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Chapter 7

Characterization of entanglement for
multiple optical modes via quantum
uncertainty relations

This chapter is largely based on ref. 38. Reference38 refers to the then current literature in 2009 at the time of

publication.

7.1 Introduction

Detecting and classifying entanglement is an important challenge in the field of quantum information science

(chapter 1). One problem is of a theoretical nature, to decide whether a given density matrix ρ̂ of multiple

quantum systems is entangled or separable. Even for bipartite systems, this is a hard problem for which no

efficient general solution is known for higher-dimensional Hilbert spaces, although a simple test based on the

negativity of the partial transpose of the density matrix leads to a sufficient criterion for entanglement246,247.

If ρ̂ is entangled, the next issue is how to classify the type of entanglement. For more than two subsystems,

the full classification of all entanglement classes is as yet an unsolved problem (e.g., refs. 209,210,248,249).

In an experiment, the practical task of detecting entanglement is even harder. If one would perform a

full tomographic measurement, then in the limit of infinitely many data one would end up with an arbitrarily

accurate estimate of a density matrix ρ̂, and thus reduce the experimental problem to the theoretical problem

mentioned above. In all other cases, one needs different tests that make use of less than full knowledge of the

density matrix. The main practical disadvantage of full tomography is the rapidly growing number (with the

number of quantum systems and with the dimension of the Hilbert spaces involved) of measurements needed

to find all elements of a density matrix. The other challenge is obtaining a physical density matrix from a

finite set of measured data250,251.

Thus, there is an ever-growing demand for simpler experimental tests revealing entanglement. Fortu-

nately, for bipartite systems there exists a handful of different experimental techniques for entanglement
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detection40,110. In this chapter, we will focus on a particular type of multipartite entangled states (namely,

W states209) that can be produced in systems with variable numbers of excitations. We think in particular

of experiments with atomic ensembles (e.g., refs. 27,30,73,93, chapters 3–6) based on the DLCZ protocol4 in

which information can be stored in the number of atomic excitations of each ensemble (chapter 9), as well as

of experiments on photonic systems (e.g., refs. 229,252–255), where the number of photons in a given mode can

be used as a quantum variable (chapter 8). In the following, we will use the words “excitation” and “photon”

interchangeably.

7.2 Verifying multipartite mode-entangled W states

We define the state |W � as a mode-entangled analogue of standard N -partite W states of qubits. It is a pure

state where a single excitation is shared symmetrically among N modesa

|W � = 1√
N

N�

i=1

|0, · · · , 0i−1, 1i, 0i+1, · · · , 0�, (7.1)

where |0� denotes a state of a mode with no excitations and |1� is a state with a single excitation. The

subscripts i ∈ {1 . . . N} refer to modes that are in spatially distinct locations, so that the concepts of “local

operations” and hence entanglement are unambiguously defined256–258.

In this chapter, we solve the problem of detecting the entanglement of a W state (and its noisy cousins)

in two steps. In section 7.3, we will focus on detecting and classifying entanglement within the subspace of a

fixed total number of excitations (in all modes together), namely one. In section 7.4, we complete the analysis

by including the remaining parts of the Hilbert space, the subspace with no excitations and the subspace with

more than a single excitation in total. Including both subspaces is crucial in the analysis. Earlier detection

schemes259,260 for W states in the context of photons were incomplete due to the neglect of states with

multiple photons. Moreover, I will discuss how to include imperfections such as losses, most relevant for the

actual implementation of our method (refs. 33,35, chapters 8, 9).

7.3 Genuine N -mode one-photon entanglement

N parties can be entangled in many different ways. In some papers, “genuine” N -party entangled states

include states that are mixtures of M -party entangled states with M < N , as long as such mixtures are

not biseparable along any particular splitting of the N parties into two groups (for instance, ref. 261). Here,

however, we will classify such mixtures as M -party entangled states, and the name “genuine N -party entan-

glement” in our case is reserved for states that can only be written as a mixture of pure states that all possess

N -party entanglement. Thus, our criterion for genuine N -party entanglement is more severe.
aFollowing convention, we set all phase factors equal to unity; our entanglement detection method, however, will not make any

assumption about the phase factors of the state actually generated in one’s experiment, see Eq. 7.14.
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Recently it has been suggested that uncertainty relations can be used as an entanglement criterion for

finite-dimensional systems (refs. 57,121, see also ref. 262 for an experimental implementation using local ob-

servables on two qubits). The uncertainty principle sets up a fundamental limit on how accurately observables

of a quantum system can be simultaneously determined. For instance, if {M̂i}, i = 1 . . .K is some set of

observables, then the measurement uncertainty in a given state ρ̂ is the sum of variances of all observables

M̂i (i.e.,
�

i
δMi(ρ̂)2). This sum is equal to zero, if and only if the state for which measurements of all {M̂i}

are performed on is a simultaneous eigenstate of all {M̂i}. If there is no such state (when the observables are

not all mutually commuting), then there is a positive number C such that

K�

i=1

δMi(ρ̂)
2 ≥ C. (7.2)

In particular, Hofmann and Takeuchi pointed out in 2003 that the existence of the lower uncertainty bound C

can be employed as a separability criterion121. Indeed, if for some fixed set of observables an inequality of

the form (Eq. 7.2) holds for all separable states, then its violation is a signature of entanglement.

The uncertainty bound has another obvious but important property. Namely, one can never decrease

the average uncertainty by mixing different states. In other words, for any state ρ̂ =
�

m
pmρ̂m and any

observable A, the following inequality holds true,

δA(ρ̂)2 ≥
�

m

pmδA(ρ̂m)2. (7.3)

The proof is rather straightforward and can be found in ref. 121.

With the uncertainty criterion at hand, we still have some flexibility over the types of observables to

choose. In principle, all observables can be divided into two groups — local and nonlocal. Whereas local

observables can be measured separately for each and every party and therefore tend to be easier to access in

an experiment, they often cannot reliably detect genuine multipartite entanglement. Nonlocal observables,

on the other hand, require a simultaneous nonlocal measurement of several parties at a time, which often

is experimentally challenging. Here, we show how experimentally accessible nonlocal observables can be

constructed to unambiguously detect genuine multipartite entanglement of the W -type.

The basic idea behind the construction of nonlocal observables is to choose them as projectors onto a

basis of N -partite entangled states. Simultaneous eigenstates of these projectors are necessarily entangled

states, and the variance in the projectors is minimized for N -party entangled states. A sufficiently small

variance is then a sufficient criterion for genuine N -party entanglement. In order to illustrate this idea, we

will consider a system of four modes (K = 4) sharing a single photonb. The problem at hand is then to find a

set of nonlocal observables which allows to separate all four-mode separable and biseparable states from the

genuinely four-mode entangled states such as the W state of Eq. 7.1. We note that the general construction
bSee chapter 8 for an example of K = 2, whereby we studied the correspondence between the conventional entanglement measure

(concurrence) and the uncertainty relations.
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Figure 7.1: Verification interferometer for measuring sum uncertainty. Beamsplitter setup to project ρ̂
onto the four W states (Eqs. 7.4–7.7): four input modes are converted into four output modes by a set of four
50/50 lossless beamsplitters, numbered 1–4. From the count statistics of (ideal) detectors placed at the four
output modes one obtains the quantity ∆(ρ̂) defined in Eq. 7.8. The effects of losses and asymmetries in the
beamsplitters, and non-ideal detectors are discussed in section 7.6.1.

for an arbitrary N can be done in a similar fashion. Moreover, the nonlocal observables for single photons

we use can be measured just using linear optics (beamsplitters) and non-number resolving photodetectors.

The Hilbert space of a system of four modes sharing exactly one photon is spanned by four basis product

vectors {|1000�, |0100�, |0010�, |0001�}. This basis can always be rotated to a basis constituted by four

W -like states,

|W1� =
1

2
(|1000�+ |0100�+ |0010�+ |0001�), (7.4)

|W2� =
1

2
(|1000� − |0100� − |0010�+ |0001�), (7.5)

|W3� =
1

2
(|1000�+ |0100� − |0010� − |0001�), (7.6)

|W4� =
1

2
(|1000� − |0100�+ |0010� − |0001�). (7.7)

The mode transformation from the four product states to these four W -like states can be decomposed in terms

of unitary operations that can be implemented with beamsplitters and phase-shifters (see Fig. 7.1).

The next step is to choose four projectors onto the basis Eqs. 7.4–7.7 as nonlocal observables M̂i =

|Wi��Wi|, with i ∈ {1, . . . , 4}. Clearly, the only simultaneous eigenstates of all four operators M̂i are the

four states |Wi�. The total variance of all M̂i’s vanishes for any one of the four states |Wi�. In contrast, for

product states, the total variance is bounded from below, since there is no simultaneous product eigenstate

of all the M̂i. Therefore, we can write down an uncertainty-based entanglement criterion using nonlocal

observables for any state ρ̂1 within the subspace of a single excitation, in terms of the sum of variances of
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M̂i,

∆(ρ̂1) =
4�

i=1

Tr(ρ̂1 [|Wi��Wi|]2)− [Tr(ρ̂1|Wi��Wi)]
2

=
4�

i=1

�
�Wi|ρ̂1|Wi� − �Wi|ρ̂1|Wi�2

�

= 1−
4�

i=1

�Wi|ρ̂1|Wi�2, (7.8)

where the subscript 1 is there to remind us the state ρ̂1 contains exactly 1 excitation.

To find the lower bound on ∆ for unentangled states, it is sufficient to consider pure states, thanks to Eq.

7.3. For a pure state ρ̂1 = |α��α|, we have

∆(ρ̂1) = 1−
4�

i=1

|�Wi|α�|4. (7.9)

The next step is to find the minimum of ∆(ρ̂1) by maximizing
�

i
|�Wi|α�|4 over all separable states

|α� containing a single excitation. There are three types of pure four-mode states that are not four-mode

entangled c.

1. Fully separable pure states, which are products of four single-mode states. There are only four such

states within the subspace of interest, namely |1000�, |0100�, . . . , |0001�.

2. Biseparable states with at most two-mode entanglement. Here, the two modes must be in the vacuum

state, and the most general pure state in this class is of the form |00�⊗ (a|01�+ b|10�), or similar states

by permuting the different modes.

3. Biseparable states with at most three-mode entanglement. Here, at least one mode is in the vacuum

state, and the most general pure state, up to permutations of the modes, is of the form |0� ⊗ (a|001�+
b|010�+ c|100�).

Given the most general pure state within each class, it is straightforward to calculate the 3 corresponding

minimum values of ∆(ρ̂1), and the results are depicted in Fig. 7.2. For example, for any pure fully separable

state |α�, the overlap |�Wi|α�|2 = 1/4 for any i, and so ∆(ρ̂1) = 3/4. For general mixtures of fully separable

states, this number gives the best possible lower bound on the variance. We note that the numerical results

from the next section confirms the results of Fig. 7.2.

As an example, consider the Werner-like mixture of a W state263 and the maximally mixed state of four

cNote that there is only one class of four-mode entangled states with one excitation: i.e., states of the W -type a|0001�+ b|0010�+
c|0100� + d|1000�. Our method can be used to detect any four-mode entangled state within the subspace of a single excitation, by
modifying the projectors appropriately.
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Figure 7.2: Minimum variances ∆ for various types of four-mode pure states containing exactly one
excitation (photon). We find minimum variances ∆(4)

b
= 0 for four-mode entangled states, ∆(3)

b
= 5/12 for

three-mode entangled states, ∆(2)
b

= 1/2 for two-mode entangled states, and ∆(1)
b

= 3/4 for fully separable
states.

modes with a single excitation, ρ̂mm = 1
4 (|0001��0001|+ |0010��0010|+ |0100��0100|+ |1000��1000|),

ρ̂1(p) = p|W1��W1|+ (1− p)ρ̂mm. (7.10)

Using the above criterion for ∆(ρ̂1(p)) = 3/4 − 3p2/4, we find that for p > 2/3 we can detect genuine

four-mode entanglement, and for p >
√
3/3 � 0.577 we detect at least three-mode entanglement. Moreover,

for any p < 1, the state ρ̂1(p) is entangled, even if just two-mode entangled.

If the number of modes N is arbitrary, then the minimum uncertainty ∆(ρ̂1) for biseparable (N − 1)-

mode entangled states can be shown, after some algebra, to be given by (2N − 3)/N(N − 1). In the limit

of large N , this bound rapidly approaches zero, hence making it practically impossible to distinguish in this

way genuine N -partite entanglement from mere (N − 1)-partite entanglement.

Finally, we note that similar uncertainty-based entanglement criteria can in principle be applied to all

types of N -mode states with fixed total number of excitations. If the total photon number is larger than 1,

however, the unitary transformation from the product states to a basis consisting of entangled states can in

general not be performed with linear optical operations only. Therefore, measurements in such a basis would

no longer be necessarily deterministic in that case.

7.4 Detecting W states in an experiment

Due to experimental imperfections, an actual state, produced in a laboratory, is never a pure state with a

fixed number of excitations, such as, say, Eq. 7.4. In experiments with atomic ensembles (chapter 9), a state

ρ̂W is routinely generated whose single-excitation part ρ̂1 has a large overlap with a W state, but contains

a significant contribution from the vacuum ρ̂0 and from states with more than one excitation ρ̂≥2. As a

conservative estimate, we can ignore coherent superpositions of states with different numbers of excitationsd,

dOne can get rid of such coherences by local operations 27.



119

and hence we can write down ρ̂W in a generic form

ρ̂W = pρ̂0 + qρ̂1 + (1− p− q)ρ̂≥2, (7.11)

where the subscripts {0, 1,≥ 2} indicate the numbers of excitations. Typically, the magnitude of 1− p− q is

of the order of 1% or even less. The main source of contamination to the desired single-excitation part is the

vacuum. Moreover, ρ̂1 is not necessarily a pure state, and is not necessarily a state of N single modes either.

Even if the uncertainty measure from the preceding section would identify the presence of four-mode

entanglement in the state ρ̂1, this does not guarantee that ρ̂W itself carries any entanglement. The standard

counterexample264 is a four-mode state of the (unnormalized) form

|+� ∝ (|0�+ �|1�)⊗4, (7.12)

for which the one-excitation part ρ̂1 is genuinely four-party entangled, although the state ρ̂W itself is fully

separablee. Therefore, in order to justify the presence of entanglement in an experiment, it is not sufficient

to measure only the variance ∆(ρ̂1) of the single-excitation part of the density matrix, but it is crucial to

measure the numbers {p, q}. Once p, q, and ∆(ρ̂1) are determined, one can check if there exists a completely

separable or biseparable state ρ̂test with the same values of p, q, and ∆(ρ̂1). If no such state exists, then one

can conclude unambiguously that ρ̂W is entangled.

More precisely, for fixed values of p and q, we would like to find the minimum possible value for the

variance, ∆min, consistent with the various sorts of biseparable or fully separable states. In the following, we

will plot the results for the case where q = 0.1, which is the relevant case for the experiment (ref. 35, chapter

8). We will find ∆min in that case as a function of r := 1− p− q.

Before discussing in turn the various classes of separable and biseparable states, we make several remarks:

We note that ∆min within each class cannot increase with decreasing q. The reason is that given any state ρ̂, we

can always mix in the vacuum ρ̂0 without changing the variance ∆, and without increasing the entanglement.

But this mixing operation clearly does decrease q. Hence, ∆min cannot increase with decreasing q.

Similarly, we could mix in a fully separable state containing more than a single photon in some given

mode, e.g., a tensor product of the vacuum and one mode with 2 or more photons. This again does not affect

∆, and does not increase entanglement, but does decrease q. For this reason, in our attempts to find the

minimum variance, we do not need to consider states with more than a single photon in any given mode, as

those states will have a larger value of ∆ than the minimum possible for given q.

Moreover, we could take a state of N single modes and convert it into a state of multiple modes in N

locations, by locally applying a random unitary operation. This local operation does not move a state up the

entanglement hierarchy and does not affect any of the quantities ∆, q, and r. Thus, excluding fully separable

eTo resolve this conundrum, we note that postselecting one photon in total constitutes a nonlocal filter. Thus, projecting ρ̂1 out of
ρ̂W can increase the amount of entanglement 264 and lead to a spurious detection of entanglement when there was none.
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states and biseparable states of N single modes is sufficient for detecting entanglement.

Because ρ̂1 is subnormalized to q, we have, instead of the inequality (7.3), the inequality

q∆(ρ̂1) ≥
�

m=1

pmqm∆(ρ̂m,1), (7.13)

where q =
�

m
pmqm and ρ̂ =

�
m
pmρ̂m. The subscript 1 means the single-excitation component ρ̂1

(ρ̂m,1) of ρ̂ (ρ̂m).

Finally, instead of projecting ρ̂W onto the four states (Eqs. 7.4–7.7), in an experiment one would really

project ρ̂W onto four states of the form,

|W �
1� =

1

2
(|1000�+ eiφ1 |0100�+ eiφ2 |0010�+ eiφ3 |0001�),

|W �
2� =

1

2
(|1000� − eiφ1 |0100� − eiφ2 |0010�+ eiφ3 |0001�),

|W �
3� =

1

2
(|1000�+ eiφ1 |0100� − eiφ2 |0010� − eiφ3 |0001�),

|W �
4� =

1

2
(|1000� − eiφ1 |0100�+ eiφ2 |0010� − eiφ3 |0001�),

(7.14)

and vary over all three phases φk, k ∈ {1, 2, 3} (by inserting phase-shifters in the appropriate modes) to find

the minimum variance ∆min, thus optimizing the entanglement test. Our method is otherwise independent of

which values of φk attain that minimum.

7.4.1 Fully separable four-mode states

It is relatively easy to account for all separable and biseparable states in the case of four modes. Let us first

calculate p, q, ∆(ρ̂1) for fully separable states. We first consider pure states |ψs� of the form

|ψs� =
4�

i=1

(|0�+ �i|1�)�
1 + |�i|2

, (7.15)

for complex parameters �i. As argued above, we do not have to consider states with more than a single

excitation in any one mode. For the pure state |ψs�, a corresponding density matrix can be constructed from

ρ̂s = |ψs��ψs|:
ρ̂s = pρ̂s,0 + qρ̂s,1 + rρ̂s,≥2, (7.16)

where

p =
4�

i=1

1

1 + |�i|2
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and

q = p
4�

i=1

|�i|2.

We can visualize a set of pure completely separable states, and in particular its border, by plotting values

of ∆(ρ̂s,1) versus r for a fixed value of the single-excitation probability q, by randomly varying over all

values of �i consistent with that value of q. By symmetry, it is clear the minimum variance will be obtained

for real parameters. The result is shown in Fig. 7.3, and we can clearly identify the region of full separability,

the lightly shaded area (colored in yellow). The minimum value of ∆(ρ̂s,1) at r = 0 is 3/4 in agreement with

our previous discussion (see Fig. 7.2). Even though ∆(ρ̂s,1) approaches zero for sufficiently large values of

r f, the density matrix ρ̂s remains fully separable g.

Moreover, we manage to find the pure states which reside on the pure-state boundary, indicated as black

dots in Fig. 7.3. The boundary can be parameterized by two parameters, either q and r, or, more simply, by

� and �̃. Namely, the extremum values of the variance for pure fully separable states are attained for states of

the form

|ψ�,�̃� ∝ (|0�+ �|1�)(|0�+ �̃|1�)⊗3. (7.17)

One may notice the lower border for pure states in Fig. 7.3 is not convex as plotted. This indicates that points

corresponding to certain mixed states may fall below the pure-state boundary. Thus, we have also tested

randomly chosen mixtures of random pure states, as well as mixtures of states on that boundary. And some

mixed states (plotted in green) indeed have a smaller variance. Thus, the minimum variance is attained by

mixed states in this case, and the correct lower bound is indicated in red. This lower bound coincides with the

convex hull of the graph for pure states (i.e., ρ̂s,convex = a1|α1��α1| + a2|α2��α2|, where |α1,2� ∈ {|ψ�,�̃�}
are the minimum uncertainty states in the pure-state boundary).

7.4.2 Biseparable states with at most two-mode entanglement

The next class of states to consider is biseparable states: i.e., states that can be described by a density matrix

ρ̂bis =
M�
i=1

ρ̂A
i
⊗ ρ̂B

i
. The division into subsystems A and B in the case of four modes has two distinct

possibilities—either system A represents one of the modes and system B consists of the remaining three

modes (e.g., bipartition (1|234)) or both systems A and B represent two modes each (e.g., bipartition 12|34).

We will study the latter case first. We represent a pure biseparable state with at most two-mode entanglement

by

|ψ�AB = |ψ�A ⊗ |ψ�B , (7.18)

fSee also the last subsection of this section.
gSee the example mentioned above.
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Figure 7.3: Scatter plot (in yellow) of the variance ∆(ρ̂s,1) of the single-photon part for randomly cho-
sen, pure, fully separable states versus the probability of finding multiple excitations, r for a fixed
single-photon probability q = 0.1. The black crosses are data points for a particular subset of pure states,
attaining the extremum values of the variance for the set of pure states. Also plotted is the variance for ran-
domly chosen mixed states (in green). For this particular value of q those values for the variance fall within
the convex hull of the graph for pure states (the red line is the convex hull of the black curve). The region be-
low the lowest red line then corresponds to entangled states (as indicated by the word “ENTANGLEMENT”):
but this includes two-mode, three-mode, and four-mode entanglement.

with both two-mode states |ψ�k for k ∈ {A,B} of the form

|ψ�k ∝ |00�+ �k|01�+ ��
k
|10�, (7.19)

where we included phase factors into the parameters �k and ��
k
.

For the same reason given in the preceding subsection, we do not have to consider contributions from the

terms with more than a single excitation in any one mode. The expression for the variance ∆ is symmetric

under the interchange of any two modes, and so it is immaterial which two modes constitute system A. We

again vary over the complex parameters {�k, ��k} for fixed value of the single-photon probability q = 0.1 to

find the set of all pure biseparable states with at most two-mode entanglement, as a function of the multiple-

excitation probability r. By symmetry, the minimum variance is attained for real coefficients.

The lightly-shaded (yellow) area in Fig. 7.4 then depicts the set containing all biseparable states with at

most two-mode entanglement. Indeed, we have checked explicitly that points corresponding to mixed states

fall within the shaded region, unlike in the preceding case of fully separable states. The shaded region of Fig.

7.4 includes that of Fig. 7.3, simply because the set of fully separable states is a subset of the set of states

with at most two-mode entanglement. The minimum value of ∆ at r = 0 is 1/2, confirming the result from

Fig. 7.2.

Just as in the preceding subsection, we find the pure states living on the boundary. The boundary is again

parameterized by two parameters, � and �̃. Namely, the minimum variance is attained for biseparable states
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Figure 7.4: Scatter plots of the variance of the single-photon part for randomly chosen biseparable
states with at most two-mode entanglement. The graph is convex, and points corresponding to mixed
states (plotted in green) fall within the yellow region. The region below the black curve corresponds to at
least three-mode entanglement.

of the form

|ψ�,�̃�AB ∝ (|00�+ �|10�+ �|01�)(|00�+ �̃|10�+ �̃|01�).

In this case, it is straightforward to extract the minimum variance as a function of q and r:

∆min = 1/2− 2r(1− q)/q2 + 2r2/q2, (7.20)

which is indeed almost linear in r when r � 1. Moreover, this boundary is convex. We can rewrite the

minimum variance more compactly as

∆min = 1/2− 2rp/q2. (7.21)

7.4.3 Biseparable states with three-mode entanglement

A pure state of the entire four-mode system (with up to two excitations) that has at most three-mode entan-

glement can be described by the following biseparable vector,

|ψ�AB ∝ (|0�+ �1|1�)⊗ (|000�+ �2|100�+ �3|010�+ �4|001�), (7.22)

where we have arbitrarily chosen the first mode to be the system A (bipartition (1|234), with single mode

A = 1 and composite mode B = {234}). The analysis, however, is symmetric with respect to our choice

for the system A. In the second term, we do not have to consider states with more than a single photon in

system B. Although the measurement determining whether there are multiple excitations in the three modes

comprising system B is not a local filtering operation in the usual sense, it is local with respect to the bipartite
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Figure 7.5: Scatter plots of the variance of the single-photon part for randomly chosen biseparable
states with at most three-mode entanglement for q = 0.1. Points corresponding to mixed states fall within
the lightly shaded (yellow) region, and are plotted in green. The region below the black curve corresponds to
states with genuine four-mode entanglement.

cut A|B, which is the relevant cut in this case.

The result for q = 0.1 is plotted in Fig. 7.5. Like in the case for fully separable states, we observe the

existence of points whereby the values of ∆(ρ̂1) are close to zero. Again, we should not misjudge the presence

of entanglement in these states, since the states we are operating with are biseparable by construction. The

region for r larger than ≈ 2 × 10−3, where the minimum variance no longer is a decreasing function of r,

contains no physical states with smaller variance.

The lightly-shaded (yellow) region depicts the convex set of biseparable states with at most three-mode

entanglement, and includes the set of fully separable states, although (interestingly) not necessarily the set

of states with two two-mode entangled states (it does for q = 0.1). We have explicitly verified that points

corresponding to mixed states (plotted in green) fall within the yellow region. The minimum value of ∆ at

r = 0 is perhaps a little hard to discern, but is indeed equal to 5/12, the value obtained analytically in the

preceding section (Fig. 7.2). The lower boundary (plotted in black) corresponds to states of the form

|ψ�AB ∝ (|0�+ �̃|1�)⊗ (|000�+ �|100�+ �|010�+ �|001�), (7.23)

with real and positive � > �̃.

Since the boundary of minimum variance is the lowest for this type of biseparable states, it is the rele-

vant boundary for the purpose of detecting genuine four-mode entanglement. For this reason, we plot these

boundaries for several values of q.

For increasing values of q, the minimum possible variance for 3-mode entangled states increases and

reaches the limit of max(∆min) = 5/12 for q → 1. Figs. 7.6–7.8 approach this limit for values q = 0.4

through q = 0.7 to q = 0.9.
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Figure 7.6: Scatter plots of the variance of the single-photon part for randomly chosen biseparable
states with at most three-mode entanglement for q = 0.4. Points corresponding to mixed states fall within
the lightly shaded (yellow) region, and are plotted in green. The region below the black curve corresponds to
states with genuine four-mode entanglement.

Figure 7.7: Scatter plots of the variance of the single-photon part for randomly chosen biseparable
states with at most three-mode entanglement q = 0.7. Points corresponding to mixed states fall within
the lightly shaded (yellow) region, and are plotted in green. The region below the black curve corresponds to
states with genuine four-mode entanglement.
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Figure 7.8: Scatter plots of the variance of the single-photon part for randomly chosen biseparable
states with at most three-mode entanglement q = 0.9. Points corresponding to mixed states fall within
the lightly shaded (yellow) region, and are plotted in green. The region below the black curve corresponds to
states with genuine four-mode entanglement.

7.4.4 Full analysis

Based on an exclusion analysis, a practical inseparability criterion can be formulated. In an experiment aimed

at detecting a genuinely four-mode entanglement, (i) one measures the diagonal elements r, q, and (ii) the off-

diagonal elements for ∆. Then one plots, according to the previous considerations, values of ∆ versus r for

all separable and biseparable models, feeding in the value of q attained from the experiment. The measured

values of p, q, and ∆ are represented by a single point in that plot. If that point lies outside all three shaded

regions of the model plots, the state produced in the experiment must carry genuine four-mode entanglement.

Partial conclusions about entanglement can be reached when the point falls outside some and inside other

regions.

In particular, if the measurement point lies outside the shaded region of Fig. 7.3, but inside the shaded

regions of Figs. 7.4 and 7.5, one can only conclude that one has an entangled state, but it could be merely

two-mode entangled. If the point falls outside the shaded regions of both Figs. 7.3 and 7.4, but inside the

shaded region of Fig. 7.5, one has at least three-mode entanglement. Of course, if the point falls inside the

shaded region of Fig. 7.3, no firm conclusion can be reached about entanglement, as there is a fully separable

state consistent with one’s values for p, q, ∆. In addition, for the case of two modes, there is an analytical

analogue of the current scheme of uncertainty relations by way of p, q, ∆ and bipartite concurrence (chapter

8).

We plot the three minimum variance boundaries for different small values of q as a function of a scaled

variable yc := 8rp/3q2 (see the next subsection for an explanation for this choice of variable) in Fig. 7.9.

One sees the boundaries depend only weakly on that parameter.
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Figure 7.9: Boundaries for the minimum variance for the three types of biseparable states as functions
of yc := 8rp/3q2 for 10 values of q = 0.02, 0.04, . . . 0.2. The reason for choosing this particular vari-
able yc is given in section 7.5. The lowest-lying (green) curves correspond to 3-party entangled states, the
highest-lying (red) curves correspond to fully separable states, the middle (blue) curves correspond to bisep-
arable states with 2-mode entanglement. The variance depends only weakly on q for the red curves, and is
independent of q for the green and blue curves.

7.5 Some necessary conditions for entanglement

Let us finally consider the conditions on entanglement in the simple situation where the variance ∆(ρ̂1)

vanishes and where q is not too large. We consider the same three classes of unentangled states as before.

1. Fully separable states with ∆(ρ̂1) = 0 must be of the form (|0�+ �|1�)⊗4. For such states, the point at

which the variance is zero is characterized by

8

3

rp

q2
= 1 +

q

6p
+

q2

96p
. (7.24)

For small values of q, we can give the approximate relation, which is valid for fully separable states,

yc ≥ 1,

with yc = 8rp/3q2 being the quantity appearing on the left-hand side of Eq. 7.24. A necessary

(although not sufficient) condition for any type of entanglement is then simply

yc < 1.

For Fig. 7.3, in which we took q = 0.1, this places a strict upper limit on r of r < 4.125 × 10−3 for
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entanglement to be detectable through ∆.

2. Biseparable states with ∆(ρ̂1) = 0 and at most two-mode entanglement must be of the form (|00� +
�|01� + �|10�)⊗2. For such states, the boundary of zero variance is at yc = 2/3, and hence all bisepa-

rable states satisfy

yc ≥
2

3
.

For Fig. 7.4, in which q = 0.1, this places a strict upper limit on r of r < 2.75×10−3 for entanglement

involving at least three modes to be detectable through ∆.

3. Biseparable states with ∆(ρ̂1) = 0 and at most three-mode entanglement must be of the form (|0� +
�|1�)⊗ (|000�+ �|001�+ �|010�+ �|100�. For such states, we similarly derive

yc ≥
1

2
.

For Fig. 7.5, in which q = 0.1, this places an upper limit on r of r < 2.06× 10−3 for entanglement to

be detectable through ∆.

In order to demonstrate genuine four-mode entanglement one must violate all of these conditions. That is,

one must violate the strongest of these conditions, and hence one must have

yc <
1

2
. (7.25)

This condition for four-mode entanglement is necessary but not sufficient for nonzero values of ∆(ρ̂1). The

form of the conditions also indicates why the scaled variable yc, used in Fig. 7.9, is a useful quantity for

small q for fully separable states, and for biseparable states irrespective of the value of q.

7.6 Experimental verification of mode entanglement

7.6.1 Losses and asymmetries

So far we have assumed that the variance measurement device is ideal: beamsplitters (see Fig. 7.1) were

assumed lossless and perfectly balanced, and detectors were perfect. In this subsection, we relax those

conditions and describe the modifications necessary to include these imperfections. First, we consider the

effect of imbalanced beamsplitters.

7.6.1.1 Imbalanced beamsplitters

Suppose, then, we have the same setup as depicted in Fig. 7.1, but with the four beamsplitters having reflec-

tion and transmission probabilities |tk|2 and |rk|2 not necessarily equal to 1/2. Consider one output mode,
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say the top one (mode #1). There is one path a photon can take from the input mode #1 to reach the top

output mode: it has to reflect off of beamsplitter #1 and it has to reflect off of beamsplitter #3. The ampli-

tude for that path is then r1r3, in terms of the reflection amplitudes of beamsplitters #1 and #3. Here we

ignore phase factors due to propagation (they can be trivially inserted in the end). Similarly, a photon from

input mode #2 can reach the top output mode along just one path, with amplitude t1r3. Writing down the

amplitudes for photons starting in input modes #3 and #4 shows that a photo-detection at the top output

mode projects onto the (input) state

|W̃1� = r1r3|1000�+ t1r3|0100�+ r2t3|0010�+ t2t3|0001�. (7.26)

This is a properly normalized state, even if the beamsplitters are not balanced. The normalization follows

from the relation |rk|2 + |tk|2 = 1 for lossless beamsplitters.

We can similarly write down the states onto which one projects if detecting a photon in one of the remain-

ing output modes:

|W̃2� = t1r4|1000�+ r1r4|0100�+ t2t4|0010�+ r2t4|0001�, (7.27)

|W̃3� = r1t3|1000�+ t1t3|0100�+ r2r3|0010�+ t2r3|0001�, (7.28)

|W̃4� = t1t4|1000�+ r1t4|0100�+ t2r4|0010�+ r2r4|0001�. (7.29)

These states, too, are normalized. Moreover, the four states are all orthogonal, as follows from the unitarity

relation t∗
k
rk + tkr∗k = 0. One can still calculate the variance of photodetector counts (albeit with reduced

sensitivity to detect |W �), using the modified projectors onto the W̃ states, but that variance will not give as

much information as in the balanced case about four-mode entanglement. For example, consider the extreme

case of a mirror replacing beamsplitter #4: that is, assume now that r4 = 1 and t4 = 0. Then states |W̃2� and

|W̃4� are no longer four-mode entangled states, but only two-mode entangled states. Thus, certain two-mode

entangled states would give rise to a zero variance in this extreme case.

This implies that even if one’s experiment cannot use perfect 50/50 beamsplitters, one should at least try

to make them as balanced as possible. In such cases, one needs in general a lower variance ∆ than in the ideal

balanced case to conclude one has four-mode entanglement due to the reduced sensitivity of the projectors.

7.6.1.2 Losses

Now let us consider losses. We can model linear losses (both propagation losses, and inefficiencies of the

photodetectors) by imagining lossless paths but with additional beamsplitters reflecting away some portion

of the light in the lossy paths. The output of those additional beamsplitters does not lead to the output

detectors, but to other (unmonitored) output modes which are traced out. The overall transformation from

input to output is still unitary, which implies there must also be additional input modes (just as many as there
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are unmonitored output modes). A photodetection in one of the desired output modes projects onto a set

of orthonormal states on the larger Hilbert space of all input modes. If we write down the projections of

those states onto the four input modes of interest, we will end up with sub-normalized states. For example,

considering for the moment (see the next subsection where we take into account multiple excitations) only

states with exactly one photon, a detection in the top output mode projects ρ̂W onto the state

|W̃ �
1� = T11r1r3|1000�+ T21t1r3|0100�+ T31r2t3|0010�+ T41t2t3|0001�, (7.30)

where the transmission amplitude Tk1 for k ∈ {1, 2, 3, 4} is the product of all loss amplitudes encountered

by a photon propagating from input k to the top output detector (including the inefficiency of the detector).

The variance we are interested in is conditioned on detecting (at least) one photon in the desired output

modes. Once we detect a photon in the top mode, we renormalize the state |W̃ �
1� and project onto:

|W̃ ��
1 � =

|W̃ �
1��

�W̃ �
1|W̃ �

1�
. (7.31)

The four states onto which we project conditionally, |W̃ ��
k
� for k = 1 . . . 4 are, therefore, properly normalized,

but they are not orthogonal, unless all losses are balanced (i.e., if Tlk = const. for all l, k ∈ {1 . . . 4}).

Again, we can still use a variance based on the modified nonorthogonal projectors, but that variance will

give less information than in the ideal lossless balanced case. For instance, if all photodetectors but one are

completely inefficient and never detect any photon, the variance would be zero for any input state. Thus, in

an actual experiment, one would have to make the losses as balanced as possible in order for the variance to

contain as much information about four-mode entanglement as possible. Of course, one would also like to

limit the size of the losses for various different reasons.

With the new projectors onto the nonorthogonal states |W̃ ��
k
� in hand, we can perform the same calcula-

tions as we did in the ideal case: find the minimum variance consistent with unentangled input states, input

states with two-mode entanglement, and input states with three-mode entanglement, respectively, for fixed

values of q and r. We display three illustrative examples (for q = 0.1): (i) in Fig. 7.10, we assume no losses

but unbalanced beamsplitters, (ii) in Fig. 7.11, we assume losses, but balanced beamsplitters, and (iii) in Fig.

7.12, we show the net effects of both losses and imbalances. All figures show the tendency of the minimum

variance to decrease compared to the ideal lossless and balanced case, thereby resulting in reduced sensitivity.

7.6.2 Measured variance vs ∆(ρ̂1)

In the presence of losses, the measured variance, ∆m, is not just due to the single-excitation part, but from

the multi-excitation part of the input state as well. Thus, the measured variance has to be corrected (upwards

in fact) in order to find an estimate for the variance ∆(ρ̂1) due to the single-excitation part, because that is

the quantity we used above to detect entanglement.
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Figure 7.10: Minimum variance for imbalanced beamsplitters. We find the minimum variance curves for
the case where all beamsplitter ratios are 55/45 (dashed lines) rather than 50/50 (solid lines).

Figure 7.11: Minimum variance for imbalanced losses. We show the minimum variance curves for the
case where there is one lossy path with transmission probability of 60% (a typical parameter) (dashed lines),
compared to the ideal lossless case (solid lines).
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Figure 7.12: Minimum variance for imbalanced beamsplitters and losses. We show the minimum variance
curves for the case where there is one lossy path with a transmission probability of 60% and unbalanced 55/45
beamsplitters (dashed lines), compared to the ideal lossless and balanced case.

We discuss a simple case (balanced losses throughout the system and the use of non-number resolving

threshold detectorsh), where we find that we simply have to multiply the measured variance algebraically

with a factor c > 1 to obtain an upper bound on ∆ (see chapter 9 for a more efficient numerical method to

conservatively correct for the measured variance). That is, the variance ∆ is upper-bounded by c∆m. Let us

now evaluate the correction factor c.

Consider the propagation of the purported experimental statei,

ρ̂W = p0ρ̂0 + p1ρ̂1 + p≥2ρ̂≥2. (7.32)

Under balanced losses (which can be characterized by a single transmission efficiency |T |2), this state trans-

forms to ρ̂T where

ρ̂T = p�0ρ̂0 + p�1(q
�
1ρ̂

(1)
1 + (1− q�1)ρ̂

(2)
1 ) + p�≥2ρ̂

(2)
≥2. (7.33)

Here, ρ̂(i)1 is the 1-photon subspace of ρ̂(r)|T |2 originating from the i-photon ρ̂i subspace of ρ̂(r)
W

for i ∈ {1, 2},

and ρ̂(2)≥2 is the 2-photon subspace after the transmission. To the leading order of ρ̂(2)≥2 (neglecting 3-photon

and 4-photon subspacesj), {p�0, p�1, p�2} are

p�0 = p0 + (1− |T |2)p1 + (1− |T |2)2p2 (7.34)

hThe effect of imbalanced beamsplitters in the presence of balanced losses is easily included in this calculation. The final bound,
including imbalanced losses and imbalanced beamsplitters, has the same form Eq. 7.43 with the same expression for q1 = p

�
1q

�
1/Q.

iHere we have changed the notation to make it easier to keep track of the meaning of all symbols
jIn chapters 8–9, we include the higher-order terms up to one photon (excitation) per mode (ensemble) into our analysis.



133

p�1 = |T |2p1 + 2|T |2(1− |T |2)p2 (7.35)

p�2 = |T |4p2, (7.36)

and q�1 is given as

q�1 =
|T |2p1

|T |2p1 + 2|T |2(1− |T |2)p2
. (7.37)

Thus, if we denote the normalized probability of the detector (assumed to be non-number resolving) in

mode k finding (at least) one photon by Pk, then we have

Pk =
p�1q

�
1

Q
P (1)
1,k +

p�1(1− q�1)

Q
P (1)
2,k +

p�2
Q
P (2)
2,k , (7.38)

where Q = p�1 + p�2. Here, P (1)
1,k (P (1)

2,k ) is the probability of a 1-photon in output mode k originating from the

1(2)-photon subspace ρ̂1 (ρ̂2), and P (2)
2,k is the probability of 2-photon in output mode k. To be conservative

(for our purposes of finding a sufficient condition for entanglement), we assume that the two photons are

directed towards one detector at a time so that we cannot distinguish P (1)
1,k from P (2)

2,k . By denoting q1 =

p�1q
�
1/Q as the probability of detecting desired events and Xk as the normalized probability of detecting

undesired events (that is, P (1)
2,k and P (2)

2,k ), we obtain

Pk = q1P
(1)
1,k + (1− q1)Xk. (7.39)

The measured variance ∆m is given as

∆m = 1−
�

k

P 2
k
. (7.40)

On the other hand, the 1-photon variance ∆ is defined as

∆(ρ̂1) = 1−
�

k

(P (1)
1,k )

2. (7.41)

As a conservative correction to ∆m, we assume that the unwanted events (Xk) are all directed towards the

output mode j which contains the maximum 1-photon probability P (1)
1,j (i.e., Xj = 1 and Xk = 0 for k �= j).

This way, the measured variance is lower than the variance ∆. Thus, our conservative bound gives then

∆m = 1− (q1P
(1)
1,j + (1− q1))

2 − q21
�

k �=j

(P (1)
1,k )

2. (7.42)

Using the inequality 2(1− P (1)
1,j ) ≥ (1 + P (1)

1,j )(1− P (1)
1,j ) = 1− (P (1)

1,j )
2, we obtain

∆m ≥ q1[∆+ (1− q1)
�

k �=j

(P (1)
1,k )

2] ≥ q1∆. (7.43)
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Therefore, we obtain a correction factor of

c =
1

q1
, (7.44)

where

q1 =
p�1q

�
1

Q
=

p1
p1 + (2− |T |2)p≥2

. (7.45)

Note that in the limit of p0 ≈ 1 the correction factor asymptotically converges to

c ≈ 1 +
3

8
(2− |T |2)p1R. (7.46)

7.7 Summary and Discussion

We theoretically demonstrated how to verify N -party entanglement of W states or states lying close to W

states, in the case quantum information is encoded in the number of excitations per mode. Our method takes

into account the presence of the vacuum state, as well as multiple excitations; moreover, it takes into account

losses during the verification measurements, as well as imperfect beamsplitters. The method applies to any

number of modes, but we focused on four modes for illustrative purposes, as the method was applied in actual

experiments (refs. 33,35, chapters 8–9) to four modes (atomic ensembles). A relatively straightforward set of

measurements allows one, in that case, to distinguish genuine four-party entanglement from three-party en-

tanglement, which in turn can be distinguished from two-party entanglement and fully separable states. One

must obtain estimates of three parameters: a variance ∆ determined from the single-excitation component of

the state, the single-photon probability q, as well as the multi-photon probability r. For example, the simple

condition of Eq. 7.25 is a necessary condition for genuine four-party entanglement (where our definition of

genuine multipartite entanglement is more severe than usual), which involves only r and q. To obtain suffi-

cient conditions for multipartite entanglement, one must also include the value of ∆ in the analysis, forming

the parameter space for the nonlinear, nonlocal entanglement witness {∆, yc} (ref. 33, chapter 9).

The measurement of ∆ combines the various modes by simple beamsplitters, and is thus nonlocal. In

this way, one does not need local oscillators, which one would need if the entanglement verification method

used local measurements only228,233,265–272. In our case, the modes interfere with each other, rather than with

external reference beams. Thus, our method cannot be applied to eliminate local hidden variable models

(through Bell inequalities, for example, in the bipartite case), but it can be applied to verifying entanglement,

which is a very different beast indeed110.


