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Abstract

Quantum networks are composed of quantum nodes which coherently interact by way of quantum chan-
nels. They offer powerful capabilities for quantum computation, communication, and metrology. A generic
requirement for these realizations is the capability to generate and store quantum states among multiple quan-
tum nodes, and to disseminate these resources throughout the network via the quantum channels (chapter [I)).
In this thesis, I describe a series of experiments whereby single excitations in atomic ensembles are strongly
coupled to optical modes and provide efficient means for the coherent control of entangled states between
matter and light (chapter 2)).

By following the seminal proposal by Duan et al., we have generated measurement-induced entanglement
of an excitation between two cold atomic ensembles. Using this system, we investigated the relationship for
the global bipartite entanglement and local correlations in its subsystems (chapter [3).

In addition, we achieved functional quantum nodes for entanglement distribution (chapter[d). Two pairs of
remote ensembles at two quantum nodes were prepared into entangled states in a heralded and asynchronous
fashion by the conditional controls of the entanglement. The quantum states of the ensembles were then
distributed into polarization entangled states of photons. We also prepared an analogous quantum state and
transferred the nonlocal coherence between two pairs of heralded entangled atomic ensembles, providing a
step towards entanglement connection (chapter [3).

Beyond such probabilistic approaches, we demonstrated an experiment where entanglement between two
quantum memories is created by the reversible and deterministic mapping of an entangled state of light
via dynamic electromagnetically induced transparency (chapter [6). This experiment opens novel prospects
of integrating hybrid quantum systems by way of reversible quantum interfaces between light and matter
(chapter [T0).

Then, we extended our work to multipartite quantum systems (chapters [JH9). We theoretically investi-
gated the characterization of multipartite mode-entangled states by way of quantum uncertainty relations, and
introduced theoretical tools to verify the entanglement orders in multipartite systems (chapter [7). In partic-
ular, we achieved entanglement for one delocalized photon among multiple optical modes (N > 2) (chapter
3).

Finally, we have achieved measurement-induced entanglement of spin waves among four quantum mem-

ories (chapter [9). The individual atomic components for the entangled W state of the four ensembles were
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then coherently converted into four propagating entangled beams of light via superradiant emissions. We
observed the statistical and dynamic transitions for the multipartite entangled spin waves. Experiments de-
scribed in this thesis thereby represent significant advances of experimental and theoretical capabilities to

generate, store, transfer, and characterize entanglement of matter and light over quantum networks (chapter

10).
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Chapter 1

Introduction

1.1 Quantum networks

Quantum networks open a broad frontier of scientific opportunities in quantum information science, including
for quantum computation, communication, metrology, and simulation”. For example, a quantum network
can serve as a ‘web’ for connecting quantum processors for computationmI and communication?, as well as
a ‘simulator’ for enabling investigations of quantum critical phenomena arising from interactions among the
nodes mediated by the channels.

Apart from any algorithmic benefit, an important characteristics of a quantum network is shown by com-
paring the complexity of a problem to describe a quantum network, comprised of N quantum nodes (each
with n qubit registers) with fully quantum connectivity, to that of a network of quantum nodes which only
share classical channels (see, e.g., refs. 7). The classical information required to represent a density matrix
pon of a fully quantum network is Ion = 27 = 4V*", where the dimensionality is D = 2V*"_ In contrast,

the size of the density matrix py for a network that has only classical connectivity is given by Iy = N x 4™.

Quantum channel
transport / distribute
quantum entanglement over

Quantum node . /
generate, process, store the entire network
quantum information locally (photons) \
(atomic internal states) ,/

Quantum interface
map quantum resources into
and out of photonic channels /[
Distributed quantum computing
Scalable quantum communication
Quantum resource sharing
Quantum simulation

Figure 1.1: A generic form of a quantum network composed of many quantum nodes and channels™.
The quantum nodes (box) interact coherently each other by transporting and distributing entanglement over
quantum channels (arrows). An important component for these quantum interconnects is a quantum interface
for mapping the quantum resources generated from the quantum nodes into and out of the photonic channels.
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Therefore, even for moderate parameters { N,n} = {10, 14} for the fully quantum network, the number of
classical variables Ion = 4149 ~ O(10%4) to describe pgn can greatly exceed the number of hydrogen atoms
O(10%°) in the observable universe, whereas its classical counterpart py only yields Iy = 10x 4 ~ O(10?).

While this complexity also points to the difficulty of controlling and characterizing a large-scale quantum
system as pgn, quantum networks can harness physical processes to benefit from the intricacies introduced
by these multipartite quantum states for quantum information processing"™®, with rudimentary capability of

the network enabled by the coherent control of quantum and entangled states of matter and light'. Indeed,

10H16

theoretical inventions of quantum error correction and fault-tolerant quantum computing , entanglement

17119

purification and distillation , as well as privacy amplification and information reconciliation?"23 have

enabled the promising prospects for experimental implementations of distributed quantum computation”2%,

23126 scalable quantum communication®?, and quantum simulations>® by way of

quantum resource sharing
quantum networks.
As illustrated in Fig. the physical realization of quantum networks composed of many quantum

11819

nodes and channels requires quantum dynamical systems capable of generating and storing entangled

states among multiple quantum memories, and of efficiently transferring stored entanglement into quantum

channels?733

. Such an interconnect can be achieved by utilizing the strong interactions of single photons
and collective excitations in atomic ensembles for the coherent control of entanglement between matter and
light 273033 thereby enabling the distribution and teleportation of quantum states across the quantum net-
work®, Thus, my thesis will focus on addressing specific challenges to achieve quantum networks: (1)
by developing novel laboratory capabilities to generate, store, and control entangled states of matter and

36137

light=#933533(2) by implementing various quantum information protocols®®*”, and (3) by devising efficient

theoretical tools for multipartite entanglement characterization23>38,

In a broader scope, the research for attaining quantum control over macroscopic quantum coherence and
statistics represents an area of fundamental importance beyond of quantum networks, where we study and
manipulate quantum states of matter and light with manifestly single quanta one-by-one. Moreover, the ex-
perimental realization of strongly correlated quantum systems of atoms and photons expands the frontiers
of exquisite quantum control of entangled states with diverse applications from quantum information sci-
ence, to atomic and condensed matter physics, to precision metrology, and to quantum biology. In relevance

39M0 " measurements, and controls“!, I would like to present two questions

to quantum many-body physics
as important underlying motivations for my research, which I hope to make contact with in the remaining

chapters.

1. Can quantum coherence and entanglement exist and be preserved in quantum many-body systems,

either spontaneously acquired or externally induced by lasers?

2. How do we measure, manipulate, and utilize quantum entanglement in mesoscopic systems?
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1.2 Ensemble-based quantum information processing and Duan-Lukin-

Cirac-Zoller protocol

Historically, the investigation of collective interactions between atoms and photons began with the striking
prediction'-““_2| by Robert Dicke in 1954 that the radiative decay rate for an assembly of atoms in the excited
state can be significantly modified. Under certain circumstances, the spontaneous emission of the excited
state can be considerably enhanced by a ‘phase-locking’ of atomic dipoles with dynamic evolution of the
atomic state confined within a class of symmetric collective spin states®, a cooperative phenomena known as
“superradiance” (see ref # for an excellent review of theoretical descriptions of superradiant effects observed
in different regimes; see also chapter |Z|) Since then, collective interactions have been observed in diverse
systems, with a recent survey including the studies of dynamic phase transitions®™™% and collective Lamb
shifts“, leading to the development of quantum interfaces for storing and retrieving quantum information in
atomic ensembles™S.

Contemporary with these advances, various theoretical protocols have been developed for the realization
of scalable quantum networks with atomic ensembles®?, including the seminal proposal by Luming Duan,
Mikhail Lukin, Ignacio Cirac, and Peter Zoller (referred as the DLCZ protocol hereafter) in 2001 (ref.@). The
introduction of the DLCZ protocol has led to a development of a remarkable worldwide community with
significant achievements in the creation and distribution of entanglement. In this section, I will review recent
progresses by other groups towards ensemble-based quantum memory to put the researches described in this
thesis into context.

Generally, strong nonlinear interaction is required to generate nontrivial quantum resources for quantum

information science. For ensemble-based quantum information processing, three important approaches to

Figure 1.2: A matter-light quantum interface in action for my experiments. Cold ensembles
of ~ 10'° Cesium atoms are (i) laser cooled and trapped to 10 — 100 pK, and (ii) prepared to specific ground
states | F, mp) via hyperfine and Zeeman pumping. In step (iii), we operate the quantum interface where the
atomic quantum information (QI) is generated and stored in the ground state coherences for the hyperfine

levels [g) = |F = 4), |s) = |F' = 3) of the electronic ground state 65 /. Finally, (iv) we read out the atomic
states to photonic states, and (vi) detect the photonic QI for quantum-state characterization.
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matter-light interactions I;Iim have been developed for continuous and discrete quantum variables*®. In the

48150

setting of continuous variables , major achievements have been made with quantum nondemolition in-

teractions ﬁfSND) ~ XQNDP,YPQ between the transverse spin components for the collection of atoms a and
polarizations of light  based on the off-resonant Faraday rotation of a probe beam>!">%, While the atomic
state in this case is not directly optically accessible, it can also be mapped to an optical field by way of telepor-
tation. Notable advances have been the entanglement of macroscopic spin states for two atomic ensembles>,
quantum teleportation from light to matter®”, multiparticle entanglement for atoms within an ensemble®/¢2,
and dissipation-induced entanglement via reservoir engineering®®. In addition, quantum measurements have
been actively pursued for quantum-enhanced atom interferometry via spin squeezing (see, e.g., refs. 4%
Despite the spectacular advances in this field*3>", experiments in this thesis investigate the strong interaction
of single photons and collective excitations in atomic ensembles in the limit of weak excitations { < 1,
where ~ [¢|? is the mean number of collective excitations.

As pioneered by DLCZ®, parametric Raman interactions, ﬁi(lftar) ~ Xp&’yga + h.c., based on the weak
x® nonlinearity of the system can be applied for robust implementations of quantum communication
protocols, including quantum cryptography and teleportation (chapter[2). In the regime of single excitations
(¢ < 1), the required ‘strong’ nonlinearity is provided by projective measurements. An important aspect
of this approach is that the heralded atomic state can be coherently mapped to single photons in an efficient
manner via the collective matter-light interaction H i(;?ap) ~ Xm0~ 5’2 + h.c (chapter . In particular, parallel
chains of heralded entangled states can be converted into polarization entangled photons via entanglement
connection (ref.?”, chapter [5)) and distribution (ref.?%, chapter @), with a built-in purification mechanism®.
For a preamble to the original protocol, I refer to James Chou’s thesis”! and ref.#. In chapter I will revisit
the interaction Hamiltonians H** and H™™, and derive the steady-state solutions for > as well as the
equation of motions for ﬁfﬂ ) in detail. I refer to Fig. for a standard routine of our experiments.

In 2003, initial experiments for the DLCZ protocol began with the observations of quantum correlations
between photon pairs emitted from an ensemble by our group (ref.’?; see also James’ thesis’!) and by the
group of Mikhail Lukin”?, Since then, single photons were generated in a heralded fashion by reading the

14380 Conditional efficiencies 74% in free space®! and

stored, collective excitations to propagating fields
90% in a cavity®? were achieved for retrieving a single excitation in the ensemble to a single photon. Off-
axial phase-matching configuration for the four-wave mixing process has been pioneered by Steve Harris’
group™ and used extensively in our experiments, whereby we generate spatially separate quantum fields
from the classical beams. However, as I will discuss in chapter [2] the collective spin waves generated in this
fashion can have considerably shorter coherence length [, as well as a Doppler life times 74 than the collinear
configuration.

With these capabilities for collective emissions in hand, our group generated heralded entanglement be-

f27.

tween distant ensembles in 2005 (re see James’ thesis’! for this remarkable piece of work). Although the

degree of entanglement was small in the initial experiment?’, more recently we have been able to infer the
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concurrence C' = 0.9 + 0.3 for the entanglement associated with density matrix of the two ensembles (ref.*%,
chapter [3). Since then, substantial progresses have been made with heralded quantum states (section [3.7)),

including the synchronization of indistinguishable single-photon sources50

and heralded storage of polar-
ization qubits®?. Furthermore, Vladan Vuleti¢’s group demonstrated that two ensembles can be entangled via
the adiabatic transfer of heralded excitations in a cavity®”.

The DLCZ protocol is based upon a quantum repeater architecture involving independent operations on
parallel chains of entangled systems, with scalability relying critically upon the conditional control of en-
tanglement. In 2007, we took an important step towards this goal by achieving the minimal functionality
required for scalable quantum networks via the asynchronous preparation and control of heralded entangle-
ment (ref.?%, chapter El) In this experiment=®, we distributed a pair of heralded number-state entangled states
and converted them to an effective polarization entangled state, thereby violating Clauser-Horne-Shimony-
Holt (CHSH) inequality®* (chapter E]) Using this setup, we also established quantum coherence between
ensembles that never interacted in the past by way of entanglement connection (ref."Z, chapter. Later, Jian-
Wei Pan’s group also realized elementary quantum nodes for a Briegel-Diir-Cirac-Zoller (BDCZ) quantum
repeater” in 2008 (ref.5Y).

In parallel with the research on heralded entanglement, there has also been considerable interest in the
development of deterministic quantum interfaces to achieve reversible mapping of quantum states of light to

7 (map)

and from atomic ensembles via H*P (refs. 557, chapter [2). Inspired by the early pioneering experiments

on ultraslow-light propagation in dense atomic medium in 1999 (refs.888%) storage and retrieval of optical

90191

pulses have been demonstrated, for both classical pulses and single-photon pulses®>“? by way of dynamic

869496 chapter [2). Similarly, quadrature squeezed

electromagnetically induced transparency (EIT) (refs.
states have been stored and retrieved in an ensemble in 2008 (refs.?’®%). In 2008, we achieved an important
milestone for transferring quantum entanglement over quantum networks by demonstrating the reversible

mapping of photonic entanglement to and from two quantum memories by the EIT process (ref.5"

, chapter
[6). In this experiment, we prepared an entangled state of light from an “offline” source ensemble, and
mapped the photonic entanglement into and out of two atomic ensembles (chapter|[6). Our work on reversible
quantum interfaces thereby sets the stage towards integrating hybrid quantum systems by way of photonic
quantum buses (chapter [I0). Recently, this approach has been extended to transfer the initial atom-photon
entanglement in a cavity QED system to an entangled state of a single atom and a Bose-Einstein condensate
in 2011 (ref.??).

Since then, a wide variety of approaches has been proposed for storing and retrieving quantum states
of light in inhomogeneously broadened samples, including controlled reversible inhomogeneous broaden-
ing (CRIB) (ref 1% atomic frequency comb (AFC) (ref. 1)), and gradient echo storage (refs.192103): see
also ref.1% for a comprehensive review. Many of these storage techniques offer unique perspectives for
high-bandwidth multimode quantum memories and integrated waveguide coupling, and several groups have

reported important progresses towards this goal, such as electric control of photon echos'?%, coherent pulse
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sequencing in atomic vapor'’® and storage of temporal modes in rare-earth solid-state ensembles', albeit
with classical states. A vast majority of these experiments, however, do not demonstrate a genuine quantum
memory in that they use classical states detected by postselection, and rely on the “rephasing” of the collec-
tive emissions after a uncontrollable fixed delay. More recently, time-bin entangled states have been partially
stored and retrieved after a predetermined delay in 2011 (refs. 1081109 1 these experiments, however, the en-
tangled states were detected in a post-dicted fashion without the possibility of mapping the physical state of
light onto the atomic ensembles 1 (section . Nevertheless, experiments listed here represent significant
advances of multimode quantum memories towards “practical” quantum repeaters*2.

Other experiments not described here are those based upon entanglement as post-diction, for which the
physical state is not available for subsequent utilization! (see section for the multiple flavors of en-
tanglement). For example, entanglement between two remote atomic ensembles has been generated in a
post-dicted tashion' L, and a posteriori teleportation has been used to transport the polarization state of light

to an atomic memory 12,

In addition, ref.¥ has claimed to have generated a particular kind of a multi-
photon mode-entangled state, known as a NOON state, and applied for measuring the collective motion of
the ensemble with phase super-resolution in a “spin-wave” interferometer, although the entanglement was
not verified.

The figure of merits for the collective enhancement of matter-light interaction are high retrieval effi-

8182 and long memory times (chapter [2). 2009 was an intense year for the ‘ensemble’ community to

ciency
increase the storage time for collective excitations in atomic ensembles leading to a worldwide effort, with
the advances ranging from millisecond quantum memories#12 to light storage in an atomic Mott insula-

18 and finally to the longest memory time of “1.5 seconds” for storing a coherent state in a Bose-Einstein

tor
condensate!”, However, in most of these experiments, the retrieval efficiencies were still n < 1%. Important
experiments preceding these activities have been the demonstration of the EIT storage of coherent states in a
crystal with a storage time longer than 1 second (ref.11%), the collapse and revival of collective excitations in

an atomic ensemble 12120

, and the characterization of decoherence for the heralded entanglement stored in
two atomic ensembles (ref.*%, chapter|3).

Around the same time, we began to collaborate with Pavel Logouvski and Steven van Enk to develop
an efficient theoretical protocol for verifying multipartite mode-entangled W states (ref.*%, chapter . We

proposed to use quantum uncertainty relations2!

as a nonlinear, nonlocal entanglement witness capable of
verifying genuine W states, and of distinguishing the ‘global’ N-partite entangled states from any (N — 1)-
partite entangled states as well as their mixtures®®. By implementing this verification protocol, we generated
and characterized the multipartite entanglement for one photon shared among four optical modes in 2009
(ref.®2, chapter.

Finally, in 2010, we made a major advance towards multipartite quantum networks by achieving measure-

ment induced entanglement of spin waves among four quantum memories (ref.*?, chapter E]) The individual

atomic components for the entangled W state of the four ensembles were coherently mapped to four entan-
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gled beams of light, where we observed the statistical and dynamic transitions for the multipartite entangled
spin waves (see Fig. for the photo of the lab at the time). We also showed that our entanglement ver-
ification method is suitable for studying the entanglement order of condensed-matter systems in thermal
equilibrium*?. With regard to quantum measurements, the multipartite entangled state stored in the quantum
memories can be applied for sensing an atomic phase shift beyond the limit for any unentangled state®~.,

The original DLCZ protocol® has by now motivated an active field of theoretical study of quantum re-
peater architectures for optimizing the network scalability in view of actual laboratory capabilities*?1221123,
Specific attentions have been made to the scaling behavior for multimode quantum repeaters®”, dynamic
programming search algorithms'2%, and entanglement percolation®. Moreover, measurement-based quantum
computation has been proposed for scalable quantum computing with atomic ensembles?®. Stationary dark-
state polaritons in a standing-wave EIT medium have been proposed for strong photon-photon nonlinear in-

12751301 Single-photon entanglement purification was proposed 2! and partially

teractions and quantum gates
demonstrated'#2, but the higher-order excitations for the purified states have not been characterized 1.

By and large, significant advances of solid-state ensembles (e.g., rare-earth crystals'%#) and the achieve-
ment of collective strong coupling in diverse systems =138 have also contributed indirectly to our research
program towards ensemble-based quantum information processing with neutral atoms, as described above.

13334/ and with an ensemble of

Collective strong coupling has been observed with Bose-Einstein condensate
trapped ions forming a Coulomb crystal'> in the optical domain, and electron spin ensembles residing in di-
amonds have been coupled to a superconducting cavity in the microwave domain'2%137, In addition, temporal
modes of microwave photons have been stored and retrieved in an electron spin ensembles using a gradient
echo technique'*®. Beyond the free-space experiments in this thesis, such advances are relevant to the outlook
of our project (chapter[T0), whereby we hope to investigate the strong interaction of heterogeneous quantum

systems of atoms, photons, and phonons by way of photonic crystal nanowires'*? and atomic ensemble

and to distribute quantum coherence and entanglement over ‘lithographically patterned” quantum networks.

1.3 My history in the group, and notable omitted results

Substantial progresses have been made in lab 2 including the heralded entanglement between two remote
atomic ensembles’, as noted above. As a result, upon my arrival in 2006, many parts of the apparatus in lab
2 were built by my predecessors, James Chou, Hugues de Riedmatten, Daniel Felinto, Alex Kuzmich, Julien
Laurat, and Sergey Polyakov, since their initial work in 2003.

I acquired significant feedback and “lab lore” from James and Julien during my short overlap with them
(2006-2007); see Kevin Birnbaum’s thesis'#? for the definition of the term, “lab lores.” T would thus like
to acknowledge the early works in James’ thesis’!, which formed an important basis to my experiments

after 2006. Also, my training in atomic physics in Hal Metcalf’s group (Stony Brook University) helped

aSee also refs. 140141 for new regimes of strong coupling, which may be achieved in the new system.
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me to complete many tasks in this thesis in a timely fashion, including the coherent control of populations
in Rydberg atomic beams by way of electromagnetically induced transparency (EIT) and stimulated Raman
adiabatic passage (STIRAP).

Since 2006, we have made significant changes to the setup from experiment to experiment, and I will not
be able to list the specific changes in this thesis. The details are documented throughout my lab notes, as well
as those of my colleagues (James Chou, Hui Deng, Akihisa Goban, Julien Laurat, and Scott Papp). But some
changes are noted in chapter[9] At the same time, I have tried, as others have in the past, to transfer as many
“lab lores” and new techniques as possible to other members in lab 2.

As listed in the previous section, I have been involved in a number of experiments (chapters in
the thesis) since 2006. However, I regret that there are some results that I must omit in order to focus on
experimental and theoretical results under the encompassing theme of quantum networks. I would thus like
to take this opportunity to compile notable results not discussed in this thesis, to which my colleagues and I

have contributed.

1.3.1 Coherent Rayleigh scattering

In 2007, I theoretically considered the possibility of using elastic Rayleigh scattering to measure the rela-
tive phase ¢ (ref.!%) between two entangled ensembles to directly confirm the presence of the purported
‘number-state’ entanglement % ( |915R) + 6i¢|§L§R>) between the two ensembles in the ‘cryptography’
experiment (ref.*®, chapter . In this experiment®®, ¢ was fluctuating over the time scale of the experiment
but was stable over the memory time 7 ~ 10 us. Because of the non-collinear geometry for the paths of the
classical writing and reading pulses, and that of the non-classical fields 1 and 2, it was impossible to lock

the interferometric paths to stabilize the relative phase ¢. Nonetheless, I emphasize that the experiment=°

a b c 12 ‘ ‘ ;
‘€> | o 24 +-0.1Hz
15| Ai {IF
A 8 N o
_____ > Pt B
3 a ‘ -4 -2 [) 2 4
g g 4t ]
probe elastic ) B ‘f
scattering osl ]
[1]A
lg) 00 A A A A A
9 0 50 100 150 -1000 500 0 500 1000
(us) ff, (Hz)

Figure 1.3: Elastic Rayleigh scattering from atomic ensemble. a, A red-detuned probe laser illuminates
a cold sample of Cesium, generating elastically scattered photons 44, b, The time-domain measurement
of the photon counting statistics g(*)(7). The red solid line is a numerically simulated steady-state solution
of g (1), given the measured Zeeman splittings, the orientation of the magnetic field, and the temperature
of the thermal atoms. ¢, Frequency-domain measurement of the linewidth of the scattered photons in the
presence (absence) of atoms, as shown by the red (black) curves. The inset shows a high-resolution spectrum
of the elastically scattered photons, revealing Lamb-Dicke narrowing.
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unambiguously verified the entanglement, as we have observed polarization entanglement via the violation
of CHSH inequality between two quantum nodes, for which we locally converted a pair of the purported
number-state entanglement into polarization entanglement (ideally with 1/2 of ebits).

In 2009, Scott and I made a partial measurement to show that the phases among the quadripartite entangled
atomic ensembles (chapter [9) can be probed in principle (Fig. [I.3). We applied a red-detuned probe laser
(detuning A = 10 MHz from the cycling transition between ground state |F' = 4, m) of 65, /5 and excited
state |[' = 5, mp) of 6P3/5) on an atomic sample with saturation parameter s < 1, such that the scattering
process is dominantly elastic#¥143, The time-domain measurement (Fig. [1.3p) of the photon counting
statistics ¢ (1) ~ 1 + | g(()l)(T)\2 (thermal atoms at 7; ~ 150 uK without trapping) and the frequency-
domain measurement (Fig. [I.3k) of the linewidth of the scattered photons from the trapped atoms revealed
both the motional dephasing of the atoms and potentially the relative phase between the local oscillator and
the scattered photons. The presence of residual magnetic field along the k-vector of the probe beam induced
an additional modulation on ¢g(® (1) for the Rayleigh scattered photons (Fig. ), due to the interferences
of distinct (mp) pathways for the |F' = 4, mp) <> |F = 5,mp) transition. The motional states of the
atoms were simultaneously cooled and confined by the polarization gradient mechanism in Fig. [T.3f, thereby
suppressing the motional dephasing rate down to 2.4 4+ 0.1 Hz (limited by the mechanical instabilities in the
measurement process). This allowed us to perform a recoil-free spectroscopy via elastic Rayleigh scattering

in Fig. (thanks to the Lamb-Dicke narrowing for the trapped atoms'4%).

1.3.2 Motional dephasing of spin waves

I analyzed theoretically the motional dephasing of spin waves given our phase-matching configuration, after

f. 34

observing an unexpected Gaussian decay of the retrieval efficiency in 2007 (see the result of ref.**, chapter

[3). Formerly, we have considered the motional dephasing only for atoms leaving the excitation region™ 7.
However, it turns out that the much smaller ‘coherence length’ for the ‘timed’ Dicke states'4% depends crit-
ically on the phase-matching configuration for the coherent radiation to take place, given the spatial phases
encoded on the atoms (chapter [2). Independently, such a possibility was considered in the experiments by
Vladan Vuleti¢’s group®2, where they observed two time-scales for the memory time associated with the for-
ward (long-lived) and backward (short-lived) propagating spin waves. Unfortunately, we did not pursue this
idea in our experiments to improve the storage time beyond 1 ms (chapter 2)).

Later, the groups of Alex Kuzmich and Jian-Wei Pan achieved millisecond quantum memories in 2008
by confining the spatial motion of the atoms'" and by increasing the coherence length of the spin waves™%,
respectively, which confirmed the validity of this idea. In our lab, the Rayleigh scattering measurements in
2009 agreed with the prediction of motional dephasing, whereby we cooled the motional state of the atoms
in a near-resonant lattice formed in the process of polarization-gradient cooling*¥, and inferred a motional

dephasing rate Ry = 2.4 + 0.1 Hz (Fig. . In addition, we have reduced the net momentum transfer 5k

(i.e., increasing the coherence length) of the spin waves to achieve coherence times 7,,, ~ 60 s, limited at



10

1.0x1 06 T T T T T 1.0x1 0’2 T T T T T T T T T T T
a b —— 4=0MHz
i ! 1 i —— A=16MHz
7 3 4= 32MHz
8.0x10" |- b 8.0x10 4= 80MHz ]
—— 4= 160MHz
6.0x107 | . 6.0x10° g
N
o Q
4.0x107 |- - 4.0x10°
2.0x107 | - 2.0x10°
0.0 0.0 R 1 R I R I R L . L .
150 100  -50 0 50 100 150 -75 -50 25 0 25 50 75
z(ns) z(ns)

Figure 1.4: Towards quantum interference between indistinguishable single photons emitted from an
atomic ensemble and a single atom in a cavity. a, Time-resolved Hong-Ou-Mandel (HOM) interference''+
between two coherent states. As a control experiment, we interfere two balanced coherent states emanated
from each lab with orthogonal (black) and parallel (red) polarizations, where the temporal profiles of the

pulses are matched close to the emission patterns of the single-photon sources. We achieve HOM visibility

Viom(T = 0) = 0.52 £ 0.08 at delay 7 = 0 ns, similar to our expectation Vggf/[‘y = 0.5 for balanced

coherent states. The theoretical model (line) is based on the numerical procedure described in ref.!?, using
the measured spatio-temporal modes for each beam. b, Simulation of the quantum interference between
two indistinguishable single-photons with the ensemble cross-correlation function set at g1o = 50. We
theoretically calculate the time-resolved HOM interference for various detuning A between the two photons,
given the temporal profiles of the two transform-limited single-photon sources.

the time by the inhomogeneous Zeeman broadening in late 2007 (chapter [2] see Fig. [2.8). While these may
be considered as missed opportunities, I believe that we followed the ‘right’ footsteps (chapters[7H9) in order

to pursue more interesting ideas for my doctoral thesis.

1.3.3 Indistinguishability between heterogeneous single-photon sources

In mid-2007, we began to collaborate with the cavity QED lab (Andreea Boca, Dave Boozer, Russell Miller
and Tracy Northrup in lab 11) to study the time-resolved Hong-Ou-Mandel (HOM) interference*” between
two indistinguishable single photons emitted from an ensemble and a single atom in a cavity. While we have
not been able to succeed in this experiment with sufficiently large suppression for the two-fold coincidence
between the two output ports of the interferometer, there were discussions regarding the non-classicality of
HOM interference. During this time, I also analyzed experimentally and theoretically the temporal profile of

the HOM interference for two photons emanating from each lab (see, e.g., Fig. [.4).

1.3.4 Inducing phase shifts between collective excitations stored in atomic ensembles

for quantum-enhanced phase estimation

In early 2010, Aki, Lucile, and I explored the possibility of randomly inducing a 7 phase shift on one of four

atomic ensembles, following Steven’s idea to employ a quantum-enhanced parameter estimation protocol
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Figure 1.5: A phase shift in the collective excitation due to an off-resonant ac-Stark shift beam. Theoret-
ically simulated variance A for two ensembles as a function of storage time 7, including inhomogeneous
broadening from the ac-Stark shift beam. A dashed line shows the result of A(?) without a light- shift beam,
whereby A(?) increases due to motional dephasing. We define A?) = 1 — p?, — pZ,, where pyo and po; are
the normalized output probabilities after interfering two entangled fields (chapters [SH9).

(partially discussed in ref.*% and chapter@). The idea was to induce a phase shift on the ground state coherence
|F = 3) — |F = 4) by switching on an off-resonant beam. This phase-shift beam would interact with the
collective excitations |5)j in a direction not phase-matched to |3), thereby avoiding any possible collective
enhancement of accidentally erasing the spin waves. In the process of this study, Lucile worked with Aki
to intensity stabilize the ac-Stark shift beam I,. and to lock an interference filter laser™>! to a fiber Fabry-
Perot reference cavity. Aki developed a simple model for simulating the phase shifts and scattering rate for a
given power [,., as shown by Fig. However, according to our estimates, the required retrieval efficiency
and the quantum efficiency to observe any quantum enhanced sensitivity (overall efficiencies of ~ 75% for
unambiguous state-discrimination protocol and ~ 93% for minimum error discrimination protocol) proved

difficult (if not impossible) with our current experimental capability.

1.3.5 Technical side-projects
1.3.5.1 Development of double-sided AR-coated UHYV glass cell

In the early days, Julien and I had worked with Ron Bihler, then at Technical Glass, Inc., to prototype a ultra-
high-vacuum (UHV) glass cell with double-sided anti-reflection (AR) coating on the windows. Although

I will not discuss this side-project in the thesisﬂ the new “frit-fusing” technique, which Ron developed in

bInitially, Julien and I worked with Ron Bihler (Technical Glass, Inc., now at Precision Glassblowing, Inc.) to use vacuum compati-
ble glass epoxies (e.g., Epotek 353ND) and Vacseal to seal AR-coated cells, but it proved to be very fragile during bakes in 2006. Later,
I worked with Kazuyuki Tsukamoto (Japan Cell) and Ron in 2007 to create a robust AR-coated UHV Pyrex cell by optically contacting
polished glasses assisted with local heating of standard glass frits. Ron later extended this approach to develop his low-temperature
frit-fusing method.
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2007, combines the traditional optical contacting method with special low-temperature frits, and allows for
fusion-bonding optical quality fused silica/quartz windows without damaging the AR coating. While I have
considered using this cell for the next generation vacuum chamber at the time, unfortunately we have not
pursued this project further because of some fear of developing fractures in the frits over time. However,
I would like to note that several groups in JILA, Paris, and Stanford have by now used these cells in their
BEC experiments successfully, where they have maintained pressures under 10~1° Torr over the last couple

of years. It may be interesting to revisit this idea in the future.

1.3.5.2 Filtering quantum fields at the single-photon level from the strong classical beams

In 2008, Hui and I characterized a photo-refractive fiber Bragg grating from AOS, which Russ and Tracy
have investigated before. Despite the narrow bandwidth (v = 500 MHz), the transmission was not superior
to our existing setup using the Cs filter cells with paraffin coating (attached with AR-coated windows). Scott
has also looked into a custom fiber cavity (Micron Optics), where the transmission was inferior to the fiber
Bragg grating. I have looked into custom fiber wavelength division multiplexers (WDM) and circulators from
Canadian Instruments and Research Limited (CIRL) and Oz Optics at 852 nm, which was later found to be
unfavorable due to transmission loss and Brillioun scattering noise from the locking lasers in a test at CIRL.
Later, Daniel in lab 1 carried on with studying the WDMs for the fiber trap in 2010.

In 2009, Aki and I characterized a custom AR-coated frit-fused Cs vapor cell with paraffin and buffer gas
(Technical Glass, Inc., now part of Precision Glassblowing of Colorado) hoping for a better optical quality
with the help of double-sided AR coating (section [I.3.5.1). However, the thermally redistributed paraffin
contaminated the polished windows and subsequently limited the transmission as well as the wavefront dis-
tortion.

A recent reincarnation of this project has been made with my work in late 2010 with Dr. Vadim Smirnov
and Dr. Igor Ciapurin at OptiGrate to produce a custom holographic grating (VBG) (Fig. [I.6p) from a photo-
thermo-refractive (PTR) glass that provides an unprecedented filtering capability for the quantum fields to
avoid contamination from the classical trapping beams for the fiber trap by ~ 180 dB extinction ratio and
> 95% diffraction efficiency (chapter . Our test on the VBGs agrees well to the simulation based on
coupled mode theory>? (Fig. ). Formerly, such an attempt has been made successfully in Allan Migdall’s
group at NIST.

1.3.5.3 Other projects

There have been other side-projects contributing to the group in general, which I will not discuss here in
detail, as Scott’s work on generating pulse trains and logic gates with field programmable gating arrays
(FPGA) (National Instruments) for atomic ensemble experiment{] While Scott and I determined that the

FPGA’s timing noise was insufficient for our experiments (chapters [8H9), lab 1 later used this FPGA for their

“Formerly, James Chou tested slower Spartan FPGAs from Xilinx.
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Figure 1.6: A custom made high-performance PTR-based volume Bragg grating. a, Volume Bragg
grating (OptiGrate, Inc.) mounted on a high-precision 3-axis tilt-roll mount (~ urad sensitivity). b, Spectral
dependence for a single volume Bragg grating. The measured extinction ratios ER (green circle) for the
red-detuned and blue-detuned trapping beams at A = 687 nm and 935 nm are 70 and 92 dB, respectively.
The black circles are the measured diffraction efficiency around resonance. The diffraction efficiency on
resonance (A\g = 852.35 nm) is 7jpg = 93.5 + 0.3%, limited by the broadband AR coating. The red curve is
a simulation based on coupled mode theory'l>2. The spectral bandwidth (FWHM) is designed to be v = 30

GHz and the intrinsic diffraction efficiency is ng%‘) = 99.9%, according to my calculations for a Gaussian

beam of wg ~ 1 mm.

experiment>?, In chapter @ we implemented an alternative solution by way of a quantum composer and
digital logic gates.

Aki and I also updated the diode laser’s circuitries as well as other electronicsﬂ Scott and I designed
various electronic servos for locking interferometers and standard Fabry-Perot cavities, as well as for intensity
stabilizations, and various logic circuits for pulse triggers, controls, and synchronizations. In appendix [A] I
list a few examples of the electronic circuit designs.

I characterized a variety of methods to image patches of atoms in a single collective excitation via mi-
crolens arrays (wg ~ 2 pm with 80% filling factor) (SUSS MicroOptics and Jenoptik) and lensed fiber arrays
(wo ~ 600 nm with 5% filling factor) (Seikoh-Giken). Scott characterized ball lenses (Laseoptics) and ta-
pered lens fibers (Nanonics) for imaging single atomg| (wy ~ 400 nm). More detail on these and other
projects can be found in our lab notes and written notes, and in the “lab 2 disc,” which compiles all the

electronic files for the printed circuit boards (PCB) in lab 2 since 2006.

1.4 List of recent advances

To summarize the advances made in this thesis, I hereby list major achievements that my colleagues and I

have made over the last few years:

dSee some examples in the ‘blue book’ of the electronics room and in the lab 2 disc (e.g., VCO designs, phase-sensitive detectors,
high-bandwidth HV amplifiers, and piezo controllers).

Later, the tapered lens fiber from Nanonics was used in lab 11a for trapping single atoms. Daniel Chao, Scott Kelber, Scott Papp,
and Cindy Regal further characterized the fiber in detail.
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1. Characterization of the dissipative process for heralded entanglement stored in atomic ensembles (chap-

ter [3).

2. Realization of functional quantum nodes for entanglement distribution over a scalable quantum net-

work (chapter [).
3. Reversible mapping of photonic entanglement into and out of a quantum memory (chapter [6).

4. Characterization of entanglement for one photon shared among four optical modes via quantum uncer-

tainty relations (chapter [g).

5. Coherent control of generation, storage, and transfer of multipartite entangled spin-waves to photonic

multipartite entangled states (chapter [9).

In the remaining chapters, I will describe specific experimental and theoretical results of our work to

substantiate the advances listed here, as well as others.
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Chapter 2

Atom-light interaction

2.1 Physical system

In a classic paper in 1954, R. H. Dicke calculated the rate at which radiation is emitted spontaneously by a
collection of two-level atoms“*. By considering the entire collection of N4 atoms as a single quantum system,
he found that under certain conditions the atoms in the excited state can cooperatively decay into the ground
state by emitting light into a single mode at a rate 1/7, o< N4T'g much faster than their incoherent emission
rate I'o = 1/79. The emission intensity .o, is thereby collectively enhanced with Ioon o< Nafiwg /7. Ni,
relative to the incoherent emission intensity [ o< Nafuwg/7o o< N4. Indeed, the initial investigations of
non-trivial dynamics for the collective spontaneous emissions began with the studies of ‘superradiance’ for
atoms localized in a sub-wavelength region (|r| < Ao)E

In a subsequent paper’>#, Dicke predicted that radiation into a particular mode could be enhanced (su-
perradiance) or suppressed (subradiance) for a spatially extended sample || > g, depending upon the
relative spatial phases of the atoms*52, In this case, superradiance is manifested by a quantum analogue of
Bragg reflection of light on an atomic phase grating. Unlike the case for sub-wavelength samples || < Ag,
where the initial spontaneous emission of an inverted atomic system leads to a phase coherence between the
atomic dipoles due to the intrinsic indistinguishability in the emission process, the superradiant emission of
an extended sample is also associated with the classical constructive interference of the wavelets produced by
periodically located scattering sites in the “forward” direction set by the sample geometry. Such collective
spontaneous emissions over extended samples have been observed in a wide variety of physical systems, in-

156157 35 well as in

cluding the observations of superradiance in molecular rotational and Rydberg transitions
optical transitions 1%, More recently, superradiant Rayleigh emission has been observed in light scattering
experiments with Bose Einstein condensates!®!,

1162 there has been

In the quest to distribute quantum coherence and entanglement over quantum networks
significant interest in the Raman interaction of light with atomic ensembles consisting of a large collection
of identical atoms at the single-photon level®*¥ (chapters [3H10). In this chapter, I begin with an atom-

light interaction Hamiltonian in Dicke’s approximation leading to a classic type of collective spontaneous
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fluorescence (for || < Ag) and introduce basic notations used throughout this thesis (section . Then,
I discuss the steady-state solutions for spontaneous Raman interaction which creates non-classical atom-
photon correlations (section [2.3), and demonstrate that the parametric interaction can be used as quantum
resources (section [2.4). I also describe the equation of motions for the collective matter-light interaction
via the adiabatic passage of dark-state polaritons (section [2.5)). Finally, I discuss two dominant decoherence

mechanisms, which result in spin-wave dissipations and finite memory time (section [2.6).
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2.2 Superradiance for a collection of two-level atoms

We consider an ensemble of N4 two-level atoms at positions 7; with i € {1,--- N4}. The sample is
comprised of ground and excited states (|g), |e)), separated by an energy of fiwy. Here, we introduce the
raising and lowering single-atom operators in terms of Pauli spin operators &; (5;) = |e)i{g| (|9):(e),

$(leilel — |g)i{gl). The electric dipole operator is then given by

and the inversion operator as 6, ; =
D; = (6;7 + 6, )doé,, where dy is the matrix element for the transition |g) <+ |e) and &, is the polarization
vector for the atomic transition. We introduce the positive and negative frequency components of the electric

fields

EY(R) = Y & ap e TE, @.1)
E-(7) = Zegéagee*i’??gg, 2.2)

where £ Fe () is the slowly-varying amplitude and €, is the optical polarization vector, for which we assumed
a plane-wave expansion with £ (7) = —i,/ %

We can then write the atom-light Hamiltonian for an ensemble of [NV 4 two-level atoms as
N4

(E*(F) +E- (F)) D, 2.3)

%

Na
Hensemble = Z hw()é'z,i + Z m}];&j;dlg -
i kE
where {ay, &%} are the mode operators for wave-vector k:

2.2.1 Dicke Hamiltonian

Superradiance is a transient coherent processE]involving a collective mode of all the N4 atoms in the sample.
In the collective mode, correlation and order between the dipole moments arise through spontaneous emis-
sions in an inverted system (initial state with |¥(¢ = 0)) = |e- - - €)), due to the intrinsic indistinguishability
in the emission processes of the individual atoms. After a delay ¢, the initial spontaneously emitted photons
build up the coherences among the atoms, leading to a superradiant pulse. From Eq. [2.3] we write the multi-
mode theory of the Dicke Hamiltonian (|r| < Ag) (in the electric dipole and rotating wave approximations)
and treat the atomic states (labeled a) as a system and electromagnetic modes (labeled ) as a Markovian

bath. The Dicke Hamiltonian is given by

Hpicke = hwogz + Z hw,;&%d,; + Z (ﬁgESJ&E + h.C.), 2.4)
k k
——

“We implicitly include the polarization ¢ by absorbing the notation (k, €) — k.
bOther notable examples of transient cooperative effects include optical free induction decay and photon echo.
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A~ 2
where h.c. is a hermitian conjugate of the term hg,;Sar ag, hgy = iy/ %e} - € is the single-atom single-
photon coupling constant, €, , are the polarization vectors of the photon and the atomic dipole, and V is the

coherence volume. Here, we used collective lowering and raising operators

So o= Y e =S = 67 2.5)
§r = Zefilz-ﬂ-oﬁ;i- ~ S5 =Y "6t (2.6)

and the collective inversion operator
S.~> 67 .7

In addition, we define the total angular momentum operator (also known as the length of the Bloch vector
S’k) as

(ST Sy + S5 5¢) + S-. (2.8)
In writing Eqgs. , we assumed the sub-wavelength condition R T~ (iRTo for Y (5‘,; ~ 36,

leading to the introduction of collective symmetric states |.S, m) of S, and S

2.2.2 Collective spin states
Collective spin states | .S, m) for the maximum angular momentum S = N/2 are given by (ref.*?)

|S,m>: (S+m)' !(A()_)Sim|€'~-e>, (2.9)

NS —m)

with —S < m < S. The collective state |N4/2, m) in Eq. represents a fully symmetric state whereby
(N4a/2 + m) atoms are in the excited state |e) and (N.4/2 — m) atoms are in the ground state |g). The

collective spin states |.S, m) are simultaneous eigenstates of Eqgs. 2.8 with the following relations

S.|S,m) = m|S,m) (2.10)
S2|18,m) = S(S+1)|S,m). (2.11)

Similarly, the collective raising and lowering operators SSE acting on |S, m) are

SEIS,m) = /(ST m)(S£m+1)|S,m=+1). (2.12)

¢For |r| < Ag in the optical regime, one cannot neglect the effect of van der Waals force ~ 1 /rf].‘ I refer to ref.#4 for further
discussions of non-ideal superradiance in the presence of dipole-dipole coupling between the atoms.
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The collective spin operators follow the commutator relations

i %)

[5..5%]

>

25, (2.13)

+5F, (2.14)

We will use the language of collective spin algebra in the context of quantum many-body theory in chapter 9]
to study the thermal behavior of entanglement in quantum spin models.

Since the Dicke Hamiltonian ﬁDicke in Eq. commutes with the operator S 2, (5' 2) is a constant of
motion. On the other hand, [S’Z, ﬁDiCke] # 0. Thus, as we will discuss in the next section, we can expect
that the inverted atomic system (|¥(¢ = 0)) = |e---e)) undergoes a series of cascade emissions with the
atomic state confined in a ladder formed by (25 + 1) equidistant energy levels E,, = mhw, of the symmetric
collective states |.S,m) shown in Fig. , analogous to the case of spontaneous emission of a spin with

angular momentum S.

2.2.3 Superradiant emission for an atomic ensemble in a sub-wavelength volume

Since the system-reservoir Hamiltonian is [, = > E(hg,gga“ age'o=*x)t 4 h c.) in the interaction picture

(Eq. , we can write the real pariE] of the master equation (in the Born-Markov approximatimﬂ) with

%ﬁa(t”real = —%wa (fot dt/[ﬁav(t)a [I:Ia'y(t/)vﬁa(t) ® ;37(0)]}) following the standard procedures!¢4160
as
d . To_ A AL Al A A
ZPa)lea = —30%( o S ba — 257 paSy + PS5 SY)
To o
— = (0 + 1)(55 S5 7 — 285 5S35+ 5uS5 S0), (2.16)

where T'g = k3d3/(3megh) is the single-atom spontaneous emission rate in the Wigner-Weisskopf theory of
spontaneous decay.

To describe superradiance in the optical domain, we may approximate the reservoir modes v as vacuum
states with zero mean thermal occupation (7, = 0). Then, the surviving term in this master equation (ond

term) describes a symmetric collective damping process for the system, cascading from the initial totally

dNote that the dispersive imaginary part of the master equation gives rise to collective Lamb shift and van der Waals interaction,
Namely, we find

dmeo |57 T

The superradiance for Eq. rs because of the indistinguishability in the emission pathways among the atoms. The dispersive

d . id32 1 3é& 7)) | par .
&Pa(t)‘imaginary =0 |:Z 3. |:1 - (;]2”):| 0':— ]_-F,Pa:| . (2.15)

2
Ldo 5, where the relative strength to I'g

i

van der Waals interaction (Eq. ) has a characteristic dipole-dipole coupling g,qw =~ yp—
0

is Juaw ~ _1 Ao
I'g = 10w \ 7y,

superradiance as discussed here. The full analysis including van der Waals dephasing is out of scope for the current discussion, and I
refer to refs. #4103 for a detailed analysis.
“For sufficiently large N 4, the Markovian approximation p~ (t') ~ p(0) = []; 10) (0| may break down, leading to oscillatory
1641165

3
) . For |r| < Ao, the frequency shifts of this dipole-dipole interaction may break the symmetric behavior of

superradiant emissions
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Figure 2.1: Superradiant states and atomic Fresnel number. a, Energy levels for the collective spin
states. A ladder of symmetric collective spin states of maximal angular momentum S = N, /2 is shown for
me {-5,-S+1,---,5—1,5}. N.is the normalization constant. b, Pencil-shaped atomic ensemble. The
geometric angle is given by 6, = \/mw3 /L, whereas the diffraction angle is 64 = \o/\/mwd.

inverted state |U(¢t = 0)) = |S5,S) (|le---e)) to lower symmetric collective states |.S, m) (progressively
decaying from m = N4 /2 to m = —N4/2) in the subspace of S = N /2 (Fig. R.1p).
Indeed, in the quantum jump picture, we can write the short-time (0¢) evolution of the atomic state p,(t)

as (Eq. 2.16)

Lodt o1 A Lodt o1 A N N
pa(t + 6t) ~ <1 - 0250+50_> pa(t) (1 - 0250*50‘> + Tt Sy pa(t) Sy +0O(5t%), (2.17)

“no” photon loss “yes” photon loss

with the two terms corresponding to the conditional density matrices for zero and single spontaneous emitted
photons, respectively. Since the collective jump operators Soi cannot alter the symmetry (and the total angular
momentum S) of p,(t), the time-evolution of j,(t) from the initially symmetric state |¥ (¢ = 0)) with total
inversion will remain in the S = N4 /2 manifold with a transition probability from |.S, m) to |S, m — 1) given
by p(|S,m) — |S,m — 1)) = To6t(Sg Sy ) = Todt(S 4+ m)(S — m + 1). In particular, for m = 0, we
find a collectively enhanced emission of p(|S,0) — |5, —1)) ~ %, relative to the transition probability
T'g0tN 4 for a collection of independent atoms (I"¢d¢ for single atoms).

The equation of motion for the collective spin operators { S5 (£), S. ()} can be solved analytically from
the master equation (Eq. 2.16) in the semi-classical approximation. Using the commutator relationships (Eqs.

[2-13H2:T4)), we obtain the following differential equations (Eq. [2.16))

d - .
§<So’> = —TIo(5.5]) (2.18)
d . .

$<Sz> = —To(S5 Sy ). (2.19)

In the semi-classical approximation (i.e., taking operators as c-numbers), we solve the equations of motions
(Egs. 2.19) and obtain (5. (t)) ~ —S tanh(I'oS(t—t4)). This leads to a superradiant emission intensity

of I. = =T d<§t’> = %sech2 (Halot —¢,)).
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2.2.4 Superradiance for extended atomic ensembles

The dynamics of multimode superradiance for extended samples 07108

is more complex than the classic
example of Dicke superradiance* in section as the master equation involves various spatial phases
k-7, (thus, the geometry of the atomic sample) as well as a second-order propagation equation (i.e., Maxwell-
Bloch equation, see also Eq. through the atomic sample of length L >> X, (see Fig. [2.1b). For the
current discussion, it suffices to say that if the Fresnel number F, = mw3 /L) is ~ 1 for the atomic sampleﬂ
(F ~ 1 for our experimental parameters, see section [2.3.2.7), the propagation equations of the field for the
‘pencil shaped’ sample can be well approximated to a one-dimensional model4 7067168 The superradiant
emission takes place along the elongated direction k' of the sample (so-called “end-fire mode”)1%Y, for which
the collective variables S, T =0 etk 0, are “phase-matched.” In this case, the so-called ‘shape function’
f(kE) = Nii Zf\’;‘ expli(k — K )(7; — 7;)] determines the phase-matching condition from the sample
geometry %2, which results from the classical interferences of the emitted photons k' from the collection of

atoms excited by a pump laser with a wave-vector k.

fAs shown in Fig. , we can express the Fresnel number F, = 6, /64 as the ratio between the geometric and diffraction angles

(0g,q) with 05 (03) = 4 /Trwg /L (Xo/ wwg). For F' > 1, several transverse modes are necessary to describe the field propagation
through the atomic ensemble, whereas F;, < 1 gives large diffraction angle. In our experiment, L is set, by design, approximately to the
Rayleigh length z for the Hermite-Gaussian mode of our imaging system (L ~ zp), as our atomic sample is much larger than both
{wo, zr}. Thus F, = 7rw(2)/L/\o = zr/L ~ 1. This justifies the use of the Maxwell-Bloch equation with paraxial approximation in

our analysis for sections 2312.5]
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2.3 Parametric atom-light interaction

The weak nonlinearity of spontaneous Raman scattering can generate strong non-classical correlations be-
tween the atoms and the scattered photons'®”. As we will discuss later in section combined with the

‘strong’ nonlinear response of the system by a quantum measurement, an initially independent pairs of atomic

4127134

ensembles can be prepared into a heralded entangled state by a nonlocal measurement (refs. , see chapter

[3). A critical element is the initial atom-photon correlation generated from parametric atom-light interactions
Fy(par)

nt
5.

The creation of atom-photon correlations can be qualitatively understood as follows (Fig. [2.2). As shown

~ Xpl~ So+h.c.. Such quantum resources form the basis of many experiments in this thesis (chapters

in Fig. 2.2h, we initially prepare all the atoms in their ground state [g) = |g,--- ,g). Subsequently, an
off-resonant ‘write’ laser (red-detuned from |g) — |e) transition with detuning A,,) induces a spontaneously
Raman scattered photon (|e) — |s)), called field 1 (denoted by ~1), in the forward direction (with probability
¢ < 1), whose photon-number state |n),, is correlated with the number states |n), of the atoms being
transferred from the initial state |g) to a metastable ground state |s). As it is impossible (even in principle)

to discern which atom ¢ € {1--- N4} has been transferred to |s;) (i.e., the which-atom information), the

Na i(Ryp—F1)-7 5
. e"( 1) T/O-gs’

number state of the atoms is associated with a collective atomic mode Sgs = >

Ny
corresponding to a ‘spin wave’ of a collective excitation. These spin-wave excitations are analogous to the
symmetric superradiant states (but for radiatively inactive hyperfine ground state coherences |g) — |s)) in
section Thus, the classical writing laser drives the initial atom-field state to a two-mode squeezed state

)y, = UPY|g) = >0 o n|na, ny, ) with thermal distribution |c,[? = % through a coherent

evolution of U,

e
(par) _ o —i [ dtH" 73

m (1/7which display non-classical correlations between the two modes
(i.e., between the field 1 and the collective atomic mode). Any subsequent measurement on |n)., projects the
spin sibling to a definite number state |n),, of collective excitations (section .

In this section, we describe a quantum theory for spontaneous Raman scattering in the regime of weak
excitations £ < 1 with an effective one-dimensional model. We decompose the atom-light interaction Hamil-
tonian for a A-level system by adiabatically eliminating the excited state. We also obtain the steady-state

solutions for the atom-field system, which correspond to a model of non-degenerate parametric amplifier.

2.3.1 Spontaneous Raman interaction: Creating spin waves

Here, we consider an atomic ensemble consisting of N4 atoms in a A-level system. We assume a cylindrical
atomic sample with radius wy and length L (Fig. [2.Ip). As shown by Fig. [2.2h, the atomic ensemble
interacts with a classical ‘write’ laser with Rabi frequency ., (7, t)e“z““’? (where Q. (7, 1) = Qu (t)uy (7))
and polarization €, and a quantum field 51 (7, t), which we call field 1. Here, w,, () is the mode function

for a Hermite-Gaussian mode of the writing laser, and the positive frequency component of the quantum field
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Figure 2.2: Generating and retrieving collective excitations to photons. a, Generating and storing single
collective excitations. A weak write pulse illuminates the cold atomic sample, generating a Raman scattered
photon, called field 1. The detection of a single photon in field 1 heralds the generation of a correlated single
collective excitation |3) in the ensemble. b, Retrieving single collective excitations to single photons. After a
storage time 7, a strong read pulse maps the collective excitation to a single photon in field 2 via superradiant
emission.

is expressed in terms of the normalized slowly-varying operator & (7, t) with

= h R e
EF(7t) =iy 26;“;1 &\(F t)eFr 7. (2.20)

The slowly-varying operator & (7, t) obeys the commutation relations

[E1(7 1), EL(F )] = Vid(FL — 7 )0(z — 2/ — et — 1)) (2.21)

where 77| = (x,y) is the transverse position vector and V) is the field quantization volume.

As we described in the previous section, the writing laser is red-detuned by A,, = w,, — wy, from the
lg) — |e) transition, and we also include the two-photon detuning d,,1 = w,, — w1 + wys for the “field 1’,
where w; with ¢ € {w, 1} are the respective angular frequencies for the writing laser and field 1, and wy;
is the hyperfine splitting for the ground states |g) — |s). Both fields propagate approximately in the forward
direction k(K1) || 2, and we treat the propagation of the weak quantized field in the paraxial approximation.
In practice, we employ an off-axial excitation scheme pioneered by Bali¢ et al™3, with a small relative angle

0 < 3° between Em and El, such that €1, €, =~ &, where &, is the polarization vector in the spherical basi

&We decompose the polarization vector in the spherical tensor form,

&G = f%(aﬂriﬂ)
e = (i
& = H@-9)
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2.3.1.1 Interaction Hamiltonian

In the weak depletion limiﬂ where the Rabi frequency €, (7, t) is constant over z, we can write the interac-

tion Hamiltonian in the rotating wave approximation,

Hp) = / din g (F){ A 6 ee(F) ) — hbu1645 (7, 1)

- [hgpffl(ﬁ 1) TGy (7, 1) + B (7, £)eF o 50y (7 1) + hec. }} (2.22)

where n 4 (7) is the atomic density, g, = des /2m - 1s the atom-photon coupling constant with dipole
matrix element d.; = <e|cf|s> We take the quantization volume V; as the sample volume. In writing the
Hamiltonian H{"™ in Eq. 2.22] we denoted the collective atomic variables defined locally at 7* (evaluated

over a small Volumeﬂ containing N >> 1 atoms) in the continuum limit (3 — [ dfna(7)) of

&y (7 1) NﬁZ&U —iwpt (2.23)

with single-atom operator &ffy) = |u);(v|. The collective variables follow the commutation relations,

[6ap(F t), 0 (7, t)] = %6(77 7)(08u0 v (Frt) — 6uabus (7, 1)). (2.24)

In particular, the hyperfine ground-state coherence {J s, 654} follows the Bosonic commutator relations

2072061, 0) = 00 = P 7)+ 0 (55 @29

in the weak excitation limit 045 ~ 1 >> 04, 0gs.

2.3.1.2 Heisenberg-Lanvegin equations

In addition, the system H S’*‘I) interacts with a thermal reservoir (Markovian bath)

H =" hwjr;zjrkj (2.26)

at temperature 7' (mean photon number 7" ) with reservoir mode operators {ra Tr E .+ and with interaction

pv

Hamiltonian of the form

A() _hZ(gsr DL G+ e 2.27)

hThis approximation is, strictly speaking, not valid for our laboratory parameters with optical depth (io(Aw = 0) > 10 and small
detuning A/T" ~ 2 (chapters . In our experiments, the writing laser experience non-negligible amount of depletion as it propagates
through the sample with Q,, (7,t) ~ e~90(Aw)z/L where do(A,,) is the effective optical depth for the detuning A.,.

iThe linear dimension |§+] of this volume must be large enough to contain macroscopic numbers of atoms, but small compared to

the characteristic variation in the spin-wave amplitude: i.e., |67] < Ags = I 27’]; i
cw —R1
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The total Hamiltonian including the respective reservoir modes for the atomic coherences o, is

Ho=HP™ + H, + > H. (2.28)

v

In the Heisenberg-Langevin approach431641166l e can describe the dynamics of the atomic operators

(from Eq. [2.28)) by a set of self-consistent equations of motions (ref.143)

046 1 = — Yy O — %[&W, H) + F,,. (2.29)

The Langevin noise operators Fuv (7, t) arise from the system-reservoir interactions H S(ﬁ v) , and are associated
with the decay term (—7,,,5,,) in Eq. [2.29] representing the dissipation of the atomic coherences 7, into

the fluctuating reservoir modes (and vice versa). The exact form of FW(F, t) is not important, as they are

§-correlated (7], (t)Fuw (t'))r = 279,00 V16(t — ') and [F,, (t), Bl ()] = 27, V16(t — ') and have

[Nz nv

Zero reservoir average (<131 w)r = 0). In addition, the system-reservoir correlation function is given by

(6], ()L (') = 7, V16(t — t'). In the following discussion, we will assume vacuum states 7y, = 0
for the reservoir moded]
Explicitly, the equations of motions for the optical coherences {G s, G¢4 }, and the ground-state coherence

Gg4s are given by the following set of equations (with 64 > G4, Gee)

Oi6se = —(Yse +i(Dw — Wys) — 11)G e + Qe 76,y + Fi (2.30)
Dibgs = —(Vgs — 10u1)Bgs — iQue™ "o +igiére 1Ty, + By 2.31)
Oibeg = —(Yog — iD)Geg — iU e~ Fo TG, 4+ . (2.32)

2.3.1.3 Adiabatic elimination of excited state

In the following, we solve the steady-state solution for Heisenberg-Langevin equation of motion (Eqgs. [2.30}
2.32). If we assume the far off-resonant limit A, > s, Ve and the narrow-bandwidth dw,, < A,, of the
write laser, we can adiabatically eliminate the excited state |e) and obtain the steady-state solutions for the

optical coherences (i.e., ;55 = 0164 = 0). Namely,

o Qy Ow1 + Yse PN
Ose =2 —Aw wye (1+ )e v 0sg (2.33)

Q* ‘ . _-.l R ; e ~
Gy = 1" <1 — (Zg» e Ty — 5 (1 —i (Z-")) Fug. (2.34)

By substituting these solutions (Eqgs. 2.33H2.34) to Eq. [2.22] we obtain the effective interaction Hamilto-

IThis is a reasonable approximation given that optical transitions correspond to a temperature scale > 3,000 K, relative to room-
temperature 300 K.
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nian (neglecting the noise terms and assuming constant atomic distribution n 4 (¥) = N4/V;)

7~ (par NA N ~ - ~ — hIQw(th)‘z ~ ~h‘Qw(F>t)‘27€ ~
He(f’; ) = V—l /dr {hAUee(T,t) — hdoss(Tt) + 7Aw Ggg — Z—AZU gagg
1 R R
+o dF{th(fF, t: A, 001)EL (7, 8)S(7, 1) + h.c.} : (2.35)
1

where S(7,t) = \/NiAe*i(Ew*’gl)'F&gs (7, t) is the phase-matched slowly-varying spin-wave amplitude, and
Xp(Fot; A, 01) =~ gpvV/'N. A% is the effective parametric coupling constant. Here, the collective
enhancement (/NN 4) is manifested not by the increased emission rate of the Raman scattered photon, but by
the increased quantum correlation between field 1 and collective excitation (section [2.4).

The first term of Eq. includes the bare-state atomic Hamiltonian, light shift (~ %), and the

iR |2 .
%). For our experiments, we can neglect the

population loss of 6,4, due to optical pumping (~
later two effects (optical pumping and light shift), as the intensity 7,, for the write laser is well below the
saturation intensity Iy, with a typical saturation parameter s = I,,/Io = 2|0/ ’ygg < 107* (weak
excitation limit). The second term, however, corresponds to a non-degenerate parametric amplification. This

parametric matter-light interaction, denoted as
HOW (1) = (Xp(t)éflS G (ERST ) : (2.36)

can generate a two-mode entangled state between the field 1 and the collective atomic mode via the squeezing

operation D = exp (f% I dt”l:[i(lftar) t’ )) (section .

2.3.2 Three-dimensional theory of spontaneous Raman scattering

Here, we derive a three-dimensional quantum theory of spontaneous Raman scattering by expanding the
equations of motions in terms of the Hermite-Gaussian modes with mode indices (I,m). Under certain
circumstance, we show that the 3D theory reduces an effective 1D model of a non-degenerate parametric

amplifier between a single-mode (I, m) in field 1 and a single collective atomic mode (I, m).

2.3.2.1 Propagation equations of quantum fields and collective atomic variables

We start by deriving the equation of motion for the field F; (7, t) traveling along k1 || 2 in the slowly-varying
envelope approximation™370, The wave equation for £ (7, t) = Ef (7, t)e~ "1t + By (7, t)e™1* (Eq. |
in a near-resonant atomic medium is given by

(02 — V2B, (7 ) = — 02 B(7 1), (237)
€0
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As in Eq. [2.20] we write the atomic polarization in terms of the slowly-varying atomic operator G, (7, t)
P(7,t) = na(7) [dseéﬁse(ﬁ t)e~iEri—wit) 4 h.c.} : (2.38)

Assuming slowly-varying envelopes (i.e., w1 9;&1 > 02&; and w164, > 0;64.), we then find the equation

of motion for the slowly-varying amplitudes

il

R

. _’2 .
lﬁt - zw71 (1 + ;)] (7, t) = igpna(F)V16se (7, t)eiik
1

In the paraxial approximation, the quantized field propagates with the equation of motion

=72

<at +¢d, — iz?) E1(FL, 2,t) = igyna(F)V16se(FL, 2, t)e*“%'ﬁ (2.39)
1

We can solve the coupled motions for the propagation of the atomic variables and the field 1 by substitut-
ing the adiabatic solutions 6., 6 4. (Eq. [2.33) to the wave equation (Eq. [2.39) and to the Heisenberg-Langevin
equation for the spin-wave variable 64, (Eq. [2.31)), thereby yielding the following coupled differential equa-

tions (assuming a flat-top atomic number density n 4 (7) = @—f)

<6t + 0, — Z;Zf) E\(7t) = ixp(Ft; Aw, 001 )ST(7, 1) (2.40)
5/ = r ‘Qw|2’)’eg L\ S/ . o 5t
KS(Ft)—Fg = — Az 10" ) S(7,t) + ixp (7, t; Ay, 01 )EL (7, 1).(2.41)

Here, we have assumed negligible spin-wave dephasing v, ~ 0 and §' = 6+|52A‘—‘f|2, and Fg = /Nae i(Fu—k0)-7

Fg s 1s the Langevin noise term for S.

2.3.2.2 Effective one-dimensional model

Here, I show that the three-dimensional Maxwell-Bloch equations (Egs. [2.40H2.41) reduce to an effective 1D
model for pencil-shaped ensembles (i.e., atomic Fresnel number F, ~ 1) based on the formalism developed
by Raymer er al. (ref.”%). We assume a Gaussian write beam ,,(7,t) = €, (t)uy (7L, z) with a mode
function w, (71, z) and xp (7, t; Aw, 0w1) = X} (5 Aw, 6w1)tw (7L, 2) (ref. ). We expand the quantum

field & (7, t) with Hermite-Gaussian modes ty,, (7),

EFt) = Y Eim(z huum(7) (2.42)
lm

SFt) = D Sz, t)uum (), (2.43)
m
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where the mode functions u;,, form a complete basis

Z U (2, T 1L )ik (2, 7:1) = 01;0mi0 (7L — 773_), (2.44)

m

and wy,, are the eigenfunctions for the paraxial equation <8Z — %) Upm (7) = 0 (see Eq. [2.40). Using these

properties and formally integrating Eqgs. [2.40H2.41|over d7*) , we obtain the coupled equations of motions in

terms of the mode functions
(0 + c02)Erum(2,t) = Xy / Ay (uf (F) iy (P (7)) STy (2, 1) (2.45)
ik

D Sj(z,t)

. S Qw 2 e - * — 5
iy, — (el Jea 5 [ w57 P (7)) S
w lm

+ixg D / A7 (U], () (F)ug (7)) €] - (2.46)
lm

If we assume that the write beam (u,, (2,7 )) is much larger than the transverse dimension (7)) of the
point-spread function for the imaging system of the field 1 (u,, (2,71 )), such that w., (2,71 ) =~ uy,(2), then
the integrals in Egs. Mreduce to [ dFL (uf, (Fuw(2)ui(P) = [die (uf, (7w (2)[Pup(7) ~
8150mi (ref.U22) In this case, the effective atomic density participating in the parametric interaction is
defined by the field 1 mode, whose beam-waist is chosen to be much smaller than that of the write laser
(pencil-shaped sample), and F, = zr/L ~ 1 (zg is the Rayleigh range of field 1) in our experiment with

L ~ zp. Thus, the resulting equations of motions are reduced to an effective 1D model with

(Br + ¢8.) Evim(z,t) = ixp (7ot A, 801)S] (2, 1) (2.47)
A Qw 2 e IV A . 5 ~
WSim(z,t) = — <A|279 — i > Sim(z,t) + ZX;;*(t)SI,lm(Zat) + Fin(z,t), (2.48)

where Flm(z, t) is the Langevin noise term associated with Sim. The coupling between the creation of a

single spin-wave St

'm(%,t) and the annihilation of a single photon ELim(2,t) in field 1 (and vice versa)

in Eqs. [2:47H2.48] describes a non-degenerate parametric oscillator, which in turn generates a two-mode
squeezed state between the collective atomic mode and the field 1 mode (section [2.4).

The spatio-temporal modes of é'l_yhn(z,t), Sim (z,t) and the normally ordered correlations such as :
Slfmglmgir lmélalm : can be derived from Egs. 2.48 We will revisit some of the ideas developed

here (section [2.3)), whereby we solve the equation of motion for the retrieval process in the dark-state po-

86195196

lariton picture . I note that similar expressions have been derived in refs.”2!12, More recently, optimal

control theory has been applied to three-dimensional light scattering in a A-type ensemble /.,
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2.4 Two-mode squeezed state as a quantum resource for DLCZ proto-

col

The initial atom-field state |g,,0.,) in the Schrédinger’s picture evolves to |¥),,, via the unitary rotation

D = exp (7% fooo a7 t’ )) with the parametric interaction Hamiltonian 74P (Eq. [2.36) derived in

nt nt

section[2.3.1.3] The final atom-field state (¢ — oco) is given by a two-mode squeezed state

¥)ria = VI=€> € ny, ), (2.49)

where |n.,,) (|n,)) are the number-states for the photons ~ (af)™|0,,) (collective excitations ~ (ST)"[g,))

in field 1 (atomic ensemble), and £ = tanh? (z fooo dt’ + fOL dzxp(z,t )) < 1 is the excitation parameter

Q,, (2:t)
Ay —wgs

with the squeezing parameter given by Xp(z, t; Ay Ou1) =~ IpVNa . Additionally, we define for
simplicity x,(t') = + fOL dzxp(z,t"). For a rigorous treatment of dissipation and propagation effects, one
needs to solve the self-consistent Heisenberg-Langevin equations in Egs. from which various
correlation functions could be evaluated from Einstein’s relations42.

Here, we make several further remarks:

1. The mean photon number in field 1 is given by 71 =, (¥[721|¥)4,a = 1%5 (= sinh(i ;7 dt’'x, ("))
Thus, the excitation probability £ = IJ% follows the familiar thermal distribution. When the field 1
is traced over, the remaining atomic counterpart is equivalent to a thermal state where the ensemble

exhibits super-Poissonian spin-wave statistics, g(2)(7') = % =2 (for 7 = 0).

2. For multiple ensembles and fields 1 (with the ensemble®field 1 system labeled by o € {a, b, ¢, - }),

the overall state after the parametric Raman interaction is ideally |U) =[], \@)2‘?3, where \\If>£,°1‘21 =

V 1- goz 253/2|nv1ana>a~

3. In the ideal case, the conditional atomic state upon a photoelectric detection of a single field 1 photon
on the mode a; , is given by p. = Tr; (&J{,Q&LQ Pr1a), Where the initial atom-photon state prior to

projection by dJ{’adlya iS Pya = |‘I’>'(y?g<‘1’|

4. The mode operators can be transformed nonlocally to d’La = Za/ Ua,ar@1,or Where Uy, o represents
a unitary transformation of the mode operators a1 /. A photoelectric detection of a single photon in

mode d’L ., leads to an effective interaction among the o’ systems.

In section we show that, after a delay 7, the collective excitation S can be coherently mapped to
another quantum field, called field 2 (with, ideally, unit probability) via the ‘beamsplitter’ transformation (Fig.
), with the dark-state polariton8 W4 (z, t) = cosf(t)E;(z, t) — sinf(t)S(z, t) governing the matter-light
evolution. When the atomic state is traced over, the matter-light transfer process is equivalent to replacing

the collective operators S and the state label, a, (indicating the atomic side of the Hilbert state) to a5 =
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/M2a2 + /1 —n209 and a state label 7o, respectively. Here, we account for the retrieval efficiency, the
loss in the propagation and the detection of field 2 with a transmission efficiency 7y in the beamsplitter
transformation, where 05 is a vacuum mode operatorﬂ Thus, ideally, we can transfer the two-mode squeezed

state between an ensemble and field 1 to an equivalent state between fields 1 and 2,

|\D>’71a = |\II>71’72 = ngn/2|n71>n72>' (250)

In practice, we control the excitation parameter £ = tanh?(i Jo7 dt'xp(t')) with the write intensity to
modify the spin-wave statistics. For £ > 1, the two modes contain significant continuous-variable entan-
glement, whereas in the regime of weak excitation §¢ < 1, the two-mode squeezed state |¥).,, displays
strong quantum correlations in the number-state basis. The field 2 and the field 1 can, indeed, exhibit strong

22473 and be used as a critical resource

non-classical correlations, as demonstrated experimentally in refs.
for quantum information processing and communication®, Here, we calculate various intensity correlations
between the fields 1 and 2, and obtain important benchmark parameters (used throughout the thesis), which

characterize our experiments.

2.4.1 Two-mode squeezed state between an optical and collective atomic mode

The non-classical correlation between fields 1 and 2 can be verified by the violation of Cauchy-Schwarz

inequality (refs /0173

_ |912|2
R=——<1. (2.51)
911922

Here, we assume the initial state as the two-mode squeezed state |¥)., , (Eq. 2.50). The normalized cross-

correlation function g;; between fields 4, j is given by

( L)Lt +7) )

9ii(1) = T , (2.52)
(La) (1)
where : O : indicates normally ordered operator for O. Here, I; = ni<dj-di>.
We obtain the following set of (auto- and cross-) intensity correlations,
CF _ &
(oo | 1 L 2 [Woyn) = i ¢ n; (2.53)
PO E(1+¢
(oo | Ll [Wayay) = 771772(55)3 (2.54)
W+ 5 |0) = i (2.55)
Y271 7 Y172 [ (1 . 5)27

To include noise, we can add mixed coherent states |v;) on a reservoir mode ©; entering the system a; (see the supplementary
information of ref.23, Chapter@).
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where we obtain normalized auto-correlation functions ¢;; = 2 for i € {1, 2}, and a cross-correlation

1
g=1+¢ (2.56)

Thus, we observe the presence of strong quantum correlations between the fields 1 and 2 by way of the
2

violation of Cauchy-Schwarz inequality R = i (1 + %) = % % 1 for & < 1 (g12 > 2). Since the initial

experiments’?23, the Cauchy-Schwarz inequality has been violated by a factor up to R > 10° by the group

of Steve Harris in a 2D magneto-optical trap®L.

2.4.2 Heralded single-photon source

In the single-excitation regime £ < 1, the initial two-mode squeezed state between the ensemble and field 1

can be expanded as

[¥) 0 2 [04,,04) + \/5\1717 L) + O(8). (2.57)

A measurement of a single photon in field 1 (: I o) projects the remaining ensemble counterpart to a state

of (ideally) single collective excitation j. = Try, (: Iy : |W),,.(¥|). After a controllable delay 7, we map

the single excitation to a single photon [¥).,,, + |¥).,,.., (ref.”#). Thus, a probabilistic detection of a single

photon in field 1 heralds (signals) the creation of single collective excitation, which we subsequently transfer
to a single photon in a triggered fashion.

We characterize the quality of the heralded single-photon source with the conditional auto-correlation

(2)

function g;™’, also denoted by w = - 11; 11)101 , in a Hanbury Brown-Twiss setup

1761177

. Here, the p;; are the
conditional probabilities to detect 7, j photons in two respective detectors measuring the two modes as 4, G2

after a beamsplitter. The transformed mode operators are given by

R 1
ag2.a = ﬁ
1

a = Qg — D3) .
2,b \/5(2 2)

(G2 + 2)

Using these mode operators, we calculate the intensity correlations (with ¢ € {2a, 2b})

A 2
(: ilaalzp ) = 771772a772b§(§2+€§§ (2.58)
Ao 1
(hi) = mmm, (2.59)

for which we obtain a suppression of higher-order excitations (and non-classical photon statistics) relative to

that of a coherent state

_ (: j1j2af2b D(: fl ) B 4¢ 252 N i
o (: I1dog ) (: L0y sy (146)? tarer T m (2.60)
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We compare our result of w (Eq. [2.60) to coherent states |«), a minimum uncertainty state that defines the
quantum-classical boundary™, w;, = (: 7% :)/|(A)|? = |a|*/|a|* = 1 (for fields with Poissonian statistics).
Thus, we obtain non-classical sub-Poissonian photon statistics w < w, = 1 for g2 = 4 (in contrast to the

super-Poissonian statistics g(?)(0) = 2 of the fields 1 and 2 when taken alone).

2.4.3 Measurement-induced entanglement

Having established the presence of quantum correlations between the number states of the field 1 and the
collective excitation, we show that entanglement between two atomic ensembles can be created by a path-
erasing measurement of a single photon (field 1) emitted indistinguishably from the two ensemble.

Specifically, we start from a pair of two-mode squeezed states (Eq. [2.49)

Do = W) @ )L (2.61)
= v (1 - gL) 1 - €R) (‘0’717§a>L + \/ELewSL ‘1’71’§a>L —+ O(f[,))
® (101182 + VEre " (151, 5.)r + O(En)) 2.62)

by illuminating the two atomic ensembles, L and R, with €2,,. The relative phase ¢,, between the two writing
beams is given by ¢, = ¢1, — @R, Where ¢, r are the phases associated with the writing lasers illuminating
ensembles L, R. A photoelectric detection IAl,l = mdh&ljl (or f1,T = 77,.&177“&17,.) of a single photon in
field 1 after a beamsplitter projects the initial quantum state of ensemble-field system | V), where the mode

operators for the output ports {I, } of the beamsplitter (cos(f; ) : sin(6;) ratio) are given by

ai; = cos 91&1$L + €'?1 gin 91&1’3

a1, = —sinbia;,r + €71 cos 01a1,R-

The conditional atomic states upon the probabilistic photoelectric events I 1, and I 1, are given by

. Try (11

0 = Tnllubne _ g0 (2.63)
(I1,1)

r Try (1 pryy .

) = Tnlirdna) _ gy g (2.64)
(I1,r)

Thus, we obtain heralded entanglement between the two atomic ensembles,

tot

|\Il>t(§t) o (1 / % 08 01(G, 1., 5a,R) — € Z((p“’_q&l)’ / é sin01(5a,1, 9. r ) + O(\/ELR), (2.66)

B) ~ (\/ %sm@ﬂgal,gaﬁ) + € (Pv=91) g c0s 01(3a.1, 9a r) ) JFO(\/EL,R) (2.65)
(o]
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where & = &1 + £ is the total excitation probability.

178

The degree of entanglement is characterized by concurrence’’®, a monotonic function of entanglement=”,

C ~ max(Vp; — 2y/pop11,0) > max(p1(V — /pohe),0), (2.67)

where the two-photon contamination for the global joint state of the two ensembles and off-diagonal coher-

ence are characterized by a normalized parameter h, = 5 17; lplm ~4/g12 andby d = Vp; /2 (Chapter. Here,

- ma"gé%’li;;m%nggmig ~ gizﬁ (assuming &7, = &g and 0 = 7/4) is the visibility for the interference
max 2,1 min 2.1
(t,r)

between the two fields 2, 2 retrieved from p,,; ’ (chapter , with the mode operators defined as

1 .
Go) = ﬁ(dg,L+€l¢2&2,R)
1 )
G2y = 5 (tapt+ePhzn).

A necessary condition for entanglement is h. ~ 4/g12 < 1 (for independent coherent states |a, aa), he =

1). A similar quantity y. = 4p11)§p 0 is derived in the language of quantum uncertainty (A) relations (chapters
1

, where C' = max (p1 (V1 —2A - /7.) ,0).
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2.5 Collective atom-light interaction

The dynamics of N4 A-level atoms dressed by applied laser fields determines the optical response of the
coherent atomic medium. In addition to the Dicke-like superradiant emission (section @, the coherent ma-

941179184

nipulation of dark resonances enables a robust and efficient method of transferring quantum states" >

between photons and spin waves in a matter-light quantum interface. Closely connected to classical coherent
phenomena of coherent population trapping 7?1483 (CPT) and stimulated Raman adiabatic transfer!801811154
(STIRAP), a dark-state polariton is a half photonic and half matter quasi-particle excitation, proposed by
Michael Fleischhauer and Mikhail Lukin®%, which describes low-light level electromagnetically induced
transparency**182 (EIT). Coherent preparation and control of EIT at the single-photon level are utilized in
many experiments, including those in my thesis, for the coherent transfer of heralded spin-waves (section
[2.3] Fig. 2.2h) to single photons (chapters 3H5]and [0] Fig. [2.2b) and for the reversible mapping of a photonic
entanglement into and out of quantum memories (chapter|[6] Fig. 2.3).

Stated explicitly, the dark-state polariton Wy(z,t) = cosfq(t)Es(z,t) — sinfy(t)S(z,t) is a coherent
superposition state of electromagnetic and spin-wave excitations and is a quantum analogue of the classic
dark state in CPTIP83182  The adiabatic following of ¥, with respect to the rotation of mixing angle 6,
leads to a reversible and (ideally) complete transfer between quantum optical states é's(z7 t) and spin-waves
S (z,t) without dissipation via dynamic EIT. Here, we theoretically analyze the operation of our quantum
interface in this polaritonic picture. In chapter[6] we provide a semi-classical picture to the observations of
static EIT and CPT, and the connections to the polaritonic picture discussed here. There, we discuss the
technical considerations towards dynamic EIT (such as the importance of Zeeman populations in a multi-
level system). In chapter[6] we also present a numerical optimization scheme for improving the storage and
retrieval efficiency based on the works by Gorshkov et ql. 1897189

Following the method developed in section we treat quantum mechanically the propagation and the
dynamics of the coupled motions of the quantum fields (called the signal field (f:'s), or the field 2 (5'2))
and the collective excitations in an EIT media. For simplicity, we call &, the quantum field of interest for
storage and/or retrieval, whether it is externally provided from an offline source (signal field) or generated
internally from the parametric interaction (field 2). Based on the results in section[2.3] we use an effective 1D
model®®®7, We show that the signal field’s group velocity v, can be dynamically controlled by an external
control laser Q.(z,t) from the free-space velocity v, = c¢ to ultraslow group velocities v, < ¢ and to
a complete halt v, = 0 (coherent storage) for the quantum field (and vice versa). In particular, we find
that dark-state polaritons J, can be dynamically decelerated and accelerated while preserving the phase-
amplitude information of the quantum field & by transferring to and from stationary collective excitations

S.
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Figure 2.3: Reversible matter-light quantum interface via dark-state polariton. a, Mapping single pho-
tons to single collective excitations. A strong resonant control laser (|e) — |s) transition) with Rabi frequency
Qc(z,t) is illuminated onto the ensemble in a counter-intuitive order!®l, thereby preparing |g) as the dark-
state. As the weak quantum field & (|g) — |e) transition), called the signal field, enters the coherent atomic
medium, the control laser is adiabatically turned off, thereby storing the quantum state of &, in the collective
atomic excitation S (z,t). b, Mapping single collective excitations to single photons. After a delay 7, the
intensity of the control laser is adiabatically increased, thereby transferring the then dark-state [5) back to the
signal field &,. The signal field &, propagates within the EIT window of the ensemble, provided by Q.(z, t).

2.5.1 Interaction Hamiltonian and formation of dark states

Here, we consider a collection of A-level atoms interacting with the two single-mode optical fields. The
transition |g) — |e) of each of these atoms is coupled to a slowly-varying quantized radiation mode &, (with
two-photon detuning 0), called the signal field, whereas the transition |s) — |e) is resonantly driven by a
classical control field of Rabi frequency €. (with detuning A.). The dynamics of this system is described

(map)

by the Hamiltonian H in the rotating-wave approximation (following the effective one-dimensional ap-

proximation in section [2.3.2.2] and neglecting the transverse profiles), with

map) /dwhwa Qy + Z (ﬁwesa( 0oy hweg )

Na
_Z (hQ A(z) ikl zi—wet) +d g&(z) E+ i(kezi—wst) +hc) (2.68)

i=1

£ o)

int

where E::+ = z\/g [ dwa, e"w?/cg, is the positive frequency component of the signal field, and k! = ko2
is the longitudinal projection of the wave-vector along 2 (also, k- = |k (Z,9)] ~ 0). We assumed that the
signal field propagates along the quantization axis Z of the system (section[2.3.2.2).

A simple explanation for the formation of dark-state polariton is the existence of a family of dark
eigenstates | D, m) for the interaction Hamiltonian H map) (ref.®7). In particular, the single-excitation state
|D,m = 1) is (ref.®%)

|D, 1) = cos04(t)[Fy,, 1s) — sinb4(¢)[3a, 0s), (2.69)

where tanfy = gqv/Na/Q. defines the mixing angle, gq = ideg, /ﬁﬁ (€eg - €) is the single atom-
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photon coupling constan In,) is the Fock state for the signal field, |3), = \/11\77 SoNVA emifkeezi g T gy
is the collective spin excitation (see section , and Ak, = kg — kl;l is the momentum transfer to the
spin waves (section . Since these dark states do not contain the excited state |e), they are immune to
spontaneous emission’%2. The collective dark states provide a robust method of mapping a weak quantum

field £,(z,t) to and from collective atomic excitations S(z, t) via the adiabatic rotations of g = 0 <> /2

(i.e., by controlling .(z,t)).

2.5.2 Heisenberg-Langevin equations

As in section [2.3.1.1] we express the system Hamiltonian H §““‘P> with slowly-varying operators (Eqgs. m
and i in the limit of continuum along £ (i.e., >, — fOL n4(z)dz) and in the rotating frame,

L
A / don () {hAGoe (2,1) — h66a(2,1)
0
- [hgd(‘:’s(z, t)e* 76,4 (2,) + hQe(2, t)e*eZ 604 (2, 1) + hec. |}, (2.70)
£y (man)

int

where n.4(z) is the linear atomic density ([ dzna(z) = Na).
Following the Heisenberg-Langevin approach (Eq. [2.29), we obtain a set of differential equations gov-

erning the atomic evolutions (assuming weak signal field approximation g4 < ). and s < Ny)

Oi6se = —(Yse +i(De — wys) — i0)6se + iQue R (G500 — Go) + igalsbge + Foe (271)
0ibgs = —gsOgs +iQe BTG g€ 6o+ Fyy (2.72)
Oibge = —(ge +i0)Gge + Qe BRIG tigiE (649 — Gee) + Fye (2.73)

and a propagation equation for the quantum field & (z,t) in an effective one-dimension (Eq. [2.39),
(0e + ¢02) Es(2,1) = igana(2)Lége(2,1). (2.74)
Here, F;w are the quantum Langevin operators for the atomic operators &,,,,, as described in section

2.5.2.1 Weak field approximation and adiabatic condition

In the weak signal field approximation with ggq (0gg ~ 1 >> 0ce, 055, 0cs = 0) and with negligible spin-wave

dephasing 74, ~ 0 over the interaction time dt., we approximate 64 = —1? (ei(k!’ks)z / Q:) 0645 (Eq.

1€, and s are the respective polarization vectors for the atomic dipole (|g) — |e) transition) and the signal field.
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.72)) and obtain the coupled equations of motions (by substituting 6, into Eq. [2.74] and using Eq. [2.73)
2.72)) and obtain th led i f motions (by substituting 4. into Eq. [2.74} and using Eq. [2.73

. L .. R
(0 +¢d.) Eu(z,t) = ggziig@““_“yﬁaw 2.75)
6’gs ~ —Ldése_i(kﬂ_ks)z
—i(kl —ks)z
Yo A € c S
_KZ?&%S_KleQ”+%4TZ47EW (2.76)

(Non-adiabatic terms)

where 9 = 7vge + 1A

8611901191 (Bf,Qc

In the adiabatic condition ~ % < ygecio (L) with resonant optical depth given by dy(z) =

Jy d?’ 2‘%%) we perturbatively expand Eq. [2.76to the order of ;0 ~ (O/6t., and we obtain the

lowest-order perturbation 645 ~ — gé—fse_l(’“ﬂ —ks)%_Thus, we obtain the adiabatic equation of motion for the
quantum field &, (z, t)
0y + cd,) Es(z,t) = gina(2)L 0 (&u(z1) 2.77)
L+ 0:) bl m(om Qe(z,t) ) '

We note that the characteristic pulse widths dt. =~ 10 ns of the control laser (or the read laser) in our exper-
iments are on the same order of magnitude as the adiabatic criteria 1/6t. ~ ygeio(L), where the resonant

transmission (absent the control laser) is defined as 1Ty = e—do(L)

. Thus, instead of the simplified wave
equation (Eq. [2.77), we numerically solve the coupled differential equations of motions (Egs. 2.74) in

chapter|[6]

2.5.2.2 Coherent atomic medium and EIT

In Eq. we recover the usual wave equation with slow-light phenomena in static EIT (with static control
field Q.(z,t) = ) with modified group velocity v, = ccos? 6. Furthermore, if there is very little popu-
lation in 645 and G5, the control field Q.(z,t) ~ Q.(t — z/c) propagates according to the free-space wave
equation ((0; + ¢0,) Q.(z,t) = 0). In this case, we obtain a wave equation with variable group velocity
vg(2,t); namely,

0 I\ 4
<8t + v4(2, t)8 ) Es(z,t) =0, (2.78)

where the group velocity v,(z,t) = ccos? 0,4(z,t) is dynamically controlled by the Rabi frequency Q.(z, t)
Q.

V9iNa+Q2

of the control laser. Here, the mixing angle is given by cosf; =

N4/L.

for constant density ng4 =

We now briefly turn to a more classic situation encountered in EIT (see also chapter [6). For a reso-
nant control field with A, = 0, the EIT medium behaves as a non-absorbing dispersive media within the
transparency window given by (. at the two-photon resonance § = 0 shown in Fig. The adiabatic
approximation in section 2.5.2.1] in essence compares the pulse bandwidth to the EIT window .. If the

pulse bandwidth Aw, ~ 27/t. ~ €, higher-order dispersion must be taken into account. Specifically, the
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Figure 2.4: Susceptibility X, of EIT medium. a, Imaginary part of the susceptibility function,
Im(,(Q,0)). b, Real part of the susceptibility function Re(7 (2., 0)). We show the dispersions of the
EIT medium (red line) with a control laser Rabi frequency Q./v4c = 1, as well as for the bare atomic
medium (black line) with 0. = 0. Dynamic control of the group velocity (i.e., vy = Wc&dn/% at
0 = 0) allows shape-preserving acceleration/deceleration of the signal field in the presence of transparency
Im(,) ~0atd =0.

susceptibility x of the signal field in a homogeneous EIT medium (defined as P(z,t) = € xsEs(z, 1)) for a

resonant control field (A, = 0) is given by (refs.2#143)
293Na _
5 = o (2.79)
ws

where Y, = m is the normalized susceptibility function and P(z,t) = /Na6. is the atomic
polarization. Im(X, (€2, 0)) describes the transparency for the signal field at 6 = 0 with the transmis-
sion given by T'(€2.,d) = exp (—ksLIm(xs)) = exp (fJOIm(YS)) (Fig. ), whereas Re(,(Q¢,0))
contributes to the refractive index ny(0) = m for the signal field (group velocity given by

V9 = T, syanyas) (Fig. @ﬂ
2 2
Perturbatively expanding . (Eq. [2.79) around - < 1, we find x; =~ zgfuNA (‘Q‘S‘2 + Z'TQ'YTZ + (9(53)),

where the linear dispersion gives v, = ccos? 4. In addition, we find the bandwidth of the EIT medium via
T =~ exp(—82/Aw};), where the EIT bandwidth is Awgr = ‘Qic‘;. This leads to an adiabatic condition,
where the initial signal pulse’s bandwidth Aw, must be smaﬁeegr thoan the bandwidth of the EIT medium
Awgrr: i.e., Aws < Awgrr. In addition, the adiabatic passage of the dark-state polariton 192/ sets a limit to the
rotation speed of the mixing angle 6, of the polariton \i/d(z, t)ﬂ Introducing a characteristic time-scale dt.,
we obtain the criteria 6t, > ;2:]9\,1;96 for adiabatic following®®, Finally, I note that we have so far neglected
the presence of Zeeman population and assumed an ideal A-level system. In fact, the distribution of Zeeman

populations can inhibit the presence of EIT unless a special polarization scheme is employed (chapter [6).

MMore generally, the “transfer” function of the signal field in the EIT medium is given by ¢(£2, 8, 2) = exp(ikzxs/2), where the
transmission is T = |¢|2.
"In fact, the rotation speed 64 of the mixing angle is proportional to the transition rate between W 4(z, t) and Wy (2, ).
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2.5.3 Dark-state polariton

As discovered by Fleischhauer and Lukin®®, we can equivalently introduce a new set of slow-light polaritonic
excitations {W,(z,t), ¥y(z,£)} as the normal modes of the system (Eqgs. [2.75H2.76) in the weak signal

approximation. Namely, we have

Ug(z,t) = cosba(t)Es(z,t) — sinOa(t)S(z, 1) (2.80)

Uy(z,t) = sinq(t)€s(2,t) + cosba(t)S(z, 1), (2.81)

where S(z,t) = VN4 eilke ~ko)z5 (z,t) is the slowly-varying phase-matched collective spin operator, and
0, = arctan(g4y/Na/€).) is the mixing angle. These operators are known as the dark-state (bright-state)
polaritons W 4(z, t) (¥, (z, )), in direct analogy with the classic dark (bright) states |d) = cos 4|g) —sin f4|s)
(|b) = sinfy|g) + cosby|s)) observed in coherent population trapping (chapter [6). These polaritons follow
the quasi-bosonic commutation relations®® (with the help of Eq. ,

[ (0), 50 ()] = [ B0 (0), 9] 1 ()] = bt — ¥, (2.82)
where \ild(z,t) = 2% fdk‘\i’d,k(t)eikz and \i/b(z,t) = 2% fdk‘i/b’k(t)eikz.

In the adiabatic limit, where Q.65+ gabse—ikl=k)z ~ 0 (Bq. , the bright-state polariton is ¥, ~ 0.

In this limit, we can write the equation of motions for the dark-state polariton U, with the perturbation
S(Z, t) ~ —% (Eq. ) as (ref.80),

o d\ -
(8t + vgaz> Fy(z,t) =0. (2.83)

Thus, in the adiabatic regime, the dark-state polariton \i/d(z, t) follows the usual wave equation as in free-
space with the group velocity v, = ccos? 6, determined by the ‘amount’ of the photonic component (signal

field &,; i.e., cos? 04) in the polariton Wy(z,t).

2.5.4 Adiabatic following of dark-state polariton

The dark state polariton W4(z,t) = cos04(t)E,(z,t) — sinf4(t)S(z, t) can be considered as a beamsplitter
transformation between a signal mode &,(z, ) and a spin-wave mode S(z, t), with the effective matter-light
interaction Hamiltonian written as (Eq. [2.70)

AR = ifa(z,1) (2081 (2,0) = El(2,08(2,1) ) . (2.34)

nt

We illustrate the adiabatic evolution of dark-state polariton By in Fig. At the initial step (1), with

7 = 0, we first apply a control laser with Rabi frequency €2.(z, ) (resonant to the |e) — |s)) to open the



40

Quantum Memory
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Figure 2.5: Coherent evolution of dark state polariton. First, we open the transparency window 2. with
the control laser. As the signal field enters the EIT medium, it prepares the joint atom-field state in a dark
state Uy ~ 55(2, t). By adiabatically reducing the control laser’s intensity to zero, we transfer the phase-
amplitude information of the signal field £,(z, ¢) to the collective excitations S(z, t). After a delay, we apply
the control laser to coherently transfer the collective excitation S(z, ) to the signal field &(z, ) in a time
reversal fashion. The signal field undergoes a slow-light propagation through the EIT medium, after which

Es(z,1) escapes the ensemble.

transparency window in a counter-intuitive configuration'®” for the signal field &, (z,t), where the dark-state
polariton U, = &, is purely photonic (with Q.(z,t) > g4v/N and §; = Oﬂ In step (2), as the signal
field enters the coherently dressed atomic media, the intensity for 2.(z, ) is adiabatically reduced to zero
(thereby, 8; = 0 — 7/2), simultaneously decelerating the signal ﬁelcﬂ and transferring the phase-amplitude
information of the photonic excitations ffs to the collective atomic excitations S. In step (3), we store the
spin-wave excitation for a controllable memory time 7. At the end of step (3), we apply the control laser in
step (4) to reaccelerate the dark-state polariton U, back to the free-space velocity v, = c, thereby coherently
transferring the spin-wave amplitude S back to the signal field 5'5 (i.e., \i/d =S 5'8 with 6; = /2 — 0).
Finally in step (5), the retrieved signal field &, propagates within the center of the transparency window with

minimum absorption and escapes the EIT medium.

2.5.5 Non-adiabatic equations of motions

The dark-state polariton equation (Eq. 2:83) does not include any non-adiabatic terms, which account for
the finite-bandwidth of the EIT medium and the non-adiabatic transitions between dark-state and bright-state
polaritons®'1°2. More generally, we need to solve the complete equations of motions in Eqs. m-m with
the weak signal approximation (04 ™~ 1 >> 0¢e, 055, 0es =~ 0).

Here, we introduce a slowly-varying atomic polarization P(z,t) = v/Na6 4. induced by éA'S(z7 t) in the

°For the single-excitation manifold, the dark state (Eq. is |[g,, 1s), which is also the initial state of the system.

PThe deceleration of the signal field is accompanied by a compression of the signal field due to the reduced group velocity vy, where
the tail of the wavepacket for the signal field catches up with the slowly propagating front part of the wavepacket. This allows us to ‘fit’
the signal field’s wavepacket (Ls ~ 10 m) within a small ensemble (L ~ 3 mm).
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dispersive coherent medium, and the slowly-varying phase-matched spin-wave operator S (z,t) = V/Ny
ei(kﬂ’ks)zﬁgs defined in section [2.3.1.3] The dynamics of the signal field és(z, t) and the spin-wave mode
S (z,1) is governed by a set of Heisenberg-Langevin equations (Egs. [2.71H2.74)),

4 , L
(O 4+ €0y) Es(z,t) = igana(z) %NAP(Z, t) (2.85)
OP(z,t) = —(vge +iA)P(2,t) + iga/Nals(z,t) +iQ0(2,1)S + /27ge Fp (2.86)
0:S(2,t) = —75sS(2,t) +iQ5(2, )P + /2745 Fs. (2.87)

Here, F'p and Fg are the respective d-correlated Langevin noise operators for 75(2, t) and S (z,t), with non-
zero terms (Fp(z,t) F}(2/,#')) = Lo(z — 2')0(t —t') and (F(z, t)Fi(2', ') = L&(z — 2')6(t —t'). Since
the normally ordered noise operators (ﬁ; Fi> = 0 with i € {S, P} for vacuum reservoirs, we neglect them in
the numerical calculation of chapter|[6|(see section[2.3.1.2).

We emphasize that the collective enhancement (/N 4) of single atom-photon coupling constant gg (Eqgs.
2.87) enables a strong collective matter-light interaction with an effective coupling constant gegr =
/N 494 between a single spin-wave of the ensemble and a single photon of the signal field. We are interested
in the collectively enhanced storage (7)) and retrieval (7)) efficiency 7, = ns7; of the quantum field & (z,1),
which we define as the ratio of the number [ dz(Ef(z,t)€;(z,t)) of incoming photonic excitations in the sig-
nal field to the number of stored spin-wave excitations | dz(ST(z,t)S(z,t)) (and vice versa). Specifically, for
an atomic ensemble with finite optical depth do, there is an optimal control field €2.(z, t), which maximizes

the transfer efficiency 7,,., by compromising two competing goals'®®: (1) The characteristic time variation

0t. in the control laser Qc(z, t) must be slow relative to the two adiabatic criteria (Awg =~ % < AwgT
and 0t. > J{X&qc), identified in section [2.5.2.2] to avoid dissipations of P(z,t). A stronger control laser
Jd

is preferable, as it provides a wider transparency window and minimizes spontaneous decay loss. On the
other hand, (2) Q.(z,t) must small in order to localize and compress the incoming signal field’s wavepacket

(Ls ~ 10 m) within the atomic sample (L ~ 3 mm) to avoid significant leakage of the signal field.

2.5.5.1 Mapping photonic quantum states into and out of collective excitations

For a given optical depth dy, there is an optimal Rabi frequency .(z, t) for the control field. In the experi-
ment®, we set dy and Q.(z,t) at 20 and 24 MHz, respectively. We show an example of our measurements
of the EIT process for a single ensemble in Fig. [2.6] whereby we demonstrate the reversible mapping of a
coherent state o) into and out the atomic memory (|a|> = 0.3 per pulse). Because of finite do, the small
length (L = 3 mm) of the ensemble and the turn-off time of ).(z,t), we observe a considerable leakage in
the storage process. The peak beyond 7 > 1 us represents the retrieved pulse after 7 ~ 1 us of storage.
Overall, we find an excellent agreement between our measurements and the numerical simulation following
the coupled equations of motions in Egs. We use the fitted function of the input signal field as

the initial state with all other parameters from independent measurements. We find an overall storage and
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retrieval efficiency of 7, = 22 & 3%, similar to the theoretical prediction %< = 23% (Fig. .
Experimentally, to avoid the dissipative absorption of the signal field &, (z, t) for our choice of polarization

(04 polarization), we optically pumped the atomic ensemble into a clock state 651 2, |F' = 4, mp = 0) with

90% efficiency. Initially, the strong control field Q.(z,t) (resonant with 65 12, F =3 <> 6P3)9, F = 4
transition with o polarization) opens the transparency window Q.(z,t) ~ 24 MHz for the signal mode.
As the wave packet s (z,t) of the signal field propagates through the ensemble, we extinguish the control
fields €. (z,t) in 20 ns, thereby coherently transforming the coherent state of the signal mode &, in(z, 1) to

collective atomic excitation S (z,t). After ~ 1.1 us, the atomic state is converted back to the signal mode

Es out(z, t) by switching on the control field 2.(z,t). We measure the normalized cross-correlation function

(2 _

for the input photonic state é’s,m(z, t) with g;” = 1.1£0.2, as well as for the output photonic state f:'s,om(z, t)

with g((jl) = 1.0 £ 0.2, whereby we observe no degradation in the photon statistics.

In chapter [6] we discuss an experiment where we reversibly mapped a photonic entanglement into and

f 188

out of quantum memories. We further examine the optimal control theory developed in re , where we

theoretically apply the principle of time-reversal symmetry to optimize our reversible quantum interface.
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Figure 2.6: Reversible mapping of a coherent state to and from an atomic memory. The points around
7 =~ 0 ns (i.e., —40 to 20 ns) represent the leakage of the signal field due to the finite optical depth and length
of the ensemble. The points beyond 7 ~ 1 us show the retrieved signal field. The blue solid line is the
estimated Rabi frequency €.(z, t) of the control pulse, where we assumed €2.(¢ — z/c). The red solid curve
is from a numerical calculation solving the equation of motion of the signal field in a coherently dressed
medium (section [2.5.3). Error bars give the statistical error of 1 s.d for each point.
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2.5.5.2 Collective enhancement: Reading spin waves

Heralded spin-waves generated from the parametric Raman interaction (section can also be coherently
transferred to photons in field 2 (with £,(z,t) replaced by €»(z,t)). In particular, the initial states are
£5(2,0) = 0 and S(z,0) with the spin-wave spatio-temporal mode S(z,0) taken from the solution of Egs.
2.47H2.48| evolved from the parametric interaction. We can then rigorously solve the non-adiabatic equations
of motions (Egs. in the polaritonic picture. In practice, neglecting the spatio-temporal modes and
self-consistent treatments of fluctuation and dissipation from first principles, we may model the mapping pro-
cess as a beamsplitter transformation (a pseudo-model) from the spin-wave mode to the field 2 mode, where

the readout noise is simulated by adding coherent-state reservoirs1® (see chapter @)
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2.6 Decoherence

We have so far neglected the presence of spin-wave decoherence for 645 by setting 45 = 0 (e.g., neglecting
spin-exchange collisions). Practically, this is a good approximation, given that the interaction times dt,, , for
the writing and reading processes are fast compared to the relevant coherence times. However, if the delay 7
between the storage and retrieval processes is longer than the coherence time 7, of the spin waves, we must
also include various spin-wave dynamics induced by the decoherence mechanisms. Here, we will review two
major dissipative contributiong] to spin-wave coherence in our experiment: (1) Inhomogeneous broadening

and (2) motional dephasing.

2.6.1 Inhomogeneous broadening of spin waves

In our experiment, inhomogeneous broadenings of spin waves are dominated by two factors: (1) Inhomoge-
neous light shifts between [g) — |s) (in the case of a nano-fiber trap in chapter [10), and from (2) inhomo-
geneous Zeeman broadening (see, e.g., chapters 4H5). Here, we describe a one-dimensional model] for the
second type of decoherence mechanism. This model, however, should also be applicable to the first type of
decoherence. The Zeeman decoherence model described in this section is similar to the one developed by
Daniel Felinto4Z,

We assume an initial atom-field state Py, = Pa(0) ® pr, (0), where pa(0) = Py, [Fg, mp)(Fy, mp| is
the initial atomic state with Zeeman populations p, ., and p,, (0) = [0 )(0; | is the initial vacuum state for
field 1 (with all other modes traced over). In the single-excitation limit, a photoelectric event in field 1 (with

unit detection efficiency) heralds an atomic state p,(t,) = |1(tw))a(¥(ty)| containing a single spin-wave

excitation, with

1 (k7 —ky 2 ~
Wit = i ;61% g g Bilte), g N | (2.88)
where ¢i(FuTi—k1z) gives the phase-matching condition (K, — ky) - 7 — (k1 — k2)z; = 0 during the reading

process (section[2.6.2)) and ¢, is the time at the end of the write pulse. Here, given the initial atomic state p,(0)
populated with multiple Zeeman sublevels, the single-atom spin flip 3;(,,) corresponds to a superposition of

Zeeman-dependent hyperfine spin flips given by

z 1 i mp, —gsm i
|5i(1fw)>:\/7F Z /P, /fgr%;l?m&eua(gg Fy—gsmp, ) B ( z)tw/ﬁ|smFs>7 (2.89)

c
MEy,MFg

4Dispersive van der Waals interaction between the atomic dipoles gyqw ~ 7

ciently high density. Generally, for high phase-space density, one may additionally consider elaborate collisional processes and radiation
trapping®# (due to imperfect optical pumping). Alternatively, the atoms can be trapped in an optical lattice to reduce collisional dephas-
0 oll10

ing

2
d703 lead to a van der Waals dephasing for suffi-
TEQTS

"The spatial variation of the magnetic field across the transverse directions can be neglected, given the aspect ratio of the atomic sam-
ple 2wo/L =~ 2 x 50 pm/3 mm < 1). The inhomogeneous Zeeman broadening is thus dominated by the longitudinal inhomogeneity
B_:(z) of magnetic field.
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_ Gurd . - N
where N, = Zqu’mFs Hpmp, 18 the normalization constant, g, s are the respective g-factors for the

ground states {|g),|s)}, pup is the Bohr’s magneton, B.(7;) = B(7) - Z is the magnetic field projected
along Z at position 77, and 53;“;;1% - is the generalized effective coupling constant for the specific excitation
pathway (see Eq. @ Here, q,,,1 are the polarization helicities for the writing laser and the field 1.

This expression can be easily derived from & = tanh? (i fooo dt’ fOL dzxp(z,t')) (Eq. l by generalizing
the parametric coupling constant Y, to accommodate Zeeman-dependent transition constants (which depends
on the parameters {Fy, Fis,m Fyy ME, s Qus q1} via the various Cleabsh-Gordan coefficients). Alternatively,
Eq. can be derived from the mapping Hamiltonian 7. In writing Egs. [2.882.89] I assumed the
effective single-mode model for parametric interaction 7, , . in section@ where the beam-waist of
the writing laser is substantially larger than that of the quantum field. The Larmor precession of a single-atom
spin-flip after a delay 7 is then described by

~ ~ 1 7 mpg,—gsm 7i)T/h
Giltw +1)5itu)) = 3 D e, Gl € Lo maeme )JBEIT - 2.90)

MEg,MEg
M, mE,
To understand the collective dynamics of p,(7), we now calculate the overlap function , (¢ (£, +7) |t (t))a
between the initial collective state and the final collective state, where the retrieval efficiency 7, is ideally
proportional to |, (¥ (t, + 7)[1(tw))al? (section . If we assume that the atoms are stationary so that the

phase-matching condition is preserved, using Eqs. 2:88H2.90] we obtain the following overlap,

1 w
(@t + D)) = Fr Do P, e, 0
CmFg
L
></ dzn(z)eiMB((gg_gs)mFg_gs(Qw_QI))Bz(Z)T/h, (2.91)
0

where we made the continuum approximation for the summation ), — [ dzn(z) and assumed pure polar-
ization states (qy,,1) for the writing laser and the field 1 (i.e., mp, = mp, + qu — q1)-
Assuming a flat-top atomic distribution n(z) = N4 /L and a quadratically inhomogeneous Zeeman shift

B.(2) = (40B./L?)(z — L/2)?, we obtain

1
(Wt + D)) = = D Prae, S0ty i, v JalT): (292)

mpg

where the decay amplitude f4(7) for the Raman transition m F, = Mp, = Mg, + Gy — q1 is given by

Vimerf (, /fz'ampg 7‘)
2\/Cmp, T

fa(T) = , (2.93)

with a Zeeman-dependent decay constant oy, = pp((9g — gs)mF, — 9s(qw — ¢1))dB./h. The func-
tion erf(x) = % fox dz'e=*" is the error function. In Fig. we show the result of our calculation
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Figure 2.7: Spin-wave decoherence due to inhomogeneous Zeeman broadening. We show the normalized
retrieval efficiency based on the theoretical expression 7, ~ |4 (¥ (ty + 7)1 (tw))al? (Eq. as a function
of storage time 7, for (1) B, = 10, (2) 20, (3) 30, (4) 40, and (5) 50 mG. A typical experimental value for
the inhomogeneous Zeeman broadening is 6 B, = 20 mG (red line), after nulling the magnetic fields with
bias coils (based on our measurement of off-resonant Raman spectroscopy*>). We assumed the length of the
ensemble to be L = 3 mm. The atomic cloud is initially prepared in the ground state |g) with uniform Zeeman
distribution py, . = 1/F;. In this calculation, {|g), |s),|e)} denote the levels {|65 /2, F' = 4), (6512, ' =
3),[6P5)5, F = 4)}. (inset) We measure the conditional probability p. to detect a single-photon in field 2
as a function of 7. The expected Zeeman dephasing is 74 ~ 30 us (red line) at 6B, ~ 10 mG (based on
Raman spectroscopy), whereas the measured coherence time is only 75 ~ 12 us (red points). This result is
consistent with the theoretical prediction for motional dephasing (red dashed line) in Fig. 2.8] For reference,
we also plot the spin-wave coherence measurements at § B, ~ 30 mG (black points), which are consistent
with Zeeman dephasing (black line). The vertical axes of the theory (black, red) lines for 7, are scaled to fit
the experimental data for the photoelectric detection probability p. of the field 2.

of the retrieval efficiency 7, after storage time 7. Note that the second-order approximation B,(z) =
(46B,/L*)(z — L/2)? is reasonable for our experiment, since the Helmholtz bias coils can in principle
cancel inhomogeneous Zeeman broadening only up to the first-order. Collective Larmor rephasing (oscilla-
tion in 7, at long 7), also known as dark-state polariton collapse and revival 1?12Y, is suppressed in our case
of inhomogeneous Zeeman broadening by the additional factor of 2 /Omp, T in the denominator.

Generally, the temporal profile of the spin-wave dephasing 7,-(7) due to Zeeman broadening depends on
both the number density n(z) and the inhomogeneous magnetic field B, (z) across the sample. Practically, the
atomic density is approximately a Gaussian distribution n(z) ~ e=4*/L” in our experiment. If we assume
that the first-order (linear) Zeeman shift is dominant, with B,(z) = (0B,/L)z, the equivalent expression
for (5(ty + 7)|5(tw)) (see, e.g., Eq. simply depicts a Fourier transform of n(z), which results in a
Gaussian decay of 7. Thus, the temporal profile of 7,.(7) may provide some information about the spatial

inhomogeneity of the Zeeman levels, given the measured atomic density n(z).
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2.6.2 Motional dephasing of spin waves

As seen in Eq. the spin-wave dynamics is also dictated by the spatial coherence l;w -7 — kyz1 of
the spin-wave, which preserves the phase-matching condition required for collective enhancement. Here, we
provide a simple model for motional dephasing

We first assume a linear atomic motion by 7 (t,, + 7) = 7;(t,,) + @;T during the storage time 7 for the i

atom. The final collective state after motional dephasing can thus be written as

1 Sk (Y o i
Yt + 1) = == (Z ORI g g B i, ,gNA>> Lo

%

where 0k = |Eu, — E1| ~ k,, sin B, is the net momentum transfer to the spin-wave (with a small angle
approximation #,,; < 1 between the k-vectors of the writing laser and field 1 on the y — z plane) and
vy,; = U; - § is the atomic velocity projected along g.

As we discussed in section|2.6.1} the retrieval efficiency is proportional to the overlap |, (¢ (ty,+7) |1 (tw))al?.
If we assume a continuum limit for the momentum distribution g(v) of the thermal atoms, the overlap is given

by

(t + D(t))y = / dog(v) e, (2.95)

For thermal atoms at Ty, as in our case of laser-cooled Cesium atoms 7y ~ 100 K, the atomic motion follows

—mu? /2kpTy

the Maxwell-Boltzmann distribution g(v) = e The retrieval efficiency 7, (7) ~ |a(¢(tw +

7)|1h(tw))a]? is then (Fourier-transforming g(v))
e=e T (2.96)

where 74 = A\ /27105 with vg = \/m. Here, we defined the spatial coherence length Ay = 27 /0k for
the spin-wave with momentum transfer dk.

In Fig. [2.8] we show the temporal profile of the normalized retrieval efficiency 7, as a function of
storage time 7 (Eq. for various temperatures Ty and for two different angles 6,7 ~ 3° (0.5 ~ 2°)
between the two fields (thereby, varying the coherence length A4 of the spin-wave). I note that there are two
relevant factors which fully characterize the motional dephasing 74: (1) Atomic motion v, and (2) spin-wave
coherence length \¢. By decreasing the temperature Ty of the atomic sample, we can reduce the mean velocity
Vg = \/m, and thereby increase the coherence time, as shown in Fig. By placing an optical
lattice along the momentum transfer 5k I the atomic motion can also be dramatically reduced121H71%

(see also Fig. [[.3]in chapter[I). On the other hand, to improve 7, it is also possible to increase the spin-wave

coherence length A, = 27 /dk for a given v, (Fig. by moving to a collinear geometry (k,, || k1) with

*In this case, it is important to also consider the inhomogeneous light shifts between |g) — |s) from the optical lattice, as discussed
P 8 g P
in the previous section.
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Figure 2.8: Spin-wave dephasing due to atomic motion. We show the normalized retrieval efficiency based
on the theoretical expression 7, ~ |, (1(t, + 7)|¥(tw))a|? (Bq. as a function of storage time 7, for (1)
Ty = 30 puK (with 6,1 = 2°), and for (2) T; = 80 pK (with 8,1 = 3°), (3) Ty = 150 uK (with 8,1 = 3°),
4) Ty = 250 puK (with 8,1 = 3°), (5) Ty = 550 pK (with 8,7 = 3°). (inset) A typical experimental value
for the motional dephasing is 74 ~ 20 us (T3 ~ 150 pK, 6,,1 =~ 3°), as shown in the inset with experimental
data (red points) and theory line (3) (red line). After optimizing polarization gradient cooling (T ~ 30 uK)
and optical pumping to clock state |[FF = 4, mp = 0) (along with the increase in the spin-wave coherence
length via 6.5 ~ 2°), we further achieve a memory time of ~ 65 us (black points) for storing and retrieving a
coherent state. The vertical axes of the theory (black, red) lines for 7, are scaled to fit the experimental data
for the photoelectric detection probability p. of the fields (signal field, field 2).

Zeeman storage (at the magic magnetic field), thereby to 5k = Ew — El ~ () (with coherence length A\; ~ 3
cm > L, wq eventually extending beyond the size of the atomic sample). In this case, the storage time 7

116/117

due to atomic motion will be limited by the collisional dephasing and by the loss of atoms from the

excitation volume®,

In the inset of Fig. we show our measurement for the decay of the (conditional) photoelectric detec-
tion probability p,. of a signal (field 2) pulse after a storage time 7 for a coherent state |a) with |a|? ~ 0.9
per pulse (for a heralded collective excitation), shown by black (red) points. In particular, after cooling the
atoms to T; ~ 30 pK, optical pumping to the clock state, and increasing the spin-wave coherence length by

reducing 0., = 3° — 2°, we achieve a memory time of ~ 65 us for storing and retrieving a coherent state, a

substantial improvement relative to the result in chapter [6]
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Chapter 3

Characterization of heralded
entanglement between two atomic
ensembles

f. 34

This chapter is largely based on ref.**, Reference“* refers to the then current literature in 2007 at the time of

publication.

3.1 Introduction

Beyond a fundamental significance, quantum control of entanglement between material systems is an essen-

91162

tial capability for quantum networks and scalable quantum communication architectures (refs.="°<, see also

chapter[I). In recent years, significant advances have been achieved in the control of the quantum states of

197198 and between macroscopic spins®?. By follow-

atomic systems, including entanglement of trapped ions
ing the seminal paper of Duan, Lukin, Cirac, and Zoller (DLCZ) (ref.#, chapter [2), entanglement between
single collective excitations stored in two remote atomic ensembles has also been demonstrated?”. In the
DLCZ protocol, entanglement is created in a probabilistic but heralded way from quantum interference in

1997201 The detection of a photon from one or the other atomic ensemble in an

the measurement process
indistinguishable fashion results in an entangled state with one collective spin excitation shared coherently
between the ensembleg’] Such entanglement has been critical for the initial implementation of functional

f. 36)

quantum nodes for entanglement distribution (ref.=®, chapter , for the investigation of entanglement swap-

ping (ref %7, chapter and for light-matter teleportation‘ 2.
Because of the relevance to quantum networking tasks, it is important to obtain detailed characterizations
of the physical processes related to the creation, storage, and utilization of heralded entanglement. Towards

this end, significant advances have been demonstrated in the generation of photon-pairs’#7> and the efficient

retrieval of collective excitation’®””. Moreover, decoherence processes for a single atomic ensemble in the

See also chapterE] for an initial demonstration of measurement-induced entanglement of spin waves among multiple quantum
memories.
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regime of collective excitation have been investigated theoretically (ref.14Z, chapter and a direct measure-
ment of decoherence for one stored component of a Bell state recently was performed?’?. However, to date
no direct study has been reported for the decoherence of an entangled system involving two distinct atomic
ensembles, which is a critical aspect for the implementation of elaborate protocols'22123203 The decoherence
of entanglement between ensembles has been shown in recent setups (chapter 2), through the decay of the
violation of a Bell inequality (ref."®, chapter and the decay of the fidelity of a teleported state'''%. However,
a quantitative analysis was not provided since these setups involved many other parameters, such as phase
stability over long distances.

In this chapter, I discuss measurements that provide a detailed and quantitative characterization of en-
tanglement between collective atomic excitations. Specifically, we determine the concurrence C' (ref. %)
as a function of the normalized degree of correlation g;5 (ref.”®) for the ensembles, including the threshold

0
952)

time for the entangled state, and interpret this decay by measuring the local decoherence on both ensembles

for entanglement (C' > 0). We also map the decay of the concurrence C(7) as a function of storage

taken independently. Compared to ref.?’

, these observations are made possible by a new system that requires
no active phase stability and that implements conditional control for the generation, storage, and readout of

entangled atomic states.

3.2 Experimental setup

Our experiment is illustrated in Fig. A single cloud of cesium atoms in a magneto-optical trap is used;
two ensembles are defined by different optical paths 1 mm apart®2%%, This separation is obtained by the
use of birefringent crystals close to the cloud, which separate orthogonal polarizations”!. At 40 Hz, the
trap magnetic field is switched off for 7 ms. After waiting 3 ms for the magnetic field to decay, the two
samples are simultaneously illuminated with 30-ns-long and 10 MHz red-detuned write pulses, at a rate of
1.7 MHz. Given the duty cycle of the experiment, the effective rate is 180 kHz. Spontaneous Raman scattered
fields induced by the write beams are collected into single-mode fibers, defining for each ensemble optical
modes that we designate as fields 1y, p with 50 pm waist and a 3° angle relative to the direction of the write
beams”'7% The fields 1y,p are frequency filtered to block spontaneous emission from atomic transitions
le) — |g), which do not herald the creation of a collective excitation. After this stage, and before detection,
fields 1y, p are brought to interfere on a polarizing beam-splitter. A detection event at Dy, 15 that arises
indistinguishably from either of the fields 1y, p projects the atomic ensembles into an entangled state where,

in the ideal case, one collective excitation is coherently shared between the U, D ensembles®2Z.
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3.3 Entanglement generation and storage

In the ideal case of small excitation probability, the atom-field 1 joint state can be written for each ensemble:

[T) = |04)[01) + V€[ 1a)[11) + O(E) . 3.1)

with |n; ) the state of the field 1 with n photons and |n,,) the state of the ensemble with n collective excitations

(chapter |Z[) Upon a detection event at Dy, 15, in the ideal case, the atomic state is projected into

S

75 (0)ul1a)p = |14)v104)p) + O(VE), (32)

|Vup) =

where |04)0.p, |1a)v.p refers to the two ensembles U, D with 0, 1 collective excitations, respectively?. The
=+ sign is set by the detector that records the heralding event. The overall phase ¢ is the sum of the phase
difference of the write beams at the U and D ensembles and the phase difference acquired by fields 1 in
propagation from the ensembles to the beamsplitter. To achieve entanglement, this phase must be constant

from trial to trial %, In order to meet this requirement, the initial demonstration reported in ref 27 employed

(a) Entanglement generation

le)

.............. D?f\\‘
U
§
D ” VI D1a

l<) |5 A2 PBS
@ 22.5°

(b) Entanglement verification

(1/2), 12

D2a
A I] U .
%b (fD |2) B

Figure 3.1: Entanglement generation and verification. a, Entanglement generation and storage. A weak
write pulse is split into two paths separated by 1 mm and excites simultaneously two atomic samples, U, D.
The resulting fields 1y, p are combined at the polarizing beamsplitter (PBS) and sent to the single-photon
detectors D1,4,1,. A detection event at Dy, or Dy heralds the creation of entanglement. b, Entanglement
verification. After a storage time 7, entanglement is verified by mapping the atomic state to propagating
fields 27, p by way of read pulses. Tomography is then achieved in two steps, as described in the text.
The atomic cloud is initially prepared in the ground state |g). {|g),|s), |e)} denote the levels {[6S} 2, F' =
4),1651 /2, F = 3),|6P3/5, F' = 4)}. Note that the fields 1y, p and 2y, p are detected with a small angle
relative to the classical beams, which is not represented here for the sake of simplicity.
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Figure 3.2: Passive stability of a Mach-Zehnder interferometer formed by a pair of beam displacers. a,
A calcite beam displacer mounted on a stable prism mount. b, Long-term phase instability of an interferom-
eter formed by two beam displacers. By mounting the two crystals in an anti-symmetric configuration (Fig.
3.1), the phase drifts are passively compensated to the first order for thermal expansions of the crystals as
well as for mechanical instabilities along all translational degrees of freedom (except for tilting). The relative
phase ¢ does not change by more than a few degrees over several days.

auxiliary fields to achieve active stabilization for various phases for two ensembles located in distinct vacuum
apparatuses. By contrast, in our current setup (Fig. 3.Th), ¢ is determined only by the differential phase for
the two paths with orthogonal polarizations defined by the birefringent crystals (Fig. [3.2h); our small setup
has sufficient passive stability without the need of adjustment or compensation. The relative phase ¢ does not

change by more than a few degrees over 24 hours (Fig. [3.2p).

3.4 Entanglement verification

To operationally verify entanglement between the U, D ensembles, the respective atomic states are mapped
into photonic states by applying simultaneously read pulses in the configuration introduced in ref.”?, as
depicted in Figure [3.1b (see also chapter [5.3.3). The delocalized atomic excitation is retrieved with high

efficiency thanks to collective enhancement*/®

and, in the ideal case, |¥y; p) would be mapped directly to
the photonic state of fields 2y p with unity efficiency and no additional components. Stability for the phase
difference of the read beams and of fields 2y p is also required in this process; it is again achieved by the
passive stability of our current scheme”!. Since entanglement cannot be increased by local operations?%>, the
entanglement for the atomic state will always be greater than or equal to that measured for the light fields.

A model-independent determination of entanglement based upon quantum tomography of the fields 2y p
has been developed in ref.%”. The model consists of reconstructing a density matrix, pa,, 2,,, obtained from
the full density matrix by restriction to the subspace with no more than one photon per mode. We also assume

that all off-diagonal elements between states with different numbers of photons vanish. The model thus leads

to a lower bound for entanglement. As detailed in ref.?Z, P2y,2p can be written in the photon-number basis
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|n)|m) with {n,m} = {0, 1} as follows:

P2y.2p = 2 . (3.3)

Here, p;; is the probability to find 7 photons in mode 2¢; and j in mode 2p; d is the coherence term between
the |1)|0) and |0)|1) states; and P = poo + po1 + p1o + p11. From po, 2, one can calculate the concurrence
C, which is a convenient monotone measurement of entanglement ranging from 0 for a separable state to 1

for a maximally entangled state78:

. 1
C = max(O,Co) with Cy = ﬁ<2|d‘ — 2\/])00])11). 3.4)

In the regime of low excitation and detection probabilities in which the experiment is performed, the vacuum
Poo can be approximated by pog ~ 1 — p.., while the terms pg; and pig are given by p1g = po1 = pe/2. pe is
the conditional probability of detecting a photon in field 2 from one ensemble following a detection event for
field 1.

Experimentally, we reconstruct py,, 2,, and then calculate C' by using two configurations for the detection
of fields 2y p, corresponding to two settings of the (A/2), waveplate shown in Fig. . The diagonal ele-
ments of Py, 2, are determined from measurements of the photon statistics for the separated fields 2y, 2p,
i.e., by detecting independently each field. To access the coherence term d, fields 2, p are coherently super-
imposed and the count rates from the resulting interference are recorded as a function of the relative phase
between the 2y p fields. It can be shown that d >~ V (p19+po1)/2 ~ Vp./2 (ref. 27 where V is the visibility

of the interference fringe.

3.5 Main results

3.5.1 Scaling behavior of heralded entanglement to excitation probability

To investigate the scaling of entanglement with excitation probability £, we determine the concurrence C' for
various values of ¢ for fixed memory time 7 = 200 ns. As £ increases, higher-order terms in the expansion of
Eq. cannot be neglected, precisely as in parametric down-conversion. A convenient parameter to assess
the excitation regime of each ensemble is the normalized intensity cross-correlation function gi5 between
field 1 and field 2 (ref.’%), defined as g1o = p12/(p1p2) With p1o the joint probability for detection events
from field 1 and 2 in a given trial and p; the probability for unconditional detections in field . In the ideal

case, this function is related to the excitation probability £ by g1o = 1 + 1/£, where g15 > 2 defines the
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Figure 3.3: Concurrence C as a function of the normalized cross-correlation function g, for the two
possible heralding events (detection at D, or D;). The solid line is obtained from Eq. @) with the
fitted overlap (see inset) and taking an independently-measured retrieval efficiency at 13.5%. The dotted line
corresponds to Cy. Inset: Average visibility of the interference fringe between the two field-2 modes. The
solid line is a fit using the expression given by Eq. , with the overlap ) fitted to 0.95 & 0.01.

nonclassical border in the ideal case’® and g;2 > 2 being the single-excitation regime for the ensembles’®.
Expressing the two-photon component for the two ensembles as p1; = £p? ~ p?/g12, we rewrite the

concurrence as:

C = max[0, pe(V = 21/(1 = pe)/g12)] (3.5
where ¢ is for either ensemble alone, with ggg) = g§2D) = g1 assumed. The visibility V' can be expressed

in terms of g15 as the higher-order terms act as a background noise. With (1/2)p1ps a good estimation for

the background, the visibility can be written as

-~ — - -1
)\plz P1Pp2 _ /\912 (3.6)

V ~ )
P12 + P1p2 g2 +1

where ) is the overlap between fields 2y, p (ref. 78 In the limit of near zero excitation, as g goes to infinity,
the concurrence reaches its asymptotic value given by the retrieval efficiency Xp,ﬂ

Fig. 3] presents our measurements of the concurrence C' as a function of g12. As the excitation proba-
bility is decreased, g12 increases as does the entanglement. The threshold to achieve C' > 0 is found to be
ggg) ~ 7, corresponding to a probability p;, ~ 1.2 x 10~2 per trial for the creation of the heralded atomic

entangled state and to a preparation rate ~ 2 kHz. Note that C' = 0 (or C not greater than zero) does not

imply that there is no entanglement, only that any possible entanglement is not detected by our protocol,

b An alternative approach is to determine the suppression of two-photon events relative to the square of the probability of single-
photon events for the fields 2, h = pf(’)lzjm. h < 1 is a necessary condition for entanglement27 34136 Here, for gi2 = 60, h =
0.060 =+ 0.005.
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which provides a lower bound for the entanglement. More importantly, in an infinite dimensional Hilbert
space, entangled states are dense in the set of all states?%?, so that zero entanglement is not provable for an
actual experiment by way of the concurrence.

To confirm the model leading to Eq. (3.6), the inset gives the measured visibility V' as a function of
g12. The solid line is a fit according to Eq. with free parameter ), leading to an overlap A = 0.95 &
0.01, in agreement with the value A = 0.98 + 0.03 obtained from an independent two-photon interference
measurement. With the fitted value of A and with the independently determined value of the conditional
probability p. = 0.13540.005 from measurements performed on each ensemble separately, we compare our
measurements of C' with the prediction of Eq. (solid line in Fig. and find good agreement.

Table [3.1] provides the diagonal elements of the density matrix py,, 2,, and the concurrence for the case
g12 = 60 % 4 corresponding to a probability to create atomic entanglement p;, = 9 x 10~% per trial (160 Hz).
A value C' = 0.092 + 0.002 is directly measured at detectors D, , Do, without correction. By way of the

independently determined propagation and detection efficiencies, we infer the density matrix ﬁ;gté’f for fields

2u,2p at the output of the ensembles, from which we obtain a concurrence Cis 5" = 0.3540.1. This value
exceeds the then published state of the art by two orders of magnitude?Z. This leap underlines the progress
obtained in terms of suppression of the two-photon component and achievable retrieval efficiency over the
past year’®’Z_ Finally, by way of the conditional readout efficiency n = 45 + 10% for mapping of quantum
states of the U, D ensembles to the fields 2¢7, 2p, we estimate the density matrix py;, p and the concurrence
Cu,p = 0.9 £ 0.3 for the collective atomic state. We emphasize that Cyy, p is an estimate determined from

the model developed in ref.” where the fields at the output of the MOT consist of a two-mode squeezed state

plus background fields in coherent states.

3.5.2 Characterization of decoherence for heralded entanglement stored in two atomic

ensembles

Turning then to a characterization of the decay of entanglement with storage time 7, we present in Fig.
measurements of concurrence C(7) for fixed excitation probability p;, = 1.6 x 10~3 corresponding to
g12 = 30at7 =200 ns. C' > 0 for 7 < 20 ps, providing a lower bound for the lifetime of entanglement of

the ensembles corresponding to 4 km propagation delay in an optical fiber.

Table 3.1: Diagonal elements and concurrence of the density matrices for fields 2;; p, without and
with correction for propagation losses and detection efficiencies. The last column provides the estimated
elements and concurrence for the atomic state by considering the readout efficiency 1. g2 = 60 % 4.

po ~outpul ~
P2y ,2p P2y .2 PU,D
Poo 0.864 + 0.001 0.54 £0.08 0+0.3

pro  (6.4740.02) x 1072 (2244) x 1072 0.5+0.15

po1 (7.074£0.02) x 1072 (24 4+4) x 1072 0.5+0.15

p11 (2.840.2) x 1074 (34£2)x 1073 0.01540.025
c 0.092 + 0.002 0.35+0.1 0.940.3




56

0.10 T T T T
= Dia 0.15 . . .
2 D1b =p. 430
C 420
0.05 410
£
. . o
20 30 w0
T (ps)
0.00
[ E x
! ! !
0 10 20 30 40

T (ps)

Figure 3.4: Concurrence C' as a function of the storage time 7. The solid line is obtained from Eq. (3.5)
assuming the fitted exponential decays, given in the inset, of the individual parameters p. and g;2 measured
independently. The dotted line corresponds to Cj.

To investigate the dynamics in Fig. the inset shows the decay of the average g2 and conditional
probability p. for the ensembles taken independently. Such local decoherence has been investigated as the
result of inhomogeneous broadening of the Zeeman ground states due to residual magnetic fields!2014/:202,
Our current measurement shows the effect of this local decoherence on the entanglement of the joint system
of the ensembles. For this purpose, our measurements of C' are superposed with a line C(7) given by Eq.
where the fitted exponential decay for p.(7), g12(7) (with similar decay ~ 13 us) and the overlap \

determined in Fig. [3.3) are employed. The agreement evidenced in Fig. [3.4] confirms the principal role of

local dephasing in the entanglement decay.

3.6 Conclusion

In conclusion, we have reported a detailed study of the behavior of entanglement between collective excita-
tions stored in atomic ensembles, including the dependence of the concurrence on the degree of excitation
and the quantitative relationship of local decoherence to entanglement decay. The temporal dynamics reveal
a finite-time decay, with separability onset for storage time 7,,, ~ 20 pus. From a more general perspective,
the inferred concurrence for the collective atomic state, Cy,p = 0.9 & 0.3, is comparable to then current
values obtained for entanglement in the continuous variable regime?” and for entanglement of the discrete

internal states of trapped ions 27128,
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3.7 Multiple “flavors” of entanglement

While progress in traditional physics has been historically made by confirming the consistency of experimen-
tal data with theoretical models, it is essential to employ robust, model-independent procedures in quantum
optics and quantum information science, in order to unambiguously characterize and verify the entanglement
for the purported state created in one’s experiment' 19208, Diverse approaches to entanglement verification
and quantification have been developed so far, including entanglement monotones and witnesses*?19208] For
excellent accounts of recent results, I refer to the reviews by refs. 208, Also, I refer to chapters where
we have developed a particular form of an entanglement witness for verifying multipartite mode-entangled
W states=5.

In this section, I would like to provide a brief overview on the different categories of entanglemen(’] one
could generate in an experiment, largely based on the description in ref. 1%, By this, I hope to distinguish
the ‘flavors’ of entanglement for the heralded and deterministic quantum states described in this thesis, and

those based on post-dicted states largely reported elsewhere in the literature (chapter|[I)) which are not directly

applicable for scalable quantum networks'.

1. Deterministic (a priori) entanglement

For deterministic entanglement, one has a source that generates multiple copies (i.e., in de Finetti

representation®l, 5(Ve) = [ dpP(p)p®Ne) of a state, p = paer, Where

ﬁdet = [)ent- (37)

By performing measurements on a subset of 5(Ve) (e.g., via quantum-state tomography), one concludes
in principle that the physical state pge; contains an entangled state pe, every instant of its creation. The
entangled component pep is identical to the physical state pqe generated in an experiment. Thus, the
entangled state pey is created on demand “at the push of the button.” Importantly, the purported en-
tanglement is unambiguously verified directly from measurements on the physical state pqe; Without
destructively filtering a small fictitious (entangled) component 4., of pge and subsequently measuring
P by post-selection (i.e., a posteriori entanglement). Depending on the amount of entanglement, de-
terministic entanglement may be employed for a wide variety of large-scale quantum information tasks
(section [I.T), including scalable quantum computation and entanglement distribution. For example,
we demonstrated a reversible quantum interface, whereby deterministic entanglement can be mapped

into and out of two quantum memories (chapter [6). Prominent examples of this type of entanglement

“Note that while there is only one class of entanglement (Bell states) for bipartite qubits (N = 2), there are different classes of
entanglement for N > 2, associated with the equivalency under stochastic local operation and classical communication (SLOCC)2%2210,
My goal, however, is not to discuss about the classes of entanglement, which is an active research problem on its own, but rather
to differentiate the various types of entanglement generated in an experiment, in terms of the amount of entanglement for the actual
physical state.
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include the various entangled states for continuous variable beams of light and atomic ensembles, and

between trapped ions, Rydberg atoms, and superconducting qubits (section [I.2)).

2. Heralded entanglement

Here, one refers to the state in the de Finetti representation p(Ve) = [ dpP(p) pONe, where p = prer
with,

ﬁher = (]- - pyes)ﬁno & ﬁunent + pyesﬁyes & ﬁenb (38)

This is an entangled state subject to an ensemble measurement of the subset of (V). for which one
could reliably estimate the amount of entanglement F(pey). For heralded states, we have orthogonal
states {pno, Pyes} for the heralding system (lhs of the direct products in Eq. with probabilities
{1 — Pyes, Pyes }» for which one could subject the auxiliary states {/no, fyes} in a test to distinguish
probabilistically whether the state ppe, is prepared in the entangled pene or unentangled states Pynen.
Albeit with possibly low success probability py.s, we can indeed create a physical state with the desired
maximally entangled pen¢ with a high fidelity by projecting the ancilla states. Thus, heralded entangle-
ment can be as powerful as a priori entanglement, except that one may have to generate many copies
before obtaining pey if pyes is small. This type of entanglement may be employed for diverse large-

202121213

scale quantum information protocols, including universal quantum computations and scalable

quantum communications*® (section|1.1).

In chapters 3H3] [8] and 9] we initially entangled the number-states between the (heralding) fields 1
and the atomic state via the two-mode squeezing operation described in chapter [2] By projecting the
fields onto an entangled state (|10) + |01)), we prepared a high-fidelity entanglement (ideally, 1-ebit
of entanglement) for the heralded state pen physically stored in the atomic ensembles. For example,
in this chapter, we have achieved Cy p = 0.9 £ 0.3 for the physical state with p;, ~ 10~ without
post-selecting pen.. But as the scheme is probabilistic, the heralding process requires us to generate
on average ~ 1/pp copies of the state jpe to obtain pen. This type of entanglement can be used
for conditional enhancement of entanglement distribution and connection*%” (chapters and even

79180

promoted to a deterministic quantum state via the conditional control of heralded quantum states’®,

with a sufficient memory time 7,,, (see ref. 1),

3. A posteriori entanglement

Here, one generates p(V) = [ dpP(p)p®Ne, where p = ppost With,

ﬁpost = (]- - pyes)ﬁunem + pyesﬁema (3.9

where pye; < 1, in many cases of practical importance. Here, one devises the measurement strategy

such that it is only sensitive to the desired entangled state pen; With post-selection, thereby destructively
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measuring the quantum state. While such a measurement strategy may display classical recording
of significant non-classical correlations (e.g., by way of the violation of Bell’s inequality), the actual
amount of entanglement for the physical state fpos 18 very small: i.e., E(fpost) ~ DyesE(Pent). If the
post-selection procedures can be simulated by local filters, one can in principle conclude the pres-
ence of entanglement. But, entanglement F(pey) via post-diction greatly overestimates the amount of

entanglement F( ﬁpost) in Ppos (i.€., referring instead to the fictitious component pepy).

Because of the destructive nature in the measurement process, the entanglement in pey; cannot exist
independent of the null (unentangled) events pynene. Indeed, in typical downconverter experiments,
with pyes < 1, the quantum state one needs to assign for the two purportedly entangled optical modes
is not that of a maximally entangled state |V, ) = %(|H V) 4+ |V H)) of two photons, but that of a

state of the form:

PppC = PoPo + Pyes| V) (Wi | + p>o. (3.10)

Thus, based on a positive detection event, one succeeds in implementing the desired protocol a poste-
riori.

Such an entangled state is not desirable for realizing most scalable quantum architectures, including
quantum networks, as the amount of entanglement is extremely small for the physical state (typically,
Pyes < 1073). Furthermore, given a density matrix pppc, the pure-state decompositions of Eq.
may be written in a form in different pure-state decomposition, for which the pure states in the decom-
position are all unentangled”8. Unfortunately, a wide range of literature has been reported, whereby
entanglement in the state of Eq. is claimed to exist in the form of |W ) instead of pppc. I re-
fer to reference’ ! for prominent examples, for which entanglement verifications were not carried out

correctly.

3.8 Technical details

3.8.1 Some notes on the magic of beam displacers

The passive stability of the beam displacers has attracted us to use these components throughout our exper-
iments (chapters [3H9). We ordered the displacers from Novaphase, for which they used laser-grade calcite
crystals with exceptionally low striae and optical inhomogeneity for reducing the scattering noise of the clas-
sical beams, and polished the calcite surface with A/10 flatness over the entire aperture and .S/D = 20/10.
However, I’d like to note that since 2009 there has been a global shortage of calcite crystals, which made
them compromise the quality of calcite crystals. For example, the new batch purchased in 2010 had higher
densities of scattering centers for the experiment in chapter [9] with the fluorescence clearly visible under an
IR scope. As of 2011, it is unclear when we will be able to obtain high-quality calcite crystals with low

scatter density as in the pre-2009 batches. Currently, for any serious quantum optics experiments involving
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strong classical beam, the only practical alternative is to use synthetically grown YVO, beam displacers,
despite the lower transmission at our wavelengths. The residual broadband fluorescence from the crystal can

be overcome by employing a narrow-band high-efficiency volume Bragg grating (see Fig. [I.6]in chapter|[I).
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Chapter 4

Functional quantum nodes for
entanglement distribution

This chapter is largely based on ref.“¢. Reference=® refers to the then current literature in 2007 at the time of

publication.

4.1 Introduction

162

In quantum information science“*=, distribution of entanglement over quantum networks is a critical require-

8214 and communication®?. Quantum networks are

ment for quantum metrology*!, quantum computation
composed of quantum nodes for processing and storing quantum states, and quantum channels that link the
nodes (chapter [T). Substantial advances have been made with diverse systems towards the realization of

216217 and in cavities*®, and atomic

such networks, including ions?, single trapped atoms in free space
ensembles in the regime of continuous variables®’.

An approach of particular importance has been the seminal work of Duan, Lukin, Cirac, and Zoller
(DLCZ) for the realization of quantum networks based on entanglement between single photons and collective
excitations in atomic ensembles®. Critical experimental capabilities have been achieved, beginning with

72173

the generation of non-classical fields with controlled waveforms”> and extending to the creation and

74192193

retrieval of single collective excitations with high efficiency”®”’. Heralded entanglement with quantum

memory, which is the cornerstone of networks with efficient scaling, was achieved between two ensembles 21,

DIS0202 5nd of two distant

More recently, conditional control of the quantum states of a single ensemble
ensembles”® has also been implemented, such quantum states are likewise required for the scalability of
quantum networks based on probabilistic protocols.

Our goal is to develop the physical resources that enable quantum repeaters?, thereby allowing entan-
glement based quantum communication tasks over quantum networks on distance scales much larger than

set by the attenuation length of optical fibers, including quantum cryptography?!. For this purpose, her-

alded number-state entanglement2’ between two remote atomic ensembles is not directly applicable. Instead,
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Figure 4.1: Setup for distributing entanglement between two quantum nodes (L, R) separated by 3
meters. The inset shows the relevant atomic levels for the 65,/ — 6P3/, transition in atomic Cesium, as
well as the associated light fields. The ensembles are initially prepared in |g). Weak write pulses then induce
spontaneous Raman transitions |g) — |e) — |s), resulting in the emission of anti-Stokes fields (fields 1)
near the |e) — |s) transition along with the storage of collective excitations in the form of spin-flips shared
among the atoms?. With this setup, a photodetection event at either detector D1, or D1, (D1 or Di4)
heralds entanglement between the collective excitation in LU and RU (LD and RD)'Z‘. BSy and BSp
are implemented using two orthogonal polarizations in one fiber beam splitter, yielding excellent relative
path stability. A heralding detection event triggers the control logic to gate off the light pulses going to the
corresponding ensemble pair (U or D) by controlling the intensity modulators (ZM). The atomic state is thus
stored while waiting for the second ensemble pair to be prepared. After both pairs of ensembles U, D are
entangled, the control logic releases strong read pulses to map the states of the atoms to Stokes fields 2 via
|s) = |e) — |g). Fields 2,y and 21,p (2gy and 2gp) are combined with orthogonal polarizations on the
polarizing beam splitter PBS;, (PBSR) to yield field 27, (2g). If only coincidences between fields 27, and 25
are registered, the state is effectively equivalent to a polarization maximally entangled state. (\/2)r r are
rotatable half-wave plates.

DLCZ proposed the use of pairs of ensembles (U;, D;) at each quantum node ¢, with the sets of ensem-
bles {U;}, {D;} separately linked in parallel chains across the network™. Relative to the state of the art in
ref 22, the DLCZ protocol requires the capability for the independent control of pairs of entangled ensembles
between two nodes.

In this chapter, we have created, addressed, and controlled pairs of atomic ensembles at each of two
quantum nodes, thereby demonstrating entanglement distribution in a form suitable both for quantum network

architectures and for entanglement-based quantum communication schemes. Specifically, two pairs of remote
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ensembles at two nodes were each prepared in an entangled state”Z, in a heralded and asynchronous fashion'?®,
thanks to the conditional control of the quantum memories. After a signal heralding that the two chains are
prepared in the desired state, the states of the ensembles were coherently transferred to propagating fields
locally at the two nodes. The fields were arranged such that they effectively contained two photons, one at
each node, whose polarizations were entangled. The entanglement between the two nodes was verified by
the violation of a Bell inequality. The effective polarization-entangled state, created with favorable scaling

behavior, was thereby compatible with entanglement-based quantum communication protocols™.

4.2 Conditional control of heralded entanglement and entanglement

distribution

The architecture for our experiment is shown in Fig. f.1] Each quantum node, L (left) and R (right), consists
of two atomic ensembles, U (up) and D (down), or four ensembles altogether, namely (LU, LD) and (RU,
RD), respectively. We first prepared each pair in an entangled state (chapter [3), in which one excitation is
shared coherently, by using a pair of coherent weak write pulses to induce spontaneous Raman transitions
lg) — |e) — |s) (bottom left, Fig. . The Raman fields (1,1 gy) from (LU, RU) were combined at
the 50-50 beamsplitter BSy;, and the resulting fields were directed to single-photon detectors. A photoelectric
detection event in either detector indicated that the two ensembles were prepared. The remote pair of D
ensembles, (LD, RD), was prepared in an analogous fashion.

Conditioned upon the preparation of both ensemble pairs (LU, LD) and (RU, RD), a set of read pulses
was triggered to map the stored atomic excitations into propagating Stokes fields in well-defined spatial modes
through |s) — |e) — |g) with the use of a collective enhancement® (bottom left, Fig. see also chapter
[2). This generated a set of four fields denoted by (27,2 gr) for ensembles (LU, RU) and by (21, p,2rp) for
ensembles (LD, RD). In the ideal case and neglecting higher-order terms, this mapping results in a quantum

state for the fields 2 given by

1 .
|¢2LU72RU72LD72RD> = 7(‘0>2LU|1>2RU:I:e“]U‘1>2LU|O>2RU)U
2

®(|0>2LD |1>2RD + einD |1>2LD ‘0>2RD)D . 4.1

Here, |n), is the n-photon state for mode x, where « € {2.v,2rv, 2D, 28D}, and ny (np) is the relative
phase resulting from the writing and reading processes for the U (D) pair of ensembles?”. The + signs for
the conditional states U, D result from the unitarity of the transformation by the beamsplitters (BSy, BSp).

The extension of Eq. i.T|to incorporate various imperfections is given in sections .8H4.T1]
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Apart from an overall phase, the state |3, can be rewritten as follows

2RU,2LD72RD>

1. . .
|’(/}2LU72RU~,2LD’2RD> = 5[6 ZnD|1>2RU‘1>2RD|vaC>2L + e“]U‘1>2LU|1>2LD|VaC>2R

i(|0>2LU |1>2LD |O>2RD |1>2RU + ei(7lu—7]D)|1>2LU |O>2LD |1>2RD |0>2RU)]7
“4.2)

where |vac)y, denotes |0)s,,,

0)2,,. If only coincidences between both nodes L, R are registered, the first
two terms (i.e., with e ~*72, ¢V do not contribute. Hence, as noted by DLCZ, excluding such cases leads to
an effective density matrix equivalent to the one for a maximally entangled state of the form of the last term
in Eq. [4.2] Notably, the absolute phases 7y and 7p do not need to be independently stabilized. Only the
relative phase 7 = 1y — np must be kept constant, leading to 1/2 unit of entanglement for two quantum bits

(i.e., 1/2 ebit).

4.2.1 Real-time control of entanglement, phase stability, and polarization encoding

The experimental demonstration of this architecture for implementing the DLCZ protocol relies critically
on the ability to carry out efficient parallel preparation of the (LU, RU) and (LD, RD) ensemble pairs, as
well as the ability to stabilize the relative phase 7. The first requirement is achieved by the use of real-time
control, as described in ref.” in a simpler case. As shown in Fig. here we implemented a control logic
that monitors the outputs of field 1 detectorsff] A detection event at either pair triggers electro-optic intensity
modulators (IM) that gate off all laser pulses traveling toward the corresponding pair of ensembles, thereby
storing the associated state. Upon receipt of signals heralding that the two pairs of ensembles (LU, RU) and
(LD, RD) have both been independently prepared, the control logic triggers the retrieval of the stored states
by simultaneously sending a strong read pulse into each of the four ensembles. Relative to the case where
no logic is implemented, this process resulted in a 19-fold enhancement in the probability of generating this
overall state from the four ensembles.

The second requirement, for stability of the relative phase 7, could be accomplished by active stabilization
of each individual phase 7, np, as in ref.%. Instead of implementing this challenging technical task (which
ultimately would have to be extended across longer chains of ensembles), our setup exploits the passive
stability between two independent polarizations propagating in a single interferometer to prepare the two
ensemble pairs. No active phase stabilization is thus required. In practice, we found that the passive stability
of our system was sufficient for operation overnight without adjustment. Additionally, we implemented a
procedure that deterministically sets the relative phase 7 to zero.

We also extend the original DLCZ protocol (Fig. by combining fields (2.7, 21,p) and 2ry, 2rD)
with orthogonal polarizations on polarizing beamsplitters PBS, and PBSg, to yield fields 2;, and 2y, respec-
tively. The polarization encoding opens the possibility of performing additional entanglement purification

1221203

and thus leads to superior scalability . In the ideal case, the resulting state would now be effectively

aSee the appendix of James Chou’s thesis for the circuit design'L.
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Figure 4.2: Temporal growth of the suppression hg?). Suppression hg?) of the probabilities for each en-
semble to emit two photons compared to the product of the probabilities that only one photon is emitted, as
a function of the duration 7, that the state is stored before retrieval. The solid line gives a fit for the U pair.
Error bars indicate statistical errors.

equivalent to a maximally entangled state for the polarization of two photons
|03, o )eit < |Ha, ) |Vag) £ €|Va, )| Hap) (4.3)

where |H) (|V)) stands for the state of a single photon with horizontal (vertical) polarization. The sign + of
the superposition in Eq. [.3]is inherited from Eq. [4.1] and is determined by the particular pair of heralding
signals recorded by (D1,,D1p) and (D1.,D14). The entanglement in the polarization basis is well-suited for

4121

entanglement-based quantum cryptography“<", including the security verification by way of the violation of

a Bell inequality, as well as for quantum teleportation.

4.3 Characterization of /(2

As a first step to investigate the joint states of the atomic ensembles, we recorded photoelectric count-
ing events for the ensemble pairs (LU, RU) and (LD, RD) by setting the angles for the half-wave plates
(A/2)r,r shown in Fig. to 0°, such that photons reaching detectors Doj, and Doy (D2, and Do) come
only from the ensemble pair U (D). Conditioned upon detection events at Dy, or D1 (D1, or D14), we
estimated the probability that each ensemble pair U, D contains only a single, shared excitation as compared
to the probability for two excitations by way of the associated photoelectric statistics. In quantitative terms,

we determine the ratio”
h(2) PXx,11
X )
Px,10Px,01

4.4)
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where px ., are the probabilities to register m photodetection events in mode 27, x and n events in mode
2rx (X = {U, D}), conditioned on a detection event at D;.

A necessary condition for the two ensembles (LX, RX) to be entangled is that hg?) < 1, where hg?) =1
corresponds to the case of independent (unentangled) coherent states for the two fields*”. Fig. shows the
measured hg?) versus the duration 7y, (where M stands for memory) that the state is stored before retrieval.
For both U and D pairs, h(?) remains well below unity for storage times 75, < 10 ps. For the U pair, the
solid line in Fig. provides a fit by the simple expression h(?) = 1 — Aexp (—=(7a/70)?). The fit gives
A =0.9440.01 and 79 = 22 + 2 pus, providing an estimate of a coherence time for our system. A principal
cause for decoherence is an inhomogeneous broadening of the ground state levels by residual magnetic fields

(ref. 147, chapter . The characterization of the time dependence of h(?) constitutes an important benchmark

of our system.

4.4 Measurement of correlation function

We next measure the correlation function F(6r,, 0r), defined by

Cac+ Cpg — Coq — Che
E0r,0p) = . 4.5
0L, 0r) = & G & Coa & o )

Here, Cj; gives the rates of coincidences between detectors Do ; and Doy, for fields 2, where 7,k € {a,b,c,d},
conditioned upon heralding events at detectors D1,, D1y and D1, D14 from fields 1. The angles of the two
half-wave plates (\/2), g are set at §7,/2 and 0r/2, respectively. As stated before, the capability to store
the state heralded in one pair of ensembles and then to wait for the other pair to be prepared significantly
improves the various coincidence rates C'j;, by a factor that increases with the duration 75/ that a state can be
preserved (section 4. 11).

Fig. 43| displays the correlation function E as a function of 0, for a, §;, = 0° and for b, 45°. Relative
to Fig. [4.2] these data are taken with increased excitation probability (higher write power) to validate the
phase stability of the system, which is evidently good. Moreover, these four-fold coincidence fringes in Fig.
provide a further verification that predominantly one excitation is shared between a pair of ensembles.
The analysis provided in sectionwith the measured cumulative h(?) parameter for this set of data, h(?) =
0.12+ 0.02, predicts a visibility of V' = 78 + 3% in good agreement with the experimentally determined
V = 75%. Finally, the fact that one of the fringes is inverted with respect to the other in Fig. corresponds
to the two possible signs in Eq. As for 0, = 45° the measurement is sensitive to the square of the
overlap \ of photon wavepackets for fields 2 p, we infer Ay p =~ 0.85 from the reduced fringe visibility
(V = 55%) in Fig. relative to Fig. , if all the reduction is attributed to a non-ideal overlap. An
independent experiment for two-photon Hong-Ou-Mandel interference'*” in this setup has shown an overlap

of X ~ 0.90, confirming that the reduction can be principally attributed to the non-ideal overlap (section
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Figure 4.3: Measured correlation function £ (0, 0r) as a function of 0 with 0, fixed at a, 0° and b,
45°. The excitation probabilities for the ensembles are increased by ~ 1.5 times relative to Fig. [{.2] with
each point taken for 30 minutes at typically 400/hour coincidence rate for each fringe. Error bars indicate
statistical errors.

[.9). Other possible causes include imperfect phase alignment 1 % 0 and imbalance of the effective state

coefficients.

4.5 Violation of Bell inequality

With the measurements from Figs. and [#.3]in hand, we verify entanglement unambiguously by way of
the violation of a Bell inequality?!®. For this purpose, we choose the canonical values, #;, = {0°,45°} and

0r = {22.5°,—22.5°}, and construct the CHSH parameters

S, = |E(0°,22.5%) + E(0°, —22.5°)

+E(45°,-22.5°) — E(45°,22.5°)| (4.6)
S_ = |E(0°,22.5°) + E(0°, —22.5°)

+E(45°,22.5%) — E(45°, —22.5°)| (4.7)

for the two effective states |w§EL72R>eff in Eq. For local, realistic hidden variable theories, S < 2212
Fig. [4.4)shows the CHSH parameters S as functions of the duration 75, up to which one pair of ensembles
holds the prepared state, in the excitation regime of Fig. f.2] As shown in section i8] the requirements for
minimization of higher-order terms are much more stringent in this experiment with four ensembles than with
simpler configurations?2,

Fig. f.4p and b give the results for our measurements of S with binned data. Each point corresponds
to the violation obtained for states generated at 7y + A7y, /2 (with the bin size A7y, marked by the thick

horizontal lines). Strong violations of the inequality S+ < 2 are obtained for short memory times, with

for instance S; = 2.55 £ 0.14 > 2 and S_ = 2.61 £ 0.13 > 2 for the second bin, demonstrating the
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Figure 4.4: Measured CHSH parameters and the violation of Bell inequality. We measured the CHSH
parameters S, for the two possible effective states in Eq. 3] as functions of duration 75, for which the first
ensemble pair holds the prepared state. The excitation probabilities are kept low for high correlation (as in
Fig. 4.2). Panels a and b are the binned data. The horizontal thick lines indicate the size of the bins used.
Panels ¢ and d are the cumulative data. The coincidence rate for these measurements is about 150/hour for
each effective state. Error bars indicate statistical errors.
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presence of entanglement between the fields 2;, and 2, as well as between the two quantum nodes L and R.
Therefore, these fields can be exploited to perform entanglement-based quantum communication protocols,
such as quantum key distribution with, at minimum, security against individual attacks*22Y,

As it can be seen in Fig. f.4] the violation decreases with increasing 7. The decay is largely due to the
time-varying behavior of h(?) in Fig. In addition to this decay, the S parameter exhibits modulation with
7. We have explored different models to understand the time dependence of the CHSH parameters, but so far
we have not found satisfactory agreement between model calculations and measurements. Nevertheless, the
density matrix for the ensemble over the full memory time is potentially useful for tasks such as entanglement
connection, as shown by panels Fig. and d where cumulative data are given. Each point at memory

time 77 gives the violation obtained by taking into account all the states generated from 0 to 7;,. Overall

significant violations are obtained, namely Sy = 2.21 +0.04 > 2 and S_ = 2.24 +0.04 > 2 at 7ay ~ 10

1s.

4.6 Conclusion

In our experiment, we are able to generate excitation-number entangled states between remote locations,
which are well suited for scaling purposes, and, with real-time control, to operate them as if they were
effectively polarization entangled states, which are appropriate for quantum communication applications,
such as quantum cryptography. Measurements of the suppression h(?) of two-excitation components versus
storage time demonstrates explicitly the major source that causes the extracted polarization entanglement
to decay, emphasizing the critical role of multi-excitation events in the experiments aiming for a scalable
quantum network. The present scheme, which constitutes a functional segment of a quantum repeater in terms
of quantum state encoding and channel control, allows the distribution of entanglement between two quantum
nodes. But the extension of our work to longer chains involving many segments becomes more complicated,
and out of reach for any current system. For long-distance communication, the first quantity to improve is
the coherence time of the memory. Better cancellation of the residual magnetic fields and switching to new

trap schemes should improve this parameter to ~ 0.1 sec by employing an optical trap'4’

, thereby increasing
the rate of preparing the ensembles in the state of Eq. to ~ 100 Hz. The second challenge which would
immediately appear in an extended chain would be the increase of the multi-excitation probability with the
connection stages. Recently, ref.!%% has theoretically demonstrated the prevention of such growth in a similar
setup, but its full scalability still requires very high retrieval and detection efficiency, and photon-number
resolving detectors. These two points clearly show that the quest of scalable quantum networks is still a

theoretical and experimental challenge. The availability of our first functional segment opens the way for

fruitful investigations.



70

4.7 Experimental details

Ensembles (LU, LD) are pencil-shaped groups of cold Cesium atoms released from a magneto-optical trap
(MOT), while ensembles (RU, RD) are prepared from another MOT, 3 meters away. {|g), |s),|e)} corre-
spond to the hyperfine levels {[65 )2, F' = 4),(6S} /2, F' = 3), [6P5 5, F" = 4)}, respectively. In each MOT,
the ensembles U, D are separated by 1 mm by way of birefringent beam displacers (chapter [3). The MOT
is formed at a repetition rate of 40 Hz in a steady-state regime (with MOT loading time of ~ 6 s.). In each
cycle, the MOT is loaded for 18 ms, after which the magnetic field is quickly switched off. The trapping
beams are turned off 3 ms after the magnetic field, while the repumping beam stays on for another 100 us
before being switched off in order to prepare the atoms in the F' = 4 ground state |g). 3.4 ms after the
magnetic field is turned off, trials of the protocol (each consisting of successive write, read, and repumping
pulses) are repeated with 575 ns period for 3.4 ms. In each trial, the write pulse is ~ 30 ns in duration and
10 MHz red-detuned from the |g) — |e) transition. The read and the repumping pulses are both derived from
the read beam (resonant with the |s) — |e) transition) with 30 ns and 75 ns duration, respectively. The read
pulse is closely followed by the repumping pulse. The read pulse is delayed ~ 400 ns after the write pulse,
leaving time for the control logic to gate it off, along with the subsequent pulses. Independent phase stability
measurements show that the phase 7 between the two ensembles drifts in a negligible way, (7/30) over 500

ws corresponding to 870 trials. Some other parameters of the experiments are calibrated and listed in Table

41l

Table 4.1: Noise and efficiencies. The intrinsic retrieval efficiency for mapping single collective excitations
to single photons is ny = 18 + 3% (np = 23 + 3%) for the U (D) ensembles.

U D
Field 1 dark count rate ~ 10 Hz ~ 10 Hz
Field 2 dark count rate ~ 100 Hz ~ 100 Hz
Conditional detection efficiency p. ~ 6.4% +0.5%  8.0% £ 0.5%
Field 2 propagation efficiency 68 £ 5% 68 + 5%
Field 2 detector quantum efficiency 50 £ 5% 50 £ 5%

4.8 Fringe visibility as a function of 1(?)

Let us consider that the two pairs of ensembles, U and D, have been prepared by heralded detections at
D14, D1y and Dy, D14. Denote by p1g, po1, and py; the probability p;; to register ¢ photodetection events
in field 27,7 and j in field 2gy; after firing the read pulses. We will assume, for simplicity, the various p;; are
the same for both pairs of ensembles. For each of them, the suppression of the two-photon events relative to

the square of the probability for single-photon events is characterized by the parameter ~1(?) (ref.27),

h® = P 4.8)
P1oPo1
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We next relate h(?) to the maximal Cpyy, and minimal Cyy, coincidence probabilities between various
output ports of the detection polarizing beamsplitters (PBS) for the left and right nodes at detectors Dy, , Doy,
and Dy, Doy (see Fig. @ Consider, for example, the transmitted ports of the PBS at the L, R detectors
for the case that the left node has the half-wave plate (A/2), set to 0°. In this case, fields 2., and 27, are
detected independently, with field 27, p transmitted at the PBS. On one hand, C',,x is obtained for crossed
polarizers (i.e., (A\/2)r set to 45° at the right node, with then field 2y transmitted) and is given to lowest
order by

Cinax = P10P01- (4.9)

This term corresponds to the case where only a single excitation is distributed in each pair, and each retrieved
photon is detected from a transmitted port on each side L, R.
On the other hand, the minimum coincidence probability Cy,;, is obtained for parallel polarizers (i.e.,

(%) r = 0° at the right node, with then field 2 p transmitted) and can be written as
Chin = P11 4.10)

This term corresponds to coincidences due to photons coming from the same pair of ensembles. The smaller
is the excitation probability, the smaller is this background term.
Taking Eqs. and into account, we find that the visibility V' for the number of coincidences as a
function of the right polarizer angle (i.e., the angle for (%) R) is given by
C'max - C’min 1- h(2)

V= = ) 4.11
Crax + Cmin 1+ 13 @10

Assuming that the visibility is the same in each basis, we then find a CHSH parameter S (ref.*2!) equal to

1—h®

S:2\/§V:2\/§m. (4.12)

A minimal value h[(flfl = (.17 is thus required to violate the CHSH inequality S < 2 in the absence of any
imperfections except the intrinsic two-photon component. This value underlines that this experiment is much
more stringent in terms of minimization of high-order terms than previously reported setups. For example,
in ref.22 where entanglement between a photon and a stored excitation is reported, a value of 2(?) equal to
0.68 was sufficient to violate the inequality. The dramatic improvement reported recently by different groups
for the quality of the photon pairs emitted by an atomic ensemble was thus an enabling step for the practical

realization of such a more elaborate procedure involving a total of 4 ensembles reported in section {.3]



72
4.9 Two-photon interference and inferred overlaps

For a non-unity overlap X of the field-2 photon wavepackets, the visibility of the fringes in the 45° basis is de-
creased by a factor 3. This overlap can be determined by the two-photon interference, which is implemented
by mixing the fields 2¢; and 2, on each side (R and L) by rotating the half-wave plates (A\/2)r,, (A\/2)r by
22.5°. If the single photon wavepackets are indistinguishable, no coincidences should be observed. How-
ever, the two-photon component can lead to coincidences, which reduce the visibility. Let us determine the
expected visibility as a function of the two-photon component by way of a simple model.

Consider P, the probability of finding n photons in field 2, and assume the various P, are the same for
both ensembles involved. In the ideal case where all ensembles have the same properties, the two-photon
suppression for each field 2 can also be characterized by the same h(?) parameter used before, which can be

written here as
2P,

=2
Py

(4.13)

When the half-wave plates (A\/2)r, (\/2)g are at 0°, the fields 2 are detected independently and the

probability pnax to register coincidences is given by
Pmax = Pr. (4.14)

When the half-wave plates (A\/2)r,, (\/2)r are rotated to 22.5°, if the two fields overlap perfectly, the
term with one photon in each input does not lead to coincidences. If we denote by \ the overlap, the proba-

bility pmin to have one photon in each output is then

(1-X)

2

P P _
P12+?2+?2:[1—)\2+h(2)]

i

5 (4.15)

Pmin =

From these two probabilities, we find that the visibility of the dip in coincidences can be written as

1+ X —h®

Pmax — Pmin
Vaip = =
® Prmax 2

(4.16)

In our case, the measured Hong-Ou-Mandel visibility Vg, is 85+ 2% for the left node and 89 +2% for the
right one. The measured average h(?) parameter for this set of data is 0.09 + 0.01, which leads to visibilities
Vinodel = 95.5 & 0.5% in the case of perfect overlap (A = 1). From the measured visibilities and this simple
model, we then estimate the overlaps, A = 0.89 4 0.03 for the left node and A = 0.93 % 0.03 for the right

node.



73

0 5 10
Ty (HS)

Figure 4.5: Conditional probability as a function of the storage time. Conditional probability p,. of de-
tecting one photon in a field 2 for the U (black squares) and D (red circles) pairs, as a function of the storage
time 7)s. The error bars indicate statistical errors. The solid lines are fits using Eq.

4.10 Decoherence time of the stored excitation

Residual magnetic fields, which lead to inhomogeneous broadening of the ground states levels, is the major

147202 chapter[3). Consequently, if we

limiting factor of the coherence time 7. of the stored excitation (refs.
neglect dark counts, the conditional retrieval efficiency p. = pg1 + p1o is expected to decay exponentially
with the storage time 7,7

_
pe = pO exp(——L). (4.17)

Fig. shows an independent measurement of p. vs. Tas, with the U and D pairs separated. Fitting the data
with Eq. gives, for the U and D pairs, respectively, we obtain p£°) =7.0% £ 0.1% and 8.7% =+ 0.2%,
and 7. = 9.1 £ 0.6us and 8.5 = 0.5us.

The decay of p. leads to a similar exponential decay of C;;. Cj; (4,5 = a,b, c,d) are the coincidence
count rates of two field 2 photons conditioned on the two heralding field 1 photons defined before. Summing
over all C;; used in calculating S, we obtain the total coincidence count rates C's+ for the measurement of
the Bell parameters S and S_. Cs+ (7)) corresponds to the probability distribution of the Sy (7)), and is
reflected in the statistical error bars ASL (7). The decay of C's1 with 75 is shown in Fig. Fitting the

data with exponential functions,

Cst = C exp(—ar/7s), 71 >0, (4.18)
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gives 7, = 9.14+0.4pus and 7— = 8.1+0.3us, in good agreement with 7.. Note that C’gﬁ =2Cg+(tp =0),
since C's+ (7 = 0) is conditioned on two excitation in a same trial, while Cs4 (7 > 0) is conditioned on two
excitations created in two different trials: the factor of 2 accounts for the two possible orders of excitations

(‘U’ then ‘D, or ‘D’ then ‘U”).

a b
16 ——r———— 16 ————
141 ] 141 ]
121 ] 121 §
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Figure 4.6: 7),-dependence of the total conditional count rates C's in the measurement of a, S, and b,
S_. The horizontal thick lines indicate the size of the memory bin. The error bars indicate statistical errors.
The solid lines are fits using Eq.

4.11 Conditional control and increase in generation rate

As demonstrated in ref.”®, the conditional control of remote quantum memories enables a large enhancement
of coincidence rates relative to the case where no control logic is implemented. I refer to James’ thesisZ! for
the details of the logic circuit implemented in this and former experiments. If the state prepared in one pair
of ensembles is held up to N trials, the rate for preparing both pairs is increased by a factor (2N + 1) for
very low excitation probability”®. Fig. [4.7p gives the probability p;; of simultaneously preparing the two
pairs. After 17 trials, an increase by a factor 34 is obtained experimentally, close to the expected value of
35. The gain in the probability p;;22 of generating the effective entangled state is expected to be the same
if the coherence time 7, is long enough. However, our finite coherence time results in a smaller increase
of the probability to detect field 2 coincidences. This increase is given in Fig. .7, with a comparison to
the ideal case of very long coherence time. A 19-fold enhancement is finally obtained. Let us note that the
different experimental rates can be obtained from these probabilities times the number of trials per second

(~2.36 x 10°/s).
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Figure 4.7: Conditional enhancement. Probabilities of coincidence detection as functions of the number of
trials NV for which the first prepared pair holds the entangled state. a, Measured probability p;; of preparing
the two pairs. b, Measured probability p;122 of detecting field 2 coincidences. The green solid line corre-
sponds to the ideal case of very long coherence time. Both panels give in addition to these probabilities the
enhancement factor obtained relative to the case without conditional control.

4.12 Correlation functions F(0°,0r), F(45°, 0p) for the ideal effective

state

In practice, various imperfections lead to deviations from the ideal effective state in Eq. [4.2] We have
developed a detailed model relevant to our experiment based on the two-mode squeezed states in chapter[2]
but here we will consider only a generic form. Collective excitations are not shared with equal amplitudes
between a pair of ensembles because of imperfections in the writing and heralding processes. Likewise,
the mapping of atomic states to states of field 2 by the read pulses is not ideal. Overall, these various

imperfections lead to a state |92, , 21,2, .25, for field 2 given by (neglecting multi-photon processes),

|¥200,2r0,200,2r0) = <€RU|02LU>|12RU>iei"UéLU\12w>\02Ru>)
®(€RD|02LD>|12RD> + 6””’6LD|12LD>|02RD>)
= €ru€ern|02.0)|02.5) 1250 ) 1220)
+e e eperp|layy )12, p) 02,0 )02,
e epperv|la,y )02, ) 0250 ) 1250

ieinDeRUeLD|02LU>|12LD>|12RU>|02RD> s (4.19)

where €y is the probability amplitude that a photon is created in field 2x. The first and second terms in
the expansion correspond to the cases that the two excitations are both retrieved at node ‘right’ and ‘left’,
respectively. Thus, the effective state that yields one detection event at node ‘left’ and the other at node ‘right’

consists of the last two terms. After the fields are combined by PBS, and PBSg, we get the (unnormalized)



effective state of fields 27, and 2
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|¢2L,2R>eff:OK‘HQLV2R>iB|V2LH2R> ’ (420)

where o o e""Pepperp and S o € epper.

From the effective state |19 L72R>eﬂ»‘, we can derive the various coincidence probabilities F;j, 4,7 €

{a,b,c,d}, where {a,b,c,d} refers to the detectors Dy, 5. gy for field 2 in Fig. When 6, is fixed

at 0°, we find (assuming unity detection efficiency)

E(0°,

irrespective of the =+ sign.

P
Py
P
Py

Or)

= |al?*sin®0g
= |B|%sin*R
= |al*cos?0r
= |B|%cos?0p
X Pae + Pyg — Pyg — Pye = —cos(20Rr)

4.21)

By contrast, when 6, is fixed at 45°, we obtain

Pac

1
Z[l + 2|a|| 5] cosg cos(90° — 20R)

+ (B8] = |of?) sin(90° — 20R)],

where ¢ = arg(8) — arg(«). Let &« = cosip, and 3 = sinp. Denoting § = 45° — g, we have

P(I/C
Pyg
Pad

Pbc

E(45°,60R)

i[l + |sin2¢p| cos¢ cos2d — cos2¢p sin24]
i[l + |sin2¢| cos¢ cos2d + cos2¢p sin24]
i[l F |sin2¢p| cos¢ cos2d + cos2¢p sin24]
i[l F |sin2¢| cosg cos2d — cos2¢p sin26]

Pue + Pog — Pog — Py = *£|sin2¢p| cosg cos20. (4.22)

From the expression for F/(45°, ), we see that the deviation of || and | 3| from the balanced value, 1/+/2,

will lead to reduction in the visibility of E'(45°, §) fringes and thus the magnitudes of the CHSH parameters
S(+). We believe that such an imbalance is responsible for the results displayed in Fig. for E(45°,0R)

and Fig. P'Ztl for Sy at 7py = 0, with measurements underway to quantify this association.



77

Note that an alternative combination of P;; gives

F(45°,0r) = —Pac+ Pog+ Pog— Poc

= cos2¢p sin24. (4.23)

In particular, F'(45°,6g) allows us to determine ¢ and thus the magnitude of the coefficients o and 3,
independent of ¢. Specifically, the visibility of the F'(45°,0g) fringes normalized to that of F(0°,0g)’s
fringes yields cos2¢p.
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Chapter 5

Experimental transfer of ‘coherence’:
Towards entanglement connection

This chapter is largely based on ref.?”. Reference*’ refers to the then current literature in 2007 at the time of

publication.

5.1 Introduction

The distribution of entanglement between different parties enables the realization of various quantum com-

362 gee also

munication protocols, such as quantum cryptography, dense coding, and teleportation (refs.
chapter [T). Such distribution relies on entanglement swapping, namely the teleportation of entanglement,
which aims at entangling two distant systems which never interacted in the past. Important aspects of this
striking feature have already been demonstrated with independent sources of entangled light. In the discrete
variable regime, one can generate two independent pairs of polarization entangled beams and subject a super-
position of two of the beams to a Bell-state analyzef] The two remaining beams are then projected into an
entangled state?22. More recently, unconditional entanglement swapping has been achieved for continuous
quantum variables of light 223224

However, to enable quantum communication over arbitrary long distances, entanglement needs to be
stored in matter systems. In the quantum repeater architecture”, entanglement is distributed by swapping
through a chain of spatially separated entangled pairs of memories, leading to the possibility of scalable
long-distance communication (see Fig. [5.1). Connecting entangled matter systems is thus a critical require-
ment for the practical realization of quantum networks (chapter [[). Along this line, generation of entangle-
ment between atomic systems has been reported, including entanglement of the discrete internal states of
two trapped ions?2, long-lived entanglement of macroscopic quantum spins®® and, heralded entanglement

27134

between atomic ensembles in the single excitation regime (refs. , chapter . However, no entanglement

#Note that an entanglement swapping scheme with linear optics is inherently probabilistic (with success probability 50%), because
it cannot distinguish the two among the four Bell states’*22 (except for the case of continuous variable entangled states2322%) Strong
nonlinearity is physically required to achieve a quantum gate, which allows for distinguishing all four possible Bell-state projections.
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Figure 5.1: A generic scheme for a bipartite quantum repeater architecture®. a, Entanglement generation
and storage. To link two quantum nodes with distance L, we first divide the (long-distance) communication
channel into shorter segments (each with length of Ly and negligible optical attenuation), and generate a linear
chain of entangled states in quantum memories (dots). b, Entanglement purification. By preparing parallel
chains of entangled states in a, we probabilistically purify the entangled states with low fidelity ' < 1 into
a single chain comprised of high-fidelity (' ~ 1) entangled states. ¢, Entanglement connection. Finally, we
sequentially connect the entangled state by entanglement swapping, and eventually prepare a high-fidelity
entanglement between the two quantum nodes over a long distance L.

connection has been demonstrated so far with such matter systems. In this chapter, I describe our work
towards entanglement connection of atomic ensembles and demonstrate for the first time the transfer of co-
herence between two atomic ensembles which never interacted=’.

This chapter is organized as follows. In section I will give a brief overview of our matter building
block, namely an atomic ensemble in the regime of single collective excitation. In section[5.3] I discuss the
principles of measurement-induced entanglement between excitation from two remote atomic ensembles, and
connection of two pairs. The theoretical model developed in chapter [3|to verify experimentally entanglement
is summarized?”*%, and used to give insights into the connection process. The experimental setup is finally
presented in section[5.4] together with the experimental results. Finally, I will conclude with our perspectives

on realizing entanglement connection experimentally in section[5.5]

5.2 Atomic ensemble in the single-excitation regime

In 2001, Duan, Lukin, Cirac and Zoller (DLCZ) proposed an original approach to perform scalable long-
distance quantum communications, involving atomic ensembles, linear optics and single photon detectors®.
The building block is a large ensemble of N identical atoms with a A-type level configuration, as shown in
Fig. A weak light pulse, called write pulse, with frequency close to the |g) — |e) transition, illuminates
the atoms and induces spontaneous Raman scattering into a photonic mode called field 1. For a low enough
write power, such that two excitations are unlikely to occur, the detection of a field 1 photon heralds the
storage of a single collective excitation distributed among the whole ensemble. As discussed in chapter 2] the

joint state of the atoms and field 1 is a two-mode squeezed state,

(W) = 10a)[01) + VX[ 1a)[11) + O(x), (5.1
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Figure 5.2: DLCZ building block in a counter-propagating and off-axis configuration. The inset shows
the relevant atomic levels for the 651/, — 6P3/; transition in cesium, as well as the associated light fields.
The ensemble is initially prepared in |g). A weak write pulse then induces spontaneous Raman transitions
lg) — |e) — |s), resulting with small probability in the emission of a photon (field 1, detected inside a single
mode fiber with at a small angle to the write beam) along with the storage of a collective excitation. After a
programmable delay, a strong read pulse then maps the state of the atoms to another photonic mode, field 2,
via |s) — |e) — |g).

where |nq) stands for the state of the field 1 with n photons and  corresponds to the small probability of a
single photon scattered into field 1 by the atoms illuminated by the write pulse. We define |0,) = ®fv l9)i

and |1,) denotes a symmetric collective excitation, with

N
1) = \/%;mn o IsYie- o). (5.2)

A read pulse, on resonance with the |s) — |e) transition, can later, after a programmable delay, transfer

1471226

this atomic excitation into another photonic mode, field 2, with collective enhancement (refs. , chapter

Q). After the readout, the resultant state of the fields 1 and 2 is ideally

[®) = 101)[02) + v/X|11)[12) + O(x).

The two photonic modes, fields 1 and 2, contain quantum correlations”?, precisely as in the case of
parametric down-conversion (chapter [2). The lower is the excitation probability xy — 0, the better is the
approximation of the non-vacuum part by a photon pair, at the price of reduced count rates.

The optically thick atomic ensemble is obtained from cold cesium atoms in a magneto-optical trap (MOT).
At a frequency of 40 Hz, the magnetic field is switched off for 7 ms. After waiting about 3 ms for the magnetic
field to decay, sequences of writing, reading, and repumping processes are carried out for about 4 ms, with
a period of 575 ns. The weak write pulses, with a 200 um beam waist and linear polarization, are detuned
10 MHz below resonance. The read pulse is orthogonally polarized to the write pulse and mode-matched
to it in a counter-propagating configuration. Both write and read pulses are 30 ns long. Fields 1 and 2 are
collected into mode-matched fibers with a 3° angle relative to the common direction defined by write and

read beams”?, and with a waist of 50 zzm defined by the backward projection of our imaging system into the
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sample (chapter 2)). Before detection, field 1 passes through a filtering stage in order to filter out the photons
that are spontaneously emitted when the atoms in the sample go back to |g), without creating the desired
collective excitation.

Three parameters well characterize the system experimentally: (i) how well the system is in the single
excitation regime, (ii) how efficient is the retrieval of a single excitation, and (iii) how long the excitation can
be stored before retrieval while preserving its coherence. The first parameter is determined by a measurement
of the suppression of the two-photon component of the field 2 obtained from the retrieval of the excitatioxﬂ
Suppression below 1% of the value for a coherent state has been reported in our system”®. The ability to
efficiently retrieve the excitation is also critical. The probability to have a photon in field 2 in a single spatial
mode at the output of the atomic ensemble once an event has been recorded for field 1 can be as high as
50%, leading to a probability around 12.5 % for having a detection event’®. Last but not least, the writing
and retrieval processes can be separated by a programmable delay. As this delay is increased, the above two
quantities (two-photon suppression and retrieval efficiency) decay in a typical time scale around 10 to 20
us. The principal causes for this finite coherence time are the residual magnetic field that inhomogeneously
broadens the ground state levels of the atomic samples, as well as the motional decoherence (chapter [2)).

Detailed theoretical and experimental studies of the decoherence have been reported in refs. 2078147202 (gee

chapters [3H4).

5.3 Measurement-induced entanglement and connection of atomic en-

sembles

Starting from this building block, DLCZ proposed in their seminal paper to generate and store entangle-
ment for excitation in two remote ensembles and then to connect two pairs. This section presents these
measurement-induced schemes, which rely on quantum interference in the detection of a photon emitted by
one of the ensembles. After establishing entanglement, directly or via connection, a difficult experimental

task is to prove the entanglement' 1. A robust model developed in ref.*” (see also Chapter is then presented.

5.3.1 Entanglement between two ensembles

Let us consider now two atomic ensembles, for which fields 1 are superposed on a 50/50 beamsplitter, in an
indistinguishable way, with the outputs directed towards two single-photon detectors (Fig. [5.3). The detection
of a field 1 photon from either of the two ensembles results in an entangled state with one excitation shared

coherently between the two ensembles. In more details, after two write pulses are sent into the two ensembles

P11
PiopPo1

ensembles. Note that there is analogous parameter, w = 2:% (sometimes, denoted by g@ (7)), which quantifies the suppression of

In chapters ﬂ we have used the parameter h = to quantify the higher-order excitation for the joint state of the two

1
higher-order excitation for a single ensemble (or a single beam of light) relative to that of a coherent state (w = 1).
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Figure 5.3: Setups for entanglement generation between two atomic ensembles and entanglement con-
nection between two pairs. In both cases, the entanglement results from the interference of photonic modes
at a 50/50 beamsplitter, with outputs directed towards single-photon detectors. The photonic modes consist
in a, field 1 modes from both ensembles or b, field 2 modes after reading of one ensemble of each pair.

simultaneously, the scattered fields 1 and ensembles are in the product state,

WrR) o [10a)|01) + €5\ /xX[1a)|11) + O(X)]L
®[10a)101) + "7 \/X|1a)[11) + O(X)] &- (5.3)

Here, Sr and B, correspond to overall propagation phases determined by the write pulses. Detection of a
photon in either detector then projects the state of the ensembles as follows, in the ideal case where higher-

order terms are neglected,

, 1 Z.
PLr = TflLlﬁ[P(ﬁ(alLieoalR)|\1’LR>)]
= |‘I’LR><"I’LR|
, 1 .
with Y = —(|0)Ll11a)Rr £ €1,) L]0, . 54
V1 R) \/5(\ )Llla) R 11a)20a) R) (5.4)

Here, p(|¥)) = |¥)(¥|, Tr1,1,, stands for tracing over the states of fields 1, and 1g, a1, and a;, are the an-
nihilation operators associated with fields 1, and 1, 8 = 0 — 0, the difference phase shift between the two
field 1 paths from the ensemble to the beamsplitter, and finally the overall phase n = (8, — Br) + (01, — ORr).
This phase 7 is the sum of the phase difference of the write beams at the L and R ensembles and the phase dif-
ference acquired by fields 1 in propagation from the ensembles to the beamsplitter. To achieve entanglement,

this phase has to be kept constant (ref. 11, chapterEI). In order to meet this stringent and challenging require-
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ment in the initial demonstration reported in?Z, the different phases have been independently controlled and
actively stabilized by using auxiliary fields. Finally, the + sign in Eq. comes from the 7 phase difference
between the two outputs of a beamsplitter: depending on which detector records the heralding event, two

different entangled states are generated, and stored for subsequent utilization.

5.3.2 Entanglement connection

When two pairs of atomic ensembles are prepared in such an entangled state (Fig. [5.3)), one can connect the
pairs by sending strong read pulses into one ensemble of each pair. The fields 2 resulting from this readout
are then brought to interference at a 50/50 beamsplitter. Again, a single click on either detector prepares the
remaining ensembles in an entangled state®,

After independent preparation of entanglement for the pairs {L, 1} and {R, I2} and perfect reading
of the states of the ensembles /1 and I2, the joint state of the fields 2 and the ensembles can be written,

neglecting higher-order terms,

1 )
|\IIL7R7211,212> = §[|O>212 |1G>R + eZCRJz |1>212 |OG>R)]

®[|0)2,, [La) L £ €511 [1)2,, |04) )] (5.5)

where the phases resulting from the entanglement generation and the readout process are given by (; 1; =
(B1j — Bi) + (015 — 0;) + 614, with & ; the phase of the read beam at the Ij ensemble. Fields 277 and 275 are
then mixed on a 50/50 beamsplitter, and detection of a photon in either detector projects the remaining two

ensembles L and R into

+ 1 i
p(LR) = Tr211212 [p(ﬁ<a211 te ’ya212)|\I]L-,R-,2117212>)]
(5.6)
which can be written as
+ 1 1+ +
pin = 5000+ IR (@
with [@00) = 10)2]1) R £ €[1).]0) R (5.7

where £ = (r 2 — (r,r1 + 7. This overall phase is the sum of the phase difference for entanglement
generation for each pair, the phase difference between the two read beams up to the two ensembles and the
phase difference of the generated fields 2 from the ensembles to the beamsplitter.

The vacuum part comes from the probability of reading the two excitations at the same time, leaving
no remaining excitation in the system. In the ideal case, the connection succeeds 50% of the time. Let us

underline also that, significantly, the absolute phases do not necessarily need to be stabilized to succeed in
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Figure 5.4: Procedure for verifying entanglement between two atomic ensembles. The atomic state is
mapped to photonic modes via simultaneous strong read pulses and quantum tomography of the generated
fields 2 is performed. For this purpose, fields 2 are detected independently (diagonal elements) or in a 50/50
beamsplitter configuration where the phase of one of the paths is scanned (coherence term).

the connection. Only the overall phase £ must be kept constant. This feature is exploited in the proposed
experimental setup, where passive stability is found to be enough to meet this requirement.

The generated state given by Eq. is what DLCZ called an “effective maximally-entangled state”
(EME) as any state of this form would be purified to a maximally entangled state in the proposed entanglement-
based communication scheme®. The vacuum coefficient only influences the success probability, but not the

overall fidelity of the long-distance communication. This important feature is known as “built-in purification.”

5.3.3 Experimental verification of entanglement

To experimentally verify the entanglement between the two atomic ensembles, L and R as sketched in Fig.
[5.4] a solution is to map the delocalized atomic excitation into a field state by applying simultaneous strong
read pulses. For perfect state transfer, the entangled state of the atoms would be mapped to an ideal entangled
state of the two photonic modes (chapter [2)).

However, the presence of various noises, the vacuum contribution (coming from a finite retrieval effi-
ciency or also a finite success probability in the case of the swapping), as well as higher-order terms, has to
be taken into account. In order to prove experimentally the generation of entanglement at the atomic level,

our group has developed in ref.’

a robust, model-independent determination of entanglement based upon
quantum tomography of the fields 2 (chapter [3). As entanglement cannot be increased by local operations
on either of the two ensembles, the entanglement for the state of the ensembles will always be greater than
or equal to that measured for the light fields. The model consists of reconstructing a reduced density matrix,
p, obtained from the full density matrix by restricting it to the subspace where no more than one photon
populates each mode. It can be shown that this reduced density matrix exhibits less or equal entanglement
than does the full one. The model will thus lead to a lower bound of the entanglement, enabling an unam-

biguous determination of the presence of entanglement, at the price of eventually underestimating its actual

magnitude.
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The reduced density matrix can be written as

(5.8)

in the photon-number basis |n)|m), with {n, m} = {0, 1}. p;; is the probability of finding ¢ photons in mode
2y, and j in mode 2g, d is the coherence term between the |1)|0) and |0)|1) states, and P = poo + po1 +
P10 + p11- From this density matrix, one can calculate the concurrence C', which is a monotone measurement

of entanglement' 78

C= max(2\d| — 2\/])00])11, 0) (59)

Let us underline, as d®> < piopo1, a necessary requirement for C' > 0 is that there is a suppression of
two-photon events relative to the square of the probability of single-photon events for the fields 2, h =
p11/(p1opor) < 1.

Experimentally, the density matrix is reconstructed by using two different configurations, as sketched in
Fig. The diagonal elements are determined by measuring individual statistics, i.e., by detecting indepen-
dently each field. The coherence term can be measured by combining the fields 2 on a 50/50 beamsplitter and
recording the count rate as a function of the phase difference between them. This results in an interference
fringe with a visibility V. It can been shown that d ~ V (p19 + po1 ) /2. Together, this two-stage measurement

gives access to the concurrence C'.

5.3.4 Entanglement connection revisited

The principle of entanglement connection has been explained previously in the ideal case where higher-order
terms and vacuum contributions are neglected. Let us consider now the more general case, which can be
described by the previous approach. We consider two pairs of entangled ensembles and consider that the
fields 2 after reading can be described by the same density matrix p’ with diagonal elements p) ;- The relevant
question is now what will be the expression of p, the reduced density matrix for the fields 2 of the two
remaining ensembles after the connection.

Let us assume that pj, = p(;. To later normalize the events conditioned on swapping, one needs to first
determine the probability to have a click heralding the connection at one output of the beamsplitter. To the

first order, this quantity can be written as

1
p=2x 517/10 = Plo- (5.10)
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The factor 1/2 corresponds to the 50% chance that the photon be reflected or transmitted at the beamsplitter
(i.e., with each detection event uniquely associated with the entangled states <I>(LiR)), while the factor 2 results
from the symmetry of the scheme where the photon can come from either ensemble.

One can then evaluate, after the reading of the two remaining ensembles, the probability of having one

photon for one mode and zero for the other, when a swap event has been detected

1 1
plo = po1= 5(1)’1% + P11Poo + P11P10) /P ~ §p’10~ (5.11)

The terms inside the parenthesis correspond to one photon in mode 27, and zero in 2 (or the other way
around), and all the other combinations for 2;; and 2;, which can give a swapping event. The final factor
1/2 comes from the fact, already established before in the ideal case, that the swapping succeeds, to the first
order, 50% of the time.

Finally, in a similar way, the probability to have one photon in each mode is given by:

1
piio= 5P+ 20h0)/ ~ P (5.12)

The main feature which appears here is that the weight of the two-photon component stays the same, while
the single-photon component is divided by two. As a result, if one calculates for the connected pairs the
new suppression h of two-photon events relative to the square of the probability for single-photon events
as a function of the initial 2’ for each entangled pair: h ~ 4h’. This result points out the difficulty which
could arise in the experimental demonstration of entanglement connection: one needs to start with atomic

ensembles entangled with a very low two-photon component, at the price of low count rates and statistics.

5.4 Experimental setup and measurement results

In this section, we present a scheme that permits us to investigate entanglement connection between two
pairs of atomic ensembles, without the requirement of any active phase stabilization (see also chapter ] for a

similar setup). Experimental results are finally given.

5.4.1 Experimental setup

The experimental setup is depicted in Fig. [5.5] Two parallel pairs of atomic ensembles are first prepared
independently, following the measurement-induced method detailed in section [5.3] This preparation stage
is speeded up by real-time conditional control (refs.2%78, chapter EI): a detection event at either pair triggers
intensity modulators that gate off all laser pulses going to the corresponding pair of ensembles, thereby storing
the associated state. After successfully preparing both pairs, strong read pulses are sent into the ensembles.

The fields 27; and 2, are brought to interfere and a detection event on either detector heralds the connection
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process. Thanks to the conditional control, a 20-fold enhancement is obtained in the probability to establish
the connection (chapter ), leading to a rate of connection around 4 Hz. Depending on the combinations of
field 1 and field 2 detector clicks, two different entangled states |<I>(Lil)2> are generated for the two remaining
ensembles, denoted by + and —, with a 7 phase-shift between them.

As pointed out before, the process of connection between the two remaining ensembles, which never
interacted in the past, only requires the stability of the relative phase & over trials. This overall phase is defined
as the phase difference between the absolute phase of all the paths (write beams, field 1, read pulses, and field
2 on the connection side) for the upper pair and the ones for the lower pair. Instead of actively stabilizing

all individual phases as it was performed in ref. 22 where two ensembles were involved, this requirement is
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Figure 5.5: Experimental setup for entanglement connection. For each pair, “Up” and “Down,” the en-
sembles are separated by 3 meters. Fields 172 and 15 from pair “Up” are brought to interference at a 50-50
beamsplitter (BSy). A photo-detection event at either detector D1, or D1, heralds entanglement between the
collective excitation in 12 and R. The “Down” pair is prepared in a similar fashion via events at D1., D14.
A heralding detection event triggers the control logic to gate off the light pulses going to the corresponding
ensemble pair by controlling intensity modulators (IM). The atomic state is thus stored while waiting for the
second ensemble pair to be prepared. After both pairs of ensembles have been prepared, the control logic
releases strong read pulses. Fields 275 and 27; (2 and 21) are combined with orthogonal polarizations on
polarizing beamsplitters. Fields 275 and 2 are detected with the half-wave plate (\/2). at 22.5°, which
is equivalent to a 50/50 beamsplitter configuration. The fields 2 from the remaining ensembles are char-
acterized conditionally on a detection event heralding the connection. The two configurations of Fig. [5.4]
correspond to two different angles, 0° and 22.5°, of the half-wave plate (\/2).
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Table 5.1: Diagonal elements of the density matrix p deduced from the records of photoelectric counts,
for the two different states after connection, denoted + and — . These values are obtained by considering
unit detection efficiency. Errors bars correspond to statistical errors.

Probability + -
P00 0.949 £ 0.003 0.948 £ 0.003
p1o (1.97 £0.05) x 1072 (1.99 4+ 0.05) x 1072
po1 (3.06 £0.06) x 1072 (3.16 & 0.06) x 1072
P11 (4.14£0.7) x 1074 (4.9+0.8) x 1074

fulfilled in our setup by exploiting the passive stability between two independent polarizations propagating
in a single interferometer (ref. %, chapter . All the paths for the upper and lower pairs are common, except
inside a small interferometer where orthogonal polarizations are separated to define the two ensembles on
each side (chapter [3). Operation over more than 24 hours is possible without any adjustment as the phase
does not change by more than a few degrees (chapter[3). As a result, no active phase stabilization is required,
simplifying significantly the experimental investigation of the connection process. Note that although the
present configuration is sufficient to demonstrate the principle of the connection, an experiment where the
final pair of ensembles L and R are distant, as in Fig. [5.3p, would require active stabilization of the various
phases, since in that case all the paths would be distincf} Our configuration for passive stability is better

suited to the case of parallel chains of ensembles, as in the original proposal of DLCZ.

5.4.2 Characterization of the states generated upon connection

The generated state is analyzed by using the tomography technique explained in section [5.3.3] Conditioned
upon a connection event, the density matrix p of the fields 2 is reconstructed following the two required steps:
the measurement of the diagonal elements and the determination of the coherence terms.

Table gives the measured diagonal elements deduced from the records of photoelectric counts, for
both generated states, after a connection event. Unit detection efficiency is assumed, which can only lead to a
smaller value for the concurrence than the actual field concurrence for finite detection efficiency. From these
values, one can deduce the suppression h of the two-photon events relative to the square of the probability for
single-photon events. We find hy = 0.7+0.1 < 1and h_ = 0.840.1 < 1. From independent measurements,
we inferred the h’ parameter for each pair before connection to be A’ = 0.20 & 0.05. The experimentally
determined values of h are thus consistent with the expression h = 4h’ established previously. As pointed
out before, this relation arises from the intrinsic property that the connection succeeds only 50% of the time.
This can be seen in the quantities 2pg; ~ 4% and 2p19 ~ 6%, which should be equal to half the retrieval
efficiency. The retrieval efficiencies (including detection) independently measured for each ensemble were
both around 10%.

In order to access the coherence term, Fig. [5.6]shows the probability of having a detection event on either

“The relative phase ¢ between the entangled ensembles can in principle be probed, given that  is sufficiently stable over the memory
time. See section [[.3.T|for more information.
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Figure 5.6: Coherence between the two atomic ensembles L and R induced by the connection event. p
is the probability after connection to have a detection event on either detectors D2¢ and D2d when the fields
21, and 2p, interfere, as a function of the phase ¢. For each phase setting, data are acquired for 30 minutes,
each atomic state being generated overall at about 2 Hz. Errors bars correspond to statistical errors.

output of the beamsplitter, normalized to the sum of these events, as a function of the phase-shift between the
fields 21, and 2R. Practically, the relative phase is scanned by adjusting the phases of the two classical read
beams via birefringent waveplates. The visibilities are found to be V. = 64 +3% and V_ = 59 + 3%. A
simple model“® predicts for our excitation probability a visibility equal to 65 + 10%. By taking into account
the measured overlap of the photon wavepacket for fields 2 deduced from a two-photon interference~?, 0.90 +
0.05, the expected visibility can be roughly estimated to be 55 + 10% if all the reduction is attributed to a
non-perfect overlap. In the absence of conditioning, the visibility drops to near zero, the residual visibility
(below 3%) being explained by finite polarization extinction ratio in our setup. This result demonstrates for
the first time the creation of coherence between two atomic ensembles which never interacted in the past. The
reconstructed density matrices are shown in Fig.

With these data in hand, the concurrences C can be estimated for both states,

Cy = max(—(7£4)x107,0) =0 (5.13)

C_- = max(—(1.34+0.4) x 1072,0) = 0. (5.14)

These values show finally the absence of entanglement, or at least, that our entanglement measurement, which
provides a lower bound of the atomic entanglement, cannot detect entanglement in this particular case. One
can correct from detection efficiencies and propagation losses*’, but any zero concurrence will stay zero by
this correction. The h values confirm anyway that the connected systems are barely in the regime where the
two-photon events are suppressed relative to single-photon events. One needs to start with smaller h’ for
the initial pairs. i’ as low as 0.05 can be obtained routinely for each pair in our lab but the count rate to

characterize the connection would be prohibitively low.
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Figure 5.7: Density matrix for the fields after entanglement connection. We reconstructed density matrix
for both generated states, at the detector location.

5.5 Discussion and prospects towards entanglement connection

In summary, in this chapter, we have presented a possible scheme to demonstrate entanglement connection
between atomic ensembles which never interacted in the past. Such striking capability is a critical requirement
for the future development of elaborate quantum networks. Our investigation has shown for the first time the
creation of coherence upon the connection process. This result validates the proposed setup, in particular
its passive phase stability, and constitutes a significant step towards the entanglement connection of matter
systems.

To finally generate and prove entanglement connection between the remaining ensembles, very stringent
condition on the suppression of the two-photon component needs to be satisfied, at the sacrifice of the count
rate in our current setup (chapter ). Overall, the figure of merit of any elaborate experiment is the product
of the probability to prepare the entangled state at each write pulse and the coherence time. Improvements
in these two directions have to be explored. The first one can be addressed by, for instance, multiplexing
the atomic ensembles. One can imagine to use spatially-resolving detectors, namely array of single-photon
detectors, and adaptive optical systems to reconfigure the optical interconnects. Improving the coherence
time is a second critical direction as more elaborate protocols are involved. It would require better nulling
of the residuals magnetic fields and also the use of improved trapping techniques like a large dipole-trap,
as a magneto-optical trap will be rapidly limited by the diffusion of the atoms outside the excitation region
(chapter |Z|) An increase by two orders of magnitude, from tens of us to ms, would enable, for instance, an
experimental demonstration of entanglement connection in our current setup in a few hours of data taking
(Fig. [5.8). All together, these improvements would enable deeper investigation of experimental quantum
networking, and will definitely lead to fruitful insights into the distribution and processing of quantum infor-

mation.
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Figure 5.8: Theoretical concurrence C. (black line) after a swapping event as a function of the correla-
tion function g, between fields 1 and 2. The total integration time to achieve 4 standard deviation statistics
for C'y > 0 is given in units of hours with the current memory time of ~ 15 us (black dashed line) and with
the improved coherence time of ~ 1.5 ms (red dashed line).
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Chapter 6

Mapping photonic entanglement into
and out of quantum memories

This chapter is largely based on ref.?". Reference=" refers to the then current literature in 2008 at the time of

publication.

6.1 Introduction

In the quest to achieve quantum networks over long distances227

, an area of considerable activity has been
the interaction of light with atomic ensembles comprised of a large collection of identical atoms (ref.®, see
also chapter [T). In the regime of continuous variables, a particularly notable advance has been the tele-
portation of quantum states between light and matter®. For discrete variables with photons taken one by
one, important achievements include the efficient mapping of collective atomic excitations to single photons
(refs. TO777980 chapter [2), the realization of entanglement between distant ensembles (refs.273%, chapter [3)
and, recently, entanglement distribution involving two pairs of ensembles (ref.“, chapter E]) The first step
toward entanglement swapping has been made (ref."Z, chapter , and light-matter teleportation has been
demonstrated with post-diction 12

In all these cases, progress with single photons has relied upon probabilistic schemes following the
measurement-induced approach developed in the seminal paper by Duan, Lukin, Cirac and Zoller (DLCZ)*
and subsequent extensions*?. For the DLCZ protocol, heralded entanglement is generated by detecting a
single photon emitted indistinguishably by one of two ensembles. Intrinsically, the probability p to prepare
entanglement with only 1 excitation shared between two ensembles is related to the quality of entanglement,
since the likelihood for contamination of the entangled state by processes involving 2 excitations likewise
scales as p (ref.?%, chapter , and results in low success probability. Although the degree of stored entan-
glement can approach unity for the (rare) successful trials (ref.*#, chapter , the condition p < 1 dictates

reductions in the count rate and compromises in the quality of the resulting entangled state (e.g., as p — 0,

processes such as stray light scattering and detector dark counts become increasingly important). Further-
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more, for finite memory time, subsequent connection of entanglement becomes increasingly challenging
(ref.?Z, chapter|5).

The separation of processes for the generation of entanglement and for its storage enables this draw-
back to be overcome. In this chapter, we demonstrate such a division by way of reversible mapping of an
entangled state into a quantum memory. The mapping is obtained by using adiabatic passage based upon
dynamic electromagnetically induced transparency (EIT) (refs. 808858994 see also sections and for de-

tails). Storage and retrieval of optical pulses have been demonstrated previously, for both classical pulses®’®!

2293l Adjabatic transfer of a collective excitation has been demonstrated between

and single-photon pulses
two ensembles coupled by a cavity mode??, which can provide a suitable approach for generating on-demand
entanglement over short distances. However, for efficient distribution of entanglement over quantum net-
works, reversible mapping of an entangled state between matter and light, as illustrated in Fig. [6.Th, has not
been addressed until now.

In our experiment, entanglement between two atomic ensembles L,, I, is created by first splitting a sin-
gle photon into two modes Li,, Rj, to generate an entangled state of light225°230, This entangled field state is
then coherently mapped to an entangled matter state for L,, R,. On demand, the stored atomic entanglement
for L,, R, is converted back into entangled photonic modes Lqy, Rout. As opposed to the original DLCZ
scheme, our approach is inherently deterministic, suffering principally from the finite efficiency of mapping
single excitations to and from an atomic memory, with efficiency ~ 50 % having been achieved. Moreover,
the contamination of entanglement for L,, R, from processes involving 2 excitations can be arbitrarily sup-
pressed (independent of the mapping probabilities) with continuing advances in on-demand single-photon
sources=*!. Our experiment thereby provides a promising avenue to distribute and store quantum entangle-
ment deterministically over remote atomic ensembles for scalable quantum networks*? (see also chapter

for a potential application of this scheme for hybrid quantum networks).

6.2 Deterministic quantum interface between matter and light

The experimental setup is depicted in Fig. Our single-photon source is based on Raman transitions in

470 called a source ensemble (see section . This system generates

an optically thick cesium ensemble
28-ns-long single photons (resonant with 6.5} /o, F' = 4 <+ 6 P35, I " = 4 transition) in a heralded fashion'’®.
The single photons are polarized at 45° from the eigen-polarizations of the beam displacer BD; (Fig. 1b)
which splits them into entangled optical modes Li,, R;, (called the signal modes) to produce, in the ideal

case, the following state

1 o
ﬁ(‘OLleRm) + e 1L,)|0r,))- (6.1)

The next stage consists of coherently mapping the photonic entanglement for L;,, R, into atomic ensem-

bles L,, R, (called the memory ensembles) within a single cloud of cold cesium atoms in a magneto-optical
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Figure 6.1: Overview of the experiment. a, Reversible mapping. Illustration of the mapping of an entan-
gled state of light into and out of a quantum memory (QM) with controllable storage time 7. b, Photonic
“entangler.” A beam displacer BD; splits an input single photon into two orthogonally polarized, entangled
modes Li,, Ry, which are spatially separated by 1 mm. With waveplates \/2 and \/4, the signal fields

€signal for Lin, Ry, and control fields QgL’R) (t) are transformed to circular polarizations with the same helicity
along each path L, R, and copropagate with an angle of 3°. ¢, Quantum interface for reversible mapping.
Photonic entanglement between Li,, Rj, is coherently mapped into the memory ensembles L,, i, by switch-

ing QgL’R) (t) off adiabatically. After a programmable storage time, the atomic entanglement is reversibly

mapped back into optical modes Ly, Roy by switching QgL’R) (t) on. Relevant energy diagrams for the
storage and retrieval processes are shown in the insets. States |g), |s) are the hyperfine ground states F' = 4,
F =3 0f 65 5 in atomic cesium; state |e) is the hyperfine level I’ = 4 of the electronic excited state 6 Py /5.
d, Entanglement verification. After a A/4 plate, the beam displacer BD combines modes Loy, Ryt into one
beam with orthogonal polarizations. With (A/2), at 6, = 22.5° before the polarization beamsplitter (PBSp),
single photon interference is recorded at detectors D, D5 by varying the relative phase ¢ by a Berek com-
pensator. With (A/2), at 6, = 0°, photon statistics for each mode Loy, Roy are measured independently.

trap (MOT) (Fig. [6.1f). Ensembles L,, R, are defined by the well-separated optical paths of the entangled
photonic modes Liy,, i, (section @ To avoid dissipative absorption for the fields in modes Li,, Ry, for
our choice of polarization®), we spin-polarize the atomic ensemble into a clock state |F = 4, mp = 0)
(section . Initially, the strong control fields QEL’R) (resonant with 65/, F' = 3 > 6P55, F' = 4
transition) open transparency windows QEL’R) (0) in L,, R, for the signal modes. As the wavepacket of the
signal field propagates through each ensemble, the control fields QEL’R) (t) are turned off in 20 ns by an
electro-optical intensity modulator, thereby coherently transforming the fields of the respective signal modes

to collective atomic excitations within L,, R,. This mapping leads to an entanglement between quantum

memories L,, R,, with atomic state \%(@LJ ISr,) +€'*|5L,)|gR,)). After a user-defined delay, chosen here
to be 1.1 ps, the atomic entanglement is converted back into entangled photonic modes by switching on the

control fields Q%) (t) (section , with a photon state %(\0 Lo | LRo) + €% |17, }|OR,,)). The con-
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Figure 6.2: Single-photon storage and retrieval for a single ensemble. a, Input. The data points are the
measured probability p. for the signal field, a single photon generated from a separate “offline” source atomic
ensemble’®, The red solid line represents a Gaussian fit of 1/e width of 28 ns. b, Storage and retrieval. The
points around 7 = 0 us represent “leakage” of the signal field due to the finite optical depth and length of
the ensemble. The points beyond 7 = 1 us show the retrieved signal field. The overall storage and retrieval
efficiency is 17 = 1 %. The blue solid line is the estimated Rabi frequency 2.(¢) of the control pulse. The
red solid curve is from a numerical calculation solving the equation of motion of the signal field in a dressed
medium (ref.®, chapter . Error bars give the statistical error for each point.

trolled readout allows the extensions to quantum controls for entanglement connection and distribution by

way of asynchronous preparation (refs.3%7, chapters 4] and [3).

6.2.1 Single-photon storage and retrieval

For a given optical depth do, there is an optimal Rabi frequency €2.(¢) for the control field. In our experiment,
dy and Q.(0) are 15 and 24 MHz, respectively. An example of our measurements of the EIT process for a
single ensemble is presented in Fig. [6.2] which shows the input single-photon pulse (Fig. [6.2h) and its storage
and retrieval (Fig. ); see also chapter Due to finite db, small length (= 3 mm) of the ensemble and the
turn-off time of the intensity modulator, there is considerable loss in the storage process, as evidenced by the
counts around 7 = 0 s in Fig. [6.2b. The peak beyond 7 = 1 s represents the retrieved pulse after 1.1 us of
storage. Overall, we find good agreement between our measurements and the numerical calculation following
the methods of ref.®%, using the fitted function of the input signal field (Fig. ) as the initial condition, with
all other parameters from independent measurements (section [6.9). We find the overall storage and retrieval

efficiency of 7y = 17 & 1 %, also in agreement with the simulation of 7™ = 18 %.

6.2.2 Entanglement verification

With these results in hand for the individual L,, R, ensembles, we next turn to the question of verification

of entanglement for the optical modes of L;,, Ri, and Loy, Rout. We follow the protocol introduced in ref. Z
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by (1) reconstructing a reduced density matrix p constrained to a subspace containing no more than one ex-
citation in each mode, and (2) assuming that all off-diagonal elements between states with different numbers
of photons vanish, thereby obtaining a lower bound for any purported entanglement. In the photon-number

basis |nr, mg) with {n,m} = {0, 1}, the reduced density matrix j is written as (ref.2Z, chapter 3)

1
=+ , 6.2)

0 0 0 pn

M is the coherence

Here, p;; is the probability to find 7 photons in mode Ly and j in mode Ry, d ~
between |1.,0g)x and [0L1Rr)k, P = poo + p1o + Po1 + P11, and V is the visibility for interference between
modes Ly, Ry, with k € {in, out}. The degree of entanglement of 5 can be quantified in terms of concurrence,
C = +max(0,2|d| — 2,/poop11). which is a monotone function of entanglement, ranging from 0 for a

separable state to 1 for a maximally entangled state' 78,

6.3 Coherent and reversible quantum interface for photonic entangle-

ment

6.3.1 Quantum-state tomography on the input photonic state

We first perform tomography on the input modes Li,, R, to verify that they are indeed entangled. To this end,
we remove the memory ensembles to transmit directly the signal fields into the verification stage, following
our protocol of complementary measurements as described in Fig. [6.Id (See section [6.7). The interference
fringes between the two input modes are shown in Fig. [6.3p. From the independently determined propagation
and detection efficiencies, we use the measurements at D1, D5 to infer the quantum state for the input modes
Lin, Ry, entering the faces of L,, R,, with the reconstructed density matrix p;, given in Fig. . The
concurrence derived from pi, is Cj, = 0.10 4 0.02, so that the fields for L;,, R;, are indeed entangled.
The value of the concurrence is in good agreement with the independently derived expectation of Ci[:emy =
0.10 £ 0.01, which depends on the quality of the single photon and the vacuum component (i.e., the overall
efficiency) (ref.*%, chapter . Given a heralding click from our single-photon source, the probability to have
a single photon at the face of either memory ensemble is 15 %, leading to a vacuum component of 85 %. We
also independently characterize the suppression w of the two-photon component relative to a coherent state
(for which w = 1) and find w = 0.0940.03. Our input entanglement is only limited by the current properties

of our single-photon source, which will be improved with the rapid advances in sources of single photons=3!.
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Figure 6.3: Entanglement for the input and output optical modes. To verify entanglement, complemen-
tary measurements are performed : interference leading to a fringe when the relative phase ¢ is scanned
and independent photon statistics for each light mode. The figure shows the interference fringes and the
reconstructed density matrices (in log scale) for the photonic modes a, at the input of the memory and b, the
output after storage and retrieval. The estimated concurrence is given in each case. Each point of the fringe is
taken for 20, 000 (100, 000) heralding events for the input (output) state. Error bars indicate statistical errors.

6.3.2 Quantum-state tomography on the output photonic state

Having verified the entanglement for the input modes Li,, Riy, we next map this photonic entanglement
into L,, R,, which serve as a quantum memory (Fig. [6.1f). After storing the entanglement for 1.1 us,
we transfer the resulting atomic excitation on demand from the memory to the output modes Ly, Ry and
perform quantum-state tomography to determine poy as for py,. As shown in Fig. the visibility for
interference of the fields after storage and retrieval shows no appreciable degradation (from Vi, = 0.93+£0.04
to Vour = 0.91 £0.03). From the measurements at D1, D5, we infer the quantum state poy at the output faces
of L,, R,, as displayed in Fig. . The associated concurrence Coy = (1.9 £ 0.4) x 1072 is in agreement
with C°Y — (1.7 + 0.1) x 10~ 2. Since mapping of atomic states from L,, R, into field modes Loy, Rout
is a local operation, this measurement provides a lower bound for the entanglement between the L,, R,
ensembles. Thus, we demonstrate the reversible mapping of an entangled state of the electromagnetic field
to and from a material system. For completeness, Table[6.1] gives the diagonal elements and concurrences of

ﬁin, ﬁom determined directly at D;, D, without correction for propagation and detection efficiencies.
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6.4 Discussion and analysis

We emphasize that although the entanglement associated with py, is heralded (because of the nature of our
single-photon source), our protocol for generation and storage of entanglement is intrinsically deterministic.
The transfer efficiency of entanglement from input modes to output modes of the quantum memory is limited
by the storage and retrieval efficiency 7, of the EIT process. This transfer can be quantified by the ratio A
of the concurrence C,y for the output state poy to Ci, for the input state p;,. For an ideal source of single
photons on-demand (with no vacuum component), the input concurrence is approximated by Ci, ~ oV,
where « denotes the transmission efficiency of the single photon from the source to the entangler in Fig.
(ref.?%, chapter . Similarly, for the output, Coy ~ anyV, where we assume that the visibility V' is
preserved by the mapping processes. Thus, A= % ~ 1y, Which therefore estimates the maximum amount
of entanglement in modes Ly, Roy for the case of an (ideal) single photon generated deterministically. In
our experiment, the entanglement transfer reaches A= (20 £ 5) %. By way of optimal pulse shaping and
improved optical depth, the entanglement transfer can be greatly improved (section [6.10.2)).

The performance of our quantum interface depends also on the memory time 7, over which one can
faithfully retrieve a stored quantum state. For our system, independent measurements of 7, made by varying
the storage duration 7 allow us to determine 7,,, = 8 £ 1 us, as limited by inhomogeneous Zeeman broad-
ening and motional dephasing (section [6.6]and chapter [2)). Active and passive compensations of the residual

magnetic field would improve 7, along with improved optical trapping techniques (chapter [2)).

6.5 Conclusion

In conclusion, our work provides the first realization of mapping an entangled state into and out of a quantum
memory. Our protocol alleviates the significant drawback of probabilistic protocols, where low preparation
probabilities prevent its potential scalability>’, and thus our strategy leads to efficient scaling for high-fidelity
quantum communication®?. Our current results are limited by the large vacuum component of our avail-
able single-photon source, which principally reduces the degree of entanglement in the input, and by the
limited retrieval efficiency of the EIT process, which bounds the entanglement transfer to A = (20 £ 5)

%. With improved retrieval efficiency and memory time, along with the rapid development of on-demand

Table 6.1: Experimentally determined diagonal elements and concurrences. We directly measure the
diagonal elements p;; and concurrences Cin, Coyc for the density matrices pin, four derived directly from de-
tectors D1, Do without correction for losses and detection efficiencies. Statistical errors are also given.

ﬁin ,boul
P00 0.9800 & 0.0001 0.99625 £ 0.00003
P10 (1.04340.008) x 1072 (2.09 £ 0.02) x 10~3
Ppo1 (0.957£0.008) x 1072 (1.67 £ 0.02) x 1073
P11 (8+2)x 1076 (2+£2)x 1077
C (1.28 £0.09) x 102 (2.540.5) x 10~3
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single-photon sources?*L, our protocol enables the deterministic generation, storage, and distribution of en-
tanglement among remote quantum memories for scalable quantum networks. Such networks have diverse
applications in quantum information science, including for quantum metrology, where quantum sensing is
provided by the atomic entanglement and readout by coherent mapping to the photonic modes (chapter [9).
In the broader context of quantum information theory, our experiment provides an important contribution
to the lively debate about “single-particle” entanglement225222233  One resolution of these discussions is
a gedanken experiment in which an entangled state for a single-particle is mapped into a two-particle sys-
tem by local operations, thereby verifying the presence of entanglement for the original “single-particle”
state?d. Our experiment demonstrates that an entangled state with one photonic excitation shared between
two optical modes (see Eq. [6.1)) can be converted into an entangled state for two atomic ensembles by way of
coherent mapping. The presence of entanglement between the two atomic ensembles is explicitly quantified
by the lower bound Coy = (1.9 4-0.4) x 1072, thereby realizing the proposal of ref.*** for “single-particle”

entanglement.

6.6 Experimental details

A 22 ms preparation stage and 3 ms experiment run are conducted every 25 ms period. During the preparation
stage, atomic ensembles are loaded in a MOT for 18 ms and further cooled by optical molasses for 3 ms
where the MOT magnetic field is turned off. For 800 us, we optically pump the atomic ensembles to the
651 /2 |F' = 4, mp = 0) state in atomic cesium. During this stage, the trapping beam is turned off while the
intensity of the repumping beam is reduced to 0.1/, where I, is the saturation intensity. The quantization
axis is chosen along the k-vector of the signal modes and defined by a pulsed magnetic field of 0.2 G.
A pair of counter-propagating Zeeman pumping beams (10 MHz red-detuned from 4 <> 4’ transition and
linearly polarized along the quantization axis) illuminate the ensembles in a direction perpendicular to modes
Liy, Rin. The MOT repumping beam serves as a hyperfine pumping beam. The experiment is conducted
at a repetition rate of 1.7 MHz during a 3 ms interval before the next MOT loading cycle. A small bias
field of 10 mG is left on to define the quantization axis for the experiment. The various photon statistics
throughout the experiment are detected by single-photon Si-avalanche Photodetectors (Perkin-Elmer SPCM-
AQR-13) where the pulse signals are stamped with 2 ns resolution into a file by a 4-channel event time
digitizer (FAST ComTec P7888) for data-acquisition. The overall transmission efficiencies (including the
detector and propagation efficiencies) are 12 &+ 2 % and 14 + 2 % for the ensembles L,, R,.

The limitations to our experiment imposed by inhomogeneous Zeeman broadening are described in ref.**
(chapters 2H3). Possible misalignment between the quantization axis and the bias magnetic field is estimated

to be below 5 degrees. Following ref."®>

, we are investigating active compensation of the residual magnetic
field to improve 7. In our experiment, the memory time 7, was also plagued by the residual control laser

during storage due to finite extinction ratio 50 dB of the modulator (waveguide electro-optical modulator and
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two sets of acousto-optical modulators), which set 7, ~ 1 ms. In addition, thermal motion of the atoms (at
Ty = 150 pK) sets the memory time of 7, ~ 15 us due to the motional dephasing, where optical trapping

may dramatically improve the coherence time for the collective excitations (chapter [2).

6.7 Operational verification of entanglement

Operationally, the various elements of p are obtained by recombining the Ly, Ry, fields with a second beam
displacer, BDs, as illustrated in Fig. [6.1}d, to obtain a single spatial mode with orthogonal polarizations for the
Ly, Ry, fields (refs.*#39 chapters and , with k € {in,out}. The diagonal elements of / are measured with
(A/2)y set at 0° so that detection events at Dy, D are recorded directly for the Ly, Ry fields. To determine
the off-diagonal components of p, the modes Ly, Ry, are brought into interference with (\/2), set at 22.5°,
as shown in Fig. [6.1d. By varying the relative phase ¢ between the modes, we determine the visibility for

single-photon interference and thereby deduce d.

6.8 Single-photon generation

The single-photon source is based upon the protocol*?® composed of time-delayed photon pairs, called fields
1,2 emitted from a cesium ensemble in a MOT called the source ensemble. The source ensemble is located
3 m from the memory ensembles, both of which are synchronized by a 80 MHz clock signal. For photon-
pair production, a sequence of write and read pulses illuminates the source ensemble. The single photon
generation is heralded by probabilistic detection of a Raman scattered field 1 from a write pulse (10 MHz
red-detuned from 4 <> 4’ transition). Conditioned on the heralding signal, a strong read pulse (resonant to
3 < 4/ transition) maps the excitation into a photonic mode, field 2, with probability of 50 %, which then
propagates to the setup described in Fig. [6.1} The resulting conditional probability to have a single photon,
field 2, at the face of memory ensemble is 15 %. The separation between the entangled optical modes Li,, Rjy
after the entangler is 1 mm and each of the modes is focused down to a 1/e full width of 50 um at L,, R,.
The heralding signal triggers a control logic which disables the single-photon source and all associated laser
beams for the programmable duration of the storage process for the quantum interface (ref.?°, chapter EI) As
the retrieval process is in the slow-light regime, the temporal shape of the single photon is controlled by the

intensity of the read laser, thereby changing the group velocity of the field 2 in the source ensemble7>23%,

6.9 EIT storage and retrieval

The coherent interface between the signal modes and collective spin waves is achieved by dynamically con-
trolling the EIT window €).(t), defined by the atom-light interaction of a resonant control field. A quantum

field propagating through an externally controlled dressed state medium is best described as a slow-light,
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dark-state polariton (DSP), \il(z, t)®% a coherent mixture of matter-like and photonic excitations, expressed

as (chapter[2)

\il(z, t) = cos 0(t)ésigna — Sin O(t)\/ Nabgs (6.3)
where cos? 0(t) = Oz (gi(t)g T = Ug(t), ga is the atom-photon coupling constant for the signal field, N4
¢ gaiva c

is the number of atoms, G is the atomic coherence operator for ground states |g) and |s), and Qc(t) is the
Rabi frequency of control field. As the signal field propagates through the medium, the group velocity v, of
the DSP is adiabatically reduced to zero as €).(t) decreases to zero, thereby rotating the mixing angle 6(t)
from a purely photonic state to a matter-like collective spin coherence (chapter [2). When the control field
is re-activated, the collective spin excitation is coherently converted into a photonic mode in a time-reversal
fashion. In the experiment, under the assumption of perfect state preparation, the relevant energy diagrams
for the storage and retrieval processes are ground states |g) = |F' = 4,mp = 0), |s) = |F = 3,mp = 0),
and the excited state |e¢) = | = 4,m,+ = +1) as shown in the insets of Fig.

The overall efficiency 7, of the EIT process and the temporal shape of the output fields are predicted
by numerically solving the equations of motion in ref.®® (see chapter [2| for detailed description, see also
section . Under experimental conditions, the projected storage and retrieval efficiency is n?ﬁemy =18
% as shown in Fig. We consider two strategies that could improve 7: increasing the optical depth
and appropriate pulse-shaping. By following the same calculation as above, we find that the EIT efficiency
reaches its asymptotic value of 7y ~ 30 % when the optical depth is increased to do ~ 50 with all other
parameters corresponding to the current experiment (section [6.10.2.1). On the other hand, as demonstrated
in ref 23 by iterating time-reversed version of the output signal field into the input, one achieves an optimal
pulse-shape for the signal field which balances the transmission loss due to finite bandwidth of the pulse
and the leakage due to the imperfect compression of the signal field within the atomic ensembles to reach
maximum 7, for a given control field 2. (¢). This maximum 7, for a given control field is in principle only
dependent on the optical depth do (section . Equivalently, the control field .(¢) can be optimized
for a given signal field as investigated theoretically in ref.2*. Note that efficiencies approaching 50 % have

been achieved in ref.232,
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6.10 Theoretical discussions

The dynamics of laser-induced coherence of atomic states can dramatically modify the optical response of
an atomic medium, leading to destructive quantum interferences between the excitation pathways®“®. In
this way, resonant absorption and refraction can be eliminated by way of electromagnetically induced trans-
parency (EIT)?%. In this section, we describe a semi-classical theory of EIT. For a complete quantum theory
of dynamic EIT, I refer to chapter 2] whereby the equations of motions for the fields and atomic variables are
derived in a self-consistent manner. We also present our theoretical result of time-reversal optimization''*®

for 1 using our experimental parameters=".,

6.10.1 Static electromagnetically induced transparency

Here, we present a semi-classical theory for static EIT2#182237238 While the situation for dynamic EIT is
somewhat different, static EIT describes the phenomena of ultra-slow propagation of the signal field in a
coherent atomic medium®2*?, We also examine the equivalence between the semi-classical model and the

full quantum model.

6.10.1.1 Semi-classical model of EIT

Electromagnetically induced transparency can be explained semi-classically in terms of (1) Fano-like quan-

2371238

tum interferences between the decay pathways of Autler-Townes resonances , and (2) “adiabatic prepa-

ration” or “optical pumping” to a dark state in the dressed state picture8oU72RI811831184

, as employed tradition-
ally in coherent population trapping (CPT) and stimulated Raman adiabatic passage (STIRAP), respectively.
In particular, I will adapt the latter approach (2), as the polaritonic quantum dynamics®® described in chapter
can be mapped to a semi-classical adiabatic passage in the setting of dark and bright states"5!.

As in chapter [2| we consider an effective (non-hermitian) Hamiltonian ﬁEIT for an atomic ensemble

interacting with a weak classical signal field £ (Rabi frequency €2;) and a strong control laser (Rabi frequency

Q) in the rotating frame (following the notations introduced in section [2.3]), with
Her = Herr — igedee — ihygstss, (6.4)
where the system Hamiltonian Hgr for the EIT interaction is given by
Herr/h = Acee — 0635 — (Qubeg + Qebes + hoc.). (6.5)

A, is the single-photon detuning for the control laser, and ¢ is the two-photon detuning between the signal
field and the control laser. Here, the decay channels (—ih7geGee, —ifiyys0 ) result in losses of atomic coher-
ences at rates g, and v4,. In the following discussions, I will assume a negligible ground-state dissipation

7¢s = 0 and resonant excitation by the control laser with A, = 0.



103

For open quantum systems, quantum-state evolution by a master equation in the Lindblad form (e.g., for
Eq. [6.3) is equivalent to that of a stochastic wave-function method (quantum-trajectory method) accompanied
by quantumjumpsﬂ(refs. 1641661230221 * Assuming a wave-function of the form [)(t)) = ¢4 (t)|g) +cs(t)]s)+
ce(t)|€), the non-hermitian effective Hamiltonian Hg (Eq. yields the following equations of motions

(from the Schrédinger’s equation),

Gy = Qe (6.6)
s = —(ygs —0)cs + 18 ce 6.7)
be = —(Yge —i0)ce +iQscy +iQccs. (6.8)

Since s < . and the initial state is |1/(0)) = |g), we assume that the probability amplitude remains
in ¢4(t) ~ 1 for all time ¢. Fourier transforming Eqs. 6.8 (with 0; — ‘w) and solving for {cs, c.}, we

obtain

cs(w) = 2,9
’ o (w—iyge — 0)(w = 8) — [Qf?
colw) = Qgs(w — 9)

(w —inge = 0)(w = 8) — |2c[*

The off-diagonal atomic polarization p., can thus be expressed as p., = c;ce ~ ¢, while the normalized
linear susceptibility functionis X, = % (see chapter. Redefining (§ —w) — v, we arrive at the expression

for the normalized linear susceptibility X, in Eq. 2.79 with

X, - 6.9)

- Q|2 — V2 —iyger”

The relationship between ', and group velocity v, (and transparency window) is explained in chapter
[] for an ideal A-level system. In section [6.10.1.3] we further illustrate the importance of optical pumping
and polarization orientations of the control laser and the signal field for observing EIT in a A-level system

comprised of multiple Zeeman sublevels.

6.10.1.2 The emergence of dark and bright states

The underlying principle for the cancellation of absorption in EIT is directly related to the phenomena of

dark-state and coherent population trapping"®3. Let us examine the effective Hamiltonian He with 6 = 0. In

2We note that the effective Hamiltonian Heg (Eq. h does not capture the repopulations of 644 and 6ss due to spontaneous
emissions (—ifirygeGee). As a semi-classical analysis, we neglect the quantum jump processes194193 and only consider the evolution of
the stochastic wave-function |+ (¢)) under the effective Hamiltonian over time ¢. This approximation is valid in the quantum trajectory

method for our initial condition ¢gg + ¢ss = 1, as long as the jump probability is pjump = (%] exp (% f(f dt(Hey — ﬁ:ff)> [) ~
fot dt ('yge|cee\2 + 'ygs|css|2) < 1forygs ~ 0.
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d) [b)

Figure 6.4: Qualitative equivalence between electromagnetically induced transparency and coherent
population trapping. As shown by Eq. the phenomena of EIT in the atomic bare-state basis can be
equivalently described as a dark-state pumping process (CPT) in the dark- and bright-state basis for two-
photon detuning ¢ = 0.

the dark- and bright-state picture, we may equivalently write Heg (Eq. in the following way,

Het/h = —ivge0ee — et (5™ O4]g) + cos* 04]s)) (e] — Qegele) (sin Ba(g| + cos ba(s|), (6.10)
|b) (b

where 0, = arctan(Q/€,.) is the mixing angle, and Qer = /|Q[? + |2 is the effective Rabi frequency
which couples the bright state |b) = sin® 04|g) + cos* 04]s) to the excited state |e). Similarly, we introduce
a sibling, a dark state |d) = cos* f4]g) — sin* 64]s) (one of the three eigenstates of H,g) orthonormal to the
bright state |b), which does not couple to the excited state |e) via H off (thus, immune to spontaneous emission).
Here, I used the notations, {sin* 6,4, cos* 64}, to define the complex conjugates of {sin 6, cos 04 }.

In the picture of dark- and bright-state basis (Eq. [6.10), the atomic level diagram in the bare-state picture
is transformed to a diagram akin to the case of optical pumping, as shown in Fig. Here, the bright-state
|b) couples dissipatively to the excited state |e) with an effective Rabi frequency e, while the dark-state |d)
is decoupled from the signal field £ and the control laser €2.. Thus, if the initial atomic state is prepared in
an admixture of both ground states (|g) and |s)), the coherently dressing Qg will “optically pump” the atoms
in the bright state |b) to the dark state |d) through the spontaneous emission from the excited state |e). As
there are little atoms left in |b) after dark-state pumping (with negligible optical thickness for the |b) > |e)
transition), the atoms will be trapped in the dark state via coherent population trapping (CPT) and the signal
field will exhibit full spectroscopic transparency on resonance § = 0.

In the case of EIT, the initial atomic state can further be prepared to the dark state |d) ~ |g) (with
Qs < ) prior to the EIT dressing (by means of optical pumping), from which excitations cannot occur.
Therefore, by rotating the mixing angle 6; = 0 — 7/4, we can adiabatically transfer the initial state to a
superposition state |d) = 1 (|g) — |s)) of maximum atomic coherence G, as in stimulated Raman adiabatic
transfer 81184 (STIRAP). There is a qualitative similarity between the adiabatic following of |d) and the

dynamics of the dark-state polariton by Heuristically considering the Fock state of the signal field, we can
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write the dark state in a familiar form |d) = cos* 64|g,, 1s) —sin™ 643,, 05), identical to the single-excitation
dark-state | D, 1) = \ilji\ga, 0s) (Eq. j in chapter Hence, the quantum theory of dark-state polaritons®®
(chapter[2)) is associated with the classical picture of dark- and bright-states in CPT and STIRAP.

6.10.1.3 Importance of the Zeeman sublevels

In the presence of multiple Zeeman sublevels, the susceptibility function xs = Qgiﬂys in Eq. of
chapter 2]and Eq. [6.9] generalizes to a normalized form X, of

ngl-,Fe 2
— (5) o ]- me‘CmF,es,mF+es| 5 (6 11)
X N Z ‘Q |2|CFS,17FE |2 82 —in..5 :
¢ mp c Mp+€s—€c,€c,mp+eg Yge
Fy,1,F. . o . L
where Ne = 37 Py [Crt o ie. |7 is the normalization constant, {e, €.} are the respective helicities

for the signal field and the control lasers, and Cf1-/2:/3 = (fimy fama|fsms) are the Clebsch-Gordan coef-
ficients. In deriving Eq. we assumed that the initial atomic state is p, = ) _,,, . Py [Fg, mp) (Fy, mp|.

For the ideal susceptibility function in Fig. [2.4] of chapter [2] the imaginary part of the susceptibility
is Im(xs) = 0 on resonance 6 = 0, thereby providing a transparency window for the signal field. At
the same time, the real part of the linear susceptibility function Re(ys) provides a strong dispersion on
resonance for slow-light propagation. In the presence of Zeeman populations p,,,, however, the coherent

atomic medium exhibits EIT only for specific polarization orientations {es, €.} of the signal field and the

control lasers. Particularly, if the one of the Clebsch-Gordan coefficients CFg’l’FS

e ten—cocompte, Vanishes, the

uncoupled Zeeman populations may have sufficient optical depths to cause dissipative absorption of the signal
field and the absence of transparency.

As shown in Fig. [6.3] the EIT spectroscopy with lin/lin configuration (for the signal field and the control
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Figure 6.5: EIT spectroscopy with lin//lin configuration. a, Measurement of imaginary part of the suscep-
tibility function Im(,). We show the measured Im(%,) as red (black) points in the presence (absence) of
control laser (2. with the polarization orientations given by €. = ¢, = 7. The data agrees well to the theoret-
ically predicted spectra (lines). b, Theoretically predicted real part of the susceptibility function Re(, ).
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Figure 6.6: EIT spectroscopy with o.//o configuration. a, Measurement of imaginary part of the sus-
ceptibility function Im(,). We show the measured Im(%,) as red (black) points in the presence (absence)
of control lasers {2, with the polarization orientations given by ¢, = ¢, = o4. The data agrees well to
the theoretically predicted spectra (lines). b, Theoretically predicted real part of the susceptibility function

Re(X,).

laser) does not show a transparency window on resonance. Since the two edge states (|F' = 4, mp: = +4))
of the Zeeman sublevels in the electronically excited state |e) of 6P/, cannot couple to the hyperfine ground
state |s) = |[F = 3,mp) with the control laser €2, due to selection rule, the signal field experiences a
strong resonant absorption by the optical depths for the residual atoms residing in the Zeeman sublevels
|F' = 4,mp = £4) of the hyperfine ground state 651 > (|g)) as represented by the peak in Im(%,) around
0 = 0. The asymmetry in the two side peaks (Autler-Townes splitting for the Zeeman states coupled to the

control laser) of Fig. [6.5]is due to the uncalibrated detuning A of the control laser respect to the |s) > |e)

-20
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Figure 6.7: Phase locked lasers for EIT spectroscopy. We show the beat note spectrum between two lasers,
responsible for the signal field and the control laser, in EIT spectroscopy. Assuming a Lorentzian spectrum,
we deduce a beat-note linewidth of ~ 0.2 mHz, limited by the phase noise in the detection.
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transition (which use as a fitting parameter in Fig. [6.5). The solid lines are the theoretical predictions based
on Eq. with the assumption of the initial state p,,, = 1/(2F, + 1)

Instead, we now apply a signal field and a control laser with helicities {es, €.} = oy in Fig. As
shown in Fig. [6.6p, the measured susceptibility function clearly demonstrates electromagnetically induced
transparency around § = 0. Here, the red-detuned offset of the transparency window is due to the presence of
the detuning A of the control laser. In Fig. [6.5pb, we also show the real part of the linear susceptibility, similar
to the result obtained for the ideal A-level system (Fig. . Furthermore, in our experiment=? (Fig. ,
we initialize the atoms to a clock state |g) = |F = 4, mp = 0). With ¢, s = o4, the coherent dressings by
the control and signal fields allow clock-state preserving transitions (section [6.6), which form a A-level with

lg) = |[F' = 4,mp = 0),

sy =|F =4,mp =0),and le) = |F' = 4, mp, = £1). By optically pumping the
ensemble to |g) = |F = 4, mp = 0) with efficiency ~ 90 %, we achieve a maximum transparency 7' = 95

% on resonance.

6.10.2 Dynamic electromagnetically induced transparency

In chapter[2] we derived the Heisenberg-Langevin equations of motions in the polaritonic picture. In this sec-
tion, we numerically solve the equations of motions and compare the theoretically simulated spatio-temporal
modes &; to the experiment, where we store and retrieve a coherent state |«) for various optical depths. We
also show a theoretical simulation of time-reversal optimization of the storage and retrieval efficiency 7

based on ref.!38 for our experimental parameters=".

6.10.2.1 Scaling behavior to optical depth and pitfalls via dissipative absorption

As we discussed in chapter the dynamics of the signal field s (z,t) and the collective atomic excitation

S(z,t) in the one-dimensional approximation is governed by the following coupled equations of motions

(Egs. 2.87),

L

(0% +c@z)<€'s(z,t) = igqna(z) %NAﬁ(z,t) (6.12)
OP(2,t) = —(vge +iD)P(2,t) + iga/Nals(z,t) +iQc(2,8)S + /274 Fp (6.13)
0S(2,t) = —vgsS(2,t) + i (2, )P + /2745 Fs, (6.14)

where P(z,t) is the atomic polarization |g) — |e) induced by the quantum field &(z,¢) in the presence
of coherent dressing {2.(z,¢). Assuming a coherent-state input, we numerically solve the complex-value
equations of motions (Egs. by neglecting the Langevin terms Fs = Fp = 0, which do not
contribute to normally-ordered expectation values. Here, we fit the atomic ensemble with a Gaussian spatial

profile to infer the atomic density n4(z) = \2/22 exp (—4z%/L?) from the fluorescence measurement, and
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the spatio-temporal mode of the control laser Q.(¢ — z/c¢) approximated by

" tanh [¢1 2] 4 tanh [—co(z — 7)]

Q =0
() c 5 :

(6.15)

with the parameters {2, ¢1, c2} determined from independent measurements on the intensity of the control
laser. N4 is determined from the measured value of the optical depth dj for the |g) — |e) transition (optical
depth is defined as the transmission 7' = e~ of the signal field absent the control laser). For the details of
the derivations for Eqgs. [6.12H6.14] I refer to the discussions in chapter 2]

Experimentally, we apply a control laser with Q. ~ 24 MHz (rise and fall times §t, = 1/¢; = 1/ca >~ 7
ns, defined as the time-scales resulting in an intensity changes of 10% — 90%) and a phase-locked signal laser
& (Fig. resonant to |g) — |e) transition (with two-photon detuning § = 0) in a counter-intuitive order'¢",
The signal field &, is assumed to be in a coherent state |a) with |a|> ~ 0.3 per pulse (Gaussian pulse width
30 ns for the incoming signal pulse). The relative delay between €2, and & is tuned to maximize the storage
and retrieval efficiency 7). As in the main experiment"? (sections 6.9), we prepare the atomic ensemble
into the clock state |g) = |F = 4, mp = 0) by optical pumping. We reduce the repetition rate of the laser

cooling and trapping cycle from 40 Hz to 0.2 Hz in order to increase the atomic density 22243

via compressed
MOT (CMOT)2*3 for 200 ms after the normal MOT loading and cooling (4 s). We then further cool the atoms

with polarization gradient cooling for 50 ms, followed by optical pumping (1 ms) to the clock state. With

100: LR | L | L |

107 |

107 10" 10° 10’ 10°

Figure 6.8: Investigation of reversible transfer of a coherent state to and from an atomic memory. We
study the dependence of storage and retrieval efficiency 7 to the optical depth dj, with the measurements
shown by black points. We achieve a maximum efficiency of 7y, ~ 30 % at do ~ 33. The theoretical
simulation (blue line) based on Egs. [6.12H6.14] shows excellent agreement with our measurement. The error
bars indicate the statistical uncertainty of 1 s.d.
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the improved setup, we achieve a maximum resonant optical depth of dy > 2 50, albeit with reduced optical
pumping efficiency ~ 70% due to radiation trapping, compared to the main experiment=" (sections .
The optical depth dy is varied by tuning the value of the magnetic field to the desired value during the normal
MOT phase (before compression).

In Fig. we show the overall transfer efficiency 7, for storing and retrieving a coherent state |a) in an
atomic ensemble (with storage time 7 = 1 us) as a function of optical depth do (see e.g., Fig. for a time-
domain measurement at dy = 20). In particular, we achieve a maximum storage and retrieval efficiency of
ns: = 30 & 2 % at optical depth do ~ 33. We also find excellent agreement between the theoretical predicted
EIT efficiency 7 (do) and the experimentally measured 7;. We emphasize that for higher optical depth
dy 2 60 (a region beyond the capability at the time), the storage and retrieval efficiency 7, is expected to
decrease, due to the reduced bandwidth of the EIT medium at high do (chapter see also Fig. . For
further improvement in 7, it is thus important to increase the intensity of the control laselﬁ for higher do.

In order to optimize 7, for a finite do, we need to compromise the control laser’s intensity between two
competing regimes. On the one hand, (1) a large Rabi frequency ). is preferred to increase bandwidth of
the EIT medium and to avoid dissipative absorption of £;. On the other hand, (2) a sufficiently small €2, is
required to compress the signal field’s wavepacket inside the ensemble for avoiding significant leakage. In
analogy, these two competing effect at finite dy can be cast in terms of the proper shaping of the spatio-
temporal mode of the signal field &, for a fixed €2.. In the next section, we discuss an iterative optimization

187H189

strategy based on the works by Gorshkov et al. , which leads to global maximization of 7 in the fully

adiabatic regime, as demonstrated experimentally by Novikova et al.?>.

6.10.2.2 Iterative optimization strategy based on time-reversal symmetry

In the fully adiabatic regime, the mapping process is well described by the dynamics of dark-state polariton

Wy(z,t) = cos04(t)E(z,t) — sinbq(t)S(z,t) with a beamsplitter-like Hamiltonian H™* (Eq. [2.84) in

nt

chapter 2] given by

nt

AR = ifa(2,1) (o281 (2,0) = El(2,08(2,1) ) . (6.16)

éd(z,t) gives the rate of change in the mixing angle 6,(z,t), which we assume to be small in order for

adiabatic passage (chapter . The unitary transformation U™ (t) = exp(— 5 [ dt’ fo ZHM (2, 1))

YWith a large Rabi frequency 2. for the control laser, there may be a non-negligible contribution from a competing four-wave
mixing process?#4, where the atoms initially at |g) is off-resonantly driven to |s) by Q. generating an anti-Stokes photon, followed by
a resonant scattering back to |g) with . seeded by the signal field (Stokes photon). We do not consider this four-wave mixing process
in our calculation, as it is suppressed by the large ground-state splitting ~ 9 GHz.

“For a given (2., we need to keep the signal pulse £s as short as possible to compress £s within the atomic sample and to avoid
leakage. On the other hand, we need to broaden the spatial extent of £s as much as possible to reduce its pulse bandwidth well below
the EIT bandwidth of the coherent atomic medium.
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describes the mapping process, where we individually define the storage (7)) and retrieval (n,) efficiencies as

. J d=(ST(z, t)S (=, t,)) (6.17)
de 52 Z t() gs(z7t0)>
[dz(El (2, t5)Es(2, 1))

o ; : 7 6.18

K J dz(ST(2,t,)S(z,t,)) o

evaluated at the respective times ¢, (falling edge) and ¢, (rising edge) with delay 7 = ¢, — ;. E:'S(z, to) and
és(z, tf) give the initial (incoming) and final (outgoing) states of the signal field.

Qualitatively, it is easier to understand the optimal retrieval strategy for 7, than to understand the optimal
storage 7, as we assume a pre-existing collective spin-wave with a profile (ST(z,t,)S(z,t,.)) at time ¢,.
In this case, unlike the storage, we are not restrained by the control laser due to the leakage of the signal
field. In practice, however, an abrupt activation of €2.(z,t) can reduce the retrieval efficiency by the non-
adiabatic transition of ¥ 4(z,t) to the bright-state polariton ¥y (z,t). Here, we give a heuristic argument for
the optimal 7™ (ref.188), where we assume a fully adiabatic regime for Q.(z,t) and an optimally shaped
(8T(2,t,)8(z, t,)). For a rigorous proof in the adiabatic regime, I refer to the original works in refs, 187189,
We then show that the time-reversed version of the optimal retrieval process leads to an optimal storage with
efficiency o™ = ne™

We first consider the forward retrieval in a Gaussian signal mode with beam-waist wo (section .

Beyond the Rayleigh range, the solid-angle ;4 of this mode is given by Qog ~ 47'r ” The collectively

21n2

enhanced scattering rate into this mode is then simply I', = Qeoria V2 Lo = N Al"o, whereas the

47T7JJ2 In2
scattering rate into all other modes is given approximately by I',, ~ N4I'y. Here, I'g = 27, is the single-

atom scattering rate. The optimal retrieval efficiency 7*" is then given by

I, 3 8
CTe+T, " 3dy+8 3dy’

opt __

e

(6.19)

where we used the relations for resonant absorption cross-section oy = 3\?/27 and optical depth dy ~
Naoo/(mw?). Thus, we find that the optimal retrieval efficiency for ne® depends only on the optical depth

do = fdeR Af (where keir = ¢/ L), which plays the role of a cooperativity parameter (chapter i
ge Reft

From the qualitative argument given above for achieving the optimal 7™, we now discuss the principle of

time-reversal as an optimization tool for storage 7;. We consider the storage map Ul(nrfdp (t) on the initial state

|G, 1s) givenby |D, 1) = \ilzl@a, 0s) in the Schrodinger picture. The storage probability 7 is then given by

P = |(3a, 05| U™ (1) (7, 1] (6.20)

nt

Using the unitarity relation for U™ (¢) = U™ (—t), we find that the storage efficiency is identical to the

nt nt

retrieval efficiency,

1P = [(Ga, 1| U™ (—)[5a, 05) 2 = n, (6.21)

mnt
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Figure 6.9: Iterative optimization scheme for maximizing storage and retrieval efficiency. We apply
theoretically the time-reversal symmetry%® for optimizing the EIT efficiency 7, at optical depth dy = 17,
where 7, converges to ~ 30 % after 2 — 3 steps. The various colors indicate different initial conditions for

the signal fields &) (=, 7).

U(map)

int

U(map)

if the time-reversed version (t) of the retrieval map U, ;" (—t) is used for storage.

{7map)

This means that if the retrieval map U, (—t) yields an optimal retrieval 7, P of some spin-wave mode

S(z,t) to an output signal mode 5’8(27 t), we can realize an inverse evolution by time-reversing Ui(n’?ap )(t)

(time-reversing the control Q.(—z,t) and the signal fields gs(—z, t) in Eq. ) to achieve optimal effi-
ciency 3™ = ™', where the incoming field é:'S (—2,t) is mapped onto the stationary excitation S (z,t). Here,
we note that the negative sign in z implies a backward propagation, corresponding to the situation of back-
ward storage (é:‘s(—z7 t), Qc(—z,t)) followed by forward retrieval (gs(—z, t), Qc(—z,t)). The time-reversal
symmetry also applies to forward storage followed by forward retrieval, as in our experimental setup-, al-
beit with reduced optimal efficiency 7™ = n® ~ 1 — Ld}) (ref15¢), For a rigorous proof of time-reversal
symmetry as an optimization tool, I refer to ref.8% where Eqs. [6.12 are analytically solved in the fully
adiabatic regime.

In the non-adiabatic regime, as in our case, the time-reversal optimization generally does not converge

to the global maximum of 7. Such a ‘fast’ storage regime has been considered in ref.** using gradient

ascent methods. Nonetheless, we numerically apply the method of time-reversal symmetry to theoretically
1)

s,in

maximize 7’ " for a given optical depth dy. We start by storing an initial signal field £'%) (2, t) and retrievin
n g p pth do y g g ) g

to SSO)M(Z, t) in step ¢ = 1. We then apply the time-reversed version of the output Es(}gut(z, t) in step i =
1 into the input signal field 55(,2121(Z»t) = Eg}(?ut(—z7t) in step ¢ = 2. By iterating this process ¢ — n

until 557‘2 (2,t) = £ (=2,1), we optimize the storage and retrieval efficiency 7. Fig. shows such a

s,in
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Figure 6.10: Time-reversal optimization of EIT transfer efficiency. We show the transfer efficiency 7 as
a function of optical depth dy. We also compare the result of the optimal 73" (red line) to 7; (blue line) given
for our experimental parameters in Fig. [6.8]

numerical process for optical depth Jo = 17 (with same parameters {c1, c2, ).} used in section
starting from various initial conditions £ Si(z, t), where we converge to the same maximum EIT efficiency
N ~ 30 % after 2 — 3 iterations.

In addition, this numerical optimization scheme allows us to benchmark the maximum transfer efficiency
A~ 7" of entanglement as a function do. In Fig. we apply the time-reversal optimization as a function
of optical depth do, shown as red line. We demonstrate that n (red line) can be further improved relative
to the EIT efficiency 7 of our experiment parameters (blue line) (see also Fig. beyond do 2 50. In
particular, unlike Fig. we find a monotonic improvement in the transfer efficiency 7, as a function of
optical depth do. For reference, we indicate the boundary at which the adiabatic condition Jofygeétc > 1lis

met3Z,
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Chapter 7

Characterization of entanglement for
multiple optical modes via quantum
uncertainty relations

This chapter is largely based on ref.”%. Reference“® refers to the then current literature in 2009 at the time of

publication.

7.1 Introduction

Detecting and classifying entanglement is an important challenge in the field of quantum information science
(chapter [I)). One problem is of a theoretical nature, to decide whether a given density matrix / of multiple
quantum systems is entangled or separable. Even for bipartite systems, this is a hard problem for which no
efficient general solution is known for higher-dimensional Hilbert spaces, although a simple test based on the
negativity of the partial transpose of the density matrix leads to a sufficient criterion for entanglement240247,
If p is entangled, the next issue is how to classify the type of entanglement. For more than two subsystems,
the full classification of all entanglement classes is as yet an unsolved problem (e.g., refs, 2022101248249

In an experiment, the practical task of detecting entanglement is even harder. If one would perform a
full tomographic measurement, then in the limit of infinitely many data one would end up with an arbitrarily
accurate estimate of a density matrix p, and thus reduce the experimental problem to the theoretical problem
mentioned above. In all other cases, one needs different tests that make use of less than full knowledge of the
density matrix. The main practical disadvantage of full tomography is the rapidly growing number (with the
number of quantum systems and with the dimension of the Hilbert spaces involved) of measurements needed
to find all elements of a density matrix. The other challenge is obtaining a physical density matrix from a
finite set of measured data2>V'2>1,

Thus, there is an ever-growing demand for simpler experimental tests revealing entanglement. Fortu-

nately, for bipartite systems there exists a handful of different experimental techniques for entanglement
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detection*™ ¥ Tn this chapter, we will focus on a particular type of multipartite entangled states (namely,
W states??) that can be produced in systems with variable numbers of excitations. We think in particular
of experiments with atomic ensembles (e.g., refs. 2507323 chapters based on the DLCZ protocol in
which information can be stored in the number of atomic excitations of each ensemble (chapter E]), as well as
of experiments on photonic systems (e.g., refs. 222222233 "where the number of photons in a given mode can
be used as a quantum variable (chapter [8)). In the following, we will use the words “excitation” and “photon”

interchangeably.

7.2 Verifying multipartite mode-entangled 11" states

We define the state |T¥) as a mode-entangled analogue of standard N-partite W states of qubits. It is a pure

state where a single excitation is shared symmetrically among N modeg|

N
1
‘W> N ﬁi :|07"' y 0i-1, 14,0441, 70>’ (7.0
i=1

where |0) denotes a state of a mode with no excitations and |1) is a state with a single excitation. The
subscripts ¢ € {1... N} refer to modes that are in spatially distinct locations, so that the concepts of “local
operations” and hence entanglement are unambiguously defined>%2>5.

In this chapter, we solve the problem of detecting the entanglement of a W state (and its noisy cousins)
in two steps. In section[7.3] we will focus on detecting and classifying entanglement within the subspace of a
fixed fotal number of excitations (in all modes together), namely one. In section[7.4] we complete the analysis
by including the remaining parts of the Hilbert space, the subspace with no excitations and the subspace with
more than a single excitation in total. Including both subspaces is crucial in the analysis. Earlier detection
schemes #2280 for I/ states in the context of photons were incomplete due to the neglect of states with
multiple photons. Moreover, I will discuss how to include imperfections such as losses, most relevant for the

actual implementation of our method (refs.3333, chapters|8} [9).

7.3 Genuine N-mode one-photon entanglement

N parties can be entangled in many different ways. In some papers, “genuine” N-party entangled states
include states that are mixtures of M-party entangled states with M < N, as long as such mixtures are
not biseparable along any particular splitting of the N parties into two groups (for instance, ref.%°l). Here,
however, we will classify such mixtures as M -party entangled states, and the name “genuine /V-party entan-
glement” in our case is reserved for states that can only be written as a mixture of pure states that all possess

N -party entanglement. Thus, our criterion for genuine N-party entanglement is more severe.

2Following convention, we set all phase factors equal to unity; our entanglement detection method, however, will not make any
assumption about the phase factors of the state actually generated in one’s experiment, see Eq.[7.14]
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Recently it has been suggested that uncertainty relations can be used as an entanglement criterion for

SN see also ref.?? for an experimental implementation using local ob-

finite-dimensional systems (refs.
servables on two qubits). The uncertainty principle sets up a fundamental limit on how accurately observables
of a quantum system can be simultaneously determined. For instance, if {Mi},i = 1... K is some set of
observables, then the measurement uncertainty in a given state p is the sum of variances of all observables
M; (e, ; 0M;(p)?). This sum is equal to zero, if and only if the state for which measurements of all {M;}

are performed on is a simultaneous eigenstate of all {MZ} If there is no such state (when the observables are

not all mutually commuting), then there is a positive number C' such that

K
> oM(p)* > C. (7.2)
=1

In particular, Hofmann and Takeuchi pointed out in 2003 that the existence of the lower uncertainty bound C
can be employed as a separability criterion'2l. Indeed, if for some fixed set of observables an inequality of
the form (Eq. holds for all separable states, then its violation is a signature of entanglement.

The uncertainty bound has another obvious but important property. Namely, one can never decrease
the average uncertainty by mixing different states. In other words, for any state p = > = Dy, pn and any

observable A, the following inequality holds true,
SA(P)® =) pmOA(pm)*. (1.3)

The proof is rather straightforward and can be found in ref. 12!,

With the uncertainty criterion at hand, we still have some flexibility over the types of observables to
choose. In principle, all observables can be divided into two groups — local and nonlocal. Whereas local
observables can be measured separately for each and every party and therefore tend to be easier to access in
an experiment, they often cannot reliably detect genuine multipartite entanglement. Nonlocal observables,
on the other hand, require a simultaneous nonlocal measurement of several parties at a time, which often
is experimentally challenging. Here, we show how experimentally accessible nonlocal observables can be
constructed to unambiguously detect genuine multipartite entanglement of the W -type.

The basic idea behind the construction of nonlocal observables is to choose them as projectors onto a
basis of [V-partite entangled states. Simultaneous eigenstates of these projectors are necessarily entangled
states, and the variance in the projectors is minimized for N-party entangled states. A sufficiently small
variance is then a sufficient criterion for genuine N-party entanglement. In order to illustrate this idea, we
will consider a system of four modes (K = 4) sharing a single photorﬂ The problem at hand is then to find a
set of nonlocal observables which allows to separate all four-mode separable and biseparable states from the

genuinely four-mode entangled states such as the W state of Eq. We note that the general construction

bSee chapter for an example of K = 2, whereby we studied the correspondence between the conventional entanglement measure
(concurrence) and the uncertainty relations.
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Figure 7.1: Verification interferometer for measuring sum uncertainty. Beamsplitter setup to project p
onto the four T states (Eqs. [7.4H7.7): four input modes are converted into four output modes by a set of four
50/50 lossless beamsplitters, numbered 1-4. From the count statistics of (ideal) detectors placed at the four
output modes one obtains the quantity A(p) defined in Eq. The effects of losses and asymmetries in the
beamsplitters, and non-ideal detectors are discussed in section@

for an arbitrary N can be done in a similar fashion. Moreover, the nonlocal observables for single photons
we use can be measured just using linear optics (beamsplitters) and non-number resolving photodetectors.

The Hilbert space of a system of four modes sharing exactly one photon is spanned by four basis product
vectors {|1000), |0100), |0010), |0001)}. This basis can always be rotated to a basis constituted by four
W -like states,

W) = %(|1000>+|o100>+|0010>+|0001>), (7.4)
Wy) = %(|1000>—|o100>—|0010>+|0001>), (1.5)
W) = %(|1000>+|0100>—|0010>—|0001>), (7.6)
W) = %(|1000>—|0100>+|0010>—|0001>). 1.7)

The mode transformation from the four product states to these four W -like states can be decomposed in terms
of unitary operations that can be implemented with beamsplitters and phase-shifters (see Fig. [7.1).

The next step is to choose four projectors onto the basis Eqgs. as nonlocal observables M; =
|W)(W;|, with i € {1,...,4}. Clearly, the only simultaneous eigenstates of all four operators M; are the
four states |WW;). The total variance of all M;’s vanishes for any one of the four states |I¥;). In contrast, for
product states, the total variance is bounded from below, since there is no simultaneous product eigenstate
of all the M;. Therefore, we can write down an uncertainty-based entanglement criterion using nonlocal

observables for any state p; within the subspace of a single excitation, in terms of the sum of variances of
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M;,
4
Ap) = DT (W Wil]?) = [Te(n W) (W)
i=1
= W) — (Wil Wi
4
= 1—Z<Wi|ﬁ1\Wi>2a 7.8
i=1

where the subscript 1 is there to remind us the state p; contains exactly 1 excitation.
To find the lower bound on A for unentangled states, it is sufficient to consider pure states, thanks to Eq.

For a pure state p; = |a)(a|, we have

4

1= [(Wile)|*. (7.9)

i=1

>
—
>
iy

I

The next step is to find the minimum of A(p;) by maximizing Y, [(W;|a)|* over all separable states
|a) containing a single excitation. There are three types of pure four-mode states that are nor four-mode

entangled[]

1. Fully separable pure states, which are products of four single-mode states. There are only four such

states within the subspace of interest, namely [1000), |0100), ..., |0001).

2. Biseparable states with at most two-mode entanglement. Here, the two modes must be in the vacuum
state, and the most general pure state in this class is of the form |00) ® (a|01) + b|10)), or similar states

by permuting the different modes.

3. Biseparable states with at most three-mode entanglement. Here, at least one mode is in the vacuum
state, and the most general pure state, up to permutations of the modes, is of the form |0) ® (a|001) +

b|010) + ¢[100)).

Given the most general pure state within each class, it is straightforward to calculate the 3 corresponding

minimum values of A(p1), and the results are depicted in Fig. For example, for any pure fully separable
state |), the overlap |(W;|a)|? = 1/4 for any 7, and so A(p1) = 3/4. For general mixtures of fully separable
states, this number gives the best possible lower bound on the variance. We note that the numerical results

from the next section confirms the results of Fig.

263

As an example, consider the Werner-like mixture of a W state’* and the maximally mixed state of four

“Note that there is only one class of four-mode entangled states with one excitation: i.e., states of the W -type a|0001) + b|0010) +
¢|0100) + d|1000). Our method can be used to detect any four-mode entangled state within the subspace of a single excitation, by
modifying the projectors appropriately.
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Figure 7.2: Minimum variances A for various types of four-mode pure states containing exactly one
excitation (photon). We find minimum variances Az(;4) = 0 for four-mode entangled states, Al(;g) = 5/12 for

three-mode entangled states, Al(f) = 1/2 for two-mode entangled states, and Al(,l) = 3/4 for fully separable
states.

modes with a single excitation, jmm = +(|0001)(0001| + [0010)(0010| + [0100)(0100] 4 [1000)(1000]),

p1(p) = pIW1)(Wi| 4+ (1 = p)pmm- (7.10)

Using the above criterion for A(p1(p)) = 3/4 — 3p?/4, we find that for p > 2/3 we can detect genuine
four-mode entanglement, and for p > /3/3 ~ 0.577 we detect at least three-mode entanglement. Moreover,
for any p < 1, the state p; (p) is entangled, even if just two-mode entangled.

If the number of modes N is arbitrary, then the minimum uncertainty A(p;) for biseparable (N — 1)-
mode entangled states can be shown, after some algebra, to be given by (2N — 3)/N (NN — 1). In the limit
of large NN, this bound rapidly approaches zero, hence making it practically impossible to distinguish in this
way genuine N-partite entanglement from mere (N — 1)-partite entanglement.

Finally, we note that similar uncertainty-based entanglement criteria can in principle be applied to all
types of N-mode states with fixed total number of excitations. If the total photon number is larger than 1,
however, the unitary transformation from the product states to a basis consisting of entangled states can in
general not be performed with linear optical operations only. Therefore, measurements in such a basis would

no longer be necessarily deterministic in that case.

7.4 Detecting IV states in an experiment

Due to experimental imperfections, an actual state, produced in a laboratory, is never a pure state with a
fixed number of excitations, such as, say, Eq. In experiments with atomic ensembles (chapter[J), a state
pw 1s routinely generated whose single-excitation part p; has a large overlap with a W state, but contains
a significant contribution from the vacuum py and from states with more than one excitation p>2. As a

conservative estimate, we can ignore coherent superpositions of states with different numbers of excitationsﬂ

d0ne can get rid of such coherences by local operations?Z.
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and hence we can write down pyy in a generic form

pw =ppo +ap1 + (1 —p — q)p>2, (7.11)

where the subscripts {0, 1, > 2} indicate the numbers of excitations. Typically, the magnitude of 1 —p — ¢ is
of the order of 1% or even less. The main source of contamination to the desired single-excitation part is the
vacuum. Moreover, p; is not necessarily a pure state, and is not necessarily a state of IV single modes either.

Even if the uncertainty measure from the preceding section would identify the presence of four-mode
entanglement in the state pq, this does not guarantee that pyy itself carries any entanglement. The standard
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counterexample®* is a four-mode state of the (unnormalized) form

[+) o< (0) + 1)), (7.12)

for which the one-excitation part p; is genuinely four-party entangled, although the state pyy itself is fully
separabld’] Therefore, in order to justify the presence of entanglement in an experiment, it is not sufficient
to measure only the variance A(p1) of the single-excitation part of the density matrix, but it is crucial to
measure the numbers {p, ¢}. Once p, ¢, and A(p;) are determined, one can check if there exists a completely
separable or biseparable state ps With the same values of p, ¢, and A(p1). If no such state exists, then one
can conclude unambiguously that py is entangled.

More precisely, for fixed values of p and ¢, we would like to find the minimum possible value for the
variance, Ay, consistent with the various sorts of biseparable or fully separable states. In the following, we
will plot the results for the case where ¢ = 0.1, which is the relevant case for the experiment (ref.*2, chapter
. We will find A, in that case as a functionof r := 1 —p — q.

Before discussing in turn the various classes of separable and biseparable states, we make several remarks:
We note that A, within each class cannot increase with decreasing g. The reason is that given any state p, we
can always mix in the vacuum p( without changing the variance A, and without increasing the entanglement.
But this mixing operation clearly does decrease ¢q. Hence, A, cannot increase with decreasing g.

Similarly, we could mix in a fully separable state containing more than a single photon in some given
mode, e.g., a tensor product of the vacuum and one mode with 2 or more photons. This again does not affect
A, and does not increase entanglement, but does decrease ¢. For this reason, in our attempts to find the
minimum variance, we do not need to consider states with more than a single photon in any given mode, as
those states will have a larger value of A than the minimum possible for given q.

Moreover, we could take a state of NV single modes and convert it into a state of multiple modes in N
locations, by locally applying a random unitary operation. This local operation does not move a state up the

entanglement hierarchy and does not affect any of the quantities A, ¢, and r. Thus, excluding fully separable

¢To resolve this conundrum, we note that postselecting one photon in total constitutes a nonlocal filter. Thus, projecting p1 out of
Py can increase the amount of entanglement?# and lead to a spurious detection of entanglement when there was none.
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states and biseparable states of NV single modes is sufficient for detecting entanglement.

Because p; is subnormalized to g, we have, instead of the inequality (7.3)), the inequality
gA(p1) = Y PmmA(pm.1), (7.13)
m=1

where ¢ = > PmGm and p = > pmpm. The subscript 1 means the single-excitation component pq
(pm,l) Of ,5 (/A)’m)
Finally, instead of projecting py onto the four states (Egs. '7."7), in an experiment one would really

project pyy onto four states of the form,

1 . ) )

wy) = 5(|1000>+e“f’1\0100>+el¢2|0010>+6w53|ooo1>),
4 1 i i i

W3) = 5(]1000) — ¢**{0100) — €%2|0010) + €'**[0001)),
1 . . _

W3) = 5(11000) + €'?110100) — €'*2{0010) — €*?*{0001)),
1 : . _

LARES 5 (11000) — €'1]0100) 4 €**2|0010) — €2]0001)),

(7.14)

and vary over all three phases ¢, k € {1, 2,3} (by inserting phase-shifters in the appropriate modes) to find
the minimum variance Ay, thus optimizing the entanglement test. Our method is otherwise independent of

which values of ¢, attain that minimum.

7.4.1 Fully separable four-mode states

It is relatively easy to account for all separable and biseparable states in the case of four modes. Let us first

calculate p, ¢, A(py) for fully separable states. We first consider pure states |¢s) of the form

4
Ys) = ®M (7.15)

for complex parameters €;. As argued above, we do not have to consider states with more than a single

excitation in any one mode. For the pure state |1);), a corresponding density matrix can be constructed from

/35 == |7/)9><7/}9|
Ps = PPs,0 + qPs1 + TPs >2, (7.16)

where

S
ngl+|€i|2
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and
4
g=p> el
i=1

We can visualize a set of pure completely separable states, and in particular its border, by plotting values
of A(ps,1) versus r for a fixed value of the single-excitation probability g, by randomly varying over all
values of ¢; consistent with that value of ¢. By symmetry, it is clear the minimum variance will be obtained
for real parameters. The result is shown in Fig. and we can clearly identify the region of full separability,
the lightly shaded area (colored in yellow). The minimum value of A(p; 1) atr = 01is 3/4 in agreement with
our previous discussion (see Fig. . Even though A(p,,1) approaches zero for sufficiently large values of
rﬂ, the density matrix p remains fully separable@

Moreover, we manage to find the pure states which reside on the pure-state boundary, indicated as black
dots in Fig. The boundary can be parameterized by two parameters, either ¢ and r, or, more simply, by
€ and €. Namely, the extremum values of the variance for pure fully separable states are attained for states of
the form

[e.e) oc (J0) + €]1))(|0) + &[1))®3. (7.17)

One may notice the lower border for pure states in Fig. [7.3]is not convex as plotted. This indicates that points
corresponding to certain mixed states may fall below the pure-state boundary. Thus, we have also tested
randomly chosen mixtures of random pure states, as well as mixtures of states on that boundary. And some
mixed states (plotted in green) indeed have a smaller variance. Thus, the minimum variance is attained by
mixed states in this case, and the correct lower bound is indicated in red. This lower bound coincides with the
convex hull of the graph for pure states (i.e., fs convex = @1]cv1){@1| + az|az){asl, where |a1 2) € {|1ee)}

are the minimum uncertainty states in the pure-state boundary).

7.4.2 Biseparable states with at most two-mode entanglement

The next class of states to consider is biseparable states: i.e., states that can be described by a density matrix
Dbis = % p @ pB. The division into subsystems A and B in the case of four modes has two distinct
possibililt:iés—either system A represents one of the modes and system B consists of the remaining three
modes (e.g., bipartition (1|234)) or both systems A and B represent rwo modes each (e.g., bipartition 12|34).
We will study the latter case first. We represent a pure biseparable state with at most two-mode entanglement

by

[V)ag = |¥)a ® V)8, (7.18)

fSee also the last subsection of this section.
£See the example mentioned above.
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Figure 7.3: Scatter plot (in yellow) of the variance A(j, 1) of the single-photon part for randomly cho-
sen, pure, fully separable states versus the probability of finding multiple excitations, r for a fixed
single-photon probability ¢ = 0.1. The black crosses are data points for a particular subset of pure states,
attaining the extremum values of the variance for the set of pure states. Also plotted is the variance for ran-
domly chosen mixed states (in green). For this particular value of ¢ those values for the variance fall within
the convex hull of the graph for pure states (the red line is the convex hull of the black curve). The region be-
low the lowest red line then corresponds to entangled states (as indicated by the word “ENTANGLEMENT”):
but this includes two-mode, three-mode, and four-mode entanglement.

with both two-mode states 1), for k € {A, B} of the form

1) & o< |00) + €x]01) + €] 10), (7.19)

where we included phase factors into the parameters €, and €/,.

For the same reason given in the preceding subsection, we do not have to consider contributions from the
terms with more than a single excitation in any one mode. The expression for the variance A is symmetric
under the interchange of any two modes, and so it is immaterial which two modes constitute system A. We
again vary over the complex parameters {¢, €}, } for fixed value of the single-photon probability ¢ = 0.1 to
find the set of all pure biseparable states with at most two-mode entanglement, as a function of the multiple-
excitation probability r. By symmetry, the minimum variance is attained for real coefficients.

The lightly-shaded (yellow) area in Fig. [7.4]then depicts the set containing all biseparable states with at
most two-mode entanglement. Indeed, we have checked explicitly that points corresponding to mixed states
fall within the shaded region, unlike in the preceding case of fully separable states. The shaded region of Fig.
includes that of Fig. simply because the set of fully separable states is a subset of the set of states
with at most two-mode entanglement. The minimum value of A at » = 0 is 1/2, confirming the result from
Fig.

Just as in the preceding subsection, we find the pure states living on the boundary. The boundary is again

parameterized by two parameters, € and €. Namely, the minimum variance is attained for biseparable states
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Figure 7.4: Scatter plots of the variance of the single-photon part for randomly chosen biseparable
states with at most two-mode entanglement. The graph is convex, and points corresponding to mixed
states (plotted in green) fall within the yellow region. The region below the black curve corresponds to at
least three-mode entanglement.

of the form

e 2) ap o< (|00) 4 €]10) + €[01))(|00) 4 € 10) + €01)).

In this case, it is straightforward to extract the minimum variance as a function of ¢ and r:
Amin = 1/2 = 2r(1 = q)/¢* + 2%/ ¢*, (7.20)

which is indeed almost linear in » when » < 1. Moreover, this boundary is convex. We can rewrite the

minimum variance more compactly as
Amin = 1/2 = 2rp/q*. (7.21)

7.4.3 Biseparable states with three-mode entanglement

A pure state of the entire four-mode system (with up to two excitations) that has at most three-mode entan-

glement can be described by the following biseparable vector,
[y ap o (]0) + €1]1)) ® (]000) + €2|100) + €3]010) + €4]001)), (7.22)

where we have arbitrarily chosen the first mode to be the system A (bipartition (1]/234), with single mode
A = 1 and composite mode B = {234}). The analysis, however, is symmetric with respect to our choice
for the system A. In the second term, we do not have to consider states with more than a single photon in
system B. Although the measurement determining whether there are multiple excitations in the three modes

comprising system B is not a local filtering operation in the usual sense, it is local with respect to the bipartite
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Figure 7.5: Scatter plots of the variance of the single-photon part for randomly chosen biseparable
states with at most three-mode entanglement for ¢ = 0.1. Points corresponding to mixed states fall within
the lightly shaded (yellow) region, and are plotted in green. The region below the black curve corresponds to
states with genuine four-mode entanglement.

cut A|B, which is the relevant cut in this case.

The result for ¢ = 0.1 is plotted in Fig. Like in the case for fully separable states, we observe the
existence of points whereby the values of A () are close to zero. Again, we should not misjudge the presence
of entanglement in these states, since the states we are operating with are biseparable by construction. The
region for r larger than =~ 2 x 1073, where the minimum variance no longer is a decreasing function of r,
contains no physical states with smaller variance.

The lightly-shaded (yellow) region depicts the convex set of biseparable states with at most three-mode
entanglement, and includes the set of fully separable states, although (interestingly) not necessarily the set
of states with two two-mode entangled states (it does for ¢ = 0.1). We have explicitly verified that points
corresponding to mixed states (plotted in green) fall within the yellow region. The minimum value of A at
r = 0 is perhaps a little hard to discern, but is indeed equal to 5/12, the value obtained analytically in the

preceding section (Fig. [7.2). The lower boundary (plotted in black) corresponds to states of the form
[)ap o (]0) + €1)) @ (|000) + €]100) + €|010) + €[001)), (7.23)

with real and positive € > €.

Since the boundary of minimum variance is the lowest for this type of biseparable states, it is the rele-
vant boundary for the purpose of detecting genuine four-mode entanglement. For this reason, we plot these
boundaries for several values of q.

For increasing values of ¢, the minimum possible variance for 3-mode entangled states increases and
reaches the limit of max(Apy,) = 5/12 for ¢ — 1. Figs. approach this limit for values ¢ = 0.4
through ¢ = 0.7to ¢ = 0.9.
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Figure 7.6: Scatter plots of the variance of the single-photon part for randomly chosen biseparable
states with at most three-mode entanglement for ¢ = 0.4. Points corresponding to mixed states fall within
the lightly shaded (yellow) region, and are plotted in green. The region below the black curve corresponds to
states with genuine four-mode entanglement.
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Figure 7.7: Scatter plots of the variance of the single-photon part for randomly chosen biseparable
states with at most three-mode entanglement ¢ = 0.7. Points corresponding to mixed states fall within
the lightly shaded (yellow) region, and are plotted in green. The region below the black curve corresponds to
states with genuine four-mode entanglement.
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Figure 7.8: Scatter plots of the variance of the single-photon part for randomly chosen biseparable
states with at most three-mode entanglement ¢ = 0.9. Points corresponding to mixed states fall within
the lightly shaded (yellow) region, and are plotted in green. The region below the black curve corresponds to
states with genuine four-mode entanglement.

7.4.4 Full analysis

Based on an exclusion analysis, a practical inseparability criterion can be formulated. In an experiment aimed
at detecting a genuinely four-mode entanglement, (i) one measures the diagonal elements r, ¢, and (ii) the off-
diagonal elements for A. Then one plots, according to the previous considerations, values of A versus r for
all separable and biseparable models, feeding in the value of ¢ attained from the experiment. The measured
values of p, g, and A are represented by a single point in that plot. If that point lies outside all three shaded
regions of the model plots, the state produced in the experiment must carry genuine four-mode entanglement.
Partial conclusions about entanglement can be reached when the point falls outside some and inside other
regions.

In particular, if the measurement point lies outside the shaded region of Fig. but inside the shaded
regions of Figs. and [7.3] one can only conclude that one has an entangled state, but it could be merely
two-mode entangled. If the point falls outside the shaded regions of both Figs. and but inside the
shaded region of Fig. one has at least three-mode entanglement. Of course, if the point falls inside the
shaded region of Fig. no firm conclusion can be reached about entanglement, as there is a fully separable
state consistent with one’s values for p, ¢, A. In addition, for the case of two modes, there is an analytical
analogue of the current scheme of uncertainty relations by way of p, ¢, A and bipartite concurrence (chapter
[8).

We plot the three minimum variance boundaries for different small values of ¢ as a function of a scaled
variable 3. := 8rp/3¢? (see the next subsection for an explanation for this choice of variable) in Fig.

One sees the boundaries depend only weakly on that parameter.
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Figure 7.9: Boundaries for the minimum variance for the three types of biseparable states as functions
of y. := 8rp/3q> for 10 values of ¢ = 0.02,0.04,...0.2. The reason for choosing this particular vari-
able y. is given in section The lowest-lying (green) curves correspond to 3-party entangled states, the
highest-lying (red) curves correspond to fully separable states, the middle (blue) curves correspond to bisep-
arable states with 2-mode entanglement. The variance depends only weakly on ¢ for the red curves, and is
independent of ¢ for the green and blue curves.

7.5 Some necessary conditions for entanglement

Let us finally consider the conditions on entanglement in the simple situation where the variance A(pq)

vanishes and where ¢ is not too large. We consider the same three classes of unentangled states as before.

1. Fully separable states with A(p1) = 0 must be of the form (|0) + €|1))®*. For such states, the point at

which the variance is zero is characterized by

8rp ¢, 9
-5 =14+=+_—. 7.24
3 q? + 6p  96p (7.24)
For small values of g, we can give the approximate relation, which is valid for fully separable states,

Ye 2 1,

with y. = 8rp/3q? being the quantity appearing on the left-hand side of Eq. A necessary

(although not sufficient) condition for any type of entanglement is then simply
Yo < 1.

For Fig. in which we took ¢ = 0.1, this places a strict upper limit on 7 of 7 < 4.125 x 10~ for
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entanglement to be detectable through A.

2. Biseparable states with A(p;) = 0 and at most two-mode entanglement must be of the form (]00) +
€/01) + €]10))®2. For such states, the boundary of zero variance is at y. = 2/3, and hence all bisepa-

rable states satisfy

[SVRN )

Ye =

For Fig. in which ¢ = 0.1, this places a strict upper limit on 7 of r < 2.75 x 10~ for entanglement

involving at least three modes to be detectable through A.
3. Biseparable states with A(p;) = 0 and at most three-mode entanglement must be of the form (|0) +

€]1)) ® (]000) + €|001) + €|010) + €]|100). For such states, we similarly derive

Ye >

| =

For Fig. in which ¢ = 0.1, this places an upper limit on r of r < 2.06 x 10~ for entanglement to
be detectable through A.

In order to demonstrate genuine four-mode entanglement one must violate all of these conditions. That is,

one must violate the strongest of these conditions, and hence one must have

1
ve < 5. (7.25)

This condition for four-mode entanglement is necessary but not sufficient for nonzero values of A(p1). The
form of the conditions also indicates why the scaled variable y., used in Fig. is a useful quantity for

small ¢ for fully separable states, and for biseparable states irrespective of the value of q.

7.6 Experimental verification of mode entanglement

7.6.1 Losses and asymmetries

So far we have assumed that the variance measurement device is ideal: beamsplitters (see Fig. were
assumed lossless and perfectly balanced, and detectors were perfect. In this subsection, we relax those
conditions and describe the modifications necessary to include these imperfections. First, we consider the

effect of imbalanced beamsplitters.

7.6.1.1 Imbalanced beamsplitters

Suppose, then, we have the same setup as depicted in Fig. but with the four beamsplitters having reflec-

tion and transmission probabilities |¢;|? and |rx|? not necessarily equal to 1/2. Consider one output mode,
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say the top one (mode #1). There is one path a photon can take from the input mode #1 to reach the top
output mode: it has to reflect off of beamsplitter #1 and it has to reflect off of beamsplitter #3. The ampli-
tude for that path is then 7173, in terms of the reflection amplitudes of beamsplitters #1 and #3. Here we
ignore phase factors due to propagation (they can be trivially inserted in the end). Similarly, a photon from
input mode #2 can reach the top output mode along just one path, with amplitude ¢7r3. Writing down the
amplitudes for photons starting in input modes #3 and #4 shows that a photo-detection at the top output

mode projects onto the (input) state
[W1) = 7175]1000) + t175]0100) 4 r2t5]0010) + t2t5]0001). (7.26)

This is a properly normalized state, even if the beamsplitters are not balanced. The normalization follows
from the relation |rg|? + |t|*> = 1 for lossless beamsplitters.
We can similarly write down the states onto which one projects if detecting a photon in one of the remain-

ing output modes:

W) = t174]1000) + 7174]0100) + t5t4|0010) + rot4]|0001), (7.27)
W) = r1t3]1000) + t1£5]0100) + 7973]0010) + to75/0001), (7.28)
|V~V4> = t1t4|1000> + T1t4|0100> + t2’f’4‘0010> + 7‘27‘4|0001>. (7.29)

These states, too, are normalized. Moreover, the four states are all orthogonal, as follows from the unitarity
relation ¢} 7y, + t57; = 0. One can still calculate the variance of photodetector counts (albeit with reduced
sensitivity to detect |1¥)), using the modified projectors onto the W states, but that variance will not give as
much information as in the balanced case about four-mode entanglement. For example, consider the extreme
case of a mirror replacing beamsplitter #4: that is, assume now that 4 = 1 and ¢4 = 0. Then states |W2> and
|W4> are no longer four-mode entangled states, but only two-mode entangled states. Thus, certain two-mode
entangled states would give rise to a zero variance in this extreme case.

This implies that even if one’s experiment cannot use perfect 50/50 beamsplitters, one should at least try
to make them as balanced as possible. In such cases, one needs in general a lower variance A than in the ideal

balanced case to conclude one has four-mode entanglement due to the reduced sensitivity of the projectors.

7.6.1.2 Losses

Now let us consider losses. We can model linear losses (both propagation losses, and inefficiencies of the
photodetectors) by imagining lossless paths but with additional beamsplitters reflecting away some portion
of the light in the lossy paths. The output of those additional beamsplitters does not lead to the output
detectors, but to other (unmonitored) output modes which are traced out. The overall transformation from

input to output is still unitary, which implies there must also be additional input modes (just as many as there
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are unmonitored output modes). A photodetection in one of the desired output modes projects onto a set
of orthonormal states on the larger Hilbert space of all input modes. If we write down the projections of
those states onto the four input modes of interest, we will end up with sub-normalized states. For example,
considering for the moment (see the next subsection where we take into account multiple excitations) only

states with exactly one photon, a detection in the top output mode projects py onto the state
|W1/> = T11’I“1’/‘3|1000> + T21t17“3|0100> + T317‘2t3|0010> + T41t2t3|0001>, (7.30)

where the transmission amplitude T}, for k € {1,2,3,4} is the product of all loss amplitudes encountered
by a photon propagating from input & to the top output detector (including the inefficiency of the detector).

The variance we are interested in is conditioned on detecting (at least) one photon in the desired output
modes. Once we detect a photon in the top mode, we renormalize the state |W1’> and project onto:
W1)

W) = (7.31)

W}') for k = 1...4 are, therefore, properly normalized,

The four states onto which we project conditionally,
but they are not orthogonal, unless all losses are balanced (i.e., if Ty, = const. forall [,k € {1...4}).

Again, we can still use a variance based on the modified nonorthogonal projectors, but that variance will
give less information than in the ideal lossless balanced case. For instance, if all photodetectors but one are
completely inefficient and never detect any photon, the variance would be zero for any input state. Thus, in
an actual experiment, one would have to make the losses as balanced as possible in order for the variance to
contain as much information about four-mode entanglement as possible. Of course, one would also like to
limit the size of the losses for various different reasons.

With the new projectors onto the nonorthogonal states |W,g’ ) in hand, we can perform the same calcula-
tions as we did in the ideal case: find the minimum variance consistent with unentangled input states, input
states with two-mode entanglement, and input states with three-mode entanglement, respectively, for fixed
values of ¢ and . We display three illustrative examples (for ¢ = 0.1): (i) in Fig. we assume no losses
but unbalanced beamsplitters, (ii) in Fig. we assume losses, but balanced beamsplitters, and (iii) in Fig.
we show the net effects of both losses and imbalances. All figures show the tendency of the minimum

variance to decrease compared to the ideal lossless and balanced case, thereby resulting in reduced sensitivity.

7.6.2 Measured variance vs A(p;)

In the presence of losses, the measured variance, A,,, is not just due to the single-excitation part, but from
the multi-excitation part of the input state as well. Thus, the measured variance has to be corrected (upwards
in fact) in order to find an estimate for the variance A(p;) due to the single-excitation part, because that is

the quantity we used above to detect entanglement.
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Figure 7.10: Minimum variance for imbalanced beamsplitters. We find the minimum variance curves for
the case where all beamsplitter ratios are 55/45 (dashed lines) rather than 50/50 (solid lines).
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Figure 7.11: Minimum variance for imbalanced losses. We show the minimum variance curves for the
case where there is one lossy path with transmission probability of 60% (a typical parameter) (dashed lines),
compared to the ideal lossless case (solid lines).
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Figure 7.12: Minimum variance for imbalanced beamsplitters and losses. We show the minimum variance
curves for the case where there is one lossy path with a transmission probability of 60% and unbalanced 55/45
beamsplitters (dashed lines), compared to the ideal lossless and balanced case.

We discuss a simple case (balanced losses throughout the system and the use of non-number resolving
threshold detectorﬁ), where we find that we simply have to multiply the measured variance algebraically
with a factor ¢ > 1 to obtain an upper bound on A (see chapter 9] for a more efficient numerical method to
conservatively correct for the measured variance). That is, the variance A is upper-bounded by cA,,. Let us
now evaluate the correction factor c.

Consider the propagation of the purported experimental stat

pw = popo + p1p1 + p>2p>2- (7.32)

Under balanced losses (which can be characterized by a single transmission efficiency |T'|?), this state trans-

forms to pr where

pr = Phpo + PG A + (1 4)pY) + plopl). (7.33)

Here, f)gi) is the 1-photon subspace of p originating from the ¢-photon p; subspace of [)w fori € {1,2},

and ﬁ(f% is the 2-photon subspace after the transmission. To the leading order of [)(f% (neglecting 3-photon

(r)

T2
and 4-photon subspace{[), {ph, v, b} are

po=po+ (1= [T]*)p1 + (1 = [T|*)*p2 (7.34)

"The effect of imbalanced beamsplitters in the presence of balanced losses is easily included in this calculation. The final bound,
including imbalanced losses and imbalanced beamsplitters, has the same form Eq. with the same expression for g1 = p/ ¢} /Q.

iHere we have changed the notation to make it easier to keep track of the meaning of all symbols

iIn chapters we include the higher-order terms up to one photon (excitation) per mode (ensemble) into our analysis.
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p1 = [TPpr +2|T1*(1 = [T*)py (7.35)
py = [T|'ps, (7.36)
and ¢ is given as
T 2
q/ | | D1 (7.37)

L TRp 2T - [T1P)ps
Thus, if we denote the normalized probability of the detector (assumed to be non-number resolving) in
mode k finding (at least) one photon by Pg, then we have

Piay 51, Pil—aq1) ;) | Ph o2
p, =L p) PIEZ D) p) | Do p2) (7.38)
Q 1,k Q 2,k Q 2,k

where Q = p} + p}. Here, Pl(lk) (P(’lk) ) is the probability of a 1-photon in output mode & originating from the
1(2)-photon subspace p1 (p2), and P2(2k) is the probability of 2-photon in output mode k. To be conservative
(for our purposes of finding a sufficient condition for entanglement), we assume that the two photons are
directed towards one detector at a time so that we cannot distinguish Pl(lk) from P2(2k) . By denoting q; =
Piqi/Q as the probability of detecting desired events and X}, as the normalized probability of detecting

undesired events (that is, PQ( 1,2 and P2(2k) ), we obtain
Py =q P+ (1 - q)Xk. (7.39)

The measured variance A, is given as

Ap=1-%" P2 (7.40)

On the other hand, the 1-photon variance A is defined as

A(pr) =1-> (P2 (7.41)

k
As a conservative correction to A,,, we assume that the unwanted events (X}) are all directed towards the
output mode j which contains the maximum 1-photon probability Pl(,lj) (i.e., X; = 1and X}, = O for k # j).

This way, the measured variance is lower than the variance A. Thus, our conservative bound gives then

Ap=1—(@PY +(1-q)? > (P2 (7.42)
Py

Using the inequality 2(1 — Pl(}j)) >(1+ Pl(}j))(l - Pl(lj)) =1- (Pl(}j))Q, we obtain

A > @A+ (1 —q) D (P > aA. (7.43)
k#j



Therefore, we obtain a correction factor of

1
c=—, (7.44)
0
where
Pidi D1
G = = . (7.45)
TQ  m+C—[TPpss
Note that in the limit of pg ~ 1 the correction factor asymptotically converges to
3 2
c~1+ §(2 —|T)*)p1 R. (7.46)

7.7 Summary and Discussion

We theoretically demonstrated how to verify N-party entanglement of W states or states lying close to W/
states, in the case quantum information is encoded in the number of excitations per mode. Our method takes
into account the presence of the vacuum state, as well as multiple excitations; moreover, it takes into account
losses during the verification measurements, as well as imperfect beamsplitters. The method applies to any
number of modes, but we focused on four modes for illustrative purposes, as the method was applied in actual
experiments (refs.®?%>, chapters to four modes (atomic ensembles). A relatively straightforward set of
measurements allows one, in that case, to distinguish genuine four-party entanglement from three-party en-
tanglement, which in turn can be distinguished from two-party entanglement and fully separable states. One
must obtain estimates of three parameters: a variance A determined from the single-excitation component of
the state, the single-photon probability g, as well as the multi-photon probability r. For example, the simple
condition of Eq. is a necessary condition for genuine four-party entanglement (where our definition of
genuine multipartite entanglement is more severe than usual), which involves only r and q. To obtain suffi-
cient conditions for multipartite entanglement, one must also include the value of A in the analysis, forming
the parameter space for the nonlinear, nonlocal entanglement witness {A, y.} (ref.??, chapter @)

The measurement of A combines the various modes by simple beamsplitters, and is thus nonlocal. In
this way, one does not need local oscillators, which one would need if the entanglement verification method
used local measurements only 2282332035272 Tn our case, the modes interfere with each other, rather than with
external reference beams. Thus, our method cannot be applied to eliminate local hidden variable models
(through Bell inequalities, for example, in the bipartite case), but it can be applied to verifying entanglement,

which is a very different beast indeed’1?.
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Chapter 8

Multipartite entanglement for one
photon among four optical modes

This chapter is largely based on ref.?>. Reference™ refers to the then current literature in 2009 at the time of

publication.

8.1 Introduction

Investigations of entanglement for two quantum systems have answered many fundamental questions in quan-

2191273

tum physics and revealed powerful new capabilities of quantum mechanics within the field of quantum

131062 see also chapter . Many of these advances have used well-tested methods

information science (refs.
for the characterization of quantum entanglement in bipartite (i.e., two-component) systems“**'', Entangled
states of more than two systems enhance our knowledge of quantum theory, as new classes of states are avail-
able®V20%210  Beyond applications to conventional quantum computation®, exotic multipartite states have
emerged as crucial resources for new directions in quantum information processing such as measurement-

22213 quantum secret sharing?’*, and quantum simulation®. Despite the ex-

based quantum computation
traordinary promise that they offer, unambiguously detecting multipartite entangled states is still a major
challenge from both an experimental and a theoretical standpoint.

Genuine N -partite entanglement is realized only with the simultaneous participation of all N of the con-
stituent systems. The exponential increase with NV in the amount of information required to describe the over-
all quantum system, while exceedingly beneficial for large-scale quantum information protocols”, makes the

209210/ and detecting such entangled states extremely difficult*?. Still, there are prescribed

task of classifying
methods to detect entanglement in select classes of multipartite states that generally rely on reconstructing
the density matrix p. Linear entanglement witnesses supplemented by tomography of p have been used to
detect entanglement in six“" and eight*’® atomic ions, as well as for hyper-entangled photons?’Z. A serious

drawback of quantum-state tomography is the prohibitive number of measurements and their accuracies that

are required with increasing N.
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In this chapter, I will focus on a specific class of quantum states in which exactly one photon is coherently

shared among N distinct optical modes in the form of
1 . ) )
W) = 5[(|1000> + €%110100)) 4 €'?(|0010) + €**2|0001))], (8.1)

shown here for N = 4, and with the relative phases ¢, ¢1, @2 of the modes. This is a so-called W state, which
plays an important role in quantum information protocols with photonic and matter qubits, as its entanglement
is known to be robust against losses (e.g., tracing over a set of modes K < N — 2).

To detect entanglement for pure states in the form of Eq. and their mixed state counterparts py, we
introduce the use of fundamental quantum uncertainty relations (see chapter[7). It has long been known for
continuous variable systems that the uncertainty principle for non-commuting observables defines a boundary
of measurement precision that can only be crossed by entangled states2/8272 This observation has formed

the basis of numerous Einstein-Podolsky-Rosen type experiments<5V

, including the unconditional telepor-
tation?®l. For discrete variable systems as in Eq. the uncertainty principle can be recast as a sum of
uncertainties in certain physical observables that must always be greater than some minimum bound A, for
all unentangled states, whether pure or mixed (refs.*812l, chapter|7).

As a first test of this novel concept, we created a bipartite entangled state analogous to |WW). We veri-
fied the entanglement both by violation of an uncertainty relation®® and by the well-established method of

2IB4I3T0T8 see also chapters [2] and [4). The precise agreement of these two measurements

concurrence (refs.
over a wide range of parameter space attests to the reliability of uncertainty-based verification for entangle-
ment of discrete variables (Figs. [.Ip and[8.2). We then extended our setup to create multipartite entangled
states that coherently share a single photon among four optical modes and applied our verification protocol
to them. Varying the phase coherence and the photon statistics of a candidate state py allowed us to explore

the boundary between separable and entangled states, including those that separate four-fold, three-fold, and

two-fold entanglement.

8.2 Nonlinear, nonlocal entanglement witness by way of quantum un-

certainty relations

Our verification protocol is based on an exclusion principle for which N-mode entanglement can be unam-
biguously detected by simultaneously measuring physical observables { M; } (projectors) withi € {1,..., N}

more precisely than is possible with only (N — 1)-mode entangled states and their mixtures=312l, Specifically,
N N

we consider a sum uncertainty relation A = Z(Mf} —(M)?=1- Z(Mi)Q, and its lower bound AI()K),
i=1 i=1
which is obtained for the one photon subspace of all states with at most X' < N mode entanglement. For

any K -mode entangled state the inequality A > AIEK) holds; therefore a violation of this inequality serves



EOM
X
e é D1
A (A/z)v D,

Sum uncertainty A
(A/2)

v
Ml PBS,
‘ %z ’ % ]
1 3
D D
Ll %PBSZ ’ !

Photon statistics y.

(r72), PBS 1 D,
F 1
7,
PBS | 3 ®D3
- 2
4 D,

Figure 8.1: Diagram of our entanglement generation and verification setups. a, A single-photon pulse is
transformed from a single input into an N-mode entangled state by Ug.,, and entanglement is verified with
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the operation User. b, Details of the setup for bipartite entanglement. Single photons are coherently split to
occupy the two modes defined by the interferometer BD;-BD5 with the relative phase ¢ of pyy controlled
by the EOM. By setting the waveplate (\/2), at 0°, the occupation of the individual modes is detected at
D; and D2, and we obtain the two-photon components of py,. With a setting of (A\/2), at 22.5° single
photon interference occurs at PBS;, from which we obtain A; see also Fig. @A ¢, Details of the setup
to create and verify quadripartite entanglement. The sequence of beamsplitters BDy and BD; generate the
optical modes 1-4 which share a single photon. To measure A, we jointly optimize the relative phases in the
verification interferometers for interferences at PBS; » ((A/2)y at 22.5°) and BS; 2 to minimize the photon
probability of all but one output mode. Here switching between measurements of A and y,. requires the
indicated reconfiguration of fiber-optic components.

as a sufficient condition for genuine N-mode entanglement (see section [7.3). The projective operators are

{M;} = {|[W:)(W;]} with

(]1000) + €*#1]0100) + %72|0010) + €%3]0001))
(]1000) — €%1]0100) — €*#2|0010) + €#2|0001))
(|1000) — €¥1]0100) + €*#2|0010) — €**|0001))
(]1000) 4 €*#1]0100) — €*#2|0010) — ¢*#3|0001))

(8.2)

—_ ~ ~ ~
Il
Nl= NI= N= N

for the case of N = 4, and with phases {3} where j € {1,2,3}. They are optimally sensitive to entangle-
ment, for particular settings of 3;, since the entangled state |17} in Eq. is the only simultaneous eigenstate
of all projective operators M; (ref38, chapter.

In our work, the purported N-mode entangled state (51 ) analogous to |V} is generated via the operation

Din —> pw (Fig. [8.1p) on an input state py,. Similarly entanglement is verified with py LIEN Pout- We
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implement M; for the case of two (Fig. ) and four (Fig. ) optical modes using beamsplitters252
and photodetectors. The limit A — 0 indicates a significant overlap of the state gy with only one of
the projectors M;. In particular, for any choices of ¢, ¢1, @2 that define Eq. and the three corresponding
orthonormal states, our measurements of ; would yield A = 0 for optimal settings of the phases 3;. A small
A corresponds to a large statistical imbalance in the event distribution of the output optical modes, with one
mode strongly preferred over the others. Conversely, if the generated state contains a photon which occupies
one mode, e.g. |[1000), our measurements would yield A = 0.75. Due to the presence of transmission losses
and beamsplitter imbalances in our setups, the projectors |W;)(W;| evolve into mixed states with significant
vacuum components, but genuine multipartite entanglement can still be robustly detected for py (ref.2%, see
section[8.TT).

To determine theoretically the boundaries A iK) for N-mode entanglement, we calculate A for all possible
admixtures of states containing at most ' = N — 1 mode entanglement. The presence of more than one
excitation in pyy may allow significant overlap of its one-photon subspace with |IW) (chapter , leading to a
spurious detection of entanglement. Therefore, it is necessary to determine the contamination of the state pyy
due to multiple excitations. By invoking local filtering operations, we are justified in confining our analysis
to the reduced density matrix ﬁg,) = popo + p1p1 + P>2p>2 which contains no more than one photon per
mode, while still being guaranteed a lower bound of entanglement?”10_ In our experiments, we measure the
photon probabilities pg, p1, and p>2 that characterize the occupation of the vacuum subspace py, the single-

photon subspace p1, and the subspace containing multiple excitations p>». The degree of contamination due

to more than one excitation is quantified by the parameter y, = 2(+") p;@ ° which is normalized to the case
1

of independent and balanced coherent states for which y. = 1. The observation of measurement uncertainty

A below the threshold Al()K) together with a determination of y., then, manifestly confirms the presence of

genuine (K + 1)-mode entanglement.

8.3 Experimental procedure

Our experimental starting point is the generation of heralded single photons via Raman transitions in an op-
tically dense atomic ensemble of cesium atoms® (section . Two-mode entangled states are created by
coherently splitting a single photon into parallel modes with beamdisplacer BD; (Fig. [8.Ip); the modes’
relative phase, analogous to ¢ in Eq. is controlled by an electro-optic modulator (EOM). The spatially
separated modes are recombined at BD, and coupled into a single-mode optical fiber, with each mode en-
coded in the polarization bases |H) and |V'). Achieving entanglement requires a constant relative phase of
the optical modes. Absent any fluctuating drive voltage on the EOM, the beamdisplacer pair BD;—BD- forms
a passively stable interferometer (refs.*#36, chapter[3). By driving the EOM with a randomly oscillating volt-
age, the phase coherence of the modes is destroyed, and any entanglement between them is lost. This setup

provides a calibrated tool to explore the boundary between separable and entangled states.
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8.4 Characterization of bipartite entanglement by concurrence and

uncertainty relations

Following the generation of bipartite states, we search for the signatures of entanglement using our verifi-
cation protocol. To measure A, we rotate the polarizations of both modes by 45° and interfere them with a
polarizing beamsplitter (PBS;). We record the photoelectric detection events at single-photon counters Dy
and Do, and convert them to the normalized joint photon probabilities F;; (i.e., ¢ photons for mode 1 and j
for mode 2). Varying the relative phase of the modes after they exit BDy produces the interference fringes
shown in the inset to Fig. [8.2h (corresponding to Py and Py;), which allow us to identify the minimum
value of A supported by the modes for a given y.. In particular, the sum uncertainty A is related to the fringe
visibility V by A = %(1 — V?2). When the relative phase 3 between modes 1,2 is either 0° or 180°, we
obtain a value of A as small as 0.006, which corresponds to a visibility of 99.4% (section[8.10). To measure
the two-photon suppression of pyr, we detect the individual modes and record the time series of all relevant
coincidence events (i.e., P;; with i+ j = 0,1, or 2). Based on a calibration of the transmission from the face
of BD to the detectors, we infer the photon probabilities that determine y. (section[8.9). We control y. via

the pump intensity for Raman transitions in the source ensemble (section[8.8] chapter [2)).

8.4.1 Scaling behavior of concurrence and uncertainty relations for bipartite entan-

glement

We have explored bipartite entanglement verification in our system by varying both the phase coherence and
the two-photon suppression of pyy . Fig. shows the dependence of A on the amplitude d¢ of phase noise
produced by the EOM. These results were obtained with two-photon contamination y. = 0.063 £ 0.011
such that entanglement is detected when A < 0.46. With d¢ = 360°, we expect the fringe visibility to be
minimized, and therefore A = 0.5. As §¢ decreases below 270°, the statistics of our measurements become
sufficiently imbalanced that the presence of entanglement is manifest. Absent any phase noise in the state
generated at BD; (i.e., 6¢ = 0), we obtain A < 0.03 over a wide range of . as shown in Fig. [8.2p. The first-
order coherence of our single-photon source and the phase stability of our apparatus guarantee A = 0. The

(1)
b

boundary in A between fully separable states and those that contain entanglement, A;"’, depends primarily

on y,. through the relationship Agl) = %(1 — y.). Given the uncertainty of our measurements, of which the
largest contribution is counting fluctuations in ., all of the states created with y. < 0.86 verifiably contain
bipartite entanglement.

A rigorous correspondence exists between our uncertainty verification protocol (for two modes) and con-
currence, a measure of bipartite entanglement'7® (section . As a tool to understand the dependencies of

the sum uncertainty and as a secondary confirmation of two-mode entanglement, we inferred the normalized

concurrence Cy = V' — /y. from our measurements of A (section|8.10). Using previously introduced rela-
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Figure 8.2: Detection of entanglement between two optical modes using uncertainty relations. a, The
sum uncertainty A as a function of peak-to-peak phase noise d¢ in the generated state py. The solid blue
line gives the boundary, Agl), between entangled and separable states. The dotted lines indicate the range of

Aél) values that result from the uncertainty in our measurements of y.. The red line is a fit to the data based
upon a uniform distribution of phase noise. (Inset) Number of photons detected n. in the output modes for a
measurement time of 250 s as the relative phase [ of the verification interferometer is varied. At minima and
maxima of n. we obtain A = 0.01. b, Measured sum uncertainty with ¢ = 0 (filled circles) and boundary
Aél) (blue line) as a function of two-photon suppression. Data with ¢, < 1.0 demonstrate entanglement of the
two modes. By varying d¢ from 0° to 360° (open circles), the modes’ phase coherence is reduced, resulting
in a loss of entanglement for d¢p = 270°. ¢, Concurrence Cy (filled circles) inferred from measurements
of A and the boundary Al()l). The solid line shows a theoretical prediction of concurrence (max (Cy,0))
based on an independent measurement of V and p; = 0.22 £ 0.02. All the error bars in this figure represent
standard deviations.
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tionships, we can reformulate it as Cy = /1 —2A — /1 —2 Al()l). The inferred concurrence data shown
in Fig. 8.2k demonstrate an increasing C'y, therefore a larger degree of entanglement, as we decrease y.. Im-
portantly, this behavior is in excellent quantitative agreement with our theoretical expectation for concurrence

based upon quantum-state tomography2Z3#; this validates the use of uncertainty relations for entanglement

verification (see Fig. [8.8]in section [8.10).

8.5 Experimental realization of multipartite entangled state for one

photon

We now describe our investigation of multipartite entanglement with a single photon shared among four
optical modes (Figs. [8.3]and [8.4). To generate four-mode entangled states we use the setup shown in Fig.
[B:Ic. A third beamdisplacer (BDy) is added to the two-mode setup immediately before BD;; it coherently
splits a single photon polarized at 45° into two modes. In this case, the space between BD; and BDs supports
four independent modes of py (composed of pairs I and I7) that share a single photon. The EOM influences
only the relative phase of the two pairs I, I], labeled ¢ in Eq. leaving intact their individual phase
coherence, and it provides a means to induce dephasing between the I, I T pairs. The four spatially separated
modes in the state py are combined into two separated spatial modes (each carrying the two modes encoded
via the polarizations |H) and |V')) that exit BD2 and are coupled into single-mode fibers.

Measurements of A are performed by rotating the polarizations of all the modes by 45°, and pairwise
interfering them with the network of four cascaded beamsplitters shown in Fig. 8.Tk. We record all pho-
toelectric events from detectors {Dy,...,D4}, but employ only events with a single photodetection for the
determination of A (section [8.9). In this case, A depends jointly on the fringe visibilities of all four inter-
ferometric outputs. While BD; and BDs still guarantee long-term interferometric stability for the two pairs
of modes I and /1, the relative phases between other pairs are actively stabilized with respect to a laser that
shares the same path. With the stabilization laser off, we apply calibrated feed-forward signals to the servo
electronics, which transiently optimize the setup for measurements of various phase dependencies of A, in-
cluding its global minimum (section[8.8). To extract y. for the separated modes 1 — 4, we insert the “photon
statistics” setup at the location indicated in Fig. [8.Tk, and we ensure that no interference occurs at PBS; and
PBS; by setting the polarizations to the eigenaxes of the respective PBS. We obtain a record of the sixteen

photon probabilities P;;; that determine y., with indices i, j, k, I € {0, 1} (section[8.9).

8.5.1 Scaling behavior of uncertainty relations for multipartite entanglement

8.5.1.1 Decoherence of multipartite entanglement induced by phase noise

381121

Using sum uncertainty relations (refs. , chapter , we have unambiguously detected the presence of full

four-mode entanglement in a photonic W state. Naturally, since N > 2, entanglement may be found amongst
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Figure 8.3: Dependence of sum uncertainty A on the amplitude of phase noise J¢ in the state pyy.
These data were acquired with an approximately constant . in the range 0.06 — 0.08; under these conditions

A < 0.2 demonstrates genuine four-mode entanglement. The horizontal lines indicate the boundaries A,()K)

for entanglement. Here, the uncertainty of each boundary AgK) (dashed lines) corresponds to the observed
fluctuations in y.. The red line is a fit to the data based on a model including a uniform distribution of phase
noise.

not only the full set of modes, but bipartite and tripartite entangled states exist within a subset of them. A
crucial feature of our verification protocol is that it clearly defines boundaries that distinguish between states
with {N, N — 1,--- 2} mode entanglement. As in the case with N = 2, the boundaries for N = 4 exist
within the parameter space defined by A and y.. To understand how the multipartite entanglement is affected
by the phase coherence of pyy, we introduce phase noise d¢ over the range 0° — 360° between the two pairs
of modes. Fig. shows A as a function of d¢ and the theoretical boundaries for two-, three-, and four-
mode entanglement. For §¢ < 225°, our verification protocol confirms the presence of genuine multipartite
entanglement for three and four modes. Owing to the fact that dephasing is induced among only two pairs,
the measured sum uncertainties do not exceed the threshold (Al(,l) = (.7) defined by fully separable stateﬂ
A primary feature of multipartite IV states is their resilience against phase noise, evidenced by the fact that
the state which results from tracing over two modes in Eq. still remains two-mode entangled?®3. This
property of |[W) explains our observation of entanglement even in the face of complete dephasing between

the pairs I and 17 with 360° of phase noise.

2While there is a bipartite split between the pairs I and /7 (due to complete dephasing ¢), we cannot unambiguously locate the
bipartite split from the measurements presented in Fig. as our verification protocol involves collective measurements on all four
modes (section[73). In addition, note that we reserve the term, genuine N-partite entanglement, for states which can only be written
in a pure-state decomposition of N-partite entangled states, thereby excluding the weaker condition of “/N-partite entanglement” for
mixtures of M < N partite states along all possible bipartitions (i.e., a [N-partite entangled state which does not have a physical split).
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Figure 8.4: Statistical transition of multipartite entanglement. Sum uncertainty A as a function of two-
photon suppression for d¢ = 0° (closed circles) and d¢p = 0°-360° (open circles). Solid lines indicate the
boundaries between separable, bipartite, and tripartite entangled states for the parameters of our experiment.

To understand the sizes of boundary corrections from the ideal case, the dashed lines show AZSK) for the ideal

balanced and lossless case. The error bar on Al()?’) indicates the statistical uncertainty in the boundary (section
8.11). (Inset) An expanded view of the quadripartite sector.

8.5.1.2 Statistical transition of multipartite entanglement

We have also explored the transitions from fully separable to bipartite (K = 1), tripartite (K = 2), and
quadripartite (K = 3) entangled W states by measuring the sum uncertainty as a function of two-photon
suppression y., with our results presented in Fig. With ¢ = 0, we obtain a uniformly low A < 0.08 over
arange in y. from 0.035 — 1.37. These values of A are larger than in the two-mode case (Fig. [8.2p), and are
explained by a small imbalance in py and by imperfections in the entanglement verification interferometers.
Furthermore, these imperfections play an important role in the determination of the boundaries AISK) for
entanglement. As detailed in section [8.11] small imbalances in the beamsplitter ratios of PBS;, PBS, and
BS:, BS; in Fig. [8.Tk, and non-balanced transmission losses lead to displacements of the boundaries toward
smaller {A, y.}. To reduce these boundary corrections, the beamsplitter ratios were all matched to 50%/50%
to less than 3%, and the difference in losses of corresponding free-space and in-fiber optical paths were always
held to less than 4%. Fig. shows the sizes of the corrections by displaying the boundaries Al()K) for the

ideal lossless and balanced case as dashed lines.
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8.6 Advantage of multipartite entanglement verification via uncertainty

relations

In comparison to quantum-state tomography, our multipartite verification protocol features an exponential
reduction in the number of measurements required to unambiguously detect entanglement. Specifically, our
protocol requires us to determine 24 elements of ﬁ%) for y. and 4 elements of UJer ﬁ(v;) Uver for A, a total of 20
elements out of the 4* = 256 that comprise the reduced density matrix ﬁg/). Our protocol inherently features
the use of nonlocal measurements M;, thereby requiring only two unique experimental steps to measure all
necessary elements and unambiguously detect entanglement in py,. Furthermore, the nonlinear structure
of A allows the simultaneous detection of all possible realizations of Eq. (refs. B840y These features
alleviate the need for any complicated mechanism to control the measurement basis, which can be a challenge

2T1l and other local-measurement-based verification protocols for pyy. Although

in tomography experiments
linear witnesses might also enable entanglement detection with less than full knowledge of py obtained from
a few experimental steps?%, the unambiguous verification of entanglement requires robustness in the face of

experimental imperfections, including multiple excitations and losses (section|8.11).

8.7 Conclusion

Our study has introduced a new technique for the unambiguous verification of multipartite W states. Specif-
ically we examined entanglement in heralded quantum states specified by py with N = 2, 4. Entanglement
detected with our protocol refers to that of the complete density matrix py presented to our verification
system, and not to fictitious components deduced via post selection' !, An extension of our protocol to dif-
ferent mode entangled states (requiring increased experimental resources) is discussed in chapter (ref 3%,

Photonic entanglement, such as generated here, can be coherently mapped into atomic memories by way of

electromagnetically induced transparency=" for scalable quantum networks (chapter @)

8.8 Experimental details

8.8.1 Ensemble-based single-photon source

The first step in our experiment is the conditional generation of single photons based on the proposal by Duan,
Lukin, Cirac, and Zoller (DLCZ) (refs.#22%)_ In this protocol, heralded single photons are generated from
excitations stored within an atomic ensemble. Single photon sources based upon atomic ensembles have been
studied extensively; see refs.#/072182 for in-depth information. Here, we briefly present the experimental
details relevant to our investigations.

We implement the DLCZ protocol with a cloud of ~ 10° cesium atoms that are collected using a magneto-
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Figure 8.5: Interference fringe in the four-mode sum uncertainty setup. Number of detected photons 7,
in output mode 1 (blue triangles) and output mode 2 (red circles) are plotted as a function of the phase /3 3.
Here a fringe visibility in excess of 99% and wide tunability of 3; 3 demonstrate the experimental capabilities
necessary for measurements of A.

optical trap (MOT). Periodically, at a rate of 40 Hz, we switch off the trapping lasers and the magnetic field
for the MOT, and we prepare all the atoms into the ' = 4 hyperfine manifold (62S; /2) of Cs. After waiting
3 ms for the MOT fields to decay, we begin a series of ~ 6400 trials, each with a period of 625 ns. To begin
each trial, we illuminate the cloud with a weak near-resonant “write” laser pulse which excites a Raman
transition with low probability for a collective mode of the ensemble. The success of this process is heralded
by a Raman scattered single photon that is correlated with the presence of an atomic excitation. By way of

a many-atom cooperative enhancement’%22°

, the atomic excitation can be efficiently converted into a single
photon in a well-defined spatial mode with the application of an intense “read” pulse. This heralded single
photon forms the basis of this experiment described in this chapter.

We have studied the characteristics of our single photon source in detail>"®, Importantly, the two-photon

N )Pz];o
N—-1 &

suppression, y. = 2( , where N is the number of optical modes, of the purportedly entangled state
pw depends critically on the presence of multiple collective excitations within the ensemble (i.e., the single-
photon source). The relative probability of a trial that has multiple ensemble excitations to a trial that has
a single excitation can be suppressed by reducing the write laser intensity. Therefore, we can exercise full
control over y. of the quantum state gy by way of a tunable write laser intensity. Furthermore, we can un-
derstand the efficiency of heralded single-photon generation. After accounting for detector and transmission
losses, we estimate that the efficiency of the read-out process in our experiments is =~ 50%. This leads to

a single-photon probability of p; =~ 20% (p1 ~ 10%) in our two-mode (four-mode) experiments for the

entangled state pyy in Fig.



146

35 T T T T

59 (2r)

( S orvirsiams

Ao

10 n 1 n 1 n 1 n 1 n
0 2 4 6 8 10

T (hours)

Figure 8.6: A high-bandwidth fiber stretching module. a, Inside the fiber stretching module (Optiphase),
PM fiber is mounted on a circular disc piezoelectric transducer (PZT), which has a sharp mechanical res-
onance around ~ 55 kHz. The breathing mode of the PZT element is used to phase-modulate the fiber at
~ 100 kHz (above the first resonance). Two lock-in amplifiers (DSP lock-in amplifiers, SRS 830 and 510) are
used to generate an error signal by modulation spectroscopy on the interferometers in Fig. 8.1} The output of
the locking servo described in Appendix [A]is fed into a high-voltage amplifier (Burleigh, PZ-70) to drive the
fiber stretcher. At 1 kV, we estimated the reduction of polarization extinction ratio for the PM fiber from 30
dB to 20 dB, due to spurious stress-induced birefringence. b, Dynamic range of the active phase stabilization
scheme via fiber stretchers. Thanks to the high dynamic range (up to d¢ ~ 50 x 27 at 852 nm) of the fiber
stretchers, we can set the interferometer to a certain value of phase over several days without needing to
re-lock the interferometer (mainly limited by the stability of the reference laser).

8.8.2 Phase stabilization

The generation and verification of entanglement in our experiments require that the relative phases of the
purportedly entangled optical modes in Fig. be stable (the various phase factors that describe the state |IW)
are shown in Eq. [87I). As described in section [8:3] our experiments with two-mode entanglement (Fig. [8:2j)
feature passive stability of the modes’ relative phase (; 2, guaranteed by the Mach-Zehnder interferometer
formed with a pair of beamdisplacers BD;-BD> (ref.*%, chapter [3). These beamdisplacers are birefringent
crystals which separate an input state into two parallel modes based on its polarization. Therefore, the two
displacers support a pair of interferometrically stable modes, which are encoded in |H) and |V).

However, for our quadripartite entanglement experiments (Fig. [8-Tk), the beamdisplacer pairs alone can-
not define four spatially resolved stable optical modes. Therefore, we have devised a convenient method
that combines passive stability and active stabilization. The beamdisplacers BD;—BDs support four modes
of which the relative phases of modes {1,2} (1,2) and {3,4} (83,4) are inherently stable. However, as is
clearly visible in Fig. [8.1, the relative phases of modes {1, 3} (51 3) and {2,4} (82,4) depend on the indepen-
dent paths through, for example, fiber-optic PBS; and PBSs (Fiber PBS from Oz Optics). By incorporating
an auxiliary reference laser, E,,x, we can actively control the relative path lengths of the modes {1,3} and

{2,4}. Prior to BDy in Fig. , we overlap the orthogonally polarized E,,x and the input mode (pi,); the
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frequency of E,, is the same as the single photon’s. To stabilize 3; 3 and (2 4, we set (A/2)y at 0° and create
interference fringes at the outputs of BS; and BS;. Phase-modulation spectroscopy allows us to lock the
relative phases so that a high contrast interference (V' > 0.99) is achieved for quantum fields (Fig. [8.3). The
control of the relative path lengths for the modes, as well as their modulation, is afforded by piezoelectric
fiber stretcher modules (Fig. [8.6h, see also Appendix [A] for the locking servo) located between PBS; and
BS;, and PBS, and BSo, in Fig. [B.Ik. These devices provide up to 50 x 27 of dynamic range enabling the
interferometers to remain continuously locked for several days (Fig. [8.6p).

Importantly, to avoid noise associated with the auxiliary laser in the single-photon detectors { D1, - - - , D4},
Eaux must be filtered out. In our work, phase stabilization is performed asynchronously with entanglement
generation and its verification in the fiber-based network of interferometers (Appendix [A). This eliminates
the need to wavelength filter E,, as was necessary in previous experiments?’. During the 21 ms of our 40
Hz experimental cycle that the MOT is activated, F,u is switched on, the output modes of the sum uncer-
tainty setup are directed toward an auxiliary set of detectors with MEMS fiber multiplexers (Sercalo), and
our servo electronics stabilize 51 3 and B3 4. To prepare for measurements of A, we switch off E,,x and
reroute the output modes to the single-photon detectors with the MEMS multiplexers, and we use dynamic
polarization rotators (nematic liquid-crystal waveplates from Meadowlarkﬂ) to set (\/2), at 22.5°. Further,
we apply calibrated feedforward signals to the servo electronics that can precisely scan the relative phases of
modes {1,3} and {2,4} to explore the dependencies of our A measurements. Fig. shows the number
of photons (n.) detected at D; and D5 as a function of 3; 3. Here, all other relevant optical phases in our
setup were optimized to achieve minimum A. Therefore, at the minima and maxima of n, corresponding to

B1,3 =0, 180°, 360°, we find that A is 0.06 £ 0.01.

8.9 Inference of the photon probabilities for obtaining 3. and A

Our entanglement verification protocol requires that we characterize the photon probabilities of the sum un-
certainty output modes and those of modes 1-4 that comprise the state pyy. We infer these photon probabili-
ties from a time record of photodetection events obtained with single photon counters placed at the outputs of
the relevant modes. Based upon independent measurements of the transmission losses to the photodetectors,
we determine the photon probabilities'®?. Specifically, for measurements of 7. we obtain a set of sixteen prob-
abilities that characterize the diagonal elements of the reduced density matrix /3%) = Popo +P1p1 +p>2p>2.
The diagonal elements are P;;;; where the index ¢ = {0,1} is for finding zero or one photon in mode 1
of pw, j = {0,1} in mode 2, and so on for k,! in modes 3 and 4 (Fig. ). The vacuum subspace

of ﬁg) is characterized by the term pg = FPyogp. Four elements comprise the one-photon subspace, p;, via

bBandwidth of the liquid-crystal (LC) waveplates is slow (only ~ 1 kHz) compared to that of Pockels cells, which was still suitable
for our purpose. In addition, since these are biaxial nematic devices, there are only two stable positions whereby the eigenaxes of the
crystal could align®%, However, one advantage is that the LC only requires a modest amount of voltage (< 5 V) to set the fast axis of
the crystal to the predetermined direction.
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p1 = P1o0o+ Po1oo+ Pooio+ Pooo1- Likewise, 11 elements comprise the subspace with two or more photons,
p>2, subject to the restriction of one photon per mode, with p>2 = Pi1go+Pioi0+: - -+ Piiio+ -+ P11 In
the case of y. measurements, the typical detection efficiency including the photodetector quantum efficiency
is &~ 20%. To infer the photon probabilities at the outputs of the verification interferometers (Fig. [8.1f) for
our measurements of A, we follow a similar procedure, but we confine our analysis to the subspaces py and
p1. In this case, the typical photon detection efficiency is &~ 30%.

Similarly, due to the uses of photon non-resolving photodetectors and lossy paths for our projectors
(Eq. , the measured sum uncertainty A, includes spurious contributions from multiple photons p>s.
To account for this, we follow the procedure described in section (ref.8, chapter|7), which leads to a
conservative estimation of the photon sum uncertainty A arising only from p;. In the case of balanced losses,

the correction factor c is expressed in terms of two-photon suppression y. and transmission efficiency 1 with

e (1422~ mpiwe), 83)
where we apply cA,, > A to obtain a conservative estimate of the 1-photon A (section see also
chapter 9] for a more efficient method for obtaining the upper bound of A). For our experimental parameters,
the correction factor (¢ — 1) &~ 6% is obtained for y. = 1, as depicted in black line of Fig. This
is significantly smaller than the fractional uncertainties 5(%7;”) ~ 25% of our data. Furthermore, since the
correction factor scales as y., the correction factor gives (¢ — 1) < 1% for the relevant data sets of y. < 0.2

93

for four-mode entanglement (Fig. . Following the standard procedures for loss propagations'®?, we also

account for the effect of differential losses and imbalanced beamsplitter ratios (red line in Fig. [8.7).

8.9.1 Imbalances and threshold detectors

In chapter [/} we developed a method to account for losses and imbalances. Here, we obtain an explicit

formulas of ¢; in the case of differential losses and imbalanced beamsplitter ratios. In order to propagate ﬁ%)

through the imbalanced verification interferometers, we rewrite ﬁg,),

P = Popo + Py + P, (84)
in terms of mode operators a; where
R Pi+ Py 4w s
L=~ Vi, )al[o) (0l 8.5)
2%
4 4
. Pij+ Prr ot atm ma s
ph = Z Z ]TV(ZJ, kl)a;fa;|0><()|akal. (8.6)

j>i 1>k
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Figure 8.7: Correction factor c as a function of two-photon contamination y.. The black line corresponds
to the calculation of ¢ for balanced losses 7 = 36% and fixed p; = 9%. The red line is a calculation of ¢
including differential losses {n} and imbalanced beamsplitter ratios {o} (Table [8.I). The uncertainty of ¢
due to the systematic uncertainties in {n, o} is shown as purple bands. The filled circles show ¢ using the

data points in the experiment (i.e., using the parameters P;;; of each points). The uncertainty in the vertical
direction includes the systematic uncertainties in {7, a} as well as the statistical uncertainties in Pijki.

Here, V' (i,5) = V(j,%) and V(i,4) = 1. Through the lossy and imbalanced setup in Fig. [8.1} the mode

operators a; are transformed into following forms,
a3 e\ oD (P + 1= nDou). 8.7)

Here, v;/ is the vacuum mode operator. The precise correspondences between the imbalances {a R 771, o) }
and experimental parameters (Table[8.T]and Fig. [8.1)) are not shown for clarity.
The state ﬁ%), then, is transformed to a state (see section for the balanced case),

P = phpo + Py (@ A5 + (1 —a)pt?) + pLapl), (8.8)

where the relevant parameters {p}q{,p} (1 — q}), ph} are given af]

il () ] j i j
Z JV (i ])Ze WP =0 )\/nf»f)nﬁ” aPal) (8.9)
] K
“Here, we have assumed that the two-photon subspace is fully coherent, V' (i7, kl) = 1, thereby leading to A(p; 52 )) =A(p (2)) =0

and a conservative estimate of A.
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P —g) =SS BT B L 5~ 000000 006+l -o-ald)
2 2

i>5 k>l K1,k2 (8.10)

7 j j 7 k l l k
(/21— 1) + 21— nN /B - 0D + ol -y
P + Py /G (k) (D) —i(o® L _ @) _ s i (k) (1
p’22 = Z Z JT Z a,(ﬂl)oz,%)a,({l)oz,(Q)e (47%1 +én, — Pk, ¢KJ2) 17,({1)7])({72)77’({1)7]22). (8.11)

1>7 k>l K1,K2

Therefore, correction factor ¢ = 1/¢; is given as (chapter

/ !
i
g =——F. (8.12)
P+ P>o
In the case of balanced losses 7, it can be confirmed that Egs. [8.3]and [8.12] are equivalent.
Here, we give the definitions of {agf), ng,l ), ¢Z(f )} following the notations in Fig.
af,a12 o, (1 — a12) (1 —afy)aszs (I—afy)(1—a34)
ol — ah3 (1 — a12) Q3012 (1 — ahg)(1 — as4) (1 —ab3)ase (8.13)
’ (1 —ajy)(1 —oa2) (1= agg)onz a3 (1l — aa) Q30034
(1 —aly)aiz (1= ajy)(1 = a12) 4034 ajy(1 — asa)
etPiy etPis _elPis iy
(1) eiPin ity _gidig ei%iy
ey = . _ . . (8.14)
elPin _elPin elPis _etPiy
£idiy JRIN ei%is etPig
mny o memy mamy  man)
/ / / /
j mmny M2y MmN MAM:
Tll(ll) — 2 2 3 3 (815)

mMNy MMy N3N M
mny o mmy MmNy man

8.10 Concurrence and bipartite uncertainty relations

For bipartite systems, there exist entanglement measures such as concurrence (C) and entanglement of for-
mation (EOF) (ref.'/%), which range from 0 for a fully separable state to 1 for a maximally entangled state'1".
In Fig. [8.2] we quantitatively compared our method of entanglement verification with uncertainty relations to
a theoretical calculation of concurrence based on a model in chapter (ref %), Here, we derive a relationship
between concurrence and the degree that a measurement of the sum uncertainty violates the entanglement
boundary, specified by the measured A and the uncertainty bound Al()l).

Following ref.”Z, we find that the concurrence is given by C' = Vp; — 2,/pop2 (chapter , where V

corresponds to the fringe visibility when the two modes are interfered”. If we normalize the concurrence by

the 1-photon probability p;, we obtain

c Epﬂzv_\/@ (8.16)
1
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where . = 4’”2—%”0.
Let us first define the visibility V' in terms of the measured A. We denote Py (Py1) as the normalized
probability of finding only 1 photon in the output mode 1 (2) (Fig. [8.2h) such that P;y + Py; = 1. The
visibility is given as V = | Pyg — Pp1|. Similarly, the sum uncertainty is defined as A = 1 — (Py0)? — (Po1)?,

which then yields,
V =+v1-2A. (8.17)

We relate the two-photon contamination . to the uncertainty bound Al()l). In this way, we can understand
the dependence of C on the degree for which the inequality A > Aél) is violated. In order to derive the

uncertainty bound A(l), we consider a separable state of the form,

(101) 4 €' \/E1[11))(|02) + €' /E3|12))
(1 + 61)(1 + 82)

|Wsep) = (8.18)

i — — €1te _ €1€ . .
with pg = 1—p1 —pa, p1 = (1+si)(1152) , P2 = (1+511)(f+52)’ and the phases ¢1, ¢2. This state parameterizes
all possible pure separable states, and mixed states can be accounted by arbitrarily mixing different pure
states. For bipartite systems, however, the uncertainty bound for pure states is convex (Fig. [§.2b), and any
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mixing of the pure states increases the sum uncertainty"=". Therefore, we only consider the cases for pure

states, and we find

1- c
A = Ty (8.19)

By substituting Eq. and [8.19]into Eq. [8.16] we obtain the relationship between concurrence and the

violation of uncertainty bounds for a biseparable system, namely
Cy =V1I—2A—/1-2AlM. (8.20)

We emphasize the equivalence of the two verification protocols based on the violation of the uncertainty
bound and the concurrence. The operational differences between the two entanglement verification protocols
are the measurements of visibility (by varying the relative phase 31 2) and the sum uncertainty A (with a fixed
relative phase (3; 2). In Fig. we compare the concurrence CI(\?W) directly measured via quantum state
tomography?” and the concurrence C'y inferred from violation of the uncertainty bound Aél) (Fig. ).
The precise correspondence of the two experimental results suggest that the underlying relationship between

the two entanglement verification methods, as derived here (Eq. [8.20)), is correct.
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Figure 8.8: Comparison between the directly measured concurrence and the inferred concurrence. We
compare the directly measured concurrence C](\f"") (open triangles) based on quantum state tomography2Z and
the concurrence C'y (filled circles) inferred from the measured degree of violation of the uncertainty bound

specified with parameters {A, A,()l)} (Fig. Eq. . The red curve shows the theoretical prediction
of concurrence as a function of the two-photon component 7, based on a model in ref.**. The errors in Cx

reflect the 1o-statistical uncertainties and the error bars for the measured concurrence C ’3 w) are not shown
bad

for clarity. The precise correspondence between C](\?W) and C'y validates the use of Eq.

8.11 Constructing the projective operators for the uncertainty rela-

tions

In the presence of transmission losses {7, 7'} and imbalanced beamsplitter ratios {c, o’} in the verification
interferometers shown in Fig. the projectors no longer correspond to the pure state descriptions M; =
|W;Y(W;| in Eq. (ref.8, chapter . Using the standard technique for loss propagations and beamsplitter

transformations' ™2, the original projectors |[W;)(W;| become mixed states of the following form,

(W) (Wil = (1 = ¢;")[0000}{0000] + ;" |T1;) (ITi (8.21)
where q%i) gives the probability of a successful projective measurement in mode ¢ for an entangled state
ITL;), |0000)(0000] is the vacuum state, and |I1;)(IL;| is a pure state containing a single-photon shared among
four optical modes (ref.", chapter . In the case of a conditional measurement (i.e., post-selecting the cases
where we find a single-excitation among the four outputs of the cascaded beamsplitters in Fig. [8.1k), |II;)(IL|
describes the projective measurement for the output mode 4, M; = |II;)(II;|. Unlike the original projectors
|W;) in Eq. these projectors |II;) may not be orthogonal, but they span the single-photon subspace p; of

the physical state pyy .
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Figure 8.9: A simplified setup for the verification protocol (sum uncertainty). The setup includes differ-
ential transmission efficiencies {n, '} (blue) and imbalanced beam-splitter ratios {c, o’} (red). The wiggly
dashed arrows correspond to the auxiliary output modes which are traced over for loss propagation.

Generally, any imbalances (whether they are due to differential losses or beamsplitter ratios) in the verifi-
cation interferometers cause reductions of the overlaps |(W;|I1;)|? between projectors |W;) and |II;), thereby
making the protocol less sensitive to entanglement in py (ref.2%, section . In practice, the corrected
bounds AZSK) always decrease towards smaller two-photon component y. from the ideal lossless and balanced
case, as shown for our experimental parameters {7, 7'} and {cv, @’} in Fig. Furthermore, the uncertainties
in the measurement of {n, 7’} and {«, o’} cause an uncertainty in the determination of the bounds Al()K).

Fig. depicts the setup for our verification protocol indicating the losses {n, 7'} and beamsplitter ra-
tios {a, o’} of the interferometers. Experimental parameters and their uncertainties for {n, '} and {«, o'}
are shown in Table In our data analysis, we infer the photon statistics of modes {1’,--- ,4'} in Poy
at the outputs of the verification interferometers from the measured photodetection statistics at detectors
{D1,---,Dy4}. Thus, we exclude the losses corresponding to the output paths of the verification interferom-
eters from our analysis. The small imbalances between the terms {«, o’} and {#, '} in Table[8.1] contribute
to the small correction of the theoretical bounds Al()K) from the ideal projectors |W;) to non-ideal projectors
IIT;). To understand the small corrections of AIEK) from |W;) to |II;) for our parameters, we investigate the
effect of {n,n’'} and {«, @’} on the bound Al(j?’) for states containing at most tripartite entanglement for a

fixed two-photon contamination y. = 0.035, corresponding to the lowest measured . in our experiment.

Table 8.1: Experimental parameters and their uncertainties for beamsplitter ratios {«, o’} and trans-
mission efficiencies {7, 7'} of the verification interferometers. The systematic uncertainties (dx) of {x}
are fractionally (6x/k) = 5% for k € {o, &/, m, 1’ }. Note that aa ~ agq =~ o, =~ ob5. The absolute differ-
ences in the pairs of transmission efficiencies ({n1,m2},{n3,n4}.{n, 74}, {n5,n5}) influence the correction
to AIEK).

a1z a3zg ahs oy, m n2 13 N4 1 M4 75 N3
05 053 052 053] 057 057 | 0562 0.56 | 0.67 066 | 0.62 0.66
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Figure 8.10: The effect of imbalances and losses to the determination of AZES) . Scanning the boundary A 23)
for states containing at most three-mode entanglement as a function of a, the beamsplitter ratio /5 (shown as
a black line), and b, the transmission efficiency 745 (shown as a black line) at y. = 0.035, which corresponds
to the lowest two-photon contamination measured in Fig. The measured A at y. = (3.5 4+ 0.9) x 1072
is shown as a filled circle, with a horizontal error indicating the systematic uncertainty in estimating a, s
and b, nj, respectively. The vertical error is the statistical uncertainty for the measured A. ¢, Histogram
H (Al(;g)) of the three-mode boundary Al(f) by repeating the calculations from randomly drawn sets of the
transmission efficiencies {n, 7’} and beamsplitter ratios {«, @’} at y. = 0.035. The histogram is fitted to a
Gaussian function (shown as a black line) with (1/e) half-width 6Al§3) = 0.018. The uncertainty §A®) is
determined by the joint distribution of {«, @'} and {n, ' }. Here, we assume independent normal distributions
for the individual parameters in {cv, @’} and {n,n'}. (Inset) Confidence level in the violation of the inequality
A > Az()3) for the three-mode bound Ag‘g). Experimentally measured A are shown as filled circles, and
the black line indicates the the three-mode bound Al()g), along with its uncertainty for y. = 0.035. The
large suppression of A from Agg) compared to the uncertainty § Az(>3) for the bound affirms the unambiguous
detection of genuine four mode entanglement.

Figs. [8.10p and - illustrate the processes of reductions in the three-mode boundary AI()B) at y. =
0.035, due to a, imbalanced beamsplitter ratio (a3) and b, differential loss (n3), while leaving all other

parameters in {«, o’} and {n,n’} fixed (Table . In particular, the correction ranges of Aff” due to the
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individual uncertainties of a/3 and 7} are small compared to the measured ~ 20 ¢ (standard deviation)
suppression of the sum uncertainty A at y. = 0.035 relative to Al(f) (shown as a filled circle in Fig. .
Finally, we discuss our analysis of the uncertainty JA,()?)) in the bound Agg) (Fig. ) due to the
systematic uncertainties of all the parameters in {«, @’} and {7, ' }. We construct the histogram H of Al()g) by
iterating the calculation of Af’) with randomly drawn sets of {«, o/, 7, 1’ }. Here, the parameters {«, o'} and
{n,n'} are assumed to follow independent normal distributions, with their means and systematic uncertainties
shown in Table By fitting the histogram with a Gaussian distribution, we infer an uncertainty 5A£3) =
0.018 and the center <A1(73)) = 0.25 for the boundary AZES). These values should be compared to the measured
A= (5.6+1.1)x10"2aty, = (3.5£0.9) x 1072, As depicted in the inset of Fig. [8.10f, our measurement
yields ~ 9o suppression of the uncertainty bound, reflecting the high confidence level in the violation of

the bound Agg). Our experiment, therefore, unambiguously verifies the presence of four-mode entanglement

with the imbalances ({c, &'}, {n,7'}) in the verification interferometers.
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Chapter 9

Entanglement of spin waves among four
quantum memories

This chapter is largely based on ref.??. Reference™” refers to the then current literature in 2010 at the time of

publication.

9.1 Introduction

Diverse applications in quantum information science require coherent control of the generation, storage, and
transfer of entanglement among spatially separated physical systems (refs. ", see also chapter [1)). Despite
its inherently multipartite nature, entanglement has been studied primarily for bipartite systems=, where re-
markable progress has been made in harnessing physical processes to generate ‘push-button’ and ‘heralded’
entanglement (refs. 22952285286 chapters [3|[5), as well as to map entangled states to and from atoms, pho-
tons, and phonons (refs.30 31 chapter @)

For multipartite systems, the ‘size’ of a physical state, described by the system’s density matrix py,
grows exponentially with the number of subsystems /N and makes the entangled states exceedingly difficult
to represent with classical information. Importantly, this complexity for p increases the potential utility of
multipartite entanglement in quantum information science, including for quantum algorithms? and simula-
tion”. Redundant encoding of quantum information into multipartite entangled states enables quantum error
correction and fault-tolerant computation”. Intricate long-range correlation of many-body systems is inti-
mately intertwined with the behavior of multipartite entanglement=4". In addition, mobilizing multipartite
entanglement across quantum networks could lead to novel quantum phase transitions for the network®.

Counterposed to these opportunities, the complex structure of multipartite entanglement presents serious
challenges both for its formal characterization and physical realization2#010208 Tndeed, there are relatively
few examples of laboratory systems that have successfully generated multipartite entanglement=>/27>-27712571285,

2751276

Most works have considered the entanglement for spin systems, notably trapped ions , which are appli-

cable to the matter nodes of quantum networks. But the methodologies for verifying multipartite entangle-
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ment are problematic for the infinite-dimensional bosonic systems of the quantum channels (e.g., multipartite
quadrature Y and number-state™d entanglement for optical modes (chapter () ') A posteriori multipartite
entanglement has been inferred from a small subset of preferred detection events of photons from parametric
down-conversion27Z.,

In addition to the characterization of multipartite entanglement, an important capability for quantum
networks is provided by quantum interfaces capable of generating, storing, and dynamically allocating the
entanglement of matter nodes into photonic channels (see ref. "% and references therein). In this chapter,
as illustrated in Fig. [9.Th, we introduce such a quantum interface for quadripartite entangled states based
upon coherent, collective emission from matter to light. We present a systematic study of the generation and
storage of quadripartite entangled states of spin-waves in a set of four nodes of atomic memories, as well as of
the coherent transfer of the entangled components of the material state into individual photonic channels. We
observe transitions of M to (M — 1)-partite entangled states via controlled spin-wave statistics of the atomic
memories, as well as the dynamic evolution of multipartite entanglement in a dissipative environment, from

fully quadripartite entangled to unentangled.
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Figure 9.1: Overview of the experiment. a, Quantum interfaces for multipartite quantum networks. Inset i,
a fluorescence image of the laser-cooled atomic ensembles {a, b, ¢, d} that become entangled (section .
b, Entanglement generation. A weak write laser is split into four components to excite the atomic ensembles

via parametric interactions mee (chapter , leading to Raman scattered fields v, = {a1, b1, ¢1,d; } emitted
by the ensembles. ,6%‘) for four atomic ensembles € = {a, b, c,d} (Eq. is heralded
by a projective measurement I1), at detector D}, derived from quantum interference of four fields 7 in the
heralding interferometer. ¢, Quantum-state exchange and entanglement verification. Read lasers are applied
to the ensembles to coherently transform the atomic entangled state ,6%1 )

of light p%) (Eq. via quantum-state transfers, Usead (chapter , with each beam propagating through

quantum channels v2 = {ag,ba, c2,d2}. (U) Upper panel for y.-measurement—The quantum statistics
A(7)

Entangled state
into quadripartite entangled beams

with 4, j, k,l € {0, 1} photons are measured with projectors {ICIES)}
5(A)

{@ijr1} for the individual modes of py;
at detectors Dy 4. (L) Lower panel for A-measurement—Mutual coherences for fy;,” are accessed with

projectors {Hic)} from detection statistics {p;jx: } at Dy p,c,q. Further details are given in section
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9.2 Quantum interface between light and matter for quadripartite en-

tangled states

Our experiment proceeds in four steps (see section . First, in step (1) an entangled state ,5%,’3) of four

atomic ensembles is generated by quantum interference in a quantum measurement*” (Fig. ). Given
a photoelectric detection event at Dy, the conditional atomic state is ideally a quadripartite entangled state

~(A .
P = W), (W] with

W), = 3150 T, 9o Ga) + € [Gas 55, G Ga) )+
©.1)

eid)Q (‘gav gbvgca §d> + ei¢3 |§a7§b7§cv§d>)]’

whose single quantum spin-wave |3.) is coherently shared among four ensembles € = {a,b,c,d}. These

entangled states are known as W-states, comprised of atomic ground states |g.) = |g---¢g). and single

collective excitations [S.) = ﬁ ZZ]\LAl

€.

g---Si- - g)e, Where Ny . is the number of atoms in ensemble
After the heralding event, step (2) consists of storage of ﬁg}) in the ensembles for a user-controlled time
7. At the end of this interval, step (3) is initiated with read beams to coherently transfer the entangled atomic

components of ﬁ%,é )intoa quadripartite entangled state of light ﬁ%) = |W), (W] via cooperative emissions

(Fig. 0.Ic), where

a

(W), = =[(]1000) + €#1]0100)) + €2 (|0010) + ¢'#3|0001))]. 9.2)

DN | =

This photonic state is a mode-entangled TV -state (refs.*>8, chapters [7H8]), which shares a single delocalized

photon among four spatially separated optical modes vy = {as, bz, c2,d2}.

9.3 Characterization of quadripartite entangled states via quantum

uncertainty relations

Finally, in step (4) we characterize the heralded entanglement for ﬁ(v;) from complementary measurements of
photon statistics and coherence®38 (Fig. [0.1F) via the techniques developed in chapters[7H8] In particular, we

consider a reduced density matrix p, = popo + p1p1 + P>20>2 containing up to one photon per mode, which

leads to a lower bound for the entanglement of the actual physical states {ﬁ(mé), ﬁ%)} Here, {po,p1,p>2}

are the probabilities for 0 and 1-photon py 1, and higher-order subspaces p>2, which can be populated for any

realistic system. As illustrated in the upper panel of Fig. 0.1k, we characterize the statistical contamination

for [)g/g) due to {po, p>2} with a normalized measure=®, namely y. = 82 Z;f °, ranging from y, = 0 for a
- 1

3
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single excitation to y. = 1 for balanced coherent states, by detecting the photon statistics g;;x; of 2 at the
output faces of the ensembles.

We also quantify the mutual coherences for ﬁg&) by measuring photon probabilities {p1000, Po100; Poo10
,Pooo1 } at the outputs of the verification (v) interferometer. We determine the sum uncertainty A = 25\54
<(1:[Z(.C))2 - (ﬁgc)>2) for the variables {ﬂl(-c)} = {|W;),(W;|}, which project p,. onto a set of four orthonor-
mal W-states {|W;), } with phases {31, 52, 83} selected by the actively stabilized paths in the verification
interferometer (section . Hence, for the ideal W -state (Eq. with 8; = g, we have A = 0 asso-
ciated with p1go0 = 1 and pp100 = Poo1o = Pooo1 = 0, as observed in the bar plots of the lower panel of
Fig. for y. = 0.04 £ 0.01. In contrast, mixed states with no phase coherences would result in balanced
probabilities (p1000 = Po10o = Poo1o = Pooo1r = 1/4) and A = 0.75.

The pair {A, y.} thereby defines the parameter space for the multipartite entanglement employed in our
experiment, with the entanglement parameters {A, y.} serving as a nonlocal, nonlinear entanglement witness

f. 38

(ref.”®, chapter . Our criterion for ‘genuine’ M -partite entanglement takes the most stringent form of non-

208 and excludes all weaker forms of entanglement (section[9.13)). Specifically, for a given value

of y., we determine the boundary AgMﬁl) for the minimal uncertainty possible for all states containing at

separability

most (M — 1)-mode entanglement and their mixtures (section [9.13.3)). For our quadripartite states N = 4,
we derive {Al(}?’), A}()z)’ A}()l)} for tripartite, bipartite entangled, and fully separable states, as functions of y..

Thus, a measurement of quantum statistics y. and the associated coherence A with A < Agl’m)

manifestly
confirms the presence of genuine M = 4 partite entanglement (refs.*>8, chapters[7H8)). Furthermore, we can
unambiguously distinguish genuine M and (M — 1)-partite entangled states for any M < N by observing

A below A,()M_l).

9.4 Quadripartite entanglement among four atomic ensembles

Fig. 0.2] presents our results for quadripartite entanglement for storage time 7o = 0.2 ps. We first investigate
off-diagonal coherence for the purportedly entangled atomic and photonic states, { ,6%,’3 )7 p”w }, in Fig. .
As the bipartite phase [, is varied, we observe interferences in {p1000, P0o100, Poo10, Pooo1 }» and hence a
variation in A, that results from the coherence between the bipartite entangled components of [)%) for the
modes {ag, b2} and {co,d2}. Furthermore, for optimal settings of (o, the observed values of A (black
points) fall below the bounds {Az(;3)7 Al(f)7 Al()l)} (red, green, purple bands) for y. = 0.06 & 0.02, and signal
the generation of a fully quadripartite entangled state. The observed quadripartite entanglement arises from
the intrinsic indistinguishability of probability amplitudes for one collective excitation |3.) among the four
ensembles. We also present results from a control experiment with a ‘crossed’ state ﬁ(XA) (orange points) that

consists of an incoherent mixture of entangled pairs {a, b} and {c, d} (see section[9.5.1).
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Figure 9.2: Quadripartite entanglement among four atomic ensembles. a, Quantum interference between
the bipartite entangled pairs of the full quadripartite state (black points) as a function of bipartite phase (5.
b, Exploring the entanglement space {A, y.} for quadripartite states. By controlling the spin-wave statistics,
we observe transitions from quadripartite, to tripartite, to bipartite entangled states, and to fully separable
states (black points). We also display our results for the ‘crossed’ quantum state ﬁ(XA) (orange points), as
further discussed in section Inset, expanded view of entanglement parameters {A, y.}. Results for
entanglement thermalization {A(T), yET)} of the spin systems ﬁg{) (ﬁg‘MG)) are shown by the red dashed
(blue dash-dotted) line. The red, green, and purple bands represent the minimum uncertainties for 3-mode

(AIEB)) and 2-mode entanglement (A,()Z)), and for fully separable states (Al()l)), with thicknesses of the bands

from the central lines corresponding to &1 s.d. of the bounds {AZ()B), Al(f), Agl)} (section [9.13.3). In all
cases, error bars for the data reflect the statistical and systematic uncertainties, as further detailed in section
9.13.4

9.5 Statistical transitions for multipartite entangled spin waves

Next, we characterize ﬁ%,}) (and ﬁ%,‘é )) over the full parameter space {A, y.}. In a regime of weak excitation

(¢ <« 1) for the ensemble-field pairs {e, v }, the heralded state [)E,{;‘) is approximately

A (r = 0) = (1—3¢) W), (W] + 3¢5 + 0(&), 9.3)
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where [)(>AQ) includes uncorrelated spin-waves with two or more quanta in the set of four ensembles due to

atomic noise. For £ — 0, a heralding event at D}, leads to a state with high fidelity to |W) , stored in the four

ensembles. However, for increasing &, p”(>’42) becomes important, leading to modifications of the spin-wave

statistics for /35,{;1 ) and thereby to the entanglement parameters {A™, 4"}, Hence, by varying ¢ via the overall

intensity for the write beam, we adjust the quantum statistics y. and coherence A of the entangled states
A(A) 4
) '}
This procedure is employed in Fig. to parametrically increase {A, y.} in tandem. As y. is raised
from y. ~ 0 in the quantum domain to the classical regime with y. ~ 1, we observe transitions of the directly

measured photonic states ,5%;}) (black points) from fully quadripartite entangled (A < Al(f)) to tripartite

entangled (A,(jg) <A< A,@), to bipartite entangled (A,()Q) <A< Agl)), and finally to fully separable
states (Aél) < A). As shown by the curves, our observations correspond well to a theoretical model for

entanglement generation, transfer, and verification (see section [9.14). In comparison to our former work

on coherent splitting of a photon=? in chapter 8} the heralded atomic and photonic W -states { ﬁ%‘ ), ﬁ(mz)}

offer qualitatively richer statistical passages through the entanglement spaces delineated by {A, y.}. Here,
the quantum coherence A is intrinsically linked to the statistical character y. due to quantum correlations

between the heralding fields y; and the excitation statistics of the ensembles.

For £ < 1, the coherent contribution pAéA) of the delocalized single quantum strongly dominates over any

other processes for the full quadripartite state /35;}) in Eq. With a heralding probability pj, ~ 3 x 10~
(€ ~ 5 x 1073), we achieve the smallest entanglement parameters A™" = 0.0?f8‘_8% and y™" = 0.038 +
0.006 for the generated quadripartite entangled states. These parameters are suppressed below the closest 3-

mode boundary Al()?’) by ten standard deviations. Furthermore, because the local mapping of quantum states

, our measurements of ﬁg},) unambiguously provide a

lower bound of the quadripartite entanglement stored in ,5%;,‘). Therefore, the observed strong violation of

from matter to light cannot increase entanglement?’

the uncertainty relations for {A™n yMn} categorically certifies for the creation of measurement-induced
entanglement of spin-waves among four quantum memories, as well as for the coherent transfer of the stored
quadripartite entangled states to an entangled state of four propagating electromagnetic fields.

In terms of state fidelity, our approach for heralded multipartite entanglement generation compares fa-
vorably to matter systems utilizing local interactions (e.g., trapped ions*”>27%) Despite the intrinsically low
preparation probability, the resulting quadripartite entangled state ,6%‘ ) stored in the four ensembles has high
fidelity with the ideal T -state, namely F(4) = , (W| ,b%,{;‘ ) |[W) 4. As discussed in section we estimate
a lower bound for the unconditional entanglement fidelity F(“) > 0.9 & 0.1, as compared to the theoretical
fidelity thlA) = 0.98 derived for the parameters in our experiment.

Apart from the creation of novel multipartite entangled spin-waves, an important benchmark of a quantum
interface is the transfer efficiency A of multipartite entanglement from matter to light*?, Since no known

measure applies to our case, we tentatively define the entanglement transfer A = F(?) /F(4) | with physical

fidelity FO) = (W] ﬁ%)\WH for the photonic state ﬁ%). In particular for £ < 1, we obtain F[E?) ~
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Figure 9.3: Dissipative dynamics of atomic entanglement. a, Dynamic evolution of entanglement pa-
rameters {A(7),y.(7)} for the multipartite quantum state. We observe crossing of the boundaries defined

by 3-mode (red surface, Al(,?’)), 2-mode (green surface, A,(jz)) entangled states, and separable states (purple

surface, Agl)). We indicate various entanglement orders for quadripartite (black), tripartite (red), bipartite
entangled (green) states, and fully separable states (purple) for the data points and the curve. The projections
of the data points into the planes (y., 7) and (A, 7) display the individual passages of {A(7),y.(7)} (section
9.14.5)). b, Projection of entanglement dynamics onto the (A, y..) plane. The curves in a and b are from a the-
oretical model including motional dephasing. Error bars for the data represent the statistical and systematic
uncertainties.

nreadFt(hA), which thereby gives A = 7eaq = 38 £ 4% dictated by the retrieval efficiency 7...q. While fidelity
is an often used measure, we emphasize that F’ () cannot be used to set a threshold for entanglement, since

p”%},) can exhibit multipartite entanglement for any F(*) > 0.

9.5.1 Generation and characterization of a ‘crossed’ quantum state

As a control experiment, we reconfigured the heralding interferometer such that path-information could in
principle be revealed up to the bipartite split of the ensemble pairs {a, b} and {c, d} by analyzing the polariza-
tion state of the heralding photon ;. In this case, the heralding measurement I, prepares a ‘crossed’ atomic
state /S(XA) with no coherence shared between {a, b} and {c, d}. Thus, we observe an absence of interference
in Fig. (orange points). However, this modified 11, preserves the bipartite entanglement within {a, b}
and {c, d}, which explains our observation of the uncertainty A reduced below the 1-mode bound Agl) for

Y. = 0.07 £ 0.01. Similarly, we also detect the statistical transition of the bipartite entanglement to fully

separable states for the ‘crossed” state in Fig. [0.2p, despite the disentanglement for the physical bipartition
() of {a, b}|{c,d}.
9.6 Dissipative dynamics of atomic entanglement

To investigate the dynamical behavior of the observed quadripartite entangled states, we study the temporal

evolution of multipartite entanglement stored in the atomic ensembles as a function of a storage time 7.
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Decoherence for the atomic W -state is governed by motional dephasing of spin-waves (ref. 52, chapter , in
which the imprinted atomic phases in |3.) evolve independently due to thermal motion, thereby transforming
the initial collective state into a subradiant state uncorrelated with the heralding fields v, (section[0.14.3). The
net effect is an increase of both entanglement parameters {A, y.} with a time-scale 7,,, ~ 17 us (see section
[9.9). Eventually, the growth in {A(7),y.(7)} leads to time-dependent losses of entanglement, marked by
successive crossings of the boundaries set by {Al()g), Al(f), AIEU 1.

We examine the dissipative dynamics of multipartite entanglement for the quantum memories of four

ensembles via the evolution of both {A, y.} in Fig. . We observe the passage of the initial quadripartite
(A4)

entangled state py;,’ (79) at 7o = 0.2 ps through various domains, progressively evolving from M -partite
entanglement to (M — 1)-partite entanglement at memory times 7 = MY with the final state ﬁ(v{j‘) (14)

measured at 7y = 36.2 pus. The crossings of the bounds {Agg), Al(f), Al()l)} occur at 77(713) =15 us, 77,(,2) =21

us, and T,S% ) =24 us, respectively. In addition, the measured entanglement parameters evolve in qualitative

agreement to the simulated dynamics derived for [)E/é ) (7) from our theoretical model (solid line), with devia-

tions (especially for Ay) discussed in section[9.14.5] Fig. [0.3p displays the parametric losses of entanglement
via {A(7),y.(7)}

9.7 Thermalization of multipartite entanglement in quantum magnets

Finally, an interesting extension is to relate the characterization of multipartite entanglement via {A, y.}

39140,

to the relaxations of entanglement in quantum many-body systems . We consider two ferromagnetic

spin models (Heisenberg-like and Lipkin-Meshkov-Glick Hamiltonians HH, fILMG) as well as their thermal
entanglement {A(T), y((;T)} (see section . Results of our analysis are shown in the inset of Fig.

by the red dashed (blue dash-dotted) lines for the Gibbs thermal equilibrium states ﬁg’) (ﬁéLMG)) of fIH

(Himc)- The statistical character of [)E,é )

) for y, < 0.2, whereby ,6(>AQ) is thermally populated. This comparison suggests that our method for

for our system of four ensembles follows the thermalization of ﬁgH)
( ﬁ(GLMG
entanglement characterization could be applied to access the link between off-diagonal long-range order and

multipartite entangled spin-waves in thermalized quantum magnets=>4%,

9.8 Conclusion

In conclusion, our measurements explicitly demonstrate a coherent matter-light quantum interface for multi-

partite entanglement by way of the operational metric of quantum uncertainty relations (refs. 3235121

, chap-
ters [7H8). High-fidelity entangled spin-waves are generated in four spatially separated atomic ensembles and
coherently transferred to quadripartite entangled beams of light. The quantum memories are individually ad-
dressable and can be readily read-out at different times for conditional control of entanglement?, as applied

in chapters With recent advances by other groups, the short memory times obtained in Fig. could be
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improved beyond 1 s (section[9.11.T).

Further possibilities include the creation of yet larger multipartite entangled states with efficient scaling™
for the realization of multipartite quantum networks. For example, quadripartite entangled states of ensemble
sets {a,b,c,d} and {a’,V', ', d’'} could be extended by swapping between {a,a’} to prepare a hexapartite
entangled state for {b,b',c,c’,d,d'} (see section[9.11.1). Generalization of such processes will prepare a
single macroscopic entangled state for observing entanglement percolation® and extreme non-locality of W -

2891290

states , as well as for studying quantum phase transitions in strongly-correlated systems=?*", Finally,

the entangled spin-waves can be applied for quantum metrology to detect a phase shift of 7 on an unknown

component of [75,{,4 ) with efficiency beyond any separable state (see section(9.11.2).

9.9 Spin-wave quantum memory

The quantum information of the entangled state for Eq. [0.1]is encoded in the quantum numbers of spin-waves
(collective excitations) for the pseudo-spin of the hyperfine ground electronic levels 65 /o (F' = 3, F' = 4) in
atomic cesium. The fluorescence images shown in the inset of Fig. [0.Th depict the collective atomic modes
of ensembles € = {a, b, ¢, d} for exciting the entangled spin-waves ,6%{,‘ ) with 1 mm separations and 60 um
waists. The geometry of the collective excitations for the four ensembles {a, b, ¢, d} is defined by the point-
spread functions of the imaging systems for the fields {71, 72}, within a cold cloud of N . ~ 10° cesium
atoms (chapter . We use an off-axial configuration” for individually addressing each ensemble ¢ with an
angle § = 2.5° between the classical and nonclassical beams (section , that creates spin-waves [3.)
associated with wave-numbers 6k = Ewrite — l;% for each e. These spin-waves are analogous to other types
of collective excitations in many-body systems, such as magnons and plasmons, and the spin-waves can be
converted to dark-state polaritons for the coherent transfer Uread of entanglement (chapter . For the phase-
matching configuration and temperature of our ensembles, the memory times {7'7(75:’ ), 7&2 ), TT(,} )} in Fig. are
dominantly determined by the motional dephasing of the spin-waves [3.) (ref.82, chapter . With thermal
velocity of v; ~ 14 cm/s, we estimate a memory time 7, ~ % = 17 ps. On the other hand,

the ground-state dephasing due to inhomogeneous broadening is expected to be > 50 s in our experiment,

inferred from two-photon Raman spectroscopy (chapter [2)).

9.10 Operating the quantum interface

For the quantum interface to function during the 3 ms window, in step (1) 20-ns writing (red-detuned
d = 10 MHz from |g) — |e) transition) and 100-ns repumping (resonant with |s) — |e)) pulses are applied se-
quentially to the ensembles ¢, synchronized to a clock running at R. ~ 2 MHz. This process creates pairwise
correlated excitations® between the collective atomic modes |3.) of the ensembles ¢ and the optical fields v,

(0 = 10 MHz below |s) — |e}). Photodetection of a single photon for the combined fields -y, at the output
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of the heralding interferometer effectively erases the which-path information for 7, and imprints the entan-
gled spin-wave ,?)g,é) (Eq. onto the ensembles {a, b, c,d} via Tr;L(HhU‘Lmepg Usrite). The heralding
event at Dy, triggers control logic in Fig. [0.Th which deactivates intensity modulators of the writing (IMyrite),
repumping and reading lasers (IM;c,q) for the quantum storage of ,6%,’;) in step (2). After a user-controlled
delay 7, step (3) is initiated with 20-ns-strong read pulses (Rabi frequency 24 MHz, resonant with |s) — |e))
that address the ensembles in Fig. and coherently transfer the entangled atomic components {a, b, ¢, d}
of ﬁ%{,‘) (7) one-by-one to propagating beams v = {as, ba, ¢z, ds }, comprising the entangled photonic state

/35,;) (7), via the operation p(w)

= Tr A(Ureadpéy)ffread). Here, Tr4 traces over the atomic systems which
are later shelved into the ground states |g,.). The retrieval efficiency 7jeaq is collectively enhanced for large
N4 (ref.), leading to 7eaq = 0.38 % 0.06 in our experiment. The average production rate for the atomic
quadripartite entanglement with {A™" y™in} ig » = R.D.p;, ~ 60 Hz, while the actual rate during the 3
ms operating window is r, = R.pp, ~ 500 Hz. The atomic level diagrams for entanglement generation and
quantum-state exchanges are shown as insets to Figs. n and [9.1] -: States |g), |s) are hyperfine ground

states F' = 4, ' = 3 of 6.5] /2 in atomic cesium; state |e) is the hyperfine level F’ = 4 of the electronic

excited state 6.3 5.

9.11 Prospects and discussion

9.11.1 Improving memory time and matter-light transfer efficiency

By operating the clock speed at R, — 10 MHz and 7 ( )~ 20 s, we could prepare hexapartite (M = 6) en-
tanglement with probability 327eaapi /8 &~ 1075 by connecting two quadripartite states ,6%,[, for { Amin_ yminy
with enhancement factor z = 400 (ref.%), thereby giving a local production rate of rq = 50 — 100 Hz, or an
average rate r, =~ 5 — 10 Hz with our current duty cycle D.. The most challenging aspect of verifying the
hexapartite entangled states is the quantification of the higher-order contamination p>2, which we estimate
~ 1 event per 10 hr. This integration rate is feasible with our current system. More generally, M; and M-
partite entangled states can be fused together by entanglement connection to create a M = (M; + My — 2)-
partite entangled state. However, the memory times {T,(,f’ ), T,Sf ), Tm)} in Fig. and the entanglement
transfer A from matter to light limit our capability to scale the multipartite entanglement beyond M > 6
by way of conditional control and connection of entanglement=%Z with our current experimental parameters
(chapters AH3).

The prerequisite storage techniques for suppressing both the internal and motional spin-wave dephas-
ings can be extended for 7,, with advances in ensemble-based quantum memories*H4HS " Recent experi-
ments with single ensembles have achieved coherence times up to 7,,, >~ 1.5 seconds in quantum degenerate
gases! 197 albeit with efficiencies < 1%. The transfer efficiency can also be increased to Ay, ~ 0.9 by

enclosing the ensembles with high finesse cavities®?. System integrations by way of atom-chip technology
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and waveguide coupling#<!

hold great potential for scalability given the strong cooperativity and the long
coherence®=. At this level, two or more heralded processes of multipartite entanglement generations can be
made ‘on-demand’ on time scales of T4t ~ %}7}1 =1 ms, with 7,,, >> Tge (refs. 3037, chapters .
Realistically, the expansion of multipartite entangled states ﬁ%,é) will be limited by the intrinsic degra-
dations of the entanglement parameters {A,y.}, that inevitably increase with each step of entanglement
connection (ref.*’, chapter , and by the specific quantum repeater architecture implemented on ﬁ%,’é ). The
latter is an extremely rich area of research in view of the large classes of methods for connecting multipartite
entangled states, making it premature to specify a particular architecture for multipartite entanglement expan-
sion. However, our experiment will hopefully stimulate theoretical studies of complex repeater architectures

for multipartite systems, beyond traditional one-to-one networks“*”

9.11.2 Quantum-enhanced parameter estimation with entangled spin-waves

We describe a quantum-enhanced parameter estimation protocol whereby a phase shift on a single ensemble
¢; of the quadripartite state ¢; € {a, b, ¢, d} can be detected with efficiency beyond that for any separable state.
Specifically, we consider a 7-phase shift ﬁmei = exp(inf, ) applied on an unknown spin-wave component
€ € {a,b,c,d} (R, = SJISQ) of the atomic state p%,[,), or on a spatial field mode ~yo; € {aq, ba,ca,ds}

of the photonic state ﬁ%) (Mg, = G ). Our goal is to find the 7-phase shifted ensemble ¢; (optical

vzlawz
mode yg;), in a single-measurement under the condition that an average of one spin-wave is populated in
total; i.e., >, Tr(f, ﬁ%{,‘)) = 1 (or ), Tr(f,,, ﬁg&)) = 1 for optical modes). As a quantum benchmark,
we consider an average success probability P; = Z Tr(H<u U; e ﬁ%{,‘ Ur ) (failure probability Py =

1 — P) for distinguishing the phase-shifted ensemble €; (mode ~2;) among the four possibilities {a, b, ¢, d}
({az, ba, c2,d2}) by way of unambiguous quantum-state discrimination {ﬁﬁf‘)} (refs, 2237296

First, we consider an ideal W-state W), = |W)a (or |W),,) with atomic phases ¢; € {¢1,d2, d3}
(photonic phases ¢} € {@}, ¢4, #4}). In this case, the w-phase shifted entangled W -states

(We) s € (W) 1 WD) 5, IWED) 1 (W) )

can be detected deterministically, because |WE(Z7r )) # = Ugr.c,|W), forms an orthonormal complete set that
spans the state-space p1, resulting from the underlying symmetry of |IW), with respect to any rotation Umei
on a generalized Bloch sphere. Operationally, we set the verification phases (1,2 — d)’u = 0 and B3 —
¢% = 7. Then, the m-phase shifted ensemble ¢; can be unambiguously discriminated because the otherwise
balanced output photon probabilities 7, = {p1000,P0100; Poo10; Pooo1} = {0.25,0.25,0.25,0.25} of the
verification interferometer will be transformed to p,, = {1,0,0,0} for a 7-phase induced on ensemble a, to
Py = {0,1,0,0} on ensemble b, to p,, = {0,0, 1,0} on ensemble ¢, and to p,, = {0,0,0,1} on ensemble d,
each with success probability P = 1.

For fully separable states |¥), = [tq)a|tp)b|te)c|Va)a With [Ye)e; = Dorep cg?)

n).,, we displace
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the resulting m-phase shifted state |\I'£7T)> § = Ug.e,|®), with a local unitary transformation V; |, )e, =

(a phase shift on ensemble a), |0>a%ﬁﬂ,b ¥p)1]|0)c|0) 4 (ensemble b), |0>a|0>b‘7ch,c|¢c>c\0>d (ensemble c¢),

and ‘0>a|0>b|0>CVdUmd|’(/Jd>d (ensemble d), with only one €; containing (7.,) > 0 excitations. Thus, we can
unambiguously identify the phase-shifted ensemble €; given a photodetection, albeit with a failure probability
Py = %Z& €; <0|‘7€1'Umﬂ Vei)e: 2 = izg Ve, e
(i.e., [0000)(0000|). We derive the maximum success probability P™» = 1 — P}mi”) and the optimal state

€ <1/}E7 Uﬂ'yii

2 arising from inconclusive null events

|U), = |¥)op by minimizing P}mm) over all possible realizations of c\™ satisfying Yoe (e e |he, e, = 1.
Specifically, we find that an optimal (pure) separable state [¥)op = [, (v/3/4]0),++/1/4/1).,) can be used
for the parameter estimation protocol to infer ¢; with P{™® = (.75, Similarly, maximum success probability
PoM can be derived for multimode coherent states [, [c, ), giving a classical bound of P =1—1/e.

Finally, we consider the upper bound P for mixed separable states po” with pure state decompo-

sitions o = Yo Pm|¥m)o(¥i|. Generally, the transformations V.., as discussed above, do not exist

for ﬁﬁfep>, excluding the possibility of an unambiguous state discrimination. Thus, the success probability

P,(p5) is upper bounded by the convex combinations of {|¥,,)}, thereby

Po(p5®) <> pimPa([¥m)o(¥pm|) < PM = 0.75. (9.4)

Importantly, the maximum success probability P™® = (.75, attainable for any 55", is less than P = 1
for entangled states |W),. Thus, the entangled spin-waves in the experiment can be applied for sensing an

atomic phase shift beyond the limit for any unentangled state.

9.12 Experimental details

The experiment consists of a 22 ms preparation stage and a 3 ms period for operating the quantum inter-
face in Fig. with a repetition rate 40 Hz and a duty cycle D, = 3/25. For the preparation, we load
and laser-cool cesium atoms (peak optical depth ~ 30) in a magneto-optical trap for 18 ms, after which
the atoms are released from the trap with dynamically compensated eddy-currents. The atoms are further
cooled in an optical molasses (7; ~ 150 pK) for 3.8 ms, and optically pumped to |g) for 0.2 ms. During
this time, a phase-reference laser (F = 3 <> F’ = 4/ transition) also propagates through the atomic ensem-
bles for the active stabilization of the verification interferometer in Fig. [0.Tf via ex-situ phase-modulation
spectroscopy~>, which does not affect the operation of the quantum interface (section . Concurrently,
dense cesium atoms in paraffin coated vapor cells located at the heralding and verification ports are prepared

to the respective ground states |g) (|s)) for filtering the coherent-state lasers scattered into the quantum fields

71 (72).
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Figure 9.4: Experimental schematics for entanglement generation, transfer, and verification. a, Entan-
glement generation. A weak write laser is sequentially split into four components by displacers {BD;1, BD2}
to excite atomic ensembles € = {a, b, ¢, d}. The resulting fields v, = {a1, b1, ¢1,d;} are brought into inter-
ferences with displacer BD4 and polarizing beamsplitter PBS;,, and sent to a single-photon detector Dj. A
detection event at D;, heralds the creation of a quadripartite entangled state. b, Quantum-state transfer and
entanglement verification. After a storage time 7, we convert the atomic state of the ensembles € = {a, b, ¢, d}
to an entangled state for fields v = {az, b2, ca,d2} by way of strong read pulses. (U) y.-measurement—
By setting the waveplates (\/2), to 8y = 0°, we measure the occupation statistics of the individual modes
with detectors Dy, p ¢ 4. (L) A-measurement—With (\/2), at 6. = 22.5°, we optimize the verification phases
{1, B2, B3} for constructive interferences of the fields 2 at PBS; 5 and BS; 2. Piezoelectric fiber stretching
modules (FS) are used in the verification interferometer for active stabilizations of {31, 82, 33 }+,. The quadri-
partite atomic entanglement is generated for four collective atomic modes of the ensembles € = {a, b, ¢, d}
in inset (i), which are individually controlled by the classical writing, repumping, and reading lasers, whose
fluorescence is shown in inset (ii). Both images in the insets (i), (ii) result from background-subtracted
fluorescences of the four atomic ensembles. The quantum fields {v1,72} are generated in a non-collinear
geometry with a crossing angle of 2.5° (not shown) relative to the classical beams (chapter.

9.12.1 Experimental procedures for matter-light quantum interface

As shown in Fig. , we split a write pulse into four beams with two calcite beam-displacers {BD1, BD5},
with output fields of the form Eyge = (E, + ei"” Ey) + ei65" (E. + eid5"” E4). We control their relative
intensities using the two waveplates (\/2) near {BDy, BD,}, with writing phases 6" € {¢\", {*), (")}
set by the tilting angles of {BD;,BDy}. In turn, the heralding fields v; = {a1,b;,¢1,d;1} emitted from
the writing process are combined into two spatial modes at BD3, with each mode carrying polarizations
{|H),|V)} to accommodate the fields 'ylab) = {ay,b1} and 7§Cd) = {c1,d1}. We then interfere the po-

ab)

larization components of the spatial modes {% ,%Cd)} by way of BD,4, whose output modes experience
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polarization interference at the polarizing beamsplitter PBS;,, with one output monitored by the heralding
detector Dy,. Here, the relative phases acquired by the propagation of fields v, before the detection at D, are
given by (bgh) € {d)gh’), (Qh), d)éh)}. We control (;S,Eh’) with a set of Berek compensators.

A photoelectric detection of a single photon 7; emitted indistinguishably by one of four ensembles
e = {a,b,c,d} prepares an atomic entangled state pAE,‘é), whose mutual phases ¢; € {¢1, P2, P3} between
ensembles {a, b}, {a, c}, and {c, d} are ¢; = ¢§w) — gbl(}L) for i € {1,2,3}. To generate a ‘crossed’” quantum
state ﬁ(XA), we replace PBS;, with a non-polarizing beamsplitter BS;, in the heralding interferometer (Fig.
), such that the fields %ab) and 7§Cd) are mixed with orthogonal polarizations. While in practice we
do not discriminate events arising from the fields fy§ab) and %Cd), the intrinsic possibility of analyzing the
polarization state of the heralding photon to infer the two distinct events completely destroys the bipartite
coherence (and entanglement) for the split between {a, b} and {c, d}.

Finally, after a variable delay, a strong counter-propagating read pulse, with reading phases qbz(-r) €
{QSY), g'), g')} set by {BD3,BD,}, transforms the entangled atomic components {a, b, ¢, d} of ﬁ%,’;) to
entangled beams 2 = {az, ba, 2, d2 } comprising the photonic state ,5%,}}). The photonic phases {¢}, @5, @5}
of ﬁ%},) depend on the overall accumulation of atomic phases ¢; via ¢} = qSl(-T) — ¢;. Importantly, the set of cal-
cite displacers {BD1, BD2, BD3, BD,4} forms an interferometrically stable four-mode Mach-Zehnder device,
in which any common-mode phase drift of {gbz(»w), gbz(»r), zj)l(h), ¢%} is passively counter-balanced over several
days. Thus, the entangled state ﬁ(vf,l) (,6%)) in our experiment is generated with stable phases {¢1, ¢2, d3}
({94, ¢, ¢4 }) from trial to trial, which can be transferred to independent reference frames for entanglement

verification without exploiting additional quantum channels1?.

9.12.2 Operational procedures for entanglement verification

To verify the entanglement of the photonic state ﬁ(v;), we use a nonlocal, nonlinear uncertainty relation (ref."%,

chapter[7), in which mode-entangled states for M/ > 2 can be efficiently detected with a significantly smaller
number of measurements than conventional techniques®>*%, as discussed in chapters Specifically, our
protocol requires measurements of (U) the photon statistics y. and (L) the mutual coherences A of the mul-
tipartite entangled optical modes, as shown in Fig. [9.4p.

Operationally, we measure the entanglement parameters by first combining the four optical modes o =
{az, by, c2,do} with BD; into two spatial modes fyéab) = {as,bo} and ’yQCd) = {cg,ds}, with each mode
{ag, b2} ({ca, d2}) of v2 encoded in the respective polarizations {|H), |V)} of 'yéab) (’yéCd)). By rotating two
waveplates (A/2), before PBS; 5 between 6y = 0° and 6, = 22.5°, and by reconfiguring the fiber-optical
connections, we switch between the measurement setups for accessing y. and A.

In particular, measuring the sum uncertainty A involves pairwise interference of the optical channels
2 = {aa, ba, 2, ds}. The coherence properties of the photonic state are characterized by the stable photonic
phases of {¢}, #5, 95}, and by the off-diagonal elements d,g of ﬁ%) (section . This requires high

phase stability of {31, 82, 83}, for the relative optical paths of the verification interferometer shown in Fig.



170

. Here, {31, 32, B3}» denote to the relative phases between the modes {as, b2}, {ag, c2}, and {ca,d2},
respectively. Additionally, {531, 82, 83 }. of each optical path leading from the output faces of the ensembles
must be tuned to {¢], @5, ¢4} such that maximum constructive interferences for the fields {ao, bo, ca, d2}
occur in a pairwise and sequential fashion (ref.?”, see a similar setup in section [8.8.2). We achieve the
optimal settings of these phases by varying {1, 52, 3 }» and recording the sum uncertainty. Fig. shows
such a measurement for (5.

To stabilize the verification phases {31, 82, 83}, We incorporated an auxiliary reference laser Eaux to
probe the interferometer during the laser cooling and trapping stage of our experiment via an ex-situ phase
modulation spectroscopy. The active stabilizations of {31, 82, 83}, rely upon the passively stable paths of
the eight quantum fields {71, v2}.

During the phase stabilization stage, the outputs of the verification interferometer are routed to a set of
auxiliary photodetectors by micro-electro-mechanical switches (MEMS) to monitor {31, 2, 83},. We also
use another set of MEMS for switching Eaux, which can extinguish the intensity of the reference laser with
an overall extinction of 2> 200 dB during the operation of the quantum interface. Additionally, by setting
the frequency of Euy to the |s) — |e) transition of cesium, Euy initializes the ensembles ¢ = {a,b,e,d} to
the ground state |g) of the quantum interface. Based on the interference signal of Eaux, we apply a feed-
back signal to the two piezoelectric fiber stretching modules (FS) in Fig. [0.4] that control the relative path
lengths (82) leading from the ensembles. The remaining phases {1, 83}, are passively stabilized by stable
interferometers (over several days), and controlled independently with a set of calcite Berek compensators.

To operate the quantum interface (3 ms), (i) we set the control signals for the fiber stretchers to values
Vo + V., with set-point Vj corresponding to a fixed phase 32 of the interferometer during stabilization, (ii)
switch off the laser Eaux, and (iii) reroute the interferometer outputs to the single-photon counters Dy, 3 . 4 Via
the MEMS for 3 ms. This system allows to set the phase 32 to an arbitrary value by incrementing V{, by V,
to Vo + V., with no degradation for the quantum statistics and coherence of pAE,}). Moreover, the verification
phases remain stable for the 3-ms operating duration of the quantum interface. Thus, the asynchronous (‘ex-
sifu’) sequences for acquiring and stabilizing {51, 52, 83 }» of the verification interferometer do not affect
the sensitive operation of the quantum interface. In addition, the asynchronous timings allow the generation
process of the atomic (photonic) entanglement with atomic (photonic) phases {¢1, ¢2, ¢35} ({P1, ¢h, #5}) to
be independent of the procedures for stabilizing the verification phases {81, 32, 83}, thereby satisfying the

entanglement verification criteria of ref.10.
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9.13 Quantum uncertainty relations and genuine multipartite entan-

glement

In order to verify the entanglement by way of {A, y.}, we first evaluate the photon statistics {pg,p1,p>2}
for the y.-measurement. Operationally, this is accomplished by measuring the individual probabilities g; ;1
for i, j,k,l € {0,1} photons to occupy the respective optical modes 2 = {as, ba, ca, d2 } at the output faces
of the ensembles via photoelectric detections {fIZ(-S) }. For the A-measurement, we quantify the off-diagonal
coherence d of [)E,?,) by pairwise interferences of all possible sets of modes «, 8 € {as, ba, co,d2} with the
verification interferometer. The photon probabilities {p1000, P0100, P0010, Pooo1 } at the output modes of the
verification interferometer thereby result from the coherent interferences of the four purportedly entangled
fields -y, that depend on the phase orientations {31, 82, 83}, of {IZIEC)} (section .

Our conclusion of genuine multipartite entanglement for the atomic and photonic states { ,6%{,‘ ), ﬁ%)} does
not rely on weaker conditions based on the non-separability along any fixed bipartition of { ﬁ%,’é ), ,6%,})}. The
genuine M -partite entangled states created from our experiment can only be represented as mixtures of pure
states that all possess M -partite entanglement, as for the case of genuine ‘k-producibility’ in multipartite
spin models®?“". We take caution that our entanglement verification protocol cannot be applied for verifying

the absence of entanglement for the physical state ﬁ%},) in an infinite dimension“’. Finally, we emphasize

that our analysis makes use of the full physical state {ﬁ%‘), ﬁw)} including the vacuum component pg and
higher-order terms p>2, and does not rely on a spurious post-diction based upon a preferred set of detection
events (see sections [9.13.3H9.13.4).

In the following, I will derive useful relationships between the entanglement witness by way of quantum

uncertainty relations and other measures.

9.13.1 Relationship between quantum uncertainty and off-diagonal coherences
We derive here the general expression for the upper bound of the sum uncertainty A as a function of the

coherence d. First, we note that A is only sensitive to the 1-excitation subspace p; of j, with

51000 dap  dac  dag

dy,  sow00  dpe  dba

b)
=
I

di,  dy  So010  dea

* * *
dy, dap dge  Soo01

normalized such that Tr(51) = $1000 + So100 + Soo10 + Sooor = 1. Here, the diagonal elements §; =
{51000, 50100, 50010, S0001 } of p1 are related to the 1-photon probabilities 1 = {1000, ¢0100; ¢o010, go001 } at
the faces of the ensembles via p1§; = ¢). By transforming 5, into the basis spanned by {|W;), }, we find

the expressions for the normalized output photon probabilities {p1000, Po100, Poo10, Pooo1 } of the verification
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Figure 9.5: Various imperfections in verification interferometer. The verification interferometer trans-
forms the input photonic modes v2 = {as, b2, ¢z, dz2} to the output modes v = {a, b}, ¢, d5}. The projec-
tors fIZ(-C) are transformed into imbalanced states fri(c) due to losses and imbalances in the verification protocol.
The transmission efficiencies {#, 7’} (blue) and beamsplitting ratios {«, &’} (red) are shown. Dashed arrows
are the auxiliary modes for loss propagations of the input state ﬁ%} .

interferometer as functions of 57 and d,s. The sum uncertainty A is then expressed as A = 2 — {(|dq| +
|deal)? + (|dac| + |dbal)* + (|dad| + |dbc|)?}. Thus, we obtain A < 2(1— 16d°). The average value of the six
unique off-diagonal elements is d = } Y |dap| with 0 < d < 1/4, and the effective interference visibility

is given by Vg = 4d.

9.13.2 Derivation of entanglement fidelity

We obtain here the expression for the lower bound unconditional entanglement fidelity F(4) = j, F|, where
p1 is the probability for a single spin-wave pAgA) in the heralded state /35,‘3), and F; = (W] pAgA)|W1> is

the conditional fidelity for ﬁgA). We start by noting that the projective measurement ﬂgc) for A gives the
conditional fidelity F; of p, onto one of four orthonormal W-states, |W;), = |W;),, for example, [1000) +
€#110100) + €¥2(|0010) + ¢7%3|0001)). Hence, we can define A = 1 — F2 — Y"1 _ F2 in terms of the
respective overlaps F;. Because of the orthonormality 221:1 F; = 1, the sum uncertainty is bounded by
A >1—Ff —(1— Fy)?% whereby we obtain F; > /(2 — A) + 1. Finally, by combining the probability
py for exciting one spin-wave distributed among the four ensembles, we access the lower bound fidelity
FW > p1(1/2(3 = A) + 3) obtained unconditionally for the heralded atomic state /35,{;1). In principle,
the imbalances in the interferometer can rotate the projectors into non-orthonormal sets (ref.=%, chapter [7)).
However, the measured losses and the beam-splitter ratios are sufficiently balanced such that any changes in
F() due to modified projectors are well within the uncertainties of the data, as evidenced by the close-to-
unity projection fidelity F(™) = 99.9f8:§% (section . In the experiment, p; and F} are determined

from the inferences of the spin-wave statistics (via y.), and of the coherences (via A), respectively.
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9.13.3 Numerical optimizations of the uncertainty bounds and their errors

In the presence of technical imperfections in the verification interferometer arising from imbalances in trans-

mission losses {n, 7'} and beamsplitting ratios {a, o’} of Fig. the ideal projectors f[,gc) = [W)o (W5

evolve into modified sets frgc) = |W/),(W/|, which project the input j, onto imbalanced W -states |W/),,

with chapters E providing further details. Generally, these projectors 7%§C> are non-orthonormal due to

the differential losses, but still span the single-excitation subspace p; of p,. Importantly, the reductions of

projection fidelities Fi(ﬂ) = v(Wi|7Ari(c)|WZ->v < 1of #° can only decrease the efficacy of the verification

i
protocol for detecting larger sets of states that belong to the state space of genuine W -states. Therefore, the

(M-1)
b

observation of A below the bounds A using the modified projectors is still a sufficient condition for

genuine M -partite entanglement (ref.*%, chapter . In the experiment, the losses and beamsplitter ratios for

the interferometer are matched within 5%, as shown in Table
(¢)

To quantify the accuracies of our projectors 7, to those of an ideal A-measurement, we numerically

()

Fig. , to the ideal ﬁgc). For this, we assume normal distributions for the parameters in Table due to

simulate the projection fidelities Fi(ﬂ) of the modified 7, as implemented by the measurement apparatus in
their systematic uncertainties, and build histograms of Fl-(ﬁ) in Fig. which give the probability densities
pa(F™) for F{™ such that fol padF™ = 1. Due to the quadratic structure of the projection fidelities, F™
is insensitive to small variations in the parameters of Table[0.1| when the verification interferometer is close to
balanced (i.e., o ™~ ai3q ™~ @y ~= Ay ~ 1/2,m1 ~ 1o ~ 13 =~ ny, and n] ~ nh ~ n4 ~ n}). Thus, we find
amean value F(™) of the four projection fidelities with F'(™) = i(F(E”) +F™ 4 B 4 FY = 99.9191 %
by fitting the resulting probability densities pl(f) to asymmetric Gaussian distributions G (Fi(ﬂ)). The close-
to-unity {F; Z-(ﬁ)} justify our analysis of the entanglement fidelities { (), F(*)} for the atomic and photonic
states.

In addition, we extend this model to numerically minimize the uncertainty bounds {AIES), Al(f), Aél)}
over the full range of y. for tripartite, bipartite entangled states, and for fully separable states, respectively
(refs. 338, chapters [TH8). The calibration errors in the parameters of Table[9.1] give rise to the bands in the
uncertainty bounds of Figs. and which depict the £1 s.d. uncertainties of the respective bound-
aries. In Fig. we show the probability distributions of the bounds {Al(,?’), Al(f), Agl)} for the minimal

entanglement parameters { A™", ™"} achieved in section[9.5]

Table 9.1: Experimental imperfections in verification interferometer. Measured beamsplitter values
{a, o’} and transmission efficiencies {, n’} for the verification interferometer in Fig. are shown. The
systematic uncertainties (dx) of {k} are fractionally (éx/x) = 0.05 for k € {a,a/,n,n'}. Note that
Q12 ™ Qg 2 Ay 2 aby =2 1/2,m > g ~ 3~ ny, and N) ~ nh >~ 0t~ 1.

a2 azq abs oy i 72 73 N4 n} 4 75 75
0.51 0.49 0.50 0.48 0.52 0.54 052 0.50 | 0.95 096 0.91 0.93
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9.13.4 Data and error analysis

The calibration errors in Table[9.T]and the finite quantum efficiencies 7 for the non-number resolving (thresh-
old) detectors D; may cause the actual entanglement parameters {A, y..} of the physical states { ﬁ%‘ ), ﬁg&) 1,
that result from the ideal POVM values of {ﬂ§C> , f[l(-s) }, to be inferred incorrectly from our measurements. We
describe here how {A, y.} can be conservatively estimated from the photoelectron statistics of the detectors
D;.

First, we confine our analysis to the reduced subspace p, = popo +p1p1 +p>20>2 of the physical density

matrices {/3%1), /SE,IZ)} up to one excitation per mode and ensemble. Importantly, this truncation process

can be simulated by local filters on the individual modes of {ﬁ%‘), AW} and leads to a model-independent
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Figure 9.6: Projection fidelities for quantum uncertainty relations. We show histograms for the projection
fidelities F{™ of the modified operator #'°) to the ideal I1{”) associated with detector D; for i € {a, b, c, d}.
The mean value of the projection fidelities of 99.9f8:§ % is deduced by fitting the respective probability

densities pfli) with asymmetric Gaussian distributions G(Fl-(w)) (see the main text).
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inference of the lower-bound entanglement of the full physical state { ,6%,’[;1 ), [)E},)} (ref ZB4H0 - chapter .

The truncations of { ﬁ%,é ), ﬁ%,?,)} into p, also justify the use of single-photon avalanche photodetectors for the

(local) y.-measurement, since threshold detectors with finite efficiencies can be simulated by local filters®1%,

We extract the photon statistics for the diagonal elements {po, p1,p>2} of p,- by a Bernoulli inversion™" of

£ 35

the photoelectron statistics at [J; to the photon statistics g;;; at the faces of the ensembles (ref.=2, chapter

[8). The spin-wave statistics can then be deduced by back-propagating the field statistics at the face of the
ensembles to the spin-wave statistics {po, p1,p>2} for the reduced subspace of the ensembles, assuming
linear mapping from matter to light (refs.2%3%, chapters [3|and|[6).

For the sum uncertainty A, we additionally employ a numerical algorithm that estimates the upper bound
of A for the one-excitation subspace p;. By defining the success probability qfs) for a single-photoelectric

detection event P, to arise from f1, the single-photoelectron probability p, is given by (ref.=%, chapter|7)),
B =ap" + (1— ¢ )pl. ©9.5)

Here, pl(-s) = Tr(frfc)ﬁl) is the conditional probability for one photon at D; originating from p;, normalized

with ), pis) = 1. On the other hand, pgf ) is the normalized probability for a false single-photon event based
(s)

%

on a spurious detection of a single photoelectron. Such an event can occur with a failure probability 1 — ¢
if multiple photons are transmitted and registered at the same detector as a single photoelectron, or if the
higher-order terms p>o at the faces of the ensembles are transformed into a single photon before the detectors

by the lossy propagations (Table . Eq. of chapter [8| (refs.?>38) provides the explicit expression for

)

qfs . We do not subtract spurious backgrounds from atomic fluorescence, scattering noise, and detector dark

counts.

Then, our goal is to unambiguously determine an upper bound of A = 1 — Zi(pl(.s))2 for all possible
realizations of pgf ). We constrain this optimization problem with a set of data for the measured single-

photoelectron probabilities p; (A-measurement) and the photon statistics y. (thereby, {po, p1, p>2} of j,), as

well as the transmission efficiencies in Table[9.1]and the detection efficiencies for D;. With these parameters,
(s)

we assign the success probability g; ' of projecting the purported state p, onto ﬁ'gc). Instead of algebraically

upper bounding A (ref.®%, see chapters|7H8), which can yield an unphysically large result A > 0.75, we per-

ES) that maximizes A within the physical limit

(s)

i

form a Monte-Carlo analysis to numerically determine a set of p
(s)

> pl(»f ) — 1 over the distributions of g; . Here, the errors of ¢;”’ occur from the systematic uncertainties of
{n,n'} and of the detection efficiencies, as well as of the statistical uncertainties of y. of p,.

This procedure was employed for all the data sets of Figs. [9.2] and 0.3] (as well as of Figs. [0.8H0.10)
to obtain conservative estimates of the entanglement parameters {A,y.}. The numerical errors for the
Monte-Carlo simulations of all the data and the boundaries are well within < 0.1% of their overall un-
certainties. In Fig. we display a histogram for the minimal entanglement parameters { A™" ymin} —

{0.0719-0%,0.038 4 0.006} (section . We find that A™" (black bars) is suppressed below Al()g) =
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0.26170°51% (red bars) by 10 s.d. We emphasize that we do not subtract any noise in the detection statis-
tics nor do we post-select our data in the analysis, and thereby characterize the quantum state { p%), ﬁ%)}

that is physically available to the user.

9.14 Details on the theoretical model for the quantum interface

We describe theoretical models for the generation, storage, and transfer of the multipartite atomic state [)(Vé) =

Trh(HhU mepq )mee) to the photonic state of p A(W) TrA(UreadﬁW)Uredd)

9.14.1 Entanglement generation

As we discussed in chapter we begin our model with an interaction Hamiltonian (ref.)

0l
) /n = 08 Hme ., 5, + al, 1) 9.6)
for the parametric writing process of ensemble e with excitation parameter & = tanh(go [ mee( )dt/9).

Here, Q')

L. (0) is the Rabi frequency (detuning) of the writing laser, and @, (S.) is the annihilation operator

for the fields 1 (collective excitations in ensemble €). The writing process transforms the initial atomic
state |g,) into individual products of two-mode squeezed states between the fields v; and ensembles e via
Uit = [1, exp(iAt,, H S, /h), with the writing phases {¢{"?, 95", ¢\ } included in ©'),_.

Upon the transformation of the fields v; by our heralding interferometer, we find that the output mode
operator for ~y; is given by (up to an overall normalization) G, — Gq, + e’ g .+ eis” (Ge, + em’%”adl)

where a;, is the mode operator for the field 7; € 7;. Here, we omit the vacuum terms because we make
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Figure 9.7: Numerical optimizations for the minimal entanglement parameters and the uncertainty
bounds. Histograms of a Monte-Carlo analysis for minimizing 1-mode bound Aél) (purple bars), 2-mode
bound A,()Z) (green bars), and 3-mode bound AI()?’) (red bars) are shown for the smallest measured values of the
entanglement parameters { A™" y™"} (black bars) in section The vertical axis is the probability density
pa corresponding to the respective value of A. The lines are fits to Gaussian distributions py(A) = G(A)
with asymmetric widths for +1 s.d.
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use of normally ordered expectation values. Additionally, the heralding measurement I1), with the threshold
detector Dy, is modeled with 7y, describing the overall efficiency for detecting 1 (including losses in the

heralding channels, quantum efficiency of D;, and mode-matching efficiency to the collective state’%), where

O (o aTa .
thl_Z'(nhZ—’:ah)'. 9.7)
n=0 ’

Therefore, by calculating ﬁg/é) = Trh(f[hU‘irm,/,ﬁg7 )mee) for pgA) = |9.)(g.| and 1, < 1, we obtain the

analytic expression of the atomic state [)E,{,q ) in Eq. in the ideal case without additional noise (see section
9.14.4] for our noise model). The atomic entangled state [)E,{;l ) is thereby obtained non-destructively from a

quantum measurement I1), on the heralding systems 1, whereby the higher-order contamination ,6(>A2) scales

with ¢ instead of £2. The creation of /35,{;1) is then heralded by the photoelectric detection I1), of the fields Y1

with probability pj, = Tr(IT, U A5 Urie).

9.14.2 Entanglement transfer

The transfer of the stored quadripartite entanglement to the photonic entanglement is described by a linear
mapping process Uread (ref. 89, chapter, which transfers the delocalized collective state |5.) of the ensembles
€ to the individual fields 5 with retrieval efficiency 7yeaq. The reading process then generates a photonic state
p( M~ Tr A(Ureddﬁw Uredd) via a ‘beamsplitter’ rotation Uredd of p pW into p%) with a ratio given by 7ead

(and reading phases {¢1 , g)7 (;53 }), after which the atomic states are traced over.

9.14.3 Entanglement verification

Finally, we model the photoelectric detection statistics of the photonic state ,65,}) at Dy p ¢,q. The detection

probabilities for the output channels v, = {a}, b}, ¢5, d,} of the entanglement verification setups in Figs.

[09.4b and[9.5]can be modeled with projectors

NS A 77“/5 38"
e =3 ——1 ©8)
n=0
for null events, and
o) — 1 —m{? 9.9)

for events that register one or more photons. Here, 7, is the overall efficiency for detecting a photon in field

P)/é at Da,b,c,d-

The photoelectric detection probabilities 1’95 }Cl) for counting 4, j, k, [ photoelectrons at D, .4 can be
calculated from the projectors f[gjcksl) = ﬁgaz)ﬂgb/ )H,(f/z)f[l(d 2 via ﬁ(c ) = Tr(H(cksl) p%,v)) for the respective
configurations {c, s} of A and y.. setups in Fig. . Finally, the mode operator ., for the output channel

74 is given by (Gay, Gy, Gy, dgy)” = U©3) - (aq,, Gy, , Gy, Ga,)” . Here, the transfer matrix U(%*) is (i) a
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unity matrix U(®) = I for the y,-measurement, and (ii)

1 b B2 ei(B2+Ps)
o) 1 1 —eif1  _pib2 et(B2+B3)
0 == o | (9.10)
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Figure 9.8: Statistical evolutions of the individual entanglement parameters. The data points and black
line depict the statistical dependences of a, A and b, y.. to the heralding probability py, () for Fig. [9.2b. ¢, We
also display the expanded view of the entanglement parameters {A,y.} depicting the statistical transitions

of multipartite atomic entanglement (inset of Fig. ). The thermal behaviors {A(T) yﬁT)} of the thermal
equilibrium states ﬁ(GH) and ﬁ(GI‘ MG) of the Heisenberg-like and the Lipkin-Meshkov-Glick models are shown
as red dashed and blue dash-dotted lines, respectively. Here, the horizontal axis is the heralding probability

pr (&), with thermal excitation given by ¢ = e~#77 for the spin models.
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Figure 9.9: Temporal decay of coherences stored in four atomic ensembles. a, Evolution of the photon
probabilities {P1000, P0100, Po010, Pooo1 } for occupying the output modes of the verification interferometer
(A-measurement) versus storage time 7. For readability, the heights of the bars are shown in accord to the
color convention of the inset i. Error bars, shown as grey squares, reflect the statistical uncertainties for
each point. b, Photon probabilities {p1000, Po100, Poo10; Pooo1 } from our theoretical model, which assumes a
memory time determined from the temperature of the cold atomic samples and the net momentum transfer to
the atomic spin-waves (chapter 2).

for the A-measurement (Fig. [9.3)), where we assume balanced loss in writing Eq. but not for our general

analysis.

9.14.4 Incorporating noise into the model

To include the effects of atomic fluorescence and laser scattering noise emanating from the writing and
reading processes, as well as of the background contamination including dark counts in the detectors, we mix
dephased coherent states p,, = [ ||rgle’®) (|rglee|dd, and p., o = [||ri|e’®s)q(|rr|e'?e|d¢, into

quantum channels g € {71, 72} of the initial state, and find that

ﬁff‘) = H 19) (9| H(ﬁmm ® Prim) H(ﬁra 2 ® Priyz)s 9.11)
€ 1

V2
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with quantum fields v; = {a1, b1, ¢1,d1}, 72 = {ag, b2, ca,da}. Here, {rp, 1} are the respective probability
amplitudes for the background and intensity-dependent noises (atomic fluorescence and scattering noise). In

the experiment, we directly measure the noises |75 -, |2 2, and |ry,|*. We also infer the heralding

TB,’)’2

)

() |2

and retrieval efficiencies {1y, Thead }» as well as the scattering noise |77, |? oc [,

for the writing laser by
independently measuring the individual quantum correlation functions g, ., for the fields {~y;, 72}, following
the methods in refs 293474 and chapters @

Finally, using the initial state of ﬁFA) in Eq. , we approximate the physical state of ﬁ% ) = Try, (f[h thme

ﬁ_E,A) Ussite). We then simulate ﬁ%) =Tryu (Ujead /35,{;1 ) Ureaa) as well as the various expectation values of (ﬂgjcksl))
associated with the photoelectron statistics @jc-;:l) of {A,y.}. Finally, we perform the numerical algorithm
described in section and obtain the theoretical expectations of { A, (y.)m} as functions of heralding
probability p,, shown in Fig. [9.8] The theoretical curves in Fig. [0.2]are given by the parametric dependences

of the entanglement parameters { Ay, (y.)m} to the heralding probability py,.

9.14.5 Temporal dynamics of atomic multipartite entanglement

As described in section the decoherence mechanism for the atomic W -state [)E/{;‘ ) (7) is dictated primarily

by the motional dephasings of spin-waves (ref.®, chapter . Qualitatively, the dephasings of the ensembles
€ = {a, b, ¢, d} arise from independent evolutions of the spatial phases ¢§-Sw) (1) = 8k - 7 (1) + ¢; imprinted
on the spin-waves [5¢(7)) = >, ei¢§'SW)(T)|g ---8; -+ g)e due to thermal motions, where 0k = ky — k1
and ¢; = gbgw) - d)gh). Specifically, by assuming a Boltzmann velocity distribution with a mean velocity v,

for each ensemble €, we find analytically that the probability p. for the coherent atomic component /SEA) of

AP (7) decays over time 7, following pe o |(5¢(0)[5.(7))[2 ~ e~ /™ + O(1/Na..) (refs B2 chapter

2.
We follow a procedure similar to section to simulate the dynamics of the atomic W -state ﬁ% (7).

In particular, absent any noise (i.e., ﬁéA) = |g.)(g.]) and for n;, < 1, we obtain the atomic dynamics

P(r) = (1 36)(cos0(r) Y + sin®(r) V)

+36p%) +0(€2), 9.12)

where the mixing angles are cos26(t) = e~" /m and sin?0(r) = 1 — e~" /Tm. Thus, the decoherence

for the atomic W -state results from the incoherent mixing of the initial superradiant state ﬁEA) ~ |W)a(W|

at 7 = 0 to mixtures of subradiant states ﬁ%A) at 7 > 0, which increase the vacuum component pg for
the photonic state ﬁ%},). In turn, the increase of the subradiant states ;35{” contributes to a reduction in the

coherent component pAgA) of /.3%,‘3 ) (1), as well as to a build-up of uncorrelated atomic noise [)(AQ) relative to

ﬁEA). The net effect is a simultaneous degradation of the entanglement parameters {A, y..} with a time-scale

Tm = 1/(|6K|vy) ~ 17 ps. For the actual simulations in Fig. we perform the full calculations including
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Figure 9.10: Temporal evolutions of the individual entanglement parameters. Due to the motional de-
phasings of the spin-waves, the experimentally measured entanglement parameters (black points), for a,
A(T), and for b, y.(7), increase with a time-scale 7,,, ~ 17us. The theoretical simulation for the tempo-
ral behavior of {A,y.} is displayed as a black solid line. The gray band around the theoretical curve &(7)
represents the 1/e uncertainty of the simulation due to the systematic error of the measured overlap .

section [0.14]to incorporate the atomic fluorescence, laser scattering, and background noise.

Fig. illustrates the temporal reduction in the overall coherence d of the full quadripartite state in our
experiment (see section [9.6). Operationally, the loss of coherence is observed in terms of the decrease in
imbalances among {p1000, P0100, Po010, Pooo1 } as a function of storage time 7, and hence to an increase in A.
The behavior of the experimentally observed photon probabilities in Fig. [9.9 results from the progressive

decay of the initial coherence for ﬁ(v{?)(m) at 7o = 0.2 ps for which Vegr(9) = 4d = 0.95 % 0.02, evolving
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then to Vegr(17) = 0.1070 25 for the final state [)E{,‘)(Tf) measured at 7y = 36.2 ps. The observed evolution

is qualitatively in good agreement with our theoretical model of the photon probabilities shown in Fig. [9.9p.
The spin-wave statistics are similarly modified by phase decoherence leading to an increase of y., from
Ye(m0) = 0.03 £0.01 to y.(77) = 0.74 £ 0.34.

Finally, in Fig. we show the dissipative dynamics of the atomic W -state (section [0.6)), displayed
independently for A(7) (Fig. [0.10R) and y.(7) (Fig. 0.10b). The complete 3-dimensional dynamics of the
atomic TW-states is displayed in Fig. The temporal behaviors of {A(7),y.(7)} in our experiment of
the quadripartite atomic state (black points) are in qualitatively good agreement with the simulated dynamics
for [)E/é) (1) (black line). However, for A, we find that our data points consistently lie above the theoretical
dynamics for ﬁ%{,‘) (7).

One possible explanation is that for the A-measurement, stringent interferometric stabilities and excellent
overlaps ), close to unity, are required for all the 16 spatio-temporal modes {E , 8}, composed of the 8 quan-
tum fields v = {a1,b1,¢1,d1} and vo = {asg, ba, ca,d2}, as well as of the 8 classical writing and reading
pulses, with s corresponding to the polarization state of each field. Ultimately, the wavepacket overlap for
the entangled fields v = {a2, ba, c2,do} is limited by the differential optical depths of the cold samples
{a, b, ¢, d}, which in turn yield differential group velocities during the slow light process of coherent transfer
from ﬁ%,‘; ) to ﬁ(mv,) by way of dynamic electromagnetically induced transparency (ref.*®, chapter .

We include this effect in the model via a field overlap X (ref.1>%), where a fit corresponding to Fig.
gives A = 0.98 (A = 0.95 for Fig. ), with similar results obtained from the calculation of overlap for
the measured temporal shapes of the wave-packets vo = {as, ba, c2,d2}. For the simulated dynamics of
Fig. (section , we use the field overlaps A obtained independently from classical measurements of
the interferometric visibility for both ‘classical’ (write, read) and ‘quantum’ interferometers (quantum fields
v1,¥2)- Thus, the discrepancy in A(7) can be largely attributed to the systematic uncertainty in the inference

of A = 0.97 + 0.03, with the uncertainty corresponding to the dynamics of A(7) shown as a gray band in

Fig. 0.10h.
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9.15 Entanglement thermalization

Here, we formulate the thermal equilibrium state ¢ (refs.*?2°Z) of a Heisenberg-like model Hyanda Lipkin-
Meshkov-Glick model Hyyg, as presented in Fig. of section (see also Fig. ). We compare the
entanglement parameters {A(T)7 yéT)} obtained from ﬁH and fILMG to the observed statistical behavior of

the quadripartite states of the ensembles.

9.15.1 Heisenberg-like model

We begin with a Heisenberg-like Hamiltonian Hy of four (N, = 4) spins {4, j} of spin vectors S =

{Sg(ci)7 §§i)7 S’S)} with isotropic infinite-ranged ferromagnetic interaction (J;; = J > 0 for all {¢, j}), where

. J N oo
_ () . 3G) (i)
Hy = N, ; _)S SY 4 h, E S+ H,,.
2,7 [

Here, I:IH includes a standard Heisenberg interaction —N—] > (i.) S . §6) + h, Zi S;i), as well as a spin-
projection term H,, = 2h.|S, —S)(S, —S| which selects out the collective spin state | S, —S) with bias energy
2h and suppresses the thermal equilibrium population of |.S, —S) .

Since the Hamiltonian Hy; commutes with the collective spin operators {2, S, } = {2, 52, > 5 1,
Hy is diagonal in the basis of collective spin states |5, M) for 0 < § < N,/2 and —S < M < S. The
eigenenergies are

—28(S+1)+h. M+ 3, if|S, M) #(2,-2)
Esm =
—3 if | S, M) = |2, -2).

The degeneracy for |S, M) is given by Dg = N3 fsit)l,)(]x,' 72=5)1 (ref.Y%. Importantly, for any value

of h, > 0, the ground state is [2, —1) = |[W;) = 1(|1000) + |0100) + |0010) + |0001)) with energy

E,—1 = —2L — h.. In the following sections, we will set the magnetic field to i, = J/2.

9.15.2 Thermal equilibrium state

We solve for the Gibbs state, ﬁgI ) = %e*ﬁTHH, where 7 = Tr(e’*BTﬂH) is the partition function and

beta parameter Or = 1/kgT for thermal energy kpT at temperature 7. Explicitly, we obtain ﬁgl) =

7 s Dge=Présaijg . Here, the component pg, s is a mixed state that contains all possible | S, M)
for the degeneracy of Dyg; e.g., p1,—1 = 5(|Wa)(Wa| + [W3) (W3] + [Wy4)(Wy|) is a mixture of three non-
symmetrized single-excitation W -states, {|W2), |W3), |[Wa)}.

By mapping the spin-states to number-states (| |, 1) — |0, 1)) we obtain a Gibbs number-state ﬁg” in
the form of

PA(C?)(T) = popo + p1p1 + P>20>2, (9.13)

2Physically, the transfer of the spin-states to number-states can be accomplished by coherent mapping to photons.



184

as in the reduced density matrices p,. of {[)E,‘é ), ,65,7,)}. Our goal is to calculate the thermal (7') behavior of

multipartite entanglement*?2?” for pA(C?) via the entanglement parameters {A(T), yﬁT) 1.

Because the vacuum component py and the higher-order terms p>o, as well as the non-symmetric single-
excitation states p1,_1 of p; are more energetic than the ground state [W7), the Gibbs state ﬁ(c?) (T =0)is
the symmetric W-state |WW7)(W7| at zero temperature. For low temperature (57 >> 1), we approximate [’)gf )
by

PINT) = Zopo + Zipy + (1 — Z1 — Zo)pso, 9.14)

with Zy = egﬁf . and Z; = Zw + 3Zx. The single-excitation subspace p; is

. 1 R
p1(T) ~ ZT(ZW|W1><W1\ +3Zxp1,-1), 9.15)

B (4h,+3J) B (4hy—J)
P

with Zy = e 1 ,Zx =e . Here, the thermal excitations from the ground state |V ) (W]

to one of p1 _1 occur with probability £ = Zx /Zy = e P17,

9.15.3 Entanglement parameters

For the sum uncertainty A7), we only consider the single-excitation subspace j; (Eq. [9.15)). The probability

to find |[W7) is p1oo0 = (Wi|p1|W1) = whereas the probabilities to find the non-symmetric states

1
143e—PT 7>

—B7

are Po100 = Poo10 = Pooo1 = 1:367,,3‘;‘,. For S1 > 1, we deduce the sum uncertainty AD) ~ ge=Prd = 6¢.

Similarly, we find the quantum statistics ygT) ~ 1—366*5T J =

13—65 . Thus, the parametric relation

AT ~ 6 x %ygﬂ _ gygﬂ 9.16)
replicates the statistical behavior of Ay, ~ %(yc)th for the ensembles (section in the low-excitation
regime (equivalent to S > 1).

By performing the full calculation of {A™), 5"} for p%) without any approximations and by inserting
the excitation probability ¢ = e~#7/ into the expression of heralding probability py, (¢) for [)(M’;‘) (section
, we compare the theoretical expectations {A(T), ygT)} of the thermal state ﬁg{) to the experimental
data, presented in Fig. [0.2p as a red dashed line (section 0.5} see also Fig. 0.8). In Fig. P.8] we plot
the dependences of the individual parameters A(™) and ygT) to pp, as red dashed lines. The panels on the

right-hand side show the log-log scale plots of the figures for small values of £.
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9.15.4 Lipkin-Meshkov-Glick model

We simulate the entanglement parameters {A(T), y((:T)} of a thermal equilibrium state ﬁg“ MG) for an isotropic

Lipkin-Meshkov-Glick (LMG) Hamiltonian Hime (refs.228°300) "\where

i =~ 3 (8089 + $089) + h. 380,
(4,4) @

with infinite-range interactions J > 0. The energy states are the collective spin states |S, M) with the

eigenenergy Es p = —2(S(S + 1) — M?) + 2 + h. M. By setting h, = J/2, the ground state can be made

|W1). Proceeding with the methods in sections we calculate {A(T), ygT)} for the Gibbs state

ﬁg‘MG) of Hy g, as depicted in the blue dash-dotted lines of Fig. and Fig. .
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Chapter 10

Conclusion and outlook

10.1 Conclusion

So here I am at the very last chapter of my doctoral thesis. I find it difficult not to feel nostalgic about
my experience in the Caltech quantum optics group over the past 5 years. I am fortunate to have led and
undertaken a ‘collective’ endeavor of an ‘ensemble’ of many brilliant scientists. Looking back, my stay at
Caltech was a tremendous journey of excitement, passion, trust, and fulfillment shared collectively among
my peers and myself, as we faced and solved challenges in the lab. Indeed, this thesis is a result of many
people’s hard work and collaboration, and I acknowledge their tireless contributions to the body of work
for my doctoral thesis, as further summarized in the acknowledgement section. Personally, developing keen
fellowship with these people has been by far one of the most meaningful achievements I have made during
my time here. I hope that by writing this thesis I have adequately summarized the scientific advances of our
experiments in the unifying theme of quantum networks, which we have contributed to a field that has been
growing at an explosive pace (chapters[TH2).

In this thesis, I presented a series of experimental and theoretical studies (chapters [3H9), which, I be-
lieve, have made important contributions to the field (chapter [T). Following the Duan-Lukin-Cirac-Zoller
protocol®, we have studied in detail the decoherence mechanism for the entanglement stored in two atomic
ensembles (ref.**, chapter , demonstrated the first functional quantum nodes for the DLCZ quantum net-
work (ref.?%, chapter , and made the initial step towards entanglement connection (ref.?”, chapter . We
have demonstrated the first reversible mapping of photonic entanglement into and out of quantum memories
(ref B0 chapter E]) We have theoretically developed a nonlocal, nonlinear entanglement witness based on
quantum uncertainty relations to efficiently characterize multipartite entanglement (ref.®, chapter , and ap-
plied the entanglement verification protocol to verify multipartite mode-entanglement for one photon (ref.*>,
chapter [8). Finally, we have achieved measurement-induced entanglement of spin waves among multiple

quantum memories and opened new prospects towards multipartite quantum networks (ref.", chapter @)
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10.2 Outlook

In less than a decade since the initial demonstrations of a quantum interface between light and matter®?®!,

light-matter quantum interface has become one of the pillars in the field of quantum information processing
and communication, and one of the most active areas of research at the present time. A number of the
experiments has made fundamental discoveries of new physical processes of controlling quantum coherence
and entanglement, with promising results revealing various paths towards the realization of scalable quantum
networks, including those in chapters BH9}

Despite the remarkable advances, the current state of the art is still primitive relative to that required
for the robust and scalable implementation of sophisticated network protocols (see chapter [0). One of the
long-standing issues in achieving a large-scale quantum network is the unfavorable laboratory scalability
for free-space ensemble-based approaches. Indeed, an important drawback of the current experiments in
my thesis is the tremendous technical complexities required to implement even the rudimentary quantum
information operations with sufficient fidelities for quantum error-corrections, as vividly illustrated in Fig.
[I0.1] I believe that this brings a very pragmatic opportunity for us to transit from the present free-space
quantum optical laboratory to nano-integrated systems comprised of ultracold atomic ensembles and solid-
state spin ensembles interacting on a photonic waveguide circuit.

An initial step towards such a hybrid quantum system was made in 2008 with our proof-in-principle
experiment, whereby an entangled state between two cold atomic ensembles was created by the reversible
and deterministic mapping of an entangled state of light (ref.?, chapter E]) More recently, we achieved the
coherent transfer of the quantum information stored in multipartite entangled spin waves of four quantum
nodes of a network to multipartite entangled beams of light, each propagating through individual photonic
quantum channels (ref.?3, chapter@]). Importantly, these recent experiments are natural precursors for creating
a ‘hybrid’ entangled state for many solid-state and spin-wave qubits via the coherent mapping of a photonic
entangled quantum bus over a ‘lithographically patterned’ quantum network.

In addition, I am particularly interested in studying the behavior of quantum entanglement in quantum
many-body systems®*#0. For example, in chapter [0} we investigated the thermal entanglement for the ‘spin
waves’ in quantum magnets and related such thermal spin relaxation processes to the statistical behavior of
our system of four atomic ensembles=?. Creating such theoretical and experimental tools to probe quantum
critical phenomena would contribute to the study of quantum entanglement in condensed matter systems
and the creation of nonlocal quantum phases that have not heretofore existed”>. Theoretical investigations
of entanglement verification are crucial in this area of research?3>7121208 iy conjunction with developing
experimental tools for quantum information processing (refs.223, chapter 6| and|[9).

In line with a broader scope of the program towards a hybrid quantum network, such a lithographic opti-
cal network may provide an attractive platform to create and control exotic quantum phases associated with

novel ‘classes’ of entanglement. I am intrigued by the aspect that these quantum phases may be ‘induced’
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Figure 10.2: Tapered fiber profile measured by a scanning electron microscope (SEM). We show the
tapered fiber profile based on SEM images taken by Daniel Alton and Clement Lacroute for a pulled SiOq
fiber. The theoretical line (red line) is based on a simple model of volumetric conservation of the initial

cylindrical fiber for a given hot-spot region, which results in an exponential tapering of the fiber radius=%!,
The fiber radius at the center is ag ~ 250 nm over a flat region of z5 ~ 6 mm.

with nonlocal interactions of atomic pseudo spins and electronic spins by quantum-state exchanges and tele-
portation over quantum networks®. The research performed towards this end is both of fundamental interest
for enhancing our understanding of quantum physics and of potential technological importance. Its highly
interdisciplinary character encompasses a broad spectrum of fields in physics as well as in computer science

and information theory.

10.3 Trapping atomic ensembles with evanescent waves of a nanofiber

Along this line, my colleagues and I are now involved in a long-term program of integrating ‘quantum tran-
sistors’ of atom-like qubits and ‘quantum interfaces’ to achieve connectivity for the quantum information
stored in spin-wave quantum memories” to single photons and phonons, with the ‘quantum wiring’ provided

by the quantum circuits imprinted on nanophotonic structures!#?302, Recent advance includes the observa-

tions of electromagnetically induced transparency for trapped ultracold atoms in hollow core fibers=027300,

as well as the trapping and probing of atomic ensembles via the evanescent fields surrounding tapered

nanofibers 221307309

While prominent examples of off-resonant interaction between evanescent waves and matter have used

310H312;

planar dielectric geometry for atom optics and interferometry as well as for surface traps of quan-

313H315 2911305H309

tum degenerate gases , recent progresses of atom-light interactions with optical waveguides

set the stages for the fiber integrations of free-space quantum systems in a quantum network (chapters 3H9)



tapered
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Figure 10.3: A nanofiber trap for atomic ensembles. a, CAD drawing (Solidworks) of the fiber trap setup.
b, A photo of the nanofiber probing laser-cooled cesium atoms in a UHV chamber. The red glow of the
tapered nanofiber is due to the Rayleigh scattering of blue-detuned evanescent fields (A, = 687 nm).

via quantum-state transfer between matter and light®33 and for the localization and strong coupling of sin-
gle atoms and photons near microcavities 3516, Furthermore, these effective 1-dimensional systems may
be applied for investigating quantum many-body phenomena with long-range interactions mediated by the
waveguidem.

As a first step, my colleagues and I have been investigating a nanofiber atom trap (ag = 200 ~ 250
nm radius), for which single atoms can be trapped within the small mode-volume of the evanescent fields.
Inspired by the initial experiments, we have theoretically developed a novel state-insensitive two-
color fiber trap to increase coherent times 7, and trap life time 7; (Fig. [[0.5). As illustrated in Fig. the
engineered potential Uy, provides 3-dimensional confinement for trapping single atoms 150 nm away from
the nanofiber with trap depths up to Uy,p >~ 0.5 mK (ref B19),

Recently, we have fabricated such a nano-thin tapered optical fiber from a flame-brushing technique with
hydrogen torch in lab 1 (for a nice review of diverse techniques used for tapered fiber fabrication, I refer
to ref.. While Daniel Alton, Clement Lacroute, and Tobias Thielle in lab 1 led the responsibility for
the fiber fabrication and the pulling setup, Aki and I have also contributed to the characterization of the
polarization properties of the fabricated nanofibers and to the theoretical understanding of the fiber pulling
process20IB20822335 1y particular, Daniel Alton and Clement Lacroute can now pull fibers quite consistent
with the theoretically simulated fiber proﬁle, as shown by Fig. [10.2

We have placed such a nanofiber in our vacuum chamber shown in Fig. [T0.3]and we are currently work-
ing towards trapping an atomic ensemble around the fiber. We have observed the transmission spectrum 7'
with thermal cesium atoms released from a magneto-optical trap by the near field of the optical nanofiber
in Fig. and determined a resonant optical depth of dy = (5.8 + 0.3) x 1073 by a probe laser E,, at
the 6512, F' = 4 <> 6P3)5, F' = 5 transition. From the measured phase space density, we extrapolate that
only ~ 1 atom is present on average within the interaction volume. We also measured the saturation effect

of the atomic dipole via the evanescent field F,,, and studied preliminary results for the mechanical effects of
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Figure 10.4: Probing cold atoms with a tapered nanofiber. a, The evanescent field of the tapered nanofiber
is used to probe the transmission 7" of the nanofiber near the cycling transition F' = 4 (6S1/2) <+ F =5
(6P5/5) of atomic cesium, as a function of detuning 0. The measured linewidth of the transition is I' =
7.7 4 0.9 MHz, with a small optical depth dg = (5.8 & 0.3) x 1072 on resonance, due to the limited phase
space density of the magneto-optical trap at the time. The red band is the 1/e confidence level of a Lorentzian
fit. b, Observation of saturation effects for thermal atoms nearby a nanofiber.

the atoms by the probe laser. Theoretically, we are further exploring novel state-insensitive trapping geome-
tries with the adiabatic trapping potential predicted in Fig. [[0.5] The details of the theoretical calculations,

however, will be discussed elsewhere.
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Figure 10.5: Trapping single atoms with nanofibers. A two-color optical trap around a nanofiber?'. The
trapping potential Uy, is generated by two evanescent fields that provide a 3D confinement for the trapped
atoms outside the 500 nm diameter optical fiber, shown in a, the x-y plane, and in b, x-z plane. Specifically,
Ulrap Tesults from two counter-propagating red-detuned beams (935 nm, red arrows), and a blue-detuned beam
(687 nm, blue arrow) in a ‘magic’ configuration, as shown in the inset. The standing wave structure of the
attractive red-detuned field and the repulsive force from the blue-detuned beam enable trapping of single
atoms at each node of Uy,p near the dielectric waveguide despite the strong surface potential Usysface, thereby
reducing collisional and motional dephasing of spin waves.
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Appendix A

Electronic circuitry

A.1 Designing printed circuit boards

Printed circuit boards provide a convenient platform for assembling electronic circuits. Comprised of sand-
wiches of alternating insulating and conducting layers (including signal traces and reference planes), proper
PCB designs can be a challenging task. Nonetheless, PCB design is one of the most important tasks in achiev-
ing optimal performance of the final system. For example, the track length of the PCBs can be shortened to
reduce the overall delayf] and the tracks can be patterned for controlled line impedance in the high-frequency
domain by way of transmission lines. In this appendix, I discuss basic technical considerations for designing

electronic circuits and for producing PCBg2201327

with a few examples of digital and analog circuits I have
used in the lab. In the ‘lab 2 disc’, you can find more electronic files for the PCB boards (e.g., high-voltage
amplifier, bias coil controller, and phase-sensitive detectors) designed since 2006. For an in-depth treatment
of PCB designs and instructions, I refer to ref.#%’.

Printed circuit board technology has made great improvements in manufacturing tolerance and board
density over the years, but the basic construction layout has not changed significantly. PCB are made out
of patterned copper sheets (with etching) on a dielectric insulator such as FR-4 epoxy fiberglass. A simple
multilayer PCB consists of (from top to bottom): A silkscreen, top solder mask, top copper plane, inner
ground plane, inner power plane, bottom copper plane, bottom solder mask. The silkscreen layer outlines
the components and texts (yellow ink). The front and back planes form the component footprints, whereby
the vias and traces are etched away. This allows to interconnect components on the same plane (traces) and
components from the top to the bottom planes (vias). It is a good practice to order the board with solder
masks to prevent solder bridges from forming between adjacent pads and traces.

Also, it may be useful to begin with a multilayer (e.g., 4-plane) board if you have high-power or high-
frequency components which may cause electromagnetic interference (EMI) radiation. The two additional

copper planes serve as the power and ground planes. This may be useful for high-speed digital circuits, where

2For modern digital circuits, it is common to find clock speeds greater than 1 GHz. For high-frequency analog components, the
servo bandwidth may be limited simply by the propagation distance of the signals.



194

one can reduce the power wiring inductance and impedance to the high-speed components. By placing the
tracks on the inner planes (i.e., creating a stripline), the outer conducting planes can shield high-frequency
radiation and improve the noise immunity of the circuit. Since any through-hole pad on a four-layer board
can be connected to or isolated from either of these planes, the ground and power planes can also be used to
reroute the signals.

Here is a standard workflow for developing a simple PCB board:
1. Capture the schematics and circuit diagrams.

2. Design component footprints.

3. Establish PCB outline.

4. Set up design rules.

5. Place components.

6. Manually route traces and auto-router.

7. Export into Gerber format.

While there are excellent programs available at low cost, I have used a free CAD program (also a PCB
manufacturer), called ‘ExpressPCB’, for drawing the schematics and the PCB layouts and for ordering the

boards.

A.2 Multilayer board design

A.2.1 Vias

A via connects (top and bottom) layers on the PCB using plated through holes (PTH) technology. The PCB
board is drilled and the inner surface (of the cylinder) is plated with silver. For connecting to high-power
planes, the via’s size should be chosen with care (see section [A.2.3). For multilayer design, vias can also
be formed between the inner layers (buried vias), and between the outer layer and one of the internal layers
(blind vias). For smaller sizes < 6 mil, microvias can be formed to achieve higher component density by
deforming the copper plane with a high-power laser. Note that vias cause discontinuity in the line impedance
for v > 10 MHz, and surface mount components are preferable for connecting the pins to traces (or a

patterned transmission line for microwave frequency, section[A.2.3).

A.2.2 Pads

A pad is a small conducting surface made out of copper used for a component pin. As a standard, it is useful

to identify the ground pin (or pin #1) of the component with a square pad, and the signals with round pads.
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An anti-pad can be used to isolate the pin to the copper plan. A thermal pad can be used to restrict the heat
flow when the pin is connected to one of the copper planes. For PTH vias, as a general rule of thumb, it is

good to keep a pad-to-hole ratio of 2:1.

A.2.3 Traces

A trace connects two points on the PCB by etching away the copper plane. The trace on the PCB is a
copper stripline (rectangular cross-section) not a wirebound (circular cross-section), and the depth is set by
the PCB manufacturer (typically, d ~ 1.5 mil). A tricky problem is to set the width w of the trace for a
given length . This requires several considerations including power and heat management (for high-current
traces), breakdown voltage in atmosphere and dielectric constant of FR4 (for high-voltage traces), and wire
impedances (for high-frequency signal traces and digital logic), as further described in section When
placing a trace, it is usually good to keep a space of > 7 mil between the traces and between any adjacent
conducting pads. Otherwise, the etching process may develop hairline shorts or openings. I also refer to the
concepts of ‘electric clearance’ and ‘creepage distance’ in section For narrow traces below w < 12
mil, it is good to put a chamfer for a 90° bend, formed with two short 45° angle bends. To avoid crosstalk
between two traces above a ground plane, it is good to decrease the distance between the plane and trace
as much as possible, and increase the distances between traces. The crosstalk coupling between two traces
scales as o m, where Ad is the shortest distance between the two traces, Ah is the distance from
the ground place to the traces, and [ is the length of the traces. With most CAD programs, one can write a
design rule to specify the minimum trace widths and maximum bending angles at the fabrication tolerances

of the PCB manufacturer.

A.2.4 Planes

A plane is an uninterrupted conductive area of the entire PCB layer. Traces are formed by etching out a plane
and by isolating from the power planes to distribute power and signals to the PCB components. It is very
important to have at least one dedicated power and ground planes as low-impedance reference planes. If the
system is composed of mixed analog and digital circuits, it is important to separate analog and digital ground
and power planes. The analog ground plane should be placed below the analog power plane, and the digital
ground plane underneath the digital power plane, with no overlap among the four planes (check the vias!).
The analog and digital traces will run on the surface of the PCB board, while the inner planes will shield the
analog components from the high-frequency radiation and noise of the digital ground. For high-frequency
application, it is good to avoid the signal traces on the ground plane, as the discontinuity in the ac current flow
can lead to EMI. While an uninterrupted ground plane can be thought as a reasonably good low-impedance
reference, for traces running with high-frequency (> 1 MHz) current, the inductive coupling sets a specific

path for the return loop current, which tends to minimize the loop area. The return current, thus, flows on the
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ground plane underneath the signal tracesﬂ For high-current application, it may be good to consider putting

a star ground or a split ground plane to the main power filter.

A.2.5 Components

There are many types of packaging available today, some of which include PTH components, surface mount,
and wirebound components. Metallic components such as heat sinks, crystals, switches, connectors may
cause shorts if placed over traces on the top layer. If one must be placed above the trace of the top layer, it
may be important to consider the dielectric constant of the surface mask (i.e., the green insulating layer on
the surface planes). Wirebound components, which usually have a nice integrated heat sink, are useful for
high-power applications. Both the PTH and wirebound components may be detrimental for high-frequency
applications as the discontinuity in the solder joint may cause EMI radiation or significant voltage attenuation
from the high-contact impedance (see section[A.3.3). In this case, it may be a good idea to find an alternative

surface mount component.

A.3 Technical considerations

A.3.1 Leakage resistance

Leakage resistance is a static circuit board effect, where contaminants on the PCB surface (e.g., flux residues)
cause leakage currents across the circuit nodes. Ref.*2% suggests a simple cleaning method: (1) wipe the PCB
with isopropanol, (2) wash with deionized water, and (3) bake at 85°C' for a few hours. Another method
to prevent leakage currents is to “guard” the sensitive signal tracks and power lines by surrounding with the

ground planes exposed above the coating in order to sink the leakage current.

A.3.2 Electrical clearance and creepage distance for high-voltage applications

The electrical clearance is the minimum distance between two conductive high-voltage traces, where a di-
electric breakdown occurs between the traces by air ionization (depending on humidity, altitude, and temper-

ature). According to ref.*

, it is good to restrict the minimum distance between tracks to 315 mil. Similarly,
a creepage distance is the shortest distance between two conductive traces, whereby the dielectric breakdown
occurs along the insulation (FR4, relative dielectric permittivity eprq ~ 4.5 and dielectric breakdown ~ 40
kV/mm). It is important to keep the tracks separated with distances larger than the creepage distance to avoid

localized conduction on the insulating surface by electric discharges.
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A.3.3 High-frequency electrical transmission lines

The induction of a copper trace plays an important role for high-frequency analog devices and for high-speed
digital logic. A wire inductance (for wirebound components) is given by Ly = 0.2 (nH/mm) x{[In(2!/7) —
0.75], where r is the radius of the wirebound. A strip inductance (e.g., for copper trace) is Ly, = 0.2
(nH/mm) x[[In(2!/(w+h))+0.22(w+h)/1+0.5]. For optimal EMI reduction, high-frequency signal traces
should be embedded in the internal layers between power or ground planes, forming a stripline transmission
line, where the power planes shield the high-frequency radiation.

First, it is important to determine whether or not a transmission line is needed. For a high-speed logic
with rise/fall time ¢,., the trace needs to be terminated with their characteristic impedance if the track length
l is greater than the characteristic length [, = wv,t,, where the signal travels conservatively at a speed of
vs =~ 2 in/ns. Similarly, in the analog domain, an active non-inverting amplifier with a maximum bandwidth
of f, has an equivalent rise time ¢, = 0.35/f,,. Thus, one should consider transmission line techniques
when placing signal tracks with [ > [. = wv4t,. There are two typical high-frequency transmission lines
(i.e., microstrip and stripline transmission lines), which are relatively simple to fabricate on a PCB. The
determination of the parameters to obtain a good transmission line depends on the thickness of the dielectric
layer to the reference plane, dielectric permittivity of the insulating layer, the routing copper thickness, and

the trace width. Note that vias cause discontinuities in the characteristic impedance of a transmission line.

A.3.3.1 Microstrip transmission line

A simple method for a two-layer PCB is to use the ground plane and a signal trace for controlled impedance,

26,

as shown in Fig. . This geometry is known as a microstrip transmission line“2. The characteristic

impedance of a microstrip is given by

87

Zmicro 2 —————1In[6h/7 (0.8 t)l. A.l
micro \/m n[ /7T( w + )] ( )

Figure A.1: Controlled impedance transmission lines. a, Microstrip transmission line. b, Stripline trans-
mission line. The layer thickness ¢ and depth h are usually set by the manufacturer. By choosing the width
w of the track, one can control the impedance of the transmission line. The green layer is the insulating silk
screen, the yellow layer is the dielectric FR-4 glass epoxy, and the gold layer is the copper which forms a
conductive layer.

bIn reality, the finite conductivity of the copper plane sets a finite area of the return loop, where the return loop flows ‘close’ to the
signal trace.
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In addition to the characteristic impedance Zicro, the microstrip has a characteristic line capacitance of
Chicro (pF/in) ~ %. In most cases, the thickness h of the insulating FR4 layer is set by the
manufacturer, and the only controlled parameter is the width w of the track. By setting the value of w, the
impedance Zy;cro can be set to typical values of 50 2 or 75 2 for impedance matching. For typical value of

€rra = 4 with h > t, w/h ~ 2 gives 50 ) impedance. The signal propagates in the microstrip transmission

. . . 1
line at a velocity of vmicro (in/ps) = BT e T00

A.3.3.2 Stripline transmission line

For a multilayer PCB, a preferred choice is to pattern a stripline transmission line for the signal track, by
embedding the signal trace between the power and ground plane, as shown in Fig. [A.Tb. A sandwich of the
two low-impedance ground planes and the embedded signal trace forms a symmetric stripline. Because of
the inductive coupling, the return current paths for the high-frequency signal trace are located on the planes
directly above and below the signal trace (see section [A.2.4). Thus, the high-frequency signal is tightly
confined within the signal trace (see also section [A.3.4), thereby minimizing emissions and shielding the
tracks from the environment.

The characteristic impedance of a stripline transmission line is given by

60
Zswip = ———=In|6(¢t + 2h) /7 (0.8w + t)]. (A.2)
strip \/@ [ ( )/ ( )]
In addition, a symmetric stripline has a characteristic capacitance of Cyyip (pF/in) ~ M%. The

1
85 €FR4 :

signal propagates in the stripline transmission line at vgyip (in/ps) =

A.3.4 High-frequency skin effect

Signal currents at high frequencies tends to flow through the perimeter of the conductive trace due to inductive
coupling. The skin depth causes an effective conduction area of ac-current flow smaller than the cross-section
of the trace. In addition to the effects of impedance at higher frequencies, the skin effect results in an increase
of resistance at higher frequency. The skin depth dgq, for copper is approximately given by dgin, ~ 2 (um
v/GHz) /+/f. Assuming an effective cross-section for the current flow by a flat-top profile A = w X din,
the resistance for copper is then Ry, ~ 8 x 1073 (Q/+v/GHz) /f(I/w) (see Eq. . For dc-currents, see
section[A3.6

A.3.5 Stray capacitance

The capacitance between two conducting layers with a distance d and area A is Cpjae = 8.9€pr4 (aF/mm)

x A/d (see Fig. |A.1), where d = h (Fig. ) ord = 2h + t (Fig. ). A voltage noise V,, on one plane
can capacitively couple to another plane with a coupling voltage of 0V, = V,,Z1 /(Z1 + Z2) where Z; is the
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circuit impedance and Zs = —i/wCjiae. To prevent capacitive coupling between two signal traces and two
planes, one may insert a ground plane, acting as a Faraday shield between the noise source and the affected

circuit.

A.3.6 High-current thermal management

A general rule of thumb is to keep the temperature increase to AT < 10°C'. The sheet resistance of a trace is
given by
Rtrace == pelectricl/Wda (A3)

where pelectric = 1.7 X 1079 Q cm is the electric resistivity for copper at 7' = 300 K and [ is the length
of the trac The temperature rise is then AT = 6Py, Where Prace = I? Ryace is the power dissipation
across the trace and 6 = pypermarl/wd is the thermal resistance of copper. The thermal resistivity of copper
iS Pthermal = 0.25 cm °C//W. For reference, the currents required to have ~ 10°C' increase in temperature
for standard track widths are shown in Table [A.T] By connecting the signals to an active component (e.g.,
operational amplifier) in a Kelvin configuration, one can mitigate for the errors arising from the voltage drop
across the signal trace, but it requires a negative feedback. Instead of using traces to ground the pins, star-
grounding?® to the main power filter or the usage of split ground planes (causing an effective star grounding)

helps to obtain a good ground with low impedanceﬂ

Table A.1: Thermal management of a copper trace. We show the current [, required for a 10°C' increase
in temperature for a sheet copper of depth d = 1.5 mil with various width w.

w (mil) Tirace (A)
10 0.3
15 0.4
20 0.7
25 1
50 2
100 4

¢For low-impedance circuits, one may need to also consider the temperature of coefficient for copper ~ 0.5% per °C' at 300 K.
Also note that the manufacturer often quotes the trace thickness d in the units of ounces of copper per ft?, with common thicknesses 0.5
0z, 1 oz, 2 oz. For power traces, it is good to use 2 0z.

dInstead of using a ground trace, it is generally a good idea to have a ground plane, as the plane can be used as a low-impedance
reference.
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A.4 Control logic and buffer circuits

For the experiments in chapters the slow cycling rate 40 Hz for the laser cooling and trapping stages is
derived from a time base of the digital pulse generator (SRS DG535), which in turn triggers two phase-locked
16-output digital delay generators (SRS DG645). The overall system provides robustness compared to the
previous generation (chapters by integrating with proper buffer and line drivers (SN74ABTH25245)
for better impedance matching and for sinking the large amount of current when “power gating” multiple
single-photon avalanche photodiodeg] (Perkin Elmer SPCM SQRH-16). The experimental repetition rate (2
MHz) is synchronized to a master clock running at 100 MHz (time base, 25 ppm 100 MHz crystal oscillator,
with rms jitter of < 400 ps) via downconversion. A multiplexed pulse generator (quantum composer 951871)
is controlled by Labview through USB interface. The TTL pulses generated from the quantum composer in
burst mode are fed into a control logic, which relay or inhibit the signals conditioned on the photoelectric
event at the SPCMs, with the rising edges of the pulses corresponding to the instants of detection.

As shown in Fig. the logic circuit consists of (i) dozens of control logic and gate pulse circuits,
(i) a memory gate pulse generator, and (iii) a field 1 sync circuit. Here, I describe the functions of each
of the components: (i) The control logic relays the signal if the memory pulse (mem) is high. (ii) For the
memory gate pulse generator, a field 1 pulse (red line) is split into multiple paths by a high-speed 1-8 clock
distributor (CDC341), with one arm triggering a monostable multivibrator (74LS123ND) on the rising edge
for a maximum wait time of 7, (ns) = 6 + 0.05C,,, (pF) + 0.45R,,, (kQ0)C,,, + 11.6 R,,,, thereby relaying a
logical 0 up to 7, regardless of the input. If the monostable multivibrator detects a falling edge in the clear
signal (CLR, black line) at 7,,, < Ty, the output (memory pulse) is raised to a logical 1-state (green line).
Otherwise, the output is raised to ¢,, regardless of the state of CLR. In turn, the clear signal (CLR, black
line) is generated from a triggered delay generator with programmable delay 7,,. (iii) The photoelectric
detection event of field 1 can arrive randomly within the detection window. Field 1 sync circuit relays a pulse
synchronized to the external master clock if a field 1 is registered.

In Fig. [A3] I show the printed circuit board for the control logic and the line drivers. All outputs of
the logic circuit undergo a set of line drivers to provide proper impedance matching. The track lengths are
significantly shorter than the characteristic length [, = v,t, given the typical rise-time of the logic ~ 1 ns

(section[A.3.3)). Long tracks are optimized by employing microstrip transmission lines and line drivers.

¢The bias voltage in the APD is abruptly turned off in < 1ps by sinking ~ 380 mA at the gate voltage input of SPCM SQRH-16.
When the bias voltage is zero, we can send significant amount of light onto the APD for acquiring the lock of interferometers without
modifying the noise characteristics and quantum efficiency of the detector.
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A.5 Laser diode current controller

The diode laser systems in our group have evolved over time. While the mechanical aspects of the laser
systems remain largely the same, new types of lasers have been introduced to lab 2, including an external
cavity interference filter lasef 51328, Because of obsolete parts in the previous design of our group (by
Joseph Buck), Aki and I redesigned the laser diode controllers, including the current controller, temperature
controller, and FET modulation board. The current controller is still based on the original design®* by K. G.
Libbrecht and J. L. Hall, but I made some improvements to the circuit in a source/sink configuration in terms
of temperature stability and noise characteristics of the circuit. Also, an override function was added. The
temperature controller**? and the FET modulation board remain the same, where we replaced the obsolete
voltage reference.

I show the circuit design for the laser current controller in Fig. [A.4] and the PCB layout in Fig. [A.5] A
negative (positive) voltage regulator, LM337 (LM317), provides the stable supply voltage with slow turn-on
and current limit to the diode laser in the sink (source) mode. The precision voltage reference, LM399 (or
LTZ1000 for better thermal stability 0.05 ppm/°C) is heavily filtered to reduce noise, and the RC network
in the LT1028 circuit provides stable operation with low noise. The Vishay sense resistor (VHP-4) is wired
in a Kelvin configuration for dc-current stability. Low-level current modulation (Mod) is used for driving the

error signal from dc to ~ 10 MHz, and an ac-coupled input (RF in) is used for RF-sideband modulation.

fMore details on the interference filter laser, which Julien and I built during his visit in the summer of 2008, can be found in my lab
notes.
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A.6 Locking circuits for interferometers and intensity stabilization

For the experiments in chapters we locked the verification interferometer via an ex-situ phase modulation
spectroscopy. An important part of this technique is the capability to acquire and stabilize the interferometric
phase to ¢, to sample and hold (S&H) the phase ¢g value over the experimental duration ¢4, and to feed-
forward an offset phase ¢exp = ¢o + ¢ during t4. The power gating and the MEMS switches protects the
single photon APDs from the strong reference laser. During the experimental phase, the reference laser is
extinguished to > 180 dB, and the MEMS switches reroute the fiber optical channels to the single-photon
detectors.

The active component of our interferometric stabilization scheme is a fiber stretching module (PZ1, Op-
tiphase) with modulation constant 3 = 0.4 rad/V over dc — 20 kHz (see Fig. [8.6). The phase is modulated
at ~ 88 kHz (generated from SRS SR830) above the first resonance at v,,, ~ 55 kHz. The phase modulation
is switched off by rf-switches (Minicircuit ZASWA-2-50DR) during ¢,,. The reference laser is monitored by
a photodetector (or by a custom inline evanescent power tap PIN Si-detector, Oz optics OPM-11), resulting
in the signal V,¢. Two lock-in amplifiers (SRS SR830 and SR510) demodulate the signals V4 to generate
error signals Ve, The error signal Vg, and the photodiode signal V4 are fed into the phase stabilization
servo, as shown by Fig. [A.6] Depending on the application, the two signals are summed or subtracted (i.e.,
Verr = aVger &£ (1 — &) Vpa). The P gain is controlled either by the proportional non-inverting amplifier or
by changing the modulation depth, and the I gain is controlled by the integrator (with the variable capacitor).
The phase stabilization servo bandwidth is limited to ~ 10 kHz by a Sallen-Key type low pass filter to avoid
exciting v,,, of the stretching modules. A set of TTLs (S&H TTL and jump TTL) controls the sample and
hold (S&H, LF398), and the jump operations (low-noise switch, MAX319) in the servo. The output of the
servo is amplified by a high-voltage (0 — 1 kV) amplifier (Burleigh PZ70), which drives the fiber stretching
modules (PZ1, Optiphase). This circuit was modified to stabilize the intensity of a diode laser. The set-point
of the lock (i.e., phase set value ¢ or intensity set value [j) can be monitored at the set-point output and
controlled by the error-signal bias point. The jump potentiometer controls the feedforward voltage for d¢.

For reference, I show the PCB layout for the phase stabilization and intensity stabilization servo in Fig.

A.7 Other electronics

In the “lab 2 disc”, I compile more electronic circuitries in lab 2: Low-noise bias coil controller and servo,
buffer circuits, laser current controller and temperature controller, high-voltage amplifier, digital clock dis-
tribution circuit, photodiode trans-impedance amplifier, phase-sensitive detector, phase stabilizer, laser diode
protection board, piezo servo, dc high-voltage source, temperature sensor, controller for voltage-controlled
oscillator (VCO), and high-Q phase reference with a phase-locked dielectric resonator oscillator (PDRO,
Herley-CTI).
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Appendix B

Simulating boundaries for multipartite
entangled states

In this appendix, I describe our numerical method of generating the boundaries Al(;g’z’l) for biseparable states

containing at most tripartite entanglement, bipartite entanglement and for fully separable states, as discussed

in chapters

B.1 Numerical GPU computing with NVIDIA’s CUDA

331H334;

Thermal (simulated) annealing is one of the most successful sequential methods for global optimiza-

tion of some function f (X) over parameters X. The specific problem we have in hand is a minimization

problem of finding the boundaries Al()M) for states 5(™) which contain at most genuine M-partite entangle-

M)

ment. Violation of this bound A < A,(J unambiguously signals the presence of genuine (M + 1)-partite

entanglement. Thus, we have f = A,()M) and X = pM) | where AZ()M) is evaluated for some non-optimal state

pM); see the next section for a concrete example of fully separable state (M = 1).

)

The initial attempt to obtain the boundaries AZ(JM in a robust fashion was done by thermal annealing, as

shown by Fig. Interestingly, the inspiration of thermal annealing comes from crystallography, where a

sequence of heating and controlled cooling is used to grow the size of the crystal and minimize the defects=3*.,

For a given step n in the annealing procedure, heating allows thermal excitation (with ‘energy’ ksT,) to

avoid the state s,, getting stuck at some local minimum (in our case, Al()M)) with transition probability p,, 5,41

AM) (Sn-tl)_Al()Al)(sn)
k'BTn

from s, to 5,41 (in our case, we choose a Boltzmann-like factor p,, ,,+1 ~ exp (—

while the controlled cooling of k g1 allows to find the configurations (in our case, s,, = ﬁ%M) to Sp+1 =

ﬁgﬁﬁ) with lower internal energy than the initial one (in our case, from A,()M) (sn) to AIEM) (Sn+1))-

By analogy, in each step of the annealing algorithm, we replace the current state s,, by a random neigh-

Here, the tilde ‘~’ in kp is used to signify that k5 is not the Boltzmann constant kg but a scaling factor to make an analogy to
energy.
YNote that because the transition probability Pn,n+1 is still higher for states with lower variance than the initial one, the annealing

at a given temperature T}, tends to seek for solutions s, 1 with lower A éM) (Sn+1) than AgM) (sn).
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Figure B.1: Global minimization of a multivariate function f(X) via simulated annealing. For simulated

annealing, thermal excitations can be used to overcome the local minima on the left with transition probability

DPnnt+1 = exp(—%) as the step n progresses. In this scheme, one requires an annealing schedule

to reduce the ‘temperature’ T}, as a function of the step size n, eventually cooling the system Xn to the ground
state with ‘energy’ f.

boring state s,1, chosen with probability p,, ,,1 depending on the “thermal” energy kpT, that is gradually
decreased during the process. Thus, in order to obtain the global minimum Al(,M), the thermal annealing
requires a dedicated method to manage the ‘cooling’ rate for kgT,, known as the annealing schedule, which

decreases the thermal excitations of the parameters in ﬁ;M) as n is increased (eventually, reaching to the opti-

mal state, nh_)rréo ﬁflM ) = ﬁgff{), where Al(,M) (pA(()i,\f)) = Al()M)). While I was able to get a numerical agreement
between the analytical result and the optimal solution obtained by thermal annealing for balanced verification
interferometer, I found it difficult to find an efficient annealing schedule robust to the changes in parameters
{a, B,n} describing the interferometer and the constraints {p1, y.} on the quantum state ﬁ%M) being consid-
ered, which resulted in either getting stuck in a local minimum (quenching), or taking a vast amount of time
to converge on the global minimum. In addition, as thermal annealing is necessarily sequential (in that the
new solution s,, 1 depends on the older one s,,), I found it tricky to program the thermal annealing to take
advantages of parallel computations.

As an alternative, I decided to implement a more comprehensive and exhaustive random search algorithm,
which generated all possible 5(*) for a given set of parameters {«, 3, 7} and constraints {p1, .}, and found
the minimum variance A,()M) among them. As each step in the search algorithm is completely random and
independent, the optimization problem is inherently parallel (concurrent), and importantly very simple to
program. In chapter (8] I have used the built-in parallel computing toolbox in Matlab, where I found ~ 4
times the convergence time compared to that of using a single coref]

Around the same time, I learned that NVIDIA had developed a parallel computing architecture, known

as compute unified device architecture (CUDA), which use graphical processing unit (GPU) instead of the

“To generate the boundaries in Fig. of chapter it took ~ 1 week of running time.
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Figure B.2: Accuracy and precision of the random search algorithm. a, We show the convergence be-

havior (accuracy) of the Monte-Carlo method to obtain A1(73) by randomly searching for quantum states p(*)

(data points) to the analytical solution of Al(73) (dashed line) for balanced verification interferometer (section
7.4.3) as a function of numbers of quantum states O(NN). b, We show the reduction in the fractional uncer-

. N .. . . . . .
tainty 98y b (precision) for numerically obtaining the solutions AP (data points) as a function of numbers
NS b

of quantum states O(N).

traditional CPU. From a computing perspective, GPUs are heavily multithreaded many-core chips, comprised
of hundreds of cores, with each core capable of running multiple concurrent threadsﬂ Since the introduction
of CUDA, the so-called general purpose GPU (GPGPU) computing has become a major trend in scientific
computing, thanks to the prospects of building a ‘personal’ supercomputers (exceeding 1 Teraflops) to solve
certain (massively parallel) scientific problems. Important features of CUDA include shared memory, which
can greatly improve the performance of bandwidth-limited applications; double precision floating point arith-
metic; and an arbitrary load/store memory model, which enables many new algorithms which were previously
difficult or impossible to implement on the GPU.

As of 2011, these GPU accelerations are now built into Mathematica 8§ and Matlab 2011a. But at the
time of the experiment in chapter [0} these features were not readily available. Thus, we implemented the
GPU computing for the Monte-Carlo simulation with an open source development project for Matlab, called
“GPUmat”. As described in section even with my limited experience on parallel computing models, 1
found that the GPU-accelerated code (GPUmat) employed in chapter [0 out-performed a similar parallel code
using 4 CPU cores with Intel Xeon processor in chapter [§] by a factor of ~ 12. The enhancement in GPGPU
computing due to increased data parallelism allowed us to perform error analysis of the boundaries A£1,2,3)
in Figs. [9.2H9.3] arising from the systematic uncertainties of the verification interferometers (section[9.13.3).
For reference, in Fig. I show the convergence behavior of the numerical random search algorithm (data
points) for Aég) to the analytically predicted value of A}(,S) (dashed line) for balanced verification interfer-

ometers (see chapter[7) as a function of O(NN') numbers of quantum states with {p1,y.} = {0.1,0.035}. In

9In my case, I just used NVIDIA GeForce GT 330M, comprised of 48 parallel processing units, each running at 1.26 GHz with
multi-threading, yielding theoretically a total processing power ~ 180 Gigaflops.
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section[B.2] I will describe our method of the Monte-Carlo simulation using GPUmat.

B.2 Monte-Carlo simulation for realistic verification interferometers

To generate the boundaries, we need to consider all possible (mixed) states containing bipartite and tripartite
entanglement, as well as fully separable states for a given p;. I refer to chapter[7]for a more detailed theoretical
formalism. Here, we will review the case for a fully separable state. A pure separable state |¢>sep is given by

the form:

) —H|<p ), (B.1)

where [} =
€k

L |0y + eidh” e,(:) |1)). Based on Egq. we can further consider a mixed state of
the form:

P = [AaP[0) i (0] + (1 — [Aas ) )& 1, (B.2)

which corresponds to the mixing of two pure separable states |w>bep and |w>Sep with a ratio of |Ag)? :
(1 — |Agp|?). We then calculate the various expectation values of M), = |II;,)(IT;| (see sectionfor the
definition of the projectors M, in the presence of imbalances {a, B } and losses {n}) as well as the variance

) = Zk (psep)éM 2) for the randomly generated state psep (specified by the random values Agp,
{el@D el L) Loty fand {o{"P), 8 ¢l ¢{P)1). The minimum value of A{" for all possible

Aap, {ega’b), 6(2a,b)’ egu’b), efla’b)}, and {gbga’b), (a b), gf)(a b) (a b)} constrained by {p1, y.} is what we denote

by Algl) = min(Agl)).

Similarly, we can construct Al(f’:s) = min(Al()Q’S)) for biseparable states containing at most two-mode
and three-mode entanglement. The only critical difference between the case of fully separable states and the
case of (biseparable) entangled states is that we could also mix entangled states of different partitions for the
latter casqﬂ Realistically, the minimum uncertainties A£3’2"1) for a given y. will depend on the parameters
{a, 5,n} of the verification interferometer because of losses and imbalances in the verification setup. Due

:2,1)

to the systematic uncertainties {dc, 63, 0n} in our determinations of {«, 5,7}, A,()?’ are convolved with

the normal distributions of {a, 8,n}. This is a highly parallel computing problem of high concurrency,
whereby we search for the minimum A£3,2,1)
Aab, {ega’b), ega’b), ega’b), eff7b)}, and {¢§“”’), (a,b) ¢3a :b) ,d)(a b)} ) convolved independently by the normal

distributions of the parameters {«, 3, n} which modify M, (section [8.11)).

for random quantum states (defined by independent variables

In the matlab m-file, ‘scan_batch.m’, we first run the ‘GPUstart’ command (see the open source
CUDA project, ‘GPUmat’ for porting CUDA into Matlab) to initiate GPUmat package, and to check if the
CUDA SDK is installed and if the GPU processors are CUDA compatible. The batch file then takes several

inputs: constraints such as p; and y., numbers of states to generate and store in the GPU (or CPU) memory,

e.g., (1) mixed state of a fully separable pure state and a biseparable entangled state containing two-mode entanglement, (ii) mixed
state of bipartite entangled state for (a|bed) and (abc|d), and etc.
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numbers of states to wait until writing onto a temporary folder in a hard drive, and the parameters («, 3, ) de-
scribing the verification interferometer. Then, it loads and computes the functions, ‘onemodescanner’, ‘twom-
odescanner’, and ‘threemodescanner’, which are, respectively, defined in the codes ‘onemodescanner.m’,

‘twomodescanner.m’, and ‘threemodescanner.m’. Here, I list the Matlab code for the batch file.

1 %$Scanner batch file for generating W-state bounds (K. S. Choi)
2 GPUstart
3 GPUmatSystemCheck

4 %$This code assumes that that the GPU is compatible with NVIDIA?s CUDA SDK.

6 %Define phase uncertainty given by \a \phi=2\pi/phase_unc

7 %N_tot=Total number of states per each step of yc

8 SN_buff=Total number of states to store in the Ram before storing into hard
9 S%drive

10 %yc_steps=number of equal steps for yc

11 phase_unc=1000;

12 pl=0.3;

13 N_tot=100000;

14 N_buff=50000;

15 yc_steps=20;

17 %Define the loss and imbalance parameters for the verification
18 %$interferometer

19 betain=0.497;

20 betaout=0.484;

21 alphaAB=1-0.490;

22 alphaCD=0.487;

23 etalAout=0.948;

24 etaBin=0.958;

25 etaCin=0.899;

26 etaDout=0.932;

27 etaA=0.7%x0.770;

23 etaB=0.7%x0.776;

29 etaC=0.7+x0.747;

30 etaD=0.7%0.718;

31 Serr=fractional systematic error in the parameters above, following a
%2 %normal distribution.

33 %$stat_it=number of loss and imbalance parameters to

3 %generate per degenerate states (y_c) to create per each
35

36 err=0.05;

37 stat_it=250;

33 %$load function XXXmodescanner () which initiate the Monte-Carlo sim and
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39 %$export into files

4 onemodescanner (phase_unc,pl,betain,betaout, alphalAB, alphaCD, etalAout, ...
41 etaBin,etaCin, etaDout, etah, etaB,etaC,etaD,N_tot,N_buff, yc_steps, ...
42 2.19,100,err,stat_1it);

4  twomodescanner (phase_unc,pl,betain,betaout, alphaAB, alphaCD, etalout, ...
44 etaBin,etaCin, etaDout, etah, etaB,etaC,etaD,N_tot,N_buff,yc_steps, ...
45 1.3175,1.4,err,stat_it);

46 threemodescanner (phase_unc,pl,betain,betaout, alphaAB, alphaCD, etalAout, ...

47 etaBin,etaCin, etaDout, etah, etaB,etaC,etaD,N_tot,N_buff, yc_steps, ...
48 0.912,1,err,stat_it);
49  %end

50 %Smatlabpool close;

51 %check parity

52 load -ascii 'one_mode_bound.mat'

53 load -ascii 'two_mode_bound.mat'
54 load —-ascii 'three_mode_bound.mat'

55

56 plot (one_mode_bound(:,1),one_mode_bound(:,2), 'r',one_mode_bound(:,1), ...
57 one_mode_bound(:,3), '--r',one_mode_bound(:,1),one_mode_bound(:,4), ...
58 '——r',two_mode_bound(:,1),two_mode_bound(:,2), 'b', ...

59 two_mode_bound(:,1),two_mode_bound(:,3),"'--b',two_mode_bound(:,1), ...
60 two_mode_bound(:,4),'"'--b',three_mode_bound(:,1), ...

61 three_mode_bound(:,2), 'g',three_mode_bound(:,1), ...

62 three_mode_bound(:,3),'-—g',three_mode_bound(:,1), ...

63 three_mode_bound(:,4),"'-—g")

64 xlabel ("\it{y_{c}}")
6s ylabel ('\Delta_{b}")
66 title('\Delta_ {b} vs. \it{y_{c}}")

67 grid on

) for a given set of {y.} are run by

The actual computations for obtaining the minimum variances A,(f’z’l
the m-files, ‘onemodescanner.m’, ‘twomodescanner.m’,and ‘threemodescanner .m’. Here, the
variance Aég’Q’l) for the given quantum state is computed by Matlab functions ‘variance3m’, ‘variance2m’,
‘variancelm’. To avoid redundancy, here I only list the Matlab m-code for ‘onemodescanner .m’, which
generates the lower bound of Agl) for fully separable state Note that ‘GPUsingle’ is used to load the param-
eters into the GPU memory, and we used standard GPU functions such as ‘GPUmin’ and ‘GPUmax’, as well

as custom GPU functions such as ‘variancelm’. Direct coding with CUDA C language would have required

substantially more effort than to simply write the code with GPUmat, especially in terms of managements of

(@) (o) (@) (a)y g

"Note that Aél) for a given set of parameters of the quantum state (Agp, {€
{qbga’b) , ¢<2a’b), qbga’b), qbfla’b) 1), and the verification interferometer ({c, 3,n} and {1, B2, B3}) is obtained through a compiled GPU
function, ‘variancelm.mex’. This function internally takes these GPU variables describing the quantum state and the verification in-
terferometer, and then calculates Agl) with single-precision. The GPU function ‘variancelm’ is a machine-specific. In practice, we
analytically calculated the function Agl) with Quantum Mathematica and converted to an m-file. This m-file is later precompiled in

Matlab similar to the command ‘emlmex’ (for running embedded Matlab mex) before running the batch file in order to speed up the
computation.
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the data transfers between the CPU and GPU, concurrency, and their memory usages.

1 function onemodescanner (sigma,pl,betain,betaout, alpha’AB,alphaCD, ...

2 etaAout,etaBin,etaCin, etaDout, etah, etaB,etaC,etaD,Nloss,k]j, resolve, ...
3 ycend, GPUmaxx, err, stat_it)

4 %GPUcompileStart (?onemodescanner?, ?-£f?,

5 %$sigma,pl,betain,betaout,alphaAB,alphaCD, eta”Aout,etaBin,etaCin, etabDout,

6 %etaA,etaB,etaC,etaD,Nloss,k]j,resolve,ycend, GPUmaxx,err,stat_it)

7 %Here, we use GPUmat for GPU acceleration

§ iter=GPUsingle((0,0,0,0;0,0,0,1;0,0,1,0;0,0,1,1;0,1,0,0;0,1,0,1;0,1,1,0;0,
9 1,1,11,0,0,0;1,0,0,1;1,0,1,0;1,0,1,1;1,1,0,0;1,1,0,1;1,1,1,

10 0;1,1,1,11);

11 timeO=cputime;

13 % gc2s=(pl/GPUmaxx*rand(l,Nloss));

14 % gcds=(pl/GPUmaxx*rand(l,Nloss));

15 et=GPUsingle (10"-4:ycend/resolve:ycend) ;

16 pP2s=GPUsingle (3/8*et*pl”~2);

17 prog_wait=waitbar (0, 'l-mode boundary is being scanned. Please Wait ...'");
18 betain_list=GPUsingle (random('norm',betain,betain*err,1,stat_it));

19 betaout_list=GPUsingle (random('norm',betaout,betaout*err,1l,stat_it));
20 alphaAB_list=GPUsingle (random('norm',alphaAB, alphaABx*err,1l,stat_it));
21 alphaCD_list=GPUsingle (random('norm',alphaCD,alphaCDhxerr,1l,stat_it));
22 etaBAout_list=GPUsingle (random('norm',etaBAout,etalhout*0,1,stat_it));
23 etaBin_list=GPUsingle (random('norm',etaBin,etaBin*0,1,stat_it));

24 etaCin_list=GPUsingle (random('norm',etaCin,etaCin*0,1,stat_it));

25 etaDout_list=GPUsingle (random('norm',etaDout,etaDout*0,1,stat_it));
26 etaA_list=GPUsingle (random('norm',etal,etaAxerr,1l,stat_it));

27 etaB_list=GPUsingle (random('norm',etaB,etaBxerr,1l,stat_it));

28 etaC_list=GPUsingle (random('norm',etaC,etaCxerr,1,stat_it));

29 etaD_list=GPUsingle (random('norm',etaD,etaDxerr,1,stat_it));

30 %$std(random('norm',1,0.5,1,100)

31 $mean (random('norm',1,0.5,1,100))

2 1init=20;

33 % GPUmaxten=GPUmaxxx ( (init-1)/ycendx (ycend-et)+1);

34  GPUmaxten=GPUsingle (GPUmaxx* ( (et./ycend).” (-1/init)-1)+1);

35 clear et;

36 $varri=zeros (1,Nloss);

37 varianceout=GPUsingle (zeros (length (p2s),4));

38 varianceout2=GPUsingle (zeros (length (p2s),stat_it));
39 GPUfor igg=GPUsingle (l:length(p2s))

40

41 p2=p2s(iqq);

42 varritemp=GPUsingle (zeros (1, floor (Nloss/kJj+1)));
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let=1;

vari_list=GPUsingle (zeros (1l,stat_it));
gc2s=GPUsingle (pl/GPUmaxten (iqq) rand (1,Nloss)) ;
gc4s=GPUsingle (pl/GPUmaxten (iqq) rand (1,Nloss)) ;
GPUfor stat_itr=GPUsingle(l:stat_it)

waitbar ( (igg+stat_itr/stat_it-1)/length (p2s));
betain=GPUsingle (betain_list (stat_itr));
betaout=GPUsingle (betaout_list (stat_itr));
alphaAB=GPUsingle (alphaAB_list (stat_itr));
alphaCD=GPUsingle (alphaCD_list (stat_itr));
etafAout=GPUsingle (etaRout_list (stat_itr));
etaBin=GPUsingle (etaBin_list (stat_itr));
etaCin=GPUsingle (etaCin_list (stat_itr));
etaDout=GPUsingle (etaDout_list (stat_itr));
etaA=GPUsingle (etaA_list (stat_itr));
etaB=GPUsingle (etaB_list (stat_itr));
etaC=GPUsingle (etaC_list (stat_itr));
etaD=GPUsingle (etaD_list (stat_itr));
count=1;
GPUfor itr = GPUsingle(l:274 )
phils=GPUsingle (random('unif',-pi/sigma+...
pixiter(itr,1),pi/sigma+. ..
pixiter (itr,1),1,Nloss));
phi2s=GPUsingle (random('unif',-pi/sigma+. ..
pixiter(itr,2),pi/sigma+. ..
pixiter(itr,2),1,Nloss));
phi3s=GPUsingle (random('unif',-pi/sigma+. ..
pixiter(itr,3),pi/sigma+. ..
pixiter (itr,3),1,Nloss));
phi4s=GPUsingle (random('unif',-pi/sigma+. ..
pixiter(itr,4),pi/sigma+. ..
pixiter (itr,4),1,Nloss));
GPUfor cc=GPUsingle(l:kj:Nloss)
t0=GPUsingle (let);
il=cc:GPUmin (cc+kj,Nloss);
qgc2=qc2s (il);
qcd=qcéds (il);
phil=phils(il);
phi2=phi2s (il);
phi3=phi3s(il);
phid=phids (il);

hgl=GPUsingle ((=1/2) .* ((=1)+pl+p2) . 7 (=1) . % (1+...
gc2) .7 (=1) .x (1+gcd) . (-1) . x (pl+(-1) . xgc2+

2.xpl.xgc2+p2.xqc2+ (-1) .xgc2. 2+pl.xgc2. 2+. ..
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P2.%9c2. 2+ (=1) .*xqcd+2.xpl.*
qcd+p2.xgcd+ (-2) .xgc2.*qcd+3.xpl.*xgc2. gcd+. ..
2.xp2.*qc2.xqcd+ (-1) .«
gc2. 2.xqcd+pl.xgc2. 2.+xqcd+p2.xgc2. 2. xqcd+. ..
(=1) .xgcd. " 2+pl.*xgcd. " 2+p2.x*
gc4. 2+ (-1) .xqc2.xgcd. " 2+pl.xgc2.xgcd. " 2+. ..
p2.xgc2.+qcd. "2+ ((1+gc2) .+ (1+
qcd) . ((=4) . ((=1) +pl+p2) . * ((-1) . %qc2. 2+. ..
(=1) .*gc2.xgcd+ (-1) .*xgc2. 2. %
qgcd+ (=1) .xgcd. 2+ (-1) .*gc2.+qcd. " 24+p2.x (1+. ..
qgc2) .x (1+gcd) .x ((-1) +gc2+gc4) +
pl.x(1+gc2) .x (1+gcd) . x (gc2+gcd) )+ (1l+gc2) . (1+. ..
gcd) .x (((=1)+p2) . (gc2+gc4)
+pl.* (l+gc2+gcd)) ."2)) .~ (1/2));
hg3=(-1/2) . ((=1) +pl+p2) .~ (=1) .x (1+. ..

gc2) .7 (=1) .x(1+gcd) . (1) .* (pl+(-1) .xgc2+
2.%pl.xgc2+p2.+qgc2+(-1) .xgqc2. 2+pl.xgc2. 2+. ..
pP2.xgc2. 2+ (-1) .xqcd+2.xpl.*
qcd+p2.xgcd+ (-2) .xqgc2.*qcd+3.xpl.xgc2.xgcd+. ..
2.%p2.xqc2.+xqcd+ (-1) . *
gc2."2.*xqcd+pl.xqc2. 2. xqcd+p2.xgc2. 2. xqcd+. ..
(=1) .*gc4d. " 2+pl.*qgcd. " 2+p2.*
qcd. 2+ (-1) .xgc2.+qcd. " 2+pl.*qc2.*xqcd. " 2+. ..
p2.xgc2.xqgcd. "2+ (-1) .x ((1l+gc2)

Lk (14ged) L+ ((Z4) ox (1) +pl4p2) cx ((=1) .*gc2. " 2+. ..

(=1) .*gc2.xgcd+ (-1) .«
gc2.2.%qcd+ (=1) .xgcd. 2+ (-1) .*xgc2.*qgc4d. " 2+. ..
pP2.* (1+gc2) .x (1+gc4d) .+ ((-1)+
gc2+gcd) +pl.* (1+gc2) . * (1+gc4) . (gc2+gcd) ) +. ..
(1+gc2) . (1+gc4) .*x (((-1)+p2) . *
(gc2+gcd) +pl.* (1+gc2+gcd)) ."2)) .~ (1/2)));
test=zeros (1,GPUmin (kj,Nloss-cc)+1);
GPUfor kk=GPUsingle (1:GPUmin (kj,Nloss-cc)+1)
if GPUabs (imag (hgl(kk)))<0.1 && GPUabs (...
imag (hg3 (kk))) ...
<0.1 && (0<(hgl(kk))<l) &&

(0<(hg3(kk))<l) && (0<(gc2(kk))<l)...

&& (0<(gcé4(kk))<l)
test (kk)=1;
else
test (kk)=0;

end

GPUend

var_ind=find (test==1);
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varri = GPUmax (GPUabs (variancelm(pl, p2,qc2,q9c4, ...

betain, betaout, alphaAB, alphaCD, etafAout,etaBin, ...

etaCin,etabDout, etah,etaB,etaC,etaD,phil,phi2, ...

phi3,phid)),0);

t1=GPUsingle (let+length(il));
vv=varri (var_ind);
if isempty(var_ind)
vv=0;
end
varritemp (count)=GPUmin (vv) ;
count=count+1;
clear varri
GPUend
GPUend
vari_list (stat_itr)=GPUmin (varritemp);
GPUend
yc=8/3* (p2* (1-pl-p2)) /pl~2;
varianceout (iqq, 1) =yc;
varianceout2 (iqgqg, 1) =yc;
hist (double (vari_1list))
mean_data=mean (double (vari_list));
std_data=std (double(vari_list));
x=mean_data-5+«std_data:std_data/5:mean_data+5xstd_data;
y=histc (double(vari_list),x,2);
f = ezfit (x,y,'gauss2 (x) = normx* (exp (—(x-xc) 2/ (2*...(tmlx...
heaviside (x-xc)+tm2+heaviside (-x+xc))"2)))"', [stat_it/10
std_data std_data mean_datal);
plot (x,y,'rx");
showfit (f);
% dispeqgfit (f);

makevarfit (f);

tml = evalin ('base', 'tml'");
tm2 = evalin ('base','tm2');
xc = evalin ('base','xc');

ac=[xc, tml, tm2];

disp (' (ac, +err, -err) = ');

disp (ac);

vari_list=double (vari_list);

GPUfor lstr=l:stat_it
varianceout?2 (double (iqqg), lstr)=vari_list (lstr);
GPUend

varianceout (double (iqgq), 2) =xc;

varianceout (double (igq), 3) =xc+tml;
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178 varianceout (double (igq), 4)=xc-tm2;
179 clear let
180 GPUend

181 close(prog_wait)

182 ploter = plot (varianceout (:,1),varianceout(:,2),varianceout(:,1),...

183 varianceout (:,3),'-—',varianceout (:,1),varianceout (:,4),'—-");
184 set (gca, 'XTick',0:0.25:1.5)

185 xlabel ('y_c'")

1856 ylabel ('\Delta”{(1)}_b")

187 title('\Delta”{ (1)} _b vs. y_c")

188 set (ploter, 'Color', 'blue', 'LineWidth', .5)

189 timel=cputime-time0;

190 disp(['elapsed time (s)=',num2str (timel)]);
191 save one_mode_bound.mat —-ascii varianceout;
192 save one_mode_bound2.mat -ascii varianceout?2;
193

194 %$GPUcompileStop

195 end

196

o
o\°

197
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