. (2.11).

Consider the nullclines of the dynamics described by eq. (2.11), which are de-

termined by fixing ṗA = 0 or Ḋ = 0. Each condition will give a different curve,

corresponding to the path in phase-space which satisfies each condition. Both curves
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can be written as a function of D(pA) :

D(pA) =
d0

2
log

(
k2

k1

1− pA
pA

)
ṗA = 0 (2.12a)

D(pA) =
k4

k3

1

pA
− k4

k3

− k5 Ḋ = 0. (2.12b)

The mutual intersections of the nullclines determines the character of the phase-space

dynamics, as shown in Fig 2.4.1. Altering any of the rates adjusts the position of the

nullclines, such that they do not intersect (figure 2.8(a)), intersect once (figure 2.8(b)),

or intersect twice (figure 2.8(c)). A limit cycle only emerges when these nullclines

intersect at one point. In fact, altering only a single rate, k3, is sufficient to drive

the system from a stable fixed point into a limit cycle by altering the position of the

Ḋ = 0 nullcline.

If the rate k3 were time dependent such that k3 started small at t = 0 and grew

monotonically larger over time, the system would initially exhibit the experimentally

observed nonoscillatory behavior until k3 reached a critical value (which is dependent

on all other parameters in a nontrivial way). The curves would first intersect twice, as

shown in figure 2.8(c). The phase-space dynamics still display a single stable node, but

the system entering the unset of instability. This is consistent with the experimentally

observed steady increase in the blinking rate in the minutes leading up to the onset

of GFPmut2 oscillations [30]. Once k3 grows a bit large, the nullclines then intersect

only once, causing the system to bifurcate into a limit-cycle, corresponding to the

experimentally observed oscillations. As k3 continues to increase, eq. (2.12b) shows

the D nullcline monotonically shifts towards the pA = 0 axis. The center of the limit
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cycle shifts toward this axis, as well. As a result, the dynamics are shifted to favor

the pA = 0 state. As the center of the limit cycle drifts to pA = 0, the probability

of returning to the anionic state decreases, and the oscillations begin to look like

chaotic blinking, as has been observed [33]. This entire series of events are played out

in figure 2.9 by assuming an exponential time dependence for k3.

What could produce such a time dependence? The GFPmut2 chromophore is

tightly coupled to a handful of neighboring amino acids, as shown in figure 2.5. These

amino acids coordinate the local field and help determine the equilibrium ionization

state of the chromophore, which has been found to have a pKa of 6.2 [55]. However,

the amino acids most tightly coupled with the chromophore are also held in place

by hydrogen bonds from their neighbors, and so on. As the bonds start to break

up, fluctuations in the local pKa grow in proportion to the degree of stabilization.

The loss of mutual stabilization increases local fluctuations in the β-barrel, and the

amino acids take larger excursions from their local equilibria. This in turn allows

the denaturant better access to further destabilize bonds, resulting in a denaturing

rate that increases with time. Therefore, k3 may have some dependence on additional

degrees of freedom, approximated to first order by an exponential growing function

of time.

2.4.2 Loop Dynamics

Although the limit-cycle model in the previous section established that the denaturing

increases as the oscillations evolve, it used a continuous variable, D(t), not the number
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(b) k3 → 4.8, limit cycle: nullclines inter-
sect once
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(c) k3 → 1.7, one stable spiral and one un-
stable: nullclines intersect twice

Figure 2.8: Green curve: pA(t) = 0 nullcline; Red curve: D(t) = 0 nullcline. Above
the green curve, ṗA < 0 and below ṗA > 0. Above the red curve, Ḋ > 0, and below
Ḋ < 0. d0 → 19.0, k1→ 0.12, k2→ 3.8, k4→ 124, k5→ 1.6
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Figure 2.9: Time-dependent rates create a transition from a static system to a limit
cycle. In this case, we transform k3 → k3e

k6t. k6 is different between the three plots.
top: k6 → 0.12, middle: k6 → 0.10, and bottom: k6 → 0.08. Each range runs from
pA = [0, 1] versus time, and the curves are offset for clarity.
d0 → 5.29, k1 → 0.11, k2 → 4.29, k3 → 1.0, k4 → 177.18, k5 → 1.34.

of hydrogen bonds. This allowed for better examination of the dynamics, but does

not explain the how the bonds break. The speed of bond breakage determines rate of

increase in D(t), and thus, also determines the oscillation rate, because a faster change

in D directly translates into a faster change in pA, the observed fluorescent state.

We also postulated that the central destabilizing force was a collective breakdown

in the mutually stabilizing hydrogen bond network, leading to a time dependent

k3. What determines the precise value of k3? This may only be hypothesized, but

a consideration of the GFP crystal structure shows the β-barrel to be remarkably

uniform, with no obvious lines of weakness in the arrangement of hydrogen bonds.

However, the β-barrel is constructed by looping the backbone to reach the final fold.

Three loops are needed to properly fold GFP, as shown in figure 2.10. Loops are
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entropically unfavorable [56], acting like springs pulling on the β-barrel [57, 58].

Figure 2.10: left: 3D representation of GFP, with backbone colored yellow. The three
loops are colored red, purple, and green. Dotted white lines indicate the distance from
the start to end of the loop. right: depiction of the secondary structure of GFP, with
strands of the β-barrel numbered 1 – 11. The loops are the red cylinders, and colored
red, purple, and green to correspond to the 3D image on the left.

Because of the large damping, the collisions between the loops and the bath

molecules cause the loop to rapidly explore its configuration space, subject to the

constraints of its end-to-end distance. This results in an entropic force being exerted

on the amino acids at the ends of the loop. Loops are analogous to a spring under

tension [59]. Of course, under native conditions the loops have little or no effect on the

extremely stabile β-barrel. Over the course of the denaturing process, the loops will

eventually dominate the weakened hydrogen bond network and begin to pull apart

the β-barrel.

Because of the denaturant, the α-helices in the loops will break down, and there

will be very little structure in the loops. This allows the loop to be modeled as
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a wormlike chain (WLC)[60, 61, 57], a model defined by the correlation relation

〈r̂(s) · r̂(s + ∆s)〉 = exp(−∆s/p), where r̂(s) is the orientation vector of polymer a

distance s from the end, and p is called the persistence length. This model works well

for short loops of amino acids [62], and under the WLC model, the entropic force is

a function of end-to-end distance is given by

F (R) =
kbT

p

(
1

4
(1− R

N`
)−2 − 1

4
+

R

N`

)
, (2.13)

where R is the end-to-end distance, p is the persistence length, N is the number

of amino acids, and ` is the effective loop length contribution of each amino acid.

Although the loops pulls continuously, the bonds break discretely and regularly. How

does one map a continuous linear transduction into a periodic signal?

Consider a common baby’s toy, the bead maze, shown in Fig 2.11. Even if a train

of beads are moved over the apex of the curve at a continuous rate, only one falls over

at a time.7 If the bead train is moved at constant velocity, v, the time between beads

moving over the apex is `/v, where ` is the length of the bead. Hence, the audible

“click” produced when the beads collide at the bottom has a period of `/v seconds.

Linear motion has been transformed into a periodic signal.

Analogously, the drag and damping by the water cause the loop to move with-

out any inertia, leaving a Stokes drag condition, F (R) = ηv, where η is the drag

7Because there is no coupling between beads, the bead that is balanced on the apex has an
adjacent bead one bead-width, `, lower on the wire track. The bead at the apex becomes unstable
and slides over the top, but the adjacent bead must move another ` before it reaches the apex and
slides over. This takes a time `/v.
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coefficient.8 Under denaturing conditions, the weakened β-barrel is able to be de-

formed by the loop, pulling the amino acid adjacent to the loop at a constant

velocity v = F (R)/η, and the expected time for the amino acids to be pulled

out of their hydrogen bonds with their neighbors is τ = F (R)/η`. We observe

three different loops in figure 2.10, with the following pairs of parameters, (N,R) =

(17, 2.1 nm), (11, 1.7 nm), and (8, 1.7 nm). Based on force-induced denaturing ex-

periments, we have p = ` = 0.39 nm [62]. It is reasonable to assume that any one

of the three loops may dominate the final unfolding during a single unfolding cycle,

and the resulting oscillation dynamics will depend on that particular driving force,

just as a single fracture dominates the initial failure of a brittle object. Experiments

observe that GFPmut2 oscillates with one of three frequencies: 930, 720, or 440 s−1.

The same protein will oscillate at only one frequency during one unfolding cycle, but

it may oscillate at a different frequency during subsequent cycles. Even though we

do not know η, the resulting calculated ratios of oscillation rates, 1:0.72:0.41, are in

good agreement compared to the experimentally observed ratios, 1:0.72:0.47 [30].

This agreement provides a key insight into the dynamics of GFPmut2 unfolding.

If the preceding analysis holds, the unfolding dynamics appear to be primed by the

destabilization of the loops in a systematic way. The loops deform the β-barrel,

popping out hydrogen bonds one-by-one. As discussed in the previous section, the

charge state of the chromophore helps to coordinate the surrounding amino acids

in such a way as to loosen the β-barrel sufficiently to allow the loop dynamics to

8The drag coefficient η will be a function both of the drag due to moving through the water and
the energy absorbed by distortions of the β-barrel, making a calculation of η beyond the scope of
the present work.
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Figure 2.11: The bead maze, a common children’s toy, is an example of linear motion
producing a periodic signal. As baby Leo pushes the train of beads over the top of a
loop, one bead at a time slides down the other side as it passes the apex. Although
Leo moves the beads at a constant velocity, v, he hears a periodic click of frequency
v/` as each bead slides to the bottom, where ` is the length of the bead.

dominate, but the neutral state strengthens the barrel, neutralizing the effect of the

loops. This analysis predicts the oscillation rates are determined by the loop lengths.

If experiments are able to observe the oscillations in fluorescence, altering the loop

lengths should change the ratio of oscillation rates in systematic way, confirming the

present predictions.

2.5 Conclusion

We have examined how system size relates to the dynamic behavior of overdamped

systems. Because most systems on the nanoscale operate at very low Reynolds num-

ber, they satisfy this condition. When those states are enumerable, systems with

more states have the ability to oscillate longer and more coherently. This carries
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implications not only for designing nanoscale systems, but also the results apply to

any system that may be described as dynamics on a network, such as social networks.

The quality bounds proved here are universal. Because the master equation is used in

nearly every branch of science, the dynamics being modeled need not be physical. For

example, it could be money held by a bank [8], packets of data on the internet [63],

agents traversing a network [64], or the populations in an ecosystem [65]. The os-

cillation limit could also be probed experimentally with sculpted landscapes using

optical tweezers [66]. As a probe bead jumps from trap to trap, the energy landscape

in unoccupied traps is sculpted to simulate an arbitrarily large designer network of

discrete states. The current results are a fresh approach to analyzing the dynamics of

discrete systems, and it serves as a new design principle for those seeking to engineer

oscillations.

This theorem also has direct application to explaining the curious dynamic of GF-

Pmut2 oscillations. Using the theorem, we were able to construct a model based on

the rearrangement of hydrogen bonds in the β-barrel, as opposed to oscillations in the

dynamic conditions around the protein or in the underdamped motion of protons. Us-

ing a two component model to track the probability of ionization of the chromophore

and degree of denaturing of the β-barrel, we are able to analyze how the oscillations

emerge and why they dissipate. Further phase-space analysis predicts a cooperative

effect maintains the β-barrel. Once the barrel begins to fully destabilize, the dena-

turing occurs rapidly, and the barrel’s ability to repair itself degrades until finally the

protein is fully denatured. We hypothesize that the loops of the GFP have a central
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role in determining the rate of unfolding due to their destabilizing nature, and an

experiment which alters the length of these loops should see a corresponding change

in the oscillation time.

This chapter has shown how linear state spaces may be mapped into nonlinear

systems, allowing us to better understand oscillations on the nanoscale. Further work

will be able to refine both parts of the work in this chapter. First, identifying motifs

that give rise to oscillations or other chaotic behavior in reaction networks will uncover

more applications for the theorem. Second, connecting the predicted consequences of

GFP oscillations with further experimental observations may provide more evidence

to refine our understanding of the oscillations. The next chapter will explore how

optical nonlinearity, instead of nonlinearity in state-space, may be used to probe the

geometry of proteins inside muscle using nonlinear optics, extracting more information

than possible using traditional fluorescence techniques.
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Chapter 3

Endogenous Second Harmonic
Generation in Zebrafish

One emerging technique for biological imaging is harnessing nonlinear optics to probe

endogenous structures [67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. The vast majority of

an organism is constituted of proteins and water. Water has an index of refraction

of 1.33, while tissue has an index of approximately 1.4 [77, 78, 79]. The makes living

tissue nearly optically continuous, compared to the optical contrast between tissue

and gold, for instance. How does one then optically study objects of interest in such a

low-contrast environment? Of course, the most common approach to selective imaging

is to introduce something to enhance this contrast, such as a stain or fluorescent dye.

Fluorescent dye, in particular, allows for exceptional contrast, because the only source

of light at the desired wavelength will be from dye and low-level natural endogenous

autofluorescence. However, the natural chirality of proteins can serve as a source

of second harmonic generation, allowing us to distinguish highly ordered structures

from the amorphous background without introducing any foreign components. That

is, only certain structures will transform two photons from the input laser into one
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photon at half the wavelength. Detecting the SHG wavelength will then allow for

localization of the source structures. For example, the ordered arrangement of muscles

and collagen serve as particularly bright sources of biological SHG, shown in figure 3.1

for the case of muscle. There are also a number of studies of SHG and hyper-Rayleigh

scattering from films and suspensions of proteins and DNA [80, 81, 82]. SHG has two

drawbacks. First, the probability of two photons combining is very small, so the input

laser must be very powerful. Second, unlike fluorescence, where a material absorbs

light and reemits it in a wavelength characteristic of that dye, SHG is defined as the

doubling of the laser frequency, so all sources of SHG will appear identical without

further characterization. Often, just the morphology of the object is sufficient to

distinguish, for example, myosin from collagen, as in figure 3.4. However, this is not

an ideal approach, nor does it leverage the strengths of SHG. By better understanding

the process of SHG production, we can identify how SHG from one type of tissue would

be unique, whether it be an emission direction, polarization, or intensity specific to

the structures in question.

To this end, we investigate the wavelength dependence of SHG from zebrafish

(Danio rerio) muscle. We measure the SHG from regions of the muscle and char-

acterize the resulting spectrum. In addition, we identify some the of characteristics

of SHG imaging distinct from fluorescence imaging. The organism in question is a

common subject in optical microscopy due to a number of favorable factors, such

as: its genome is sequenced, it can be induced to be highly transparent, it matures

rapidly, among other practical reasons for its use as a model organism. Therefore, our
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Figure 3.1: Sagittal section of zebrafish 36 hours post fertilization. Left, composite
brightfield and transmitted SHG. Center, brightfield. Right, transmitted SHG. Scale
bar is 25 microns.

conclusions will be specific to muscle from zebrafish, but most of it is transferrable

to images of other organisms.

Muscle in zebrafish are organized into chevron-shaped somites, as shown in fig-

ure 3.3. The muscle surrounds a central notochord, which bisects figure 3.3. This

image illustrates one of the central attractions of second harmonic generation as an

imaging modality. Without any artificial or genetically encoded labels, zebrafish still

produce significant autofluorescence, but fluorescence has very small overlap with

the SHG wavelength. In addition, fluorescence is radiated isotropically, while muscle

SHG is coherently forward directed [84]. There have been a number of studies of

wavelength dependence of SHG in proteins [85, 86, 87] but none in muscle, with its

unique microscopic structures (see section 3.1.1).

There are a number of factors that could contribute to wavelength dependence.

The SHG produced at a point is given by P (2)(x) = χ(2)(ω,x) : E(ω,x)E(ω,x), where

χ(2) is the SHG susceptibility and E is the incident electric field vector. From direct
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Figure 3.2: Anatomical planes. Zebrafish are oriented laterally, meaning the sagittal
plane is parallel to the ground and perpendicular to the laser. Image from [83].

inspection, it is clear that wavelength dependence could originate from the suscepti-

bility itself, which would be due to the underlying material properties of the protein.

The incoming electric field will vary in power, which is part of a greater wavelength

dependent instrument response. Last, there could be variation in the efficiency of

SHG production due to phase-matching, resulting from the underlying crystalline

structure of the muscle. It is this last point that suggests possible diagnostic appli-

cations of the wavelength dependence of SHG, as there are a number of disorders,

namely muscular dystrophy [88], which alter the underlying crystalline structure [89].

3.1 Structure of Muscle

3.1.1 Muscle Construction

Muscle, in particular, is an excellent candidate for biological SHG susceptibility, be-

cause it possess a high degree of spatial order. To facilitate gross movement in an
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Figure 3.3: Label-free image of fixed zebrafish embryo, sagittal section. Scale bar is 50
microns. Green is autofluorescence from the fish and the fixative, blue is transmitted
SHG. Fish is 36 hours post-fertization.
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Figure 3.4: Second harmonic generation from muscle and collagen. Image is a sagittal
section from the end of a zebrafish tail. Left: Epi collected emission. Collagen are
the wispy lines in the middle running vertically. The horizontal streaks are lumi-
nescence from laser damage. Right: Trans collected emission. Again, collagen are
the wispy lines in the middle, while muscle are the striated ribbons to either side.
Exclusively trans-directed SHG is characteristic of muscle. Image taken with 100x
α-Plan-Apochromat 1.46NA. Scale bar is 5 microns.

organism, it must be organized in a way to allow it to coordinate the molecular mo-

tions of proteins across the entire muscle. In general, muscle fibers are organized

on the molecular level as a lattice of parallel protein filaments, including the force

generating and scaffolding components, myosin and actin, respectively. Myosin, a

molecular motor, pulls on the actin, and, due to long-range correlation of the acti-

vation of the myosin, this results in muscle contraction. The myosin and actin are

packaged in periodic longitudinal units called sarcomeres, shown in figure 3.5. The

myosin are tied together in the center of the sarcomere, called the M-line [90], while

the actin anchoring positions are Z-lines, as in figure 3.5. The region of the sarcom-

ere containing the myosin appears optically distinct, and is called the A-band. The

myosin is also loosely bound on both sides to the Z-lines via titin, a spring-like protein,
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maintaing its position in the center of the sarcomere and maintaining an equilibrium

resting distance between the Z-lines. When activated, the myosin ratchets against

the actin, pulling neighboring Z-lines closer together.

Myosin and actin are arrayed in hexagonally packed filaments called myofib-

rils [91], with the protein arranged with a characteristic spacing between myosin

filaments of 40 – 50 nm [92, 93, 94, 95]. This packing is illustrated in figure 3.6.

That is, the lattice vectors observed by x-ray diffraction are consistent with hexago-

nal Fourier amplitudes of Knm ∝ a−1
√

(n2 +m2 +mn)−1, where the lattice spacing

is the characteristic length of a = 40–50 nm, depending on the contractile state of

the fiber [94, 96, 95]1. The hexagonal packing has also been clearly observed in TEM

micrographs [91, 92]. Each myofibril is approximately 1 µm across. Myofibrils are

in turn packed into myocytes, the cellular units of muscles, which are about 10 µm

across [97, 92].

The myosin and actin are packed with high regularity within the myofibril, and

the myofibrils are highly aligned with their neighbors [98], shown in figure 3.5, and

this regularity contributes to strong production of SHG. Although both the myosin

and actin fibers are highly ordered, it is known that SHG only originates from the

myosin, based on complimentary staining [99, 100, 101] and on mutating myosin to

reduce SHG [102, 103]. Depending on the contractile state of the muscle fibrils, the

sarcomere spacing will have differing myosin spacings [100, 104, 105, 96]. The longer

the sarcomeric unit, the smaller the myosin spacing [93, 96]. In addition, muscle

1It appears the actin are anchored to the Z-line in a square lattice, while the myosin are held
at the M-line in a hexagonal lattice. So, close to the Z-line, the packing will be dominated by the
square-lattice of the rigidly held actin [92, 93].
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Figure 1. (a) Levels of structural organization in a typical vertebrate skeletal muacle, from
muscle to fibres to myofibrils (see text; from Bloom and Fawcett 1975). (b) The structure of
the sarcomere in terms of overlapping myosin and actin filaments and illustration of the change
in filament overlap that occurs when the sarcomere shortens.

As the name implies, the regulatory proteins tropomyosin and troponin are involved
in switching muscle on and off. Muscular activity is initiated by the excitation of nerves
connected to the muscle surface. In turn this stimulus gives rise to the release of Ca2+

Figure 3.5: (a) A multiscale illustration of muscle organization, and (b) a cartoon
of the process of muscle contraction. Missing from this cartoon is the fact that the
myosin spacing grows as the sarcomere compresses [93]. Image is from [107].

contraction is driven by the conformation transition of the myosin molecular motor,

which causes the relative angle of the asymmetric units to change with respect to the

myofibril axis [106]. It has been hypothesized that when at rest, the myosin tails at

the M-line are packed together in a way that cancels inversion asymmetry, possibly

causing contraction dependent SHG [105]. These distances and angles determine the

degree of the second harmonic generation, so we expect some heterogeneity in images

of muscle, but they will all retain the same basic patterns.
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FIG. 2. Electron micrographs of

transverse sections of A band from

freeze-substituted rabbit psoas muscle,

relaxed (A) and in rigor (B), prepared as

in Figure 1. In each micrograph, top fi-

brils are from region of thick and thin

filament overlap; bottom fibrils are from

nonoverlap region that contains only

thick filaments. Unit cell of filament lat-

tice is outlined on A. Scale bars, 100 nm.

(Micrographs courtesy of C. J. Hawkins

and P. M. Bennett.)

structure is centrosymmetric, meaning that phases forlated to d10 (e.g., d11 Å d10 /

�
3, d20 Å d10/2). In general, for

each reflection can only be 0 or 180� (usually designateda hexagonal lattice

/ or 0, respectively). The centrosymmetric condition is

probably appropriate over the range of equatorial reflec-dhk Å d10 /

�
(h2 / hk / k2

)

tions observed in practice and discussed here.

The resolution of an electron density diagram will be
where h and k are integers, indexes for the crystal direc-

tions in the plane (see Fig. 3).

B. Density Across the A-Band Lattice

X-ray diffraction experiments can yield two types of

information. As well as lattice dimensions or the spacing

between filaments (see sect. IIA), the electron density

across the unit cell can be calculated from the reflection

intensities. In particular, the electron density projected

axially along the sarcomere can be calculated by Fourier

transformation of the equatorial X-ray diffraction pattern

(Fig. 5). Because diffraction spots (or reflections) are

waves, in addition to the amplitude, each has a phase

which can vary between 0 and 360�. Fourier amplitudes

are obtained directly as the square root of intensities of

the diffraction reflections. Phases, however, need to be

derived from other considerations, e.g., known aspects of

the structure, structural symmetry, changes during swell-

ing and shrinking, or the fitting of structural models to the

observed electron density. Details of phase determination

methods are beyond the scope of this review but can

be found in more specialized X-ray diffraction references

(e.g., Ref. 258).
FIG. 3. A: diagram of filament lattice of vertebrate striated muscle

Because X-ray diffraction patterns can be obtained
in overlap region of sarcomere, showing unit cell of filament lattice

(dotted lines) along with 1,0 (d10) and 1,1 (d11) lattice planes (solid andfrom ‘‘living’’ muscle, the dimensions of the filament lat-

dashed lines, respectively). Thick filaments are represented by a solidtice can be determined accurately from the spacings of
circle with an outer circle for ‘‘cross-bridge’’ region; thin filaments are

reflections in the pattern. In principle, filament diameters
represented by a smaller solid circle. Arrows indicate h and k axes. B:

diagram showing first 8 orders of equatorial X-ray diffraction patterncan be measured from transverse electron density dia-

from vertebrate striated muscle hexagonal A-band lattice. Central rect-grams, but such determinations are limited in practice by
angle is backstop to absorb ‘‘straight-through’’ X-ray beam at center of

resolution limits and the fact that phases must be deter-
pattern. Numbers below each reflection are (h, k) indexes, correspond-

ing to crystallographic planes for that reflection.mined indirectly. At low resolution, the filament lattice

P23-7/ 9j08$$ap04 03-09-98 22:57:47 pra APS-Phys Rev

Figure 3.6: TEM micrographs of myofibril crosssection, showing hexagonal packing of
myosin and actin. Myosin are the larger dots, while actin are smaller dots. (a)Relaxed
fibrils. The bottom portion of both images is a portion of a fibril with only myosin,
e.g., near the M-line. (b) Contracted fibrils. The scale bar is 100 nm. From [93].

3.1.2 Optical Properties of Muscle

The regularity in myofibrils carries over into its optical properties. Because of the un-

derlying chirality of the proteins, myofibrils have well documented birefringence [108,

109, 110], meaning the muscle has a fast (ordinary) and slow (extraordinary) axis.

The optical axis, e.g., the slow axis, is parallel to the myosin filaments [108]. The

birefringence is defined as the difference between the refractive indices B = ne − no,

corresponding respectively to the extraordinary and ordinary axes. More specifically,

observations show B = 2 · 10−3 [108, 110]. In addition, this birefringence has been

observed to change systematically and approximately linearly with the length of the

sarcomere or, conversely, with the density of myosin thick filaments, where birefrin-

gence increases by up to a factor of two between a relaxed sarcomere and one in

contraction [108]. The birefringence has a number of origins. First, there is the un-

derlying chirality of the protein, or more specifically, an intrinsic birefringence due to
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S. AHMAD SHAFIQ Drosophila Muscle. I 353 Figure 3.7: (1) A longitudinal section of muscle, showing myofibrils, light striped
bands, and mitochondria (dark objects between myofibrils). The Z-lines (dark lines),
and to a lesser extent, the A-band and M-lines (lighter lines) are visible. (2) A
crosssection of the same muscle, showing individual myofibrils packed in a quasi-
crystalline manner within the larger cell. (3) Close-up of a single myofibril, with
myosin stained as dark dots. Image is from [92].
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asymmetric polarizability of the underlying electrons, and a change in the underlying

protein structure, such as conformational motion of the myosin heads, would alter the

birefringence to some degree. Second, there is form birefringence, originating from

the highly asymmetric cylindrical protein filaments. The aligned filaments cause the

material to appear to have different character depending on the polarization of light,

were a liquid crystal. As sarcomeres contract, their myosin filaments increase their

separation (an observed conservation of volume [93]), and this drives a change in the

birefringence. Both types of birefringence combine to alter the production of SHG,

primarily due to spatial beam walk-off, which limits the effective interaction length

of the focused laser [111, 112], and also due to coupling between the ordinary and

extraordinary directions [113]. It has been estimated that form birefringence accounts

for approximately 70% of the total birefringence [108]. In addition to birefringence,

the order in myofibrils also gives rise to optical Bragg diffraction. This is present on

the nanometer-scale, where the ordered protein can be studied by x-ray crystallogra-

phy in vivo [95], and it is also present on the micron scale, where optical diffraction

is used to study sarcomere structure [114, 115, 116]. Bragg diffraction affects phase-

matching conditions, which are vital to determining the efficiency of SHG conversion,

as will be shown in section 4.2.2.

A second major influence on the second harmonic generation is the wavelength-

dependent index of refraction. The refractive index of tissue has been explored in a

number of contexts [117, 77, 118, 79, 119, 78]. Pure protein has a refractive index

of 1.5 – 1.6 [78], but myofibrils have a hexagonal lattice of tightly packed heteroge-
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(a) Reflection intensity

(b) Reflection intensity with endogenous fluorescence overlay

Figure 3.8: Reflection of 850 nm laser pulses indicates the optical density of the
zebrafish transverse section. Laser originates from the top of the image. The refractive
index heterogeneity of the zebrafish muscle and neural tube causes significant optical
aberration, realized as the distorted boundary between the fish and the glass, at the
bottom of the images. The top band and bottom bands are the boundary between
the gel holding the section and the glass coverslips.
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nous protein, and it will have an effective index that is a combination of protein

and water. Techniques measuring an average index report a characteristic index of

1.4 [79, 118, 119]. Tissue-specific variations cause the index to vary by 10%. For

example: epidermis is 1.44, dermis is 1.4, and the outmost layer of skin, the stratum

corneum, is 1.55 at 650 nm [77, 119]. Attempts to measure the refractive index of

a 5-day old zebrafish by measuring the optical thickness of the sample using the Ti-

Sapphire laser [118] were stymied by the optical heterogeneity of the muscle, shown in

figure 3.8. Because tissue, in particular myofibrils, has no electronic resonances in the

visible wavelengths, their refractive properties obey the general relation of normal dis-

persion, where the refractive index increases with increasing frequency. Indeed, Ding

et al. [119] and Andersen and Nir [78] find wavelength dependent refraction indices

well described by the Cauchy and Lorentz-Lorenz dispersion relations, respectively.

Works that investigate the polarization dependence of the refractive index of ovine

and porcine muscle find results consistent with the previous birefringence mentioned

above [77]. Hence, the index dependence of muscle will have a simple monotonically

decreasing functional form given by the Cauchy dispersion relation. In this work,

we take the wavelength-dependent refraction indexes for porcine muscle, as measured

by Cheng et al. [120] and reported by Bashkatov et al. [77]. Fitting their data to

a Cauchy dispersion gives an refractive index for muscle across the entire relevant

spectrum:

n(λ) =

√
2.116 +

22.45λ2

λ2 − 53.9343
. (3.1)

where λ is expressed in microns.
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Figure 3.9: Using experimentally measured refraction index data from porcine mus-
cle [120] (total internal reflection), we determine the refractive index across the entire
spectrum. Points are experimental data, line is fit by eq. (3.1).

3.2 Methods for Measuring Second Harmonic Gen-

eration

All zebrafish, unless noted, were embedded in 1% or 2% low-melting agarose with

30% w/v Danieau buffer for imaging. After fertilization, the embryos are transferred

in a petri dish to a 28 degree incubator in egg water. The fish grow for 24 hours, and

then pheynl-thio-urea (PTU) is added (0.003% w/v) to inhibit pigment formation.

After the desired amount of maturing time elapsed, fish were anesthetized in 0.015%

tricaine. For fixing, the fish were immersed in 4% PFA at room temperature for

45 minutes. They were washed on a nutator for 20 minutes three times in Ca-Mg

free PBS 1x. They were stored at 4 ◦C until needed. Live fish were anesthetized

and immediately laterally embedded in agarose containing 0.015% tricaine.2 Two-

well #1 cover-slips (Lab-Tek, Nalge Nunc International) were used to contain the

samples. Although no live samples are presented here, they do not produce SHG that

is noticeably different from fixed fish.

2All fish preparation protocols were conducted and refined by Bill Dempsey.
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Fish were oriented in the gel to maximize resulting SHG, which depended on

the polarization of the microscope laser, i.e.,the laser field was oriented away from

the central myosin-actin axis [121, 101]. Imaging took place at the House Ear In-

stitute’s Zeiss 710 LSM Confocor 2. The laser was a Coherent Chameleon Ultra II

Ti-Sapphire 140-fs pulsed laser. Laser power was selected to be approximately 60 mW

at the back aperture to the objective, which was determined by wavelength corrected

power meter. Imaging was done with Zeiss objectives which were corrected for UV-

VIS-IR imaging. All images were taken with the 25x LD LCI “Plan-Apochromat” 0.8

Imm Corr DIC unless noted otherwise. The correction collar was used to optimize

point spread function at each wavelength, using either Dark Red Quantum Dots from

NN-labs, Inc. or luminescent debris from Zebrafish skin to find point spread func-

tions. Given 60 mW at the back aperture, this leads to average power densities of

approximately 10 MW/cm2, and peak power densities3 of 1011 W/cm2. All SHG was

trans-imaged, using a 0.5 NA condenser to collect the light. The laser was filtered

with a Semrock 680/SP short-pass filter, and the SHG was selected using a Semrock

417/60 bandpass filter. To obtain wavelength-corrected images, the wavelengths be-

tween 780 nm and 890 nm were used in 10 nm intervals, and the laser power was

corrected to bring the power at the back aperture of the object as close to 60 mW

as possible. After collection, the images were computationally corrected for objective

transmission, condenser transmission, and PMT sensitivity. Images were not cor-

rected for short-pass or bandpass filter transparency due to the small variation across

the spectrum. The correction collar of the 25x was used to obtain an optimal point

3Reported from http://www.coherent.com/downloads/ChameleonUltraFamily DS 0510.pdf.
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spread function. However, the collar was not adjusted for each wavelength, primarily

because manually adjusting the collar disrupted the sample alignment, and because

the 0.8 NA objective had small wavelength dependent deviation in the focus, shown in

figure 3.11. In addition, spectra did not differ systematically with collar adjustment.

To prepare morphant fish to recapitulate the phenotype of fish with Duchenne

muscular dystrophy [122], a morpholino4 sequence targeted to the dmd gene locus

was injected into the yolk of zygote-stage zebrafish. The injection was 2.3 nL at a

concentration ∼2.174 ng/µL, using a nanoject II Auto-nanoliter injector. Morphant

fish which developed to 5 days were screened and prepared for imaging as above.

To visualize cell membrane and nuclei locations within the somite compartment,

we used a transgenic zebrafish, which was a bistronic line coexpressing membrane-

targeted cerulean fluorescent protein and a fusion H2B-Dendra2 fluorescent protein,

targeted to the nucleus.5 A founder of the line was crossed with an AB line wild-

type [123]. The larvae were screened at 24 hours post fertilization for fluorescence

and, if positive, prepared as above.

Laser damage proved to be the primary obstacle to optimizing images at every

wavelength. As shown in figure 3.13, cells are easily damaged by two-photon laser

pulses. Damage is not uniform, but it appears to be nucleated at bubbles or other

optical heterogeneities. Once damage forms, the bubble grows larger and larger with

each subsequent scan. Although the bubble may shrink over time, a permanent lesion

4Morpholinos are synthetic nucleic acid polymers designed to bind to mRNA
and prevent the translation of the protein coded by specified target sequence.
http://en.wikipedia.org/wiki/Morpholino

5Dempsey et alf in preparation
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(a) Zeiss LD C-ApoChromat 25x 0.8 NA

(b) Zeiss 0.5 NA Condensor

PHOTOMULTlPLlER TUBE  R5070
Figure 1: Typical Spectral Response
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(c) Hamamatsu R5070 PMT

Figure 3.10: Each element of the imaging pathway has different wavelength dependent
transmission or sensitivity. These characteristic spectra provided by the respective
vendors were used to correct the signal.
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Figure 3.11: Fluorescent debris from the zebrafish were used to measure point spread
functions at 790 nm, 850 nm, and 890 nm, using 25x 0.8 NA

remains.6 Broadband emission from the damage sites is suggestive of laser-induced

breakdown [124, 125] and self-steeping into supercontinuum generation [126, 127,

128]. In addition, fish need to be treated with 1-phenyl 2-thiourea (PTU) during

embryogenesis to suppress the formation of pigmented cells such as melanocytes.

Melanin is strongly absorbing, and irradiation leads to the formation of sufficient

free radicals to initiate rapid laser damage and ablation. In addition, the broadband

luminescence from pigment competes with SHG, confusing image interpretation, as

shown in figure 3.12. Even with limited pigment, damage may still readily occur. As

a result, power and observation times were limited.

Because of chromatic dispersion, the focus of the laser varies in depth as the

6Although the peak power of the laser at 25x, 0.8 NA is 1011 W/cm2, self-focusing and near-field
enhancements can easily elevate peak electric fields to near breakdown levels, 1015 W/cm2. This is
likely why damage nucleates at bubbles, lesions, and pigment (a source of free radicals). In addition,
this makes imaging with 100x and other high NA objectives difficult to achieve without extreme
damage to the sample.
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Figure 3.12: An image of second harmonic generation from morphant zebrafish, opti-
cally sectioned along the sagittal plane. The speckling along the central neural tube
is broadband luminescence from pigment cells. Lesions are evidenced by the circular
outlines of luminescence. The microspeckling in the luminescence is due to rapid
changes in the substrate, which are faster than the laser pixel dwell time, 1.56 µs.
Scale bar is 50 microns.
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Figure 3.13: Epithelial cells accumulate damage over a 2 minute exposure to 820
nm Ti-Sapphire laser pulses, 10% power. The signature of the damage is broadband
radiation, extending over the entire visible spectrum. The damage appears to be
nucleated in tiny bubbles. The bubbles grow over time, ultimately tearing the cell.
Upper Row: Transmitted laser light, Lower Row: Transmitted light plus false-color
epidetected luminescence.

wavelength is tuned. The deviation in the depth of the focus between an image taken

with the laser wavelength 780 nm and at 890 nm is over 1 µm, which is the width of a

myofibril. Therefore, an image at 790 nm often contains myofibrils not in an image at

890 nm, and vice versa. To overcome this complication, images were taken in large “z-

sections,” or coronal slices, meaning the objective was stepped along the axis of laser

propagation to image lines in multiple focal planes. Because the imaging resolution

in the z -axis is well over a micron, taking 0.35 µm slices allowed all of the muscle

to be captured. However, as mentioned in the last paragraph, exposure time needed

to be limited to avoid complete ablation of the sample before all wavelengths could

be imaged. As a result, only a 2D image was taken, with one axis in the z -direction

(parallel to the laser propagation) and another axis perpendicular to the laser, chosen
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to capture a region of interest but not necessarily with any specific orientation with

respect to the fish or muscle. Variations in muscle fiber alignment within the somites

cause there to be few preferred directions, allowing selection of planes which provide

best imaging conditions.

3.3 Discussion

3.3.1 Representative Images

figure 3.15 shows a representative image of second harmonic generation from a 5-day

old wildtype zebrafish. The muscle is clearly packed into chevron-shaped somites,

and the dark Z-lines stand out in stark contrast with the bright A-bands. The my-

ocytes contain highly aligned domains of tightly packed myofibrils [98], although the

fish is too young for the muscles to develop to a state of full compaction. We a level

of organization between the 1 µm myofibrils and the 10 µm myocytes that has not

been well documented in the literature. The intensity of the SHG varies significantly

across the muscle, corresponding to fluctuations in density and alignment. Although

the individual myofibrils are not readily apparent, they can be recognized at the

boundaries of the somites as the discrete steps, as seen on TEM in figure 3.7. Their

width of approximate 1 micron is sufficient to resolve at this resolution, but their

tight packing and close alignment with neighboring myofibrils makes distinguishing

individuals difficult, but not impossible. Sometimes myofibrils are separated suffi-

ciently to resolve individual fibers, even while in alignment with their neighbors, as
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shown in figure 3.14. Because SHG comes from the dense myosin filaments within

the sarcomeres, diagrammed in figure 3.5(a), we can interpret the dots in figure 3.14

to be myosin filaments radiating from the M-line. Because oppositely aligned myosin

meets at the M-line, it is not a source of SHG, and this will be discussed further in

section 4.3. The Z-lines are also dark, because they lack myosin completely. Hence,

we observed the expected double lobed pattern in each sarcomere. This is a common

motif observed in other studies that have isolated single myofibrils [129, 101].

Figure 3.14: Close-up view of discrete structure of myofibrils. The Z-lines are dark,
and the M-lines are dark. However, the M-lines are sandwiched between the A-bands,
where myosin filaments produce SHG (see figure 3.5). Scale bar is 1 micron.

Another common motif is an interlocking herringbone pattern, as in figure 3.16.

Others have observed these patterns, calling them “verniers” [99, 89] or “pitch-

forks” [100]. Their cause is unknown, although Recher et al. attribute them to

maturing myofibrils [100]. When we look at the same muscle from two perpendicu-

lar planes, as in figure 3.7, we see these patterns appear where myocytes and small

bundles of myofibrils come in close proximity. Because myosin runs parallel to the

membrane, no SHG producing structures cross the membrane. However, figure 3.17
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Figure 3.15: Second harmonic generation from wildtype. The section is along the
sagittal plane. Scale bar is 50 microns.
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shows the herringbone pattern crossing the fluorescent signal from the membrane,

indicating that the herringbone pattern is an optical artifact, not a physical struc-

ture. Friedrich et al. observed a “vast increase” in vernier pattens in dystrophic

mutants [89], which can be explained by the relative increase in disordered myofib-

rils [130], allowing more crossing within the imaging plane, leading to an apparent

increase in subsequent vernier patterns. This will be more closely explained in sec-

tion 4.3.

Figure 3.16: Inset shows magnified view of herringbone or “vernier” pattern from a
7 day post-fertilization zebrafish.

Morphant muscles show the same motifs as the wildtype muscles, which is to

be expected because dystrophic disorders affect the structural reinforcements and

anchoring components of the muscle [122, 131], and not the internal packing of the

sarcomeres.7 The myofibrils of morphant fish show significantly more flexibility and

disorder, illustrated in figure 3.19. As morphants age, the myofibrils tear away from

7However, there is an inherent selection bias in this statement, as once the the structural integrity
of the myofibrils are compromised to the point of disrupting the myosin lattice, the fish will be at
or near death. We only studied live fish (or fixed live fish).



63

each other, losing muscle integrity due to a lack of sufficient dystrophin expression

linking the interior of the muscle cells to the exterior. This work only deals with

5-day old morphants, leaving open the possibility that older morphants could differ

in their SHG signature. Although this would not necessarily be useful diagnostically,

because the morphant would be readily identifiable by the morphological degradation,

it may help isolate the source of SHG spectra. Also, but not readily apparent from

the images in this thesis, morphant SHG is substantially dimmer. Images in this

work have been contrast-brightness corrected to be as easy to visualize as possible.8

In addition, figure 3.19 shows that morphants contain disordered muscle interspersed

with highly ordered muscle, leading to images with high dynamic range. figure 3.19

and figure 3.20 also reveal that myofibrils appear to be organized into larger bundles

around 5 µm wide, something not well documented in the literature, but perhaps best

documented by Sanger et al. [132].

3.3.2 Wavelength-Dependent SHG

Properly wavelength corrected images proved to be difficult to obtain, mostly because

of the limited exposure time possible before the laser destroyed the sample. However,

the protocols outlined in section 3.2 enable measuring a wide spectrum from 780 nm

to 890 nm at 10 nm intervals. figure 3.21 shows representative results for a wildtype

5-day old fish. Because each point in the slice, Fig 3.21(a), has a different myofibril

alignment and intensity, there are a number of ways to analyze the results. Absolute

8The only image alterations done on the images in this thesis were standard contrast and bright-
ness adjustments along with cropping out regions of interest.
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intensities are not reliable because too may factors alter the amount of laser power

being delivered to a given point and the fraction of SHG that arrives that the detec-

tor,9 so one approach is to normalize each pixel by the maximum intensity of that

pixel in the spectrum, I(i, j, λ) = I(i, j, λ)/maxλ I(i, j, λ). This makes each pixel a

value between 0 and 1, and these spectra may be averaged to produce an average

normalized spectra, shown as the blue line in figure 3.21(b). The image at each wave-

length is histogrammed and plotted together, giving a normalized spectrum density,

which is a visual representation of the likelihood of a pixel having a normalized spec-

tral value at any wavelength. Finally, in figure 3.21(c), we see the normalized spectra

adopt a characteristic density curve. The spectra at different points are largely in-

tensity independent, expect for those points with exceptionally low postcorrected

intensities. These points appear to the eye as background, but they have a different

spectra, shown in figure 3.22. These spectra are likely forward scattered autofluores-

cence, because they most occur in the regions between somites. Autofluorescence is

not uniformly distributed throughout the fish. SHG and autofluorescence are largely

mutually exclusive (see figure 3.3).

Although an equivalent slice from a morphant fish, figure 3.23(a), produces sub-

stantially less SHG than the wildtype, the overall spectra shares many characteristics

with the wildtype spectra. The normalized intensities still have a substantial drop-

off at 850 nm, seen in figure 3.23(b), but the spectra of the morphant have a less

9For example, agarose density variations will alter the transparency; The position of the fish in
the sample well will affect the focusing and the resulting transmission to the detector; The condenser
lens must be readjusted for each sample, and it can only focus on a single plane, reducing collection
efficiency for nonoptimal planes; etc.
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pronounced plateau in the wavelengths shorter than 850 nm. Because the morphant

contains many morphological similarities with the wildtype, we expect the spectra to

be similar, due to the phase-matching being consistent (see section 4.2.2). However,

the spectra of a few points of interest plotted in figure 3.23(c) differ significantly from

the trend in figure 3.21(c). These points were selected from regions with lower inten-

sity, and therefore have a character closer to figure 3.22. A background spectrum was

estimated by measuring the signal from regions outside the somites, which should

be nearly SHG-free. Subtracting this spectrum gives figure 3.23(d), revealing that

the morphant spectrum absent the estimated background, remains very similar to

the wildtype spectrum. Based on this preliminary analysis, there is no quantifiable

spectral difference between 5-day-old morphants and 5-day old wildtypes. Clear mor-

phological differences exist, such as visible tears and significantly lower conversion

efficiency due to poor alignment of the myofibrils. A future experiment with fluo-

rescently labeled myosin (or actin) would help to determine if there is myosin in the

morphant which is too disrupted to produce SHG.

To explain the difference in intensity but similarity in spectral shape between

wildtype and morphant zebrafish muscle, we must construct a theoretical framework

for second harmonic generation. We also have seen that there are features such as the

herringbones (Figs 3.14 and 3.18) that are not observed in fluorescence microscopy,

which we hope to explain as well. Ultimately, second harmonic generation proves to

be a valuable tool for imaging and studying muscle development and organization in

vivo without the need for any dyes or stains. The next chapter will explore the theo-
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retical aspects to SHG from zebrafish muscle and will further address the observations

revealed in the present chapter.
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(a) sagittal plane

(b) transverse plane

Figure 3.17: Transgenic fish were used to visualize the interface between myofibril
SHG (purple) and fluorescent-protein labeled membranes and nuclei (green). (a)
Myocytes run in and out of the imaging plane, and myofibrils within a myocyte vary
in their packing density and degree of contraction. (b) A perpendicular cut through
the same image, showing the semi-crystalline packing of myocytes. The resolution in
(b) does not allow one to resolve individual myofibrils. Scale bars are 10 µm.
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Figure 3.18: Membrane-labeled wildtype zebrafish. Bottom, SHG in purple. Mid-
dle, fluorescent membranes and nuclei in green. Top, overlay showing SHG patterns
apparently crossing the membrane, which must be an optical artifact, because the
myosin filaments align perpendicularly to the SHG stripes. Scale bar is 10 microns.
The arrows are guides for the eye, indicating just one example where the pattern
appears to cross the membrane.
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Figure 3.19: Second harmonic generation from zebrafish morphant muscle. Section
along sagittal plane. The bright dot left of center appears to be a muscle fragment
running perpendicular to the imaging plane, ascertained by optical sectioning (not
shown). Scale bar is 50 microns
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(a) wildtype

(b) morphant

(c) wildtype - raw data

(d) morphant - raw data

Figure 3.20: Comparison of sagittal sections between (a) wildtype and (b) morphant.
The morphant is much dimmer, as well as being less densely packed with muscle. Note
the disrupted patterns on the right side of (b), evidence of the structural degradation
due to the induced muscular dystrophy. (c) and (d) are identical images to (a) and (b),
but without any brightness-contrast adjustments, to illustrate the intensity difference
between the wildtype and morphant muscle. However, (a) is taken at 890 nm, while
(c) and (b)/(d) are taken at 860 nm. Saturation in (c) makes visual comparison
of morphology difficult. The average intensity of (c) is 18,668, including saturated
pixels. The average intensity of (d) is 7,493. Long scale bar is 50 microns. Short
scale bar is 5 microns.
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(a) 5-day wildtype coronal section

(b) SHG intensity density map
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(c) Normalized spectra from representative points

Figure 3.21: The wavelength dependent SHG detected from a single sagittal plane of
5-day old zebrafish, shown in (a), shows a marked drop-off at 850 nm. (b)The density
map indicates that the vast majority of spectra display a characteristic behavior.
The blue line is the average of normalized spectra, and (c) sampled spectra from a
few representative points illustrates their similarity. The black spots in (a) are laser
ablation damage, but they do not alter the spectra of neighboring muscle.
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Figure 3.22: Normalized intensity spectrum density map of points from figure 3.21 of
low-intensity background points.



73

(a) 5-day morphant coronal section

(b) SHG intensity density map
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(c) Normalized spectra from representative points,
both dim and bright
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(d) Representative points with subtracted back-
ground

Figure 3.23: The wavelength dependent SHG detected from a single coronal plane of
5-day old morphant zebrafish, shown in (a), shares the drop-off at 850 nm with the
wildtype spectra (figure 3.21). (b) The characteristic spectra of the morphant differs
slightly. The blue line is the average of normalized spectra, and (c) sampled spectra
from a few representative points. (d) The same representative points but subtracting
an estimated background spectrum.
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Chapter 4

Theory of Second Harmonic
Generation from Zebrafish Muscle

The observations of fascinating featues of SHG from zebrafish muscle in the previous

chapter may be put into context and explained by utilizing the theory of nonlinear

optics. In this chapter, we will theoretically explore SHG, and, in particular, develop

an understanding of the data. In addition, we suggest further experiments which

could be done to validate some of the hypothesis laid out in the present chapter.

4.1 Foundations of Nonlinear Optics

Maxwell’s equations, on a classical microscopic level, capture the dynamics of all

free and bound charges [133]. However, because the electric field varies extremely

rapidly over atomic length scales, the microscopic description loses relevance when

considering macroscopic problems, such as the interaction of light with matter. The

bound charges in matter react to external electrical fields by rapidly rearranging,

resulting in a polarization field produced in response to the applied field. Because the

bound charges’ motion are constrained by their neighboring electrons and protons,
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which are also moving, the material response is extremely complex in microscopic

detail. Fortunately, it tends to be characteristic of the material in question. In

practice, this is addressed by averaging out the variations over atomic length scales,

producing the macroscopic Maxwell’s equations:

∇ ·D = ρf (4.1a)

∇ ·B = 0 (4.1b)

∇× E = −∂B

∂t
(4.1c)

∇×H = Jf +
1

c2

∂D

∂t
, (4.1d)

where D = ε0E + P is the displacement field, E is the native field due to free charges

or applied external fields, P is the polarization field created by matter responding to

E. The magnetic field due to E and induced magnetization of the material due to H

play a minimal role in this work, and the reader is referred to excellent texts such as

Jackson [133] for further exploration, but we will confine ourselves to the case where

B = µ0H. Furthermore, this work is concerned only with how bound charges respond

to externally applied fields, so we take ρf = 0 and Jf = 0.

The wave-equation is constructed by taking the curl of eq. (4.1c) and substituting

into equation 4.1d. The resulting equation, ∇×∇× E + ∂D
∂t

= 0, is converting into

the wave equation by employing the vector identity ∇×∇× E = ∇(∇ · E)−∇2E,

and taking |∇(∇ · E)| � |∇2E| [113]:

∇2E− 1

c2

∂2E

∂t2
=

1

c2

∂2P

∂t2
. (4.2)
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The polarization, P, is due to the response of the underlying matter to the applied

external field, E, which may be expanded as

P(t)/ε0 = P0+

∫ ∞
−∞

χ(1)(ω′, ω1) : E(ω1)e−iω
′t dω1

+

∫∫ ∞
−∞

χ(2)(ω′, ω1, ω2) : E(ω1)E(ω2)e−iω
′t dω1dω2 + · · ·

+

∫
· · ·
∫ ∞
−∞

χ(n)(ω′, ω1, . . . , ωn) : E(ω1) · · ·E(ω2)e−iω
′t

n∏
i

dωi . . . ,

(4.3)

where the colon indicates a tensor product and P0 is the static polarization, often

found at surfaces or in ferroelectrics, and ω′ = ω1 + · · · + ωn, where n is the order

of the term in the expansion. This is often written with the shorthand notation

P(E) = ε0{P0 +χ(1)E+χ(2)E2 + . . . }.1 Because polarizability also acts as a source of

electric field, see eq. (4.2), we expand the frequency components of the electric field

in orders, E(ω) = E(1)(ω) + E(2)(ω) + . . . , where each order is the contribution of

the nth-order nonlinear process. Thus, each order of nonlinearity has a corresponding

wave equation. Assuming negligible conversion from higher order modes to lower

1Although this power series expansion is formally correct, it is only meaningful when it can
be truncated. For this to be true, the terms must rapidly vanish, and this may not be the case
under some conditions, such as in laser-induced breakdown ionization [125] or even under intense
near-field optics [113]. The maximum peak intensity of the incoming field correspond to to electron

binding energies, Iatom ∼ ce
ε0a20
∼ 1015 W/cm

2
. Once the incoming laser intensities reach this order

of magnitude, perturbative expansions do not capture the full flavor of the nonlinear processes.
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order modes,2 the nth-order wave equation is given by

∇2E(n)(ω)− 1

c2

∂2

∂t2
E(n)(ω) =

1

c2

∂2

∂t2
χ(1)(ω)E(n)(ω) +

1

c2

∂2

∂t2
χ(n)(ω)E(ω1)E(ω2) . . .

∇2E(n)(ω)− n2
ω

c2

∂2

∂t2
E(n)(ω) =

1

c2

∂2

∂t2
χ(n)(ω)E(ω1)E(ω2) . . . , (4.4)

where n2
ω is the squared index of refraction, coming from n2

ω = µr(1+χ(1)(ω)) and µr =

1. The susceptibility’s dependence on incoming frequencies has been suppressed for

convenience. When the incoming radiation consists of a single monochromatic plane

wave, E ∝ cos(ωt−kx), we can see that the nth-order nonlinearity will mix the positive

and negative frequency components together to produce output frequencies that are

both higher and lower than the fundamental. For example, in the second-order case,

P (2) ∝ 1
2
(cos(2ωt − 2kx) + 1), so there will be induced second harmonic generation

and an optically induced dc field (optical rectification). When the two incoming

fields are different frequencies, in addition to SHG and optical rectification, there

will be sum frequency generation (ω′ = ω1 + ω2) and difference frequency generation

(ω′ = ω1− ω2). At higher orders, even more combinations are possible, leading to an

entire catalog of possible nonlinear optical effects [134].

Returning to the example of second harmonic generation from monochromatic

plane waves, the second-order nonlinear wave equation becomes

∇2E(n)(ω)− n2
ω

c2

∂2E(n)(ω)

∂t2
+ cc = −2ω2

1

c2
χ(2)E2

0e
−2i(ω1t−kωx) + cc, (4.5)

2This is true within the scope of the present work, but not in general.
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where cc stands for the complex conjugate of the preceding terms. Because of the

linearity of the equation, we have ω = 2ω1, and a solution of the form E(2ω1, x) =

A(x)e−i(2ω1t−k2ω1x) + cc. This leads to

∂2

∂x2
A(x)− ik2ω1

∂

∂x
A(x) + cc = −2ω2

1

c2
χ(2)E2

0e
i∆kx + cc, (4.6)

where ∆k = 2kω1 − k2ω1 = 2ω(nω1 − n2ω1)/c. ∆k is the deviation from perfect phase-

matching. When ∆k 6= 0, the fundamental and harmonic waves do not travel at

the same speed, so the harmonic waves being to interfere with themselves. Taking

A(0) = ∂xA(0) = 0, meaning A(x) represents the amplitude of the SHG produced

after the fundamental mode is incident on a uniform slab of SHG-producing material,

eq. (4.6) has a solution given by

A(x) =
2ω2

1

c2
χ(2)E2

0

k2ω1(1− ei∆kx)−∆k(1− e−ik2ω1x)

∆kk2ω1(∆k + k2ω1)
.

The intensity of the resulting SHG is given by n2ω1 (ε0/µ0)
1
2 |A(x)|2/2, so, assuming

∆k � k2ω1 , we obtain [134, 113]

I2ω1(x) =
ω2

1

4c3ε0

|χ(2)(ω1)|2

n2
ω1
n2ω1

I2
ω1
x2sinc2(∆kx/2), (4.7)

where sinc is sin(x)/x. This relationship illustrates the importance of phase-matching

in creating SHG. As shown in figure 4.1, the size of the underlying SHG-active material

makes a significant contribution to the overall SHG production efficiency.3 However,

3We recover the interesting relationship that SHG production is only significant when x∆k < π,
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Figure 4.1: Second harmonic generation production efficiency depends on the mag-
nitude of the phase-matching, ∆k, determined by eq. (4.7). Absent perfect phase-
matching, corresponding to ∆k = 0, SHG can only be produced across a distance
constrained by ∆k∆x < 2π.

eq. (4.7) only holds for monochromatic plane waves. In practice, our experiments

employ focused beams, which can significantly alter the phase-matching relations,

and this will be more thoroughly explored in Section 4.2.

4.2 SHG Phase-Matching with Focused Light

Muscle fibers are significantly larger than the wavelength of light, as shown in fig-

ure 3.7, and the myofibrils are on order one wavelength. From eq. (4.7), only me-

dia much smaller than the wavelength of light escape the effects of phase-matching.

an analogy to the Heisenberg uncertainty principle, ∆x∆p > ~/2, although the current result origi-
nates from harmonic analysis. Given this analogy, we can explore the concept that SHG production
is limited by the conservation of momentum mismatch resulting from the fusion of two photons into
one. In the absence of perfect phase-matching, the outgoing photon will not conserve momentum.
However, over very short distances, there is sufficient uncertainty in momentum to compensate for
this. In addition, conceptually, vibrational quanta created by periodic order in the material can
contribute or withdraw momentum to assist with momentum conservation.
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However, focused light has a Guoy phase, an extra twist of phase that occurs at the

focus [113]. In addition, focused light approaches the focus from different angles, giv-

ing more possible combinations for phase-matching. These effects can significantly

alter the total phase-matching balance, a crucial factor to include in any theory of

wavelength dependent SHG microscopy.

The susceptibility tensor for myosin, χ
(2)
ijk, has a number of restrictions due to the

underlying symmetry of the protein structures [129], leaving only two independent

terms, χ
(2)
xxy = χ

(2)
xyx = χ

(2)
zyz = χ

(2)
zzy = χ

(2)
yzz = χ

(2)
yxx and χ

(2)
yyy. Experiments have

determined χ
(2)
yyy < χ

(2)
yxx. However, we leave analyses of the tensor components to

previous works [121, 106, 101, 129, 86]. In general, we will not need to consider the

tensor nature of SHG, because the area of interest, the laser focus, is so small. In

addition, we have chosen the alignment of the fish with the laser to be such that the

SHG power is large. Taking the myosin to run along the y-axis, we set the polarization

to be approximately perpendicular to y. Because the light is propagating in the z -

direction, and therefore has minimal vector components in z, we have essentially set

up the experiment to probe a single tensor component, χ
(2)
yxx.

4.2.1 The Paraxial Approximation of the Wave Equation

Consider the wave equation, (∇2 − n2

c2
∂2
t )E = 0. The electric field is fundamentally a

vector, which evolves in magnitude and orientation over space and time. Represent

the electric field propagating in the k̂ direction as E(r) = A(r) exp(−iωt+ik·r). After

decomposing the Laplacian into a transverse component and a radial component,
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∇2 = ∇2
k̂

+∇2
T , we substitute both expressions into the wave equation, obtaining the

quantity

∇2A(r) exp(ik · r) = exp(ik · r)
(
∇2
TA(r) + 2ik · r∇k̂A(r) +∇2

k̂
A(r)

)
.

If |k · r∇k̂A(r)| � |∇2
k̂
A(r)|, meaning the envelope of the electric field varies slowly

over the scale of a wavelength in the direction of propagation, the second-order term

may be neglected, which is called the paraxial approximation [133]. This approxi-

mation is well suited for focused light, but it begins to break down when the NA

exceeds approximately 1 [135, 136, 137]. Although, the paraxial approximation has

been shown to be lacking in accuracy for the angular radiation pattern of SHG [135],

it has performed well for predicting the total power produced [138, 139, 140].

Given the paraxial approximation, one may describe a focused laser, propagating

in the z-axis, using a Gaussian envelope,

A(r, z) =
A0

1 + iξ
exp

[
− r2

w2
0(1 + iξ)

]
, (4.8)

where we have adopted the notation of [113], and we define ξ = 2z/b, where b is the

confocal parameter, b = kw2
0, and w0 is the radius of the beam at the focus. The

nonlinear wave equation for SHG under the paraxial approximation gives

2ik2
∂A2

∂z
+∇2

TA2 = −2π
ω2

c2
χ(2)A(r, z)e−i∆kz, (4.9)
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where ω is the fundamental frequency, A2 is the resulting SHG mode, k2 is the

wavenumber at 2ω, k2 = 2n2ωω/c, and the phase mismatch is ∆k = 2ω
c
(nω − n2ω).

The solution to eq. (4.9) is given by

A2(r, z) = i
2ω

n2ωc
χ(2)A2

0J2(∆k, z0, z)
exp

[
−2 r2

w2
0(1+iξ)

]
1 + iξ

, (4.10)

where

J2(∆k, z0, zf ) =

∫ zf

z0

ei∆kz
′

1 + 2iz′/b
dz′, (4.11)

where z0 is the z-coordinate of the beginning of the SHG medium, relative to the focus

at z = 0 [113, 141]. This integral, which reduces to the identical form of eq. (4.7)

when z0 − zf � b, determines the altered phase-matching conditions of the focused

beam. As the limits of the integral in eq. (4.11) expand to infinity, J2 takes the

asymptotic form J2 = {0,∆k ≤ 0; b
2

exp(−b∆k/2),∆k > 0} [113]. Even when the

bounds are well short of the asymptotic limit, the integral is very sensitive to ∆k and

to the width of the medium, shown in figure 4.2.

4.2.2 SHG from Periodic Media

Derivations such as eq. (4.8) assign no explicit spatial dependence to the SHG sus-

ceptible medium. Most crystals are uniform at super-atomic lengths, but muscles,

as described in section 3.1, are packed into multiscale structures, interleaving SHG

and nonSHG active regions. Hence, it would be most appropriate to describe the
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Figure 4.2: With a focused beam, the conversion efficiency is very sensitive to the
magnitude and sign of the phase-matching, ∆k, as well as the width of the medium,
zf − z0. b = 0.5
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susceptibility with some sort of spatial regularity, i.e.,χ(2)(r).4 We insert χ(2)(r) into

the nonlinear wave equation and expand in a Fourier series:

∇2A2 −
n2

2ω

c2

∂2

∂t2
A2 = −2π

ω2

c2
A2(r, z)χ(2)(r)e−i∆kz

= −2π
ω2

c2
A2(r, z)χ

(2)
0

∑
lmn

Glmne
−i(∆k+Klmn)·r, (4.12)

where Klmn are the reciprocal lattice vectors of the SHG photonic crystal, Glmn is

the complex amplitude of each Fourier component, and l,m, and n are integers [142].

eq. (4.12) demonstrates that periodicity alters the phase-matching relationship into

∆k′ = ∆k + Klmn. The resulting quasi-phase-matching allows multiple radiation

directions, for each solution of

k2 = 2k1 −Klmn, (4.13)

which is consistent with the model that the periodic structure can add or subtract

phonons to conserve momentum [143, 144]. The resulting angle will be given by

cos θlmn = 2
k1

k2

+
k̂1 ·Klmn

k2

(4.14)

=
nω
n2ω

+
λ

2n2ωa
k̂1 ·K′lmn, (4.15)

4Muscle is not merely periodic in its SHG susceptibility, but protein has a different index of
refraction than water. Thus, there is a second spatial component, n2ω =

∑
Nlmn exp(−Klmn · r ),

which has identical lattice vectors. However, the difference in refractive index is small, while the
difference in SHG susceptibility is large, so we may neglect the former.
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where θmn is the angle formed between k1 and k2, k̂1 is the unit vector oriented in the

direction of propagation of the fundamental wave, and a is the characteristic length

scale of the periodic structure.

For example, in a 2D-hexagonal crystal of circular rods, which has only two indices,

m and n, the lattice is defined by two vectors, (0, a) and (
√

3a/2, a/2), where a is

the spacing between neighboring elements. These two vectors form a parallelogram

outlining the unit cell, shown in figure 3.6, and have the Fourier components given

by [145]:

Gmn =
2r

a
√
m2 + n2 +mn

J1(
4πr√

3a

√
m2 + n2 +mn), and (4.16)

Kmn =
2π

a

(
1√
3

(m+ 2n),m

)
, (4.17)

where r is the radius of the circular rod and J1 is the first Bessel function. Assuming

the laser enters the crystal at an angle φ, so k̂1 = (cosφ, sinφ), eq. (4.14) becomes

cos θmn =
nω
n2ω

+
λ

2n2ωa
(m cosφ+

1√
3

(m+ 2n) sinφ). (4.18)

Sometimes no phase-matching conditions are readily apparent. However, it may

be the case that phase-matching may be obtained by the outgoing SHG having a

angular distribution that cannot be readily derived by the paraxial approximation.

To account for this, and to study nontrivial geometries, we turn to a Green’s function

approach to calculating SHG. Because the nonlinear polarization acts as a source

term in the wave equation, we sum the contribution from each point in the SHG
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medium [146]

E2ω(r) =

∫
G(r, r′)PNL(r′) dr′ (4.19)

=

∫
G(r, r′)

∑
jk

χ
(2)
ijk(r

′)Ej(r
′)Ek(r

′) dr′, (4.20)

where G(r, r′) is the Green’s function, which, technically, depends on the specific

boundary conditions. Although this is a very general expression, we are only really

concerned about radiation in the far field, and, because only light collected by the

condenser reaches the detector, we are concerned with the angular dependence of

the radiation intensity. This simplifies the expression of the Green’s function to be

approximately independent of near-field boundary conditions [133], and eq. (4.20) at

a far-field distance R becomes [147, 140]

E2ω(Ω, r0) =
[
θ̂, φ̂
]
· ω

2

c2

eik2ωR

4πR

∑
jk

∫
χ(2)(r′)Ej(r

′− r0)Ek(r
′− r0)e−ik2ωr

′·r̂ dr′, (4.21)

where the spherical unit vectors are given by

θ̂ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ (4.22a)

φ̂ = − sinφx̂ + cosφŷ (4.22b)

r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ, (4.22c)

meaning the θ̂ and φ̂ components contain the angular dependence of the radiated

SHG, while r̂ is the unit vector directed toward the detector at the specified solid
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angle, Ω. The laser is centered at r0 and radiating in the z -axis, meaning k̂ω = ẑ.

We will take the electric field to be polarized in an arbitrary û direction and to be a

Gaussian mode,

Eω = ûE0

exp
[
− x2+y2

w2
0(1+iξ)

]
1 + iξ

eikωz.

Because we normalized the incoming total power, we have E0 =
√
P/(n2

ωb), where

P is the power detected at the back aperture of the objective. Using the Gaussian

mode, we may further specify our expression for angular SHG to

E2ω(Ω, r0) =
[
θ̂, φ̂
]
· ω

2

c2

eik2ωR

4πR

∑
jk

x̂j · û x̂k · û
∫
χ(2)(r′)×

P
n2
ωb

exp

[
−2

(x− x0)2 + (y − y0)2

w2
0 (1 + 2i(z − z0)/b)

]
ei2kω(z−z0)−ik2ωr′·r̂

(1 + 2i(z − z0)/b)2
dr′, (4.23)

where x̂j · û is the projection of the polarization vector onto the various Cartesian

unit vectors.

From this point on, we will assume the incoming light is purely polarized in x̂

and perpendicular to the long axis of the myosin fibers. This means there is only

one nonzero tensor component, χyxx, so the output light is ŷ polarized, which leads

the θ̂ and φ̂ components to be proportional to cos θ sinφ and cosφ, respectively. The

power per unit solid angle will be proportional to (cos2 θ sin2 φ + cos2 φ)|
∫
· · ·|2, and

the total power detected is found by integrating the power density over all φ and the

range of θ which is contained within the condenser optic’s acceptance angle, namely

θmax ∼ sin−1(0.55/1.4) ∼ 20◦.5

5The condenser has a numerical aperture of 0.55. Numerical aperture is defined as NA = n sin θ,
where n is the refractive index of the immersion medium (air for the condenser). The SHG originates
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Although eq. (4.23) may be integrated directly, for some geometries it is more

convenient to work in the conjugate space. Consider the Fourier transform pair of

χ(x):

χ(2)(q) =

∫
χ̃(2)(r)e−iq·r dr

χ(2)(r) =
1

(2π)3

∫
χ̃(2)(q)eiq·r dq.

Substituting the latter expression into eq. (4.23) gives the relation

E2ω(Ω, r0) ∝ [cos θ sinφ, cosφ] · ω
2

c2
χyxx

∫∫
χ̃(2)(q)×

1

n2
ωb

exp

[
−2

(x− x0)2 + (y − y0)2

w2
0 (1 + 2i(z − z0)/b)

]
ei2kω(z−z0)

(1 + 2i(z − z0)/b)2
e−i(k2ω r̂−q)·r′ dr′ dq,

(4.24)

where we have dropped factors that will not contribute any wavelength dependence.

Having interchanged the order of integrals, we see the spatial integral is equivalent

to a Fourier transform of the incoming Gaussian waveform, given by

∫
1

n2
ωb

exp

[
−2

(x− x0)2 + (y − y0)2

w2
0 (1 + 2i(z − z0)/b)

]
ei2kω(z−z0)

(1 + 2i(z − z0)/b)2
e−i(k2ω r̂−q)·r′ dr′

=

∫
1

n2
ωb

exp

[
−2

s2
x + s2

y

w2
0 (1 + 2isz/b)

]
ei2kωsz

(1 + 2isz/b)2
e−iQ·r0e−iQ·sds

=
π2

2

b

n2
ωkω

e−
1
2
b(Qz+2kω)Θ

[
Qz −

Q2
x +Q2

y − 8k2
ω

4kω

]
e−iQ·r0 , (4.25)

within the fish muscle, with a refractive index of 1.4. The boundary between muscle/agarose and
air will cause the outgoing light to be further bent, so we need to calculate the angle of emission
in the agarose corresponding to the maximum acceptance angle in air. Therefore, Snell’s law gives
nagar sin θmax = nair sin θ = NA, and, thus we have θmax = sin−1(0.55/1.4). Because the refractive
index is wavelength dependent, θmax will also have wavelength dependence.
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where Q = k2ωr̂− q, and Θ[·] is the unit-step function, Θ(x) =
∫ x
−∞ δ(u)du. Expand-

ing, we get

=
π2

2

b

n2
ωkω

exp
[
−1

2
b(2kω − k2ω cos θ + qz)

+i(r0z(qz − k2ω cos θ) + r0x(qx − k2ω cosφ sin θ) + r0y(qy − k2ω sinφ sin θ))
]
×

Θ

[
−qz + k2ω cos θ +

−8k2
ω + (qx − k2ω cosφ sin θ)2 + (qy − k2ω sinφ sin θ)2

4kω

]
,

(4.26)

which we will abbreviate as G̃(q, r0,Ω). The outgoing electric field can now be written

as

E2ω(Ω, r0) = [cos θ sinφ, cosφ] · ω
2

c2
χyxx

∫
χ̃(2)(q)G̃(q, r0,Ω) dq. (4.27)

We see that phase-matching is still vital, but the conditions have relaxed, because

there is an overall prefactor of exp[−1
2
b(2kω − k2ω cos θ)], shown in eq. (4.26). There

may be outgoing directions which provide satisfactory conditions if conventional for-

ward propagation of SHG is poorly matched. This result also explains a common

observation of conical radiation in SHG radiation

Myofibrils are very long compared to the focal width of the Gaussian beam, so

we can take them to be effectively infinite in extent in the y-direction. In addition,

muscles consist of many repeating units. For example, myofibrils are packed full of

myosin filaments in a hexagonal fashion. If we take each filament to be a cylinder

of radius r0, denoted as Θ(r2
0 − x2 − z2), then the entire filament would be a sum of
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these cylinders, given by

χ(2)(r) =
∑
mn

Θ(r2
0 − (x−∆xmn)2 − (z −∆zmn)2), (4.28)

and the corresponding Fourier transform6 is

χ̃(2)(q) = 2πr0δ(qy)
J1(r0

√
q2
x + q2

z)√
q2
x + q2

y

∑
mn

e−i(∆xmnqx+∆zmnqz), (4.29)

which reduces to χ̃(2)(q) = 2πr0δ(qy)
J1(r0
√
q2x+q2z)√

q2x+q2y
for a single filament. From above,

we know ∆xmn = n
√

3
2
a and ∆zmn = (m− n/2)a.

4.3 Explaining Patterns in Muscle Structure

Second harmonic generation is fundamentally different from fluorescence due to the

phase coherence in the harmonic beam, while fluorescent light is incoherent. This

primarily influences the radiation direction of second harmonic generation, compared

to the isotropic emission in fluorescence. For example, figure 3.3 shows epi-collected

fluorescence, i.e.,returning toward the laser source, versus second harmonic, which

radiates almost entirely in trans, i.e.,in the same direction as the laser. This phase

coherence has additional impact on imaging. Fluorescent signal scales linearly with

the number of excited fluorescent molecules in the focus. In contrast, second harmonic

generation scales as the square of the number of phase-coherent SHG sources in

6Due to the cylindrical symmetry of the geometry, this type of transform is often referred to as
a Hankel transform instead of a Fourier transform.
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the focus, and SHG produced away from the focus adds coherently to the signal in

focus.7 This phase coherence leads to two prominent motifs in muscle SHG images,

as described in section 3.3.1. First, there are the discrete dots, as in figure 3.14.

Second, there are the “verniers,” or herringbone patterns, as in figure 3.16 and readily

apparent in figure 3.18, although they common in almost every image.

To investigate, we first consider a numerical simulation of the SHG microscopy.

Consider a numeric map of the susceptibility, simplified for the purposes of the cal-

culation, given by M(x, z), where ẑ is the direction of propagation. The value taken

on by M(x, z) denotes a effective scalar susceptibility, either 1, 0, or -1 [113]. To con-

struct a hypothetical muscle, we map out myofibrils as discrete rectangles of myosin,

whose size and shape mirror the A-bands of sarcomeres. The myosin blocks are ar-

ranged in rows, representing myofibrils, depicted in figure 4.3(a). Because myosin

thick filaments project from the M-line, which is at the center of the sarcomere, each

half sarcomere has oppositely signed susceptibilities,8 represented by the different col-

ors in figure 4.3(a). The hypothetical myofibrils are arranged in parallel and in phase,

building up a myocyte. A second myocyte, placed 180◦ out of phase is constructed

adjacent to the first.

More specifically, let Sq(x, d) be a square wave with period 2π and duty cycle d%,

then if ∆z < z < ∆z + ws, where ∆z = 0.1 µm is the spacing between sarcomeres

7This may have a significant impact on SHG confocal microscopy, because signal produced away
from the focus propagates in a Gaussian mode with an identical focus as the fundamental beam, and
cannot be excluded with a pinhole. Thus, the success of SHG confocal microscopy is likely explained
by the fact that light is fundamentally quantized, and, for biological samples, SHG efficiency drops
off sufficiently away from the focus that zero photons are produced.

8A fundamental property of second-order nonlinear susceptibility is inversion due to change of
parity: χ(2)(−x) = −χ(2)(x). If the underlying material possess inversion symmetry, such as at the
M-line, we must have χ(2) = 0.
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(a) Scheme of two adjacent myofibrils.
Only myosin is shown. Color indicates
the chirality of the myosin filaments,
and the boundary between them is the
M-line.

(b) two-photon fluorescence from
myosin.

(c) SHG from myosin.

Figure 4.3: Theoretical calculations illustrate the qualitative difference between SHG
and two-photon fluorescence. Two hypothetical myofibrils touch, one slightly out
of phase with the other. If the myosin were labeled with a fluorescent dye, one
would measure discrete points of light, with little or no signal joining the myofibrils.
However, the coherent nature of SHG causes the appearance of a contiguous, single
myofibril, with a “vernier.” In these images, the laser comes propagates vertically,
corresponding to an image such as figure 3.18.
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and ws = 1 µm is the width of the sarcomere,

M(x, z) = max [Sq(2πx/p, d), 0]Sq(2πx/p, d/2), (4.30)

where p = 5 µm is the length of the sarcomere, and d = 80%. This maps out the sus-

ceptibility of a single myocyte, as in figure 4.3(a), assigning each point a susceptibility

of 1, -1, or 0. For the second set of fibrils, a phase factor of π is added.

Many biological experiments use fluorescent stains, so we calculate what would

be observed if the muscle represented by M(x, z) were imaged using a two photon

microscope. The incoming beam is a Gaussian, given by

E(x, z) =
exp

[
− x2

w2
0(1+iξ)

]
1 + iξ

eikωz, (4.31)

where w0, ∆k, and ξ are the focal radius, phase mismatch, and normalized Rayleigh

distance, as defined in section 4.2.1, evaluated using λ = 0.850 µm and NA= 0.8. To

construct the image, the absolute value of eq. (4.31) is squared and then convolved

with the absolute value of M(x, z). The square of this result is proportional to the

intensity of fluorescence incident on the detector, and is pictured in figure 4.3(b).

To calculate the SHG produced by this image, we employ the Green’s function

approach, taken from eq. (4.23). In this case, we only care about the field collected

by the detector, so, for an incoming Gaussian, the effective Green’s function for SHG

on-axis (θ = 0) is

E(x, z) =
exp

[
−2 x2

w2
0(1+iξ)

+ i∆kz
]

(1 + iξ)2
, (4.32)
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where the parameters are determined in the previous two-photon case. The Green’s

function is convolved with M(x, z). The absolute value of the result squared gives the

intensity of the SHG produced at each point, shown in figure 4.3(c). Notice that SHG

is detected from the regions free of any myosin. This is due to the Gouy phase of the

laser, where the phase of light switches by π through the focus. Because the neigh-

boring fibers are out of phase by π, the combination with the Gouy phase produces

constructive interference when the focus of the laser is between two fibers. A close

look at figure 4.3(c) will reveal bright nodes within the SHG stripes, corresponding

to the dots in figure 3.14 which appear when imaging through a sagittal plane.

Comparison with the image of M(x, z), in Fig 4.3(a). will show that no SHG

originates from from the M-line, the boundary between M = 1 and M = −1 in our

simulation. This is due to the inversion symmetry where the myosin fibers project

in opposite directions. This results in the appearance of doublets in the SHG image,

two bright points for each sarcomere. When the sarcomere contracts, some authors

observe that the doublets are replaced by a single wide bright spot [105, 101]. One

explanation is that uneven contractile forces disrupt the boundary at the M-line [100].

Although this explanation may be correct, our simulations show that the doublet dis-

appearance may simply be due to the fibers rotating in and out of plane. Adjusting

the laser angle in the simulation by less than 20◦ causes the doublets to disappear,

replicating what appears to be observed in experiments, as in figure 4.4(d). Sym-

metry at the M-line only exists with respect to the inversion along the axis of the

sarcomere. When the laser is perpendicular to the axis of the sarcomere, one observes
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the doublets. Once out of alignment, the Gouy phase of the laser causes constructive

interference between the myosin on either side M-line, and SHG is observed where

none was before.9 Contraction increases this effect, because sarcomeric volume con-

servation [93, 96] increases the width of the sarcomere, giving the laser more myosin

to interact with, shown in figure 4.4.

The effects demonstrated here arise from the coherence of SHG, demonstrating

how the specific spatial arrangement of SHG-active material can enhance or quench

the resulting SHG. Because the focusing properties, refractive index, and phase-

matching are wavelength dependent, we also anticipate that coherence will produce

a spectral signature specific to the underlying crystallinity of the SHG media.

4.4 Wavelength Dependence of SHG

To understand the wavelength dependent SHG spectra measured in Figs. 3.21 and 3.23,

we have to account for possible sources of wavelength dependence. As described in

section 3.2, the data was corrected to remove instrument-dependent wavelength sen-

sitivities. This leaves phase-matching and the nonlinear susceptibility, χ(2)(ω), as

sources of dispersion. As with the index of refraction, the nonlinear susceptibility

will be far from any resonances. Away from absorption resonance, the wavelength de-

pendent portion of the susceptibility may be expressed in terms of first-order optical

9In fact, Plotnikov et al. observe “[When the myofibril contracts,] some changes of SHG intensity
were observed at ends of myofibrils that moved out of the plane of section.” [101] Thus, it appears
it would not be unusual for a dynamic fibril to squirm out of alignment by a few degrees and cause
the doublets to disappear.
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(a) 5 µm sarcomere (b) 4 µm sarcomere (c) 3 µm sarcomere

angle of maximum hyperpolarizability of the harmonophore
relative to the long axis of the model cylinder (see Appendix:
theoretical considerations). Our measurements of SHG from
isolated myofibrils at 900-nm excitation gave u¼ 61.2! (raw
data shown in Fig. 6 B). This concurs with our geometrical

analysis (u ¼ 67.2!) of SHG polarization anisotropy ex-
tracted from 1230-nm-excited skeletal muscle by Chu et al.
(12). Both of these values closely approximate the angle of
the polypeptide chain in an a-helix relative to the helix axis,
measured as 68.6! by x-ray diffraction (42). For comparison,
our calculations of u ¼ 50.7! for tendon collagen fibrils im-
aged at 900 nm (our data), and u ¼ 49.5! for measurements
by Stoller et al. (40) at 800 nm, coincide well with u¼ 45.3!,
the known pitch of the polypeptide chain in the collagen
glycine-proline helix (42). Two previous reports suggest that
SHG sources lie within the amide bonds of polypeptide
chains (43–45). Thus, we regard the calculated angle for
myosin as a viable estimate of the arrangement of excitable
dipoles within myofibrils. Because u ¼ 61.2! matches the
pitch of the peptide coil of the myosin rod domain, and
because SHG polarization response is insensitive to either
the proportion or movement of motor head domains, we

FIGURE 6 Polarization anisotropy of sarcomeric SHG. (A) Schematic

showing the relative orientation of the specimen and the propagation and

polarization axes of the excitation laser beam. (B) Profile of SHG intensity

versus the relative angle of scallop myofibrils to laser polarization axis.
Inserts show changes of SHG intensity with rotation relative to a fixed laser

polarization. Error bars show mean 6 SD. (C) Comparison of the polari-

zation anisotropy of scallop striated myofibril and obliquely striated C. elegans
body wall muscle. Error bars show mean 6 SD.

FIGURE 7 Independence of SHG on the state of myosin motor domains.

(A) Example of single scallop myofibril selected for line-scan time-lapse im-

aging. The line marks the scanned region of the myofibril. Scale bar¼ 2.5 mm.
(B) SHG line-scan imaging during contraction of the isolated scallop

myofibril in panel A. Contraction speed of isolated myofibrils in our exper-

iments varied between 0.2 and 0.45 mm/s/sarcomere. This value is almost
10 times slower than the published velocity of isotonic contraction in scallop

myofibrils (57). However, we believe that this difference may be caused

by adsorption of myofibrils on the glass surface, which should introduce

increasing tension (nonisotonic) during contraction. Some changes of SHG
intensity were observed at ends of myofibrils that moved out of the plane of

section. Vertical (length) and horizontal (time) scale bars are 2.5 mm and 0.5

s, respectively. (C) Dissociation of myosin heads from actin filaments does

not significantly affect the polarization anisotropy of isolated myofibrils.
Anisotropy profiles are shown from a single myofibril both before and after

addition of AMP-PNP. Relative susceptibility to varying laser polarization is

unchanged, as absolute intensities at all angles are reduced by AMP-PNP

treatment.

Sarcomeric SHG from Myosin 699

Biophysical Journal 90(2) 693–703

(d) Experiment [101]

Figure 4.4: Using the same schematic as figure 4.3(a), when the laser is tilted by 20◦,
the doublets disappear. (a)-(c) When accompanied by contracting sarcomeres, the
effect is even more pronounced. (d) Compare to the experimentally observed time
lapse of a contracting myofibril, adapted from [101]. A snapshot of the myofibril is
labeled A (scale bar 2.5 µm, and a space-time diagram of the recorded contraction is
labeled B (vertical scale, 2.5 µm; horizontal scale, 0.5 s). Note that the experimental
image is in a perpendicular plane to the simulation.
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Figure 4.5: The nonlinear susceptibility of muscle, χ(2)(ω), based on Miller’s rule.

properties using Miller’s rule [148, 149, 150]:

χ(2)(ω) ∝ χ(1)(2ω)χ(1)(ω)2

∝ (n2
2ω − 1)(n2

ω − 1)2. (4.33)

Because the refractive index decreases monotonically with increasing wavelength, the

SHG susceptibility monotonically decreases with wavelength ( or increases with fre-

quency ) in the wavelength range of concern, as plotted in figure 4.5. It does not

contain the steep drop-off observed in the experimental data. This leaves phase-

matching as the remaining factor to explain Figs. 3.21 and 3.23.

If we treat the entire muscle as a uniform block of amorphous SHG-active material,

we would find the spectrum would vary with depth [151, 67, 141]. Similarly, we would

also expect the intensity to vary significantly with depth [71]. Neither is observed.10

Instead, the spectrum is nearly uniform from edge to edge, as is the intensity, up

to the expected effects of field attenuation (see figure 3.8). This implies that the

SHG is originating only from the focus. In two-photon fluorescence microscopy, this

is an advertised feature, but numerous experiments have demonstrated significant

10I’m not saying such a dependence does not exist, just that other SHG efficiency-altering factors
prevent observing any systematic variation of this type.
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SHG production away from the focus in phase-matched crystals [152, 139]. Although

the effective production of SHG would be limited to the focus if the SHG were to

produced noncollinearly (i.e.,with some walk-off angle due to birefringence), walk-off

angles tend to be very small – only a few degrees [153, 111], which for our optical

setup would be of little consequence compared to the size of the focus.11 Two possible

explanations remain: the quasi-crystalline nature of the muscle fibers on either side

of the focus can cause the SHG to pick up phase errors, reducing the effective phase-

matching [154], making SHG coherent only near the focus. Or, the SHG efficiency is

so low that photons are only produced near the focus.

I have taken two approaches to using theory to understand the wavelength de-

pendence. First, to calculate the SHG conversion, we combine quasi-phase-matching

with a focused Gaussian beam. This approach requires guessing at the underlying

superstructure of the muscle fibers, and it provides us with an insight into hidden

correlation length-scales. Second, using the Green’s function approach, we calculate

the contribution of the wavelength dependence due to changes in collection efficiency.

11The effective aperture length for SHG production due to walk-off is `a =
√
πw0/ρ, while the

effective length of the focus is `f = πb/2 = πkw2
0/2 [152]. Thus, walk-off will limit SHG production

if `f/`a = π3/2nw0ρ/λ = π1/2ρ/NA > 1. NA = 0.8, so walk-off will not be an issue for ρ ∼ 1 degree
(0.02 radians), which is a generous estimate for the spatial walk-off angle for muscle.
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4.4.1 Wavelength Dependence Due to Myofibril Packing

Under the paraxial approximation, the SHG conversion due to periodic packing of

myofibrils is given by

F (∆k, z0, zf ) =

∫ zf

z0

∑
mn

Gmn
exp [i(∆kz +Kmnz)]

1 + iξ
dz, (4.34)

where the focus of the laser is at z = 0, and z0 and zf are the boundaries of the

SHG active area. The laser passes through many layers of sarcomeres as it images,

and these layers are arranged in a quasi-crystalline manner. The fibers are arranged

in a multitude of orientations, states of contraction (sarcomere length), and relative

alignment. Thus, the final value results must not be so sensitive to these parameters

as to only apply in unrealistically rigid conditions. Because of the drop-off around

850 nm is due to phase-matching, we can interpret the spectra to be reporting some

sort of quasi-phase-matching which is only effective up to 850 nm. Thus, we consider

the critical lengths created by the phase mismatch, `c = |λ/(2(n2ω − nω))|, plotted

in figure 4.7. The better the phase-matching, the longer the critical length, but the

only truly predictable length scale is the sarcomere length, which is around 2-3 µm.

However, the randomness of the orientations mean there will be some effective length

that can be used as a fitting parameter.

The structure of muscle was represented using a 1-D function to mimic the density
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of sarcomeres,

M(z, p) = ((4− sin[π
z

2p
]4 cos[π

z

p
]4(1 + cos[2π

z

p
])2)/2)4, (4.35)

which produces a periodic structure of finite bandwidth, diagrammed in figure 4.6(a).

To create a spatial map of the susceptibility, χ
(2)
M , M(x, p) is transformed with a

square wave with half of the period,

χ
(2)
M = M(z, p)Sq(2

x

p
), (4.36)

which is shown in figure 4.6(b). Instead of decomposing χ
(2)
M into its inherent Fourier

components, integration was carried out directly. That is,

F (∆k, z0, zf ) =

∫ zf

z0

χ
(2)
M (z, p)

exp [i∆kz]

1 + iξ
dz. (4.37)

To fully account for wavelength dependence, we include the wavelength dependence

of the power density (eq. (4.7)) and susceptibility (eq. (4.33)), and fitted p to the

representative spectra in figure 3.21(c) and taking z0 = −100, zf = 100 µm.

The resulting fit is shown in figure 4.8. The fit produced p = 5, approximately

the same as the alignment of bundles of myofibrils, as seen in figure 3.20. Although

5 µm is a bit too large for ordinary sarcomeric structure, it suggests a stronger inter-

myofibril alignment. Further experiments on isolated myofibrils will be essential to

separate any further wavelength dependence not due to myofibril alignment. The
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Figure 4.6: Plot of SHG susceptibility map. Here, p = 2.
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Figure 4.7: `c as a function of wavelength for the refractive index defined in Eq 3.1.
All units are µm.

fit required the use of an experimentally observed refractive index that was larger

concave down, instead of more commonly observed concave up shape [79]. Although

myofibrils are highly aligned with the immediate neighbors, visual inspection (such as

figure 3.17(a)) show there is a scale of structure between a full myocyte and a single

myofibril. This work suggests that a length scale of 5 µm appears to be an as yet

uncharacterized length-scale of importance within zebrafish muscle.
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Figure 4.8: Fit of eq. (4.37) using the quasi-phase-matching structure in eq. (4.36),
with p = 5 µm. The experimental data are from figure 3.21. The x -axis is wavelength
in nanometers, and the y-axis normalized intensity.

4.4.2 Wavelength Dependence Due to Collection Efficiency

As stated in section 4.2.2, only SHG emitted with in a limited angular cone will be

detected. The cutoff angle is given by θmax = sin−1(0.55/n2ω). Because the cutoff

angle varies with wavelength, we expect the collection efficiency to systematically

vary. The SHG emission angles also vary with wavelength, as shown in figure 4.9,

and this will contribute as well.

The energy detected by the microscope is given by

I(λ, r0) ∝
∫ θmax(λ)

0

dθ

∫ 2π

0

dφE∗2ω(Ω, r0)E2ω(Ω, r0), (4.38)

where E2ω(Ω, r0) is given by eq. (4.27). Because light is quantized, SHG photons only

appear, statistically, from a limited region around the focus. The size of this region

depends on the wavelength of light and the intensity of the incoming laser. Using a

Green’s function approach to calculating the emitted SHG, we find the wavelength
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Figure 4.9: SHG emission intensity is angle dependent. (top) SHG intensity as a
function of emission angle, the degrees. (bottom) Polar plot of SHG emission. Input
wavelength varies from 790 nm to 890 nm, ordered from the bottom up. This plot
is not corrected for other wavelength dependent factors. Each curve ends at the
maximum angle for collection.



104

800 820 840 860 880

0.6

0.7

0.8

0.9

1.0

Figure 4.10: The wavelength dependent SHG may also be due to the variation of
the size of the laser focus. Here, the SHG active region was constrained to a box
extending 5.2b along the z-axis and 1.9w0 along the x- and y-axis.

dependent intensity aligns well with the data, shown in figure 4.10.

The collection efficiency has a noticeable effect on SHG production from a my-

ocyte. By calculating how collection efficiency and the size of the SHG production

volume vary with wavelength, we show the promise of the Green’s function approach

to capture effects that are beyond the reach of the paraxial approximation. Further

work, such as varying the laser intensity to alter the size of the SHG production

volume, will allow the Green’s function approach to refine our conclusion from the

previous section, which were based on the paraxial approximation. Because the kink

occurs around 850 nm, we can reasonably hypothesize that part of the effect we see

in the wavelength dependence of the SHG from zebrafish myosin is due to wavelength

dependent collection efficiency.
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4.5 Conclusion

Through the last two chapters, we have experimentally and theoretically analyzed

the nonlinear optical properties of zebrafish muscle. Although other works have done

an excellent job characterizing the susceptibility of myosin, none has considered the

wavelength dependence or closely examined how SHG images differ from fluorescence

images. We have determined that the crystalline structure of muscle fibers alters the

wavelength dependence away from the inherent susceptibility of an isolated myosin

protein. This informs us about the underlying packing of the myocytes. Future

experiments which capture not just the intensity of the resulting SHG but also the

spatial dependence of the far-field SHG radiation pattern will permit full inversion to

find the underlying structural detail. For now, we inferred our results by fitting the

data to a hypothetical myocyte.

By calculating the expected patterns produced from the highly structured packing

of sarcomeres, we have provided some surprising results, such as explaining the disap-

pearance of the doublets and origin of the herringbone pattern lines as not necessarily

being biological in origin, but a fundamental feature of coherent SHG imaging. Be-

cause SHG is a coherent process, it produces microscopy images that require closer

consideration than fluorescence. With fluorescence, the intensity of a pixel is propor-

tional to the amount of dye in the focal volume, but with SHG, as the present results

show, the intensity of a pixel is not a nontrivial correspondence to the microscopic

arrangement of SHG susceptible material.

Further work, such as studying a single myofibril, comparing the SHG from dif-
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ferent organisms, and repeating a similar analysis on collagen, will help to confirm

the predictions made here. Time resolved imaging of muscle development may cast

further light onto newly identified organized length scale of 5 µm. More detailed

calculation, made without the strong assumptions implicit in the paraxial approxi-

mation, will also allow further refinement of our interpretations of the SHG images

produced here.
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Chapter 5

Microscopic Structure and
Dynamics of Air/Water Interface
by Computer Simulations and
Comparison with Sum-Frequency
Generation Experiments

The hydrogen (H) bonded structure of water at the air/water interface [155, 156, 157,

158, 159] is of fundamental interest because it determines the properties of aqueous

interfaces and their reactivity. Certain atmospheric reactions [160], such as those

involved in ozone depletion, are known to be catalyzed by the ice surface on cloud

particles. Study of the air/water interface is also important for understanding more

complicated organic/water interfaces [159] that have recently begun to attract interest

for its potential for rate acceleration [161] of organic reactions and green chemistry

in emulsions. For example, interest in catalytic effects of dangling OHs has also

been extended to their role in catalysis of different organic reactions by metal oxides

enriched in surface OH groups [162].

The first molecular structure of water at the air/water interface using the surface-
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specific vibrational sum-frequency generation (SFG) technique was reported by Du

et al. [163] in 1993 [155, 164] In that work, using the titration of dangling OH

groups with methanol and hence the complete suppression of the peak of the free

OH SFG signal, it was found that about 25% of surface water molecules have one

dangling OH bond that is not H-bonded to other water molecules. It is thereby

free, and protrudes out of the water phase, confirming earlier predictions from com-

putations [165]. Roughly the same picture of the existence of the free OH bonds

at the interface has since been consistently observed in SFG experiments by Rich-

mond [159], Eisenthal [166], Allen [167], and Gan et al. [168], and also in computer

simulations [157, 169, 170, 171, 172, 173] The structure of water at the hydropho-

bic organic/water interfaces was shown to be similar to that at the air/water inter-

face [163, 174, 175]. In the process of understanding the air/water interface, different

interpretations were also made in terms of details of the air/water interface using both

experiments and computations [155, 176, 177, 178]. Although previous work has made

significant progress toward explaining the observed SFG spectra using theory and sim-

ulation [159, 159, 179, 180, 181], a complete picture of how rapid motion averages

out the SFG has not been presented. In the present chapter, we make a quantitative

comparison between multiple experimental observables, going beyond the compari-

son of ratios. In addition, by utilizing independent experimental results, coupled with

molecular dynamics simulation of the air/water interface, the present work has as a

goal a better understanding of motional averaging in SFG. This study was prompted

by the recent on-water catalysis experiments [161] and our interpretation in terms of



109

the role of dangling OH groups at the wateroil emulsion interface [182].

The orientation of free OH bonds at the air/water interface has been deduced

from several SFG experiments to be nearly perpendicular to the surface plane [163,

168, 183]. An SFG interpretation [183] assumed a step-like distribution for the tilt

angles (θOH) between the free OH bonds and the surface normal, suggesting them to

be in the interval 0◦ ≤ θOH ≤ 51◦, yielding an average tilt angle θOH ≈ 35◦. A more

recent SFG experiment [168] yielded a similar average tilt angle, θOH ≈ 30◦, with

a narrow distribution width of ≤ 15◦, assuming a Gaussian distribution model. In

contrast to these distributions and average orientations of free OH bonds, however,

previous molecular dynamics simulations [157, 169, 159, 171, 172, 184] with various

water models consistently predicted widths of the orientational distribution much

broader than those assumed in the previous interpretations of SFG experiments [155,

163, 168, 183]. We address this discrepancy by considering the nature of free OH

bonds on the surface, and, in a procedure detailed below, selectively removing those

that would likely not contribute to the SFG, allowing a direct comparison between

our calculations and experimental measurements.

5.1 Methods

The theoretical treatment we use in this chapter to calculate the effective SFG non-

linear susceptibilities originated from the one previously developed in the litera-

ture [163, 183] to extract the orientation information of interfacial molecules from

SFG experiments. Previous reviews have provided details of the treatment [185, 186].
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Here, we summarize the assumptions and key expressions, for completeness, and

implement the expressions to obtain the forms that are suitable for numerical calcu-

lations of the mode amplitudes by explicit integrals, rather than the more simplified

fast and slow approximations [183].

The SFG signal is proportional to the square of the effective nonlinear suscep-

tibility, χ
(2)
eff (ω), which is a sum of resonant, χ

(2)
R,eff(ω), and nonresonant, χ

(2)
NR,eff(ω),

contributions [155]:

χ
(2)
eff (ω) = χ

(2)
NR,eff + χ

(2)
R,eff = χ

(2)
NR,eff +

∑
q

Aq,eff

ω − ωq + iΓq
, (5.1)

where ω is the incident infrared, ωq is the qth vibrational frequency, Aq,eff is the

mode amplitude, and Γq is the damping constant for the qth vibrational mode. The

sum-frequency spectra are obtained by scanning the IR frequencies that probe the

vibrational normal modes, using the IR-visible SFG method. The susceptibility orig-

inates at the air/water interface, caused by the symmetry breaking at the boundary.

The bulk of the fluid has inversion symmetry and so does not contribute to techniques

generating second-order nonlinear polarization.

SFG is approximated to be dipolar in origin, and we neglect any quadrupolar

contribution that could emanate from the bulk [163]. In this paper we focus on the free

OH stretching mode of water molecules at the air/water interface, ωq = 3698 cm−1.

This stretching frequency corresponds to the water configuration where one OH bond

is free while the other OH bond of the same parent water molecule is still H-bonded

to neighboring water molecules (so-called “single-donor” configuration). The spectra
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for the ssp, ppp, and sps combinations of polarization, labeled in the order of the

sum frequency output, visible input, and infrared input fields, are obtained in SFG

experiments.

The Aeff’s in eq. (5.1) can be related to the intrinsic tensor components via the

Fresnel factors, i.e., via the macroscopic local field corrections, Lii [185],

Aeff(ssp) =Lyy(ωs)Lyy(ω1)Lzz(ω2) sin β2Ayyz (5.2a)

Aeff(ppp) =− Lxx(ωs)Lxx(ω1)Lzz(ω2) cos βs cos β1 sin β2Ayyz

− Lxx(ωs)Lzz(ω1)Lxx(ω2) cos βs sin β1 cos β2Ayzy

+ Lzz(ωs)Lxx(ω1)Lxx(ω2) sin βs cos β1 cos β2Azyy

+ Lzz(ωs)Lzz(ω1)Lzz(ω2) sin βs sin β1 sin β2Azzz (5.2b)

Aeff(sps) =Lyy(ωs)Lzz(ω1)Lyy(ω2) sin β1Ayzy, (5.2c)

where βs, β1, and β2 are the reflected or incident angles of sum frequency output,

visible input, and infrared input, respectively. For an azimuthally isotropic air/water

interface and assuming the visible frequency (ω1) and the sum frequency (ωs) are far

removed from electronic resonances, there are only three independent nonvanishing

components, Axxz = Ayyz, Axzx = Ayzy = Azxx = Azyy, and Azzz [185]. The ω2 is

the infrared input light source, and he Lii’s are defined in terms of the frequency-

dependent effective dielectric constant of the interfacial layer, ε(ω), an air/water

interface in our case. For the air/water interface, ε(ωs) = ε(ω1) = 1.31 and ε(ω2) = 1.2

were estimated [183] from a three-layer model. The numerical values of all these
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variables can be found in Table 1 of ref. [183]. The Aijk’s are intrinsic (macroscopic)

properties of the interface, whereas the experimental observables, Aeff’s, are affected

by the frequency-dependent dielectric response of the interface medium as described

above and by the experimental conditions. Therefore, using Eq 5.2 we obtain Aeff’s

from the calculated Aijk’s.

The Aijk’s in eq. (5.2) are the resonant components of macroscopic susceptibility

tensor, and can be represented at a molecular level as an ensemble average of the

molecular hyperpolarizability in the body fixed frame, βq,λµν (corresponding to the

hyperpolarizabililty Aq of Du et al. [163]), of the interfacial water molecules in the

lab frame (denoted by ijk), where q corresponds to the IR resonant mode of the free

OH bond. The derivation begins with the Fourier-Laplace transform of the classical

SFG response function: related references are [180, 183, 187, 188, 189, 190].

Aq,ijk ≡ (ω2 − ωq + iΓq)χ
(2)
ijk

= −(ω2 − ωq + iΓq)
iω2

kbT

∫ ∞
0

eiω2t〈αij(0)µk(t)〉 dt, (5.3)

where αij is the quantum mechanical instantaneous polarizability tensor of the entire

surface, and µk is the in instantaneous dipole moment vector of the surface. eq. (5.3)

must be converted to be applicable to classical MD simulations. Because we are

considering a mode directly on resonance, we introduce the two resonant states of the

full basis set, |0〉 and |1〉, where, |1〉 represents the first excited vibrational mode of

the free OH-bond at 3700 cm−1. This contributes a factor 〈0|µ(t)〉|1〉 ∝ exp(−iωqt).

Because the integral in eq. (5.3) will be dominated by the resonance term, we replace
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ω2 with ωq, the value at the peak. We take the remaining QM expressions to their

classical limit [191]. In particular, the orientations of the surface bonds will be given

by their classical values, so we may expand eq. (5.3) as

Aq,ijk = −(ω2 − ωq + iΓq)
iωq
kbT

∑
λµν

αλµµν

×
∫ ∞

0

ei(ω2−ωq)

〈
NOH(t)∑

n

NOH(t)∑
m

Dn
iλ(0)Dn

jµ(0)Dm
kν(t)

〉
, (5.4)

where the sum of λ, µ, or ν is over û, v̂, or ŵ, the basis of the body-fixed molecu-

lar reference frame. Similarly, i = x̂, ŷ, ẑ, the laboratory frame basis, and the same

holds for the j and k. The double sum in eq. (5.4) includes the nth and mth free

surface OH bonds at times 0 and t, respectively. At time t there are NOH(t) free OH

bonds. Dn
iλ, D

n
jµ and Dm

kν are the time-dependent direction cosine matrix elements

of the nth and mth free surface OH bonds, defined as Dxu = x̂ · û. Thus, αλµ and

µν are the mean per-bond body-centered reference frame polarizability and dipole,

respectively. eq. (5.4) is a generalization of equations in Wei and Shen [183], and it

can be shown to reduce to corresponding approximations of slow and fast orienta-

tional dynamics. However, eq. (5.4) also explicity incorporates spatial correlations

between water molecules, unlike those in Wei and Shen, who employed a mean-field

approximation,1.

Inspection of eq. (5.3) shows that we may substitute in the bond hyperpolariz-

1The mean-field approximation is very common in SFG analysis. Most texts, such as Shen’s [190]
state that the total susceptibility is N times the susceptibility of a single molecule. Although it may
make sense to construct an average susceptibility per molecule, it does not necessarily follow that
the average susceptibility is the same as the susceptibility of a single, isolated molecule
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ability, βq,λµν , giving

Aq,ijk = −(ω2 − ωq + iΓq)
∑
λµν

iβq,λµν

×
∫ ∞

0

ei(ω2−ωq)

〈
NOH(t)∑

n

NOH(t)∑
m

Dn
iλ(0)Dn

jµ(0)Dm
kν(t)

〉
. (5.5)

We approximate the hyperpolarizability of H2O at ω2 = ω1 = 3698 cm−1 by the “bond

hyperpolizability” of the free OH bond with cylindrical symmetry. This assumption

accomplishes two things. First, this simplifies eq. (5.5) by converting it to a form

that can be evaluated using the experimentally observed bond hyperpolarizability.

Second, it allows us to exclusively account for the orientation of the free OH bounds,

the quantities that are produced by the simulation. Under this assumption, βq,λµν

has only two unique nonvanishing values, β⊥,⊥,‖ and β‖,‖,‖, where ⊥ and ‖ denote the

body-fixed axes along and perpendicular to the free OH bond direction. To explain

this restriction, we consider how the incoming lasers interact with the underlying

symmetry of the cylindrical bond. The bond has broken symmetry along its axis,

from the O to the H, but it is symmetric under rotation around the OH axis. When

the third component of the hyperpolarizability tensor, which represents the IR beam,

is perpendicular to the axis, ⊥, the IR laser interacts with the part of the bond that is

symmetric under rotation and centrosymmetric, so the intrinsic susceptibility from the

IR is 0. When the IR beam is parallel, ‖, it is interacting with the noncentrosymmetric

part of the cylindrical bond, so it has nonzero value. The visible beam is far off

resonance, so the bond has nearly zero coupling, hence the bond looks symmetric
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from all directions. This means the visible laser cannot drive the SFG on its own,

so the IR beam must be ‖, giving β,,⊥ = 0. Because the frequency of the visible

laser is chosen to be far from any electronic resonances, the susceptibility at ω1, the

incoming visible laser frequency, and ωs = ω1 + ωq, the outgoing SFG frequency, are

nearly identical, because the susceptibility has small variance far away from resonance.

Hence, we have χijk(ωs, ω1, ωw) = χjik(ω1, ωs, ω2) ≈ χjik(ωs, ω1, ω2). This is called

Kleinman’s symmetry [113], and it means that first and second components of the

hyperpolizability must be identical. Thus, the only nonzero components correspond

to β⊥,⊥,‖ and β‖,‖,‖. Using Raman and IR measurements, these values have been

measured [163, 183]:

β‖ ≡ β‖,‖,‖ = βwww = 2.88× 10−27 m5

Vs
, and

β⊥ ≡ β⊥,⊥,‖ = βuuw = βvvw = 0.32β‖.

Therefore, the sum over (λ, µ, ν) only has three nonvanishing combinations: (û, û, ŵ),

(v̂, v̂, ŵ), and (ŵ, ŵ, ŵ).

The time-dependent direction cosine matrix is D`ζ = ˆ̀ · ζ̂ , with ˆ̀ = (x̂, ŷ, ẑ) the

fixed lab coordinates and ζ̂(t) = (û, v̂.ŵ) are the time-dependent molecular coor-

dinates of the free OH bond. The water surface normal is along the z -axis of the

laboratory coordinates, and a free OH bond forms an angle θ(t) with the surface

normal at time t. The angle θ(t) lies in the interval [0, π], and the angle with respect

to x̂ in the x̂.ŷ plane, φ(t) is in the interval [0, 2π]. The the full expression of the
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molecular coordinates in terms of laboratory coordinates is

û = cosφ cos θ x̂+ sinφ cos θ ŷ − sin θ ẑ (5.6a)

v̂ = − sinφ cos θ x̂+ cosφ cos θ ŷ − sin θ ẑ (5.6b)

ŵ = cosφ sin θ x̂+ cosφ cos θ ŷ + cos θ ẑ. (5.6c)

(5.6d)

To evaluate the error introduced by finite simulation snapshot time interval, three

MD simulations with different snapshot time intervals were used for the calculations,

as described below.

In the MD simulations, 1264 water molecules were placed in a rectangular box of

dimension 30×30×70 Å3 where the water section is sandwiched between two sections

of vapor along the z -axis. Periodic boundary conditions were used in all directions,

but, along the z -axis, we sandwiched the water slab with two slabs of vacuum. Water

molecules were modeled by the DL POLY 2 program [192] as rigid and nonpolarizable,

using the TIP3P potential commonly used for molecular mechanics [193]. The Nosé-

Hoover thermostat [194, 195] was used to perform the constant NVT MD simulations

at T = 298 K, and the SHAKE algorithm [196] was used to constrain the degrees of

freedom of rigid water molecules. The time step for integrating Newtons equations

is always 1 fs, but it is unnecessary to record the results of each step. Instead, we

recorded the instantaneous orientation of all free OH bonds in discrete snapshots,

evolving the simulation between snapshots without recording the individual steps. In
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this work, we saved all of the configurations for the snapshot time interval of 1 fs, and

every 10 configurations for a time interval of 10 fs, and every 100 configurations for

100 fs. After adequate equilibration of a random initial configuration, simulated with

a time step of 1 fs, three individual simulations each with a different snapshot time

interval of either 1 fs, 10 fs, or 100 fs were performed. In the three cases, to generate

a total of 40,000 configurations, the total simulation time was 40 ps, 400 ps, and 4

ns, respectively. The correlation functions were calculated using a time average,

C(t) = 〈α(0)µ(t)〉 =
1

N + 1

N∑
n=0

α(nδt)µ(t+ nδt),

where N = (T − t)/δt. T is the total length of the simulation, and δt is the time step

of the simulation results.2 The results are shown in figure 5.3.

For sampled configurations of the water/vacuum interface, it is essential to select

only the free OH bonds on the water surface that respond to the laser beams in real

SFG experiments. Only the free OH bonds at the surface will break the inversion

symmetry necessary for an SFG signal. Previous simulation studies [157, 169, 159,

171, 172] identified surface free OH bonds as those positioned above a certain cutoff

in the z -direction. However, as can be seen in figure 1, the water surface in the model

fluctuates appreciably, and an arbitrary cutoff unavoidably includes the OH bonds in

the bulk. Although isotropy due to random orientation of the free OH bond in the

bulk will provide a natural surface selection effect, the local field corrections relevant

2This time average is equivalent to the ensemble average on the limit T →∞. If the simulation
were to not fully explore the phase space, the correlation function can develop artifacts due to over
representation of some simulation behavior. If an ensemble average is used, the solution is to add
more simulations.
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to calculating Aeff’s only apply to the free OH bonds directly on the surface [197]. The

correct selection procedure would be to select only those free OH bonds that are both

on the surface and those that do not contribute to bulk inversion symmetry. This

aspect led us to exclude surface free OH bonds oriented toward the bulk and keep

those oriented toward the vapor. Two experimental quantities, the surface density of

free OH bonds [198], Ns = 2.8×1018 m2, and their average tilt angle [163, 168, 183] of

about 35◦, guided us in determining free surface OH bonds that affect the SFG results.

In this study, the following three criteria were combined to select the free surface OH

bonds which lead to agreement with the above two experimental quantities. First, an

OH bond is considered on the surface if no oxygen atoms are inside the open cylindrical

space above the hydrogen atom with a radius of 1.5 Å(roughly the length of an OH

bond). Second, the OH bond is not H-bonded with any oxygen atoms. An OH bond

is considered H-bonded with another oxygen atom if the interoxygen distance is less

than 3.5 Å(first coordination shell) and simultaneously the O − H · · ·O angle is less

than 30◦ (approximate librational wagging amplitude of the H-bonds) [199]. Because

of approximations in the dielectric model, some free OH bonds may be inappropriately

included. If the bond is oriented with a large angle to the surface normal, in reality

it would have a high probability to be effectively canceled out by another OH bond

pointing in the opposite direction. Our selection method must produce an orientation

ensemble that reflects this potential inversion symmetry. To address this feature, we

used a single free parameter in the calculations, a free OH cutoff angle. Bonds with

θOH greater than the cutoff angle were not included in the calculations.
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A snapshot of the free surface OH bonds is shown in figure 5.1(b). Clearly, the

free surface OH bonds in the model are sparse and their oxygen atoms do not form

a uniform monolayer. The distribution of the cosine function of the tilt angle θ with

respect to the surface normal is plotted in figure 5.2. As expected, the three snapshot

intervals do not yield a large difference in the cosine distribution, because of the

equilibrating prior to the simulation. Because a cutoff of 60◦ was applied to the tilt

angle, cos θOH cannot be smaller than 0.5, as observed in figure 5.2. The plurality of

free OH bonds is oriented along the surface normal.

With the surface free OH bonds determined, the Aeff’s were calculated using

Eqs. (5.3) – (5.4). Because the experimentally determined values of the Aeff’s were

determined by fitting the observed spectra to Lorentzians [183], the spectra calculated

with the simulation results were also fit to Lorentzians. That is, after calculating the

correlation functions, by using eq. (5.4), we calculate the Fourier-Laplace transforms

at all ω2 to obtain a spectral response. These Fourier-Laplace transforms are then

corrected to account for local field corrections, as in eq. (5.2), leading to the frequency-

dependent susceptibilities χssp(ω), χppp(ω), and χsps(ω). To arrive at the Aeff’s, we

take the absolute value of the susceptibilities, as these are the quantities measured

in the experiments. The spectra are fit to Lorentzians, a2/((ω − ωq)2 + γ2), thereby

extracted a and γ. The constant a is the correlation function 〈α(0)µ(t)〉 − 〈αµ〉final

evaluated at t = 0, where 〈αµ〉final is the baseline of the plot. The value of a is deter-

mined only by the equilibrium properties and is insensitive to the detailed dynamics,

while the dynamics lie in Γq (and γ).



120

The γ which is extracted from our simulation cannot be the same as Γq. First,

a brief consideration of the correlation functions in figure 5.3 shows the decay times

are on order 0.1 picoseconds, while experimentally observed decay times are closer

to 1 picosecond, differing by two orders of magnitude. This discrepancy is due to

the binary classification of free surface OH bonds. Bonds may appear and disappear

extremely rapidly. In reality, the bond’s ωq would drift in concert with its expo-

sure, equaling 3698 cm−1 when free and moving smoothly and continuously to other

frequencies as it form bonds with its neighbors. Thus, the experimentally observed

bonds will have a much longer correlation time. Even so, we expect the amplitude,

a, to be unaffected by the this binary selection procedure, as we successful capture

the equilibrium properties. Hence, as expected, a correlation time that is too small

corresponds to a spectral width that is far too wide.

Therefore, what we are calculating is not Aijk but a quantity better labeled as

AMD, originating from χ
(2)
MD. We define α = Aijk/AMD. Because we have defined

the spectrum of χ
(2)
MD to have a peak at ωq, and because we observe it to be largely

Lorentzian in nature, we know

α2 =
A2
ijk

A2
MD

=
Γq
∫
|χ(2)
ijk(ω)|2

γ
∫
|χ(2)
MD(ω)|2

. (5.7)

We can see in eq. (5.7) that the relative areas under the curve in the spectra determine

the final value of α. By Parseval’s Theorem,
∫∞
−∞ |χ

(2)
ijk(ω)|2dω =

∫∞
−∞ δC

2
ijk(t)dt, where
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δC(t) is the mean-subtracted correlation function. Because the mean-subtracted cor-

relation function is also the impulse response function, the integrals are the total

power produced following a delta-function input pulse. We assume that the two pow-

ers produced are identical.3 Therefore, α =
√

Γq/γ, which we will use as a correction

factor. We then have

Aeff =

√
a

Γqγ
.

We divided by Γq to account for the fact that its built into the βijk, which comes

from an experimental measurement. The resulting corrected amplitudes are shown

in Table 5.2. All ratios of the calculated mode amplitudes are nearly within the

measured error of the experimental ratios Aeff(ssp) : Aeff(ppp) : Aeff(sps) = 1: 0.28 ±

0.04: 0.05± 0.02.

The largest amplitudes in Table 5.2, the Aeff(ssp) and Aeff(ppp), correspond to

the incident IR laser being p-polarized. In p-polarization, the electric field vector is

parallel to the plane of incidence and therefore probes free OHs that are nearer to the

surface normal, and these free OHs are those with the most orientational anisotropy.

The Aeff(ssp) is about three times larger than the Aeff(ppp), perhaps reflecting the

factor of three difference between β⊥ and β‖. The Aeff(sps) is smaller than the other

two, presumably because with the incident s-polarization, the IR tends to probe free

OHs that are closer to being flat on the surface.

3This is a major assumption. One way to justify it may be as follows: Let’s assume the simulation
fully captures the rotational dynamics and the symmetry breaking at the surface. Because this is
the symmetry breaking responsible for the SFG, we can assume it to be independent of the other
modes we have neglected. Effects such as motional narrowing, which may be particularly strong
at the surface due to rapid change in electric field, may have the effect of slowing down surface
dynamics without altering the total time-averaged asymmetry.
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5.2 Results and Discussion

The detailed information of the microscopic structure and dynamics of water/vacuum

interface provided by the computer simulations provide some insight into the physical

meaning of the three experimental observable mode amplitudes, the average orienta-

tion, and free OH bond surface density. Our results, shown in Table 5.2 achieve good

agreement with observed ratios, and they are also within an order of magnitude of

experimentally measured results. Because the 1 fs snapshot interval led to a total

integration time of 40 ps, which may be too short to adequately generate statistics

(others have used multiple nanoseconds [187]), those results would expectedly dif-

fer from the longer simulation times. Although Wei and Shen obtained agreement

in the calculated ratios of Aeff(ssp) : Aeff(ppp) by assuming the rotational dynamics

of θOH are very fast compared to the vibrational lifetime, they arrived at precisely

Aeff(sps) = 0 [183]. Our calculations produce a small but nonzero Aeff(sps), which we

plan to investigate more fully comparing the slow approximation limit of the present

equations. We will determine this further in future calculations. Although Gan et

al. [168] suggest the free OH bonds rarely orient perpendicularly to the surface, their

results assumed the distribution of angles to be Gaussian, with a width of about 15

degrees, instead of using a distribution similar to the one calculated in figure 5.2.

By calculating the distribution of the bonds and employing a cutoff, we obtain good

agreement in the ratio of effective susceptibilities. We also show that not all free OH

bonds are necessarily SFG active, and this may be a source of discrepancy between

theoretical measurements of bond orientations and the narrower results from exper-
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iments [168]. As expected, Aeff(ssp) is the largest component because it represents

the IR laser coupling directly to the component of the free OH bond oriented per-

pendicularly to the surface, the orientation with the largest anisotropy. Future work

will reveal more information when we extend the overall results and compare them

with the slow and fast approximations of the present equations. Based on the present

MD simulations of the air/water interface with the TIP3P empirical water model,

the amplitudes and their ratios of the effective nonlinear susceptibilities (Aeffs) were

calculated for different polarization combinations and compared with sum-frequency

generation (SFG) experiments. Free surface OH bonds are selected as the OH bonds

(1) which are not hydrogen-bonded to other oxygen atoms; (2) whose title angles with

respect to the surface normal are smaller than 60◦; and (3) no oxygen atoms are above

the hydrogen atom. With this definition of free surface OH bonds, the calculated av-

erage surface density and average tilt angle closely match the experimental values.

The calculated absolute values of the experimental observable mode amplitudes differ,

while the ratios are relatively similar. The water model presented here was utilized to

capture the dynamic orientational distribution of surface free OH bonds. Although

the present water model, TIP3P, may be satisfactory for predicting dangling surface

OH bonds, there are indications from unpublished work that it predicts too many

dangling OHs in bulk water, compared with experiments for nonbonded OH bonds.

Measurements of nonbonded OHs in bulk water have been reported by Eaves et

al. [200]. For studies of bulk reaction dynamics, an alternative to the TIP3P model

should be explored. We are investigating how the SPC/E model [201], which has
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been used for bulk water structure, will alter the calculated susceptibilities. Due to

the SPC/E model being better at predicting bulk water properties, we expect the

enhanced correlation to bring the susceptibilities even closer to experimental results.

We have not considered the effects of capillary fluctuations on the calculated effec-

tive susceptibilities, and this will be investigated in a future publication on SFG. In

addition, future simulations calculating ensemble averages of correlation functions,

instead of effective time averages, may reduce artifacts leading to variations in the

calculated susceptibilities between snapshot lengths. This simulation study adds to

the theoretical insight into the microscopic structure of the vacuum/water interface,

and the present results provide useful information in supporting the recent theory of

on-water heterogeneous catalysis [182].

5.3 Conclusion

In summary, we have formulated the SFG equations in a form where molecular dy-

namics (MD) calculated quantities can be directly compared with hyperpolarizability

(polarizability-dipole) coefficients, Aeff, extracted from the experimental data for dif-

ferent types of polarization combinations of the infrared, visible, and reflected light.

Preliminary MD results were obtained and the extracted information compared with

the experimental data, both in the comparison of ratios of Aeffs and also for com-

parison with their absolute values. The SFG results were interpreted in terms of

physical concepts, for use in exploring other issues and with additional water models.

Data from independent sources, infrared and Raman experiments, has been used, in
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Table 5.1: Average number of free surface OH bonds, 〈NOH〉, and average orientation
angle, 〈θOH〉, of free surface OH bonds calculated from three MD simulations with
different snapshot time intervals

Snapshot interval 〈NOH〉 〈θOH〉

1 fs 26 38◦

10 fs 26 38◦

100 fs 26 38◦

conjunction with SFG theory, to calculate the SFG susceptibility coefficients. In this

way, the overall SFG problem was divided into two parts, rather than calculating ab

initio the quantum mechanical values of the dipole moment and polarizability deriva-

tive. They, in practice, can be computed separately or, as above, evaluated from

independent experimental data.

Table 5.2: Results of fitting the calculated spectrum to a Lorentzian and correcting
for experimental width.

Mode Amplitudes 1 fs 10 fs 100 fs Experiment
(10−9 m2 V−1s−1)

Aeff(ssp) 3.19 1.23 2.95 1.7
Aeff(ppp) 0.96 0.38 0.9 0.48
Aeff(sps) 0.05 0.02 0.026 0.09
ssp : ppp : sps 1:0.30:0.02 1:0.31:0.02 1:0.30:0.01 1:0.28±0.04:0.05±0.02
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Figures 

 

 

Figure 1. Snapshot of the simulated water/vacuum interfaces. Black spheres (red, online) 

represent oxygen atoms, and white ones represent hydrogen atoms. 

(a)

 22 

 
Figure 2. Snapshot of the chosen free surface OH bonds. Black spheres (red, online) 

represent oxygen atoms and the vectors pointing from oxygen atoms to the bound hydrogen 

atoms. The vectors are elongated for clearer illustration. 

(b)

Figure 5.1: (a) Snapshot of the simulated water/vacuum interfaces. Black spheres
represent oxygen atoms, and white ones represent hydrogen atoms. (b) Snapshot of
the chosen free surface OH bonds. Black spheres represent oxygen atoms and the
vectors point from oxygen atoms to the bound hydrogen atoms. The vectors are
elongated for clearer illustration.
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Figure 3. Probability density of the cosine of the tilt angle with respect to the surface 

normal, using a cutoff angle of 60! . The three MD simulations with different snapshot 

intervals of 1, 10, and 100 fs, respectively, result in very similar cosine distributions. 

 
 

Figure 5.2: Probability density of the cosine of the tilt angle with respect to the
surface normal, using a cutoff angle of 60◦. The three MD simulations with different
snapshot intervals of 1, 10, and 100 fs, respectively, result in very similar cosine angle
distributions.
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(a) Cyyz(t)

(b) Czzz(t)

(c) Cyzy(t)

Figure 5.3: Correlation functions of free OH bonds produced by simulation, using
three different snapshot times, 1 , 10 , and 100 fs. Note the semi-log x -axis, which is
in picoseconds.
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