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Chapter 9

Entanglement of spin waves among four
quantum memories

This chapter is largely based on ref. 33. Reference33 refers to the then current literature in 2010 at the time of

publication.

9.1 Introduction

Diverse applications in quantum information science require coherent control of the generation, storage, and

transfer of entanglement among spatially separated physical systems (refs. 1–6, see also chapter 1). Despite

its inherently multipartite nature, entanglement has been studied primarily for bipartite systems3, where re-

markable progress has been made in harnessing physical processes to generate ‘push-button’ and ‘heralded’

entanglement (refs. 27–29,32,285,286, chapters 3–5), as well as to map entangled states to and from atoms, pho-

tons, and phonons (refs. 30,31, chapter 6).

For multipartite systems, the ‘size’ of a physical state, described by the system’s density matrix ρ̂N ,

grows exponentially with the number of subsystems N and makes the entangled states exceedingly difficult

to represent with classical information. Importantly, this complexity for ρ̂N increases the potential utility of

multipartite entanglement in quantum information science, including for quantum algorithms2,3 and simula-

tion5. Redundant encoding of quantum information into multipartite entangled states enables quantum error

correction and fault-tolerant computation2,3. Intricate long-range correlation of many-body systems is inti-

mately intertwined with the behavior of multipartite entanglement39,40. In addition, mobilizing multipartite

entanglement across quantum networks could lead to novel quantum phase transitions for the network6.

Counterposed to these opportunities, the complex structure of multipartite entanglement presents serious

challenges both for its formal characterization and physical realization3,40,110,208. Indeed, there are relatively

few examples of laboratory systems that have successfully generated multipartite entanglement35,275–277,287,288.

Most works have considered the entanglement for spin systems, notably trapped ions275,276, which are appli-

cable to the matter nodes of quantum networks. But the methodologies for verifying multipartite entangle-
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ment are problematic for the infinite-dimensional bosonic systems of the quantum channels (e.g., multipartite

quadrature287,288 and number-state35 entanglement for optical modes (chapter 8)). A posteriori multipartite

entanglement has been inferred from a small subset of preferred detection events of photons from parametric

down-conversion277.

In addition to the characterization of multipartite entanglement, an important capability for quantum

networks is provided by quantum interfaces capable of generating, storing, and dynamically allocating the

entanglement of matter nodes into photonic channels (see ref. 104 and references therein). In this chapter,

as illustrated in Fig. 9.1a, we introduce such a quantum interface for quadripartite entangled states based

upon coherent, collective emission from matter to light. We present a systematic study of the generation and

storage of quadripartite entangled states of spin-waves in a set of four nodes of atomic memories, as well as of

the coherent transfer of the entangled components of the material state into individual photonic channels. We

observe transitions of M to (M − 1)-partite entangled states via controlled spin-wave statistics of the atomic

memories, as well as the dynamic evolution of multipartite entanglement in a dissipative environment, from

fully quadripartite entangled to unentangled.
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Figure 9.1: Overview of the experiment. a, Quantum interfaces for multipartite quantum networks. Inset i,
a fluorescence image of the laser-cooled atomic ensembles {a, b, c, d} that become entangled (section 9.9).
b, Entanglement generation. A weak write laser is split into four components to excite the atomic ensembles
via parametric interactions Ûwrite (chapter 2), leading to Raman scattered fields γ1 = {a1, b1, c1, d1} emitted
by the ensembles. Entangled state ρ̂(A)

W
for four atomic ensembles � = {a, b, c, d} (Eq. 9.1) is heralded

by a projective measurement Π̂h at detector Dh, derived from quantum interference of four fields γ1 in the
heralding interferometer. c, Quantum-state exchange and entanglement verification. Read lasers are applied
to the ensembles to coherently transform the atomic entangled state ρ̂(A)

W
into quadripartite entangled beams

of light ρ̂(γ)
W

(Eq. 9.2) via quantum-state transfers, Ûread (chapter 2), with each beam propagating through
quantum channels γ2 = {a2, b2, c2, d2}. (U) Upper panel for yc-measurement—The quantum statistics
{qijkl} for the individual modes of ρ̂(γ)

W
with i, j, k, l ∈ {0, 1} photons are measured with projectors {Π̂(s)

i
}

at detectors Da,b,c,d. (L) Lower panel for ∆-measurement—Mutual coherences for ρ̂(A)
W

are accessed with
projectors {Π̂(c)

i
} from detection statistics {pijkl} at Da,b,c,d. Further details are given in section 9.12.
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9.2 Quantum interface between light and matter for quadripartite en-

tangled states

Our experiment proceeds in four steps (see section 9.10). First, in step (1) an entangled state ρ̂(A)
W

of four

atomic ensembles is generated by quantum interference in a quantum measurement4,27 (Fig. 9.1b). Given

a photoelectric detection event at Dh, the conditional atomic state is ideally a quadripartite entangled state

ρ̂(A)
W

= |W �A�W | with

|W �A = 1
2 [(|sa, gb, gc, gd�+ eiφ1 |g

a
, sb, gc, gd�)+

eiφ2(|g
a
, g

b
, sc, gd�+ eiφ3 |g

a
, g

b
, g

c
, sd�)],

(9.1)

whose single quantum spin-wave |s�� is coherently shared among four ensembles � = {a, b, c, d}. These

entangled states are known as W -states, comprised of atomic ground states |g
�
� = |g · · · g�� and single

collective excitations |s�� = 1√
NA,�

�NA,�

i=1 |g · · · si · · · g��, where NA,� is the number of atoms in ensemble

�.

After the heralding event, step (2) consists of storage of ρ̂(A)
W

in the ensembles for a user-controlled time

τ . At the end of this interval, step (3) is initiated with read beams to coherently transfer the entangled atomic

components of ρ̂(A)
W

into a quadripartite entangled state of light ρ̂(γ)
W

= |W �γ�W | via cooperative emissions4

(Fig. 9.1c), where

|W �γ =
1

2
[(|1000�+ eiφ

�
1 |0100�) + eiφ

�
2(|0010�+ eiφ

�
3 |0001�)]. (9.2)

This photonic state is a mode-entangled W -state (refs. 35,38, chapters 7–8), which shares a single delocalized

photon among four spatially separated optical modes γ2 = {a2, b2, c2, d2}.

9.3 Characterization of quadripartite entangled states via quantum

uncertainty relations

Finally, in step (4) we characterize the heralded entanglement for ρ̂(γ)
W

from complementary measurements of

photon statistics and coherence35,38 (Fig. 9.1c) via the techniques developed in chapters 7–8. In particular, we

consider a reduced density matrix ρ̂r = p0ρ̂0+p1ρ̂1+p≥2ρ̂≥2 containing up to one photon per mode, which

leads to a lower bound for the entanglement of the actual physical states {ρ̂(A)
W

, ρ̂(γ)
W

}. Here, {p0, p1, p≥2}
are the probabilities for 0 and 1-photon ρ̂0,1, and higher-order subspaces ρ̂≥2, which can be populated for any

realistic system. As illustrated in the upper panel of Fig. 9.1c, we characterize the statistical contamination

for ρ̂(γ)
W

due to {ρ̂0, ρ̂≥2} with a normalized measure38, namely yc ≡ 8
3
p≥2p0

p
2
1

, ranging from yc = 0 for a
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single excitation to yc = 1 for balanced coherent states, by detecting the photon statistics qijkl of γ2 at the

output faces of the ensembles.

We also quantify the mutual coherences for ρ̂(γ)
W

by measuring photon probabilities {p1000, p0100, p0010
, p0001} at the outputs of the verification (v) interferometer. We determine the sum uncertainty ∆ ≡

�
N=4
i=1

�(Π̂(c)
i

)2 − �Π̂(c)
i

�2� for the variables {Π̂(c)
i

} = {|Wi�v�Wi|}, which project ρ̂r onto a set of four orthonor-

mal W -states {|Wi�v} with phases {β1, β2, β3}v selected by the actively stabilized paths in the verification

interferometer (section 9.12.2). Hence, for the ideal W -state (Eq. 9.2) with βi = φ�
i
, we have ∆ = 0 asso-

ciated with p1000 = 1 and p0100 = p0010 = p0001 = 0, as observed in the bar plots of the lower panel of

Fig. 9.1c for yc = 0.04± 0.01. In contrast, mixed states with no phase coherences would result in balanced

probabilities (p1000 = p0100 = p0010 = p0001 = 1/4) and ∆ = 0.75.

The pair {∆, yc} thereby defines the parameter space for the multipartite entanglement employed in our

experiment, with the entanglement parameters {∆, yc} serving as a nonlocal, nonlinear entanglement witness

(ref. 38, chapter 7). Our criterion for ‘genuine’ M -partite entanglement takes the most stringent form of non-

separability208 and excludes all weaker forms of entanglement (section 9.13). Specifically, for a given value

of yc, we determine the boundary ∆(M−1)
b

for the minimal uncertainty possible for all states containing at

most (M − 1)-mode entanglement and their mixtures (section 9.13.3). For our quadripartite states N = 4,

we derive {∆(3)
b

,∆(2)
b

,∆(1)
b

} for tripartite, bipartite entangled, and fully separable states, as functions of yc.

Thus, a measurement of quantum statistics yc and the associated coherence ∆ with ∆ < ∆(1,2,3)
b

manifestly

confirms the presence of genuine M = 4 partite entanglement (refs. 35,38, chapters 7–8). Furthermore, we can

unambiguously distinguish genuine M and (M − 1)-partite entangled states for any M ≤ N by observing

∆ below ∆(M−1)
b

.

9.4 Quadripartite entanglement among four atomic ensembles

Fig. 9.2 presents our results for quadripartite entanglement for storage time τ0 = 0.2 µs. We first investigate

off-diagonal coherence for the purportedly entangled atomic and photonic states, {ρ̂(A)
W

, ρ̂(γ)
W

}, in Fig. 9.2a.

As the bipartite phase β2 is varied, we observe interferences in {p1000, p0100, p0010, p0001}, and hence a

variation in ∆, that results from the coherence between the bipartite entangled components of ρ̂(γ)
W

for the

modes {a2, b2} and {c2, d2}. Furthermore, for optimal settings of β2, the observed values of ∆ (black

points) fall below the bounds {∆(3)
b

,∆(2)
b

,∆(1)
b

} (red, green, purple bands) for yc = 0.06± 0.02, and signal

the generation of a fully quadripartite entangled state. The observed quadripartite entanglement arises from

the intrinsic indistinguishability of probability amplitudes for one collective excitation |s�� among the four

ensembles. We also present results from a control experiment with a ‘crossed’ state ρ̂(A)
× (orange points) that

consists of an incoherent mixture of entangled pairs {a, b} and {c, d} (see section 9.5.1).
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Figure 9.2: Quadripartite entanglement among four atomic ensembles. a, Quantum interference between
the bipartite entangled pairs of the full quadripartite state (black points) as a function of bipartite phase β2.
b, Exploring the entanglement space {∆, yc} for quadripartite states. By controlling the spin-wave statistics,
we observe transitions from quadripartite, to tripartite, to bipartite entangled states, and to fully separable
states (black points). We also display our results for the ‘crossed’ quantum state ρ̂(A)

× (orange points), as
further discussed in section 9.5.1. Inset, expanded view of entanglement parameters {∆, yc}. Results for
entanglement thermalization {∆(T ), y(T )

c } of the spin systems ρ̂(H)
G

(ρ̂(LMG)
G

) are shown by the red dashed
(blue dash-dotted) line. The red, green, and purple bands represent the minimum uncertainties for 3-mode
(∆(3)

b
) and 2-mode entanglement (∆(2)

b
), and for fully separable states (∆(1)

b
), with thicknesses of the bands

from the central lines corresponding to ±1 s.d. of the bounds {∆(3)
b

,∆(2)
b

,∆(1)
b

} (section 9.13.3). In all
cases, error bars for the data reflect the statistical and systematic uncertainties, as further detailed in section
9.13.4.

9.5 Statistical transitions for multipartite entangled spin waves

Next, we characterize ρ̂(γ)
W

(and ρ̂(A)
W

) over the full parameter space {∆, yc}. In a regime of weak excitation

(ξ � 1) for the ensemble-field pairs {�, γ1}, the heralded state ρ̂(A)
W

is approximately

ρ̂(A)
W

(τ = 0) � (1− 3ξ)|W �A�W |+ 3ξρ̂(A)
≥2 +O(ξ2), (9.3)
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where ρ̂(A)
≥2 includes uncorrelated spin-waves with two or more quanta in the set of four ensembles due to

atomic noise. For ξ → 0, a heralding event at Dh leads to a state with high fidelity to |W �A stored in the four

ensembles. However, for increasing ξ, ρ̂(A)
≥2 becomes important, leading to modifications of the spin-wave

statistics for ρ̂(A)
W

and thereby to the entanglement parameters {∆th, yth
c
}. Hence, by varying ξ via the overall

intensity for the write beam, we adjust the quantum statistics yc and coherence ∆ of the entangled states

{ρ̂(A)
W

, ρ̂(γ)
W

}.

This procedure is employed in Fig. 9.2b to parametrically increase {∆, yc} in tandem. As yc is raised

from yc � 0 in the quantum domain to the classical regime with yc � 1, we observe transitions of the directly

measured photonic states ρ̂(γ)
W

(black points) from fully quadripartite entangled (∆ < ∆(3)
b

) to tripartite

entangled (∆(3)
b

< ∆ < ∆(2)
b

), to bipartite entangled (∆(2)
b

< ∆ < ∆(1)
b

), and finally to fully separable

states (∆(1)
b

< ∆). As shown by the curves, our observations correspond well to a theoretical model for

entanglement generation, transfer, and verification (see section 9.14). In comparison to our former work

on coherent splitting of a photon35 in chapter 8, the heralded atomic and photonic W -states {ρ̂(A)
W

, ρ̂(γ)
W

}
offer qualitatively richer statistical passages through the entanglement spaces delineated by {∆, yc}. Here,

the quantum coherence ∆ is intrinsically linked to the statistical character yc due to quantum correlations

between the heralding fields γ1 and the excitation statistics of the ensembles.

For ξ � 1, the coherent contribution ρ̂(A)
c of the delocalized single quantum strongly dominates over any

other processes for the full quadripartite state ρ̂(A)
W

in Eq. 9.3. With a heralding probability ph � 3 × 10−4

(ξ � 5 × 10−3), we achieve the smallest entanglement parameters ∆min = 0.07+0.01
−0.02 and ymin

c
= 0.038 ±

0.006 for the generated quadripartite entangled states. These parameters are suppressed below the closest 3-

mode boundary ∆(3)
b

by ten standard deviations. Furthermore, because the local mapping of quantum states

from matter to light cannot increase entanglement27, our measurements of ρ̂(γ)
W

unambiguously provide a

lower bound of the quadripartite entanglement stored in ρ̂(A)
W

. Therefore, the observed strong violation of

the uncertainty relations for {∆min, ymin
c

} categorically certifies for the creation of measurement-induced

entanglement of spin-waves among four quantum memories, as well as for the coherent transfer of the stored

quadripartite entangled states to an entangled state of four propagating electromagnetic fields.

In terms of state fidelity, our approach for heralded multipartite entanglement generation compares fa-

vorably to matter systems utilizing local interactions (e.g., trapped ions275,276). Despite the intrinsically low

preparation probability, the resulting quadripartite entangled state ρ̂(A)
W

stored in the four ensembles has high

fidelity with the ideal W -state, namely F (A) =
A
�W |ρ̂(A)

W
|W �A. As discussed in section 9.13.2, we estimate

a lower bound for the unconditional entanglement fidelity F (A) ≥ 0.9 ± 0.1, as compared to the theoretical

fidelity F (A)
th = 0.98 derived for the parameters in our experiment.

Apart from the creation of novel multipartite entangled spin-waves, an important benchmark of a quantum

interface is the transfer efficiency λ of multipartite entanglement from matter to light30. Since no known

measure applies to our case, we tentatively define the entanglement transfer λ = F (γ)/F (A), with physical

fidelity F (γ) =
γ
�W |ρ̂(γ)

W
|W �γ for the photonic state ρ̂(γ)

W
. In particular for ξ � 1, we obtain F (γ)

th �
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Figure 9.3: Dissipative dynamics of atomic entanglement. a, Dynamic evolution of entanglement pa-
rameters {∆(τ), yc(τ)} for the multipartite quantum state. We observe crossing of the boundaries defined
by 3-mode (red surface, ∆(3)

b
), 2-mode (green surface, ∆(2)

b
) entangled states, and separable states (purple

surface, ∆(1)
b

). We indicate various entanglement orders for quadripartite (black), tripartite (red), bipartite
entangled (green) states, and fully separable states (purple) for the data points and the curve. The projections
of the data points into the planes (yc, τ) and (∆, τ) display the individual passages of {∆(τ), yc(τ)} (section
9.14.5). b, Projection of entanglement dynamics onto the (∆, yc) plane. The curves in a and b are from a the-
oretical model including motional dephasing. Error bars for the data represent the statistical and systematic
uncertainties.

ηreadF
(A)
th , which thereby gives λth � ηread = 38± 4% dictated by the retrieval efficiency ηread. While fidelity

is an often used measure, we emphasize that F (γ) cannot be used to set a threshold for entanglement, since

ρ̂(γ)
W

can exhibit multipartite entanglement for any F (γ) > 0.

9.5.1 Generation and characterization of a ‘crossed’ quantum state

As a control experiment, we reconfigured the heralding interferometer such that path-information could in

principle be revealed up to the bipartite split of the ensemble pairs {a, b} and {c, d} by analyzing the polariza-

tion state of the heralding photon γ1. In this case, the heralding measurement Π̂× prepares a ‘crossed’ atomic

state ρ̂(A)
× with no coherence shared between {a, b} and {c, d}. Thus, we observe an absence of interference

in Fig. 9.2a (orange points). However, this modified Π̂× preserves the bipartite entanglement within {a, b}
and {c, d}, which explains our observation of the uncertainty ∆ reduced below the 1-mode bound ∆(1)

b
for

yc = 0.07 ± 0.01. Similarly, we also detect the statistical transition of the bipartite entanglement to fully

separable states for the ‘crossed’ state in Fig. 9.2b, despite the disentanglement for the physical bipartition

(|) of {a, b}|{c, d}.

9.6 Dissipative dynamics of atomic entanglement

To investigate the dynamical behavior of the observed quadripartite entangled states, we study the temporal

evolution of multipartite entanglement stored in the atomic ensembles as a function of a storage time τ .
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Decoherence for the atomic W -state is governed by motional dephasing of spin-waves (ref. 82, chapter 2), in

which the imprinted atomic phases in |s�� evolve independently due to thermal motion, thereby transforming

the initial collective state into a subradiant state uncorrelated with the heralding fields γ1 (section 9.14.5). The

net effect is an increase of both entanglement parameters {∆, yc} with a time-scale τm � 17 µs (see section

9.9). Eventually, the growth in {∆(τ), yc(τ)} leads to time-dependent losses of entanglement, marked by

successive crossings of the boundaries set by {∆(3)
b

,∆(2)
b

,∆(1)
b

}.

We examine the dissipative dynamics of multipartite entanglement for the quantum memories of four

ensembles via the evolution of both {∆, yc} in Fig. 9.3a. We observe the passage of the initial quadripartite

entangled state ρ̂(A)
W

(τ0) at τ0 = 0.2 µs through various domains, progressively evolving from M -partite

entanglement to (M − 1)-partite entanglement at memory times τ = τ (M−1)
m , with the final state ρ̂(A)

W
(τf )

measured at τf = 36.2 µs. The crossings of the bounds {∆(3)
b

,∆(2)
b

,∆(1)
b

} occur at τ (3)m = 15 µs, τ (2)m = 21

µs, and τ (1)m = 24 µs, respectively. In addition, the measured entanglement parameters evolve in qualitative

agreement to the simulated dynamics derived for ρ̂(A)
W

(τ) from our theoretical model (solid line), with devia-

tions (especially for ∆th) discussed in section 9.14.5. Fig. 9.3b displays the parametric losses of entanglement

via {∆(τ), yc(τ)}.

9.7 Thermalization of multipartite entanglement in quantum magnets

Finally, an interesting extension is to relate the characterization of multipartite entanglement via {∆, yc}
to the relaxations of entanglement in quantum many-body systems39,40. We consider two ferromagnetic

spin models (Heisenberg-like and Lipkin-Meshkov-Glick Hamiltonians ĤH, ĤLMG) as well as their thermal

entanglement {∆(T ), y(T )
c } (see section 9.15). Results of our analysis are shown in the inset of Fig. 9.2b

by the red dashed (blue dash-dotted) lines for the Gibbs thermal equilibrium states ρ̂(H)
G

(ρ̂(LMG)
G

) of ĤH

(ĤLMG). The statistical character of ρ̂(A)
W

for our system of four ensembles follows the thermalization of ρ̂(H)
G

(ρ̂(LMG)
G

) for yc � 0.2, whereby ρ̂(A)
≥2 is thermally populated. This comparison suggests that our method for

entanglement characterization could be applied to access the link between off-diagonal long-range order and

multipartite entangled spin-waves in thermalized quantum magnets39,40.

9.8 Conclusion

In conclusion, our measurements explicitly demonstrate a coherent matter-light quantum interface for multi-

partite entanglement by way of the operational metric of quantum uncertainty relations (refs. 35,38,121, chap-

ters 7–8). High-fidelity entangled spin-waves are generated in four spatially separated atomic ensembles and

coherently transferred to quadripartite entangled beams of light. The quantum memories are individually ad-

dressable and can be readily read-out at different times for conditional control of entanglement4, as applied

in chapters 3–6. With recent advances by other groups, the short memory times obtained in Fig. 9.3 could be
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improved beyond 1 s (section 9.11.1).

Further possibilities include the creation of yet larger multipartite entangled states with efficient scaling4

for the realization of multipartite quantum networks. For example, quadripartite entangled states of ensemble

sets {a, b, c, d} and {a�, b�, c�, d�} could be extended by swapping between {a, a�} to prepare a hexapartite

entangled state for {b, b�, c, c�, d, d�} (see section 9.11.1). Generalization of such processes will prepare a

single macroscopic entangled state for observing entanglement percolation6 and extreme non-locality of W -

states289,290, as well as for studying quantum phase transitions in strongly-correlated systems39,40. Finally,

the entangled spin-waves can be applied for quantum metrology to detect a phase shift of π on an unknown

component of ρ̂(A)
W

with efficiency beyond any separable state (see section 9.11.2).

9.9 Spin-wave quantum memory

The quantum information of the entangled state for Eq. 9.1 is encoded in the quantum numbers of spin-waves

(collective excitations) for the pseudo-spin of the hyperfine ground electronic levels 6S1/2 (F = 3, F = 4) in

atomic cesium. The fluorescence images shown in the inset of Fig. 9.1a depict the collective atomic modes

of ensembles � = {a, b, c, d} for exciting the entangled spin-waves ρ̂(A)
W

with 1 mm separations and 60 µm

waists. The geometry of the collective excitations for the four ensembles {a, b, c, d} is defined by the point-

spread functions of the imaging systems for the fields {γ1, γ2}, within a cold cloud of NA,� ≈ 106 cesium

atoms (chapter 2). We use an off-axial configuration75 for individually addressing each ensemble � with an

angle θ = 2.5◦ between the classical and nonclassical beams (section 9.12.1), that creates spin-waves |s��
associated with wave-numbers δ�k = �kwrite − �kγ1 for each �. These spin-waves are analogous to other types

of collective excitations in many-body systems, such as magnons and plasmons, and the spin-waves can be

converted to dark-state polaritons for the coherent transfer Ûread of entanglement (chapter 2). For the phase-

matching configuration and temperature of our ensembles, the memory times {τ (3)m , τ (2)m , τ (1)m } in Fig. 9.3 are

dominantly determined by the motional dephasing of the spin-waves |s�� (ref. 82, chapter 2). With thermal

velocity of vt � 14 cm/s, we estimate a memory time τm � 0.85 µm

4π sin(θ/2)vt
= 17 µs. On the other hand,

the ground-state dephasing due to inhomogeneous broadening is expected to be > 50 µs in our experiment,

inferred from two-photon Raman spectroscopy (chapter 2).

9.10 Operating the quantum interface

For the quantum interface to function during the 3 ms window, in step (1) 20-ns writing (red-detuned

δ = 10 MHz from |g� − |e� transition) and 100-ns repumping (resonant with |s� − |e�) pulses are applied se-

quentially to the ensembles �, synchronized to a clock running at Rc � 2 MHz. This process creates pairwise

correlated excitations4 between the collective atomic modes |s�� of the ensembles � and the optical fields γ1

(δ = 10 MHz below |s� − |e�). Photodetection of a single photon for the combined fields γ1 at the output
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of the heralding interferometer effectively erases the which-path information for γ1, and imprints the entan-

gled spin-wave ρ̂(A)
W

(Eq. 9.3) onto the ensembles {a, b, c, d} via Trh(Π̂hÛ
†
writeρ̂

(A)
g Ûwrite). The heralding

event at Dh triggers control logic in Fig. 9.1a which deactivates intensity modulators of the writing (IMwrite),

repumping and reading lasers (IMread) for the quantum storage of ρ̂(A)
W

in step (2). After a user-controlled

delay τ , step (3) is initiated with 20-ns-strong read pulses (Rabi frequency 24 MHz, resonant with |s� − |e�)
that address the ensembles in Fig. 9.1c and coherently transfer the entangled atomic components {a, b, c, d}
of ρ̂(A)

W
(τ) one-by-one to propagating beams γ2 = {a2, b2, c2, d2}, comprising the entangled photonic state

ρ̂(γ)
W

(τ), via the operation ρ̂(γ)
W

= TrA(Û†
readρ̂

(A)
W

Ûread). Here, TrA traces over the atomic systems which

are later shelved into the ground states |g
�
�. The retrieval efficiency ηread is collectively enhanced for large

NA (ref. 4), leading to ηread = 0.38 ± 0.06 in our experiment. The average production rate for the atomic

quadripartite entanglement with {∆min, ymin
c

} is rp = RcDcph � 60 Hz, while the actual rate during the 3

ms operating window is rq = Rcph � 500 Hz. The atomic level diagrams for entanglement generation and

quantum-state exchanges are shown as insets to Figs. 9.1b and 9.1c. States |g�, |s� are hyperfine ground

states F = 4, F = 3 of 6S1/2 in atomic cesium; state |e� is the hyperfine level F � = 4 of the electronic

excited state 6P3/2.

9.11 Prospects and discussion

9.11.1 Improving memory time and matter-light transfer efficiency

By operating the clock speed at Rc → 10 MHz and τ (3)m ≈ 20 µs, we could prepare hexapartite (M = 6) en-

tanglement with probability 3zηreadp2h/8 ≈ 10−5 by connecting two quadripartite states ρ̂(A)
W

for {∆min, ymin
c

},

with enhancement factor z = 400 (ref. 36), thereby giving a local production rate of rq ≈ 50− 100 Hz, or an

average rate rp ≈ 5 − 10 Hz with our current duty cycle Dc. The most challenging aspect of verifying the

hexapartite entangled states is the quantification of the higher-order contamination ρ̂≥2, which we estimate

∼ 1 event per 10 hr. This integration rate is feasible with our current system. More generally, M1 and M2-

partite entangled states can be fused together by entanglement connection to create a M = (M1 +M2 − 2)-

partite entangled state. However, the memory times {τ (3)m , τ (2)m , τ (1)m } in Fig. 9.3 and the entanglement

transfer λ from matter to light limit our capability to scale the multipartite entanglement beyond M > 6

by way of conditional control and connection of entanglement36,37 with our current experimental parameters

(chapters 4–5).

The prerequisite storage techniques for suppressing both the internal and motional spin-wave dephas-

ings can be extended for τm with advances in ensemble-based quantum memories48,114,115. Recent experi-

ments with single ensembles have achieved coherence times up to τm � 1.5 seconds in quantum degenerate

gases116,117 albeit with efficiencies � 1%. The transfer efficiency can also be increased to λth � 0.9 by

enclosing the ensembles with high finesse cavities82. System integrations by way of atom-chip technology
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and waveguide coupling133,291 hold great potential for scalability given the strong cooperativity and the long

coherence292. At this level, two or more heralded processes of multipartite entanglement generations can be

made ‘on-demand’ on time scales of τdet ∼ 1
Rcph

= 1 ms, with τm � τdet (refs. 36,37, chapters 4–5).

Realistically, the expansion of multipartite entangled states ρ̂(A)
W

will be limited by the intrinsic degra-

dations of the entanglement parameters {∆, yc}, that inevitably increase with each step of entanglement

connection (ref. 37, chapter 5), and by the specific quantum repeater architecture implemented on ρ̂(A)
W

. The

latter is an extremely rich area of research in view of the large classes of methods for connecting multipartite

entangled states, making it premature to specify a particular architecture for multipartite entanglement expan-

sion. However, our experiment will hopefully stimulate theoretical studies of complex repeater architectures

for multipartite systems, beyond traditional one-to-one networks49.

9.11.2 Quantum-enhanced parameter estimation with entangled spin-waves

We describe a quantum-enhanced parameter estimation protocol whereby a phase shift on a single ensemble

�i of the quadripartite state �i ∈ {a, b, c, d} can be detected with efficiency beyond that for any separable state.

Specifically, we consider a π-phase shift Ûπ,�i = exp(iπn̂�i) applied on an unknown spin-wave component

�i ∈ {a, b, c, d} (n̂�i = Ŝ†
�i
Ŝ�i ) of the atomic state ρ̂(A)

W
, or on a spatial field mode γ2i ∈ {a2, b2, c2, d2}

of the photonic state ρ̂(γ)
W

(n̂γ2i = â†
γ2i

âγ2i ). Our goal is to find the π-phase shifted ensemble �i (optical

mode γ2i), in a single-measurement under the condition that an average of one spin-wave is populated in

total; i.e.,
�

i
Tr(n̂�i ρ̂

(A)
W

) = 1 (or
�

i
Tr(n̂γ2i ρ̂

(γ)
W

) = 1 for optical modes). As a quantum benchmark,

we consider an average success probability Ps = 1
4

�
�i

Tr(Π̂(u)
�i Û †

π,�i
ρ̂(A)
W

Ûπ,�i) (failure probability Pf =

1 − Ps) for distinguishing the phase-shifted ensemble �i (mode γ2i) among the four possibilities {a, b, c, d}
({a2, b2, c2, d2}) by way of unambiguous quantum-state discrimination {Π̂(u)

�i } (refs. 293–296).

First, we consider an ideal W -state |W �o = |W �A (or |W �γ2 ) with atomic phases φi ∈ {φ1, φ2, φ3}
(photonic phases φ�

i
∈ {φ�

1, φ
�
2, φ

�
3}). In this case, the π-phase shifted entangled W -states

|W�i�f ∈ {|W (π)
a

�f , |W (π)
b

�f , |W (π)
c

�f , |W (π)
d

�f}

can be detected deterministically, because |W (π)
�i �f = Ûπ,�i |W �o forms an orthonormal complete set that

spans the state-space ρ̂1, resulting from the underlying symmetry of |W �o with respect to any rotation Ûπ,�i

on a generalized Bloch sphere. Operationally, we set the verification phases β1,2 − φ�
1,2 = 0 and β3 −

φ�
3 = π. Then, the π-phase shifted ensemble �i can be unambiguously discriminated because the otherwise

balanced output photon probabilities �pv = {p1000, p0100, p0010, p0001} = {0.25, 0.25, 0.25, 0.25} of the

verification interferometer will be transformed to �pv = {1, 0, 0, 0} for a π-phase induced on ensemble a, to

�pv = {0, 1, 0, 0} on ensemble b, to �pv = {0, 0, 1, 0} on ensemble c, and to �pv = {0, 0, 0, 1} on ensemble d,

each with success probability P (ent)
s

= 1.

For fully separable states |Ψ�o = |ψa�a|ψb�b|ψc�c|ψd�d with |ψ�i��i =
�∞

n=0 c
(n)
�i |n��i , we displace
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the resulting π-phase shifted state |Ψ(π)
�i �f = Ûπ,�i |Ψ�o with a local unitary transformation V̂�i |ψ�i��i =

|0��i . The overall process V̂aV̂bV̂cV̂dÛπ,�i maps the initial product state |Ψ�o into V̂aÛπ,a|ψa�a|0�b|0�c|0�d
(a phase shift on ensemble a), |0�aV̂bÛπ,b|ψb�b|0�c|0�d (ensemble b), |0�a|0�bV̂cÛπ,c|ψc�c|0�d (ensemble c),

and |0�a|0�b|0�cV̂dÛπ,d|ψd�d (ensemble d), with only one �i containing �n̂�i� > 0 excitations. Thus, we can

unambiguously identify the phase-shifted ensemble �i given a photodetection, albeit with a failure probability

Pf = 1
4

�
�i
|�i�0|V̂�iÛπ,�i |ψ�i��i |2 = 1

4

�
�i
|�i�ψ�i |Ûπ,�i |ψ�i��i |2 arising from inconclusive null events

(i.e., |0000��0000|). We derive the maximum success probability P (max)
s

= 1 − P (min)
f

and the optimal state

|Ψ�o = |Ψ�opt by minimizing P (min)
f

over all possible realizations of c(n)�i satisfying
�

�i
�ψ�i |n̂�i |ψ�i��i = 1.

Specifically, we find that an optimal (pure) separable state |Ψ�opt =
�

�i
(
�

3/4|0��i+
�
1/4|1��i) can be used

for the parameter estimation protocol to infer �i with P (max)
s

= 0.75. Similarly, maximum success probability

P (coh)
s

can be derived for multimode coherent states
�

�i
|α�i��i , giving a classical bound of P (coh)

s
= 1−1/e.

Finally, we consider the upper bound P (max)
s

for mixed separable states ρ̂(sep)
o with pure state decompo-

sitions ρ̂(sep)
o =

�
m
pm|Ψm�o�Ψm|. Generally, the transformations V̂�i , as discussed above, do not exist

for ρ̂(sep)
o , excluding the possibility of an unambiguous state discrimination. Thus, the success probability

Ps(ρ̂
(sep)
o ) is upper bounded by the convex combinations of {|Ψm�}, thereby

Ps(ρ̂
(sep)
o

) ≤
�

m

pmPs(|Ψm�o�Ψm|) ≤ P (max)
s

= 0.75. (9.4)

Importantly, the maximum success probability P (max)
s

= 0.75, attainable for any ρ̂(sep)
o , is less than P (ent)

s
= 1

for entangled states |W �o. Thus, the entangled spin-waves in the experiment can be applied for sensing an

atomic phase shift beyond the limit for any unentangled state.

9.12 Experimental details

The experiment consists of a 22 ms preparation stage and a 3 ms period for operating the quantum inter-

face in Fig. 9.1 with a repetition rate 40 Hz and a duty cycle Dc = 3/25. For the preparation, we load

and laser-cool cesium atoms (peak optical depth ≈ 30) in a magneto-optical trap for 18 ms, after which

the atoms are released from the trap with dynamically compensated eddy-currents. The atoms are further

cooled in an optical molasses (Tt � 150 µK) for 3.8 ms, and optically pumped to |g� for 0.2 ms. During

this time, a phase-reference laser (F = 3 ↔ F � = 4� transition) also propagates through the atomic ensem-

bles for the active stabilization of the verification interferometer in Fig. 9.1c via ex-situ phase-modulation

spectroscopy35, which does not affect the operation of the quantum interface (section 9.12.2). Concurrently,

dense cesium atoms in paraffin coated vapor cells located at the heralding and verification ports are prepared

to the respective ground states |g� (|s�) for filtering the coherent-state lasers scattered into the quantum fields

γ1 (γ2).
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Figure 9.4: Experimental schematics for entanglement generation, transfer, and verification. a, Entan-
glement generation. A weak write laser is sequentially split into four components by displacers {BD1,BD2}
to excite atomic ensembles � = {a, b, c, d}. The resulting fields γ1 = {a1, b1, c1, d1} are brought into inter-
ferences with displacer BD4 and polarizing beamsplitter PBSh, and sent to a single-photon detector Dh. A
detection event at Dh heralds the creation of a quadripartite entangled state. b, Quantum-state transfer and
entanglement verification. After a storage time τ , we convert the atomic state of the ensembles � = {a, b, c, d}
to an entangled state for fields γ2 = {a2, b2, c2, d2} by way of strong read pulses. (U) yc-measurement—
By setting the waveplates (λ/2)v to θ0 = 0◦, we measure the occupation statistics of the individual modes
with detectors Da,b,c,d. (L) ∆-measurement—With (λ/2)v at θc = 22.5◦, we optimize the verification phases
{β1, β2, β3}v for constructive interferences of the fields γ2 at PBS1,2 and BS1,2. Piezoelectric fiber stretching
modules (FS) are used in the verification interferometer for active stabilizations of {β1, β2, β3}v . The quadri-
partite atomic entanglement is generated for four collective atomic modes of the ensembles � = {a, b, c, d}
in inset (i), which are individually controlled by the classical writing, repumping, and reading lasers, whose
fluorescence is shown in inset (ii). Both images in the insets (i), (ii) result from background-subtracted
fluorescences of the four atomic ensembles. The quantum fields {γ1, γ2} are generated in a non-collinear
geometry75 with a crossing angle of 2.5◦ (not shown) relative to the classical beams (chapter 2).

9.12.1 Experimental procedures for matter-light quantum interface

As shown in Fig. 9.4a, we split a write pulse into four beams with two calcite beam-displacers {BD1,BD2},

with output fields of the form �Ewrite = ( �Ea + eiφ
(w)
1 �Eb) + eiφ

(w)
2 ( �Ec + eiφ

(w)
3 �Ed). We control their relative

intensities using the two waveplates (λ/2) near {BD1,BD2}, with writing phases φ(w)
i

∈ {φ(w)
1 , φ(w)

2 , φ(w)
3 }

set by the tilting angles of {BD1,BD2}. In turn, the heralding fields γ1 = {a1, b1, c1, d1} emitted from

the writing process are combined into two spatial modes at BD3, with each mode carrying polarizations

{|H�, |V �} to accommodate the fields γ(ab)
1 = {a1, b1} and γ(cd)

1 = {c1, d1}. We then interfere the po-

larization components of the spatial modes {γ(ab)
1 , γ(cd)

1 } by way of BD4, whose output modes experience
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polarization interference at the polarizing beamsplitter PBSh, with one output monitored by the heralding

detector Dh. Here, the relative phases acquired by the propagation of fields γ1 before the detection at Dh are

given by φ(h)
i

∈ {φ(h)
1 , φ(h)

2 , φ(h)
3 }. We control φ(h)

i
with a set of Berek compensators.

A photoelectric detection of a single photon γ1 emitted indistinguishably by one of four ensembles

� = {a, b, c, d} prepares an atomic entangled state ρ̂(A)
W

, whose mutual phases φi ∈ {φ1, φ2, φ3} between

ensembles {a, b}, {a, c}, and {c, d} are φi = φ(w)
i

− φ(h)
i

for i ∈ {1, 2, 3}. To generate a ‘crossed’ quantum

state ρ̂(A)
× , we replace PBSh with a non-polarizing beamsplitter BSh in the heralding interferometer (Fig.

9.4a), such that the fields γ(ab)
1 and γ(cd)

1 are mixed with orthogonal polarizations. While in practice we

do not discriminate events arising from the fields γ(ab)
1 and γ(cd)

1 , the intrinsic possibility of analyzing the

polarization state of the heralding photon to infer the two distinct events completely destroys the bipartite

coherence (and entanglement) for the split between {a, b} and {c, d}.

Finally, after a variable delay, a strong counter-propagating read pulse, with reading phases φ(r)
i

∈
{φ(r)

1 , φ(r)
2 , φ(r)

3 } set by {BD3,BD4}, transforms the entangled atomic components {a, b, c, d} of ρ̂(A)
W

to

entangled beams γ2 = {a2, b2, c2, d2} comprising the photonic state ρ̂(γ)
W

. The photonic phases {φ�
1, φ

�
2, φ

�
3}

of ρ̂(γ)
W

depend on the overall accumulation of atomic phases φi via φ�
i
= φ(r)

i
−φi. Importantly, the set of cal-

cite displacers {BD1,BD2,BD3,BD4} forms an interferometrically stable four-mode Mach-Zehnder device,

in which any common-mode phase drift of {φ(w)
i

, φ(r)
i

, φ(h)
i

, φ�
i
} is passively counter-balanced over several

days. Thus, the entangled state ρ̂(A)
W

(ρ̂(γ)
W

) in our experiment is generated with stable phases {φ1, φ2, φ3}
({φ�

1, φ
�
2, φ

�
3}) from trial to trial, which can be transferred to independent reference frames for entanglement

verification without exploiting additional quantum channels110.

9.12.2 Operational procedures for entanglement verification

To verify the entanglement of the photonic state ρ̂(γ)
W

, we use a nonlocal, nonlinear uncertainty relation (ref. 38,

chapter 7), in which mode-entangled states for M > 2 can be efficiently detected with a significantly smaller

number of measurements than conventional techniques35,38, as discussed in chapters 7–8. Specifically, our

protocol requires measurements of (U) the photon statistics yc and (L) the mutual coherences ∆ of the mul-

tipartite entangled optical modes, as shown in Fig. 9.4b.

Operationally, we measure the entanglement parameters by first combining the four optical modes γ2 =

{a2, b2, c2, d2} with BD2 into two spatial modes γ(ab)
2 = {a2, b2} and γ(cd)

2 = {c2, d2}, with each mode

{a2, b2} ({c2, d2}) of γ2 encoded in the respective polarizations {|H�, |V �} of γ(ab)
2 (γ(cd)

2 ). By rotating two

waveplates (λ/2)v before PBS1,2 between θ0 = 0◦ and θc = 22.5◦, and by reconfiguring the fiber-optical

connections, we switch between the measurement setups for accessing yc and ∆.

In particular, measuring the sum uncertainty ∆ involves pairwise interference of the optical channels

γ2 = {a2, b2, c2, d2}. The coherence properties of the photonic state are characterized by the stable photonic

phases of {φ�
1, φ

�
2, φ

�
3}, and by the off-diagonal elements dαβ of ρ̂(γ)

W
(section 9.13.1). This requires high

phase stability of {β1, β2, β3}v for the relative optical paths of the verification interferometer shown in Fig.
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9.4b. Here, {β1, β2, β3}v denote to the relative phases between the modes {a2, b2}, {a2, c2}, and {c2, d2},

respectively. Additionally, {β1, β2, β3}v of each optical path leading from the output faces of the ensembles

must be tuned to {φ�
1, φ

�
2, φ

�
3} such that maximum constructive interferences for the fields {a2, b2, c2, d2}

occur in a pairwise and sequential fashion (ref. 35, see a similar setup in section 8.8.2). We achieve the

optimal settings of these phases by varying {β1, β2, β3}v and recording the sum uncertainty. Fig. 9.2a shows

such a measurement for β2.

To stabilize the verification phases {β1, β2, β3}v , we incorporated an auxiliary reference laser �Eaux to

probe the interferometer during the laser cooling and trapping stage of our experiment via an ex-situ phase

modulation spectroscopy. The active stabilizations of {β1, β2, β3}v rely upon the passively stable paths of

the eight quantum fields {γ1, γ2}.

During the phase stabilization stage, the outputs of the verification interferometer are routed to a set of

auxiliary photodetectors by micro-electro-mechanical switches (MEMS) to monitor {β1, β2, β3}v . We also

use another set of MEMS for switching �Eaux, which can extinguish the intensity of the reference laser with

an overall extinction of � 200 dB during the operation of the quantum interface. Additionally, by setting

the frequency of �Eaux to the |s� − |e� transition of cesium, �Eaux initializes the ensembles � = {a, b, c, d} to

the ground state |g� of the quantum interface. Based on the interference signal of �Eaux, we apply a feed-

back signal to the two piezoelectric fiber stretching modules (FS) in Fig. 9.4 that control the relative path

lengths (β2) leading from the ensembles. The remaining phases {β1, β3}v are passively stabilized by stable

interferometers (over several days), and controlled independently with a set of calcite Berek compensators.

To operate the quantum interface (3 ms), (i) we set the control signals for the fiber stretchers to values

V0 + Vc, with set-point V0 corresponding to a fixed phase β2 of the interferometer during stabilization, (ii)

switch off the laser �Eaux, and (iii) reroute the interferometer outputs to the single-photon counters Da,b,c,d via

the MEMS for 3 ms. This system allows to set the phase β2 to an arbitrary value by incrementing V0 by Vc

to V0 + Vc, with no degradation for the quantum statistics and coherence of ρ̂(γ)
W

. Moreover, the verification

phases remain stable for the 3-ms operating duration of the quantum interface. Thus, the asynchronous (‘ex-

situ’) sequences for acquiring and stabilizing {β1, β2, β3}v of the verification interferometer do not affect

the sensitive operation of the quantum interface. In addition, the asynchronous timings allow the generation

process of the atomic (photonic) entanglement with atomic (photonic) phases {φ1, φ2, φ3} ({φ�
1, φ

�
2, φ

�
3}) to

be independent of the procedures for stabilizing the verification phases {β1, β2, β3}v , thereby satisfying the

entanglement verification criteria of ref. 110.
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9.13 Quantum uncertainty relations and genuine multipartite entan-

glement

In order to verify the entanglement by way of {∆, yc}, we first evaluate the photon statistics {p0, p1, p≥2}
for the yc-measurement. Operationally, this is accomplished by measuring the individual probabilities qijkl

for i, j, k, l ∈ {0, 1} photons to occupy the respective optical modes γ2 = {a2, b2, c2, d2} at the output faces

of the ensembles via photoelectric detections {Π̂(s)
i

}. For the ∆-measurement, we quantify the off-diagonal

coherence d of ρ̂(γ)
W

by pairwise interferences of all possible sets of modes α, β ∈ {a2, b2, c2, d2} with the

verification interferometer. The photon probabilities {p1000, p0100, p0010, p0001} at the output modes of the

verification interferometer thereby result from the coherent interferences of the four purportedly entangled

fields γ2 that depend on the phase orientations {β1, β2, β3}v of {Π̂(c)
i

} (section 9.12.2).

Our conclusion of genuine multipartite entanglement for the atomic and photonic states {ρ̂(A)
W

, ρ̂(γ)
W

} does

not rely on weaker conditions based on the non-separability along any fixed bipartition of {ρ̂(A)
W

, ρ̂(γ)
W

}. The

genuine M -partite entangled states created from our experiment can only be represented as mixtures of pure

states that all possess M -partite entanglement, as for the case of genuine ‘k-producibility’ in multipartite

spin models39,40. We take caution that our entanglement verification protocol cannot be applied for verifying

the absence of entanglement for the physical state ρ̂(γ)
W

in an infinite dimension206. Finally, we emphasize

that our analysis makes use of the full physical state {ρ̂(A)
W

, ρ̂(γ)
W

} including the vacuum component ρ̂0 and

higher-order terms ρ̂≥2, and does not rely on a spurious post-diction based upon a preferred set of detection

events (see sections 9.13.3–9.13.4).

In the following, I will derive useful relationships between the entanglement witness by way of quantum

uncertainty relations and other measures.

9.13.1 Relationship between quantum uncertainty and off-diagonal coherences

We derive here the general expression for the upper bound of the sum uncertainty ∆ as a function of the

coherence d. First, we note that ∆ is only sensitive to the 1-excitation subspace ρ̂1 of ρ̂r with

ρ̂1 =





s1000 dab dac dad

d∗
ba

s0100 dbc dbd

d∗
ca

d∗
cb

s0010 dcd

d∗
da

d∗
db

d∗
dc

s0001




,

normalized such that Tr(ρ̂1) = s1000 + s0100 + s0010 + s0001 = 1. Here, the diagonal elements �s1 =

{s1000, s0100, s0010, s0001} of ρ̂1 are related to the 1-photon probabilities �q1 = {q1000, q0100, q0010, q0001} at

the faces of the ensembles via p1�s1 = �q1. By transforming ρ̂1 into the basis spanned by {|Wi�v}, we find

the expressions for the normalized output photon probabilities {p1000, p0100, p0010, p0001} of the verification
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BS1

BS2

BS3 BS4

Figure 9.5: Various imperfections in verification interferometer. The verification interferometer trans-
forms the input photonic modes γ2 = {a2, b2, c2, d2} to the output modes γ�

2 = {a�2, b�2, c�2, d�2}. The projec-
tors Π̂(c)

i
are transformed into imbalanced states π̂(c)

i
due to losses and imbalances in the verification protocol.

The transmission efficiencies {η, η�} (blue) and beamsplitting ratios {α, α�} (red) are shown. Dashed arrows
are the auxiliary modes for loss propagations of the input state ρ̂(γ)

W
.

interferometer as functions of �s1 and dαβ . The sum uncertainty ∆ is then expressed as ∆ = 3
4 − {(|dab| +

|dcd|)2+(|dac|+ |dbd|)2+(|dad|+ |dbc|)2}. Thus, we obtain ∆ � 3
4 (1−16d

2
). The average value of the six

unique off-diagonal elements is d = 1
6

�
α,β

|dαβ | with 0 ≤ d ≤ 1/4, and the effective interference visibility

is given by Veff = 4d.

9.13.2 Derivation of entanglement fidelity

We obtain here the expression for the lower bound unconditional entanglement fidelity F (A) = p̃1F1, where

p̃1 is the probability for a single spin-wave ρ̂(A)
1 in the heralded state ρ̂(A)

W
, and F1 = �W1|ρ̂(A)

1 |W1� is

the conditional fidelity for ρ̂(A)
1 . We start by noting that the projective measurement Π̂(c)

i
for ∆ gives the

conditional fidelity F1 of ρ̂r onto one of four orthonormal W -states, |Wi�v = |W1�v , for example, |1000�+
eiβ1 |0100� + eiβ2(|0010� + eiβ3 |0001�). Hence, we can define ∆ = 1 − F 2

1 −
�4

i=2 F
2
i

in terms of the

respective overlaps Fi. Because of the orthonormality
�4

i=1 Fi = 1, the sum uncertainty is bounded by

∆ ≥ 1− F 2
1 − (1− F1)2, whereby we obtain F1 ≥

�
1
2 (

1
2 −∆)+ 1

2 . Finally, by combining the probability

p̃1 for exciting one spin-wave distributed among the four ensembles, we access the lower bound fidelity

F (A) ≥ p̃1(
�

1
2 (

1
2 −∆) + 1

2 ) obtained unconditionally for the heralded atomic state ρ̂(A)
W

. In principle,

the imbalances in the interferometer can rotate the projectors into non-orthonormal sets (ref. 38, chapter 7).

However, the measured losses and the beam-splitter ratios are sufficiently balanced such that any changes in

F (A) due to modified projectors are well within the uncertainties of the data, as evidenced by the close-to-

unity projection fidelity F (π) = 99.9+0.1
−0.2% (section 9.13.3). In the experiment, p̃1 and F1 are determined

from the inferences of the spin-wave statistics (via yc), and of the coherences (via ∆), respectively.
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9.13.3 Numerical optimizations of the uncertainty bounds and their errors

In the presence of technical imperfections in the verification interferometer arising from imbalances in trans-

mission losses {η, η�} and beamsplitting ratios {α, α�} of Fig. 9.5, the ideal projectors Π̂(c)
i

= |Wi�v�Wi|
evolve into modified sets π̂(c)

i
= |W �

i
�v�W �

i
|, which project the input ρ̂r onto imbalanced W -states |W �

i
�v ,

with chapters 7–8 providing further details. Generally, these projectors π̂(c)
i

are non-orthonormal due to

the differential losses, but still span the single-excitation subspace ρ̂1 of ρ̂r. Importantly, the reductions of

projection fidelities F (π)
i

=
v
�Wi|π̂(c)

i
|Wi�v ≤ 1 of π̂(c)

i
can only decrease the efficacy of the verification

protocol for detecting larger sets of states that belong to the state space of genuine W -states. Therefore, the

observation of ∆ below the bounds ∆(M−1)
b

using the modified projectors is still a sufficient condition for

genuine M -partite entanglement (ref. 38, chapter 7). In the experiment, the losses and beamsplitter ratios for

the interferometer are matched within 5%, as shown in Table 9.1.

To quantify the accuracies of our projectors π(c)
i

to those of an ideal ∆-measurement, we numerically

simulate the projection fidelities F (π)
i

of the modified π̂(c)
i

, as implemented by the measurement apparatus in

Fig. 9.4b, to the ideal Π̂(c)
i

. For this, we assume normal distributions for the parameters in Table 9.1 due to

their systematic uncertainties, and build histograms of F (π)
i

in Fig. 9.6, which give the probability densities

pd(F
(π)
i

) for F (π)
i

such that
� 1
0 pddF

(π)
i

= 1. Due to the quadratic structure of the projection fidelities, F (π)
i

is insensitive to small variations in the parameters of Table 9.1 when the verification interferometer is close to

balanced (i.e., α12 � α34 � α�
14 � α�

23 � 1/2, η1 � η2 � η3 � η4, and η�1 � η�2 � η�3 � η�4). Thus, we find

a mean value F (π) of the four projection fidelities with F (π) = 1
4 (F

(π)
a +F (π)

b
+F (π)

c +F (π)
d

) = 99.9+0.1
−0.2 %

by fitting the resulting probability densities p(i)
d

to asymmetric Gaussian distributions G(F (π)
i

). The close-

to-unity {F (π)
i

} justify our analysis of the entanglement fidelities {F (A), F (γ)} for the atomic and photonic

states.

In addition, we extend this model to numerically minimize the uncertainty bounds {∆(3)
b

,∆(2)
b

,∆(1)
b

}
over the full range of yc for tripartite, bipartite entangled states, and for fully separable states, respectively

(refs. 35,38, chapters 7–8). The calibration errors in the parameters of Table 9.1 give rise to the bands in the

uncertainty bounds of Figs. 9.2 and 9.3, which depict the ±1 s.d. uncertainties of the respective bound-

aries. In Fig. 9.7, we show the probability distributions of the bounds {∆(3)
b

,∆(2)
b

,∆(1)
b

} for the minimal

entanglement parameters {∆min, ymin
c

} achieved in section 9.5.

Table 9.1: Experimental imperfections in verification interferometer. Measured beamsplitter values
{α, α�} and transmission efficiencies {η, η�} for the verification interferometer in Fig. 9.5 are shown. The
systematic uncertainties (δκ) of {κ} are fractionally (δκ/κ) = 0.05 for κ ∈ {α, α�, η, η�}. Note that
α12 � α34 � α�

14 � α�
23 � 1/2, η1 � η2 � η3 � η4, and η�1 � η�2 � η�3 � η�4.

α12 α34 α
�
23 α

�
14 η1 η2 η3 η4 η

�
1 η

�
4 η

�
2 η

�
3

0.51 0.49 0.50 0.48 0.52 0.54 0.52 0.50 0.95 0.96 0.91 0.93
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9.13.4 Data and error analysis

The calibration errors in Table 9.1 and the finite quantum efficiencies ηd for the non-number resolving (thresh-

old) detectors Di may cause the actual entanglement parameters {∆, yc} of the physical states {ρ̂(A)
W

, ρ̂(γ)
W

},

that result from the ideal POVM values of {Π̂(c)
i

, Π̂(s)
i

}, to be inferred incorrectly from our measurements. We

describe here how {∆, yc} can be conservatively estimated from the photoelectron statistics of the detectors

Di.

First, we confine our analysis to the reduced subspace ρ̂r = p0ρ̂0+p1ρ̂1+p≥2ρ̂≥2 of the physical density

matrices {ρ̂(A)
W

, ρ̂(γ)
W

} up to one excitation per mode and ensemble. Importantly, this truncation process

can be simulated by local filters on the individual modes of {ρ̂(A)
W

, ρ̂(γ)
W

} and leads to a model-independent
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Figure 9.6: Projection fidelities for quantum uncertainty relations. We show histograms for the projection
fidelities F (π)

i
of the modified operator π̂(c)

i
to the ideal Π̂(c)

i
associated with detector Di for i ∈ {a, b, c, d}.

The mean value of the projection fidelities of 99.9+0.1
−0.2 % is deduced by fitting the respective probability

densities p(i)
d

with asymmetric Gaussian distributions G(F (π)
i

) (see the main text).
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inference of the lower-bound entanglement of the full physical state {ρ̂(A)
W

, ρ̂(γ)
W

} (ref. 27,34,110, chapter 3).

The truncations of {ρ̂(A)
W

, ρ̂(γ)
W

} into ρ̂r also justify the use of single-photon avalanche photodetectors for the

(local) yc-measurement, since threshold detectors with finite efficiencies can be simulated by local filters110.

We extract the photon statistics for the diagonal elements {p0, p1, p≥2} of ρ̂r by a Bernoulli inversion170 of

the photoelectron statistics at Di to the photon statistics qijkl at the faces of the ensembles (ref. 35, chapter

8). The spin-wave statistics can then be deduced by back-propagating the field statistics at the face of the

ensembles to the spin-wave statistics {p̃0, p̃1, p̃≥2} for the reduced subspace of the ensembles, assuming

linear mapping from matter to light (refs. 30,34, chapters 3 and 6).

For the sum uncertainty ∆, we additionally employ a numerical algorithm that estimates the upper bound

of ∆ for the one-excitation subspace ρ̂1. By defining the success probability q(s)
i

for a single-photoelectric

detection event p
i

to arise from ρ̂1, the single-photoelectron probability p
i

is given by (ref. 38, chapter 7),

p
i
= q(s)

i
p(s)
i

+ (1− q(s)
i

)p(f)
i

. (9.5)

Here, p(s)
i

= Tr(π̂(c)
i

ρ̂1) is the conditional probability for one photon at Di originating from ρ̂1, normalized

with
�

i
p(s)
i

= 1. On the other hand, p(f)
i

is the normalized probability for a false single-photon event based

on a spurious detection of a single photoelectron. Such an event can occur with a failure probability 1− q(s)
i

if multiple photons are transmitted and registered at the same detector as a single photoelectron, or if the

higher-order terms ρ̂≥2 at the faces of the ensembles are transformed into a single photon before the detectors

by the lossy propagations (Table 9.1). Eq. 8.12 of chapter 8 (refs. 35,38) provides the explicit expression for

q(s)
i

. We do not subtract spurious backgrounds from atomic fluorescence, scattering noise, and detector dark

counts.

Then, our goal is to unambiguously determine an upper bound of ∆ = 1 −
�

i
(p(s)

i
)2 for all possible

realizations of p(f)
i

. We constrain this optimization problem with a set of data for the measured single-

photoelectron probabilities p
i

(∆-measurement) and the photon statistics yc (thereby, {p0, p1, p≥2} of ρ̂r), as

well as the transmission efficiencies in Table 9.1 and the detection efficiencies for Di. With these parameters,

we assign the success probability q(s)
i

of projecting the purported state ρ̂r onto π̂(c)
i

. Instead of algebraically

upper bounding ∆ (ref. 38, see chapters 7–8), which can yield an unphysically large result ∆ > 0.75, we per-

form a Monte-Carlo analysis to numerically determine a set of p(s)
i

that maximizes ∆ within the physical limit
�

i
p(f)
i

= 1 over the distributions of q(s)
i

. Here, the errors of q(s)
i

occur from the systematic uncertainties of

{η, η�} and of the detection efficiencies, as well as of the statistical uncertainties of yc of ρ̂r.

This procedure was employed for all the data sets of Figs. 9.2 and 9.3 (as well as of Figs. 9.8–9.10)

to obtain conservative estimates of the entanglement parameters {∆, yc}. The numerical errors for the

Monte-Carlo simulations of all the data and the boundaries are well within < 0.1% of their overall un-

certainties. In Fig. 9.7, we display a histogram for the minimal entanglement parameters {∆min, ymin
c

} =

{0.07+0.01
−0.02, 0.038 ± 0.006} (section 9.5). We find that ∆min (black bars) is suppressed below ∆(3)

b
=
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0.261+0.010
−0.015 (red bars) by 10 s.d. We emphasize that we do not subtract any noise in the detection statis-

tics nor do we post-select our data in the analysis, and thereby characterize the quantum state {ρ̂(A)
W

, ρ̂(γ)
W

}
that is physically available to the user.

9.14 Details on the theoretical model for the quantum interface

We describe theoretical models for the generation, storage, and transfer of the multipartite atomic state ρ̂(A)
W

=

Trh(Π̂hÛ
†
writeρ̂

(A)
g Ûwrite) to the photonic state of ρ̂(γ)

W
= TrA(Û†

readρ̂
(A)
W

Ûread).

9.14.1 Entanglement generation

As we discussed in chapter 2, we begin our model with an interaction Hamiltonian (ref. 4)

Ĥ(�)
write/� =

g0Ω
(�)
write
δ

(âγ1 Ŝ� + â†
γ1
Ŝ†
�
) (9.6)

for the parametric writing process of ensemble � with excitation parameter ξ = tanh(g0
�
Ω(�)

write(t)dt/δ).

Here, Ω(�)
write (δ) is the Rabi frequency (detuning) of the writing laser, and âγ1 (Ŝ�) is the annihilation operator

for the fields γ1 (collective excitations in ensemble �). The writing process transforms the initial atomic

state |g
�
� into individual products of two-mode squeezed states between the fields γ1 and ensembles � via

Ûwrite =
�

�
exp(i∆twĤ

(�)
write/�), with the writing phases {φ(w)

1 , φ(w)
2 , φ(w)

3 } included in Ω(�)
write.

Upon the transformation of the fields γ1 by our heralding interferometer, we find that the output mode

operator for γ1 is given by (up to an overall normalization) âh �→ âa1 + eiφ
(h)
1 âb1 + eiφ

(h)
2 (âc1 + eiφ

(h)
3 âd1),

where âi1 is the mode operator for the field i1 ∈ γ1. Here, we omit the vacuum terms because we make
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Figure 9.7: Numerical optimizations for the minimal entanglement parameters and the uncertainty
bounds. Histograms of a Monte-Carlo analysis for minimizing 1-mode bound ∆(1)

b
(purple bars), 2-mode

bound ∆(2)
b

(green bars), and 3-mode bound ∆(3)
b

(red bars) are shown for the smallest measured values of the
entanglement parameters {∆min, ymin

c
} (black bars) in section 9.5. The vertical axis is the probability density

pd corresponding to the respective value of ∆. The lines are fits to Gaussian distributions pd(∆) = G(∆)
with asymmetric widths for ±1 s.d.
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use of normally ordered expectation values. Additionally, the heralding measurement Π̂h with the threshold

detector Dh is modeled with ηh, describing the overall efficiency for detecting γ1 (including losses in the

heralding channels, quantum efficiency of Dh and mode-matching efficiency to the collective state74), where

Π̂h = 1−
∞�

n=0

: (−ηhâ
†
h
âh)n :

n!
. (9.7)

Therefore, by calculating ρ̂(A)
W

= Trh(Π̂hÛ
†
writeρ̂

(A)
g Ûwrite) for ρ̂(A)

g = |g
�
��g

�
| and ηh � 1, we obtain the

analytic expression of the atomic state ρ̂(A)
W

in Eq. 9.3 in the ideal case without additional noise (see section

9.14.4 for our noise model). The atomic entangled state ρ̂(A)
W

is thereby obtained non-destructively from a

quantum measurement Π̂h on the heralding systems γ1, whereby the higher-order contamination ρ̂(A)
≥2 scales

with ξ instead of ξ2. The creation of ρ̂(A)
W

is then heralded by the photoelectric detection Π̂h of the fields γ1

with probability ph = Tr(Π̂hÛ
†
writeρ̂

(A)
g Ûwrite).

9.14.2 Entanglement transfer

The transfer of the stored quadripartite entanglement to the photonic entanglement is described by a linear

mapping process Ûread (ref. 86, chapter 2), which transfers the delocalized collective state |s�� of the ensembles

� to the individual fields γ2 with retrieval efficiency ηread. The reading process then generates a photonic state

ρ̂(γ)
W

= TrA(Û†
readρ̂

(A)
W

Ûread) via a ‘beamsplitter’ rotation Ûread of ρ̂(A)
W

into ρ̂(γ)
W

with a ratio given by ηread

(and reading phases {φ(r)
1 , φ(r)

2 , φ(r)
3 }), after which the atomic states are traced over.

9.14.3 Entanglement verification

Finally, we model the photoelectric detection statistics of the photonic state ρ̂(γ)
W

at Da,b,c,d. The detection

probabilities for the output channels γ�
2 = {a�2, b�2, c�2, d�2} of the entanglement verification setups in Figs.

9.4b and 9.5 can be modeled with projectors

Π̂
(γ�

2)
0 =

∞�

n=0

: (−ηγ�
2
â†
γ
�
2
âγ�

2
)n :

n!
(9.8)

for null events, and

Π̂
(γ�

2)
1 = 1− Π̂

(γ�
2)

0 (9.9)

for events that register one or more photons. Here, ηγ�
2

is the overall efficiency for detecting a photon in field

γ�
2 at Da,b,c,d.

The photoelectric detection probabilities p(c,s)
ijkl

for counting i, j, k, l photoelectrons at Da,b,c,d can be

calculated from the projectors Π̂(c,s)
ijkl

= Π̂
(a�

2)
i

Π̂
(b�2)
j

Π̂
(c�2)
k

Π̂
(d�

2)
l

, via p(c,s)
ijkl

= Tr(Π̂(c,s)
ijkl

ρ̂(γ)
W

), for the respective

configurations {c, s} of ∆ and yc setups in Fig. 9.4b. Finally, the mode operator âγ�
2

for the output channel

γ�
2 is given by (âa�

2
, âb�2 , âc�2 , âd�

2
)T = Û (c,s) · (âa2 , âb2 , âc2 , âd2)

T . Here, the transfer matrix Û (c,s) is (i) a



178

unity matrix Û (s) = I for the yc-measurement, and (ii)

Û (c) =
1

2





1 eiβ1 eiβ2 ei(β2+β3)

1 −eiβ1 −eiβ2 ei(β2+β3)

1 −eiβ1 eiβ2 −ei(β2+β3)

1 eiβ1 −eiβ2 −ei(β2+β3)




(9.10)
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Figure 9.8: Statistical evolutions of the individual entanglement parameters. The data points and black
line depict the statistical dependences of a, ∆ and b, yc to the heralding probability ph(ξ) for Fig. 9.2b. c, We
also display the expanded view of the entanglement parameters {∆, yc} depicting the statistical transitions
of multipartite atomic entanglement (inset of Fig. 9.2b). The thermal behaviors {∆(T ), y(T )

c } of the thermal
equilibrium states ρ̂(H)

G
and ρ̂(LMG)

G
of the Heisenberg-like and the Lipkin-Meshkov-Glick models are shown

as red dashed and blue dash-dotted lines, respectively. Here, the horizontal axis is the heralding probability
ph(ξ), with thermal excitation given by ξ = e−βT J for the spin models.
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Figure 9.9: Temporal decay of coherences stored in four atomic ensembles. a, Evolution of the photon
probabilities {p1000, p0100, p0010, p0001} for occupying the output modes of the verification interferometer
(∆-measurement) versus storage time τ . For readability, the heights of the bars are shown in accord to the
color convention of the inset i. Error bars, shown as grey squares, reflect the statistical uncertainties for
each point. b, Photon probabilities {p1000, p0100, p0010, p0001} from our theoretical model, which assumes a
memory time determined from the temperature of the cold atomic samples and the net momentum transfer to
the atomic spin-waves (chapter 2).

for the ∆-measurement (Fig. 9.5), where we assume balanced loss in writing Eq. 9.10, but not for our general

analysis.

9.14.4 Incorporating noise into the model

To include the effects of atomic fluorescence and laser scattering noise emanating from the writing and

reading processes, as well as of the background contamination including dark counts in the detectors, we mix

dephased coherent states ρ̂rB ,q =
�
||rB |eiφq �q�|rB |eiφq |dφq and ρ̂rI ,q =

�
||rI |eiφq �q�|rI |eiφq |dφq into

quantum channels q ∈ {γ1, γ2} of the initial state, and find that

ρ̂(A)
g

=
�

�

|g
�
��g

�
|
�

γ1

(ρ̂rB ,γ1 ⊗ ρ̂rI ,γ1)
�

γ2

(ρ̂rB ,γ2 ⊗ ρ̂rI ,γ2), (9.11)
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with quantum fields γ1 = {a1, b1, c1, d1}, γ2 = {a2, b2, c2, d2}. Here, {rB , rI} are the respective probability

amplitudes for the background and intensity-dependent noises (atomic fluorescence and scattering noise). In

the experiment, we directly measure the noises |rB,γ1 |2, |rB,γ2 |2, and |rI,γ2 |2. We also infer the heralding

and retrieval efficiencies {ηh, ηread}, as well as the scattering noise |rI,γ1 |2 ∝ |Ω(�)
write|2 for the writing laser by

independently measuring the individual quantum correlation functions gγ1,γ2 for the fields {γ1, γ2}, following

the methods in refs. 30,34,74 and chapters 3, 6.

Finally, using the initial state of ρ̂(A)
g in Eq. 9.11, we approximate the physical state of ρ̂(A)

W
= Trh(Π̂hÛ

†
write

ρ̂(A)
g Ûwrite). We then simulate ρ̂(γ)

W
= TrA(Û†

readρ̂
(A)
W

Ûread) as well as the various expectation values of �Π̂(c,s)
ijkl

�
associated with the photoelectron statistics p(c,s)

ijkl
of {∆, yc}. Finally, we perform the numerical algorithm

described in section 9.13.4 and obtain the theoretical expectations of {∆th, (yc)th} as functions of heralding

probability ph, shown in Fig. 9.8. The theoretical curves in Fig. 9.2 are given by the parametric dependences

of the entanglement parameters {∆th, (yc)th} to the heralding probability ph.

9.14.5 Temporal dynamics of atomic multipartite entanglement

As described in section 9.9, the decoherence mechanism for the atomic W -state ρ̂(A)
W

(τ) is dictated primarily

by the motional dephasings of spin-waves (ref. 82, chapter 2). Qualitatively, the dephasings of the ensembles

� = {a, b, c, d} arise from independent evolutions of the spatial phases φ(sw)
j

(τ) = δ�k · �rj(τ) + φi imprinted

on the spin-waves |s�(τ)� =
�

j
eiφ

(sw)
j (τ)|g · · · sj · · · g�� due to thermal motions, where δ�k = �kw − �k1

and φi = φ(w)
i

− φ(h)
i

. Specifically, by assuming a Boltzmann velocity distribution with a mean velocity vt

for each ensemble �, we find analytically that the probability pc for the coherent atomic component ρ̂(A)
c of

ρ̂(A)
W

(τ) decays over time τ , following pc ∝ |�s�(0)|s�(τ)�|2 � e−τ
2
/τ

2
m + O(1/NA,�) (refs. 82,114, chapter

2).

We follow a procedure similar to section 9.14 to simulate the dynamics of the atomic W -state ρ̂(A)
W

(τ).

In particular, absent any noise (i.e., ρ̂(A)
g = |g

�
��g

�
|) and for ηh � 1, we obtain the atomic dynamics

ρ̂(A)
W

(τ) � (1− 3ξ)(cos2θ(τ)ρ̂(A)
c

+ sin2θ(τ)ρ̂(A)
n

)

+3ξρ̂(A)
≥2 +O(ξ2), (9.12)

where the mixing angles are cos2θ(τ) = e−τ
2
/τ

2
m and sin2θ(τ) = 1 − e−τ

2
/τ

2
m . Thus, the decoherence

for the atomic W -state results from the incoherent mixing of the initial superradiant state ρ̂(A)
c � |W �A�W |

at τ = 0 to mixtures of subradiant states ρ̂(A)
n at τ > 0, which increase the vacuum component ρ̂0 for

the photonic state ρ̂(γ)
W

. In turn, the increase of the subradiant states ρ̂(A)
n contributes to a reduction in the

coherent component ρ̂(A)
c of ρ̂(A)

W
(τ), as well as to a build-up of uncorrelated atomic noise ρ̂(A)

≥2 relative to

ρ̂(A)
c . The net effect is a simultaneous degradation of the entanglement parameters {∆, yc} with a time-scale

τm = 1/(|δ�k|vt) � 17 µs. For the actual simulations in Fig. 9.2, we perform the full calculations including
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Figure 9.10: Temporal evolutions of the individual entanglement parameters. Due to the motional de-
phasings of the spin-waves, the experimentally measured entanglement parameters (black points), for a,
∆(τ), and for b, yc(τ), increase with a time-scale τm � 17µs. The theoretical simulation for the tempo-
ral behavior of {∆, yc} is displayed as a black solid line. The gray band around the theoretical curve δ(τ)
represents the 1/e uncertainty of the simulation due to the systematic error of the measured overlap λ.

section 9.14 to incorporate the atomic fluorescence, laser scattering, and background noise.

Fig. 9.9 illustrates the temporal reduction in the overall coherence d of the full quadripartite state in our

experiment (see section 9.6). Operationally, the loss of coherence is observed in terms of the decrease in

imbalances among {p1000, p0100, p0010, p0001} as a function of storage time τ , and hence to an increase in ∆.

The behavior of the experimentally observed photon probabilities in Fig. 9.9a results from the progressive

decay of the initial coherence for ρ̂(A)
W

(τ0) at τ0 = 0.2 µs for which Veff(τ0) = 4d = 0.95 ± 0.02, evolving
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then to Veff(τf ) = 0.10+0.25
−0.10 for the final state ρ̂(A)

W
(τf ) measured at τf = 36.2 µs. The observed evolution

is qualitatively in good agreement with our theoretical model of the photon probabilities shown in Fig. 9.9b.

The spin-wave statistics are similarly modified by phase decoherence leading to an increase of yc, from

yc(τ0) = 0.03± 0.01 to yc(τf ) = 0.74± 0.34.

Finally, in Fig. 9.10, we show the dissipative dynamics of the atomic W -state (section 9.6), displayed

independently for ∆(τ) (Fig. 9.10a) and yc(τ) (Fig. 9.10b). The complete 3-dimensional dynamics of the

atomic W -states is displayed in Fig. 9.3. The temporal behaviors of {∆(τ), yc(τ)} in our experiment of

the quadripartite atomic state (black points) are in qualitatively good agreement with the simulated dynamics

for ρ̂(A)
W

(τ) (black line). However, for ∆, we find that our data points consistently lie above the theoretical

dynamics for ρ̂(A)
W

(τ).

One possible explanation is that for the ∆-measurement, stringent interferometric stabilities and excellent

overlaps λ, close to unity, are required for all the 16 spatio-temporal modes {�k, s}, composed of the 8 quan-

tum fields γ1 = {a1, b1, c1, d1} and γ2 = {a2, b2, c2, d2}, as well as of the 8 classical writing and reading

pulses, with s corresponding to the polarization state of each field. Ultimately, the wavepacket overlap for

the entangled fields γ2 = {a2, b2, c2, d2} is limited by the differential optical depths of the cold samples

{a, b, c, d}, which in turn yield differential group velocities during the slow light process of coherent transfer

from ρ̂(A)
W

to ρ̂(γ)
W

by way of dynamic electromagnetically induced transparency (ref. 86, chapter 2).

We include this effect in the model via a field overlap λ (ref. 150), where a fit corresponding to Fig. 9.8

gives λ = 0.98 (λ = 0.95 for Fig. 9.10a), with similar results obtained from the calculation of overlap for

the measured temporal shapes of the wave-packets γ2 = {a2, b2, c2, d2}. For the simulated dynamics of

Fig. 9.3a (section 9.6), we use the field overlaps λ obtained independently from classical measurements of

the interferometric visibility for both ‘classical’ (write, read) and ‘quantum’ interferometers (quantum fields

γ1, γ2). Thus, the discrepancy in ∆(τ) can be largely attributed to the systematic uncertainty in the inference

of λ = 0.97 ± 0.03, with the uncertainty corresponding to the dynamics of ∆(τ) shown as a gray band in

Fig. 9.10a.
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9.15 Entanglement thermalization

Here, we formulate the thermal equilibrium state ρ̂G (refs. 39,297) of a Heisenberg-like model ĤH and a Lipkin-

Meshkov-Glick model ĤLMG, as presented in Fig. 9.2b of section 9.5 (see also Fig. 9.8c). We compare the

entanglement parameters {∆(T ), y(T )
c } obtained from ĤH and ĤLMG to the observed statistical behavior of

the quadripartite states of the ensembles.

9.15.1 Heisenberg-like model

We begin with a Heisenberg-like Hamiltonian ĤH of four (Ns = 4) spins {i, j} of spin vectors �S(i) =

{Ŝ(i)
x , Ŝ(i)

y , Ŝ(i)
z } with isotropic infinite-ranged ferromagnetic interaction (Jij = J > 0 for all {i, j}), where

ĤH = − J

Ns

�

�i,j�

�S(i) · �S(j) + hz

�

i

Ŝ(i)
z

+ Ĥp.

Here, ĤH includes a standard Heisenberg interaction − J

Ns

�
�i,j�

�S(i) · �S(j) + hz

�
i
Ŝ(i)
z , as well as a spin-

projection term Ĥp = 2hz|S,−S��S,−S| which selects out the collective spin state |S,−S� with bias energy

2hz and suppresses the thermal equilibrium population of |S,−S� .

Since the Hamiltonian ĤH commutes with the collective spin operators {�S2, Ŝz} ≡ {(
�

i
�S(i))2,

�
i
Ŝ(i)
z },

ĤH is diagonal in the basis of collective spin states |S,M� for 0 ≤ S ≤ Ns/2 and −S ≤ M ≤ S. The

eigenenergies are

ES,M =






−J

4S(S + 1) + hzM + 3J
4 , if |S,M� �= |2,−2�

− 3J
4 , if |S,M� = |2,−2�.

The degeneracy for |S,M� is given by DS = (2S+1)Ns!
(Ns/2+S+1)!(Ns/2−S)! (ref. 170). Importantly, for any value

of hz > 0, the ground state is |2,−1� ≡ |W1� = 1
2 (|1000� + |0100� + |0010� + |0001�) with energy

E2,−1 = − 3J
4 − hz . In the following sections, we will set the magnetic field to hz = J/2.

9.15.2 Thermal equilibrium state

We solve for the Gibbs state, ρ̂(H)
G

= 1
Z
e−βT ĤH , where Z = Tr(e−βT ĤH) is the partition function and

beta parameter βT = 1/kBT for thermal energy kBT at temperature T . Explicitly, we obtain ρ̂(H)
G

=

1
Z

�
S,M

DSe−βT ES,M ρ̂S,M . Here, the component ρ̂S,M is a mixed state that contains all possible |S,M�
for the degeneracy of DS ; e.g., ρ̂1,−1 = 1

3 (|W2��W2| + |W3��W3| + |W4��W4|) is a mixture of three non-

symmetrized single-excitation W -states, {|W2�, |W3�, |W4�}.

By mapping the spin-states to number-states (| ↓, ↑� �→ |0, 1�) a, we obtain a Gibbs number-state ρ̂(n)
G

in

the form of

ρ̂(n)
G

(T ) = p0ρ̂0 + p1ρ̂1 + p≥2ρ̂≥2, (9.13)

aPhysically, the transfer of the spin-states to number-states can be accomplished by coherent mapping to photons.
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as in the reduced density matrices ρ̂r of {ρ̂(A)
W

, ρ̂(γ)
W

}. Our goal is to calculate the thermal (T ) behavior of

multipartite entanglement39,297 for ρ̂(n)
G

via the entanglement parameters {∆(T ), y(T )
c }.

Because the vacuum component ρ̂0 and the higher-order terms ρ̂≥2, as well as the non-symmetric single-

excitation states ρ̂1,−1 of ρ̂1 are more energetic than the ground state |W1�, the Gibbs state ρ̂(n)
G

(T = 0) is

the symmetric W -state |W1��W1| at zero temperature. For low temperature (βT � 1), we approximate ρ̂(n)
G

by

ρ̂(n)
G

(T ) � Z0ρ̂0 + Z1ρ̂1 + (1− Z1 − Z0)ρ̂≥2, (9.14)

with Z0 = e
3βT J

4 and Z1 = ZW + 3ZX . The single-excitation subspace ρ̂1 is

ρ̂1(T ) �
1

Z1
(ZW |W1��W1|+ 3ZX ρ̂1,−1), (9.15)

with ZW = e
βT (4hz+3J)

4 , ZX = e
βT (4hz−J)

4 . Here, the thermal excitations from the ground state |W1��W1|
to one of ρ̂1,−1 occur with probability ξ = ZX/ZW = e−βT J .

9.15.3 Entanglement parameters

For the sum uncertainty ∆(T ), we only consider the single-excitation subspace ρ̂1 (Eq. 9.15). The probability

to find |W1� is p1000 = �W1|ρ̂1|W1� = 1
1+3e−βT J , whereas the probabilities to find the non-symmetric states

are p0100 = p0010 = p0001 = e
−βT J

1+3e−βT J . For βT � 1, we deduce the sum uncertainty ∆(T ) � 6e−βT J = 6ξ.

Similarly, we find the quantum statistics y(T )
c � 16

3 e−βT J = 16
3 ξ. Thus, the parametric relation

∆(T ) � 6× 3

16
y(T )
c

=
9

8
y(T )
c

(9.16)

replicates the statistical behavior of ∆th � 9
8 (yc)th for the ensembles (section 9.14) in the low-excitation

regime (equivalent to βT � 1).

By performing the full calculation of {∆(T ), y(T )
c } for ρ̂(n)

G
without any approximations and by inserting

the excitation probability ξ = e−βT J into the expression of heralding probability ph(ξ) for ρ̂(A)
W

(section

9.14), we compare the theoretical expectations {∆(T ), y(T )
c } of the thermal state ρ̂(H)

G
to the experimental

data, presented in Fig. 9.2b as a red dashed line (section 9.5; see also Fig. 9.8c). In Fig. 9.8, we plot

the dependences of the individual parameters ∆(T ) and y(T )
c to ph as red dashed lines. The panels on the

right-hand side show the log-log scale plots of the figures for small values of ξ.
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9.15.4 Lipkin-Meshkov-Glick model

We simulate the entanglement parameters {∆(T ), y(T )
c } of a thermal equilibrium state ρ̂(LMG)

G
for an isotropic

Lipkin-Meshkov-Glick (LMG) Hamiltonian ĤLMG (refs. 298–300), where

ĤLMG = −J

4

�

�i,j�

(Ŝ(i)
x

Ŝ(j)
x

+ Ŝ(i)
y

Ŝ(j)
y

) + hz

�

i

Ŝ(i)
z

,

with infinite-range interactions J > 0. The energy states are the collective spin states |S,M� with the

eigenenergy ES,M = −J

4 (S(S +1)−M2) + J

2 + hzM. By setting hz = J/2, the ground state can be made

|W1�. Proceeding with the methods in sections 9.15.2–9.15.3, we calculate {∆(T ), y(T )
c } for the Gibbs state

ρ̂(LMG)
G

of ĤLMG, as depicted in the blue dash-dotted lines of Fig. 9.8 and Fig. 9.2b.


