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Chapter 4

Theory of Second Harmonic
Generation from Zebrafish Muscle

The observations of fascinating featues of SHG from zebrafish muscle in the previous

chapter may be put into context and explained by utilizing the theory of nonlinear

optics. In this chapter, we will theoretically explore SHG, and, in particular, develop

an understanding of the data. In addition, we suggest further experiments which

could be done to validate some of the hypothesis laid out in the present chapter.

4.1 Foundations of Nonlinear Optics

Maxwell’s equations, on a classical microscopic level, capture the dynamics of all

free and bound charges [133]. However, because the electric field varies extremely

rapidly over atomic length scales, the microscopic description loses relevance when

considering macroscopic problems, such as the interaction of light with matter. The

bound charges in matter react to external electrical fields by rapidly rearranging,

resulting in a polarization field produced in response to the applied field. Because the

bound charges’ motion are constrained by their neighboring electrons and protons,
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which are also moving, the material response is extremely complex in microscopic

detail. Fortunately, it tends to be characteristic of the material in question. In

practice, this is addressed by averaging out the variations over atomic length scales,

producing the macroscopic Maxwell’s equations:

∇ ·D = ρf (4.1a)

∇ ·B = 0 (4.1b)

∇× E = −∂B

∂t
(4.1c)

∇×H = Jf +
1

c2

∂D

∂t
, (4.1d)

where D = ε0E + P is the displacement field, E is the native field due to free charges

or applied external fields, P is the polarization field created by matter responding to

E. The magnetic field due to E and induced magnetization of the material due to H

play a minimal role in this work, and the reader is referred to excellent texts such as

Jackson [133] for further exploration, but we will confine ourselves to the case where

B = µ0H. Furthermore, this work is concerned only with how bound charges respond

to externally applied fields, so we take ρf = 0 and Jf = 0.

The wave-equation is constructed by taking the curl of eq. (4.1c) and substituting

into equation 4.1d. The resulting equation, ∇×∇× E + ∂D
∂t

= 0, is converting into

the wave equation by employing the vector identity ∇×∇× E = ∇(∇ · E)−∇2E,

and taking |∇(∇ · E)| � |∇2E| [113]:

∇2E− 1

c2

∂2E

∂t2
=

1

c2

∂2P

∂t2
. (4.2)
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The polarization, P, is due to the response of the underlying matter to the applied

external field, E, which may be expanded as

P(t)/ε0 = P0+

∫ ∞
−∞

χ(1)(ω′, ω1) : E(ω1)e−iω
′t dω1

+

∫∫ ∞
−∞

χ(2)(ω′, ω1, ω2) : E(ω1)E(ω2)e−iω
′t dω1dω2 + · · ·

+

∫
· · ·
∫ ∞
−∞

χ(n)(ω′, ω1, . . . , ωn) : E(ω1) · · ·E(ω2)e−iω
′t

n∏
i

dωi . . . ,

(4.3)

where the colon indicates a tensor product and P0 is the static polarization, often

found at surfaces or in ferroelectrics, and ω′ = ω1 + · · · + ωn, where n is the order

of the term in the expansion. This is often written with the shorthand notation

P(E) = ε0{P0 +χ(1)E+χ(2)E2 + . . . }.1 Because polarizability also acts as a source of

electric field, see eq. (4.2), we expand the frequency components of the electric field

in orders, E(ω) = E(1)(ω) + E(2)(ω) + . . . , where each order is the contribution of

the nth-order nonlinear process. Thus, each order of nonlinearity has a corresponding

wave equation. Assuming negligible conversion from higher order modes to lower

1Although this power series expansion is formally correct, it is only meaningful when it can
be truncated. For this to be true, the terms must rapidly vanish, and this may not be the case
under some conditions, such as in laser-induced breakdown ionization [125] or even under intense
near-field optics [113]. The maximum peak intensity of the incoming field correspond to to electron

binding energies, Iatom ∼ ce
ε0a20
∼ 1015 W/cm

2
. Once the incoming laser intensities reach this order

of magnitude, perturbative expansions do not capture the full flavor of the nonlinear processes.
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order modes,2 the nth-order wave equation is given by

∇2E(n)(ω)− 1

c2

∂2

∂t2
E(n)(ω) =

1

c2

∂2

∂t2
χ(1)(ω)E(n)(ω) +

1

c2

∂2

∂t2
χ(n)(ω)E(ω1)E(ω2) . . .

∇2E(n)(ω)− n2
ω

c2

∂2

∂t2
E(n)(ω) =

1

c2

∂2

∂t2
χ(n)(ω)E(ω1)E(ω2) . . . , (4.4)

where n2
ω is the squared index of refraction, coming from n2

ω = µr(1+χ(1)(ω)) and µr =

1. The susceptibility’s dependence on incoming frequencies has been suppressed for

convenience. When the incoming radiation consists of a single monochromatic plane

wave, E ∝ cos(ωt−kx), we can see that the nth-order nonlinearity will mix the positive

and negative frequency components together to produce output frequencies that are

both higher and lower than the fundamental. For example, in the second-order case,

P (2) ∝ 1
2
(cos(2ωt − 2kx) + 1), so there will be induced second harmonic generation

and an optically induced dc field (optical rectification). When the two incoming

fields are different frequencies, in addition to SHG and optical rectification, there

will be sum frequency generation (ω′ = ω1 + ω2) and difference frequency generation

(ω′ = ω1− ω2). At higher orders, even more combinations are possible, leading to an

entire catalog of possible nonlinear optical effects [134].

Returning to the example of second harmonic generation from monochromatic

plane waves, the second-order nonlinear wave equation becomes

∇2E(n)(ω)− n2
ω

c2

∂2E(n)(ω)

∂t2
+ cc = −2ω2

1

c2
χ(2)E2

0e
−2i(ω1t−kωx) + cc, (4.5)

2This is true within the scope of the present work, but not in general.
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where cc stands for the complex conjugate of the preceding terms. Because of the

linearity of the equation, we have ω = 2ω1, and a solution of the form E(2ω1, x) =

A(x)e−i(2ω1t−k2ω1x) + cc. This leads to

∂2

∂x2
A(x)− ik2ω1

∂

∂x
A(x) + cc = −2ω2

1

c2
χ(2)E2

0e
i∆kx + cc, (4.6)

where ∆k = 2kω1 − k2ω1 = 2ω(nω1 − n2ω1)/c. ∆k is the deviation from perfect phase-

matching. When ∆k 6= 0, the fundamental and harmonic waves do not travel at

the same speed, so the harmonic waves being to interfere with themselves. Taking

A(0) = ∂xA(0) = 0, meaning A(x) represents the amplitude of the SHG produced

after the fundamental mode is incident on a uniform slab of SHG-producing material,

eq. (4.6) has a solution given by

A(x) =
2ω2

1

c2
χ(2)E2

0

k2ω1(1− ei∆kx)−∆k(1− e−ik2ω1x)

∆kk2ω1(∆k + k2ω1)
.

The intensity of the resulting SHG is given by n2ω1 (ε0/µ0)
1
2 |A(x)|2/2, so, assuming

∆k � k2ω1 , we obtain [134, 113]

I2ω1(x) =
ω2

1

4c3ε0

|χ(2)(ω1)|2

n2
ω1
n2ω1

I2
ω1
x2sinc2(∆kx/2), (4.7)

where sinc is sin(x)/x. This relationship illustrates the importance of phase-matching

in creating SHG. As shown in figure 4.1, the size of the underlying SHG-active material

makes a significant contribution to the overall SHG production efficiency.3 However,

3We recover the interesting relationship that SHG production is only significant when x∆k < π,
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Figure 4.1: Second harmonic generation production efficiency depends on the mag-
nitude of the phase-matching, ∆k, determined by eq. (4.7). Absent perfect phase-
matching, corresponding to ∆k = 0, SHG can only be produced across a distance
constrained by ∆k∆x < 2π.

eq. (4.7) only holds for monochromatic plane waves. In practice, our experiments

employ focused beams, which can significantly alter the phase-matching relations,

and this will be more thoroughly explored in Section 4.2.

4.2 SHG Phase-Matching with Focused Light

Muscle fibers are significantly larger than the wavelength of light, as shown in fig-

ure 3.7, and the myofibrils are on order one wavelength. From eq. (4.7), only me-

dia much smaller than the wavelength of light escape the effects of phase-matching.

an analogy to the Heisenberg uncertainty principle, ∆x∆p > ~/2, although the current result origi-
nates from harmonic analysis. Given this analogy, we can explore the concept that SHG production
is limited by the conservation of momentum mismatch resulting from the fusion of two photons into
one. In the absence of perfect phase-matching, the outgoing photon will not conserve momentum.
However, over very short distances, there is sufficient uncertainty in momentum to compensate for
this. In addition, conceptually, vibrational quanta created by periodic order in the material can
contribute or withdraw momentum to assist with momentum conservation.
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However, focused light has a Guoy phase, an extra twist of phase that occurs at the

focus [113]. In addition, focused light approaches the focus from different angles, giv-

ing more possible combinations for phase-matching. These effects can significantly

alter the total phase-matching balance, a crucial factor to include in any theory of

wavelength dependent SHG microscopy.

The susceptibility tensor for myosin, χ
(2)
ijk, has a number of restrictions due to the

underlying symmetry of the protein structures [129], leaving only two independent

terms, χ
(2)
xxy = χ

(2)
xyx = χ

(2)
zyz = χ

(2)
zzy = χ

(2)
yzz = χ

(2)
yxx and χ

(2)
yyy. Experiments have

determined χ
(2)
yyy < χ

(2)
yxx. However, we leave analyses of the tensor components to

previous works [121, 106, 101, 129, 86]. In general, we will not need to consider the

tensor nature of SHG, because the area of interest, the laser focus, is so small. In

addition, we have chosen the alignment of the fish with the laser to be such that the

SHG power is large. Taking the myosin to run along the y-axis, we set the polarization

to be approximately perpendicular to y. Because the light is propagating in the z -

direction, and therefore has minimal vector components in z, we have essentially set

up the experiment to probe a single tensor component, χ
(2)
yxx.

4.2.1 The Paraxial Approximation of the Wave Equation

Consider the wave equation, (∇2 − n2

c2
∂2
t )E = 0. The electric field is fundamentally a

vector, which evolves in magnitude and orientation over space and time. Represent

the electric field propagating in the k̂ direction as E(r) = A(r) exp(−iωt+ik·r). After

decomposing the Laplacian into a transverse component and a radial component,
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∇2 = ∇2
k̂

+∇2
T , we substitute both expressions into the wave equation, obtaining the

quantity

∇2A(r) exp(ik · r) = exp(ik · r)
(
∇2
TA(r) + 2ik · r∇k̂A(r) +∇2

k̂
A(r)

)
.

If |k · r∇k̂A(r)| � |∇2
k̂
A(r)|, meaning the envelope of the electric field varies slowly

over the scale of a wavelength in the direction of propagation, the second-order term

may be neglected, which is called the paraxial approximation [133]. This approxi-

mation is well suited for focused light, but it begins to break down when the NA

exceeds approximately 1 [135, 136, 137]. Although, the paraxial approximation has

been shown to be lacking in accuracy for the angular radiation pattern of SHG [135],

it has performed well for predicting the total power produced [138, 139, 140].

Given the paraxial approximation, one may describe a focused laser, propagating

in the z-axis, using a Gaussian envelope,

A(r, z) =
A0

1 + iξ
exp

[
− r2

w2
0(1 + iξ)

]
, (4.8)

where we have adopted the notation of [113], and we define ξ = 2z/b, where b is the

confocal parameter, b = kw2
0, and w0 is the radius of the beam at the focus. The

nonlinear wave equation for SHG under the paraxial approximation gives

2ik2
∂A2

∂z
+∇2

TA2 = −2π
ω2

c2
χ(2)A(r, z)e−i∆kz, (4.9)
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where ω is the fundamental frequency, A2 is the resulting SHG mode, k2 is the

wavenumber at 2ω, k2 = 2n2ωω/c, and the phase mismatch is ∆k = 2ω
c
(nω − n2ω).

The solution to eq. (4.9) is given by

A2(r, z) = i
2ω

n2ωc
χ(2)A2

0J2(∆k, z0, z)
exp

[
−2 r2

w2
0(1+iξ)

]
1 + iξ

, (4.10)

where

J2(∆k, z0, zf ) =

∫ zf

z0

ei∆kz
′

1 + 2iz′/b
dz′, (4.11)

where z0 is the z-coordinate of the beginning of the SHG medium, relative to the focus

at z = 0 [113, 141]. This integral, which reduces to the identical form of eq. (4.7)

when z0 − zf � b, determines the altered phase-matching conditions of the focused

beam. As the limits of the integral in eq. (4.11) expand to infinity, J2 takes the

asymptotic form J2 = {0,∆k ≤ 0; b
2

exp(−b∆k/2),∆k > 0} [113]. Even when the

bounds are well short of the asymptotic limit, the integral is very sensitive to ∆k and

to the width of the medium, shown in figure 4.2.

4.2.2 SHG from Periodic Media

Derivations such as eq. (4.8) assign no explicit spatial dependence to the SHG sus-

ceptible medium. Most crystals are uniform at super-atomic lengths, but muscles,

as described in section 3.1, are packed into multiscale structures, interleaving SHG

and nonSHG active regions. Hence, it would be most appropriate to describe the
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Figure 4.2: With a focused beam, the conversion efficiency is very sensitive to the
magnitude and sign of the phase-matching, ∆k, as well as the width of the medium,
zf − z0. b = 0.5
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susceptibility with some sort of spatial regularity, i.e.,χ(2)(r).4 We insert χ(2)(r) into

the nonlinear wave equation and expand in a Fourier series:

∇2A2 −
n2

2ω

c2

∂2

∂t2
A2 = −2π

ω2

c2
A2(r, z)χ(2)(r)e−i∆kz

= −2π
ω2

c2
A2(r, z)χ

(2)
0

∑
lmn

Glmne
−i(∆k+Klmn)·r, (4.12)

where Klmn are the reciprocal lattice vectors of the SHG photonic crystal, Glmn is

the complex amplitude of each Fourier component, and l,m, and n are integers [142].

eq. (4.12) demonstrates that periodicity alters the phase-matching relationship into

∆k′ = ∆k + Klmn. The resulting quasi-phase-matching allows multiple radiation

directions, for each solution of

k2 = 2k1 −Klmn, (4.13)

which is consistent with the model that the periodic structure can add or subtract

phonons to conserve momentum [143, 144]. The resulting angle will be given by

cos θlmn = 2
k1

k2

+
k̂1 ·Klmn

k2

(4.14)

=
nω
n2ω

+
λ

2n2ωa
k̂1 ·K′lmn, (4.15)

4Muscle is not merely periodic in its SHG susceptibility, but protein has a different index of
refraction than water. Thus, there is a second spatial component, n2ω =

∑
Nlmn exp(−Klmn · r ),

which has identical lattice vectors. However, the difference in refractive index is small, while the
difference in SHG susceptibility is large, so we may neglect the former.
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where θmn is the angle formed between k1 and k2, k̂1 is the unit vector oriented in the

direction of propagation of the fundamental wave, and a is the characteristic length

scale of the periodic structure.

For example, in a 2D-hexagonal crystal of circular rods, which has only two indices,

m and n, the lattice is defined by two vectors, (0, a) and (
√

3a/2, a/2), where a is

the spacing between neighboring elements. These two vectors form a parallelogram

outlining the unit cell, shown in figure 3.6, and have the Fourier components given

by [145]:

Gmn =
2r

a
√
m2 + n2 +mn

J1(
4πr√

3a

√
m2 + n2 +mn), and (4.16)

Kmn =
2π

a

(
1√
3

(m+ 2n),m

)
, (4.17)

where r is the radius of the circular rod and J1 is the first Bessel function. Assuming

the laser enters the crystal at an angle φ, so k̂1 = (cosφ, sinφ), eq. (4.14) becomes

cos θmn =
nω
n2ω

+
λ

2n2ωa
(m cosφ+

1√
3

(m+ 2n) sinφ). (4.18)

Sometimes no phase-matching conditions are readily apparent. However, it may

be the case that phase-matching may be obtained by the outgoing SHG having a

angular distribution that cannot be readily derived by the paraxial approximation.

To account for this, and to study nontrivial geometries, we turn to a Green’s function

approach to calculating SHG. Because the nonlinear polarization acts as a source

term in the wave equation, we sum the contribution from each point in the SHG
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medium [146]

E2ω(r) =

∫
G(r, r′)PNL(r′) dr′ (4.19)

=

∫
G(r, r′)

∑
jk

χ
(2)
ijk(r

′)Ej(r
′)Ek(r

′) dr′, (4.20)

where G(r, r′) is the Green’s function, which, technically, depends on the specific

boundary conditions. Although this is a very general expression, we are only really

concerned about radiation in the far field, and, because only light collected by the

condenser reaches the detector, we are concerned with the angular dependence of

the radiation intensity. This simplifies the expression of the Green’s function to be

approximately independent of near-field boundary conditions [133], and eq. (4.20) at

a far-field distance R becomes [147, 140]

E2ω(Ω, r0) =
[
θ̂, φ̂
]
· ω

2

c2

eik2ωR

4πR

∑
jk

∫
χ(2)(r′)Ej(r

′− r0)Ek(r
′− r0)e−ik2ωr

′·r̂ dr′, (4.21)

where the spherical unit vectors are given by

θ̂ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ (4.22a)

φ̂ = − sinφx̂ + cosφŷ (4.22b)

r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ, (4.22c)

meaning the θ̂ and φ̂ components contain the angular dependence of the radiated

SHG, while r̂ is the unit vector directed toward the detector at the specified solid
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angle, Ω. The laser is centered at r0 and radiating in the z -axis, meaning k̂ω = ẑ.

We will take the electric field to be polarized in an arbitrary û direction and to be a

Gaussian mode,

Eω = ûE0

exp
[
− x2+y2

w2
0(1+iξ)

]
1 + iξ

eikωz.

Because we normalized the incoming total power, we have E0 =
√
P/(n2

ωb), where

P is the power detected at the back aperture of the objective. Using the Gaussian

mode, we may further specify our expression for angular SHG to

E2ω(Ω, r0) =
[
θ̂, φ̂
]
· ω

2

c2

eik2ωR

4πR

∑
jk

x̂j · û x̂k · û
∫
χ(2)(r′)×

P
n2
ωb

exp

[
−2

(x− x0)2 + (y − y0)2

w2
0 (1 + 2i(z − z0)/b)

]
ei2kω(z−z0)−ik2ωr′·r̂

(1 + 2i(z − z0)/b)2
dr′, (4.23)

where x̂j · û is the projection of the polarization vector onto the various Cartesian

unit vectors.

From this point on, we will assume the incoming light is purely polarized in x̂

and perpendicular to the long axis of the myosin fibers. This means there is only

one nonzero tensor component, χyxx, so the output light is ŷ polarized, which leads

the θ̂ and φ̂ components to be proportional to cos θ sinφ and cosφ, respectively. The

power per unit solid angle will be proportional to (cos2 θ sin2 φ + cos2 φ)|
∫
· · ·|2, and

the total power detected is found by integrating the power density over all φ and the

range of θ which is contained within the condenser optic’s acceptance angle, namely

θmax ∼ sin−1(0.55/1.4) ∼ 20◦.5

5The condenser has a numerical aperture of 0.55. Numerical aperture is defined as NA = n sin θ,
where n is the refractive index of the immersion medium (air for the condenser). The SHG originates
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Although eq. (4.23) may be integrated directly, for some geometries it is more

convenient to work in the conjugate space. Consider the Fourier transform pair of

χ(x):

χ(2)(q) =

∫
χ̃(2)(r)e−iq·r dr

χ(2)(r) =
1

(2π)3

∫
χ̃(2)(q)eiq·r dq.

Substituting the latter expression into eq. (4.23) gives the relation

E2ω(Ω, r0) ∝ [cos θ sinφ, cosφ] · ω
2

c2
χyxx

∫∫
χ̃(2)(q)×

1

n2
ωb

exp

[
−2

(x− x0)2 + (y − y0)2

w2
0 (1 + 2i(z − z0)/b)

]
ei2kω(z−z0)

(1 + 2i(z − z0)/b)2
e−i(k2ω r̂−q)·r′ dr′ dq,

(4.24)

where we have dropped factors that will not contribute any wavelength dependence.

Having interchanged the order of integrals, we see the spatial integral is equivalent

to a Fourier transform of the incoming Gaussian waveform, given by

∫
1

n2
ωb

exp

[
−2

(x− x0)2 + (y − y0)2

w2
0 (1 + 2i(z − z0)/b)

]
ei2kω(z−z0)

(1 + 2i(z − z0)/b)2
e−i(k2ω r̂−q)·r′ dr′

=

∫
1

n2
ωb

exp

[
−2

s2
x + s2

y

w2
0 (1 + 2isz/b)

]
ei2kωsz

(1 + 2isz/b)2
e−iQ·r0e−iQ·sds

=
π2

2

b

n2
ωkω

e−
1
2
b(Qz+2kω)Θ

[
Qz −

Q2
x +Q2

y − 8k2
ω

4kω

]
e−iQ·r0 , (4.25)

within the fish muscle, with a refractive index of 1.4. The boundary between muscle/agarose and
air will cause the outgoing light to be further bent, so we need to calculate the angle of emission
in the agarose corresponding to the maximum acceptance angle in air. Therefore, Snell’s law gives
nagar sin θmax = nair sin θ = NA, and, thus we have θmax = sin−1(0.55/1.4). Because the refractive
index is wavelength dependent, θmax will also have wavelength dependence.
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where Q = k2ωr̂− q, and Θ[·] is the unit-step function, Θ(x) =
∫ x
−∞ δ(u)du. Expand-

ing, we get

=
π2

2

b

n2
ωkω

exp
[
−1

2
b(2kω − k2ω cos θ + qz)

+i(r0z(qz − k2ω cos θ) + r0x(qx − k2ω cosφ sin θ) + r0y(qy − k2ω sinφ sin θ))
]
×

Θ

[
−qz + k2ω cos θ +

−8k2
ω + (qx − k2ω cosφ sin θ)2 + (qy − k2ω sinφ sin θ)2

4kω

]
,

(4.26)

which we will abbreviate as G̃(q, r0,Ω). The outgoing electric field can now be written

as

E2ω(Ω, r0) = [cos θ sinφ, cosφ] · ω
2

c2
χyxx

∫
χ̃(2)(q)G̃(q, r0,Ω) dq. (4.27)

We see that phase-matching is still vital, but the conditions have relaxed, because

there is an overall prefactor of exp[−1
2
b(2kω − k2ω cos θ)], shown in eq. (4.26). There

may be outgoing directions which provide satisfactory conditions if conventional for-

ward propagation of SHG is poorly matched. This result also explains a common

observation of conical radiation in SHG radiation

Myofibrils are very long compared to the focal width of the Gaussian beam, so

we can take them to be effectively infinite in extent in the y-direction. In addition,

muscles consist of many repeating units. For example, myofibrils are packed full of

myosin filaments in a hexagonal fashion. If we take each filament to be a cylinder

of radius r0, denoted as Θ(r2
0 − x2 − z2), then the entire filament would be a sum of
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these cylinders, given by

χ(2)(r) =
∑
mn

Θ(r2
0 − (x−∆xmn)2 − (z −∆zmn)2), (4.28)

and the corresponding Fourier transform6 is

χ̃(2)(q) = 2πr0δ(qy)
J1(r0

√
q2
x + q2

z)√
q2
x + q2

y

∑
mn

e−i(∆xmnqx+∆zmnqz), (4.29)

which reduces to χ̃(2)(q) = 2πr0δ(qy)
J1(r0
√
q2x+q2z)√

q2x+q2y
for a single filament. From above,

we know ∆xmn = n
√

3
2
a and ∆zmn = (m− n/2)a.

4.3 Explaining Patterns in Muscle Structure

Second harmonic generation is fundamentally different from fluorescence due to the

phase coherence in the harmonic beam, while fluorescent light is incoherent. This

primarily influences the radiation direction of second harmonic generation, compared

to the isotropic emission in fluorescence. For example, figure 3.3 shows epi-collected

fluorescence, i.e.,returning toward the laser source, versus second harmonic, which

radiates almost entirely in trans, i.e.,in the same direction as the laser. This phase

coherence has additional impact on imaging. Fluorescent signal scales linearly with

the number of excited fluorescent molecules in the focus. In contrast, second harmonic

generation scales as the square of the number of phase-coherent SHG sources in

6Due to the cylindrical symmetry of the geometry, this type of transform is often referred to as
a Hankel transform instead of a Fourier transform.
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the focus, and SHG produced away from the focus adds coherently to the signal in

focus.7 This phase coherence leads to two prominent motifs in muscle SHG images,

as described in section 3.3.1. First, there are the discrete dots, as in figure 3.14.

Second, there are the “verniers,” or herringbone patterns, as in figure 3.16 and readily

apparent in figure 3.18, although they common in almost every image.

To investigate, we first consider a numerical simulation of the SHG microscopy.

Consider a numeric map of the susceptibility, simplified for the purposes of the cal-

culation, given by M(x, z), where ẑ is the direction of propagation. The value taken

on by M(x, z) denotes a effective scalar susceptibility, either 1, 0, or -1 [113]. To con-

struct a hypothetical muscle, we map out myofibrils as discrete rectangles of myosin,

whose size and shape mirror the A-bands of sarcomeres. The myosin blocks are ar-

ranged in rows, representing myofibrils, depicted in figure 4.3(a). Because myosin

thick filaments project from the M-line, which is at the center of the sarcomere, each

half sarcomere has oppositely signed susceptibilities,8 represented by the different col-

ors in figure 4.3(a). The hypothetical myofibrils are arranged in parallel and in phase,

building up a myocyte. A second myocyte, placed 180◦ out of phase is constructed

adjacent to the first.

More specifically, let Sq(x, d) be a square wave with period 2π and duty cycle d%,

then if ∆z < z < ∆z + ws, where ∆z = 0.1 µm is the spacing between sarcomeres

7This may have a significant impact on SHG confocal microscopy, because signal produced away
from the focus propagates in a Gaussian mode with an identical focus as the fundamental beam, and
cannot be excluded with a pinhole. Thus, the success of SHG confocal microscopy is likely explained
by the fact that light is fundamentally quantized, and, for biological samples, SHG efficiency drops
off sufficiently away from the focus that zero photons are produced.

8A fundamental property of second-order nonlinear susceptibility is inversion due to change of
parity: χ(2)(−x) = −χ(2)(x). If the underlying material possess inversion symmetry, such as at the
M-line, we must have χ(2) = 0.
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(a) Scheme of two adjacent myofibrils.
Only myosin is shown. Color indicates
the chirality of the myosin filaments,
and the boundary between them is the
M-line.

(b) two-photon fluorescence from
myosin.

(c) SHG from myosin.

Figure 4.3: Theoretical calculations illustrate the qualitative difference between SHG
and two-photon fluorescence. Two hypothetical myofibrils touch, one slightly out
of phase with the other. If the myosin were labeled with a fluorescent dye, one
would measure discrete points of light, with little or no signal joining the myofibrils.
However, the coherent nature of SHG causes the appearance of a contiguous, single
myofibril, with a “vernier.” In these images, the laser comes propagates vertically,
corresponding to an image such as figure 3.18.
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and ws = 1 µm is the width of the sarcomere,

M(x, z) = max [Sq(2πx/p, d), 0]Sq(2πx/p, d/2), (4.30)

where p = 5 µm is the length of the sarcomere, and d = 80%. This maps out the sus-

ceptibility of a single myocyte, as in figure 4.3(a), assigning each point a susceptibility

of 1, -1, or 0. For the second set of fibrils, a phase factor of π is added.

Many biological experiments use fluorescent stains, so we calculate what would

be observed if the muscle represented by M(x, z) were imaged using a two photon

microscope. The incoming beam is a Gaussian, given by

E(x, z) =
exp

[
− x2

w2
0(1+iξ)

]
1 + iξ

eikωz, (4.31)

where w0, ∆k, and ξ are the focal radius, phase mismatch, and normalized Rayleigh

distance, as defined in section 4.2.1, evaluated using λ = 0.850 µm and NA= 0.8. To

construct the image, the absolute value of eq. (4.31) is squared and then convolved

with the absolute value of M(x, z). The square of this result is proportional to the

intensity of fluorescence incident on the detector, and is pictured in figure 4.3(b).

To calculate the SHG produced by this image, we employ the Green’s function

approach, taken from eq. (4.23). In this case, we only care about the field collected

by the detector, so, for an incoming Gaussian, the effective Green’s function for SHG

on-axis (θ = 0) is

E(x, z) =
exp

[
−2 x2

w2
0(1+iξ)

+ i∆kz
]

(1 + iξ)2
, (4.32)
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where the parameters are determined in the previous two-photon case. The Green’s

function is convolved with M(x, z). The absolute value of the result squared gives the

intensity of the SHG produced at each point, shown in figure 4.3(c). Notice that SHG

is detected from the regions free of any myosin. This is due to the Gouy phase of the

laser, where the phase of light switches by π through the focus. Because the neigh-

boring fibers are out of phase by π, the combination with the Gouy phase produces

constructive interference when the focus of the laser is between two fibers. A close

look at figure 4.3(c) will reveal bright nodes within the SHG stripes, corresponding

to the dots in figure 3.14 which appear when imaging through a sagittal plane.

Comparison with the image of M(x, z), in Fig 4.3(a). will show that no SHG

originates from from the M-line, the boundary between M = 1 and M = −1 in our

simulation. This is due to the inversion symmetry where the myosin fibers project

in opposite directions. This results in the appearance of doublets in the SHG image,

two bright points for each sarcomere. When the sarcomere contracts, some authors

observe that the doublets are replaced by a single wide bright spot [105, 101]. One

explanation is that uneven contractile forces disrupt the boundary at the M-line [100].

Although this explanation may be correct, our simulations show that the doublet dis-

appearance may simply be due to the fibers rotating in and out of plane. Adjusting

the laser angle in the simulation by less than 20◦ causes the doublets to disappear,

replicating what appears to be observed in experiments, as in figure 4.4(d). Sym-

metry at the M-line only exists with respect to the inversion along the axis of the

sarcomere. When the laser is perpendicular to the axis of the sarcomere, one observes
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the doublets. Once out of alignment, the Gouy phase of the laser causes constructive

interference between the myosin on either side M-line, and SHG is observed where

none was before.9 Contraction increases this effect, because sarcomeric volume con-

servation [93, 96] increases the width of the sarcomere, giving the laser more myosin

to interact with, shown in figure 4.4.

The effects demonstrated here arise from the coherence of SHG, demonstrating

how the specific spatial arrangement of SHG-active material can enhance or quench

the resulting SHG. Because the focusing properties, refractive index, and phase-

matching are wavelength dependent, we also anticipate that coherence will produce

a spectral signature specific to the underlying crystallinity of the SHG media.

4.4 Wavelength Dependence of SHG

To understand the wavelength dependent SHG spectra measured in Figs. 3.21 and 3.23,

we have to account for possible sources of wavelength dependence. As described in

section 3.2, the data was corrected to remove instrument-dependent wavelength sen-

sitivities. This leaves phase-matching and the nonlinear susceptibility, χ(2)(ω), as

sources of dispersion. As with the index of refraction, the nonlinear susceptibility

will be far from any resonances. Away from absorption resonance, the wavelength de-

pendent portion of the susceptibility may be expressed in terms of first-order optical

9In fact, Plotnikov et al. observe “[When the myofibril contracts,] some changes of SHG intensity
were observed at ends of myofibrils that moved out of the plane of section.” [101] Thus, it appears
it would not be unusual for a dynamic fibril to squirm out of alignment by a few degrees and cause
the doublets to disappear.
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(a) 5 µm sarcomere (b) 4 µm sarcomere (c) 3 µm sarcomere

angle of maximum hyperpolarizability of the harmonophore
relative to the long axis of the model cylinder (see Appendix:
theoretical considerations). Our measurements of SHG from
isolated myofibrils at 900-nm excitation gave u¼ 61.2! (raw
data shown in Fig. 6 B). This concurs with our geometrical

analysis (u ¼ 67.2!) of SHG polarization anisotropy ex-
tracted from 1230-nm-excited skeletal muscle by Chu et al.
(12). Both of these values closely approximate the angle of
the polypeptide chain in an a-helix relative to the helix axis,
measured as 68.6! by x-ray diffraction (42). For comparison,
our calculations of u ¼ 50.7! for tendon collagen fibrils im-
aged at 900 nm (our data), and u ¼ 49.5! for measurements
by Stoller et al. (40) at 800 nm, coincide well with u¼ 45.3!,
the known pitch of the polypeptide chain in the collagen
glycine-proline helix (42). Two previous reports suggest that
SHG sources lie within the amide bonds of polypeptide
chains (43–45). Thus, we regard the calculated angle for
myosin as a viable estimate of the arrangement of excitable
dipoles within myofibrils. Because u ¼ 61.2! matches the
pitch of the peptide coil of the myosin rod domain, and
because SHG polarization response is insensitive to either
the proportion or movement of motor head domains, we

FIGURE 6 Polarization anisotropy of sarcomeric SHG. (A) Schematic

showing the relative orientation of the specimen and the propagation and

polarization axes of the excitation laser beam. (B) Profile of SHG intensity

versus the relative angle of scallop myofibrils to laser polarization axis.
Inserts show changes of SHG intensity with rotation relative to a fixed laser

polarization. Error bars show mean 6 SD. (C) Comparison of the polari-

zation anisotropy of scallop striated myofibril and obliquely striated C. elegans
body wall muscle. Error bars show mean 6 SD.

FIGURE 7 Independence of SHG on the state of myosin motor domains.

(A) Example of single scallop myofibril selected for line-scan time-lapse im-

aging. The line marks the scanned region of the myofibril. Scale bar¼ 2.5 mm.
(B) SHG line-scan imaging during contraction of the isolated scallop

myofibril in panel A. Contraction speed of isolated myofibrils in our exper-

iments varied between 0.2 and 0.45 mm/s/sarcomere. This value is almost
10 times slower than the published velocity of isotonic contraction in scallop

myofibrils (57). However, we believe that this difference may be caused

by adsorption of myofibrils on the glass surface, which should introduce

increasing tension (nonisotonic) during contraction. Some changes of SHG
intensity were observed at ends of myofibrils that moved out of the plane of

section. Vertical (length) and horizontal (time) scale bars are 2.5 mm and 0.5

s, respectively. (C) Dissociation of myosin heads from actin filaments does

not significantly affect the polarization anisotropy of isolated myofibrils.
Anisotropy profiles are shown from a single myofibril both before and after

addition of AMP-PNP. Relative susceptibility to varying laser polarization is

unchanged, as absolute intensities at all angles are reduced by AMP-PNP

treatment.

Sarcomeric SHG from Myosin 699

Biophysical Journal 90(2) 693–703

(d) Experiment [101]

Figure 4.4: Using the same schematic as figure 4.3(a), when the laser is tilted by 20◦,
the doublets disappear. (a)-(c) When accompanied by contracting sarcomeres, the
effect is even more pronounced. (d) Compare to the experimentally observed time
lapse of a contracting myofibril, adapted from [101]. A snapshot of the myofibril is
labeled A (scale bar 2.5 µm, and a space-time diagram of the recorded contraction is
labeled B (vertical scale, 2.5 µm; horizontal scale, 0.5 s). Note that the experimental
image is in a perpendicular plane to the simulation.
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Figure 4.5: The nonlinear susceptibility of muscle, χ(2)(ω), based on Miller’s rule.

properties using Miller’s rule [148, 149, 150]:

χ(2)(ω) ∝ χ(1)(2ω)χ(1)(ω)2

∝ (n2
2ω − 1)(n2

ω − 1)2. (4.33)

Because the refractive index decreases monotonically with increasing wavelength, the

SHG susceptibility monotonically decreases with wavelength ( or increases with fre-

quency ) in the wavelength range of concern, as plotted in figure 4.5. It does not

contain the steep drop-off observed in the experimental data. This leaves phase-

matching as the remaining factor to explain Figs. 3.21 and 3.23.

If we treat the entire muscle as a uniform block of amorphous SHG-active material,

we would find the spectrum would vary with depth [151, 67, 141]. Similarly, we would

also expect the intensity to vary significantly with depth [71]. Neither is observed.10

Instead, the spectrum is nearly uniform from edge to edge, as is the intensity, up

to the expected effects of field attenuation (see figure 3.8). This implies that the

SHG is originating only from the focus. In two-photon fluorescence microscopy, this

is an advertised feature, but numerous experiments have demonstrated significant

10I’m not saying such a dependence does not exist, just that other SHG efficiency-altering factors
prevent observing any systematic variation of this type.



98

SHG production away from the focus in phase-matched crystals [152, 139]. Although

the effective production of SHG would be limited to the focus if the SHG were to

produced noncollinearly (i.e.,with some walk-off angle due to birefringence), walk-off

angles tend to be very small – only a few degrees [153, 111], which for our optical

setup would be of little consequence compared to the size of the focus.11 Two possible

explanations remain: the quasi-crystalline nature of the muscle fibers on either side

of the focus can cause the SHG to pick up phase errors, reducing the effective phase-

matching [154], making SHG coherent only near the focus. Or, the SHG efficiency is

so low that photons are only produced near the focus.

I have taken two approaches to using theory to understand the wavelength de-

pendence. First, to calculate the SHG conversion, we combine quasi-phase-matching

with a focused Gaussian beam. This approach requires guessing at the underlying

superstructure of the muscle fibers, and it provides us with an insight into hidden

correlation length-scales. Second, using the Green’s function approach, we calculate

the contribution of the wavelength dependence due to changes in collection efficiency.

11The effective aperture length for SHG production due to walk-off is `a =
√
πw0/ρ, while the

effective length of the focus is `f = πb/2 = πkw2
0/2 [152]. Thus, walk-off will limit SHG production

if `f/`a = π3/2nw0ρ/λ = π1/2ρ/NA > 1. NA = 0.8, so walk-off will not be an issue for ρ ∼ 1 degree
(0.02 radians), which is a generous estimate for the spatial walk-off angle for muscle.
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4.4.1 Wavelength Dependence Due to Myofibril Packing

Under the paraxial approximation, the SHG conversion due to periodic packing of

myofibrils is given by

F (∆k, z0, zf ) =

∫ zf

z0

∑
mn

Gmn
exp [i(∆kz +Kmnz)]

1 + iξ
dz, (4.34)

where the focus of the laser is at z = 0, and z0 and zf are the boundaries of the

SHG active area. The laser passes through many layers of sarcomeres as it images,

and these layers are arranged in a quasi-crystalline manner. The fibers are arranged

in a multitude of orientations, states of contraction (sarcomere length), and relative

alignment. Thus, the final value results must not be so sensitive to these parameters

as to only apply in unrealistically rigid conditions. Because of the drop-off around

850 nm is due to phase-matching, we can interpret the spectra to be reporting some

sort of quasi-phase-matching which is only effective up to 850 nm. Thus, we consider

the critical lengths created by the phase mismatch, `c = |λ/(2(n2ω − nω))|, plotted

in figure 4.7. The better the phase-matching, the longer the critical length, but the

only truly predictable length scale is the sarcomere length, which is around 2-3 µm.

However, the randomness of the orientations mean there will be some effective length

that can be used as a fitting parameter.

The structure of muscle was represented using a 1-D function to mimic the density
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of sarcomeres,

M(z, p) = ((4− sin[π
z

2p
]4 cos[π

z

p
]4(1 + cos[2π

z

p
])2)/2)4, (4.35)

which produces a periodic structure of finite bandwidth, diagrammed in figure 4.6(a).

To create a spatial map of the susceptibility, χ
(2)
M , M(x, p) is transformed with a

square wave with half of the period,

χ
(2)
M = M(z, p)Sq(2

x

p
), (4.36)

which is shown in figure 4.6(b). Instead of decomposing χ
(2)
M into its inherent Fourier

components, integration was carried out directly. That is,

F (∆k, z0, zf ) =

∫ zf

z0

χ
(2)
M (z, p)

exp [i∆kz]

1 + iξ
dz. (4.37)

To fully account for wavelength dependence, we include the wavelength dependence

of the power density (eq. (4.7)) and susceptibility (eq. (4.33)), and fitted p to the

representative spectra in figure 3.21(c) and taking z0 = −100, zf = 100 µm.

The resulting fit is shown in figure 4.8. The fit produced p = 5, approximately

the same as the alignment of bundles of myofibrils, as seen in figure 3.20. Although

5 µm is a bit too large for ordinary sarcomeric structure, it suggests a stronger inter-

myofibril alignment. Further experiments on isolated myofibrils will be essential to

separate any further wavelength dependence not due to myofibril alignment. The
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Figure 4.6: Plot of SHG susceptibility map. Here, p = 2.
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Figure 4.7: `c as a function of wavelength for the refractive index defined in Eq 3.1.
All units are µm.

fit required the use of an experimentally observed refractive index that was larger

concave down, instead of more commonly observed concave up shape [79]. Although

myofibrils are highly aligned with the immediate neighbors, visual inspection (such as

figure 3.17(a)) show there is a scale of structure between a full myocyte and a single

myofibril. This work suggests that a length scale of 5 µm appears to be an as yet

uncharacterized length-scale of importance within zebrafish muscle.
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Figure 4.8: Fit of eq. (4.37) using the quasi-phase-matching structure in eq. (4.36),
with p = 5 µm. The experimental data are from figure 3.21. The x -axis is wavelength
in nanometers, and the y-axis normalized intensity.

4.4.2 Wavelength Dependence Due to Collection Efficiency

As stated in section 4.2.2, only SHG emitted with in a limited angular cone will be

detected. The cutoff angle is given by θmax = sin−1(0.55/n2ω). Because the cutoff

angle varies with wavelength, we expect the collection efficiency to systematically

vary. The SHG emission angles also vary with wavelength, as shown in figure 4.9,

and this will contribute as well.

The energy detected by the microscope is given by

I(λ, r0) ∝
∫ θmax(λ)

0

dθ

∫ 2π

0

dφE∗2ω(Ω, r0)E2ω(Ω, r0), (4.38)

where E2ω(Ω, r0) is given by eq. (4.27). Because light is quantized, SHG photons only

appear, statistically, from a limited region around the focus. The size of this region

depends on the wavelength of light and the intensity of the incoming laser. Using a

Green’s function approach to calculating the emitted SHG, we find the wavelength
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Figure 4.9: SHG emission intensity is angle dependent. (top) SHG intensity as a
function of emission angle, the degrees. (bottom) Polar plot of SHG emission. Input
wavelength varies from 790 nm to 890 nm, ordered from the bottom up. This plot
is not corrected for other wavelength dependent factors. Each curve ends at the
maximum angle for collection.
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Figure 4.10: The wavelength dependent SHG may also be due to the variation of
the size of the laser focus. Here, the SHG active region was constrained to a box
extending 5.2b along the z-axis and 1.9w0 along the x- and y-axis.

dependent intensity aligns well with the data, shown in figure 4.10.

The collection efficiency has a noticeable effect on SHG production from a my-

ocyte. By calculating how collection efficiency and the size of the SHG production

volume vary with wavelength, we show the promise of the Green’s function approach

to capture effects that are beyond the reach of the paraxial approximation. Further

work, such as varying the laser intensity to alter the size of the SHG production

volume, will allow the Green’s function approach to refine our conclusion from the

previous section, which were based on the paraxial approximation. Because the kink

occurs around 850 nm, we can reasonably hypothesize that part of the effect we see

in the wavelength dependence of the SHG from zebrafish myosin is due to wavelength

dependent collection efficiency.
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4.5 Conclusion

Through the last two chapters, we have experimentally and theoretically analyzed

the nonlinear optical properties of zebrafish muscle. Although other works have done

an excellent job characterizing the susceptibility of myosin, none has considered the

wavelength dependence or closely examined how SHG images differ from fluorescence

images. We have determined that the crystalline structure of muscle fibers alters the

wavelength dependence away from the inherent susceptibility of an isolated myosin

protein. This informs us about the underlying packing of the myocytes. Future

experiments which capture not just the intensity of the resulting SHG but also the

spatial dependence of the far-field SHG radiation pattern will permit full inversion to

find the underlying structural detail. For now, we inferred our results by fitting the

data to a hypothetical myocyte.

By calculating the expected patterns produced from the highly structured packing

of sarcomeres, we have provided some surprising results, such as explaining the disap-

pearance of the doublets and origin of the herringbone pattern lines as not necessarily

being biological in origin, but a fundamental feature of coherent SHG imaging. Be-

cause SHG is a coherent process, it produces microscopy images that require closer

consideration than fluorescence. With fluorescence, the intensity of a pixel is propor-

tional to the amount of dye in the focal volume, but with SHG, as the present results

show, the intensity of a pixel is not a nontrivial correspondence to the microscopic

arrangement of SHG susceptible material.

Further work, such as studying a single myofibril, comparing the SHG from dif-
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ferent organisms, and repeating a similar analysis on collagen, will help to confirm

the predictions made here. Time resolved imaging of muscle development may cast

further light onto newly identified organized length scale of 5 µm. More detailed

calculation, made without the strong assumptions implicit in the paraxial approxi-

mation, will also allow further refinement of our interpretations of the SHG images

produced here.


