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Chapter 8

Multipartite entanglement for one
photon among four optical modes

This chapter is largely based on ref. 35. Reference35 refers to the then current literature in 2009 at the time of

publication.

8.1 Introduction

Investigations of entanglement for two quantum systems have answered many fundamental questions in quan-

tum physics219,273 and revealed powerful new capabilities of quantum mechanics within the field of quantum

information science (refs. 1,3,162, see also chapter 1). Many of these advances have used well-tested methods

for the characterization of quantum entanglement in bipartite (i.e., two-component) systems40,110. Entangled

states of more than two systems enhance our knowledge of quantum theory, as new classes of states are avail-

able40,209,210. Beyond applications to conventional quantum computation3, exotic multipartite states have

emerged as crucial resources for new directions in quantum information processing such as measurement-

based quantum computation212,213, quantum secret sharing274, and quantum simulation5. Despite the ex-

traordinary promise that they offer, unambiguously detecting multipartite entangled states is still a major

challenge from both an experimental and a theoretical standpoint.

Genuine N -partite entanglement is realized only with the simultaneous participation of all N of the con-

stituent systems. The exponential increase with N in the amount of information required to describe the over-

all quantum system, while exceedingly beneficial for large-scale quantum information protocols3, makes the

task of classifying209,210 and detecting such entangled states extremely difficult40. Still, there are prescribed

methods to detect entanglement in select classes of multipartite states that generally rely on reconstructing

the density matrix ρ̂. Linear entanglement witnesses supplemented by tomography of ρ̂ have been used to

detect entanglement in six275 and eight276 atomic ions, as well as for hyper-entangled photons277. A serious

drawback of quantum-state tomography is the prohibitive number of measurements and their accuracies that

are required with increasing N .
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In this chapter, I will focus on a specific class of quantum states in which exactly one photon is coherently

shared among N distinct optical modes in the form of

|W � = 1

2
[(|1000�+ eiφ1 |0100�) + eiφ(|0010�+ eiφ2 |0001�)], (8.1)

shown here for N = 4, and with the relative phases φ, φ1, φ2 of the modes. This is a so-called W state, which

plays an important role in quantum information protocols with photonic and matter qubits, as its entanglement

is known to be robust against losses (e.g., tracing over a set of modes K � N − 2).

To detect entanglement for pure states in the form of Eq. 8.1 and their mixed state counterparts ρ̂W , we

introduce the use of fundamental quantum uncertainty relations (see chapter 7). It has long been known for

continuous variable systems that the uncertainty principle for non-commuting observables defines a boundary

of measurement precision that can only be crossed by entangled states278,279. This observation has formed

the basis of numerous Einstein-Podolsky-Rosen type experiments280, including the unconditional telepor-

tation281. For discrete variable systems as in Eq. 8.1, the uncertainty principle can be recast as a sum of

uncertainties in certain physical observables that must always be greater than some minimum bound ∆b for

all unentangled states, whether pure or mixed (refs. 38,121, chapter 7).

As a first test of this novel concept, we created a bipartite entangled state analogous to |W �. We veri-

fied the entanglement both by violation of an uncertainty relation38 and by the well-established method of

concurrence (refs. 27,34,37,178, see also chapters 2 and 4). The precise agreement of these two measurements

over a wide range of parameter space attests to the reliability of uncertainty-based verification for entangle-

ment of discrete variables (Figs. 8.1b and 8.2). We then extended our setup to create multipartite entangled

states that coherently share a single photon among four optical modes and applied our verification protocol

to them. Varying the phase coherence and the photon statistics of a candidate state ρ̂W allowed us to explore

the boundary between separable and entangled states, including those that separate four-fold, three-fold, and

two-fold entanglement.

8.2 Nonlinear, nonlocal entanglement witness by way of quantum un-

certainty relations

Our verification protocol is based on an exclusion principle for which N -mode entanglement can be unam-

biguously detected by simultaneously measuring physical observables {M̂i} (projectors) with i ∈ {1, . . . , N}
more precisely than is possible with only (N−1)-mode entangled states and their mixtures38,121. Specifically,

we consider a sum uncertainty relation ∆ =
N�

i=1

�M̂2
i
� − �M̂i�2 = 1−

N�

i=1

�M̂i�2, and its lower bound ∆(K)
b

,

which is obtained for the one photon subspace of all states with at most K < N mode entanglement. For

any K-mode entangled state the inequality ∆ ≥ ∆(K)
b

holds; therefore a violation of this inequality serves



137

ba

c

Figure 8.1: Diagram of our entanglement generation and verification setups. a, A single-photon pulse is
transformed from a single input into an N -mode entangled state by Ûgen, and entanglement is verified with
the operation Ûver. b, Details of the setup for bipartite entanglement. Single photons are coherently split to
occupy the two modes defined by the interferometer BD1–BD2 with the relative phase φ of ρ̂W controlled
by the EOM. By setting the waveplate (λ/2)v at 0◦, the occupation of the individual modes is detected at
D1 and D2, and we obtain the two-photon components of ρ̂W . With a setting of (λ/2)v at 22.5◦ single
photon interference occurs at PBS1, from which we obtain ∆; see also Fig. 8.2A. c, Details of the setup
to create and verify quadripartite entanglement. The sequence of beamsplitters BD0 and BD1 generate the
optical modes 1–4 which share a single photon. To measure ∆, we jointly optimize the relative phases in the
verification interferometers for interferences at PBS1,2 ((λ/2)v at 22.5◦) and BS1,2 to minimize the photon
probability of all but one output mode. Here switching between measurements of ∆ and yc requires the
indicated reconfiguration of fiber-optic components.

as a sufficient condition for genuine N -mode entanglement (see section 7.3). The projective operators are

{M̂i} = {|Wi��Wi|} with

|W1� = 1
2 (|1000�+ eiβ1 |0100�+ eiβ2 |0010�+ eiβ3 |0001�)

|W2� = 1
2 (|1000� − eiβ1 |0100� − eiβ2 |0010�+ eiβ3 |0001�)

|W3� = 1
2 (|1000� − eiβ1 |0100�+ eiβ2 |0010� − eiβ3 |0001�)

|W4� = 1
2 (|1000�+ eiβ1 |0100� − eiβ2 |0010� − eiβ3 |0001�)

(8.2)

for the case of N = 4, and with phases {βj} where j ∈ {1, 2, 3}. They are optimally sensitive to entangle-

ment, for particular settings of βj , since the entangled state |W � in Eq. 8.1 is the only simultaneous eigenstate

of all projective operators M̂i (ref. 38, chapter 7).

In our work, the purported N -mode entangled state (ρ̂W ) analogous to |W � is generated via the operation

ρ̂in
Ûgen−−→ ρ̂W (Fig. 8.1a) on an input state ρ̂in. Similarly entanglement is verified with ρ̂W

Ûver−−→ ρ̂out. We
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implement M̂i for the case of two (Fig. 8.1b) and four (Fig. 8.1c) optical modes using beamsplitters282

and photodetectors. The limit ∆ → 0 indicates a significant overlap of the state ρ̂W with only one of

the projectors M̂i. In particular, for any choices of φ, φ1, φ2 that define Eq. 8.1 and the three corresponding

orthonormal states, our measurements of M̂i would yield ∆ = 0 for optimal settings of the phases βj . A small

∆ corresponds to a large statistical imbalance in the event distribution of the output optical modes, with one

mode strongly preferred over the others. Conversely, if the generated state contains a photon which occupies

one mode, e.g. |1000�, our measurements would yield ∆ = 0.75. Due to the presence of transmission losses

and beamsplitter imbalances in our setups, the projectors |Wi��Wi| evolve into mixed states with significant

vacuum components, but genuine multipartite entanglement can still be robustly detected for ρ̂W (ref. 38, see

section 8.11).

To determine theoretically the boundaries ∆(K)
b

for N -mode entanglement, we calculate ∆ for all possible

admixtures of states containing at most K = N − 1 mode entanglement. The presence of more than one

excitation in ρ̂W may allow significant overlap of its one-photon subspace with |W � (chapter 7), leading to a

spurious detection of entanglement. Therefore, it is necessary to determine the contamination of the state ρ̂W

due to multiple excitations. By invoking local filtering operations, we are justified in confining our analysis

to the reduced density matrix ρ̂(r)
W

= p0ρ̂0 + p1ρ̂1 + p≥2ρ̂≥2 which contains no more than one photon per

mode, while still being guaranteed a lower bound of entanglement27,110. In our experiments, we measure the

photon probabilities p0, p1, and p≥2 that characterize the occupation of the vacuum subspace ρ̂0, the single-

photon subspace ρ̂1, and the subspace containing multiple excitations ρ̂≥2. The degree of contamination due

to more than one excitation is quantified by the parameter yc = 2( N

N−1 )
p2p0

p
2
1

, which is normalized to the case

of independent and balanced coherent states for which yc = 1. The observation of measurement uncertainty

∆ below the threshold ∆(K)
b

together with a determination of yc, then, manifestly confirms the presence of

genuine (K + 1)-mode entanglement.

8.3 Experimental procedure

Our experimental starting point is the generation of heralded single photons via Raman transitions in an op-

tically dense atomic ensemble of cesium atoms4 (section 8.8). Two-mode entangled states are created by

coherently splitting a single photon into parallel modes with beamdisplacer BD1 (Fig. 8.1b); the modes’

relative phase, analogous to φ in Eq. 8.1, is controlled by an electro-optic modulator (EOM). The spatially

separated modes are recombined at BD2 and coupled into a single-mode optical fiber, with each mode en-

coded in the polarization bases |H� and |V �. Achieving entanglement requires a constant relative phase of

the optical modes. Absent any fluctuating drive voltage on the EOM, the beamdisplacer pair BD1–BD2 forms

a passively stable interferometer (refs. 34,36, chapter 3). By driving the EOM with a randomly oscillating volt-

age, the phase coherence of the modes is destroyed, and any entanglement between them is lost. This setup

provides a calibrated tool to explore the boundary between separable and entangled states.
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8.4 Characterization of bipartite entanglement by concurrence and

uncertainty relations

Following the generation of bipartite states, we search for the signatures of entanglement using our verifi-

cation protocol. To measure ∆, we rotate the polarizations of both modes by 45◦ and interfere them with a

polarizing beamsplitter (PBS1). We record the photoelectric detection events at single-photon counters D1

and D2, and convert them to the normalized joint photon probabilities Pij (i.e., i photons for mode 1 and j

for mode 2). Varying the relative phase of the modes after they exit BD2 produces the interference fringes

shown in the inset to Fig. 8.2a (corresponding to P10 and P01), which allow us to identify the minimum

value of ∆ supported by the modes for a given yc. In particular, the sum uncertainty ∆ is related to the fringe

visibility V by ∆ = 1
2 (1 − V 2). When the relative phase β between modes 1, 2 is either 0◦ or 180◦, we

obtain a value of ∆ as small as 0.006, which corresponds to a visibility of 99.4% (section 8.10). To measure

the two-photon suppression of ρ̂W , we detect the individual modes and record the time series of all relevant

coincidence events (i.e., Pij with i+ j = 0, 1, or 2). Based on a calibration of the transmission from the face

of BD2 to the detectors, we infer the photon probabilities that determine yc (section 8.9). We control yc via

the pump intensity for Raman transitions in the source ensemble (section 8.8, chapter 2).

8.4.1 Scaling behavior of concurrence and uncertainty relations for bipartite entan-

glement

We have explored bipartite entanglement verification in our system by varying both the phase coherence and

the two-photon suppression of ρ̂W . Fig. 8.2a shows the dependence of ∆ on the amplitude δφ of phase noise

produced by the EOM. These results were obtained with two-photon contamination yc = 0.063 ± 0.011

such that entanglement is detected when ∆ � 0.46. With δφ = 360◦, we expect the fringe visibility to be

minimized, and therefore ∆ = 0.5. As δφ decreases below 270◦, the statistics of our measurements become

sufficiently imbalanced that the presence of entanglement is manifest. Absent any phase noise in the state

generated at BD1 (i.e., δφ = 0), we obtain ∆ ≤ 0.03 over a wide range of yc as shown in Fig. 8.2b. The first-

order coherence of our single-photon source and the phase stability of our apparatus guarantee ∆ ≈ 0. The

boundary in ∆ between fully separable states and those that contain entanglement, ∆(1)
b

, depends primarily

on yc through the relationship ∆(1)
b

= 1
2 (1 − yc). Given the uncertainty of our measurements, of which the

largest contribution is counting fluctuations in yc, all of the states created with yc ≤ 0.86 verifiably contain

bipartite entanglement.

A rigorous correspondence exists between our uncertainty verification protocol (for two modes) and con-

currence, a measure of bipartite entanglement178 (section 8.10). As a tool to understand the dependencies of

the sum uncertainty and as a secondary confirmation of two-mode entanglement, we inferred the normalized

concurrence CN = V −√
yc from our measurements of ∆ (section 8.10). Using previously introduced rela-
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Figure 8.2: Detection of entanglement between two optical modes using uncertainty relations. a, The
sum uncertainty ∆ as a function of peak-to-peak phase noise δφ in the generated state ρ̂W . The solid blue
line gives the boundary, ∆(1)

b
, between entangled and separable states. The dotted lines indicate the range of

∆(1)
b

values that result from the uncertainty in our measurements of yc. The red line is a fit to the data based
upon a uniform distribution of phase noise. (Inset) Number of photons detected nc in the output modes for a
measurement time of 250 s as the relative phase β of the verification interferometer is varied. At minima and
maxima of nc we obtain ∆ = 0.01. b, Measured sum uncertainty with δφ = 0 (filled circles) and boundary
∆(1)

b
(blue line) as a function of two-photon suppression. Data with yc < 1.0 demonstrate entanglement of the

two modes. By varying δφ from 0◦ to 360◦ (open circles), the modes’ phase coherence is reduced, resulting
in a loss of entanglement for δφ � 270◦. c, Concurrence CN (filled circles) inferred from measurements
of ∆ and the boundary ∆(1)

b
. The solid line shows a theoretical prediction of concurrence (max (CN , 0))

based on an independent measurement of V and p1 = 0.22± 0.02. All the error bars in this figure represent
standard deviations.
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tionships, we can reformulate it as CN =
√
1− 2∆ −

�
1− 2∆(1)

b
. The inferred concurrence data shown

in Fig. 8.2c demonstrate an increasing CN , therefore a larger degree of entanglement, as we decrease yc. Im-

portantly, this behavior is in excellent quantitative agreement with our theoretical expectation for concurrence

based upon quantum-state tomography27,34; this validates the use of uncertainty relations for entanglement

verification (see Fig. 8.8 in section 8.10).

8.5 Experimental realization of multipartite entangled state for one

photon

We now describe our investigation of multipartite entanglement with a single photon shared among four

optical modes (Figs. 8.3 and 8.4). To generate four-mode entangled states we use the setup shown in Fig.

8.1c. A third beamdisplacer (BD0) is added to the two-mode setup immediately before BD1; it coherently

splits a single photon polarized at 45◦ into two modes. In this case, the space between BD1 and BD2 supports

four independent modes of ρ̂W (composed of pairs I and II) that share a single photon. The EOM influences

only the relative phase of the two pairs I, II , labeled φ in Eq. 8.1, leaving intact their individual phase

coherence, and it provides a means to induce dephasing between the I, II pairs. The four spatially separated

modes in the state ρ̂W are combined into two separated spatial modes (each carrying the two modes encoded

via the polarizations |H� and |V �) that exit BD2 and are coupled into single-mode fibers.

Measurements of ∆ are performed by rotating the polarizations of all the modes by 45◦, and pairwise

interfering them with the network of four cascaded beamsplitters shown in Fig. 8.1c. We record all pho-

toelectric events from detectors {D1, ...,D4}, but employ only events with a single photodetection for the

determination of ∆ (section 8.9). In this case, ∆ depends jointly on the fringe visibilities of all four inter-

ferometric outputs. While BD1 and BD2 still guarantee long-term interferometric stability for the two pairs

of modes I and II , the relative phases between other pairs are actively stabilized with respect to a laser that

shares the same path. With the stabilization laser off, we apply calibrated feed-forward signals to the servo

electronics, which transiently optimize the setup for measurements of various phase dependencies of ∆, in-

cluding its global minimum (section 8.8). To extract yc for the separated modes 1− 4, we insert the “photon

statistics” setup at the location indicated in Fig. 8.1c, and we ensure that no interference occurs at PBS1 and

PBS2 by setting the polarizations to the eigenaxes of the respective PBS. We obtain a record of the sixteen

photon probabilities Pijkl that determine yc, with indices i, j, k, l ∈ {0, 1} (section 8.9).

8.5.1 Scaling behavior of uncertainty relations for multipartite entanglement

8.5.1.1 Decoherence of multipartite entanglement induced by phase noise

Using sum uncertainty relations (refs. 38,121, chapter 7), we have unambiguously detected the presence of full

four-mode entanglement in a photonic W state. Naturally, since N > 2, entanglement may be found amongst
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Figure 8.3: Dependence of sum uncertainty ∆ on the amplitude of phase noise δφ in the state ρ̂W .
These data were acquired with an approximately constant yc in the range 0.06− 0.08; under these conditions
∆ � 0.2 demonstrates genuine four-mode entanglement. The horizontal lines indicate the boundaries ∆(K)

b

for entanglement. Here, the uncertainty of each boundary ∆(K)
b

(dashed lines) corresponds to the observed
fluctuations in yc. The red line is a fit to the data based on a model including a uniform distribution of phase
noise.

not only the full set of modes, but bipartite and tripartite entangled states exist within a subset of them. A

crucial feature of our verification protocol is that it clearly defines boundaries that distinguish between states

with {N,N − 1, · · · , 2} mode entanglement. As in the case with N = 2, the boundaries for N = 4 exist

within the parameter space defined by ∆ and yc. To understand how the multipartite entanglement is affected

by the phase coherence of ρ̂W , we introduce phase noise δφ over the range 0◦ − 360◦ between the two pairs

of modes. Fig. 8.3 shows ∆ as a function of δφ and the theoretical boundaries for two-, three-, and four-

mode entanglement. For δφ � 225◦, our verification protocol confirms the presence of genuine multipartite

entanglement for three and four modes. Owing to the fact that dephasing is induced among only two pairs,

the measured sum uncertainties do not exceed the threshold (∆(1)
b

= 0.7) defined by fully separable statesa.

A primary feature of multipartite W states is their resilience against phase noise, evidenced by the fact that

the state which results from tracing over two modes in Eq. 8.1 still remains two-mode entangled283. This

property of |W � explains our observation of entanglement even in the face of complete dephasing between

the pairs I and II with 360◦ of phase noise.

aWhile there is a bipartite split between the pairs I and II (due to complete dephasing φ), we cannot unambiguously locate the
bipartite split from the measurements presented in Fig. 8.3, as our verification protocol involves collective measurements on all four
modes (section 7.3). In addition, note that we reserve the term, genuine N -partite entanglement, for states which can only be written
in a pure-state decomposition of N -partite entangled states, thereby excluding the weaker condition of “N -partite entanglement” for
mixtures of M < N partite states along all possible bipartitions (i.e., a N -partite entangled state which does not have a physical split).
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Figure 8.4: Statistical transition of multipartite entanglement. Sum uncertainty ∆ as a function of two-
photon suppression for δφ = 0◦ (closed circles) and δφ = 0◦–360◦ (open circles). Solid lines indicate the
boundaries between separable, bipartite, and tripartite entangled states for the parameters of our experiment.
To understand the sizes of boundary corrections from the ideal case, the dashed lines show ∆(K)

b
for the ideal

balanced and lossless case. The error bar on ∆(3)
b

indicates the statistical uncertainty in the boundary (section
8.11). (Inset) An expanded view of the quadripartite sector.

8.5.1.2 Statistical transition of multipartite entanglement

We have also explored the transitions from fully separable to bipartite (K = 1), tripartite (K = 2), and

quadripartite (K = 3) entangled W states by measuring the sum uncertainty as a function of two-photon

suppression yc, with our results presented in Fig. 8.4. With δφ = 0, we obtain a uniformly low ∆ ≤ 0.08 over

a range in yc from 0.035− 1.37. These values of ∆ are larger than in the two-mode case (Fig. 8.2b), and are

explained by a small imbalance in ρ̂W and by imperfections in the entanglement verification interferometers.

Furthermore, these imperfections play an important role in the determination of the boundaries ∆(K)
b

for

entanglement. As detailed in section 8.11, small imbalances in the beamsplitter ratios of PBS1, PBS2 and

BS1, BS2 in Fig. 8.1c, and non-balanced transmission losses lead to displacements of the boundaries toward

smaller {∆, yc}. To reduce these boundary corrections, the beamsplitter ratios were all matched to 50%/50%

to less than 3%, and the difference in losses of corresponding free-space and in-fiber optical paths were always

held to less than 4%. Fig. 8.4 shows the sizes of the corrections by displaying the boundaries ∆(K)
b

for the

ideal lossless and balanced case as dashed lines.
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8.6 Advantage of multipartite entanglement verification via uncertainty

relations

In comparison to quantum-state tomography, our multipartite verification protocol features an exponential

reduction in the number of measurements required to unambiguously detect entanglement. Specifically, our

protocol requires us to determine 24 elements of ρ̂(r)
W

for yc and 4 elements of Û†
ver ρ̂

(r)
W

Ûver for ∆, a total of 20

elements out of the 44 = 256 that comprise the reduced density matrix ρ̂(r)
W

. Our protocol inherently features

the use of nonlocal measurements M̂i, thereby requiring only two unique experimental steps to measure all

necessary elements and unambiguously detect entanglement in ρ̂W . Furthermore, the nonlinear structure

of ∆ allows the simultaneous detection of all possible realizations of Eq. 8.1 (refs. 38,40). These features

alleviate the need for any complicated mechanism to control the measurement basis, which can be a challenge

in tomography experiments277 and other local-measurement-based verification protocols for ρ̂W . Although

linear witnesses might also enable entanglement detection with less than full knowledge of ρ̂W obtained from

a few experimental steps260, the unambiguous verification of entanglement requires robustness in the face of

experimental imperfections, including multiple excitations and losses (section 8.11).

8.7 Conclusion

Our study has introduced a new technique for the unambiguous verification of multipartite W states. Specif-

ically we examined entanglement in heralded quantum states specified by ρ̂W with N = 2, 4. Entanglement

detected with our protocol refers to that of the complete density matrix ρ̂W presented to our verification

system, and not to fictitious components deduced via post selection110. An extension of our protocol to dif-

ferent mode entangled states (requiring increased experimental resources) is discussed in chapter 7 (ref. 38).

Photonic entanglement, such as generated here, can be coherently mapped into atomic memories by way of

electromagnetically induced transparency30 for scalable quantum networks (chapter 6).

8.8 Experimental details

8.8.1 Ensemble-based single-photon source

The first step in our experiment is the conditional generation of single photons based on the proposal by Duan,

Lukin, Cirac, and Zoller (DLCZ) (refs. 4,226). In this protocol, heralded single photons are generated from

excitations stored within an atomic ensemble. Single photon sources based upon atomic ensembles have been

studied extensively; see refs. 74–76,79,82 for in-depth information. Here, we briefly present the experimental

details relevant to our investigations.

We implement the DLCZ protocol with a cloud of ∼ 106 cesium atoms that are collected using a magneto-
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Figure 8.5: Interference fringe in the four-mode sum uncertainty setup. Number of detected photons nc

in output mode 1 (blue triangles) and output mode 2 (red circles) are plotted as a function of the phase β1,3.
Here a fringe visibility in excess of 99% and wide tunability of β1,3 demonstrate the experimental capabilities
necessary for measurements of ∆.

optical trap (MOT). Periodically, at a rate of 40 Hz, we switch off the trapping lasers and the magnetic field

for the MOT, and we prepare all the atoms into the F = 4 hyperfine manifold (62S1/2) of Cs. After waiting

3 ms for the MOT fields to decay, we begin a series of ≈ 6400 trials, each with a period of 625 ns. To begin

each trial, we illuminate the cloud with a weak near-resonant “write” laser pulse which excites a Raman

transition with low probability for a collective mode of the ensemble. The success of this process is heralded

by a Raman scattered single photon that is correlated with the presence of an atomic excitation. By way of

a many-atom cooperative enhancement70,226, the atomic excitation can be efficiently converted into a single

photon in a well-defined spatial mode with the application of an intense “read” pulse. This heralded single

photon forms the basis of this experiment described in this chapter.

We have studied the characteristics of our single photon source in detail 75,76. Importantly, the two-photon

suppression, yc = 2( N

N−1 )
p2p0

p
2
1

, where N is the number of optical modes, of the purportedly entangled state

ρ̂W depends critically on the presence of multiple collective excitations within the ensemble (i.e., the single-

photon source). The relative probability of a trial that has multiple ensemble excitations to a trial that has

a single excitation can be suppressed by reducing the write laser intensity. Therefore, we can exercise full

control over yc of the quantum state ρ̂W by way of a tunable write laser intensity. Furthermore, we can un-

derstand the efficiency of heralded single-photon generation. After accounting for detector and transmission

losses, we estimate that the efficiency of the read-out process in our experiments is ≈ 50%. This leads to

a single-photon probability of p1 ≈ 20% (p1 ≈ 10%) in our two-mode (four-mode) experiments for the

entangled state ρ̂W in Fig. 8.1.
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Figure 8.6: A high-bandwidth fiber stretching module. a, Inside the fiber stretching module (Optiphase),
PM fiber is mounted on a circular disc piezoelectric transducer (PZT), which has a sharp mechanical res-
onance around � 55 kHz. The breathing mode of the PZT element is used to phase-modulate the fiber at
∼ 100 kHz (above the first resonance). Two lock-in amplifiers (DSP lock-in amplifiers, SRS 830 and 510) are
used to generate an error signal by modulation spectroscopy on the interferometers in Fig. 8.1. The output of
the locking servo described in Appendix A is fed into a high-voltage amplifier (Burleigh, PZ-70) to drive the
fiber stretcher. At 1 kV, we estimated the reduction of polarization extinction ratio for the PM fiber from 30
dB to 20 dB, due to spurious stress-induced birefringence. b, Dynamic range of the active phase stabilization
scheme via fiber stretchers. Thanks to the high dynamic range (up to δφ ∼ 50 × 2π at 852 nm) of the fiber
stretchers, we can set the interferometer to a certain value of phase over several days without needing to
re-lock the interferometer (mainly limited by the stability of the reference laser).

8.8.2 Phase stabilization

The generation and verification of entanglement in our experiments require that the relative phases of the

purportedly entangled optical modes in Fig. 8.2 be stable (the various phase factors that describe the state |W �
are shown in Eq. 8.1). As described in section 8.3, our experiments with two-mode entanglement (Fig. 8.2a)

feature passive stability of the modes’ relative phase β1,2, guaranteed by the Mach-Zehnder interferometer

formed with a pair of beamdisplacers BD1–BD2 (ref. 34, chapter 3). These beamdisplacers are birefringent

crystals which separate an input state into two parallel modes based on its polarization. Therefore, the two

displacers support a pair of interferometrically stable modes, which are encoded in |H� and |V �.
However, for our quadripartite entanglement experiments (Fig. 8.1c), the beamdisplacer pairs alone can-

not define four spatially resolved stable optical modes. Therefore, we have devised a convenient method

that combines passive stability and active stabilization. The beamdisplacers BD1–BD2 support four modes

of which the relative phases of modes {1, 2} (β1,2) and {3, 4} (β3,4) are inherently stable. However, as is

clearly visible in Fig. 8.1c, the relative phases of modes {1, 3} (β1,3) and {2, 4} (β2,4) depend on the indepen-

dent paths through, for example, fiber-optic PBS1 and PBS2 (Fiber PBS from Oz Optics). By incorporating

an auxiliary reference laser, Eaux, we can actively control the relative path lengths of the modes {1, 3} and

{2, 4}. Prior to BD0 in Fig. 8.1c, we overlap the orthogonally polarized Eaux and the input mode (ρ̂in); the
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frequency of Eaux is the same as the single photon’s. To stabilize β1,3 and β2,4, we set (λ/2)v at 0◦ and create

interference fringes at the outputs of BS1 and BS2. Phase-modulation spectroscopy allows us to lock the

relative phases so that a high contrast interference (V > 0.99) is achieved for quantum fields (Fig. 8.5). The

control of the relative path lengths for the modes, as well as their modulation, is afforded by piezoelectric

fiber stretcher modules (Fig. 8.6a, see also Appendix A for the locking servo) located between PBS1 and

BS1, and PBS2 and BS2, in Fig. 8.1c. These devices provide up to 50 × 2π of dynamic range enabling the

interferometers to remain continuously locked for several days (Fig. 8.6b).

Importantly, to avoid noise associated with the auxiliary laser in the single-photon detectors {D1, · · · , D4},

Eaux must be filtered out. In our work, phase stabilization is performed asynchronously with entanglement

generation and its verification in the fiber-based network of interferometers (Appendix A). This eliminates

the need to wavelength filter Eaux as was necessary in previous experiments27. During the 21 ms of our 40

Hz experimental cycle that the MOT is activated, Eaux is switched on, the output modes of the sum uncer-

tainty setup are directed toward an auxiliary set of detectors with MEMS fiber multiplexers (Sercalo), and

our servo electronics stabilize β1,3 and β2,4. To prepare for measurements of ∆, we switch off Eaux and

reroute the output modes to the single-photon detectors with the MEMS multiplexers, and we use dynamic

polarization rotators (nematic liquid-crystal waveplates from Meadowlarkb) to set (λ/2)v at 22.5◦. Further,

we apply calibrated feedforward signals to the servo electronics that can precisely scan the relative phases of

modes {1, 3} and {2, 4} to explore the dependencies of our ∆ measurements. Fig. 8.5 shows the number

of photons (nc) detected at D1 and D2 as a function of β1,3. Here, all other relevant optical phases in our

setup were optimized to achieve minimum ∆. Therefore, at the minima and maxima of nc corresponding to

β1,3 = 0, 180◦, 360◦, we find that ∆ is 0.06± 0.01.

8.9 Inference of the photon probabilities for obtaining yc and ∆

Our entanglement verification protocol requires that we characterize the photon probabilities of the sum un-

certainty output modes and those of modes 1–4 that comprise the state ρ̂W . We infer these photon probabili-

ties from a time record of photodetection events obtained with single photon counters placed at the outputs of

the relevant modes. Based upon independent measurements of the transmission losses to the photodetectors,

we determine the photon probabilities193. Specifically, for measurements of yc we obtain a set of sixteen prob-

abilities that characterize the diagonal elements of the reduced density matrix ρ̂(r)
W

= p0ρ̂0+ p1ρ̂1+ p≥2ρ̂≥2.

The diagonal elements are Pijkl where the index i = {0, 1} is for finding zero or one photon in mode 1

of ρ̂W , j = {0, 1} in mode 2, and so on for k, l in modes 3 and 4 (Fig. 8.1c). The vacuum subspace

of ρ̂(r)
W

is characterized by the term p0 = P0000. Four elements comprise the one-photon subspace, ρ̂1, via

bBandwidth of the liquid-crystal (LC) waveplates is slow (only ∼ 1 kHz) compared to that of Pockels cells, which was still suitable
for our purpose. In addition, since these are biaxial nematic devices, there are only two stable positions whereby the eigenaxes of the
crystal could align 284. However, one advantage is that the LC only requires a modest amount of voltage (< 5 V) to set the fast axis of
the crystal to the predetermined direction.
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p1 = P1000+P0100+P0010+P0001. Likewise, 11 elements comprise the subspace with two or more photons,

ρ̂≥2, subject to the restriction of one photon per mode, with p≥2 = P1100+P1010+· · ·+P1110+· · ·+P1111. In

the case of yc measurements, the typical detection efficiency including the photodetector quantum efficiency

is ≈ 20%. To infer the photon probabilities at the outputs of the verification interferometers (Fig. 8.1c) for

our measurements of ∆, we follow a similar procedure, but we confine our analysis to the subspaces ρ̂0 and

ρ̂1. In this case, the typical photon detection efficiency is ≈ 30%.

Similarly, due to the uses of photon non-resolving photodetectors and lossy paths for our projectors

(Eq. 8.2), the measured sum uncertainty ∆m includes spurious contributions from multiple photons p≥2.

To account for this, we follow the procedure described in section 7.6.2 (ref. 38, chapter 7), which leads to a

conservative estimation of the photon sum uncertainty ∆ arising only from ρ̂1. In the case of balanced losses,

the correction factor c is expressed in terms of two-photon suppression yc and transmission efficiency η with

c ≈ (1 +
3

8
(2− η)p1yc), (8.3)

where we apply c∆m > ∆ to obtain a conservative estimate of the 1-photon ∆ (section 7.6.2; see also

chapter 9 for a more efficient method for obtaining the upper bound of ∆). For our experimental parameters,

the correction factor (c − 1) ≈ 6% is obtained for yc = 1, as depicted in black line of Fig. 8.7. This

is significantly smaller than the fractional uncertainties δ(∆m)
∆m

≈ 25% of our data. Furthermore, since the

correction factor scales as yc, the correction factor gives (c− 1) < 1% for the relevant data sets of yc < 0.2

for four-mode entanglement (Fig. 8.4). Following the standard procedures for loss propagations193, we also

account for the effect of differential losses and imbalanced beamsplitter ratios (red line in Fig. 8.7).

8.9.1 Imbalances and threshold detectors

In chapter 7, we developed a method to account for losses and imbalances. Here, we obtain an explicit

formulas of q1 in the case of differential losses and imbalanced beamsplitter ratios. In order to propagate ρ̂(r)
W

through the imbalanced verification interferometers, we rewrite ρ̂(r)
W

,

ρ̂(r)
W

= p0ρ̂0 + ρ̂�1 + ρ̂�2, (8.4)

in terms of mode operators âi where

ρ̂�1 =
�

i,j

Pi + Pj

2
V (i, j)â†

i
|0��0|âj (8.5)

ρ̂�2 =
4�

j>i

4�

l>k

Pij + Pkl

2
V (ij, kl)â†

i
â†
j
|0��0|âkâl. (8.6)
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Figure 8.7: Correction factor c as a function of two-photon contamination yc. The black line corresponds
to the calculation of c for balanced losses η = 36% and fixed p1 = 9%. The red line is a calculation of c
including differential losses {η} and imbalanced beamsplitter ratios {α} (Table 8.1). The uncertainty of c
due to the systematic uncertainties in {η,α} is shown as purple bands. The filled circles show c using the
data points in the experiment (i.e., using the parameters Pijkl of each points). The uncertainty in the vertical
direction includes the systematic uncertainties in {η,α} as well as the statistical uncertainties in Pijkl.

Here, V (i, j) = V (j, i) and V (i, i) = 1. Through the lossy and imbalanced setup in Fig. 8.1, the mode

operators âi are transformed into following forms,

âi �→
�

i�

eiφ
(i)

i�

�
α(i)
i� (

�
η(i)
i� âi� +

�
1− η(i)

i� v̂i�). (8.7)

Here, v̂i� is the vacuum mode operator. The precise correspondences between the imbalances {α(i)
i� , η

(i)
i� ,φ(i)

i� }
and experimental parameters (Table 8.1 and Fig. 8.1) are not shown for clarity.

The state ρ̂(r)
W

, then, is transformed to a state (see section 7.6.2 for the balanced case),

ρ̂(r)
η

= p�0ρ̂0 + p�1(q
�
1ρ̂

(1)
1 + (1− q�1)ρ̂

(2)
1 ) + p�≥2ρ̂

(2)
≥2, (8.8)

where the relevant parameters {p�1q�1, p�1(1− q�1), p
�
2} are given asc

p�1q
�
1 =

�

i,j

Pi + Pj

2
V (i, j)

�

κ

e−i(φ(i)
κ −φ

(j)
κ )

�
η(i)κ η(j)κ

�
α(i)
κ α(j)

κ (8.9)

cHere, we have assumed that the two-photon subspace is fully coherent, V (ij, kl) = 1, thereby leading to ∆(ρ̂(2)1 ) = ∆(ρ̂(2)2 ) = 0
and a conservative estimate of ∆.
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p�1(1− q�1) =
�

i>j

�

k>l

Pij + Pkl

2

1

2

�

κ1,κ2

�
α(i)
κ1α

(j)
κ2 α

(k)
κ1 α

(l)
κ2e

−i(φ(k)
κ1

+φ
(l)
κ2

−φ
(i)
κ1

−φ
(j)
κ2

)×

(
�
η(i)κ1 (1− η(j)κ2 ) +

�
η(j)κ2 (1− η(i)κ1 ))(

�
η(k)κ1 (1− η(l)κ2 ) +

�
η(l)κ2 (1− η(k)κ1 ))

(8.10)

p�≥2 =
�

i>j

�

k>l

Pij + Pkl

2

�

κ1,κ2

�
α(i)
κ1α

(j)
κ2 α

(k)
κ1 α

(l)
κ2e

−i(φ(k)
κ1

+φ
(l)
κ2

−φ
(i)
κ1

−φ
(j)
κ2

)
�

η(i)κ1 η
(j)
κ2 η

(k)
κ1 η

(l)
κ2 . (8.11)

Therefore, correction factor c = 1/q1 is given as (chapter 7)

q1 =
p�1q

�
1

p�1 + p�≥2

. (8.12)

In the case of balanced losses η, it can be confirmed that Eqs. 8.3 and 8.12 are equivalent.

Here, we give the definitions of {α(i)
i� , η

(i)
i� ,φ(i)

i� } following the notations in Fig. 8.9.

α(i)
i� =





α
�
14α12 α

�
14(1− α12) (1− α

�
14)α34 (1− α

�
14)(1− α34)

α
�
23(1− α12) α

�
23α12 (1− α

�
23)(1− α34) (1− α

�
23)α34

(1− α
�
23)(1− α12) (1− α

�
23)α12 α

�
23(1− α34) α

�
23α34

(1− α
�
14)α12 (1− α

�
14)(1− α12) α

�
14α34 α

�
14(1− α34)




(8.13)

eiφ
(i)

i� =





e
iφi1 e

iφi2 −e
iφi3 −e

iφi4

e
iφi1 −e

iφi2 −e
iφi3 e

iφi4

e
iφi1 −e

iφi2 e
iφi3 −e

iφi4

e
iφi1 e

iφi2 e
iφi3 e

iφi4




(8.14)

η(i)
i� =





η1η
�
1 η2η

�
1 η3η

�
4 η4η

�
4

η1η
�
2 η2η

�
2 η3η

�
3 η4η

�
3

η1η
�
2 η2η

�
2 η3η

�
3 η4η

�
3

η1η
�
1 η2η

�
1 η3η

�
4 η4η

�
4




(8.15)

8.10 Concurrence and bipartite uncertainty relations

For bipartite systems, there exist entanglement measures such as concurrence (C) and entanglement of for-

mation (EOF) (ref. 178), which range from 0 for a fully separable state to 1 for a maximally entangled state110.

In Fig. 8.2, we quantitatively compared our method of entanglement verification with uncertainty relations to

a theoretical calculation of concurrence based on a model in chapter 3 (ref. 34). Here, we derive a relationship

between concurrence and the degree that a measurement of the sum uncertainty violates the entanglement

boundary, specified by the measured ∆ and the uncertainty bound ∆(1)
b

.

Following ref.27, we find that the concurrence is given by C = V p1 − 2
√
p0p2 (chapter 3), where V

corresponds to the fringe visibility when the two modes are interfered27. If we normalize the concurrence by

the 1-photon probability p1, we obtain

CN ≡ C

p1
= V −√

yc (8.16)
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where yc =
4p2p0

p
2
1

.

Let us first define the visibility V in terms of the measured ∆. We denote P10 (P01) as the normalized

probability of finding only 1 photon in the output mode 1 (2) (Fig. 8.2a) such that P10 + P01 = 1. The

visibility is given as V = |P10−P01|. Similarly, the sum uncertainty is defined as ∆ = 1− (P10)2− (P01)2,

which then yields,

V =
√
1− 2∆. (8.17)

We relate the two-photon contamination yc to the uncertainty bound ∆(1)
b

. In this way, we can understand

the dependence of CN on the degree for which the inequality ∆ ≥ ∆(1)
b

is violated. In order to derive the

uncertainty bound ∆(1)
b

, we consider a separable state of the form,

|Ψsep� =
(|01�+ eiφ1

√
ε1|11�)(|02�+ eiφ2

√
ε2|12�)�

(1 + ε1)(1 + ε2)
(8.18)

with p0 = 1−p1−p2, p1 = ε1+ε2
(1+ε1)(1+ε2)

, p2 = ε1ε2
(1+ε1)(1+ε2)

, and the phases φ1,φ2. This state parameterizes

all possible pure separable states, and mixed states can be accounted by arbitrarily mixing different pure

states. For bipartite systems, however, the uncertainty bound for pure states is convex (Fig. 8.2b), and any

mixing of the pure states increases the sum uncertainty121. Therefore, we only consider the cases for pure

states, and we find

∆(1)
b

=
1− yc

2
. (8.19)

By substituting Eq. 8.17 and 8.19 into Eq. 8.16, we obtain the relationship between concurrence and the

violation of uncertainty bounds for a biseparable system, namely

CN =
√
1− 2∆−

�
1− 2∆(1)

b
. (8.20)

We emphasize the equivalence of the two verification protocols based on the violation of the uncertainty

bound and the concurrence. The operational differences between the two entanglement verification protocols

are the measurements of visibility (by varying the relative phase β1,2) and the sum uncertainty ∆ (with a fixed

relative phase β1,2). In Fig. 8.8, we compare the concurrence C(ρ̂W )
N

directly measured via quantum state

tomography27 and the concurrence CN inferred from violation of the uncertainty bound ∆(1)
b

(Fig. 8.2c).

The precise correspondence of the two experimental results suggest that the underlying relationship between

the two entanglement verification methods, as derived here (Eq. 8.20), is correct.
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Figure 8.8: Comparison between the directly measured concurrence and the inferred concurrence. We
compare the directly measured concurrence C(ρ̂W )

N
(open triangles) based on quantum state tomography27 and

the concurrence CN (filled circles) inferred from the measured degree of violation of the uncertainty bound
specified with parameters {∆,∆(1)

b
} (Fig. 8.2, Eq. 8.20). The red curve shows the theoretical prediction

of concurrence as a function of the two-photon component yc based on a model in ref. 34. The errors in CN

reflect the 1σ-statistical uncertainties and the error bars for the measured concurrence C(ρ̂W )
N

are not shown
for clarity. The precise correspondence between C(ρ̂W )

N
and CN validates the use of Eq. 8.20.

8.11 Constructing the projective operators for the uncertainty rela-

tions

In the presence of transmission losses {η, η�} and imbalanced beamsplitter ratios {α,α�} in the verification

interferometers shown in Fig. 8.9, the projectors no longer correspond to the pure state descriptions M̂i =

|Wi��Wi| in Eq. 8.2 (ref. 38, chapter 7). Using the standard technique for loss propagations and beamsplitter

transformations193, the original projectors |Wi��Wi| become mixed states of the following form,

|Wi��Wi| �→ (1− q(i)1 )|0000��0000|+ q(i)1 |Πi��Πi|, (8.21)

where q(i)1 gives the probability of a successful projective measurement in mode i for an entangled state

|Πi�, |0000��0000| is the vacuum state, and |Πi��Πi| is a pure state containing a single-photon shared among

four optical modes (ref. 38, chapter 7). In the case of a conditional measurement (i.e., post-selecting the cases

where we find a single-excitation among the four outputs of the cascaded beamsplitters in Fig. 8.1c), |Πi��Πi|
describes the projective measurement for the output mode i, M̂i = |Πi��Πi|. Unlike the original projectors

|Wi� in Eq. 8.2, these projectors |Πi� may not be orthogonal, but they span the single-photon subspace ρ̂1 of

the physical state ρ̂W .
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Figure 8.9: A simplified setup for the verification protocol (sum uncertainty). The setup includes differ-
ential transmission efficiencies {η, η�} (blue) and imbalanced beam-splitter ratios {α,α�} (red). The wiggly
dashed arrows correspond to the auxiliary output modes which are traced over for loss propagation.

Generally, any imbalances (whether they are due to differential losses or beamsplitter ratios) in the verifi-

cation interferometers cause reductions of the overlaps |�Wi|Πi�|2 between projectors |Wi� and |Πi�, thereby

making the protocol less sensitive to entanglement in ρ̂W (ref. 38, section 7.6.1). In practice, the corrected

bounds ∆(K)
b

always decrease towards smaller two-photon component yc from the ideal lossless and balanced

case, as shown for our experimental parameters {η, η�} and {α,α�} in Fig. 8.4. Furthermore, the uncertainties

in the measurement of {η, η�} and {α,α�} cause an uncertainty in the determination of the bounds ∆(K)
b

.

Fig. 8.9 depicts the setup for our verification protocol indicating the losses {η, η�} and beamsplitter ra-

tios {α,α�} of the interferometers. Experimental parameters and their uncertainties for {η, η�} and {α,α�}
are shown in Table 8.1. In our data analysis, we infer the photon statistics of modes {1�, · · · , 4�} in ρ̂out

at the outputs of the verification interferometers from the measured photodetection statistics at detectors

{D1, · · · , D4}. Thus, we exclude the losses corresponding to the output paths of the verification interferom-

eters from our analysis. The small imbalances between the terms {α,α�} and {η, η�} in Table 8.1 contribute

to the small correction of the theoretical bounds ∆(K)
b

from the ideal projectors |Wi� to non-ideal projectors

|Πi�. To understand the small corrections of ∆(K)
b

from |Wi� to |Πi� for our parameters, we investigate the

effect of {η, η�} and {α,α�} on the bound ∆(3)
b

for states containing at most tripartite entanglement for a

fixed two-photon contamination yc = 0.035, corresponding to the lowest measured yc in our experiment.

Table 8.1: Experimental parameters and their uncertainties for beamsplitter ratios {α,α�} and trans-
mission efficiencies {η, η�} of the verification interferometers. The systematic uncertainties (δκ) of {κ}
are fractionally (δκ/κ) = 5% for κ ∈ {α,α�, η, η�}. Note that α12 � α34 � α�

14 � α�
23. The absolute differ-

ences in the pairs of transmission efficiencies ({η1, η2},{η3, η4},{η�1, η�4}, {η�2, η�3}) influence the correction
to ∆(K)

b
.

α12 α34 α
�
23 α

�
14 η1 η2 η3 η4 η

�
1 η

�
4 η

�
2 η

�
3

0.5 0.53 0.52 0.53 0.57 0.57 0.52 0.56 0.67 0.66 0.62 0.66
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a b

c

Figure 8.10: The effect of imbalances and losses to the determination of ∆(3)
b

. Scanning the boundary ∆(3)
b

for states containing at most three-mode entanglement as a function of a, the beamsplitter ratio α�
23 (shown as

a black line), and b, the transmission efficiency η�3 (shown as a black line) at yc = 0.035, which corresponds
to the lowest two-photon contamination measured in Fig. 8.4. The measured ∆ at yc = (3.5 ± 0.9) × 10−2

is shown as a filled circle, with a horizontal error indicating the systematic uncertainty in estimating a, α�
23

and b, η�3, respectively. The vertical error is the statistical uncertainty for the measured ∆. c, Histogram
H(∆(3)

b
) of the three-mode boundary ∆(3)

b
by repeating the calculations from randomly drawn sets of the

transmission efficiencies {η, η�} and beamsplitter ratios {α,α�} at yc = 0.035. The histogram is fitted to a
Gaussian function (shown as a black line) with (1/e) half-width δ∆(3)

b
= 0.018. The uncertainty δ∆(3) is

determined by the joint distribution of {α,α�} and {η, η�}. Here, we assume independent normal distributions
for the individual parameters in {α,α�} and {η, η�}. (Inset) Confidence level in the violation of the inequality
∆ ≥ ∆(3)

b
for the three-mode bound ∆(3)

b
. Experimentally measured ∆ are shown as filled circles, and

the black line indicates the the three-mode bound ∆(3)
b

, along with its uncertainty for yc = 0.035. The
large suppression of ∆ from ∆(3)

b
compared to the uncertainty δ∆(3)

b
for the bound affirms the unambiguous

detection of genuine four mode entanglement.

Figs. 8.10a and 8.10b illustrate the processes of reductions in the three-mode boundary ∆(3)
b

at yc =

0.035, due to a, imbalanced beamsplitter ratio (α�
23) and b, differential loss (η�3), while leaving all other

parameters in {α,α�} and {η, η�} fixed (Table 8.1). In particular, the correction ranges of ∆(3)
b

due to the
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individual uncertainties of α�
23 and η�3 are small compared to the measured ∼ 20σ (standard deviation)

suppression of the sum uncertainty ∆ at yc = 0.035 relative to ∆(3)
b

(shown as a filled circle in Fig. 8.10).

Finally, we discuss our analysis of the uncertainty δ∆(3)
b

in the bound ∆(3)
b

(Fig. 8.10c) due to the

systematic uncertainties of all the parameters in {α,α�} and {η, η�}. We construct the histogram H of ∆(3)
b

by

iterating the calculation of ∆(3)
b

with randomly drawn sets of {α,α�, η, η�}. Here, the parameters {α,α�} and

{η, η�} are assumed to follow independent normal distributions, with their means and systematic uncertainties

shown in Table 8.1. By fitting the histogram with a Gaussian distribution, we infer an uncertainty δ∆(3)
b

=

0.018 and the center �∆(3)
b

� = 0.25 for the boundary ∆(3)
b

. These values should be compared to the measured

∆ = (5.6± 1.1)× 10−2 at yc = (3.5± 0.9)× 10−2. As depicted in the inset of Fig. 8.10c, our measurement

yields ∼ 9σ suppression of the uncertainty bound, reflecting the high confidence level in the violation of

the bound ∆(3)
b

. Our experiment, therefore, unambiguously verifies the presence of four-mode entanglement

with the imbalances ({α,α�}, {η, η�}) in the verification interferometers.


