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Chapter 2

Oscillations on Networks

To better understand how to build, design, and operate nanoscale machines, we have

to understand more about what makes dynamics on the smallest scales different

from dynamics we observe in our everyday lives. By dynamics, we refer to the dis-

placements, oscillations, and momentum transformations that give rise to observable

behavior. Although popular science is full of interesting discussions of how the world

of quantum mechanics leads to wonderful and nonintuitive dynamics, this is only part

of the story of why small is different. Classical dynamics, “the science of the 19th

century,” plays a central role. The reason, in short, is “scaling.”

Consider an object in a fluid medium. It is subject to buffeting by molecules of

the medium, which deliver kicks that knock the mass off-course, but conservation

of momentum also causes the same molecules to sap momentum from any directed

motion the body may possess. Newton’s law states that F = ma, but the total force

on the object will be a combination of endogenous forces (which are those forces

still acting on the body even in a vacuum) and the buffeting and damping forces

from the viscous medium. If the endogenous forces are extensive, meaning they are

proportional to the size of the object, they scale as R3, where R is the effective radius
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of the object. In contrast, the fluid medium acts on the surface area of the object,

so the forces from the bath causing buffeting and damping scale as R2. Thus, the

ratio of the endogenous forces, which are the forces we would rely on to do useful

work, to the bath forces, which impart noise, scale as R. The smaller an object gets,

the smaller the endogenous forces become in relation to the bath forces. At a critical

length scale, which would depend on the precise forces involved and the nature of the

immersion medium, the buffeting and damping by the bath would completely swamp

the object’s ability to do persistent work. This scaling has been well explored in fluid

mechanics via a number of ratios to understand the balance of various factors [2].

Reynolds number, in particular, captures the change in viscous dynamics relative to

inertial dynamics as length scales shrink. It is defined as Re = V L/ν, where V is

the velocity of the object, L is a characteristic length scale, and ν is the kinematic

viscosity. When Re is small, inertial forces are overwhelmed by viscous forces, and

any directed motion is rapidly quenched.

Small objects inherently live in the world of small Re. In the low Reynolds number

regime, dynamic motion such as oscillations cannot be sustained. This chapter will

explore ways to create oscillatory behavior in the low Reynolds number regime. It has

direct application to the design of nanoscale machines and the operation of proteins

within the body.
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2.1 The Limits of Oscillations in Overdamped Sys-

tems

Oscillations are ubiquitous. We celebrate them and attempt to harness them. Nat-

urally, this interest drives us to study them. There has been no shortage of analysis

of the simple harmonic oscillator in all of its variations, but much of the periodic-

ity around us is not equivalent to a mass on a spring. For example, the beating

heart is driven by molecular motors which exist in the low-Reynolds number regime,

where viscous damping overwhelms inertial forces. For these molecular constituents,

buffeting by solvent molecules prevents coherent oscillations from persisting on a

timescale longer than the mean time between collisions, which is on order picosec-

onds [3]. Despite this, we observe the coordination of overdamped components to

produce periodic behavior [4]. Studying this coordination on a problem-by-problem

basis has uncovered some conceptual principles to designing oscillatory behavior in

the overdamped regime, but few truly fundamental laws exist [5, 6, 7, 8, 9]. This

work bounds the performance of all discrete-state over-damped oscillatory systems,

providing a new look at the necessary conditions for creating coherent oscillations in

overdamped systems.1

When the energy landscape of an overdamped system can be divided into distinct

basins of attraction with barriers higher than kBT , the system will tend to reach a

local equilibrium within a basin of the energy landscape before fluctuations stochas-

1We all possess an intuitive comfort with oscillations, but we have to formalize this notion for our
analysis. To separate coherent oscillations from random fluctuations, we demand that oscillations
be predictable and have a characteristic timescale. Predictability implies that the autocorrelation
of a signal will have distinct peaks or troughs corresponding to the period of the oscillations.
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tically drive it over a barrier into a neighboring basin. Under these conditions, it is

common and appropriate to model each basin as a distinct state, with a fixed rate

of transitioning from one state to another [10, 11, 12]. These systems are finite state

first-order Markov processes2 and can be modeled by the master equation:

dpi(t)

dt
=

N∑
j

Tijpj(t)−
N∑
j 6=i

Tijpi(t), (2.1)

where Tij is the transition rate from state j to state i. For introductions to the master

equation and its numerous physical applications see [13, 14]. We will assume that all

rates are time-independent, meaning no external factors change the rates (but does

not necessarily mean that the system is closed). We also make the assumption that

T is an irreducible matrix, enforcing the trivial condition that we are not modeling

multiple mutually isolated systems. Finally, we assume that the systems conserve

probability, which can always be enforced by adding states to the system to represent

sinks. The solution to eq. (2.1) is p(t) = exp(Tt)p(0), where T is matrix notation for

Tij, Tii = −
∑

j 6=i Tji and p(t) is vector notation for pj(t) [15]. Systems represented

by the master equation are completely described by the transition rate matrix, T,

and the initial conditions p(0). The complete solution is

p(t) =
∑
j

vje
λjt
(
V−1
j · p(0) + aj(t)

)
, (2.2)

where vj is the jth eigenvector and V−1 is the inverse of the matrix of eigenvec-

2This means we exclude systems with high degrees of quantum coherence or those that are
underdamped and therefore inertial. The systems in question completely thermalizes before changing
states. Without loss of generality, we will only describe the probability of occupying a given state.
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tors.3 Hence, characterizing the properties of T also characterizes the dynamics of

the system [16, 17, 13]. Because the time dynamics of individual modes are ultimately

determined by the eigenvalues of T (see eq. (2.2)), we will be concerned with these

eigenvalues and how they relate to oscillations. We first explore these eigenvalues

and prove how they constrain the possible oscillations to be fewer than the number

of states in the system. Second, I provide examples of these limits by exploring the

quality of oscillations in a hypothetical stochastic clock, showing how both micro-

scopic oscillations and macrostates are constrained by the number of states in the

system. I conclude by proposing some experiments which may cast direct light onto

the physical realization of these bounds on oscillations.

2.2 The Limits on Oscillations

To understand the oscillations in the system represented by T, we consider the rel-

ative contributions of different eigenmodes. From the Perron-Frobenius theorem, all

eigenvalues of T have nonpositive real parts, so all but the λ = 0 equilibrium mode

decay away. Eigenvectors with nonzero imaginary eigenvalues oscillate in magnitude

as they decay. As we see in eq. (2.2), after a time (Reλi)
−1, mode i’s contribution

to p(t) will have substantially diminished. If there is an imaginary part to λi, before

decaying mode i will oscillate |Imλi/Reλi| times. Because each oscillatory mode will

have a resonance independent of the other modes, the overall quality of oscillations

3Dennery, P. & Kryzwicki, A. Mathematics for Physicists, Dover 1996.
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is given by :

Q =
1

2
max
i
|Imλi/Reλi| . (2.3)

In closed systems, Q is the upper bound on the number of oscillations. In an open

and homogeneously driven system, Q describes the coherence of those oscillations, in

analogy to the quality-factor of harmonic oscillators. This work establishes upper-

bounds on Q by showing the eigenvalues of T only exist in specific regions of the

complex plane.

Karpelevich’s Theorem, as clarified by Ito [18, 19], states that all possible eigen-

values of an N -dimensional stochastic matrix with unit spectral radius (maxi |λi| = 1)

are contained in a bounded region, which we call RN , on the complex plane, shown

in figure 2.1. RN intersects the unit circle at points exp(2πia/b), where a and b are

relatively prime and 0 ≤ a < b ≤ N . The curve connecting points z = e2πia1/b1 and

z = e2πia2/b2 is described by the parametric equation

zb2(zb1 − s)bN/b1c = zb1bN/b1c(1− s)bN/b1c, (2.4)

where s runs over the interval [0, 1] and bx/yc is the integer floor of x/y. For example,

the curve that connects z = 1, corresponding to (a1 = 0, b1 = N), with z = e2πi/N

(a2 = 1, b2 = N) is z(s) = (e2πi/N − 1)s+ 1.

The rate matrix from eq. (2.1), T, is not a stochastic matrix. To preserve prob-

ability, the sum of each columns of T is zero, and the diagonal elements are ≤ 0.4

4This may be obtained by letting pi = (1, 0, 0, . . . ), substituting pi into eq. (2.1), and solving for
the condition

∑
i pi = 0.
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Figure 2.1: The region RN contains all possible eigenvalues of N -dimensional stochas-
tic matrices with unit spectral radius. Region RN+1 contains RN . This region is
symmetric to the real axis and circumscribed by the unit circle. The curves defining
each region are given by eq. (2.4), due to Karpelevich’s Theorem.

To transform T into a stochastic matrix, denoted T′, divide T by the sum of its

largest diagonal element and largest eigenvalue, and add the identity matrix. This

transformation allows us to write the eigenvalues of T′ in terms of the eigenvalues of

T:

λ′i =
λi

maxj|Tjj|+ maxj|λi|
+ 1. (2.5)

Because the most positive eigenvalues of the original T are 0 and all others have

negative real parts, the most positive eigenvalue of T′ is 1. This unique normalization

technique ensures all other eigenvalues are less than 1 and fit within the region RN

on the complex plane. Therefore, all of the eigenvalues of T, will fit within the region

(maxi|Tii|+ maxi|λi|)× (RN − 1), where these operations on RN denote scaling and

translation, respectively. Within this transformed region, the maximum number of
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oscillations will be produced by eigenvalues on the line λ ∝ (e±2πi/N − 1), giving

Qmax =
1

2

∣∣∣∣ sin(2π/N)

cos(2π/N)− 1

∣∣∣∣ =
1

2
cot(π/N) <

N

2π
. (2.6)

We can further refine the limit in eq. (2.6) using a result from Kellogg and Stephens [20],

giving

Qmax =
1

2
cot

π

`cyc
<
`cyc
2π

, (2.7)

where `cyc is the longest cycle in the system.

Up to this point in our proof, we have restricted ourselves to systems without

any degeneracy in the eigenvalues of T. With degeneracy, as shown in eq. (2.2) , the

time dependence of eigenvector j may pick up an extra polynomial factor, aj(t), with

degree less than the degeneracy of λj, which is always less than N − 1. Fortuitous

balancing of coefficients could allow a pth-order polynomial to add an additional p/2

oscillations. Examining eq. (2.2), we see that the total maximum oscillation quality

can be

Qmax <
`cyc
π

+
N − 1

2
< N, (2.8)

where the second term is strictly due to degeneracy5

2.3 Oscillations in Macrostates: Chemical Clocks

Oscillations which consist of cycles on the discrete state-space are only possible when

the system in question violates detailed balance [17], which would be the case in a

5Such degeneracy will usually emerge only in hypothetical systems where rates balance perfectly.
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Figure 2.2: (a) When the energy landscape has barriers much larger than kBT , the
system will spend most of its time in the minima of the environment. Approximating
the continuous landscape by discrete states gives the familiar master equation kinetics.
Here we document two examples of systems with unidirectional transition rates. This
cyclical system produces the maximum Q for any given N . (b) As shown in eq. (2.6),
a system with only two states cannot coherently oscillate. It produces only random
jumps. As the number of states in the unidirectional cycle increases (in the same
family as shown in (a)), oscillations become more coherent and more persistent. The
spectral density of the unidirectional cycle shows a distinct peak which becomes
sharper as N increases. The transition rates have been normalized by the number
of states. The Q of the systems are, from bottom to top: 0.75, 1.46, 3.09, 6.40, 12.7,
obtained by fitting Lorentzian functions to the peaks.
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Figure 2.3: Although the linear set of states given by eq. (2.9) does not have any
imaginary eigenvalues, macrostates can oscillate. Macrostates are defined as 〈A〉 =∑N

i A
p
i pi(t). In this case, Api = {1 if modpi = 0; 0 otherwise}. (a) Dynamics for

different values of N for fixed p = 2 (inset) Identical dynamics, but with scaled rates
so expected traversal times are the same. (b) Increasing p increases the number and
coherence of oscillations given fixed N = 61, demonstrating the limit in eq. (2.7).
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system which is driven. Otherwise, conservation of energy prevents the system from

completing a cycle without encountering significant energy barriers. The microstates

of the system, represented by the instantaneous values of p(t), would not show any

oscillatory dynamics or peaks in the spectral density, shown in figure 2.2(a). On the

other hand, oscillations in macrostates, which are the linear superpositions 〈A(t)〉 =∑
iAipi(t), do not require the underlying microstates to oscillate. The microstate

probabilities only need to evolve such that 〈A(t)〉 oscillates. For example, consider a

hypothetical chemical clock6 described by a cycle of states [22, 10]

s1 → · · · → sN → s1. (2.9)

If the clock advances each time the cycle is traversed, adding states to the cycle

improves the quality of the clock, as shown in Fig 2.2(b). A more abstract implemen-

tation could be to consider a clock cycle and a fuel reservoir. We define that the clock

consumes 1 unit of fuel during the transition from sN back to s1, so the cycle is an

open system. This accounting method, in effect, unrolls the cycle into a linear chain of

microstates enumerated by the dyad {f, si}, where f is the amount of fuel remaining.

When f is effectively infinite, the dynamics of the open cycle and the linear chain are

equivalent. As the system moves from one state to another, we count time by keeping

track of the evolution of the macrostate denoted A(t). The macrostate of the clock is

〈A(t)〉 =
∑

i,f Aip(f, si, t) =
∑

iAi〈p(si, t)〉. Therefore, the quality of oscillations in

6The oscillating chemical clock is distinct from the traditional “clock reaction,” where an au-
tocatalytic reaction causes a sudden one-time change in state on a distinct timescale, such as the
iodate-bisulphite system [21].
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the infinite linear chain is bounded by Qs, regardless of the precise amount of fuel.

When Ai = {1 if mod2i = 0; 0 otherwise}, as shown in figure 2.3(a), the total number

of states, N does not effect the quality of the clock. However, if we change Ai to

Api = {1 if modpi = 0; 0 otherwise},

figure 2.3(b) shows increasing oscillation in 〈A(t)〉 with increasing p. That is, adding

more states to the clock directly increases its accuracy.

Texts exploring chemical oscillations state that nonlinearity is a requirement for

oscillations. In fact, nonlinearity is a shorthand for describing extremely large sys-

tems [13]. Under conditions of detailed balance, systems must consume some sort of

fuel to sustain oscillations. If we consider the fuel-free states as being an abstract

engine with N states, the combined engine-fuel system will be in one of the N differ-

ent states and have f units of fuel remaining. Therefore, a fuel reservoir can allow

a total number of oscillations ≈ fN/π. eq. (2.8) implies that the number of inher-

ently unique states, absent fuel consumption, will constrain the possible regularity of

reciprocal motion [10]. Thus, the quality of oscillations appears to be bounded by

the smallest irreducible cycle in the system, although this is not proven. That is, the

topology of the network is inherently related to the ability of the system to sustain

oscillations, and this will be explored in future work.

Similarly, if the system is driven by oscillations in multiple parameters or species,

we can again parameterize the state of the system based on the population of each

component. However, most chemical dynamics are modeled using continuous vari-
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ables, not discrete numbers of states. The microscopic description of the system,

comprised of a discrete number of states, is connected to the continuous mass-action

approximation of chemical dynamics by a system size expansion described by Van

Kampen [13]. Take, as an example, the multidimensional oscillating chemical reac-

tion called the Brusselator. By expanding the mass-action Brusselator into a discrete

state-space, the system size-expansion parameter determines the length of the largest

cycle [23, 24]. Indeed, multiple authors have observed that the quality of the Brussela-

tor limit cycle scales with system size, consistent with this work [23, 22, 25, 26, 27, 24].

This observation is not merely coincidence, but a fundamental efficiency limit of the

master equation.

This efficiency limit of oscillations has obvious implications on how well a high-

dimensional system can be numerically approximated by a smaller system. The ap-

proximation will only be successful if the relevant eigenvalues of the larger system

lie within the allowed region of the smaller system. However, the inverse stochastic

eigenvalue problem has not yet been solved, so we cannot know a priori if a stochastic

matrix exists for a given set of eigenvalues, even if they all reside within the allowed

region [28]. This fact prevents us from constructing the opposite bounds, the con-

ditions for a minimum number of oscillations. Hopefully, future results will further

constrain the present bounds, and we may gain deeper insight into the necessary

conditions for creating oscillations.

The bounds on oscillations can play a key role in interpreting experimental ob-

servations by determining a minimum number of underlying states. For example,
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the oscillation of fluorescence wavelength in fluorescent protein GFPmut2 remains

unexplained [29, 30, 31]. After application of a denaturant, the ionic state of the

fluorophore can switch up to Q ∼ 50 times with high regularity, observed as oscilla-

tions in the emission wavelength [29]. Because eq. (2.7) bounds the number of states

involved in the oscillation to be at least 3 times larger than Q, this predicts that the

oscillations are driven by large-scale rearrangement of the numerous hydrogen bonds

in the β-barrel, not merely exchange between the few amino acids directly connected

to the fluorophore. If the protein were to be mutated to alter the number of bonds in

the β-barrel, we predict that we should see a corresponding alteration in the number

and quality of observed oscillations.

2.4 Oscillations in Green Fluorescent Protein GF-

Pmut2

In a series of recent experiments, a mutant of Green Fluorescent Protein, GFPmut2,

was encapsulated in silica gel and observed under denaturing conditions [32, 33, 31].

Ordinarily, when folded or even during unfolding, GFPmut2 is stable in the anionic

green state, with stochastic transitions to the neutral blue state. At the very end

of the denaturing process, just prior to complete fluorescence quenching, the fluo-

rescence oscillates between green and blue [33]. This resonant oscillation is unique

in fluorescence behavior and unobserved in single-protein dynamics except for the

slow oscillations in activity of the ECTO-NOX protein [34, 35]. In addition to being
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a fascinating window into denaturing dynamics, the observed GFPmut2 oscillations

prompt the question of how a single molecule can be driven to autonomously oscillate.

Although the GFPmut2 oscillations are fascinating, they have not been fully ex-

plored experimentally. Although further experiments could cast new light onto this

unique dynamics, the current body of work suggests these oscillations are autonomous,

meaning that no laser or mechanical driving occurs. Somehow oscillations sponta-

neously emerge late in the denaturing process, and they persist far longer than the

picosecond timescale of natural underdamped motion in protein bonds [36]. No other

groups have reported independent observation of fluorescence observations from GF-

Pmut2 as of early 2011, although we have tried, both at Caltech, and with the help of

Jau Tang at Academia Sinica. The largest hurdle has been avoiding photobleaching.

Additional experimental evidence will of course further inform the accuracy of the

results below.

Because the oscillations take place on the millisecond timescale, and they do not

begin for up to an hour after denaturing starts, MD simulation is impossible. Thus,

there is no hope of brute force replication of the experiment in silico. Furthermore,

the oscillations are only apparent on the single molecule level, so NMR cannot directly

access the chain of events. We are left with an approach where modeling can suggest

new experimental variables and observables to probe.

The timescale of oscillation in GFPmut2 is too long to be attributed to most nor-

mal processes associated with protein dynamics, including bond vibrations, torsional

modes, and isolated residue rotation [37]. For example, in wildtype GFP, Agmon
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has observed that the stochastic blinking in wildtype GFP is due to the rotation of

Thr204, but it characterized by a switching time of tens of nanoseconds [38]. Most

protein dynamics on the millisecond timescale are characterized as two-step processes,

indicating only a single degree of freedom dominates the folding process. However,

Langevin dynamics indicate that self-sustained oscillations in a single degree of free-

dom in a protein would be impossible. In fact, a single degree of freedom cannot

produce any oscillations at all without some external driving, as demonstrated in the

section 2.2.

Given that the oscillations in GFPmut2 are not associated with any known peri-

odic driving, there must be some coordinated interplay between ordinarily unobserv-

able degrees of freedom. Even the nature of the experiment suggests this, because the

fluctuation of any single hydrogen bond normally cannot be observed via the fluores-

cence of the molecule. The denaturants used, urea and guanidinium HCl, attack the

barrel in slightly different ways [39, 40, 41], but the resulting oscillations are identi-

cal [42]. The fluorescence photophysics does not deviate from normal throughout the

vast majority of the denaturing process, except for the moments before quenching.

Because the fluorescence oscillates between anionic and neutral up to 20 times [33],

there must be at least 120 separate internal states coordinating the oscillations. The

only source of this many states within a single protein would be the hydrogen bonds

of the β-barrel. Somehow, the denaturant sets off a cascade of hydrogen bond break-

ing and reforming that is observed in the experiment as the ionization state of the

fluorophore. There is evidence that the oscillations are not due to rearrangements of



21

precise bond networks, because these networks are sensitive to salt concentrations.

Protonation rates vary continuously with GdnHCl, but we do not see oscillation pe-

riods vary [43].

Here, we explore our hypothesis of hydrogen bond fluctuations by suggesting a

two variable system where the ionic state of the chromophore alters the stability of

the β-barrel. Without a direct crystal structure of GFPmut2, we cannot know if there

are unique structural features in GFPmut2 to focus on as a starting point. However,

we can draw analogies from other GFP mutants, such as S65T [44]. All mutants in

the green fluorescent protein family fold into the distinctive β-barrel conformation,

shown in figure 2.4. The β-barrel is held tightly closed by dense array of hydrogen

bonds running up and down the sides of the barrel. This protects the chromophore,

shown in figure 2.5, which is quenched by water.

By considering these facts, we attempt to synthesize a model to increase our

understanding of this system.

2.4.1 Limit Cycles

Long term dynamics in closed systems are always driven to equilibrium. This stable

state quenches any oscillations, leading to what Lord Kelvin profoundly called “Heat

Death,” where no more free energy is available to sustain nonstochastic motion [50].

In the case of GFPmut2, we observe this as the fully denatured state where all

fluorescence is quenched. Prior to oscillations, and toward the end of the series of

oscillations, the ionization state of the fluorophore is stochastic. Only during a brief
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Figure 2.4: Ribbon representation of GFP, made using PyMol [45]. The β-barrel is
colored purple. Unstructured regions are pink. α-helix loops are colored blue. White
and yellow rods are hydrogen bonds between residues, which are not shown. The
chromophore is orang, and can been seen edge-on. Original model was PDB entry
2HPW [46, 47, 48].
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assumes that the chromophore exists either in a protonated (band
A, 395 nm) or an deprotonated (band B, 475 nm) state;18 the
latter state exists in a thermodynamically unstable intermediate
form (band I, 493 nm) and a low-energy form.19,20 The hydroxyl
group of wt GFP chromophore is part of an intricate network
of hydrogen bonds that favors the protonated form.2 Deuteration
experiments have shown that the large Stokes shift after
excitation at 395 nm is due to excited state proton transfer of
the GFP chromophore in its neutral state. After excitation the
hydroxyl group of the GFP chromophore is deprotonated within
a few picoseconds and a predominant red-shifted fluorescence
emission from the deprotonated chromophore is observed. At
room temperature this emission is spectrally not distinguishable
from emission upon 475 nm excitation.15,16 The phenolic
hydroxyl of the chromophore is hydrogen bonded through a
water molecule to Ser205, which is also hydrogen bonded to
the γ-carboxylate of Glu222. Electrostatic repulsion in this
network between the γ-carboxylate of Glu222 and the phenolic
chromophore has been proposed to stabilize the protonated state
of the chromophore.17,21

Though wt GFP is relatively insensitive to changes in pH,22
the fluorescence emission of several GFP mutants exhibits
distinct pH dependences.1,2 Among others, mutations involving
Ser65 are of special interest since they lead to the selective
stabilization of the deprotonated form, shifting the pKa around
neutrality.2 The most commonly used mutation to favor ioniza-
tion of the phenol of the chromophore is the replacement of
Ser65 by Thr (S65T),23 though several other aliphatic residues
such as Gly, Ala, Cys, and Leu have roughly similar effects
(class 2 mutants).2,23-25 Based on crystallographic studies it was

assumed that in the S65T mutant the chromophore is fully
deprotonated at pH 8 (Figure 1) and protonated at pH 4.5.26
Furthermore, Glu222 is not in hydrogen-bonding contact with
the phenolate oxygen of the chromophore, showing that, for
this mutant, Glu222 is not able to stabilize the protonated state
of the chromophore.6 Fluorescence excitation spectra of S65T
showed that for this mutant the absorbance band A does not
lead to appreciable fluorescence emission.27,28
Since the initial proposal for the use of a GFP mutant as a

reporter of the pH within cellular compartments,29 several studies
have described the pH sensitivity of other GFP variants27,30-33
and the use of these variants as endogenous intracellular pH
indicators.27,31
A detailed kinetic description of the pH-induced transforma-

tions at the chromophore site is desirable not only for the
understanding of the mechanisms underlying the change in color
but also for the evaluation of how fast the protein can respond
to changes in pH. Stopped flow pH-jump measurements, carried
out to study the kinetics of the acid-induced transformation of
the chromophore in the S65T GFP, demonstrated that the
spectral changes occurred within the instrumental dead time
(about 2 ms).27 Fluorescence correlation spectroscopy (FCS) has
been recently used to monitor pH-dependent fluctuations in
EGFP (F64L-S65T) and S65T GFP.28 The autocorrelation
function was described as arising from a decay with pH-
dependent rate, which was attributed to binding of protons from
solution, and a slower, pH-independent process, assigned to an
intramolecular proton transfer and/or structural rearrangement.
Similar findings were reported for YFP mutants.34 Although
FCS is an extremely powerful tool to investigate dynamic events
in macromolecules, relaxation methods have some advantages
since they require minimal modeling to retrieve kinetic informa-(15) Chattoraj, M.; King, B. A.; Bublitz, G. U.; Boxer, S. G. Proc. Natl. Acad.

Sci. U.S.A. 1996, 93, 8362-8367.
(16) Lossau, H.; Kummer, A.; Heinecke, R.; Pollinger-Dammer, F.; Kompa,

C.; Bieser, G.; Jonsson, T.; Silva, C. M.; Yang, M. M.; Youvan, D. C.;
Michel-Beyerle, M. E. Chem. Phys. 1996, 213, 1-16.

(17) Brejc, K.; Sixma, T. K.; Kitts, P. A.; Kain, S. R.; Tsien, R. Y.; Ormo, M.;
Remington, S. J. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 2306-2311.

(18) Heim, R.; Prasher, D. C.; Tsien, R. Y. Proc. Natl. Acad. Sci. U.S.A. 1994,
91, 12501-12504.

(19) Creemers, T. M. H.; Lock, A. J.; Subramaniam, V.; Jovin, T. M.; Volker,
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S. Nat. Struct. Biol. 1999, 6, 557-560.
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Figure 1. (Left) Three-dimensional structure of S65T GFP at pH 8 (PDB entry 1EMG). The chromophore is shown in green, His148, in blue, Thr203, in
orange, and Glu222, in yellow. The carboxylic acids present on the protein are shown in red. (Right.) Closeup of the chromophore with the mutated residues.
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Figure 2.5: The chromophore is in green, shown in the center of the β-barrel in left,
and in its native H-bond arrangement in the right. Taken from [49].

sub-100 ms window does the ionization state oscillate somewhat deterministically.

A proton determining the ionic state of the chromophore is transported to and

from the fluorescent ligand via proton channels determined by the orientation of amino

acids in the binding pocket and the barrel. Proton channels transport protons on a

picosecond timescale, similar to other breathing modes of amino acids. Therefore,

these local vibrations and rotations average out over the course of an oscillation.

Large scale rearrangements of the hydrogen bond network are much slower. These

“proteinquakes” transpire over milliseconds, the same timescale as the oscillation

dynamics [51, 52].

Matching timescales indicates that the oscillations could be dominated by two

parameters, the ionization of the fluorophore and a proxy for the number of hydrogen

bonds holding the protein together. Because the proton traverses proton-wires that

open and close via rotational modes of amino acids along the wire [53], the proton’s

position will be stochastic over the experimental timescale. We therefore wish to

calculate the time-dependent probability of the proton being on the fluorophore (an-
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ionic), pA(t), as a function of a chemical coordinate of hydrogen bonds D, which shall

act as our proxy measure of the hydrogen bond network.

The internal charge distribution can determine the stable configuration of the

hydrogen bond network, as was also seen in [53]. After exposure to denaturants

for some time, a number of stabilizing hydrogen bonds break down, and denaturant

begins to penetrate into the internal binding cavity [54]. After sufficient time, the

entire β-barrel is broken from the inside-out, leading to a general two-state picture for

denaturing. The precise chain of events during the unfolding process may depend on

the employed denaturant [39], but the resulting oscillation dynamics do not appear

to have any such dependency [31].

Because the observed persistent oscillations are so unusual, we first attempt to

find conditions for totally self-sustained oscillations, i.e.,a limit cycle. If one assumes

that the internal charge distribution alters the local equilibrium of the hydrogen bond

network, and that the internal charge distribution is reported through the ionic state

of the fluorophore, the dynamical equation describing their interdependence must

take the general form:

ṗA(t) =− f1(D)pA(t) + f2(D)(1− pA(t)) (2.10a)

Ḋ(t) =g1(D)pA(t) + g2(D)(1− pA(t)). (2.10b)

Oscillations would be indicated by pA(t) swinging between 0 to 1 and back on

a fixed timescale, representing near certainty of the fluorophore being neutral and

anionic, respectively, and then returning. We see that Eq (2.10a) has the form of a
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Fokker-Planck equation, while eq. (2.10b) describes the ensemble average dynamics

of D. Because eq. (2.10a) is a master equation, detailed balance would suggest f1

and f2 to be

f1(D) = k1e
−D/d0

f2(D) = k2e
D/d0 .

This functional form indicates that the parameter D is affine in the free energy of

the protein. It is also consistent with experimentally observed reprotonation rates in

GFP as a function of denaturant concentration [43]. When in the anionic state, the

charged state favors D growing, consistent with denaturing occuring spontaneously.

In the neutral state, small D becomes unfavorable. Hence, the free energy difference

between the anionic and neutral states would be ∆G = ln(k1/k2)− 2D/d0. Research

by Saxena et al. has shown that the deprotonation process in native EGFP, a mutant

similar to GFPmut2, in nearly barrierless (0.3 kcal/mol), while the reprotonation has

an activation energy of 14.8 kcal/mol [43]. Thus, we posit that denaturation alters

the free energy balance between the two states, ultimately determining the charge

state of the chromophore.

We use eq. (2.10b) to describe the ensemble average of D(t), making g1 and g2

the recruitment rate of newly denatured bonds in the anionic and neutral state,

respectively. When the protein is well folded, denaturant attacks bonds and opens up

the barrel, disrupting cooperative folding. If the state of the chromophore directly or

indirectly determines the local equilibrium fold, denaturant may be squeezed out of
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the β-barrel under certain conditions. We take

g1(D) = k3D

g2(D) = −k4
D

k5 +D
.

That is, under the anionic state, hydrogen bonds decay as a first order process. Upon

the transition from neutral to the anionic charge state, the fold is now no longer

in equilibrium, so the protein undergoes a proteinquake [51]. In the neutral state,

the equilibrium structure is one that catalyzes reforming of hydrogen bonds and

restabilizing the barrel, leading to a Michaelis-Menten expression due to neighboring

amino acids effectively catalyzing bonds with their neighbors. In the neutral state,

amino acids no longer have the central anion competing with the other amino acids

for preferential alignment due to the anion-induced dipole coupling, diagrammed in

figure 2.6. In total, Eqs. (2.10a) and (2.10b) become

ṗA(t) =− k1e
D
d0 pA(t) + k2e

− D
d0 (1− pA(t)) (2.11a)

Ḋ(t) = k3DpA(t)− k4
D

k5 +D
(1− pA(t)). (2.11b)

With a model of this form, we successfully produce oscillations in both charge

state. pA. and structural stability, D. Tools such as Mathematica’s EquationTrekker

allow a rapid visual search of parameter space. figure 2.7 shows a typical set of

phase-space trajectories produced from one combination of parameters, showing that

sustained oscillations can be readily produced when the two charge states favor two
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Figure 2.6: When the chromophore is anionic, left, its excess charge draws its tightly
coupled neighbors into alignment with the chromophore. When neutral, the amino
acids are now free to preferentially align with their neighbors, increasing the structural
rigidity of the β-barrel.

different folds, as hypothesized. figure 2.7 shows the GFP oscillating between pA

between approximately 0.9 and 0.1, corresponding to a 90% probability of being in the

anionic state when highly structured (D small). The anionic state allows denaturing,

and pA swings to 0.1 as D increases, ultimately reaching a 90% chance of being in

the neutral state.

Because eq. (2.11) produce limit cycles, these equations suggest a mechanism

for the dynamics. However, limit cycles that produces the desired oscillations can-

not explain the complete dynamics of GFPmut2, because no system can oscillate

indefinitely. The key assumption is that the energy of the protein spontaneously

increases when the charge state flips, favoring a more robust (or delicate) fold. Al-

though it would not be unusual for an internal degree of freedom to shift the energy

landscape [52], a physically motivated description of the protein dynamics could not

produce indefinite oscillations. Furthermore, GFPmut2 oscillations do not appear
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Figure 2.7: Given the parameters d0 → 19.0, k1 → 0.12, k2 → 3.8, k3 → 4.8, k4 →
124.0, k5 → 1.6, eq. (2.11) shows that the expected charge state of the chromophore
can develop strong oscillations. These parameters are not physically determined, but
indicate that the functional form of eq. (2.10) likely corresponds to some underlying
dynamics.

the instant denaturant is applied. It can take an hour of denaturing before any os-

cillations are observed [30, 31]. Our model should be able to suggest an explanation

for this as well as predict a finite resolution to the oscillations. To address this, we

consider more closely the dynamics of our model system and how the limit cycle forms

from eq. (2.11).

Consider the nullclines of the dynamics described by eq. (2.11), which are de-

termined by fixing ṗA = 0 or Ḋ = 0. Each condition will give a different curve,

corresponding to the path in phase-space which satisfies each condition. Both curves
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can be written as a function of D(pA) :

D(pA) =
d0

2
log

(
k2

k1

1− pA
pA

)
ṗA = 0 (2.12a)

D(pA) =
k4

k3

1

pA
− k4

k3

− k5 Ḋ = 0. (2.12b)

The mutual intersections of the nullclines determines the character of the phase-space

dynamics, as shown in Fig 2.4.1. Altering any of the rates adjusts the position of the

nullclines, such that they do not intersect (figure 2.8(a)), intersect once (figure 2.8(b)),

or intersect twice (figure 2.8(c)). A limit cycle only emerges when these nullclines

intersect at one point. In fact, altering only a single rate, k3, is sufficient to drive

the system from a stable fixed point into a limit cycle by altering the position of the

Ḋ = 0 nullcline.

If the rate k3 were time dependent such that k3 started small at t = 0 and grew

monotonically larger over time, the system would initially exhibit the experimentally

observed nonoscillatory behavior until k3 reached a critical value (which is dependent

on all other parameters in a nontrivial way). The curves would first intersect twice, as

shown in figure 2.8(c). The phase-space dynamics still display a single stable node, but

the system entering the unset of instability. This is consistent with the experimentally

observed steady increase in the blinking rate in the minutes leading up to the onset

of GFPmut2 oscillations [30]. Once k3 grows a bit large, the nullclines then intersect

only once, causing the system to bifurcate into a limit-cycle, corresponding to the

experimentally observed oscillations. As k3 continues to increase, eq. (2.12b) shows

the D nullcline monotonically shifts towards the pA = 0 axis. The center of the limit
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cycle shifts toward this axis, as well. As a result, the dynamics are shifted to favor

the pA = 0 state. As the center of the limit cycle drifts to pA = 0, the probability

of returning to the anionic state decreases, and the oscillations begin to look like

chaotic blinking, as has been observed [33]. This entire series of events are played out

in figure 2.9 by assuming an exponential time dependence for k3.

What could produce such a time dependence? The GFPmut2 chromophore is

tightly coupled to a handful of neighboring amino acids, as shown in figure 2.5. These

amino acids coordinate the local field and help determine the equilibrium ionization

state of the chromophore, which has been found to have a pKa of 6.2 [55]. However,

the amino acids most tightly coupled with the chromophore are also held in place

by hydrogen bonds from their neighbors, and so on. As the bonds start to break

up, fluctuations in the local pKa grow in proportion to the degree of stabilization.

The loss of mutual stabilization increases local fluctuations in the β-barrel, and the

amino acids take larger excursions from their local equilibria. This in turn allows

the denaturant better access to further destabilize bonds, resulting in a denaturing

rate that increases with time. Therefore, k3 may have some dependence on additional

degrees of freedom, approximated to first order by an exponential growing function

of time.

2.4.2 Loop Dynamics

Although the limit-cycle model in the previous section established that the denaturing

increases as the oscillations evolve, it used a continuous variable, D(t), not the number
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(b) k3 → 4.8, limit cycle: nullclines inter-
sect once
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(c) k3 → 1.7, one stable spiral and one un-
stable: nullclines intersect twice

Figure 2.8: Green curve: pA(t) = 0 nullcline; Red curve: D(t) = 0 nullcline. Above
the green curve, ṗA < 0 and below ṗA > 0. Above the red curve, Ḋ > 0, and below
Ḋ < 0. d0 → 19.0, k1→ 0.12, k2→ 3.8, k4→ 124, k5→ 1.6
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Figure 2.9: Time-dependent rates create a transition from a static system to a limit
cycle. In this case, we transform k3 → k3e

k6t. k6 is different between the three plots.
top: k6 → 0.12, middle: k6 → 0.10, and bottom: k6 → 0.08. Each range runs from
pA = [0, 1] versus time, and the curves are offset for clarity.
d0 → 5.29, k1 → 0.11, k2 → 4.29, k3 → 1.0, k4 → 177.18, k5 → 1.34.

of hydrogen bonds. This allowed for better examination of the dynamics, but does

not explain the how the bonds break. The speed of bond breakage determines rate of

increase in D(t), and thus, also determines the oscillation rate, because a faster change

in D directly translates into a faster change in pA, the observed fluorescent state.

We also postulated that the central destabilizing force was a collective breakdown

in the mutually stabilizing hydrogen bond network, leading to a time dependent

k3. What determines the precise value of k3? This may only be hypothesized, but

a consideration of the GFP crystal structure shows the β-barrel to be remarkably

uniform, with no obvious lines of weakness in the arrangement of hydrogen bonds.

However, the β-barrel is constructed by looping the backbone to reach the final fold.

Three loops are needed to properly fold GFP, as shown in figure 2.10. Loops are
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entropically unfavorable [56], acting like springs pulling on the β-barrel [57, 58].

Figure 2.10: left: 3D representation of GFP, with backbone colored yellow. The three
loops are colored red, purple, and green. Dotted white lines indicate the distance from
the start to end of the loop. right: depiction of the secondary structure of GFP, with
strands of the β-barrel numbered 1 – 11. The loops are the red cylinders, and colored
red, purple, and green to correspond to the 3D image on the left.

Because of the large damping, the collisions between the loops and the bath

molecules cause the loop to rapidly explore its configuration space, subject to the

constraints of its end-to-end distance. This results in an entropic force being exerted

on the amino acids at the ends of the loop. Loops are analogous to a spring under

tension [59]. Of course, under native conditions the loops have little or no effect on the

extremely stabile β-barrel. Over the course of the denaturing process, the loops will

eventually dominate the weakened hydrogen bond network and begin to pull apart

the β-barrel.

Because of the denaturant, the α-helices in the loops will break down, and there

will be very little structure in the loops. This allows the loop to be modeled as
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a wormlike chain (WLC)[60, 61, 57], a model defined by the correlation relation

〈r̂(s) · r̂(s + ∆s)〉 = exp(−∆s/p), where r̂(s) is the orientation vector of polymer a

distance s from the end, and p is called the persistence length. This model works well

for short loops of amino acids [62], and under the WLC model, the entropic force is

a function of end-to-end distance is given by

F (R) =
kbT

p

(
1

4
(1− R

N`
)−2 − 1

4
+

R

N`

)
, (2.13)

where R is the end-to-end distance, p is the persistence length, N is the number

of amino acids, and ` is the effective loop length contribution of each amino acid.

Although the loops pulls continuously, the bonds break discretely and regularly. How

does one map a continuous linear transduction into a periodic signal?

Consider a common baby’s toy, the bead maze, shown in Fig 2.11. Even if a train

of beads are moved over the apex of the curve at a continuous rate, only one falls over

at a time.7 If the bead train is moved at constant velocity, v, the time between beads

moving over the apex is `/v, where ` is the length of the bead. Hence, the audible

“click” produced when the beads collide at the bottom has a period of `/v seconds.

Linear motion has been transformed into a periodic signal.

Analogously, the drag and damping by the water cause the loop to move with-

out any inertia, leaving a Stokes drag condition, F (R) = ηv, where η is the drag

7Because there is no coupling between beads, the bead that is balanced on the apex has an
adjacent bead one bead-width, `, lower on the wire track. The bead at the apex becomes unstable
and slides over the top, but the adjacent bead must move another ` before it reaches the apex and
slides over. This takes a time `/v.
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coefficient.8 Under denaturing conditions, the weakened β-barrel is able to be de-

formed by the loop, pulling the amino acid adjacent to the loop at a constant

velocity v = F (R)/η, and the expected time for the amino acids to be pulled

out of their hydrogen bonds with their neighbors is τ = F (R)/η`. We observe

three different loops in figure 2.10, with the following pairs of parameters, (N,R) =

(17, 2.1 nm), (11, 1.7 nm), and (8, 1.7 nm). Based on force-induced denaturing ex-

periments, we have p = ` = 0.39 nm [62]. It is reasonable to assume that any one

of the three loops may dominate the final unfolding during a single unfolding cycle,

and the resulting oscillation dynamics will depend on that particular driving force,

just as a single fracture dominates the initial failure of a brittle object. Experiments

observe that GFPmut2 oscillates with one of three frequencies: 930, 720, or 440 s−1.

The same protein will oscillate at only one frequency during one unfolding cycle, but

it may oscillate at a different frequency during subsequent cycles. Even though we

do not know η, the resulting calculated ratios of oscillation rates, 1:0.72:0.41, are in

good agreement compared to the experimentally observed ratios, 1:0.72:0.47 [30].

This agreement provides a key insight into the dynamics of GFPmut2 unfolding.

If the preceding analysis holds, the unfolding dynamics appear to be primed by the

destabilization of the loops in a systematic way. The loops deform the β-barrel,

popping out hydrogen bonds one-by-one. As discussed in the previous section, the

charge state of the chromophore helps to coordinate the surrounding amino acids

in such a way as to loosen the β-barrel sufficiently to allow the loop dynamics to

8The drag coefficient η will be a function both of the drag due to moving through the water and
the energy absorbed by distortions of the β-barrel, making a calculation of η beyond the scope of
the present work.
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Figure 2.11: The bead maze, a common children’s toy, is an example of linear motion
producing a periodic signal. As baby Leo pushes the train of beads over the top of a
loop, one bead at a time slides down the other side as it passes the apex. Although
Leo moves the beads at a constant velocity, v, he hears a periodic click of frequency
v/` as each bead slides to the bottom, where ` is the length of the bead.

dominate, but the neutral state strengthens the barrel, neutralizing the effect of the

loops. This analysis predicts the oscillation rates are determined by the loop lengths.

If experiments are able to observe the oscillations in fluorescence, altering the loop

lengths should change the ratio of oscillation rates in systematic way, confirming the

present predictions.

2.5 Conclusion

We have examined how system size relates to the dynamic behavior of overdamped

systems. Because most systems on the nanoscale operate at very low Reynolds num-

ber, they satisfy this condition. When those states are enumerable, systems with

more states have the ability to oscillate longer and more coherently. This carries
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implications not only for designing nanoscale systems, but also the results apply to

any system that may be described as dynamics on a network, such as social networks.

The quality bounds proved here are universal. Because the master equation is used in

nearly every branch of science, the dynamics being modeled need not be physical. For

example, it could be money held by a bank [8], packets of data on the internet [63],

agents traversing a network [64], or the populations in an ecosystem [65]. The os-

cillation limit could also be probed experimentally with sculpted landscapes using

optical tweezers [66]. As a probe bead jumps from trap to trap, the energy landscape

in unoccupied traps is sculpted to simulate an arbitrarily large designer network of

discrete states. The current results are a fresh approach to analyzing the dynamics of

discrete systems, and it serves as a new design principle for those seeking to engineer

oscillations.

This theorem also has direct application to explaining the curious dynamic of GF-

Pmut2 oscillations. Using the theorem, we were able to construct a model based on

the rearrangement of hydrogen bonds in the β-barrel, as opposed to oscillations in the

dynamic conditions around the protein or in the underdamped motion of protons. Us-

ing a two component model to track the probability of ionization of the chromophore

and degree of denaturing of the β-barrel, we are able to analyze how the oscillations

emerge and why they dissipate. Further phase-space analysis predicts a cooperative

effect maintains the β-barrel. Once the barrel begins to fully destabilize, the dena-

turing occurs rapidly, and the barrel’s ability to repair itself degrades until finally the

protein is fully denatured. We hypothesize that the loops of the GFP have a central
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role in determining the rate of unfolding due to their destabilizing nature, and an

experiment which alters the length of these loops should see a corresponding change

in the oscillation time.

This chapter has shown how linear state spaces may be mapped into nonlinear

systems, allowing us to better understand oscillations on the nanoscale. Further work

will be able to refine both parts of the work in this chapter. First, identifying motifs

that give rise to oscillations or other chaotic behavior in reaction networks will uncover

more applications for the theorem. Second, connecting the predicted consequences of

GFP oscillations with further experimental observations may provide more evidence

to refine our understanding of the oscillations. The next chapter will explore how

optical nonlinearity, instead of nonlinearity in state-space, may be used to probe the

geometry of proteins inside muscle using nonlinear optics, extracting more information

than possible using traditional fluorescence techniques.


