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Chapter 4

Functional quantum nodes for
entanglement distribution

This chapter is largely based on ref. 36. Reference36 refers to the then current literature in 2007 at the time of

publication.

4.1 Introduction

In quantum information science162, distribution of entanglement over quantum networks is a critical require-

ment for quantum metrology41, quantum computation8,214, and communication8,9. Quantum networks are

composed of quantum nodes for processing and storing quantum states, and quantum channels that link the

nodes (chapter 1). Substantial advances have been made with diverse systems towards the realization of

such networks, including ions215, single trapped atoms in free space216,217 and in cavities218, and atomic

ensembles in the regime of continuous variables60.

An approach of particular importance has been the seminal work of Duan, Lukin, Cirac, and Zoller

(DLCZ) for the realization of quantum networks based on entanglement between single photons and collective

excitations in atomic ensembles4. Critical experimental capabilities have been achieved, beginning with

the generation of non-classical fields72,73 with controlled waveforms75 and extending to the creation and

retrieval of single collective excitations74,92,93 with high efficiency76,77. Heralded entanglement with quantum

memory, which is the cornerstone of networks with efficient scaling, was achieved between two ensembles27.

More recently, conditional control of the quantum states of a single ensemble79,80,202 and of two distant

ensembles78 has also been implemented, such quantum states are likewise required for the scalability of

quantum networks based on probabilistic protocols.

Our goal is to develop the physical resources that enable quantum repeaters9, thereby allowing entan-

glement based quantum communication tasks over quantum networks on distance scales much larger than

set by the attenuation length of optical fibers, including quantum cryptography21. For this purpose, her-

alded number-state entanglement27 between two remote atomic ensembles is not directly applicable. Instead,
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Figure 4.1: Setup for distributing entanglement between two quantum nodes (L,R) separated by 3
meters. The inset shows the relevant atomic levels for the 6S1/2 → 6P3/2 transition in atomic Cesium, as
well as the associated light fields. The ensembles are initially prepared in |g�. Weak write pulses then induce
spontaneous Raman transitions |g� → |e� → |s�, resulting in the emission of anti-Stokes fields (fields 1)
near the |e� → |s� transition along with the storage of collective excitations in the form of spin-flips shared
among the atoms4. With this setup, a photodetection event at either detector D1a or D1b (D1c or D1d)
heralds entanglement between the collective excitation in LU and RU (LD and RD)27. BSU and BSD

are implemented using two orthogonal polarizations in one fiber beam splitter, yielding excellent relative
path stability. A heralding detection event triggers the control logic to gate off the light pulses going to the
corresponding ensemble pair (U or D) by controlling the intensity modulators (IM). The atomic state is thus
stored while waiting for the second ensemble pair to be prepared. After both pairs of ensembles U,D are
entangled, the control logic releases strong read pulses to map the states of the atoms to Stokes fields 2 via
|s� → |e� → |g�. Fields 2LU and 2LD (2RU and 2RD) are combined with orthogonal polarizations on the
polarizing beam splitter PBSL (PBSR) to yield field 2L (2R). If only coincidences between fields 2L and 2R
are registered, the state is effectively equivalent to a polarization maximally entangled state. (λ/2)L,R are
rotatable half-wave plates.

DLCZ proposed the use of pairs of ensembles (Ui, Di) at each quantum node i, with the sets of ensem-

bles {Ui}, {Di} separately linked in parallel chains across the network4. Relative to the state of the art in

ref. 27, the DLCZ protocol requires the capability for the independent control of pairs of entangled ensembles

between two nodes.

In this chapter, we have created, addressed, and controlled pairs of atomic ensembles at each of two

quantum nodes, thereby demonstrating entanglement distribution in a form suitable both for quantum network

architectures and for entanglement-based quantum communication schemes. Specifically, two pairs of remote
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ensembles at two nodes were each prepared in an entangled state27, in a heralded and asynchronous fashion78,

thanks to the conditional control of the quantum memories. After a signal heralding that the two chains are

prepared in the desired state, the states of the ensembles were coherently transferred to propagating fields

locally at the two nodes. The fields were arranged such that they effectively contained two photons, one at

each node, whose polarizations were entangled. The entanglement between the two nodes was verified by

the violation of a Bell inequality. The effective polarization-entangled state, created with favorable scaling

behavior, was thereby compatible with entanglement-based quantum communication protocols4.

4.2 Conditional control of heralded entanglement and entanglement

distribution

The architecture for our experiment is shown in Fig. 4.1. Each quantum node, L (left) and R (right), consists

of two atomic ensembles, U (up) and D (down), or four ensembles altogether, namely (LU , LD) and (RU ,

RD), respectively. We first prepared each pair in an entangled state (chapter 3), in which one excitation is

shared coherently, by using a pair of coherent weak write pulses to induce spontaneous Raman transitions

|g� → |e� → |s� (bottom left, Fig. 4.1). The Raman fields (1LU ,1RU ) from (LU , RU ) were combined at

the 50-50 beamsplitter BSU , and the resulting fields were directed to single-photon detectors. A photoelectric

detection event in either detector indicated that the two ensembles were prepared. The remote pair of D

ensembles, (LD, RD), was prepared in an analogous fashion.

Conditioned upon the preparation of both ensemble pairs (LU , LD) and (RU , RD), a set of read pulses

was triggered to map the stored atomic excitations into propagating Stokes fields in well-defined spatial modes

through |s� → |e� → |g� with the use of a collective enhancement4 (bottom left, Fig. 4.1; see also chapter

2). This generated a set of four fields denoted by (2LU ,2RU ) for ensembles (LU , RU ) and by (2LD,2RD) for

ensembles (LD, RD). In the ideal case and neglecting higher-order terms, this mapping results in a quantum

state for the fields 2 given by

|ψ2LU ,2RU ,2LD,2RD � =
1

2
(|0�2LU |1�2RU ± eiηU |1�2LU |0�2RU )U

⊗(|0�2LD |1�2RD ± eiηD |1�2LD |0�2RD )D . (4.1)

Here, |n�x is the n-photon state for mode x, where x ∈ {2LU , 2RU , 2LD, 2RD}, and ηU (ηD) is the relative

phase resulting from the writing and reading processes for the U (D) pair of ensembles27. The ± signs for

the conditional states U,D result from the unitarity of the transformation by the beamsplitters (BSU , BSD).

The extension of Eq. 4.1 to incorporate various imperfections is given in sections 4.8–4.11.
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Apart from an overall phase, the state |ψ2LU ,2RU ,2LD,2RD � can be rewritten as follows

|ψ2LU ,2RU ,2LD,2RD � =
1

2
[e−iηD |1�2RU |1�2RD |vac�2L ± eiηU |1�2LU |1�2LD |vac�2R

±(|0�2LU |1�2LD |0�2RD |1�2RU ± ei(ηU−ηD)|1�2LU |0�2LD |1�2RD |0�2RU )],
(4.2)

where |vac�2i denotes |0�2iU |0�2iD . If only coincidences between both nodes L,R are registered, the first

two terms (i.e., with e−iηD , eiηU ) do not contribute. Hence, as noted by DLCZ, excluding such cases leads to

an effective density matrix equivalent to the one for a maximally entangled state of the form of the last term

in Eq. 4.2. Notably, the absolute phases ηU and ηD do not need to be independently stabilized. Only the

relative phase η = ηU − ηD must be kept constant, leading to 1/2 unit of entanglement for two quantum bits

(i.e., 1/2 ebit).

4.2.1 Real-time control of entanglement, phase stability, and polarization encoding

The experimental demonstration of this architecture for implementing the DLCZ protocol relies critically

on the ability to carry out efficient parallel preparation of the (LU , RU ) and (LD, RD) ensemble pairs, as

well as the ability to stabilize the relative phase η. The first requirement is achieved by the use of real-time

control, as described in ref. 78 in a simpler case. As shown in Fig. 4.1, here we implemented a control logic

that monitors the outputs of field 1 detectors a. A detection event at either pair triggers electro-optic intensity

modulators (IM) that gate off all laser pulses traveling toward the corresponding pair of ensembles, thereby

storing the associated state. Upon receipt of signals heralding that the two pairs of ensembles (LU , RU ) and

(LD, RD) have both been independently prepared, the control logic triggers the retrieval of the stored states

by simultaneously sending a strong read pulse into each of the four ensembles. Relative to the case where

no logic is implemented, this process resulted in a 19-fold enhancement in the probability of generating this

overall state from the four ensembles.

The second requirement, for stability of the relative phase η, could be accomplished by active stabilization

of each individual phase ηU , ηD, as in ref. 27. Instead of implementing this challenging technical task (which

ultimately would have to be extended across longer chains of ensembles), our setup exploits the passive

stability between two independent polarizations propagating in a single interferometer to prepare the two

ensemble pairs. No active phase stabilization is thus required. In practice, we found that the passive stability

of our system was sufficient for operation overnight without adjustment. Additionally, we implemented a

procedure that deterministically sets the relative phase η to zero.

We also extend the original DLCZ protocol (Fig. 4.1) by combining fields (2LU , 2LD) and (2RU , 2RD)

with orthogonal polarizations on polarizing beamsplitters PBSL and PBSR to yield fields 2L and 2R, respec-

tively. The polarization encoding opens the possibility of performing additional entanglement purification

and thus leads to superior scalability122,203. In the ideal case, the resulting state would now be effectively

aSee the appendix of James Chou’s thesis for the circuit design 71.
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Figure 4.2: Temporal growth of the suppression h(2)
X

. Suppression h(2)
X

of the probabilities for each en-
semble to emit two photons compared to the product of the probabilities that only one photon is emitted, as
a function of the duration τM that the state is stored before retrieval. The solid line gives a fit for the U pair.
Error bars indicate statistical errors.

equivalent to a maximally entangled state for the polarization of two photons

|ψ±
2L,2R�eff ∝ |H2L�|V2R� ± eiη|V2L�|H2R� , (4.3)

where |H� (|V �) stands for the state of a single photon with horizontal (vertical) polarization. The sign ± of

the superposition in Eq. 4.3 is inherited from Eq. 4.1 and is determined by the particular pair of heralding

signals recorded by (D1a,D1b) and (D1c,D1d). The entanglement in the polarization basis is well-suited for

entanglement-based quantum cryptography4,21, including the security verification by way of the violation of

a Bell inequality, as well as for quantum teleportation4.

4.3 Characterization of h(2)

As a first step to investigate the joint states of the atomic ensembles, we recorded photoelectric count-

ing events for the ensemble pairs (LU,RU) and (LD,RD) by setting the angles for the half-wave plates

(λ/2)L,R shown in Fig. 4.1 to 0◦, such that photons reaching detectors D2b and D2d (D2a and D2c) come

only from the ensemble pair U (D). Conditioned upon detection events at D1a or D1b (D1c or D1d), we

estimated the probability that each ensemble pair U,D contains only a single, shared excitation as compared

to the probability for two excitations by way of the associated photoelectric statistics. In quantitative terms,

we determine the ratio27

h(2)
X

≡ pX,11

pX,10pX,01
, (4.4)
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where pX,mn are the probabilities to register m photodetection events in mode 2LX and n events in mode

2RX (X = {U,D}), conditioned on a detection event at D1.

A necessary condition for the two ensembles (LX , RX) to be entangled is that h(2)
X

< 1, where h(2)
X

= 1

corresponds to the case of independent (unentangled) coherent states for the two fields27. Fig. 4.2 shows the

measured h(2)
X

versus the duration τM (where M stands for memory) that the state is stored before retrieval.

For both U and D pairs, h(2) remains well below unity for storage times τM � 10 µs. For the U pair, the

solid line in Fig. 4.2 provides a fit by the simple expression h(2) = 1 − A exp
�
−(τM/τ0)2

�
. The fit gives

A = 0.94± 0.01 and τ0 = 22± 2 µs, providing an estimate of a coherence time for our system. A principal

cause for decoherence is an inhomogeneous broadening of the ground state levels by residual magnetic fields

(ref. 147, chapter 2). The characterization of the time dependence of h(2) constitutes an important benchmark

of our system.

4.4 Measurement of correlation function

We next measure the correlation function E(θL, θR), defined by

E(θL, θR) =
Cac + Cbd − Cad − Cbc

Cac + Cbd + Cad + Cbc

. (4.5)

Here, Cjk gives the rates of coincidences between detectors D2j and D2k for fields 2, where j, k ∈ {a, b, c, d},

conditioned upon heralding events at detectors D1a, D1b and D1c, D1d from fields 1. The angles of the two

half-wave plates (λ/2)L,R are set at θL/2 and θR/2, respectively. As stated before, the capability to store

the state heralded in one pair of ensembles and then to wait for the other pair to be prepared significantly

improves the various coincidence rates Cjk by a factor that increases with the duration τM that a state can be

preserved78 (section 4.11).

Fig. 4.3 displays the correlation function E as a function of θR, for a, θL = 0◦ and for b, 45◦. Relative

to Fig. 4.2, these data are taken with increased excitation probability (higher write power) to validate the

phase stability of the system, which is evidently good. Moreover, these four-fold coincidence fringes in Fig.

4.3a provide a further verification that predominantly one excitation is shared between a pair of ensembles.

The analysis provided in section 4.8 with the measured cumulative h(2) parameter for this set of data, h(2) =

0.12± 0.02, predicts a visibility of V = 78 ± 3% in good agreement with the experimentally determined

V ∼= 75%. Finally, the fact that one of the fringes is inverted with respect to the other in Fig. 4.2b corresponds

to the two possible signs in Eq. 4.3. As for θL = 45◦ the measurement is sensitive to the square of the

overlap λ of photon wavepackets for fields 2U,D, we infer λU,D � 0.85 from the reduced fringe visibility

(V ∼= 55%) in Fig. 4.3b relative to Fig. 4.3a , if all the reduction is attributed to a non-ideal overlap. An

independent experiment for two-photon Hong-Ou-Mandel interference149 in this setup has shown an overlap

of λ � 0.90, confirming that the reduction can be principally attributed to the non-ideal overlap (section
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a b

Figure 4.3: Measured correlation function E(θL, θR) as a function of θR with θL fixed at a, 0◦ and b,
45◦. The excitation probabilities for the ensembles are increased by ∼ 1.5 times relative to Fig. 4.2, with
each point taken for 30 minutes at typically 400/hour coincidence rate for each fringe. Error bars indicate
statistical errors.

4.9). Other possible causes include imperfect phase alignment η �= 0 and imbalance of the effective state

coefficients.

4.5 Violation of Bell inequality

With the measurements from Figs. 4.2 and 4.3 in hand, we verify entanglement unambiguously by way of

the violation of a Bell inequality219. For this purpose, we choose the canonical values, θL = {0◦, 45◦} and

θR = {22.5◦,−22.5◦}, and construct the CHSH parameters

S+ ≡ |E(0◦, 22.5◦) + E(0◦,−22.5◦)

+E(45◦,−22.5◦)− E(45◦, 22.5◦)| (4.6)

S− ≡ |E(0◦, 22.5◦) + E(0◦,−22.5◦)

+E(45◦, 22.5◦)− E(45◦,−22.5◦)| (4.7)

for the two effective states |ψ±
2L,2R�eff in Eq. 4.3. For local, realistic hidden variable theories, S± ≤ 2219.

Fig. 4.4 shows the CHSH parameters S± as functions of the duration τM up to which one pair of ensembles

holds the prepared state, in the excitation regime of Fig. 4.2. As shown in section 4.8, the requirements for

minimization of higher-order terms are much more stringent in this experiment with four ensembles than with

simpler configurations202.

Fig. 4.4a and b give the results for our measurements of S± with binned data. Each point corresponds

to the violation obtained for states generated at τM ± ∆τM/2 (with the bin size ∆τM marked by the thick

horizontal lines). Strong violations of the inequality S± ≤ 2 are obtained for short memory times, with

for instance S+ = 2.55 ± 0.14 > 2 and S− = 2.61 ± 0.13 > 2 for the second bin, demonstrating the
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Figure 4.4: Measured CHSH parameters and the violation of Bell inequality. We measured the CHSH
parameters S±, for the two possible effective states in Eq. 4.3, as functions of duration τM for which the first
ensemble pair holds the prepared state. The excitation probabilities are kept low for high correlation (as in
Fig. 4.2). Panels a and b are the binned data. The horizontal thick lines indicate the size of the bins used.
Panels c and d are the cumulative data. The coincidence rate for these measurements is about 150/hour for
each effective state. Error bars indicate statistical errors.
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presence of entanglement between the fields 2L and 2R, as well as between the two quantum nodes L and R.

Therefore, these fields can be exploited to perform entanglement-based quantum communication protocols,

such as quantum key distribution with, at minimum, security against individual attacks4,220.

As it can be seen in Fig. 4.4, the violation decreases with increasing τM . The decay is largely due to the

time-varying behavior of h(2) in Fig. 4.2. In addition to this decay, the S+ parameter exhibits modulation with

τM . We have explored different models to understand the time dependence of the CHSH parameters, but so far

we have not found satisfactory agreement between model calculations and measurements. Nevertheless, the

density matrix for the ensemble over the full memory time is potentially useful for tasks such as entanglement

connection, as shown by panels Fig. 4.4c and d where cumulative data are given. Each point at memory

time τM gives the violation obtained by taking into account all the states generated from 0 to τM . Overall

significant violations are obtained, namely S+ = 2.21 ± 0.04 > 2 and S− = 2.24 ± 0.04 > 2 at τM ∼ 10

µs.

4.6 Conclusion

In our experiment, we are able to generate excitation-number entangled states between remote locations,

which are well suited for scaling purposes, and, with real-time control, to operate them as if they were

effectively polarization entangled states, which are appropriate for quantum communication applications,

such as quantum cryptography. Measurements of the suppression h(2) of two-excitation components versus

storage time demonstrates explicitly the major source that causes the extracted polarization entanglement

to decay, emphasizing the critical role of multi-excitation events in the experiments aiming for a scalable

quantum network. The present scheme, which constitutes a functional segment of a quantum repeater in terms

of quantum state encoding and channel control, allows the distribution of entanglement between two quantum

nodes. But the extension of our work to longer chains involving many segments becomes more complicated,

and out of reach for any current system. For long-distance communication, the first quantity to improve is

the coherence time of the memory. Better cancellation of the residual magnetic fields and switching to new

trap schemes should improve this parameter to ∼ 0.1 sec by employing an optical trap147, thereby increasing

the rate of preparing the ensembles in the state of Eq. 4.1 to ∼ 100 Hz. The second challenge which would

immediately appear in an extended chain would be the increase of the multi-excitation probability with the

connection stages. Recently, ref. 122 has theoretically demonstrated the prevention of such growth in a similar

setup, but its full scalability still requires very high retrieval and detection efficiency, and photon-number

resolving detectors. These two points clearly show that the quest of scalable quantum networks is still a

theoretical and experimental challenge. The availability of our first functional segment opens the way for

fruitful investigations.
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4.7 Experimental details

Ensembles (LU , LD) are pencil-shaped groups of cold Cesium atoms released from a magneto-optical trap

(MOT), while ensembles (RU , RD) are prepared from another MOT, 3 meters away. {|g�, |s�, |e�} corre-

spond to the hyperfine levels {|6S1/2, F = 4�, |6S1/2, F = 3�, |6P3/2, F
� = 4�}, respectively. In each MOT,

the ensembles U,D are separated by 1 mm by way of birefringent beam displacers (chapter 3). The MOT

is formed at a repetition rate of 40 Hz in a steady-state regime (with MOT loading time of ∼ 6 s.). In each

cycle, the MOT is loaded for 18 ms, after which the magnetic field is quickly switched off. The trapping

beams are turned off 3 ms after the magnetic field, while the repumping beam stays on for another 100 µs

before being switched off in order to prepare the atoms in the F = 4 ground state |g�. 3.4 ms after the

magnetic field is turned off, trials of the protocol (each consisting of successive write, read, and repumping

pulses) are repeated with 575 ns period for 3.4 ms. In each trial, the write pulse is ≈ 30 ns in duration and

10 MHz red-detuned from the |g� → |e� transition. The read and the repumping pulses are both derived from

the read beam (resonant with the |s� → |e� transition) with 30 ns and 75 ns duration, respectively. The read

pulse is closely followed by the repumping pulse. The read pulse is delayed ≈ 400 ns after the write pulse,

leaving time for the control logic to gate it off, along with the subsequent pulses. Independent phase stability

measurements show that the phase η between the two ensembles drifts in a negligible way, (π/30) over 500

µs corresponding to 870 trials. Some other parameters of the experiments are calibrated and listed in Table

4.1.

Table 4.1: Noise and efficiencies. The intrinsic retrieval efficiency for mapping single collective excitations
to single photons is ηU = 18± 3% (ηD = 23± 3%) for the U (D) ensembles.

U D
Field 1 dark count rate ∼ 10 Hz ∼ 10 Hz
Field 2 dark count rate ∼ 100 Hz ∼ 100 Hz
Conditional detection efficiency pc 6.4%± 0.5% 8.0%± 0.5%
Field 2 propagation efficiency 68± 5% 68± 5%
Field 2 detector quantum efficiency 50± 5% 50± 5%

4.8 Fringe visibility as a function of h(2)

Let us consider that the two pairs of ensembles, U and D, have been prepared by heralded detections at

D1a, D1b and D1c, D1d. Denote by p10, p01, and p11 the probability pij to register i photodetection events

in field 2LU and j in field 2RU after firing the read pulses. We will assume, for simplicity, the various pij are

the same for both pairs of ensembles. For each of them, the suppression of the two-photon events relative to

the square of the probability for single-photon events is characterized by the parameter h(2) (ref. 27),

h(2) =
p11

p10p01
. (4.8)
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We next relate h(2) to the maximal Cmax and minimal Cmin coincidence probabilities between various

output ports of the detection polarizing beamsplitters (PBS) for the left and right nodes at detectors D2a, D2b

and D2c, D2d (see Fig. 4.1). Consider, for example, the transmitted ports of the PBS at the L,R detectors

for the case that the left node has the half-wave plate (λ/2)L set to 0◦. In this case, fields 2LU and 2LD are

detected independently, with field 2LD transmitted at the PBS. On one hand, Cmax is obtained for crossed

polarizers (i.e., (λ/2)R set to 45◦ at the right node, with then field 2RU transmitted) and is given to lowest

order by

Cmax = p10p01. (4.9)

This term corresponds to the case where only a single excitation is distributed in each pair, and each retrieved

photon is detected from a transmitted port on each side L,R.

On the other hand, the minimum coincidence probability Cmin is obtained for parallel polarizers (i.e.,

(λ2 )R = 0◦ at the right node, with then field 2RD transmitted) and can be written as

Cmin = p11. (4.10)

This term corresponds to coincidences due to photons coming from the same pair of ensembles. The smaller

is the excitation probability, the smaller is this background term.

Taking Eqs. 4.9 and 4.10 into account, we find that the visibility V for the number of coincidences as a

function of the right polarizer angle (i.e., the angle for (λ2 )R) is given by

V =
Cmax − Cmin

Cmax + Cmin
=

1− h(2)

1 + h(2)
. (4.11)

Assuming that the visibility is the same in each basis, we then find a CHSH parameter S (ref. 221) equal to

S = 2
√
2V = 2

√
2
1− h(2)

1 + h(2)
. (4.12)

A minimal value h(2)
min = 0.17 is thus required to violate the CHSH inequality S < 2 in the absence of any

imperfections except the intrinsic two-photon component. This value underlines that this experiment is much

more stringent in terms of minimization of high-order terms than previously reported setups. For example,

in ref. 202, where entanglement between a photon and a stored excitation is reported, a value of h(2) equal to

0.68 was sufficient to violate the inequality. The dramatic improvement reported recently by different groups

for the quality of the photon pairs emitted by an atomic ensemble was thus an enabling step for the practical

realization of such a more elaborate procedure involving a total of 4 ensembles reported in section 4.5.
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4.9 Two-photon interference and inferred overlaps

For a non-unity overlap λ of the field-2 photon wavepackets, the visibility of the fringes in the 45◦ basis is de-

creased by a factor λ
2
. This overlap can be determined by the two-photon interference, which is implemented

by mixing the fields 2U and 2D on each side (R and L) by rotating the half-wave plates (λ/2)L, (λ/2)R by

22.5◦. If the single photon wavepackets are indistinguishable, no coincidences should be observed. How-

ever, the two-photon component can lead to coincidences, which reduce the visibility. Let us determine the

expected visibility as a function of the two-photon component by way of a simple model.

Consider Pn the probability of finding n photons in field 2, and assume the various Pn are the same for

both ensembles involved. In the ideal case where all ensembles have the same properties, the two-photon

suppression for each field 2 can also be characterized by the same h(2) parameter used before, which can be

written here as

h(2) =
2P2

P 2
1

. (4.13)

When the half-wave plates (λ/2)L, (λ/2)R are at 0◦, the fields 2 are detected independently and the

probability pmax to register coincidences is given by

pmax = P 2
1 . (4.14)

When the half-wave plates (λ/2)L, (λ/2)R are rotated to 22.5◦, if the two fields overlap perfectly, the

term with one photon in each input does not lead to coincidences. If we denote by λ the overlap, the proba-

bility pmin to have one photon in each output is then

pmin =
(1− λ

2
)

2
P 2
1 +

P2

2
+

P2

2
= [1− λ

2
+ h(2)]

P 2
1

2
. (4.15)

From these two probabilities, we find that the visibility of the dip in coincidences can be written as

Vdip =
pmax − pmin

pmax
=

1 + λ
2 − h(2)

2
. (4.16)

In our case, the measured Hong-Ou-Mandel visibility Vdip is 85±2% for the left node and 89±2% for the

right one. The measured average h(2) parameter for this set of data is 0.09± 0.01, which leads to visibilities

Vmodel = 95.5 ± 0.5% in the case of perfect overlap (λ = 1). From the measured visibilities and this simple

model, we then estimate the overlaps, λ = 0.89 ± 0.03 for the left node and λ = 0.93 ± 0.03 for the right

node.
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Figure 4.5: Conditional probability as a function of the storage time. Conditional probability pc of de-
tecting one photon in a field 2 for the U (black squares) and D (red circles) pairs, as a function of the storage
time τM . The error bars indicate statistical errors. The solid lines are fits using Eq. 4.17.

4.10 Decoherence time of the stored excitation

Residual magnetic fields, which lead to inhomogeneous broadening of the ground states levels, is the major

limiting factor of the coherence time τc of the stored excitation (refs. 147,202, chapter 3). Consequently, if we

neglect dark counts, the conditional retrieval efficiency pc = p01 + p10 is expected to decay exponentially

with the storage time τM

pc = p(0)
c

exp(−τM
τc

). (4.17)

Fig. 4.5 shows an independent measurement of pc vs. τM , with the U and D pairs separated. Fitting the data

with Eq. 4.17 gives, for the U and D pairs, respectively, we obtain p(0)c = 7.0% ± 0.1% and 8.7% ± 0.2%,

and τc = 9.1± 0.6µs and 8.5± 0.5µs.

The decay of pc leads to a similar exponential decay of Cij . Cij (i, j = a, b, c, d) are the coincidence

count rates of two field 2 photons conditioned on the two heralding field 1 photons defined before. Summing

over all Cij used in calculating S±, we obtain the total coincidence count rates CS± for the measurement of

the Bell parameters S+ and S−. CS±(τM ) corresponds to the probability distribution of the S±(τM ), and is

reflected in the statistical error bars ∆S±(τM ). The decay of CS± with τM is shown in Fig. 4.6. Fitting the

data with exponential functions,

CS± = C(0)
S± exp(−τM/τ±), τM > 0, (4.18)
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gives τ+ = 9.1±0.4µs and τ− = 8.1±0.3µs, in good agreement with τc. Note that C(0)
S± = 2CS±(τM = 0),

since CS±(τ = 0) is conditioned on two excitation in a same trial, while CS±(τ > 0) is conditioned on two

excitations created in two different trials: the factor of 2 accounts for the two possible orders of excitations

(‘U ’ then ‘D,’ or ‘D’ then ‘U ’).

a b

Figure 4.6: τM -dependence of the total conditional count rates CS± in the measurement of a, S+ and b,
S−. The horizontal thick lines indicate the size of the memory bin. The error bars indicate statistical errors.
The solid lines are fits using Eq. 4.18.

4.11 Conditional control and increase in generation rate

As demonstrated in ref. 78, the conditional control of remote quantum memories enables a large enhancement

of coincidence rates relative to the case where no control logic is implemented. I refer to James’ thesis71 for

the details of the logic circuit implemented in this and former experiments. If the state prepared in one pair

of ensembles is held up to N trials, the rate for preparing both pairs is increased by a factor (2N + 1) for

very low excitation probability78. Fig. 4.7a gives the probability p11 of simultaneously preparing the two

pairs. After 17 trials, an increase by a factor 34 is obtained experimentally, close to the expected value of

35. The gain in the probability p1122 of generating the effective entangled state is expected to be the same

if the coherence time τc is long enough. However, our finite coherence time results in a smaller increase

of the probability to detect field 2 coincidences. This increase is given in Fig. 4.7b, with a comparison to

the ideal case of very long coherence time. A 19-fold enhancement is finally obtained. Let us note that the

different experimental rates can be obtained from these probabilities times the number of trials per second

(∼ 2.36× 105/s).



75

ba

Figure 4.7: Conditional enhancement. Probabilities of coincidence detection as functions of the number of
trials N for which the first prepared pair holds the entangled state. a, Measured probability p11 of preparing
the two pairs. b, Measured probability p1122 of detecting field 2 coincidences. The green solid line corre-
sponds to the ideal case of very long coherence time. Both panels give in addition to these probabilities the
enhancement factor obtained relative to the case without conditional control.

4.12 Correlation functions E(0◦, θR), E(45◦, θR) for the ideal effective

state

In practice, various imperfections lead to deviations from the ideal effective state in Eq. 4.2. We have

developed a detailed model relevant to our experiment based on the two-mode squeezed states in chapter 2,

but here we will consider only a generic form. Collective excitations are not shared with equal amplitudes

between a pair of ensembles because of imperfections in the writing and heralding processes. Likewise,

the mapping of atomic states to states of field 2 by the read pulses is not ideal. Overall, these various

imperfections lead to a state |ψ2LU ,2RU ,2LD,2RD � for field 2 given by (neglecting multi-photon processes),

|ψ2LU ,2RU ,2LD,2RD � =
�
�RU |02LU �|12RU � ± eiηU �LU |12LU �|02RU �

�

⊗
�
�RD|02LD �|12RD � ± eiηD�LD|12LD �|02RD �

�

= �RU �RD|02LU �|02LD �|12RU �|12RD �

±eiηU eiηD�LU �LD|12LU �|12LD �|02RU �|02RD �

±eiηU �RD�LU |12LU �|02LD �|02RU �|12RD �

±eiηD�RU �LD|02LU �|12LD �|12RU �|02RD � , (4.19)

where �X is the probability amplitude that a photon is created in field 2X . The first and second terms in

the expansion correspond to the cases that the two excitations are both retrieved at node ‘right’ and ‘left’,

respectively. Thus, the effective state that yields one detection event at node ‘left’ and the other at node ‘right’

consists of the last two terms. After the fields are combined by PBSL and PBSR, we get the (unnormalized)
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effective state of fields 2L and 2R

|ψ2L,2R�eff = α|H2LV2R� ± β|V2LH2R� , (4.20)

where α ∝ eiηD�RU �LD and β ∝ eiηU �RD�LU .

From the effective state |ψ2L,2R�eff, we can derive the various coincidence probabilities Pij , i, j ∈
{a, b, c, d}, where {a, b, c, d} refers to the detectors D2{a,b,c,d} for field 2 in Fig. 4.1. When θL is fixed

at 0◦, we find (assuming unity detection efficiency)

Pac = |α|2sin2θR

Pbd = |β|2sin2θR

Pad = |α|2cos2θR

Pbc = |β|2cos2θR

E(0◦, θR) ∝ Pac + Pbd − Pad − Pbc = −cos(2θR)

(4.21)

irrespective of the ± sign.

By contrast, when θL is fixed at 45◦, we obtain

Pac =
1

4
[1± 2|α||β| cosφ cos(90◦ − 2θR)

+ (|β|2 − |α|2) sin(90◦ − 2θR)],

where φ = arg(β)− arg(α). Let α = cosϕ, and β = sinϕ. Denoting δ = 45◦ − θR, we have

Pac =
1

4
[1± |sin2ϕ| cosφ cos2δ − cos2ϕ sin2δ]

Pbd =
1

4
[1± |sin2ϕ| cosφ cos2δ + cos2ϕ sin2δ]

Pad =
1

4
[1∓ |sin2ϕ| cosφ cos2δ + cos2ϕ sin2δ]

Pbc =
1

4
[1∓ |sin2ϕ| cosφ cos2δ − cos2ϕ sin2δ]

E(45◦, θR) ∝ Pac + Pbd − Pad − Pbc = ±|sin2ϕ| cosφ cos2δ. (4.22)

From the expression for E(45◦, θR), we see that the deviation of |α| and |β| from the balanced value, 1/
√
2,

will lead to reduction in the visibility of E(45◦, θR) fringes and thus the magnitudes of the CHSH parameters

S(±). We believe that such an imbalance is responsible for the results displayed in Fig. 4.3b for E(45◦, θR)

and Fig. 4.4 for S(±) at τM = 0, with measurements underway to quantify this association.
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Note that an alternative combination of Pij gives

F (45◦, θR) ≡ −Pac + Pbd + Pad − Pbc

= cos2ϕ sin2δ. (4.23)

In particular, F (45◦, θR) allows us to determine ϕ and thus the magnitude of the coefficients α and β,

independent of φ. Specifically, the visibility of the F (45◦, θR) fringes normalized to that of E(0◦, θR)’s

fringes yields cos2ϕ.


