List of Figures

1.1	A generic form of a quantum network	1
1.2	A matter-light quantum interface in action	3
1.3	Off-resonant elastic scattering from atomic ensembles	8
1.4	Quantum interferences between indistinguishable photons from heterogeneous single-photon	
	source	10
1.5	A phase shift in the collective excitation due to an off-resonant ac-Stark shift beam	11
1.6	Unprecedented performance of photo-thermo-refractive holographic gratings	13
2.1	Superradiant states and atomic Fresnel number	20
2.2	Generating and retrieving collective excitations to photons	23
2.3	Reversible matter-light quantum interface via dark-state polariton	35
2.4	Susceptibility $\overline{\chi}_s$ of EIT medium	38
2.5	Coherent evolution of dark state polariton	40
2.6	Reversible mapping of a coherent state to and from an atomic memory	42
2.7	Spin-wave decoherence due to inhomogeneous Zeeman broadening	46
2.8	Spin-wave dephasing due to atomic motion	48
3.1	Entanglement generation and verification	51
3.2	Passive stability of a Mach-Zehnder interferometer formed by two calcite crystals	52
3.3	Concurrence as a function of the normalized cross correlation function g_{12}	54
3.4	Concurrence as a function of the storage time	56
4.1	Setup for distributing entanglement between two quantum nodes (L, R) separated by 3 meters	62
4.2	Temporal growth of the suppression $h_X^{(2)}$	65
4.3	Measured correlation function	67
4.4	Measured CHSH parameters S_{\pm} and the violation of Bell inequality $\ldots \ldots \ldots \ldots \ldots$	68
4.5	Conditional probability as a function of the storage time	73
4.6	Time dependence of the total conditional count rates	74
4.7	Conditional enhancement	75

5.1	Quantum repeater architecture	79
5.2	DLCZ building block in a counter-propagating and off-axis configuration	80
5.3	Entanglement generation and connection	82
5.4	Procedure for verifying entanglement between two atomic ensembles	84
5.5	Experimental setup for entanglement connection	87
5.6	Coherence between the two atomic ensembles L and R induced by entanglement connection .	89
5.7	Reconstructed density matrix for the fields after entanglement connection	90
5.8	Theoretical prediction for the degree of entanglement after entanglement connection	91
6.1	Overview of the experiment	94
6.2	Single-photon storage and retrieval for a single ensemble	95
6.3	Quantum-state tomography on the input and output optical modes	97
6.4	Qualitative equivalence between EIT and CPT	104
6.5	EIT spectroscopy with lin//lin configuration	105
6.6	EIT spectroscopy with $\sigma^+ / / \sigma^+$ configuration	106
6.7	Phase-locked lasers for EIT spectroscopy	106
6.8	Investigation of reversible transfer of a coherent state to and from an atomic memory	108
6.9	Iterative optimization scheme for maximizing storage and retrieval efficiency	111
6.10	Time-reversal optimization of EIT transfer efficiency	112
7.1	Verification interferometer for measuring sum uncertainty	116
7.2	Minimum variances for various types of four-mode states containing one photon	118
7.3	Scatter plots of the variance of the single-photon part for randomly chosen fully separable states	122
7.4	Scatter plots of the variance of the single-photon part for randomly chosen biseparable states	
	with at most two-mode entanglement	123
7.5	Scatter plots of the variance of the single-photon part for randomly chosen biseparable states	
	with at most three-mode entanglement	124
7.6	Scatter plots of the variance of the single-photon part for randomly chosen biseparable states	
	with at most three-mode entanglement for $q = 0.4$	125
7.7	Scatter plots of the variance of the single-photon part for randomly chosen biseparable states	
	with at most three-mode entanglement $q=0.7$	125
7.8	Scatter plots of the variance of the single-photon part for randomly chosen biseparable states	
	with at most three-mode entanglement $q=0.9$	126
7.9	Boundaries for the minimum variance for the three types of biseparable and fully separable	
	states as functions of y_c	127
7.10	Minimum variance for imbalanced beamsplitters	131
7.11	Minimum variance for imbalanced losses	131

7.12	Minimum variance for imbalanced beamsplitters and losses	132
8.1	Diagram of our entanglement generation and verification setups	137
8.2	Detection of entanglement between two optical modes using uncertainty relations	140
8.3	Decoherence of multipartite entanglement induced by phase noise	142
8.4	Statistical transition of multipartite entanglement	143
8.5	Interference fringe in the four-mode sum uncertainty setup	145
8.6	A high-bandwidth, dynamic range fiber stretching module	146
8.7	Correction factor c as a function of two-photon contamination y_c	149
8.8	Comparison between the directly measured concurrence and the inferred concurrence	152
8.9	A simplified setup for the verification protocol	153
8.10	The effect of imbalances and losses to the determination of $\Delta_b^{(3)}$	154
9.1	Quantum interfaces for multipartite quantum networks	157
9.2	Quadripartite entanglement among four atomic ensembles	160
9.3	Dissipative dynamics of atomic entanglement	162
9.4	Experimental schematics for entanglement generation, transfer, and verification	168
9.5	Various imperfections in verification interferometer	172
9.6	Projection fidelities for quantum uncertainty relations	174
9.7	Numerical optimizations for the minimal entanglement parameters and the uncertainty bounds	176
9.8	Statistical evolutions of the individual entanglement parameters	178
9.9	Temporal decay of coherences stored in four atomic ensembles	179
9.10	Temporal evolutions of the individual entanglement parameters	181
10.1	Increasing laboratory complexity	188
10.2	Tapered fiber profile measured by a scanning electron microscope	189
10.3	A nanofiber trap for atomic ensembles	190
10.4	Probing cold atoms with a tapered nanofiber	191
10.5	Trapping single atoms with nanofibers	192
A.1	Controlled impedance transmission lines	197
A.2	Circuit diagram for conditional control logic for triggering and relaying various signals	201
A.3	PCB board for conditional control logic for triggering and relaying various signals	202
A.4	Circuit diagram for diode laser current controller	204
A.5	PCB board for laser diode current controller	205
A.6	Circuit diagram for phase stabilization and intensity stabilization servo	207
A.7	PCB board for locking interferometers and intensity stabilization	208

B.1	Global minimization of $f(\vec{\lambda})$ via simulated annealing	210
B.2	Accuracy and precision of the random search algorithm	211