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Chapter 3

Characterization of heralded
entanglement between two atomic
ensembles

This chapter is largely based on ref. 34. Reference34 refers to the then current literature in 2007 at the time of

publication.

3.1 Introduction

Beyond a fundamental significance, quantum control of entanglement between material systems is an essen-

tial capability for quantum networks and scalable quantum communication architectures (refs. 9,162, see also

chapter 1). In recent years, significant advances have been achieved in the control of the quantum states of

atomic systems, including entanglement of trapped ions197,198 and between macroscopic spins59. By follow-

ing the seminal paper of Duan, Lukin, Cirac, and Zoller (DLCZ) (ref. 4, chapter 2), entanglement between

single collective excitations stored in two remote atomic ensembles has also been demonstrated27. In the

DLCZ protocol, entanglement is created in a probabilistic but heralded way from quantum interference in

the measurement process199–201. The detection of a photon from one or the other atomic ensemble in an

indistinguishable fashion results in an entangled state with one collective spin excitation shared coherently

between the ensemblesa. Such entanglement has been critical for the initial implementation of functional

quantum nodes for entanglement distribution (ref. 36, chapter 4), for the investigation of entanglement swap-

ping (ref. 37, chapter 5) and for light-matter teleportation112.

Because of the relevance to quantum networking tasks, it is important to obtain detailed characterizations

of the physical processes related to the creation, storage, and utilization of heralded entanglement. Towards

this end, significant advances have been demonstrated in the generation of photon-pairs74,75 and the efficient

retrieval of collective excitation76,77. Moreover, decoherence processes for a single atomic ensemble in the

aSee also chapter 9 for an initial demonstration of measurement-induced entanglement of spin waves among multiple quantum
memories.



50

regime of collective excitation have been investigated theoretically (ref. 147, chapter 2) and a direct measure-

ment of decoherence for one stored component of a Bell state recently was performed202. However, to date

no direct study has been reported for the decoherence of an entangled system involving two distinct atomic

ensembles, which is a critical aspect for the implementation of elaborate protocols122,123,203. The decoherence

of entanglement between ensembles has been shown in recent setups (chapter 2), through the decay of the

violation of a Bell inequality (ref. 36, chapter 4) and the decay of the fidelity of a teleported state112. However,

a quantitative analysis was not provided since these setups involved many other parameters, such as phase

stability over long distances.

In this chapter, I discuss measurements that provide a detailed and quantitative characterization of en-

tanglement between collective atomic excitations. Specifically, we determine the concurrence C (ref. 178)

as a function of the normalized degree of correlation g12 (ref. 76) for the ensembles, including the threshold

g(0)12 for entanglement (C > 0). We also map the decay of the concurrence C(τ) as a function of storage

time for the entangled state, and interpret this decay by measuring the local decoherence on both ensembles

taken independently. Compared to ref. 27, these observations are made possible by a new system that requires

no active phase stability and that implements conditional control for the generation, storage, and readout of

entangled atomic states.

3.2 Experimental setup

Our experiment is illustrated in Fig. 3.1. A single cloud of cesium atoms in a magneto-optical trap is used;

two ensembles are defined by different optical paths 1 mm apart36,204. This separation is obtained by the

use of birefringent crystals close to the cloud, which separate orthogonal polarizations71. At 40 Hz, the

trap magnetic field is switched off for 7 ms. After waiting 3 ms for the magnetic field to decay, the two

samples are simultaneously illuminated with 30-ns-long and 10 MHz red-detuned write pulses, at a rate of

1.7 MHz. Given the duty cycle of the experiment, the effective rate is 180 kHz. Spontaneous Raman scattered

fields induced by the write beams are collected into single-mode fibers, defining for each ensemble optical

modes that we designate as fields 1U,D with 50 µm waist and a 3◦ angle relative to the direction of the write

beams75,76. The fields 1U,D are frequency filtered to block spontaneous emission from atomic transitions

|e� → |g�, which do not herald the creation of a collective excitation. After this stage, and before detection,

fields 1U,D are brought to interfere on a polarizing beam-splitter. A detection event at D1a,1b that arises

indistinguishably from either of the fields 1U,D projects the atomic ensembles into an entangled state where,

in the ideal case, one collective excitation is coherently shared between the U,D ensembles4,27.
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3.3 Entanglement generation and storage

In the ideal case of small excitation probability, the atom-field 1 joint state can be written for each ensemble:

|Ψ� = |0a�|01�+
�

ξ|1a�|11�+O(ξ) , (3.1)

with |n1� the state of the field 1 with n photons and |na� the state of the ensemble with n collective excitations

(chapter 2). Upon a detection event at D1a,1b, in the ideal case, the atomic state is projected into

|ΨU,D� = 1√
2
(|0a�U |1a�D ± eiφ|1a�U |0a�D) +O(

�
ξ), (3.2)

where |0a�U,D, |1a�U,D refers to the two ensembles U,D with 0, 1 collective excitations, respectively4. The

± sign is set by the detector that records the heralding event. The overall phase φ is the sum of the phase

difference of the write beams at the U and D ensembles and the phase difference acquired by fields 1 in

propagation from the ensembles to the beamsplitter. To achieve entanglement, this phase must be constant

from trial to trial110. In order to meet this requirement, the initial demonstration reported in ref. 27 employed
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Figure 3.1: Entanglement generation and verification. a, Entanglement generation and storage. A weak
write pulse is split into two paths separated by 1 mm and excites simultaneously two atomic samples, U,D.
The resulting fields 1U,D are combined at the polarizing beamsplitter (PBS) and sent to the single-photon
detectors D1a,1b. A detection event at D1a or D1b heralds the creation of entanglement. b, Entanglement
verification. After a storage time τ , entanglement is verified by mapping the atomic state to propagating
fields 2U,D by way of read pulses. Tomography is then achieved in two steps, as described in the text.
The atomic cloud is initially prepared in the ground state |g�. {|g�, |s�, |e�} denote the levels {|6S1/2, F =
4�, |6S1/2, F = 3�, |6P3/2, F = 4�}. Note that the fields 1U,D and 2U,D are detected with a small angle
relative to the classical beams, which is not represented here for the sake of simplicity.
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Figure 3.2: Passive stability of a Mach-Zehnder interferometer formed by a pair of beam displacers. a,
A calcite beam displacer mounted on a stable prism mount. b, Long-term phase instability of an interferom-
eter formed by two beam displacers. By mounting the two crystals in an anti-symmetric configuration (Fig.
3.1), the phase drifts are passively compensated to the first order for thermal expansions of the crystals as
well as for mechanical instabilities along all translational degrees of freedom (except for tilting). The relative
phase φ does not change by more than a few degrees over several days.

auxiliary fields to achieve active stabilization for various phases for two ensembles located in distinct vacuum

apparatuses. By contrast, in our current setup (Fig. 3.1a), φ is determined only by the differential phase for

the two paths with orthogonal polarizations defined by the birefringent crystals (Fig. 3.2a); our small setup

has sufficient passive stability without the need of adjustment or compensation. The relative phase φ does not

change by more than a few degrees over 24 hours (Fig. 3.2b).

3.4 Entanglement verification

To operationally verify entanglement between the U,D ensembles, the respective atomic states are mapped

into photonic states by applying simultaneously read pulses in the configuration introduced in ref. 75, as

depicted in Figure 3.1b (see also chapter 5.3.3). The delocalized atomic excitation is retrieved with high

efficiency thanks to collective enhancement4,76 and, in the ideal case, |ΨU,D� would be mapped directly to

the photonic state of fields 2U,D with unity efficiency and no additional components. Stability for the phase

difference of the read beams and of fields 2U,D is also required in this process; it is again achieved by the

passive stability of our current scheme71. Since entanglement cannot be increased by local operations205, the

entanglement for the atomic state will always be greater than or equal to that measured for the light fields.

A model-independent determination of entanglement based upon quantum tomography of the fields 2U,D

has been developed in ref. 27. The model consists of reconstructing a density matrix, ρ̃2U ,2D , obtained from

the full density matrix by restriction to the subspace with no more than one photon per mode. We also assume

that all off-diagonal elements between states with different numbers of photons vanish. The model thus leads

to a lower bound for entanglement. As detailed in ref. 27, ρ̃2U ,2D can be written in the photon-number basis
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|n�|m� with {n,m} = {0, 1} as follows:

ρ̃2U ,2D =
1

P





p00 0 0 0

0 p01 d 0

0 d∗ p10 0

0 0 0 p11




. (3.3)

Here, pij is the probability to find i photons in mode 2U and j in mode 2D; d is the coherence term between

the |1�|0� and |0�|1� states; and P = p00 + p01 + p10 + p11. From ρ̃2U ,2D , one can calculate the concurrence

C, which is a convenient monotone measurement of entanglement ranging from 0 for a separable state to 1

for a maximally entangled state178:

C = max(0, C0) with C0 =
1

P
(2|d|− 2

√
p00p11). (3.4)

In the regime of low excitation and detection probabilities in which the experiment is performed, the vacuum

p00 can be approximated by p00 ∼ 1− pc, while the terms p01 and p10 are given by p10 = p01 = pc/2. pc is

the conditional probability of detecting a photon in field 2 from one ensemble following a detection event for

field 1.

Experimentally, we reconstruct ρ̃2U ,2D and then calculate C by using two configurations for the detection

of fields 2U,D, corresponding to two settings of the (λ/2)v waveplate shown in Fig. 3.1b. The diagonal ele-

ments of ρ̃2U ,2D are determined from measurements of the photon statistics for the separated fields 2U , 2D,

i.e., by detecting independently each field. To access the coherence term d, fields 2U,D are coherently super-

imposed and the count rates from the resulting interference are recorded as a function of the relative phase

between the 2U,D fields. It can be shown that d � V (p10+p01)/2 ∼ V pc/2 (ref. 27), where V is the visibility

of the interference fringe.

3.5 Main results

3.5.1 Scaling behavior of heralded entanglement to excitation probability

To investigate the scaling of entanglement with excitation probability ξ, we determine the concurrence C for

various values of ξ for fixed memory time τ = 200 ns. As ξ increases, higher-order terms in the expansion of

Eq. (3.2) cannot be neglected, precisely as in parametric down-conversion. A convenient parameter to assess

the excitation regime of each ensemble is the normalized intensity cross-correlation function g12 between

field 1 and field 2 (ref. 76), defined as g12 = p12/(p1p2) with p12 the joint probability for detection events

from field 1 and 2 in a given trial and pi the probability for unconditional detections in field i. In the ideal

case, this function is related to the excitation probability ξ by g12 = 1 + 1/ξ, where g12 > 2 defines the
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Figure 3.3: Concurrence C as a function of the normalized cross-correlation function g12, for the two
possible heralding events (detection at D1a or D1b). The solid line is obtained from Eq. (3.5) with the
fitted overlap (see inset) and taking an independently-measured retrieval efficiency at 13.5%. The dotted line
corresponds to C0. Inset: Average visibility of the interference fringe between the two field-2 modes. The
solid line is a fit using the expression given by Eq. (3.6), with the overlap λ fitted to 0.95± 0.01.

nonclassical border in the ideal case72 and g12 � 2 being the single-excitation regime for the ensembles74.

Expressing the two-photon component for the two ensembles as p11 = ξp2
c
∼ p2

c
/g12, we rewrite the

concurrence as:

C � max[0, pc(V − 2
�
(1− pc)/g12)] , (3.5)

where g12 is for either ensemble alone, with g(U)
12 = g(D)

12 ≡ g12 assumed. The visibility V can be expressed

in terms of g12 as the higher-order terms act as a background noise. With (1/2)p1p2 a good estimation for

the background, the visibility can be written as

V � λ
p12 − p1p2
p12 + p1p2

= λ
g12 − 1

g12 + 1
, (3.6)

where λ is the overlap between fields 2U,D (ref. 78). In the limit of near zero excitation, as g12 goes to infinity,

the concurrence reaches its asymptotic value given by the retrieval efficiency λpcb.

Fig. 3.3 presents our measurements of the concurrence C as a function of g12. As the excitation proba-

bility is decreased, g12 increases as does the entanglement. The threshold to achieve C > 0 is found to be

g(0)12 � 7, corresponding to a probability ph � 1.2 × 10−2 per trial for the creation of the heralded atomic

entangled state and to a preparation rate ∼ 2 kHz. Note that C = 0 (or C not greater than zero) does not

imply that there is no entanglement, only that any possible entanglement is not detected by our protocol,

bAn alternative approach is to determine the suppression of two-photon events relative to the square of the probability of single-
photon events for the fields 2, h ≡ p11

p10p01
. h < 1 is a necessary condition for entanglement 27,34,36. Here, for g12 = 60, h =

0.060± 0.005.
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which provides a lower bound for the entanglement. More importantly, in an infinite dimensional Hilbert

space, entangled states are dense in the set of all states206, so that zero entanglement is not provable for an

actual experiment by way of the concurrence.

To confirm the model leading to Eq. (3.6), the inset gives the measured visibility V as a function of

g12. The solid line is a fit according to Eq. (3.6) with free parameter λ, leading to an overlap λ = 0.95 ±
0.01, in agreement with the value λ = 0.98 ± 0.03 obtained from an independent two-photon interference

measurement. With the fitted value of λ and with the independently determined value of the conditional

probability pc = 0.135±0.005 from measurements performed on each ensemble separately, we compare our

measurements of C with the prediction of Eq. 3.5 (solid line in Fig. 3.3) and find good agreement.

Table 3.1 provides the diagonal elements of the density matrix ρ̃2U ,2D and the concurrence for the case

g12 = 60± 4 corresponding to a probability to create atomic entanglement ph = 9× 10−4 per trial (160 Hz).

A value C = 0.092 ± 0.002 is directly measured at detectors D2a, D2b without correction. By way of the

independently determined propagation and detection efficiencies, we infer the density matrix ρ̃output2U ,2D for fields

2U , 2D at the output of the ensembles, from which we obtain a concurrence Coutput

2U ,2D = 0.35±0.1. This value

exceeds the then published state of the art by two orders of magnitude27. This leap underlines the progress

obtained in terms of suppression of the two-photon component and achievable retrieval efficiency over the

past year76,77. Finally, by way of the conditional readout efficiency η = 45 ± 10% for mapping of quantum

states of the U,D ensembles to the fields 2U , 2D, we estimate the density matrix ρ̃U,D and the concurrence

CU,D = 0.9 ± 0.3 for the collective atomic state. We emphasize that CU,D is an estimate determined from

the model developed in ref. 74 where the fields at the output of the MOT consist of a two-mode squeezed state

plus background fields in coherent states.

3.5.2 Characterization of decoherence for heralded entanglement stored in two atomic

ensembles

Turning then to a characterization of the decay of entanglement with storage time τ , we present in Fig.

3.4 measurements of concurrence C(τ) for fixed excitation probability ph = 1.6 × 10−3 corresponding to

g12 = 30 at τ = 200 ns. C > 0 for τ � 20 µs, providing a lower bound for the lifetime of entanglement of

the ensembles corresponding to 4 km propagation delay in an optical fiber.

Table 3.1: Diagonal elements and concurrence of the density matrices for fields 2U,D, without and
with correction for propagation losses and detection efficiencies. The last column provides the estimated
elements and concurrence for the atomic state by considering the readout efficiency η. g12 = 60± 4.

ρ̃2U ,2D ρ̃
output
2U ,2D

ρ̃U,D

p00 0.864± 0.001 0.54± 0.08 0± 0.3
p10 (6.47± 0.02)× 10−2 (22± 4)× 10−2 0.5± 0.15
p01 (7.07± 0.02)× 10−2 (24± 4)× 10−2 0.5± 0.15
p11 (2.8± 0.2)× 10−4 (3± 2)× 10−3 0.015± 0.025
C 0.092± 0.002 0.35± 0.1 0.9± 0.3
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Figure 3.4: Concurrence C as a function of the storage time τ . The solid line is obtained from Eq. (3.5)
assuming the fitted exponential decays, given in the inset, of the individual parameters pc and g12 measured
independently. The dotted line corresponds to C0.

To investigate the dynamics in Fig. 3.4, the inset shows the decay of the average g12 and conditional

probability pc for the ensembles taken independently. Such local decoherence has been investigated as the

result of inhomogeneous broadening of the Zeeman ground states due to residual magnetic fields120,147,202.

Our current measurement shows the effect of this local decoherence on the entanglement of the joint system

of the ensembles. For this purpose, our measurements of C are superposed with a line C(τ) given by Eq.

3.5, where the fitted exponential decay for pc(τ), g12(τ) (with similar decay � 13 µs) and the overlap λ

determined in Fig. 3.3 are employed. The agreement evidenced in Fig. 3.4 confirms the principal role of

local dephasing in the entanglement decay.

3.6 Conclusion

In conclusion, we have reported a detailed study of the behavior of entanglement between collective excita-

tions stored in atomic ensembles, including the dependence of the concurrence on the degree of excitation

and the quantitative relationship of local decoherence to entanglement decay. The temporal dynamics reveal

a finite-time decay, with separability onset for storage time τm ∼ 20 µs. From a more general perspective,

the inferred concurrence for the collective atomic state, CU,D = 0.9 ± 0.3, is comparable to then current

values obtained for entanglement in the continuous variable regime207 and for entanglement of the discrete

internal states of trapped ions197,198.
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3.7 Multiple “flavors” of entanglement

While progress in traditional physics has been historically made by confirming the consistency of experimen-

tal data with theoretical models, it is essential to employ robust, model-independent procedures in quantum

optics and quantum information science, in order to unambiguously characterize and verify the entanglement

for the purported state created in one’s experiment110,208. Diverse approaches to entanglement verification

and quantification have been developed so far, including entanglement monotones and witnesses40,110,208. For

excellent accounts of recent results, I refer to the reviews by refs.40,208. Also, I refer to chapters 7–9, where

we have developed a particular form of an entanglement witness for verifying multipartite mode-entangled

W states38.

In this section, I would like to provide a brief overview on the different categories of entanglementc one

could generate in an experiment, largely based on the description in ref. 110. By this, I hope to distinguish

the ‘flavors’ of entanglement for the heralded and deterministic quantum states described in this thesis, and

those based on post-dicted states largely reported elsewhere in the literature (chapter 1) which are not directly

applicable for scalable quantum networks1.

1. Deterministic (a priori) entanglement

For deterministic entanglement, one has a source that generates multiple copies (i.e., in de Finetti

representation211, ρ̂(Nc) =
�
dρ̂P (ρ̂)ρ̂⊗Nc ) of a state, ρ̂ = ρ̂det, where

ρ̂det = ρ̂ent. (3.7)

By performing measurements on a subset of ρ̂(Nc) (e.g., via quantum-state tomography), one concludes

in principle that the physical state ρ̂det contains an entangled state ρ̂ent every instant of its creation. The

entangled component ρ̂ent is identical to the physical state ρ̂det generated in an experiment. Thus, the

entangled state ρ̂ent is created on demand “at the push of the button.” Importantly, the purported en-

tanglement is unambiguously verified directly from measurements on the physical state ρ̂det without

destructively filtering a small fictitious (entangled) component ρ̂�ent of ρ̂det and subsequently measuring

ρ̂�ent by post-selection (i.e., a posteriori entanglement). Depending on the amount of entanglement, de-

terministic entanglement may be employed for a wide variety of large-scale quantum information tasks

(section 1.1), including scalable quantum computation and entanglement distribution. For example,

we demonstrated a reversible quantum interface, whereby deterministic entanglement can be mapped

into and out of two quantum memories (chapter 6). Prominent examples of this type of entanglement

cNote that while there is only one class of entanglement (Bell states) for bipartite qubits (N = 2), there are different classes of
entanglement for N > 2, associated with the equivalency under stochastic local operation and classical communication (SLOCC) 209,210.
My goal, however, is not to discuss about the classes of entanglement, which is an active research problem on its own, but rather
to differentiate the various types of entanglement generated in an experiment, in terms of the amount of entanglement for the actual
physical state.
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include the various entangled states for continuous variable beams of light and atomic ensembles, and

between trapped ions, Rydberg atoms, and superconducting qubits (section 1.2).

2. Heralded entanglement

Here, one refers to the state in the de Finetti representation ρ̂(Nc) =
�
dρ̂P (ρ̂)ρ̂⊗Nc , where ρ̂ = ρ̂her

with,

ρ̂her = (1− pyes)ρ̂no ⊗ ρ̂unent + pyesρ̂yes ⊗ ρ̂ent. (3.8)

This is an entangled state subject to an ensemble measurement of the subset of ρ̂(Nc), for which one

could reliably estimate the amount of entanglement E(ρ̂ent). For heralded states, we have orthogonal

states {ρ̂no, ρ̂yes} for the heralding system (lhs of the direct products in Eq. 3.8) with probabilities

{1 − pyes, pyes}, for which one could subject the auxiliary states {ρ̂no, ρ̂yes} in a test to distinguish

probabilistically whether the state ρ̂her is prepared in the entangled ρ̂ent or unentangled states ρ̂unent.

Albeit with possibly low success probability pyes, we can indeed create a physical state with the desired

maximally entangled ρ̂ent with a high fidelity by projecting the ancilla states. Thus, heralded entangle-

ment can be as powerful as a priori entanglement, except that one may have to generate many copies

before obtaining ρ̂ent if pyes is small. This type of entanglement may be employed for diverse large-

scale quantum information protocols, including universal quantum computations2,212,213 and scalable

quantum communications4,9 (section 1.1).

In chapters 3–5, 8, and 9, we initially entangled the number-states between the (heralding) fields 1

and the atomic state via the two-mode squeezing operation described in chapter 2. By projecting the

fields onto an entangled state 1
2 (|10�+ |01�), we prepared a high-fidelity entanglement (ideally, 1-ebit

of entanglement) for the heralded state ρ̂ent physically stored in the atomic ensembles. For example,

in this chapter, we have achieved CU,D = 0.9 ± 0.3 for the physical state with ph � 10−3 without

post-selecting ρ̂ent. But as the scheme is probabilistic, the heralding process requires us to generate

on average ∼ 1/ph copies of the state ρ̂her to obtain ρ̂ent. This type of entanglement can be used

for conditional enhancement of entanglement distribution and connection36,37 (chapters 4–5) and even

promoted to a deterministic quantum state79,80 via the conditional control of heralded quantum states78,

with a sufficient memory time τm (see ref. 115).

3. A posteriori entanglement

Here, one generates ρ̂(Nc) =
�
dρ̂P (ρ̂)ρ̂⊗Nc , where ρ̂ = ρ̂post with,

ρ̂post = (1− pyes)ρ̂unent + pyesρ̂ent, (3.9)

where pyes � 1, in many cases of practical importance. Here, one devises the measurement strategy

such that it is only sensitive to the desired entangled state ρ̂ent with post-selection, thereby destructively



59

measuring the quantum state. While such a measurement strategy may display classical recording

of significant non-classical correlations (e.g., by way of the violation of Bell’s inequality), the actual

amount of entanglement for the physical state ρ̂post is very small: i.e., E(ρ̂post) ∼ pyesE(ρ̂ent). If the

post-selection procedures can be simulated by local filters, one can in principle conclude the pres-

ence of entanglement. But, entanglement E(ρ̂ent) via post-diction greatly overestimates the amount of

entanglement E(ρ̂post) in ρ̂post (i.e., referring instead to the fictitious component ρ̂ent).

Because of the destructive nature in the measurement process, the entanglement in ρ̂ent cannot exist

independent of the null (unentangled) events ρ̂unent. Indeed, in typical downconverter experiments,

with pyes � 1, the quantum state one needs to assign for the two purportedly entangled optical modes

is not that of a maximally entangled state |Ψ+� = 1√
2
(|HV � + |V H�) of two photons, but that of a

state of the form:

ρ̂PDC � p0ρ̂0 + pyes|Ψ+��Ψ+|+ ρ̂≥2. (3.10)

Thus, based on a positive detection event, one succeeds in implementing the desired protocol a poste-

riori.

Such an entangled state is not desirable for realizing most scalable quantum architectures, including

quantum networks, as the amount of entanglement is extremely small for the physical state (typically,

pyes � 10−3). Furthermore, given a density matrix ρ̂PDC, the pure-state decompositions of Eq. 3.10

may be written in a form in different pure-state decomposition, for which the pure states in the decom-

position are all unentangled178. Unfortunately, a wide range of literature has been reported, whereby

entanglement in the state of Eq. 3.10 is claimed to exist in the form of |Ψ+� instead of ρ̂PDC. I re-

fer to reference110 for prominent examples, for which entanglement verifications were not carried out

correctly.

3.8 Technical details

3.8.1 Some notes on the magic of beam displacers

The passive stability of the beam displacers has attracted us to use these components throughout our exper-

iments (chapters 3–9). We ordered the displacers from Novaphase, for which they used laser-grade calcite

crystals with exceptionally low striae and optical inhomogeneity for reducing the scattering noise of the clas-

sical beams, and polished the calcite surface with λ/10 flatness over the entire aperture and S/D = 20/10.

However, I’d like to note that since 2009 there has been a global shortage of calcite crystals, which made

them compromise the quality of calcite crystals. For example, the new batch purchased in 2010 had higher

densities of scattering centers for the experiment in chapter 9, with the fluorescence clearly visible under an

IR scope. As of 2011, it is unclear when we will be able to obtain high-quality calcite crystals with low

scatter density as in the pre-2009 batches. Currently, for any serious quantum optics experiments involving
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strong classical beam, the only practical alternative is to use synthetically grown YVO4 beam displacers,

despite the lower transmission at our wavelengths. The residual broadband fluorescence from the crystal can

be overcome by employing a narrow-band high-efficiency volume Bragg grating (see Fig. 1.6 in chapter 1).


