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ABSTRACT 

This thesis describes an experimental and theoretical study on modal dispersal 

of information and wave mixing in photorefractive crystals for vector phase 

conjugation and real-time information processing. Photorefractive crystals with 

short drift lengths (BaTiO3 and Ba1-:i:Sr:i:Nb2 O6 ) and long drift ones (Bi12SiO20 

and semi-insulating GaAs) are particularly used in this thesis. 

In the first part, the photorefractive effect in electrooptic crystals is described 

in terms of Kukhtarev's band transport model. The explicit solution of the space

charge electric field for the case of one photorefractive species and one type of charge 

carrier is extended to the case of two photorefractive species and two types of charge 

carriers. The enhancement of the space-charge electric field is also described. In 

particular an approximate solution to Stepanov and Petrov's enhancement method 

of using AC external electric field is extended to a general case that describes 

the transient behavior for AC external electric field of arbitrary waveform. The 

anisotropic refractive index change due to the space-charge field formation is then 

described in terms of tensorial forms of the nonlinear susceptibility. 

In the second part, anisotropic beam coupling in photorefractive crystals 

1s presented and a general set of coupled-wave equations that describes beam 

coupling in amplitude, phase, and polarization is derived by using the nonlinear 

and tensorial susceptibility. The polarization properties of the interacting waves 

are particularly stressed. Two limiting cases, i.e., one for scalar beam coupling 

and the other for cross-polarization beam coupling, are obtained from the general 

expression and solved. Experimental results of beam coupling in semi-insulating 

GaAs are presented, and the signs of dominant charge carriers and the density of 

photorefractive species are estimated from beam-coupling gain. The enhancement 
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of beam-coupling gain and its temperature dependence are also discussed. 

In the third part, four-wave mixing for scalar and vector phase conjugation 

is described. Self-pumped phase-conjugate mirrors using photorefractive crystals 

are presented and one of the most interesting properties of these mirrors, i.e., 

the response to phase changes of inputs, is emphasized both theoretically and 

experimentally. 

In the fourth part, two-wave and four-wave mixing in photorefractive crystals 

are applied to moving object detection, mathematical operation on images, and 

one-way image transmission through phase-distorting media. In these applications, 

polarization properties of interacting waves are particularly utilized. 

In the fifth part, a novel method of vector phase conjugation by modal dispersal 

and scalar phase conjugation is discussed. The propagation characteristics of 

conjugate waves in strongly scattering media (e.g., mode-scrambling multimode 

fibers) are described theoretically, followed by the experimental demonstration of 

vector phase conjugation. In the theory the unitarity and time-reversal symmetry 

of the scattering matrix are incorporated into the analysis of the coherency matrix 

of the conjugate field. This theory which describes the physical process of the 

generation of vector phase conjugation can successfully explain the experimental 

results of its fidelity. 

In the last part, we describe experiments in which the new concept of 

modal dispersal of information and scalar phase conjugation is used for several 

novel applications that include nonreciprocal polarization-distortion correction, 

amplitude-dis~ortion correction, and phase-conjugate multimode fiber-optic sensors. 

Experiments as well as proposals for these applications are presented. 

Part of the material presented in this thesis is based on the following published 

and unpublished papers: 
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CHAPTER 
ONE 

Introduction 

1.1 Optical phase conjugation and beam coupling via photorefractive 

nonlinear optics 

Optical phase conjugation is a method to reverse wavefronts and (usually) the 

direction of propagation by which an incoming optical wave is time reversed [1.1,2]. 

Let us consider a forward-travelling monochromatic electric field in the positive z 

direction 

E(r, t) = !eA(r)i(k•r-wt) + c.c., 
2 

(1.1) 

where e is a unit ( complex) vector representing a polarization state, A(r) is a 

complex amplitude and the abbreviation c.c. denotes the complex conjugate. Its 

phase-conjugate field is expressed, in terms of the complex-conjugate operation of 

the spatial part and the polarization vector, that is, 

Epc(r, t) = !e• A *(r)e"(-k·r-wt) + c.c. 
2 

= E{r,-t), (1.2) 

showing the time reversal of the forward-travelling wave. Because of the time

reversal symmetry property of Maxwell's equations in lossless nonmagnetic media, 

such a phase-conjugate wave can propagate as an electromagnetic wave. 

Generation of phase-conjugate waves can be performed by a device called a 

phase-conjugate mirror (PCM). Figure 1.1 illustrates its property in comparison 

with an ordinary mirror. For the case of the ordinary mirror (with 100% reflectivity) 

an incoming plane wave with a left-handed circular polarization (i.e., the ellipse is 
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Ordinary 
Mirror 

Phase 
Conjugate 
Mirror 

Figure 1.1 Comparison of an ordinary mirror to a phase-conjugate mirror. 
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traversed in a counter-clockwise sense when looking against the direction of light 

propagation) is reflected off the mirror with a right-handed circular polarization. 

The angle of reflection, of course, obeys the law of reflection [1.3]. On the other 

hand, a PCM reflects the incoming wave back on itself with the same left-handed 

circular polarization. This is because the reflected wave is a time-reversed replica 

whose polarization state is represented by the term e* in Eq. (1.2) with the direction 

of propagation reversed. 

From a viewpoint of a photon picture, the incoming wave shown in Fig. 1.1 

has the linear momentum Pin = +hk, the angular momentum Jin = +hk/lkl and 

the helicity Ain(= Pin· Jin/lPinllJinl) = +1, respectively. Since the reflected wave 

from the ordinary mirror possesses Pref= +hk'(k'z = -kz),Jref = -hk'/lk'I and 

thus Aref = -1, radiation pressure and torque are imparted to the ordinary mirror 

[l.3,4]. On the other hand, the reflected phase-conjugate wave from the PCM has 

Ppe = hk"(k" = -k), Jpe = hk" /lk"I and thus Ape = +l. This means that no 

radiation pressure and torque are imparted to the PCM because linear momentum 

is conserved upon reflection among all the waves involved in the generation of the 

phase-conjugate wave in the PCM (i.e., the phase-matching condition is satisfied) 

and Ape = Ain [1.4,5]. 

Phase conjugation allows for the distortion correction, which is depicted in 

Fig. 1.2. The wavefront phase and polarization distortions due to a medium having 

spatially nonuniform phase distribution and anisotropy can be corrected by a double 

pass via a PCM. In this case, the distorting medium could represent modal dispersal 

and scattering in multimode fibers, nonuniformities of refractive indices in laser gain 

media (amplifiers), imperfect optics including birefringent optical components etc. 

Another aspect of phase conjugation is real-time holography applications for spatial, 

temporal and spatio-temporal information processing [1.1]. Phase conjugation also 
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Phase 
Conjugate 
Mirror 

Figure 1.2 Compensation of phase and polarization distortions arising from 

a medium with a nonuniform tensorial dielectric constant e(r) by a PCM. By 

double passing through the medium the distortions can be corrected, provided 

that e(r) of the medium is Hermitian, i.e., the distortions are reciprocal. 
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allows for constructing a phase-conjugate interferometer and/or sensor in which 

PCM's are used for enhancing sensitivities and robustness against unwanted 

environmental noise. Figure 1.3 illustrates a comparison of a conventional Michelson 

interferometer to a phase-conjugate interferometer. In the conventional one two 

waves interfere each other with (ideally) the same wavefront curvature unless any 

test object or tilt is introduced in one arm. In the phase-conjugate version two waves 

interfere each other with the opposite wavefront curvature. Because of this property 

of the phase-conjugate interferometer even a very small wavefront curvature of an 

incoming wave can be measured easily (see Fig. 4.7). 

Historically, the ideas to use conjugate waves were suggested and demonstrated 

in conventional holography in the late 1960s. These include imaging through 

distorting media [1.6,7] and fibers [1.8], and interferometric methods called 

"conjugate-wavefront interference" [1.9] and "phase-difference amplification" [1.10]. 

In the 1970s the generation of conjugate waves using wave interactions in nonlinear 

media was realized [1.11-14] and the richer physical phenomena (e.g., amplification 

and oscillation) were also found [1.15,16]. A short time later the above applications 

using holograms were implemented and extended by using nonlinear media which 

act as PCM's [1.4, 1.17-20]. 

The physical realization of PCM's via nonlinear optics includes stimulated 

Brillouin [1.11], Raman [1.21] and Rayleigh line-wing [1.22] backscattering, three

wave mixing [l.12,13] and four-wave mixing [1.14]. Among them four-wave mixing 

takes advantage of automatic phase-matching geometry between probe and pump 

beams (see Fig. 1.4) and thus has become the most important technique for the 

generation of phase-conjugate waves. 

The nonlinear media for four-wave mixing include atomic vapors, dyes, liquid 

crystals, bulk and lower dimensional semiconductors and photorefractive crystals. 
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Figure 1.3 Comparison of a conventional Michelson interferometer (upper) to 

a phase-conjugate version (lower). 
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Figure 1.4 Four-wave mixing configuration. A1 and A2 are the pump beams, 

while A3 and A4 are the conjugate and probe beams, respectively. 
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In particular photorefractive crystals are of considerable interest because of the 

nonlinear effect with milliwatt laser beams and nonresonant sensitivities over the 

visible and infrared spectra. Furthermore, the photorefractive effect allows the 

induced index grating written by two beams to be 1r /2 out of phase with respect 

to the intensity-interference pattern. Because of this phase shift one of the beams 

experiences gain at the expense of the other in their intensities and no phase cross 

talk between the beams occurs. This phenomenon, called two-beam coupling, 

also occurs as polarization coupling between two interacting beams because of 

the tensorial nature of linear (and also quadratic) electrooptic effects. Two

beam coupling and four-wave mixing in photorefractive crystals have been used 

to realize many novel applications such as image amplifiers [1.23], unidirectional 

ring oscillators [1.24], and self-pumped PCM's [1.25]. 

Beam coupling and four-wave mixing phase conjugation m photorefractive 

crystals have also been used for beam combining. The purpose is to coherently 

couple together two or more lasers and/or laser gain media to obtain a single 

diffraction-limited beam whose total power is a coherent superposition of their 

individual outputs. Figure 1.S(a) shows a schematic of phase-conjugate coupling 

and locking of individual lasers. In this example, one of the two lasers acts as 

a "master" laser and the other as a "slave" laser. The slave laser locks to the 

master laser in frequency as well as phase. This configuration has been successfully 

demonstrated by using two cw argon ion lasers [1.26,27], two single GaAlAs diode 

lasers [1.28] and two ten-element laser diode arrays [1.29]. Figure l.S(b) illustrates 

another technique for coupling multiple laser amplifiers by phase conjugation. The 

possible wave(ront distortion caused by the amplifiers can be corrected by a double 

pass. The demonstration of this scheme has been made by using four pulsed dye 

gain media [1.30] and a single GaAlAs semiconductor laser amplifier [1.31]. In all 

the above experimental demonstrations [1.26-31] photorefractive BaTiO3 crystals 
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(a) 

Laser 

(b) 

Amp. 

Amp. 

Amp. 

PCM 

PCM 

Figure 1.5 Beam combining techniques using phase conjugation. (a) Phase

conjugate coupling and locking of individual lasers. (b) Coherent coupling of 

multiple laser amplifiers. 
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were employed as self-pumped PCM's because of large phase-conjugate reflectivities. 

(The pioneering works of beam combining with phase conjugation used nine 

independent regions of a Nd:YAG laser amplifier and a four-wave hypersonic PCM 

[1.32] and two Nd:YAG laser amplifiers with stimulated Brillouin scattering phase 

conjugation [1.33].) 

PCM's using photorefractive crystals usually respond only to an input with 

linear polarization. However this limitation can be obviated by either simply phase 

conjugating each polarization component separately [1.34], a method originally used 

by Basov et al. [1.35] or more interestingly introducing an information-scrambling 

medium (e.g., a mode-scrambling multimode fiber) prior to a photorefractive PCM 

[l.36-40]. The latter method for vector phase conjugation works because initial 

modes are fully scrambled among all the other modes during the propagation 

in such an information-scrambling medium and any one of spatial modes ( or 

frequencies) of the output from the information-scrambling medium contains all 

the input information. This permits the full recovery of the original information 

via phase conjugating a portion of the scrambled fields and modal averaging during 

backpropagation through the information-scrambling medium. This new concept, 

called modal dispersal of information and phase con;"ugation, may be regarded as 

a real-time version of holography with a diffused signal [1.41]. In addition, the 

fact that a tandem combination of multimode fibers and a photorefractive PCM 

allows for vector phase conjugation gives another possible application in optical 

interconnection and/or communication [1.42,43] (see Fig. 1.6). The theoretical and 

experimental study on the new concept and its applications will be described in 

great detail in' this thesis. 
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Figure 1.6 Potential application to optical interconnection and/ or 

communication using multimode fibers and a double phase-conjugate mirror 

(DPCM). In this example DPCM conjugates wavefronts of mutually incoherent 

. inputs from both fiber links but allows for transmitting temporal information 

of inputs possessing the same wavelength from one fiber link to the other. 

(The properties and applications of DPCM are described in Chapters 4 and 5.) 

Modal noise and depolarization ( caused by modal dispersion and scattering) 

during propagation in multimode fibers can be corrected even by scalar 

phase conjugation (i.e., by conjugating only one polarization component of 

depolarized waves), which is described in detail in Chapter 6. 
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1.2 Outline of thesis 

This thesis describes theory and applications of modal dispersal of information 

and wave mixing in photorefractive crystals for vector phase conjugation and real

time information processing. In particular, properties of wave polarizations in wave 

mixing processes are stressed. 

Chapter 2 describes the photorefractive effect in electrooptic crystals. The 

space-charge field formation is considered for two cases that describe the 

photorefractive mechanism with one photorefractive species and one type of charge 

carrier and with two photorefractive species and two types of charge carriers. 

The transient- and steady-state solutions are obtained by using Kukhtarev's band 

transport model. Symmetry properties of anisotropic photorefractive index gratings 

arising from the space-charge field are also discussed. 

Chapter 3 details the beam coupling phemonena in photorefractive anisotropic 

crystals. A set of coupled-wave equations that describe polarization coupling as 

well as energy coupling is derived in the most general form. Solutions are given 

particularly for scalar and cross-polarization beam coupling. Beam coupling in 

semi-insulating GaAs is then described. In the experimental part the sign of the 

dominant charge carriers and the density of photorefractive species are identified 

from a comparison between the theoretical beam coupling gain and the experimental 

one. In the theoretical part the enhancement of the beam coupling gain and its 

temperature dependence are discussed. 

Chapter 4 treats four-wave mixing in photorefractive crystals. Scalar and 

vector phase ~onjugation using four-wave mixing processes are described briefly. 

Self-pumped PCM's using photorefractive crystals are then introduced. Because 

these mirrors can generate scalar phase-conjugate waves without additional pump 

waves, they possess several unique properties. The response to phase changes of 

inputs, one of the most important properties in self-pumped PCM's, is investigated 
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both theoretically and experimentally. This property is used for the construction 

of phase-conjugate multimode fiber-optic interferometers described in Chapter 7. 

In Chapter 5 three applications of two- and four-wave mixing in photorefractive 

crystals are presented. These include an optical tracking filter for transient image 

detection, mathematical operations on images, and one-way image transmission 

through wavefront phase-distorting media. The principles of these methods are 

explained by the theories presented in the earlier chapters. 

Chapter 6 discusses a novel method for vector phase conjugation, which uses 

modal dispersal of information (by mode-scrambling multimode fibers) and scalar 

phase conjugation. The theory is given to describe propagation characteristics of 

conjugate waves in strongly scattering media. The fidelity of this phase conjugation 

process is given as a function of input-beam spatial frequencies. The experimental 

demonstration of this method is given, and the experimental results of the fidelity 

of phase conjugation are also compared with the theory. 

In Chapter 7 several applications of modal dispersal and phase conjugation 

are presented. These include nonreciprocal polarization-distortion correction, 

amplitude-distortion correction and phase-conjugate multimode fiber-optic sensors. 

In the first two applications it is shown that, despite a breakdown of the time

reversal symmetry of the system ( due to nonreciprocal and lossy distortions), the 

original information can be recovered ( under certain conditions) by virtue of phase 

conjugation followed by modal dispersal of the initial information. In the third 

application it is shown that sensitive sensors with robustness, self-alignment, and 

inexpensive cost can be constructed. 
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CHAPTER 

TWO 

The Photorefractive Effect 
in Electrooptic Crystals 

The light-induced changes of refractive index in electrooptic crystals, called the 

photorefractive effect, has been studied extensively in the field of nonlinear optics. 

This is because its strong nonlinearity (via the electrooptic effect) with milliwatt 

laser beams of visible and infrared wavelengths and with existing bulk materials 

is well suited for an ever increasing number of optical information processing 

applications. 

The history of its study began with the discovery of unwanted "optical damage" 

in electrooptic crystals such as LiNb03 and LiTa03 in 1966 [2.1]. It was observed 

that the light-induced changes of refractive indices caused defocusing and scattering 

of laser beams in such crystals used as frequency doublers and modulators. It was 

also found that the changes persisted in the dark but were erasable by uniform 

illumination of the crystals. 

Soon afterward applications of such an optical damage in LiNb03 to "3-

dimensional" mass-storage (supposedly with a maximum storage density of 1012 

bits/cm3 ) and erasable holographic optical memories were recognized [2.2-4]. 

Although the interest in the realization of the holographic optical memory system . 
drove enormous studies until the mid-1970s [2.5-9], the problems of degradation of 

the stored information both during readout and in the dark attenuated the interest. 

Instead the "2-dimensional" erasable optical disk memories using magnetooptic 

media are now put into practice [2.10]. 
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With a viewpoint of eliminating optical damage in electrooptic devices, 

numerous studies on the mechanism of the photorefractive effect were done in the 

1970s [2.11-29]. The basic mechanism of the photorefractive effect results from the 

spatial modulation of photocurrents by spatially nonuniform illumination and is 

summarized as follows: the photoexcited electrons ( or holes) from some impurity 

centers migrate due to diffusion or drift and are trapped at other sites in the 

crystal, leaving behind positive (or negative) charges of ionized impurity centers. 

These photoexcited carriers, once trapped, are reexcited and retrapped until they 

are finally trapped at the darker illuminated region. Because of the resulting 

asymmetric charge distributions between the photoexcited carriers and the ionized 

impurity centers, a space-charge field is established in the crystal and modulates the 

refractive index via the electrooptic effect. In this case the induced refractive index 

grating is in general shifted from the light-intensity distribution. The space-charge 

field can be negated by uniform illumination of a suitable wavelength (see Fig. 2.1 

for the whole process of the effect). 

The most general set of material equations describing the photorefractive effect 

was introduced by Kukhtarev et al. [2.20,25,28] and also by Moharam et al. [2.29]. 

Their analyses treat the deterministic transport of carriers and are called the "band 

transport model." Later the "hopping model" was proposed by Feinberg et al. 

[2.30]. Instead of describing diffusion and drift of carriers, this model assumes that 

carriers hop from filled sites to vacant ones under illumination, and its hopping 

rate is treated statistically. In spite of the physical difference between these two 

models, one particular form of the hopping probability distribution (i.e., the Yukawa 

potential form) gives the same results as those of the band transport model. This 

coincidence, however, has not been physically clarified yet. Although we have not 

reached a complete understanding of the effect so far, the band transport model 
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Figure 2.1 The photorefractive mechanism. The photoexcited carriers from 

some impurity centers migrate to the darker regions of the nonuniform 

illumination I(x), leaving behind opposite charges of ionized impurity centers. 

The resurting asymmetric charge distribution Psc(x) between the carriers and 

the ionized impurity centers causes the space-charge field Esc(x) which induces 

the refractive index grating ~n(x) via the electrooptic effect. 
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seems well supported by many experimental observations and is also employed in 

this thesis. 

As the theoretical and experimental investigations of the photorefractive 

origins were progressing, several theories describing nonlinear wave interactions in 

photorefractive crystals were also reported in the mid-1970s[2.31-34]. Since then 

new and more precise theories have been advanced [2.28,35-41] and new optical 

phenomena based on these theories have also been demonstrated [2.42]. With the 

help of these theories the real-time write and readout property of the photorefractive 

effect has opened numerous applications of real-time optical information processing, 

dynamic holography, and phase conjugation [2.42]. 

So far the photorefractive effect has been observed in many electrooptic 

crystals. These include LiNbO3 and LiTaOs [2.1], BaTiO3 [2.43], KNbO3 

[2.44], K(TaNb)O3(KTN) [2.44,45], Ba2NaNbsO 1s [2.46], Ba1-:i:Sr:i:Nb2O6 (SBN) 

[2.47] and other tungsten bronze ferroelectrics [2.48], Bi4TisO 12 (BTO} [2.49], 

Bi12SiO20(BSO) and Bi12GeO2o(BGO} [2.50,51], KH2PO4 [2.52], Rb2ZnBr4 [2.53], 

(Pb,La}(Zr,Ti}O3 [2.54], CdS [2.55], and compound semiconductors such as 

undoped GaAs [2.56], GaAs:Cr [2.57], InP:Fe [2.57], and CdTe:In [2.58]. 

In this chapter the space-charge field formation using the band transport model 

is described. One photorefractive species (i.e., one impurity center) and one type of 

carrier solution, and two photorefractive species and two types of carriers solution to 

the band transport equations are given. Two possible methods for the enhancement 

of the space-charge field are also described. Tensorial refractive index changes due 

to the space-charge field via the electrooptic effect are discussed particularly for 

several crystal symmetry classes which include important photorefractive materials 

cited above. These refractive index changes cause the isotropic and anisotropic 

beam coupling phenomena in photorefractive crystals, which will be discussed in 

the next chapter. 
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2.2 Space-charge field formation by photoexcited carriers 

2.2.1 The band transport model 

In Kukhtarev's original band transport model [2.25,28], the transport of one 

type of carrier with one species responsible for the carrier emission and trap is 

treated. In recent years multiple species and/or simultaneous electron and hole 

transport models have been suggested to properly explain either the transient-state 

or the steady-state behavior of photorefractive materials (e.g., LiNbO3 [2.59-61], 

BSO and BGO [2.62-66], and BaTiO3 [2.67-69]). In this section we consider the 

case where there are two independent sets of photoactive species, one in which the 

dominant carriers are electrons and the other in which they are holes. This would 

occur if the photoionization cross sections and the recombination rate coefficients of 

one species are significant for electrons and those of the other species for holes. In 

the analysis the "quasi-steady approximation" [2.25] (i.e., the response time of the 

space-charge field formation is slower than the carrier recombination time so that 

the mean carrier densities are constant during the space-charge formation) is used. 

Figure 2.2 shows the two species and two types of carriers model. Electrons 

photoexcited from the neutral donor level Dn of the species D to the conduction 

band are trapped by the ionized donor level Di after diffusion or drift, and thereby 

the space-charge field is formed. Likewise, holes photoexcited from the neutral 

acceptor level An of the species A to the valence band are trapped by the ionized 

acceptor level Ai, and thereby a space-charge field in opposite direction to that 

of electrons is formed. The total space-charge field in turn exercises a force on 

transporting electrons and holes. This interaction process continues until the steady 

state is reached. The refractive index variation is finally created by the space-charge 

field via the electrooptic effect. This nonlinear transport process is described by 

the following set of equations: 
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Figure 2.2 Band transport model for the case of two photorefractive species 

(the donor impurity center D and the acceptor impurity center A) and two types 

of carriers ( electrons and holes). The shallow ionized donors and acceptors that 

compensate the ionized donor and acceptor impurity centers in the dark (Di 

and Ai, respectively) are shown by the signs + and -. 
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Continuity equation 

a 1 -a (n + NA - Ni+ p) - -V, J = 0, 
t e 

(2.1) 

Rate equations 

(2.2a) 

(2.2b) 

Current equation 

(2.3) 

Poisson equation 

(2.4) 

Charge - neutrality condition 

(2.5) 

where we neglect the photovoltaic contribution [2.18], and the parameters are 

defined as follows: 

J: current density 

E: space-charge electric field 

n: electron number density 

p: hole number density 

N n: total number density of the species D 

Ni: number density of Di that acts as acceptors for electron transport 

Ni0 : number density of Di under uniform illumination 
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NA: total number density of the species A 

NA: number density of Ai that acts as donors for hole transport 

NA0 : number density of Ai under uniform illumination 

N;t: number density of ionized non-photoactive shallow donors that compensate 

for the charge of NA in the dark 

N;: number density of ionized non-photoactive shallow acceptors that 

compensate for the charge of N6' in the dark 

€ 11 : static dielectric constant 

µe(µh): electron (hole) mobility 

f3e(/3h): thermal ionization rate of the donor (acceptor) 

se(sh): photoionization cross section of the donor (acceptor) 

,ehh): two-body recombination rate coefficient for electrons (holes) 

T: temperature 

w: circular frequency of the optical field ( =21rv) 

e: magnitude of the charge on the electron 

h: Planck's constant (=h/21r) 

kB: Boltzmann's constant 

and the nonuniform light intensity I is assumed to be sinusoidally modulated along 

the x direction such that 

{2.6) 

where K is the wavenumber of the light interference pattern and m is the light 

modulation index. We note that µe, µh, and e, defined above, are all positive. 

In the following two subsections the two solutions for the lowest Fourier 

component K of the space-charge field are given: one for one species and one 
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type of carrier, the other for two species and two types of carriers. This is done by 

using the small modulation index approximation, i.e., Jml ~ 1, and taking only the 

lowest Fourier components of n, p, Ni!;, NA, and E into account, that is, 

1 iKz p =Po+ 2pie + c.c., 

N+ - N+ + 1 N+ iK :z; + D - DO 2 Dle c.c., 

N- N- lN_ iKz 
A = AO+ 2 Ale + c.c., 

E E lE iKz = o + 2 1e + c.c., 

where E0 is an externally applied electric field. We note that, though not treated 

in this thesis, the higher-order Fourier components of the space-charge field become 

important as the modulation index approaches unity [2.28,70-72]. 

2.2.2 The one species and one type of carrier solution 

We first consider the simplest case where one species, e.g., the species Din Fig. 

2.2, and one type of carriers (electrons) only participate the photorefractive effect. 

In this case we set NA = NA = NAO = N! = p = 0 in Eqs. (2.1)-(2.5) and obtain 

the following inhomogeneous ordinary differential equation for the lowest Fourier 

component of the space-charge field: 

(2.7) 

where 
1 1 1 i 

a1 = -+-+-- -, 
1" de Toe 'TDe 1"Ee 

(2.8a) 

(2.8b) 
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F _ im i/rEe - I/roe 
- 1 + f3ehw/selo µeTReTdeK ' 

fs 
Tde = --- {dielectric relaxation time), 

41reµeno 

1 
TEe = --- { drift time), 

KµeEo 

1 
TRe = + ( two - body recombination time), 

,eNoo 

1 
Toe= + 

/3e + selo/hw + ,e(2no + N00) 

(2.8c) 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

1 
Tie=-------- (other characteristic time), (2.9e) 

/3e + seio/hw + ,eno 

(/3e + seio/hw)(No - Nto) 
no= + {mean number density of electrons). (2.9/) 

,eNoo 

Equations (2.:5) and (2.9/) constitute the zeroth-order equations for the mean 

number density of electrons. But for typical cw laser intensities(Io :::;1 W /cm2
) 

in photorefractive experiments the number density of electrons is of the order of 

107 - 1012 cm-3 while Nrio and N; are of the order of 1015 - 1017 cm-3 [2.73]. 

Thus we can reasonably assume that Nrio ~ N; {and also NAO ~ NJ for holes) 
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in Eqs. (2.9). Together with the parameters defined in Eqs. (2.9) the following 

relevant transport lengths will be also employed hereafter: 

where 

.l 

[Be __ ( €8 kB T ) 
2 

( De bye screening length), 
41re2 NTe 

(length of electron tightening by E0), 

( electron diffusion length), 

(electron drift length), 

N+ (N 1'.T+ \ 
N 

DO ,:o - .1.,DOJ 
Te= 

Nn 
(number density of mobile carriers), 

in which we note again Ni)0 ~ N;. 

(2.10a) 

(2.10b) 

(2.10c) 

(2.lOd) 

(2.11) 

In most of the photorefractive materials it is appropriate to assume that 

Toe ~ TRe ~ TDe, TEe, T de Tre < Te ( = response time of the space-charge field 

formation). Equation (2. 7) is then reduced to 

(2.12) 

where Te is the complex time constant of E1 given by 

(2.13) 

and E~c is the steady-state lowest Fourier component of the space-charge field given 

by 

Eo = -im Eqe(En - iE0 ) 

llC 1 + /3ehw/selo Eqe + En - iEo' 
(2.14) 

in which 

E _ 41reNTe ( ) qe - --- maximum space - charge field , 
esK 

(2.15a) 
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ED 
__ KkBT 

( diffusion field). 
e 

(2.15b) 

The solution to Eq. (2.12) has the following exponential form for the time response: 

Writing phase 

(2.16a) 

Erasing phase 

(2.16b) 

where 

(2.17a) 

1 Toe(Tde/Tr.e-1) 
We= 2 2 • 

TcleTEe (t+roe/Tne) + (roe/7'Ee) 
(2.17b) 

It is seen from Eqs. (2.14)-(2.17) that E1 has the following properties: 

1) there exists only one time constant for the formation of the space-charge field, 

2) when Eo = 0 (i.e., the diffusion mechanism is dominant), there is no oscillation 

(i.e., We = 0) in the transient state, and E 1 is 1r /2 out of phase with respect to 

· the light-interference pattern in the steady state [which is an optimum phase 

shift for two-beam coupling gain (see Chapter 3)], 

3) when E0 =I= 0 (i.e., the drift mechanism is dominant), there is oscillation in the 

transient state and E 1 is not, in general, 1r /2 out of phase in the steady state. 

In order \o see the dependence of the steady-state space-charge field E~c on the 

wavenumber K, which is a measure of spatial resolution of photorefractive materials, 

we consider the simplest case of Eo=O and rewrite Eq. (2.14) as 

(2.18) 
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where E~~)=Eqe\Klae=l and Klse = JEo/Eqe· Figure 2.3 shows the plot of Eq. 

(2.18) as a function of (Kl 11e)- 1• It is seen that E~c reaches the maximum value when 

Klse = 1 (i.e., Eo = Eqe) while it is dominated by Eo(Eqe) when Klse < 1(> 1). 

The value of lse is more or less the same (of the order of 0.lµm) in most of the 

photorefractive materials which include short drift length (rEe < lse) materials 

such as BaTiO3 to long drift length (rEe > l11e) ones such as BSO and GaAs. This 

is because NTe in all these materials varies between 1015cm-3 and 1016cm-3 as 

long as no intentional treatment such as reduction and oxdation is made. Therefore 

the dependence of E~c on the interference fringe period is almost the same in most 

of the photorefractive materials in the diffusion regime. 

2.2.3 The two species and two types of carriers solution 

Using the quasi-steady approximation, we obtain the following inhomogenenous 

differential equation for the lowest Fourier component of the space-charge field 

[2.74]: 

(2.19) 

where the time constant Te due to electrons is given by Eq. (2.13) while the time 

constant Th due to holes is also obtained by Eq. (2.13) with the interchange of the 

subscript e--+-h, 

Q = 1- { [1 _ TdeToe (_j_ __ 1 )] [1 + TdhTOb (~ + _1 )] }-l, 
'Tie TEe Toe Tih TEh TDh 

and the steady-state space-charge field E~c is given by 

Eo _ . Eqh/(1 + .Bh1iw/shlo) - Eqe/(1 + .Be1iw/selo) 
sc - ,m 1 + Eqe/(Eo - iEo) + Eqh/(Eo + iEo) · 

(2.20) 

It is seen from Eq. (2.20) that there exists a competition between two space-charge 

fields with opposite directions: one due to electrons and the other due to holes. 

This result is reduced to the one species and one type of carrier result given by Eq. 
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(2.14) when hole transport is absent (i.e., Eqh = 0). We also note that, unlike the 

case of one species and one type of carrier [see Eq. (2.19)], the second derivative 

in Eq. (2.19) cannot be neglected with respect to the other two terms. This is 

so because Te and Th are the response times of the space-charge field formation 

for electron and hole transport, respectively, and the first term in the left-hand 

side of Eq. (2.19) is in this case the same order of magnitude as the second term. 

Consequently we see that there exist two characteristic time constants in the two 

species and two types of carriers model. These two characteristic time constants 

are given by 

(2.21a) 

r_ = 2[(~ + _!_) - . f(~ - _!_)2 + _i9_]-1 
Te Th V Te Th TeTh 

(2.21b) 

With these time constants the general solutions to Eq. (2.19) can be written for 

the following two cases: 

Writing phase 

(2.22) 

Erasing phase 

(2.23) 

where B+ = (1 - r_/ro)A+ and B_ = (1 - r+/ro)A- with r01 = rde -l + fdh -i. 

In Chapter 3 the results given here will be used for the estimation of deep levels in 

semi-insulating GaAs. 



- 32 -

2.2.4 Enhancement of the space-charge field 

It is interesting to note that, since Te is complex when Eo i= 0, the expression 

Eq. (2.12) for the space-charge field E 1 is formally similar to that of lossy harmonic 

oscillators and LCR circuits with driving forces [2.75,76]. It follows immediately 

from this equivalence that the oscillatory response of E 1 at an appropriate frequency 

will exhibit resonance and E 1 will be enhanced. This can be done by modulating 

either m or Eo in E~c [see Eq. (2.14) ]. In fact with the moving light-interference 

pattern[2.71, 77-80] or the AC external electric field [2.81-84] the amplitude of E~c 

can be enhanced, while E~c is still 1r /2 out of phase. This enhancement with the 

1r /2-phase shift occurs particularly in long drift length materials where the carriers 

move over many fringe periods under the application of the DC external field before 

they are captured by the traps. In the moving fringe method the created space

charge field (which is enhance~ by the DC external field but is not 1r / 2 out of phase 

as in the usual drift mechanism) can synchronize with the fringe movement with 

some time delay ( due to the finite response of the space-charge field formation). This 

results in a 1r /2-phase shift at the optimized fringe velocity. In the AC external field 

method the time period of the AC external field is taken to be much shorter than the 

response time of the space-charge field formation. The movement of photoexcited 

carriers due to the AC external field is symmetric with respect to the maxima of the 

light-interference pattern, and the drift force is zero on average during the period 

of the space-charge field formation. Thus the maxima of the carrier number density 

coincide with those of the light-interference pattern. For this reason this method 

creates the space-charge field with a 1r /2-phase shift much more efficiently than 

that in the usual thermal diffusion mechanism. We shall show below the theoretical 

results of the enhanced space-charge fields by means of these two methods. These 

will be used for evaluating the enhancement of the space-charge field ( and thereby 

the two-beam coupling gain) in semi-insulating GaAs in Chapter 3. 
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In the moving fringe method the steady-state space-charge field with the 

optimized fringe velocity [2.71] is given by 

(2.24) 

where 

E 
_ ,'ReNTe 

Me- , 
µeK 

(2.25) 

and E 0 ~ EMe and Klse «: 1 are assumed. For a given E0 , Eq. (2.24) has a 

maximum value of 

Eo I -im Eqe 
sc max= 1 + f3ehw/selo 2' (2.26) 

at the optimum grating vector of Kopt = 1/ JrEelEe• 

In the AC external field method a general solution [2.74) for an arbitrary 

waveform of Eo ( t) is given by 

where 

h(t) = r [(1 _ Eo(r)) (1 + ~) + El(r) 
Jo Eqe EMe EMeEqe 

( 1 1 ) l { [ ( En ) 2 ( E0 ( r) ) 2] }-1 + iEo(r) EMe - Ege Tcle l + EMe + EMe dr, 

If we apply a bipolar rectangular electric field whose duty cycle is 50/50, and a 

period much shorter than Te as given by Eq. (2.17a), the steady-state result [2.83] 

can be obtain~d straightforwardly from Eq. (2.27) as 

Eo = -im En(l + En/EMe + E5/EnEMe) (2.28) 
sc 1 + f3ehw / Selo (1 + En /Eqe) (1 + En /EMe) + E5/EqeEMe · 

This also gives values similar to Eq. (2.24) at K < 1/ ✓TEelEe - Tf>e and Eq. 

(2.26) at K > 1/ JrEelEe - r5e, respectively, with the assumption of Klse «: 1 
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and K TEe > (En /Eo) (1 + K 2 r~e) for both cases [2.83]. We note that since Eqe is 

inversely proportional to K the enhanced E~c I max (Klse ~ 1) given by Eq. (2.26) 

is much larger than the maximum space-charge field Eqe at Kl,,e = 1 (i.e., E~?J) in 

the diffusion mechanism [see Eq. (2.18)]. 

It is seen from the above results that, using the moving fringe or the AC 

external field, the space-charge field with a 1r /2-phase shift can be obtained in the 

long drift length mechanism (i.e., KrEe = E0 /EMe > 1). These methods are well 

suited particularly to the photorefractive BSO and GaAs crystals because they 

are long drift length materials with fast response time but have small electrooptic 

coefficients ( therefore small photorefractive nonlinearities). Experiments of using 

such enhancement methods have been reported in BSO and BGO [2.71, 77-80, 82], 

BTO [2.83-87] and GaAs [2.88-90]. 

2.3 Symmetry properties of photoinduced refractive index changes 

So far we have described the photoinduced space-charge field formation by 

means of the band transport model. We complete the discussion by describing the 

refractive index changes caused by the space-charge electric field via the electrooptic 

effect. 

The electrooptic effect is formally defined as a change in the second-rank optical 

impermeability tensor rf ( = ~{, where ftot is the second-rank optical dielectric 

tensor). This change occurs when an electric field E [= E 0 + ½Ewe-iwt + c.c.] 

causes a redistribution of the bond charges and possibly a slight deformation of the 

ion lattice in the crystal [2.91]. This is expressed by 

~ 
= ;iikEk + iiiklEkEl, (2.29) 

~ 
where i,j, k and l are defined as the principal coordinate subscripts and; and i are 
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the third-rank linear ( or Pockels) electrooptic tensor and the fourth-rank quadratic 

( or Kerr) electrooptic tensor, respectively. Most applications using photorefractive 

materials rely upon the linear electrooptic effect which is also considered in this 

section. The quadratic electrooptic effect has also been employed in cubic KTN 

crystals [2.92] and the following argument can be easily extended to the quadratic 

electrooptic effect. 

We can also formally describe the electrooptic effect in terms of a second-order 

nonlinear polarization PNL [= ½PNLe-iwt + c.c.] arising from the space-charge field 

Esc (= Esc0sc, where Esc = Eo + ½E~ceiK-r + c.c. and esc is a unit vector). In this 

case the complex amplitude vector of the second-order nonlinear polarization PNL 

is given by 

(2.30) 

In Eq. (2.30) Ew is again the complex amplitude vector of the electric field at the 

optical frequency w and Ax is the second-rank nonlinear susceptibility tensor due 

to Esc. Since we can rewrite Eq. (2.29) for a DC electric field E = E 0 as 

[
,......_l A~ ---11 

~ - E : u.E : E ij, (2.31) 

where Ae = Etot - e (e is the second-rank linear optical dielectric tensor at the 

optical frequency w) and IAel ~ lel is assumed, Ax in Eq. (2.30) can be expressed 

from Eqs. (2.29) and (2.31) as 

~ 1 ~ Ax= -Ae 
47r 

Esc [~ (Z ) ~ = -- E: r: 0 8 c : Ej, 
47r 

(2.32) 

~ 
where E0 = Esc is used. The form of e as well as that of r can be found in 

the literature [2.91]. The symmetry properties of Ax for several crystal symmetry 

classes which include most of the important photorefractive materials are given 
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m Table 2.1, where the angles f) and <p are defined in Fig. 2.4, the directions 

x, y, and z are the principal axes, and n0 and Ile denote the ordinary refractive 

index ( =nx = ny) and the extraordinary refractive index ( =nr.), respectively. As 

is shown below and detailed in Chapter 3, this nonlinear polarization causes scalar 

and/or polarization beam coupling phenomena in photorefractive crystals. The use 

of photorefractive crystals possessing a A,x for vector phase conjugation will be 

discussed in Chapters 4 and 6. 

As an example we shall consider a common configuration, where the space

charge field is parallel to the c-axis (i.e., f) = 0 and <p = 1r /2 in Fig. 2.4). From 

Table 2.1 we find the following forms of A,x: 

for 2mm, 4mm and 3m symmetry classes, (2.33a) 

and 

for 43m and 23 symmetry classes. (2.33b) 

We see from Eqs. (2.32) that 

a) for 2mm, 4mm and 3m crystal symmetry classes A,x is diagonal so that 

the photorefractive effect can cause scalar (isotropic) beam coupling only 

between two beams of the same polarization and there is no coupling between 

orthogonally polarized beams, and 

b) for 43m and 23 crystal symmetry classes there is scalar beam coupling between 

two beams of the same polarization ( e.g., a linear polarization along < 110 > 

crystal direction) and there is also cross-polarization coupling between the x

and y-polarized beams. 

For the scalar beam coupling we can write A,x = Ax! (I is a unit matrix) m 

some appropriate coordinate system. In this case AX is expressed by the following 
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Table 2.1 Symmetry properties of the second-rank nonlinear susceptibility 

tensor ~X arising from the photorefractive effect for several crystal symmetry 

classes. 

Orthorhombic: 2mm symmetry class (e.g., KNb03 and BaNaNbs01s) 

E ( n!r13 cos() 
-~ 0 

4
1r n;n~rs1 sin() cos cp 

Tetragonal: 4mm symmetry class (e.g., BaTi03, SBN, and BSKNN) 

0 

Trigonal: 3m (m..Lx) symmetry class (e.g., LiNb03) 

Esc --x 
411" 

( 

n~ ( -r22 sin() cos cp + r1s cos fJ) 
-n~r22 sin() cos cp 
n~n;r42 sin() cos cp 

4 • () -n0 r22 sm cos cp 
n~(r22 sin() sin cp + r13 cos fJ) 

n~n;r 42 sin () sin cp 

n~n;r 42 sin () cos cp ) 
n~n;r 42 sin() sin cp 

n!r33 cos() 

Cubic: 43m and 23 symmetry classes (e.g., GaAs, BSO, BGO, and BTO) 

( 

0 
cos() 

sin() sin cp 

cos() 

0 
sin() cos cp 

sin () sin cp ) 
sin() ~os cp 
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z 

X 

I 
I ,, 

..... 

y 

Figure 2.4 Diagram showing the direction of the space-charge field, where 

e8 c is a unit vector of the space-charge field and the x, y, and z axes are the 

principle axes of the crystallographic coordinate system. 
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where AX is measured in esu. 
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211" 
An= -Ax, 

no 
(2.34) 
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CHAPTER 

THREE 

Beam Coupling 
in Photorefractive Crystals 

We have shown in the previous chapter that the maxima and minima of the 

photoinduced refractive index grating are, in general, shifted spatially from those of 

the light-interference pattern, i.e., the photorefractive grating is "nonlocal". As one 

of the limiting cases, this nonlocal phase shift becomes ±71" /2 in the pure diffusion 

regime. Such nonlocal ( and also tensorial) photorefractive gratings written by two 

beams cause energy transfer between these beams during propagation in the crystal. 

This is because one of the two beams diffracted by the nonlocal gratings interferes 

constructively (or destructively) with the other beam, depending on the sign of the 

phase shift [3.1,2]. 

The simplest geometry of such beam coupling is that of isotropic beam coupling 

shown in Fig. 3.l(a). The two input beams create the "isotropic" photorefractive 

grating. This grating, in turn, diffracts the two beams into each other while 

satisfying the Bragg condition so that the power exchange is spatially cumulative. 

In this case the diffracted beams possess the same polarization state as that of the 

input beams. This effect also gives rise to isotropic light scattering into a fanned 

shape, which is called "beam fanning" [3.3]: a single input beam is scattered by the 

crystal's inhomogenities, etc., an4 forms a continuum of "noisy" photorefractive 

gratings with these scattered beams, by which asymmetric energy transfer from the 

input to the scattered beams occurs. These phenomena are the basis of various 

novel optical devices such as image amplifiers [3.2,4], unidirectional ring oscillators 
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[3.5], optical limiters [3.6], and beam cleanup devices [3. 7]. 

Since photorefractive gratings arise from electrooptic effects and are in 

general optically anisotropic [3.8,9] (see Table 2.1), anisotropic beam coupling 

via the nonlinear susceptibility tensor 6-x also occurs. Figure 3.l(b) shows 

cross-polarization beam coupling in cubic crystals, where the two input beams 

are diffracted into the beams that are orthogonal to the input polarization by 

the anisotropic photorefractive gratings. In this case the Bragg condition is 

automatically satisfied because the wavenumbers of the diffracted beams are the 

same as those of the input beams in cubic crystals. Figure 3.l(c) shows anisotropic 

self-diffraction in uniaxial and biaxial crystals. The anisotropic photorefractive 

grating written by the two input beams of well-defined incident angles and 

polarization states [i.e., the extraordinary polarization in Fig. 3.l(c)] scatters such 

input beams into the bea~ that are orthogonal to the input polarization. In 

this case the orthogonally polarized beams of specific propagation directions are 

allowed because of the anisotropic Bragg condition [3.8]. This results in the output 

beams of four different propagation directions. Figure 3.l(d) shows anisotropic 

light scattering in uniaxial and biaxial crystals. In this situation, as is the case 

in isotropic light scattering, a single input beam of a well-defined polarization 

[i.e., the extraordinary polarization in Fig. 3.l(d)] creates noisy photorefractive 

gratings. If these gratings are anisotropic, they create the diffracted beams of an 

orthogonal polarization [i.e., the ordinary polarization in Fig. 3.1( d)] with a specific 

propagation direction that satisfies the anisotropic Bragg condition. This creates a 

conical ring pattern of the Bragg-matched scattered beams of ordinary polarization. 

The above anisotropic beam-coupling phenomena have been studied in 

photorefractive crystals such as LiNbO3 and LiTaO3 [3.10-19], BaTiO3 [3.15,20,21], 

SBN [3.22], KNbO3 [3.23-25], and GaAs [3.26-31]. In the cubic sillenite crystals such 
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(a) 

Cubic Crystal (b) 

Figure 3.1 Beam coupling configurations, where n 0 and ne denote the ordinary 

and extraordinary refractive indices, respectively, and k0 is the wavenumber 

in vacuum. ( a) Isotropic beam coupling, where lk ~II) I = Jk~II) I and k~II) = 

k~II) + K. (b) Cross-polarization beam coupling in cubic crystals, where 

lkill) I = Jk~I) I = lki.i) I = Jk1.i) I and k11D = k1.i) = kill) + K = ki.i) + K. 



Photorefractive 
Anisotropic Crystal 

z 

Photorefractlve 
Anisotropic Crystal 

- 49 -

(c) 

(d) 

Figure 3.1 (Continued). (c) Anisotropic self-diffraction in anisotropic crystals 

(negative uniaxial crystals in this figure), where lkl.l) I = lk~.i) I < lk~II) I = 
lk~11 >i, klm = kl.1) +K, k~II) = k~.l) +Kand k~.1) = kl.1) +K. (d) Anisotropic 

light scattering in anisotropic crystals (negative uniaxial crystals in this figure), 

where lkl.i) I = ik!.l) I < lk11D I, k!.i) = kl.l) - K and k111 ) = kl.i) + K. 
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as BSO, BGO, and BTO the effect of the optical activity causes further complication 

on the polarization properties in photorefractive beam coupling and/or diffraction, 

which has also led to further studies [3.32-47]. Applications of the anisotropic beam 

coupling and/or self-diffraction phenomena include light deflection [3.23,25,48], 

spatial light modulation [3.49], and image processing [3.50-52]. 

In this chapter we describe beam coupling phenomena in photorefractive 

anisotropic cystals. A general set of coupled-wave equations that describes isotropic 

and anisotropic beam coupling phenomena is derived. The explicit solutions are 

shown particularly for two specific cases: isotropic beam coupling and anisotropic 

cross-polarization beam coupling in cubic crystals. Beam coupling in semi

insulating GaAs is then described. The densities of the deep levels and the sign 

of dominant carriers in semi-insulating undoped and Cr-doped GaAs are estimated 

from the two-beam coupling gain measurement. The enhancement of the two-beam 

coupling gain in semi-insulating GaAs and its temperature dependence are also 

discussed. 

3.2 Coupled-wave equations in photorefractive anisotropic crystals 

Let us consider the wave mixing of plane waves 1 and 2 in a photorefractive 

anisotropic crystal (see Fig. 3.2). We take the x, y, and z axes as the beam 

propagation coordinate system which is related to the crystallographic coordinate 

system by means of a simple linear transformation [3.8]. Any wave propagation 

in an anisotropic (and optically active) medium can be decomposed into a linear 

combination of "unperturbed" normal ( eigen) modes which have spatially invariant 

and well-defined polarization states and phase velocities [3.8,9]. In the analysis 

that follows we use these normal modes as bases, and beam coupling is described in 

terms of the evolution of the complex amplitudes of the normal modes as a function 
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X 

z 

Beam 1 

Beam2 

Figure 3.2 Beam coupling configuration. Two plane waves of arbitrary 

polarizations are incident on the photorefractive crystal. The beam 

propagation coordinate system is shown as the x, y, and z axes. 
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of the propagation direction. 

The propagation of the two interacting waves can be written, in terms of the 

normal modes, as 

E1 (z, t) = ½[All) (z)ell) ei(ki1) ·r-wt) + Al2) (z)el2) i(kil) ·r-wt)] + c.c., 

E2(z, t) = ½[A11) (z)e11) ei(k~1) ·r-wt) + A12) (z)e12) ei(k~l) •r-wt)] + c.c., 

(3.la) 

(3.lb) 

where e~m) (m, n = 1, 2) denotes a unit complex vector representing a state of 

polarization at the m th normal mode of the beam n in the beam propagation 

coordinate system, kim) the corresponding wave vector, and Aim) the complex 

amplitude of the beam n at the mth normal mode. Aim) is allowed to depend 

only on z. This corresponds to the paraxial approximation in photorefractive 

beam coupling. The effect of optical activity can be incorporated into the normal 

mode representation. We note that the orthonormality of the normal modes, i.e., 

e}m) · e}~)* = bmn (1, I', m, n = 1, 2) can still hold in the beam propagation 

coordinate system. The wave equation for the complex amplitude of the total field 

vector Ew ( = Ei + E~) of angular optical frequency w is given by 

(3.2) 

where c is the speed of light in vacuum, 1 the second-rank linear dielectric tensor, a 

the second-rank conductivity tensor, and PNL the nonlinear polarization given by 

Eq. (2.30), all measured in the beam propagation coordinate system. 

The arbitrary polarized two waves given by Eqs. (3.1) form an intensity

interference pattern in the crystal 

(3.3) 

and 

(3.4a) 
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_ ! [A(2) A(2) * ( (2) (2) *)] 
m2 - Io 1 2 e 1 · 8 2 • (3.4b) 

This interference pattern creates the space-charge electric field in the photorefractive 

crystal [3.53], thereby causing PNL in Eq. (3.2) via the electrooptic effect. The wave 

vector and grating configuration ink space is depicted in Fig. 3.3. 

In what follows we shall consider the case where the two input waves possess 

the same eigen polarizations which we denote e11
) and e~1

). In this case one 

photorefractive grating with grating vector K (l) is created initially inside the 

crystal. Because of the possible anisotropic Bragg condition ki2
) = k~1

) + K(l) 

and k~2
) = k~1

) -K(l) [see Fig. 3.l(c)], two new waves having k vectors of ki2
) and 

k12
) are then created by the initial grating and write a new photorefractive grating 

with the grating vector K(2). We note that, for the most general case where the two 

input waves are arbitrarily polarized, at least six waves and three photorefractive 

gratings are involoved in the beam coupling process. These coupled-wave equations 

can be straightforwardly obtained by the symmetry consideration of the following 

result. 

Substituting Eqs. (2.30), (2.32), and (3.1) into Eq. (3.2) and using the 

orthonormality of the normal modes and the slowly varying field approximation 

[3.8], i.e., ld2 Ahm) /dz2
1 < lkim)dAhm) /dzl, we obtain the following set of coupled-

wave equations for the four interacting waves [3.54]: 

d 

dz 

where 

A(l) 
1 

A (2) 
1 

A~l) 

A~2) 

A (1) 
1 

A (2) 
1 

A (1) 
2 

A (2) 
2 

(3.5) 



- 54 -

z 

Figure 3.3 Wave vector and grating configuration in k space. The case of a 

biaxial crystal such as KNbO 3 is depicted. In this example the x, y, and z 

axes correspond to the crystallographic c, a, and b axes, respectively. The k 

vectors k~1
) and k~2

) correspond to the two normal modes of beam 1 inside the 

crystal, while k~1
) and k~2

) correspond to those of beam 2. The grating vectors 

K( 1) (= kp) - k~1
)) and K(2 ) (= k~2

) - k~2
)) correspond to the two different 

photorefractive gratings. 
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cos0(l) 
l 

0 

cos o<:a> :a 

(3.6a) 

(3.6b) 

(3.6d) 

and a: = 41rwu/c2kim) ~ a(m, n = 1, 2), where we assumed an isotropic 

conductivity of the crystal a= ul (I is a unit matrix). Also in Eqs. {3.6) m 1 and 

m2 are given by Eqs. {3.4), and tl.k = {k~2
) - k~1

)) · ez, tl.K = (K(2 ) - K( 1)) · ez, 

K!1
) = K(l) · ez, 91(m) = cos- 1 (k}m) · ez/lk}m)I) (1, m = 1, 2). The parameters 

tl.n, d, f, "f, and g in Eqs. {3.6) are given in Table 3.1. We see from Eq. (3.5) 

that the submatrices [Pf] and [P~] denote the absorption and linear birefringence 

due to the application of the external DC electric field and the submatrices [P{'] 

and [P~'] den~te the photorefractive anisotropic self-diffraction [see Fig. 3.l(c)], 

while the submatrices [Qi] and [Q2 ] denote the photorefractive isotropic and cross

polarization beam coupling [see Figs. 3.l(a) and (b)]. We note that the coupling 

' 
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Table 3.1 Parameters used in Eqs. (3.6). 

w * ) n (l) * i12) _ _____,,---,--::;(l)* i:(12)( (1) . ~ ~. (2))* i21 __ l_i12) 
l - (1) ""'sc r,.l el q el ' l - (2) l 

2n1 c n 1 

/
(12) = W ::;(l) (12)( (l)*. ~ ~. (2)) /(21) = n~l) /(12)* 
l (1) ""'sc ~l e2 q e2 ' l (2) l 

2n2 c n 2 

,(ij) = _w_::;(l)a(ij) (e(i)* . ~q~. e(j)) 
l 

2 
(i) ""'sc l 1 2 

n 1 C 

(ij) W ...,(l)* (ji)*( (i)* A~ (j)) n~i) (ji)* 
91 = ----ny-~sc al e2 • u.q · el = "'l'I)'l 

2n2 c n 2 

~nJij) = 
2
Efi) (a?j)ou + a[ij)t521)(eJi)* · ~q· e}j)), (i,j,l = 1,2) 
n, . 

A~ ~ (Z ) ~ u.q = l : r : e8c : £ 

d12) = ! / l ei[(~k-KC'>)-(:z:e.,+11e11)ldx dy 

~(12) = ..!:.. 1· r i[ (.6.k-.6.K+KC'))·(:z:e.,+11e11)ldx dy 
l V ls . 

(11) _ (22) _ l 
al - a2 -

a~12) = [a~21)]* = ~ J l i[(.6.k-.6.K)·(xe.,+ye 11 )ldx dy 

a~12) = [a~21)]* = ~ J l ei[.6.k•(xe.,+ye 11 )ldx dy 

a~ll) = [a~22)]* = ~ J l ei(.6.K-(:i:e.,+11e11)ldx dy 

V = 1• { dxdy 
}(grating area)S 

In the above formulae E0 and aiQ are related to the space-charge electric field as 

follows: 
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into other possible waves due to the linear birefringence is neglected for simplicity. 

The inclusion of these waves also requires the inclusion of other possible 

photorefractive gratings. The present treatment is, however, complete for the case 

of anisotropic crystals without DC electric field and the two special cases described 

in the following section. 

Some of the elements in the above matrices involve the modulation indices m 1 

and m2 • The set of coupled-wave equations is thus nonlinear and general solutions 

to Eq. (3.5) are difficult to solve exactly. We therefore look for the exact and/or 

approximate analytic solutions for two special cases which are described in the 

following two sections. 

3.3 Scalar two-beam coupling 

3.3.1 Coupled-wave equa~ions 

Scalar two-beam coupling is the simplest case since ll.q [= ll.x/(-Esc/41r), 

see Table 2.1] and therefore the submatrices [P1], [P2], [Q1], and [Q2] are all 

diagonal. This occurs, for example, when the space-charge field is parallel to the 

crystallographic < 0()1 > axis and 

a) for 2mm, 4mm and 3m crystal symmetry classes the input beams are linearly 

polarized along one of the principal axes, or 

b) for cubic 43m crystal symmetry class the input beams are linearly polarized 

along the crystallographic < 110 > axis or < 110 > axis [see Eqs. (2.33)]. In 

these cases Eq. (3.5) can be reduced to the following simple form: 

, dA 1 a , I 
1
2 . ( w ) ( 11) · cos81 -d = --A1 - -

1 
A1 A2 - i - ll.n1 A1, 

Z 2 O C 
(3.7a) 

(3.7b) 

where we set A1 = Ai1), A2 = A~1) and Ai2) = A~2) = 0 for the two input waves 

of the same eigen polarizations (e1 = e~1) and e2 = e~1>), 8L2 is measured in a 
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crystal, and 

(3.8) 

in which n~ is ne or n 0 depending on whether the mixing beams are of extraordinary 

or ordinary polarization, and Bsc(= a!J)) is given, for example, by 

1 Eqe(En-iEo) 
1 + /3enw/seio Eqe + En - iEo. 

(3.9) 

for one species and one type of carrier transport [see Eq. (2.14)]. 

Equations (3.7a) and (3.7b) can be rewritten, in terms of the intensity and the 

phase of each beam A,-= .jf;ei,t,,(j = 1,2), as 

, dI1 I1I2 -
cos8i- = -f-- - al1 

dz Io ' 
(3.10a) 

1 dl2 I1h 
cos 82 dz = r To'° - ah, (3.10b) 

cos 8' dt/;i = -r' h - tl.·'·1 1 dz Io .,,, ' (3.10c) 

1 dt/)2 1 I1 
cos82- = -r - - tl.t/J2, 

dz Io 
(3.10d) 

where Io= I1 +12, r = 2Re(,), and f' = Im(,) are the real and imaginary parts of 

the beam coupling gain coefficient, respectively, and tl.t/Jm = (w / c)t:1nU1\m = 1, 2) 

is a phase retardation (per unit length) caused by the linear birefringence under 

application of the DC electric field E0 • It is seen that the real part of, is responsible 

for the intensity coupling, while the imaginary part of, is responsible for the phase 

coupling. Since , is a function of Bsc which is related to the space-charge electric 

field by E~c = -imB 11c [see Eq. (2.14)], the intensity coupling is due to the shifted 

grating formed through the pure diffusion mechanism (Eo = 0) or the special case 

of the drift mechanism (Eo ~ En, Eqe). On the other hand, phase coupling is 

due to the unshifted grating formed through the usual drift mechanism (Eo =/- 0). 

The maximum intensity coupling, of course, occurs when the displacement of the 

photorefractive grating with respect to the intensity interference pattern is ±1r /2. 
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3.3.2 Steady-state solution 

Equations(3.10a) - (3.10d) can be solved exactly in the symmetric codirectional 

beam coupling configuration (i.e., 0~ = 0~ = O') [3.2]: 

(3.lla) 

Io(0)e-a• I (s)---...;......;._ __ _ 2 - 1 + [Ii(0)/I2(0)Je-ra' 
(3.llb) 

, r' { 1 + I1(0)/I2(0) } 
'P1(s) = tt,i(O) - tl.tp1s - f s + fln 1 + [Ii(0)/I2(0)Je-ra ' (3.llc) 

• ( ) _ _ 1_ , ) ~,. r,I r', ( 1 + I2(0)/I1(0) ) 
'i/J2 s - ¥'2\0 - ~'f-128 - .L 8 - rml 1 + [I2(0)/Ii(0)]e!'a J' (3.lld) 

wheres = z/ cos O'. We see from Eqs.(3.lla) - (3.lld) that one of the two beams is 

amplified while the other is deamplified, depending on the sign of r. This optical 

beam amplification allows us to construct the unidirectional ring oscillator with 

photorefractive gain [3.5] in which the nonlinear phase shift due to the non-zero 

value of r' is the origin of the frequency shift of the oscillating field inside the ring 

cavity [3.55]. The solutions for the case of contradirectional two-beam coupling have 

also been solved [3.56,57]. It has been shown that this contradirectional two-beam 

coupling causes nonreciprocal transmittance through a photorefractive crystal and 

can be used to realize an optical diode [3.58,59]. 

3.3.3 Transient-state solution 

The transient-state solution can be obtained by solving Eqs. (2.12) and 

(3. 7) simultaneously. Some approximate analytic solutions have been obtained by 

means of either the undepleted pump approximation [3.60,61] or the perturbation 

expansion [3.62]. Here we show the latter result. 

For a lumped input case the approximate analytic solution is given by 
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l(;) ( s, t) = l(~) =f 26sarI1°) 11°) [sin¢ - e-t/.,.. sin( <P - wet)] =f ( h'sar )2 li0)11°\11°) - 11°)) x 

t 
[cos2¢- e-t/.,-. cos(2</J-wet) -1- -e-tf.,.. cos (¢1 - Wet) 

T 

where we set a:= 0, l(~) = l(D (0, 0), 

""'BC I .... I 
a= 21 T ' 0 e 

<P =<Pa+</).,., 

<Pl = 2</Ja + ¢.,., 

( 
Bsc ) 'Ir 

<Pa= Arg 2loTe - 2' 

¢.,. = Arg(Te), 

(3.12) 

(3.13a) 

(3.13b) 

(3.13c) 

(3.13d) 

(3.13e) 

(3.13/) 

(3.13g) 

in which Te,Te,We and B11c are given by Eqs.(2.13), (2.17), and (3.9). This 

perturbative solution (for 6s < 1) can be reduced to the following two asymptotic 

cases: 

l)in the diffusion dominant mechanism (1¢1 ~ 1r /2), 

l(!)(s,t) = 1(1~ =f 26asrI~0 )1&0
) (1 - e-tf.,.•) =f (6asr) 2 l~0 )1&0

) (l~o) - 1&0
)) x 

. [e-t/T"e (3 + .!._ - e-t/T"e) - 2]; (3.14) 
Te 

2) in the drift dominant mechanism ( 1¢1 ~ 0 or 1r), 



- 61 -

Equation (3.15) is valid for small angles O and an intermediate DC electric field E0 , 

and 

Eo 
aE - ---------

- Tdelo(l + En/EMe)' 
(3.16) 

where Tde,ED, and EMe are given by Eqs. (2.9a), (2.15b), and (2.25), respectively. 

We see from Eq. (3.14) that for either I~o) ~ I~o) or bs ~ 1 a single 

exponential form of the linear term in 6 determines the temporal behavior of the 

beam coupling, and its time constant Te is the same as that of the space-charge 

electric field formation [see Eqs. (2.16)]. This time dependence has been used for 

the characterization of photorefractive materials [3.63]. It is seen from Eq. (3.15) 

that for the unshifted grating with small angles O there is transient energy coupling 

between the two beams only when I~o) # I~o) and the energy transfer is always from 

the higher intensity beam to the weaker one, independently of the sign of E0 • This 

beam coupling gain becomes maximum when t ~ 1.59re and approaches zero in the 

steady state. This transient beam coupling property can be applied to the optical 

tracking filter device which will be described in Chapter 5. 

3.4 Cross-polarization beam coupling in cubic crystals 

3.4.1 Coupled-wave equations 

In this section we consider cross-polarization beam coupling resulting from the 

anisotropic nature of ~X in cubic crystals [see Table 2.1]. Since cubic crystals are 

isotropic when there is no E0 and Esc, we can to some extent simplify the coupled

wave equations in terms of the following correspondences: 

(3.17a) 

"'(ij) _ ~.:; (e(i)*. Aq~· e(j)) = "'(ij) ,, - 2 --sc 1 .u. 2 - , ' n0 c 
(3.17b) 

g (ij) - "'(ji) * 
l - 'l ' (3.17c) 
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2 A(l)A(l)* 
m1 = Io 1 2 ' 

2 A(2)A(2)* (()' ()') 
m2 = Io 1 2 cos 1 + 2 ' 

k (l) - k(2 ) k(l) - k(2 ) lk(l) I - lk(l) I 1-1,2-2, 1 -2, 

Llk, LlK = O, 

(3.17d) 

(3.17e) 

(3.17 f) 

(3.17g) 

(3.17h) 

(3.17i) 

where we identify e11
> = e~1

) = ey (i.e., the normal mode 1 is polarized linearly 

along the y axis), n0 is the background refractive index and Bsc is, for example, 

given by Eq. (3.9). We then obtain the following set of coupled-wave equations: 

dA (l) 
_1_ = - a A (1) - i w (Lln(u) A (1) + Lln(12) A (2)) 

dz 2 cos ()~ 1 c cos ()~ 1 1 1 1 

- b(u) A~1) + ,ti2) A~2))(A11> A~1)* + Al2
) A~2)* cos t?)/(I0 cos()~), 

(3.18a) 

(3.18b) 

(3.18c) 

(3.18d) 
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where rJ = 8~ + 8~. This set of coupled-wave equations is similar to those 

derived by Fischer et al. [3.64] and Yeh [3.27,30]. (But in their papers the linear 

birefringence terms .6.n}mn) are not taken into account.) The configurations relevant 

to Eqs.(3.18a) - (3.18d) (i.e., codirectional and contradirectional beam coupling) are 

depicted in Fig. 3.4. The values of .6.n}mn) and ,(mn) for various configurations for 

beam coupling in cubic crystals are given in Table 3.2. 

3.4.2 Steady-state solutions 

The exact steady-state solutions to Eqs.(3.18a) -(3.18d) for the special case 

of codirectional parallel beam coupling (i.e., (J~ = o;, a = 0, .6.n}mn) = 0, ,( 11) = 

,(22) =f O and ,(12), ,(21 ) = 0) were obtained by Fischer et al. [3.64] by means of 

the same method as in the case of scalar four-wave mixing [3.65]. The exact steady

state solutions for the special case of codirectional cross-polarization beam coupling 

(i.e., (J~ = 8~, a = 0, .6.n}mn) = O, ,(11), ,(22) = 0, and ,(12) = ,(21 ) =f O ) were 

obtained by Yeh [3.27,30]. A general case of the codirectional cross-polarization 

beam coupling case where Eo =f O (i.e., .6.n}mn) =f 0) has not been solved yet. The 

exact solutions for the case of contradirectional cross-polarization beam coupling 

(i.e., 8~ = 11" + 8~) have not yet been obtained either and only approximate solutions 

using the undepleted pump approximation (i.e., the beams A11
) and A12

) remain 

constant during the interaction in the crystal) have been reported for E0 = 0 [3.28]. 

To see qualitative behavior of the cross-polarization beam coupling in cubic 

crystals, we take the example of the third case in Table 3.2 (i.e., the codirectional 

cross-polarization beam coupling) and use the undepleted pump approximation. 

Then Eqs.(3.18a) - (3.18d) are reduced to 

dA (l) 
__ 1_= 

dz 
(3.19a) 

dA (2) __ 1 __ 

dz 
(3.19b) 
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Figure 3.4 Cross-polarization beam coupling in cubic crystals. ( a) 

Codirectional beam coupling. (b) Contradirectional beam coupling. 
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Table 3.2 Values of 6-n}mn) and ,(mn) (l, m, n - 1, 2) for various beam 

coupling configurations in cubic crystals. 

Beam Coupling 

codirectional, parallel 

ex 11< 001 >, ey II< 110 > 

er. II< 110 >, esc II< 001 > 

contradirectional, parallel 

ex II< 110 >, ey II< 110 > 

er. II< 001 >, e8c II< 001 > 

codirectional, cross-polarization 

ex II< 110 >, ey II< 001 > 

er. II< 110 >, e8c II< 110 > 

contradirectional, cross-polarization 

ex 11< 100 >, ey II< 010 > 

e,. II< 001 >, e8 c II< 001 > 

6.n}
11

) = 6-n 

6.n}22) = -2/Jf 6-n 

1
(mn) 

,(11) = /C 

,(22) = 2/3i/32,c 

6.n;12) = 6.n}21) = 0 ,(12) = ,(21) = 0 

6.nj
22

) = 1116.n ,(22) = Jt11t12,c 

6.n;12) = 6.n;21) = 0 ,(12) = 1 (21) = 0 

6-n}ll) = 6.n}22) = 0 ,(11) = 1 (22) = 0 

6.n}12) = -y'°J"i6.n ,(12) = -,v'J;,c 

6.n}21) = 6.n}12) ,(21) = -~ ,c 

6-n}ll) = 6.n}22) = 0 ,(11) = ...,(22) = 0 

6.n}12) = y'°J"i6.n ,(12) = 0f;.,c 

A (21) _ A (12) u.n1 - u.n1 

a The parameters used in this table are defined as follows: 

where 01 is an incident angle in air. 

/3, = _!_ sin o,; 11, = 1 - f3t 
no 

(l=l,2), 
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where we assume Ot = o; = O' and /3, ~ 0 (l = 1, 2), and 

a22 = A11> A12>* cos 20' /Io, 

3 
, - wnor41 = 

"I - 2c cos 0' -sc · 

The solutions to Eqs. (3.19) are given by 

A~1>(z) = {[(au - -X-)A~1\o) + a12A~2\o)]eA+-Y'z 

(3.20a) 

(3.20b) 

(3.20c) 

(3.20d) 

(3.20e) 

- [(au - A+)A~l)(o) + a12A~2\o)]eA-,Y'z}e-az/2cos8' /(.X+ - A-), 

(3.21a) 

A~2>(z) = {[a21A~1>(0) + (a22 - .X_)A~2\o)]eA+-Y'z 

- [a21A~l)(o) + (a22 - .X+)A~2)(o)]eL,y'z}e-az/2cos8' /(.X+ - A-), 

(3.21b) 

where A± = [au + a22 ± y(au - a22) 2 + 4a12a21]/2. For the initial condition of 

A~2
) (0) = 0 these solutions can be written as 

A~l)(z) = A~l\o)[(au - .X-)eA+'J'Z - (au - .X+)eL,y'z]e-az/2cos8'/(.X+ - A-), 

(3.21c) 

(3.21d) 

It is seen that the amplitudes and phases of A~1
) (z) and A~2\z) depend upon the 

input polarization condition of beam 2, "I' (therefore E0 as well) and A~1\o). This 

means that even when beam 1 is linearly polarized initially, it experiences the gain 
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and changes its polarization state (in general, elliptical polarization) when Eo =/=- 0 

during propagation in the crystal. 

3.5 Beam coupling experiments in semi-insulating GaAs 

3.5.1 Elecrooptic semiconductors as photorefractive materials 

Semi-insulating (SI) electrooptic semiconductors such as GaAs, InP, and 

CdTe have recently been considered as important photorefractive materials for the 

following reasons: 

1) high photorefractive sensitivity; 

2) infrared (semiconductor laser wavelength) operation; 

3) fast response time (mainly due to large mobilities); 

4) easy-to-use because of cubic (optically isotropic) crystals without optical 

activity; 

5) availability of large single crystals with high quality; 

6) flexible control (tailoring) of optical and electronic properties by doping; 

7) compatibility with opto-electronic integrated circuits. 

So far Fe-doped InP [3.66], Cr-doped GaAs [3.66], undoped GaAs [3.67], In

doped CdTe [3.68], and V-doped CdTe [3.69] have been experimentally confirmed 

as being photorefractive, and their photorefractive properties have been reported 

[3. 70-7 4]. Because of the importance of GaAs for opto-electronic device applications, 

several detailed studies of photorefractive GaAs have been made. These include the 

enhancement of the two-beam coupling gain by means of an applied AC electric field 

[3. 75-77] and moving fringes [3.78]. Also studied were the polarization properties of 

beam coupling [3.26,28,29,31, 79] and the picosecond photorefractive effect [3.80-

82]. Several applications using photorefractive GaAs have also been reported 

so far, which include spatial light modulation [3.50], image transfer [3.51], edge 
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enhancement and autocorrelation [3.52], updatable optical correlator [3.83], and 

infrared predetection dynamic range compression [3.84]. 

Moreover, the photorefractive effect in SI GaAs offers a non-destructive method 

of measuring electronic properties (e.g., deep level densities and signs of dominant 

photocarriers) of SI GaAs substrates that have been used for important electronic 

and opto-electronic devices. Recently this idea has been applied successfully to 

semiconductor wafer imaging [3.85]. In the following two subsections we show our 

experiment of the photorefractive beam coupling in SI undoped and Cr-doped GaAs 

[3.54] for the above purpose. 

3.5.2 Photorefractive species in semi-insulating GaAs 

Deep levels (near the center of the band gap) in SI bulk GaAs have been studied 

extensively because these levels are responsible for obtaining high resistivity ( of the 

order of 107 -108 0-cm) GaAs substrates for ultrafast LSI circuits (3.86]. Although 

the physical origin of these deep levels has not been clarified yet, EL2 (believed 

to be an antisite native defect involving arsenic on gallium sites) and Cr2+ /Cr3+ 

(substitution of gallium sites by chromium) have been well known as the dominant 

deep levels and studied extensively [3.86,87] (see Fig. 3.5). 

EL2 has a dominant one valence electron state EL2° which acts as a neutral 

donor in undoped SI GaAs and is responsible for electron transport following the 

reaction: 

(3.22a) 

Cr3+ acts as .a neutral acceptor in Cr-doped SI GaAs and is responsible for hole 

transport follwing the reaction: 

Cr3+ + hv -+ Cr2+ + h +. (3.22b) 
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c, 1 • ? A= 
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Figure 3.5 Electron energy diagram of semi-insulating GaAs showing the 

shallow No and NA levels and the deep traps Cr2+ and EL2, along with the 

charge state of Cr in GaAs (after Ref. [3.87]). 
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In addition to the above two reactions it is also possible to emit holes (electrons) 

from the EL2+ (Cr2+) level to the valence (conduction) band (see Fig. 3.6). But 

the photoionization cross-sections of these processes are much smaller than those 

of the processes given by Eqs. (3.22a) and (3.22b) at the wavelength of our interest 

(.X0 = 1.09µm) [3.86,88]. 

In Cr-doped SI GaAs the EL2 deep level is still present. In the ground 

state (T=O) Ncrs+ (the number density of the acceptor level Cr3+) of NEL2o (the 

number density of the donor level EL2°) electrons in a unit volume drop from the 

donor level EL2° to the acceptor level Cr3+ when N EL2o > N crs+, giving a groud

state configuration in which the EL2° level is fully ionized into the EL2+ level. 

Likewise, all of NEL2o electrons drop from the EL2° level to the Cr3+ level when 

NEL2o <Ncrs+, giving a ground-state configuration in which the Cr3+ level is fully 

ionized into the Cr2+ level. Th~e processes can be expressed by 

(3.23) 

At T,e: O, however, the electrons will be redistributed among all the deep levels. This 

may cause the simultaneous electron-hole transport (i.e., mixed photoconductivity), 

which has been observed in Cr-doped SI GaAs by Hall effect measurements [3.86] 

and photoconductivity spectra [3.88]. 

Because the above two dominant deep level species are photoactive, it is 

reasonable to consider these species as photorefractive ones and to apply the band 

transport model described in Chapter 2 to the photorefractive effect in SI GaAs. 

In this case the one species and one type of carrier model is used for undoped SI 

GaAs, while the two species and two types of carriers model is used for Cr-doped 

SI GaAs. Various photorefractive properties ( e.g., the space-charge electric fields 

and the characteristic time constants) and the beam coupling properties (e.g., the 
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Figure 3.6 Photoionization of carriers form the EL2 and Cr deep levels in 

SI GaAs. The parameters shown above are photoionization cross-sections at 

various deep levels. 
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beam coupling gain including its sign) can be calculated and optimized from these 

models. In turn, the optical and electronic parameters of SI GaAs (e.g., the deep 

level densities and sign of dominant photocarriers) can be estimated from the beam 

coupling experiment described below. 

3.5.3 Identification of the signs of dominant photocarriers and 

deep level densities by scalar two-beam coupling 

a) Absorption Spectra 

In the experiment we used 5 mmx5 mmx5 mm undoped (p ~ 4 x 107O-cm) 

and Cr-doped (p ~ 1 x 108O-cm and Cr doping of 0.2 - 0.5 p.p.m.) GaAs grown 

by the liquid encapsulated Czochralski (LEC) method [3.89]. The combination 

of Au{250A)/AuGe(25A) was deposited onto both {001) planes for obtaining 

electrodes with good ohmic contact and both (il0) planes were polished to have 

optical flat surfaces. The absorption coefficient o:( cm- 1) was obtained from the 

following formula which includes multiple (incoherent) Fresnel reflections: 

(3.24) 

where Tis the measured transmittance and R[= (1-n0 ) 2 /(l+n0 ) 2 ] is the calculated 

reflectance in which no is given by the experimental dispersion formula for GaAs 

[3.90] 

n0 (hv) = {7.10 + 3.78[1- 0.180(hv) 2 ]- 1} ½. (3.25) 

The absorption spectra of the two SI GaAs samples at room temperature are shown 

in Fig. 3. 7. Because photoionization from the Cr3+ level is added to that from the 

EL2° level, o: of the Cr-doped SI GaAs is larger than that of the undoped SI GaAs. 

The deep level densities and o:'s are related as 

for undoped GaAs, 
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Figure 3. '1 Absorption spectra of the undoped and Cr-doped GaAs samples 

at room temperature. 
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and 

for Cr doped GaAs, 

where Se, Sp, sh, and Sn are the photoionization cross-sections from various deep 

levels (see Fig. 3.6), o:0 is due to some residual absorption (e.g., scattering and 

absorption due to nonphotorefractive species), and the above approximations are 

made by assuming that N EL20 > N EL2+ , N Cr3+ > N cr:a+, Se > Sp, and sh > Sn 

at Ao = 1.09 µm. We note that N EL20, N EL2+ , N Cr3+ and N cr:a+ correspond to 

Nn - Ni), Ni), NA - NA and NA used in Chapter 2, respectively. 

Using Se= 8.83 x 1O- 17cm2 [3.91] and sh= 8.4 x 1O- 17cm2 [3.92], together 

with o: ( undoped GaAs) = 1.286 cm- 1 and o: ( Cr-doped GaAs) = 1. 734 cm - 1 at 

Ao = 1.09 µm taken from Fig. 3. 7, we obtain the following number densities in the 

dark: 

NEL20 (undopedGaAs) = 1.46 x 1016 cm-3
, (3.26a) 

and 

N cr3+ ( Cr doped GaAs) 

{ 
5.30 x 1015 cm-3 

= 16 2.06 X 10 - 1.O5NEL20 
if NEL20 (CrdopedGaAs) = 1.4 x 1016 cm-3 ; 

if N EL20 ( Cr doped GaAs) =I= N EL2o ( undoped GaAs). 

(3.26b) 

b) Linear Electrooptic Coefficient 

A linear ~lectrooptic coefficient r41 of GaAs was measured by an ellipsometric 

method shown in Fig. 3.8. The value of r41 is given in this setup by 

(3.27) 
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Figure 3.8 Experimental setup for an ellipsometric measurement of a linear 

electrooptic coefficient r41 of SI GaAs. An argon-ion laser of>.= 1.09 µm was 

used as a light source. 
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where ¢ is an analyzer angle from the -45° setting, d is the crystal width between 

both (001) planes, L is the crystal length between both (IlO) planes and V is the 

applied voltage. It was found that at >.0 = 1.09 µm 

r41 = rl1(1ow frequency)~ 1.16 x 10-10 cm/V, 

which is consistent with the values measured previously [3.91,93]. 

c) Measurement of the Two-beam Coupling Gain 

The scalar two-beam coupling configuration was used in the experiment (see 

Fig. 3.9). The exact solutions which describe the scalar two-beam coupling process 

are given by Eqs. (3.lla) - (3.lld). If Ii(O)~ I2(O), i.e., the undepleted pump 

approximation is satisfied, the two-beam coupling gain coefficient obtained from 

Eqs. (3.lla) - (3.lld) is well approximated by 

r=.!.I [Ii(o)I2(L)] 
L n Ii(L) I2(O) 

~ .!_ In [ I2(L) with I1 (0) l 
L I2(L) without 11 (0) . 

(3.28) 

This relation is particularly useful for the measurement of r since possible errors 

introduced in the measurement of I1 at both z = 0 and L can be avoided. The two

beam coupling gain coefficient can also be expressed by the material parameters 

[see Eq. (3.8)] and is given in this experimental setup by 

3 

l 
wn0r41 _ 

r[= 2Re(,) = - (JI Re(:=lsc), 
ccos 

(3.29) 

where the inclination factor cos fJ' ( = J 1 - sin2 fJ / n~) is included in this expression 

so that Eq. (3.29) is identical to Eq. (3.28), and 

_ Eqh/(1 + f3hhw/shlo) - Eqe/(1 + f3ehw/seio) ... -
--sc - 1 + Eqe/(En - iEo) + Eqh/(En + iEo) 

for the case of two species and two types of carriers transport [see Eq. (2.20)]. It 
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Figure 3.9 Experimental setup for scalar two-beam coupling in SI GaAs. The 

input beams are linearly polarized along the < 110 > crystallographic axis. 

The space-charge field is created along the < 001 > crystallographic axis. 
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is thus possible to estimate both the sign of dominant potocarriers and the deep 

level densities by measuring the sign and the absolute value of the experimental r, 

respectively, since the other parameters such as r 41 , N EL2o, and N crs+ are measured 

separately. 

In the experiment we chose I1 (0) = 0.831W /cm2 and I2 (0) = 0.054W /cm2 so 

that the undepleted pump approximation [Ii(O) ~ I2 (0)] was valid. As we will 

see later in this section, the effect of the dark conductivity at room temperature is 

negligible, i.e., f3eliw, f3bliw ~ seio, shio with this total intensity Io(= I1 + I2). In 

order to avoid beam walk off inside the crystal, the diameter of beam 1 was chosen 

to cover the whole crystal while that of beam 2 was chosen to be much smaller 

than that of beam 1. This procedure was legitimate because the last relation in Eq. 

(3.28) was used in the experiment. 

d) Sign of the Dominant Photocarriers and Deep Level Densities 

The sign of r can be determined by whether beam 2 at z = L is amplified or 

deamplified. The sign of r is also determined by the signs of r41 and Re(2ac) [see 

Eq. (3.29)]. We therefore see that, if r41 > 0, then r > 0 ( < 0) when electrons 

(holes) are major carriers, leading to the amplification (deamplification) of I2 (L). 

In the experiment it was found that electrons are dominant in both undoped and 

Cr-doped SI GaAs samples. 

Figures 3.10 and 3.11 show the experimental results of the r dependence on 

grating period in the undoped and Cr-doped SI GaAs samples. The dotted lines 

correspond to the theoretical least square fits with the experimental data. The 

relevant materials constants used in the theoretical fits are shown in Table 3.3. The 

estimated deep level densities at room temperature are shown in Table 3.4. In Fig. 

3.11 and Table 3.3 two possible cases (i.e., that l)the number densities of EL2° are 
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Figure 3.10 Two-beam coupling gain coefficient at room temperature versus 

grating period in undoped SI GaAs. The experiment was performed at 

A = 1.09 µm and with E0 = 0. The dotted curve corresponds to the least 

square fit with the experimental data when NELo = 1.46 x 1016 cm-3 • The 

standard deviation of the fit is 0.015 . . 
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Figure 3.11 Two-beam coupling gain coefficient at room temperature versus 

grating period in Cr-doped SI GaAs. The experiment was performed at 

.X = 1.og µm and with E0 = 0. The dotted curves correspond to the lea.st 

square fits with the experimental data when (a) NEL2o = 1.46 x 1016 cm-3 and 

(b) NEL2 = NEL20 + NEL2+ = 1.58 x 1016 cm-3 are assumed. The standard 

deviations of the fits are ( a) 0.027 and (b) 0.03. 
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Table 3.3 Relevant material constants used for the theoretical curves in Figs. 

3.10 and 3.11. 

Material Constants Values References 

Es 12.9 [3.67] 

µe 5800cm2 /V • s [3.67] 

µh 400cm2 /V · s [3.86] 

Se 1.0 x 10-16cm2 [3.91] 

.ch. 0.8 x 10-17 cm2 [3.92] -.. 
'Ye 2 x 10-8cm3 / s [3.86] 

'Yb 2 x 10-8cm3 /s [3.86] 
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Table 3.4 Estimated deep level densities in the undoped and Cr-doped SI 

GaAs samples at room temperature. 

The undoped SI GaAs sample 

NEL2o = 1.46 x 1016cm-3 

NEL2+ = 1.22 x 1015cm- 3 

The Cr - doped SI GaAs sample 

Case 1 [where NEL2+ (GaAs:Cr) = NEL2+ (undoped GaAS) = 1.46x 1016cm- 3
] 

N crH = 5.3 X 1015cm-3 

NcrH < 2.65 X 1014cm-3 

NEL2 + = 2.92 x 1015cm-3 

Case 2 [where NEL2(GaAs:Cr) - NEL20 + NEL2+ 

N EL2 ( undoped GaAs)] 

Ncrs+ = 8.17 x 1015cm-3 

NcrH < 4.09 X 1014cm-3 

NEL2+ = 3.95 x 1015cm-3 
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the same and 2)the total number densities of EL2 are the same in both samples) are 

considered for the estimation of deep level densities in the Cr-doped sample [also 

see Eq. (3.26b)]. 

It is seen from Fig. 3.10 that the general tendency of r as a function of 

grating period and the optimum grating period at the maximum r (i.e., the Debye 

screening length lse given by Eq. (2.10a), also see Fig. 2.3) are consistent with 

the result reported previously [3.67]. In Fig. 3.11 we also observe the similar 

dependence of r on grating period. But it is seen that lse of the Cr-doped 

sample is shorter than that of the undoped sample. This may be attributed to 

the fact that, as is seen in Table 3.4, NEL2 + in the Cr-doped sample is larger 

than that in the undoped sample due to the reaction given by Eq. (3.23). This 

leads to the shorter lse in the Cr-doped sample. (Note that lse ex 1/ ✓NEL2+ 

in this case.) From Table 3.4 we see that the estimated values for the undoped 

sample (i.e., NEL2o = 1.46 x 1016cm-3 ~ NEL2+ = 1.22 x 1015cm-3 so that the 

sample tends to be reduced) are consistent with the previous observations [3.67,86]. 

We also see from Table 3.4 that the estimated values for the Cr-doped sample 

NEL20 > Ncrs+ > NEL2+ ~ Neri+ imply the dominant electron transport. This is 

consistent with the result of the sign of the dominant carriers. 

The response time for the rise and decay in two-beam coupling was found to 

be shorter than 1 msec. in both samples when Io= 0.9 W /cm2. We note that the 

measurement of the response time in the two-beam coupling and/or the four-wave 

mixing configuration offers another method for the estimation of the deep level 

densities [3.85]. 

Finally, two comments on this experiment should be stressed. First, it is 

relatively difficult to find the optimum grating period or lse that gives information 

on the number densities of photorefractive species. This is because the optimum 

grating period in this case is less than 1 µm, which is difficult to achieve in usual 
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experimental situations. This limitation may be obviated by putting a sample in an 

index-matching liquid so as to obtain shorter grating periods. Second, in our Cr

doped SI GaAs sample we were unable to observe either the significant simultaneous 

transport or the hole-dominant transport at room temperature. However, it may 

still be possible to obtain these transport phenomena with this sample by changing 

temperatures, since the temperature change causes a redistribution of electrons and 

holes among the EL2 and Cr deep levels at thermal equilibrium. 

3.5.4 Enhancement of the two-beam coupling gain 

One of the most important applications in photorefractive materials is the 

generation of self-pumped phase conjugation [3.65]. In particular, photorefractive 

semiconductors are attractive for this purpose because of fast responses and infrared 

sensitivities. This self-pumping operation usually requires the two-beam coupling 

gain fl larger than unity [3.65]. Table 3.5 shows the two-beam coupling gain 

coefficients of BaTi03 , SBN, and (undoped and Cr-doped) SI GaAs at several 

wavelengths. It is seen that the net gain coefficients !fl - a of SI GaAs are negative 

because of the small electrooptic coefficient r 41 and a relatively large absorption 

at operating wavelengths. This means that the self-pumping operation cannot be 

realized in SI GaAs, nor in other photorefractive semiconductor materials. In order 

to overcome this problem, several methods (such as the DC electric field, AC electric 

field and moving fringe methods) of enhancing the two-beam coupling gain should 

be employed. (The physical reasons for these enhancement methods have already 

been described in Chapter 2.) 

Figure 3.12 shows the theoretical results of r of the undoped SI GaAs as a 

function of grating period when the enhancement using (a) the DC electric field, 

(b) the AC electric field and (c) the moving fringe is made. Equations (2.14), (2.24), 
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Table 3.5 Two-beam coupling gain coefficients of several photorefractive 

materialsa,b. 

Material .X (nm) 1r1 (cm-r) o: (cm- 1) )fl - o: (cm-1) 

BaTiOs 

(Io= lO0mW /cm2
) 

SBN: 75 

(Io= l00mW /cm2
) 

undoped SI GaAs 

(Io= 900mW /cm2) 

Cr-doped SI GaAs 

(Io= 900mW /cm2
) 

514.5 

840 

1090 

514.5 

840 

1090 

1090 

1090 

4.0 

1.8 

1.0 

6.0 

0.5 

~0 

0.3 

0.37 

3.0 

0.2 

~0 

0.8 

~0 

~0 

1.2 

1.8 

a The data for BaTiO3 and SNB:75 are taken from Ref.[3.62]. 

b All the data are measured at room temperature. 

1.0 

1.6 

1.0 

5.2 

0.5 

~0 

-0.9 

-1.43 
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Figure 3.12 Two-beam coupling gain coefficient f of undoped SI GaAs versus 

grating period at T=300K and ,\ = 1.09 µm. (a) The DC electric field (Eo) 

method. f O denotes the two-beam coupling gain coefficient when Bae = Eqe• 
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Figure 3.12 (Continued.) (b) The AC electric field method when the AC 

rectangular electric field (±E0 ) is applied. (c) The moving fringe method, 

where the optimum fringe velocity is used for each grating period. r o denotes 

the two-beam coupling gain coefficient when Bsc = Eqe· 
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and (2.28) are used in the calculation together with the relevant material parameters 

shown in Tables 3.3 and 3.4. In Fig. 3.12(a) it is seen that r increases as the DC 

electric field increases, but its enhancement effect is less efficient than the other 

two methods. This is so because the application of the DC electric field induces 

additional phase shifts in the space-charge field so that the phase shift deviates 

from ±1r /2. Moreover in long transport length materials such as GaAs and BSO 

the actual DC electric field inside the crystal tends to be lower than the applied 

DC electric field due to the migration of charge carriers to the electrodes. (We note 

that this problem does not occur in the AC electric field method.) In Fig. 3.12(b) 

the significant enhancement of r is seen because the space-charge field approaches 

Eqe by this method. In Fig. 3.12(c) we also see the enhancement of r for the same 

reason as above. With both the AC electric field method and the moving fringe 

method r can exceed 1 cm- 1 , leading possibly to the generation of self-pumped 

phase conjugation. 

Figure 3.13 shows the response time of the space-charge field as a function of 

grating period for E0 =0, 2, 5 and 8 kV /cm. We see the strong dependence on 

grating period when Eo = 0. This is typical in long drift length materials [3.95]. 

When E0 =j:. O, the response time becomes less sensitive to grating period because 

the drift transport becomes dominant so that electrons move many grating periods 

and the effect of the grating period is unimportant. We also note that when Eo =j:. 0 

the response time is still of the order of 1 msec at 10 = 100 mW/ cm2 . This is at 

least 100 times faster than the response time in ferroelectric oxides such as BaTiO3 

and SBN. 

3.5.5 Temperature dependence of the two-beam coupling gain 

Because of narrow band gaps and large mobilities in semiconductors, it is 
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Figure 3.13 Response time of the space-charge field versus grating period in 

undoped SI GaAs for DC electric fields of E 0 =0, 2, 5 and 8 kV /cm at T=300K 

and A= 1.09 µm when the intensity 10 is 100 mW /cm2 and Tde = 4 x 10-8 sec. 
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expected that the temperature dependence of the space-charge field strength 

(and therefore the two-beam coupling gain) is significant. An experiment of the 

temperature and intensity dependence of the two-beam coupling gain in Cr-doped SI 

GaAs was reported previously by Cheng and Partovi [3.73]. They observed a strong 

temperature dependence of the gain over a relatively narrow range of temperature 

(295K-386K) and concluded that this dependence could be attributed to the 

competing effects of the dark- and photo-conductivities. In order to understand 

this effect better and to optimize two-beam coupling conditions, in this subsection 

we discuss the temperature dependence of the relevant photorefractive parameters 

in SI GaAs, especially the mobility (µe), the recombination coefficient be), the 

number density of EL2 (NEL2+) and the thermal ionization rate (.Be) [3.54]. The 

explicit temperature dependence of these relevant photorefractive parameters is 

discussed in Appendix A. 

Numerical evaluations of the temperature dependence of the two-beam coupling 

gain in undoped SI GaAs are made by using Eqs.(A2), (A4), (A6) and (A12) given in 

Appendix A. Figure 3.14 shows the temperature dependence of the relevant material 

parameters. It is seen that .Be/ Se is very sensitive to the temperature change ( about 

1011 changes from T=200K to T=400K), while the other parameters change more 

or less by a factor of 2. We thus expect that the competing effect of the dark

and photo-conductivities, related to the parameter .Be/ Se, plays a major role in the 

temperature dependence of the two-beam coupling gain. 

Figure 3.15 shows the calculated temperature dependence of the two-beam 

coupling gain coefficient in undoped SI GaAs (a) without enhancement (Eo=0) and 

with (b) the DC electric field, (c) the AC electric field and (d) the moving fringe. 

It is seen that the temperature dependence becomes significant in all the cases as 

the input intensity decreases and the temperature increases in the range T>300K. 
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Figure 3.14 Calculated temperature dependence of the relevant material 

parameters. All the values are normalized by those at T=300K, i.e., NEL2 + = 

1.22 x 1015 cm-3 , "Ye = 2 x 10-3 cm3 /sec, µe = 5800 cm2 /V.sec, f3e/ Se = 

3 x 1014 photons/cm2 .sec, see Table 3.3. 
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Figure 3.15 Calculated temperature dependence of the two-beam coupling 

gain coefficient in undoped SI GaAs (a) without enhancement (Eo=0) and (b) 

with the DC electric field for lo=l, 10 and 100 mW /cm2 • In (a) and (b) grating 

periods of 0.8 and 3.5µm are considered, respectively. 
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Figure 3.15 (Continued.) Calculated temperature dependence of the 

two-beam coupling gain coefficient in undoped SI GaAs with (c) the AC 

(rectangu1ar) electric field, and (d) the moving fringe for lo=l, 10 and 100 

(mW /cm2). In (c) and (d) a grating period of 3.5 µmis considered with the 

optimum fringe velocity for (d). 
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At higher intensities (Io = 100 mW /cm2) the maximum gain coefficient is obtained 

at about T = 350K. 

The general behavior of the gain coefficient can be explained as follows. In the 

diffusion dominant case (Eo=O), it is found that 

{3.31) 

where a is constant, and En and EtT are the deep level energy of the neutral deep 

level ( e.g., the EL2° level) and the thermal activation energy of the capture cross

section of the ionized deep level (e.g., the EL2+ level), respectively (see AppendLx 

A). From Eq.(3.31) we see that r oc T for lower T [<(En +EtT)/kB] while r oc 1/T 

for higher T [>(En+ EtT)/kB], This explains the behavior seen in Fig. 3.15{a). In 

the drift dominant case, it is found that 

r ex Eqe 

1 + f3enw / Selo 
T~ 

oc ---------1 + aT2e-(Eo+E.,)/ksT' 
(3.32) 

where K is between O and 2. From Eq. (3.32) we see that r oc T~ for lower T 

[<(En+ EtT)/kB] and r oc T~-2 for higher T [>(En+ EtT)/kB]· This behavior is 

seen in Figs. 3.15(b) - 3.15(d). 

Figure 16 shows a comparison of our model with Cheng and Partovi's 

experiment [3.75] using Cr-doped SI GaAs. Since no specific value of material 

parameters is available in their paper, Eq. (3.31) is used to fit their experimental 

data. An excellent fit is seen in this figure when En + EtT = 0.713 eV and 

a detailed comparison is not appropriate in this case, it seems consistent with our 
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Figure 3.16 Comparison of the present model with the experimental data 

( o, 6., •) of the two-beam coupling gain coefficient in Cr-doped SI GaAs. In the 

figure a normalized gain coefficient (normalized by the saturated value of the 

gain coefficient at T=300K) is used. The solid curves are the theoretical curves, 

calculated from Eq.(3.31) with 1iwf3e/ seio=0.9, 0.09 and 0.013 at T=300K 

which correspond to the experimental conditions of Io=l.4, 14 and 98 mW /cm2 , 

respectively. In the experiment SI GaAs doped with a Cr concentration in the 

high 1015• cm-3 and O'd ~ 10-8 (Ocm)- 1 was used. Also, a grating period of 

about 1.3µm without an applied electric field (Eo=0) was used at .X = 1.15 µm. 

(Experimental data are taken from Ref. [3.37].) 
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model when Se = 3 x 10-15 cm2 given by Bylsma et al. [3.98] (instead of the value 

of Se given in Table 3.3) is assumed. In this case we obtain ED = 0.46 eV (from 

the valence band) when the hole transport is assumed and Ea = 0.25 eV is used 

(see Appendix A). This value is consistent with the value reported so far (see Fig. 

3.5). Therefore we speculate the possible hole transport in their sample. 

In Fig. 3.17 we show the calculated temperature dependence of the time 

constants given by Eqs. (2.9) for two different intensities Io=l and 100 mW /cm2 • 

Figure 3.18 illustrates the calculated temperature dependence of the response time 

of the space-charge field in undoped SI GaAs for Eo=0 and 8 kV /cm. It is seen that 

the response time increases as T increases until T~ 300K when !0 =100 mW /cm2 

and T~ 360K when Io=l mW /cm2 , and then it decreases rapidly. This is because 

the response time is expressed as Tde/(roe,T"Ee,Toe,TJe) [see Eq. {2.17a)] and its 

behavior is mainly determined by Tde, which is inversely proportional to the dark 

conductivity O'd, and thus decreases rapidly as T increases in the range (T> 300K). 

In this subsection, we have discussed the temperature dependence of the 

two-beam coupling gain coefficient and the response time. It is found from 

the numerical results that it is better to operate undoped SI GaAs at higher 

temperatures (T~ 350K) in order to obtain higher gain coefficient and faster 

response time. This improvement is especially significant when the input intensity 

is low (Io < 100 mW /cm2). This low intensity input occurs when long wavelength 

semiconductor lasers are used for this purpose. We have also found that, although 

semiconductors have narrower bandgaps and shallower deep levels (because of the 

infrared response) than those of ferroelectric oxides, such as BaTiO3 and SBN, the . 
effect of temperature is less significant than that in the ferroelectric oxides. The 

main reason is as follows: 
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Figure 3.17 Calculated temperature dependence of various time constants 

defined by Eqs.(2.9} for (a) 10 =1 and (b} 100 mW/cm2 • A DC electric field E0 

of 8 kV /cm and grating period of 3.5 µmare considered for both cases. 
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Figure 3.18 Calculated temperature dependence of the response time of the 

space-charge field in undoped SI GaAs for DC electric fields of (a) 0 and (b) 

8 kV/ cm: The grating periods are ( a) 0.8 µm and (b) 3.5 µm, respectively. 

Three intensities of 10 =1, 10 and 100 mW /cm2 are considered. 
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The parameter f3e/ Se is rewritten as 

At room temperature O'd = 10-8 (0cm)- 1 for undoped SI GaAs and 10- 12 (0cm)- 1 

for BaTiOs, Nt/(No - Nt) ~ 10- 1 for both materials, and ,e/(µese) = 3 x 

104 V /cm2 for undoped SI GaAs and 1011 - 1012 V /cm2 for BaTi03 • Because 

of a large difference of the values of ,e/(µese) between these two materials, the 

competing effect of the dark- and photo-conductivities is much more significant in 

BaTi03 than in undoped SI GaAs. (Note that since DC dielectric constants € 8 

of BaTi03 and SBN are strongly dependent on temperature in the range of our 

interest, this effect should also be taken into account for these materials.) Finally 

we speculate that the strong temperature dependence of the two-beam coupling gain 

( even a change of its sign at some temperature) may be seen in Cr-doped SI GaAs 

that has the simultaneous electron and hole transport. This effect can be modeled 

by incorporating the temperature dependence of N EL20 /N EL2+ and N cr2+ /N Cr3 + 

together with the consideration of the charge neutrality condition between the EL2 

and Cr deep levels. 



-100 -

APPENDIX 

A 

Temperature Dependence of 
Photorefractive Parameters 

Look [3.86] discussed the temperature dependence of material constants in SI 

GaAs in order to understand electrical properties of SI GaAs. In what follows we 

derive the temperature dependence of photorefractive parameters according to his 

treatment. 

a) Mobility: µe 

From Matthiessen's approximation [3.86] the temperature dependence of the 

mobility is expressed by 

(Al) 

where A and Bare constants. In the right-hand side of Eq. (Al) the dependence of 

T-3/2 comes from the ionized impurity scattering at low temperatures (below 77K), 

while the dependence of Tn comes from the lattice scattering at high temperatures 

(above 77K) where n ~ 3/2 [3.94]. By using the fact that the peak of µe occurs 

around T=125K in SI GaAs [3.86] and µe=5800 cm2 /V.sec at T=300K (see Table 

3.3), we obtain the following functional form of µe: 

3.232 X 107 

µe = T3/2 + (125)3T-3/2 cm2 /V .sec, (A2) 

where Tis m~asured in K. 

b) Recombination coefficient: '"Ye 

The recombination coefficient '"Ye can be rewritten as 

(A3) 



- 101 -

where an is the capture cross-section of the EL2+ level for electrons and Vth ( = 

y'8kBT/1rm*) is the mean thermal velocity of electrons. By allowing an to 

be "thermally activated", i.e., O"n (T) = O"n ( oo )e-E0.fk5 T, where Eu=0.07 e V for 

undoped SI GaAs and 0.25 eV for Cr-doped SI GaAs [3.86], we have 

(A4) 

where we use Eu=0.07 eV and "le= 2 x 10-a cm3 /sec at T=300K (see Table 3.3). 

c) Number density of EL2+ in the dark: NEL2+ (Io=0) 

Since EL2 is considered as an impurity donor, NEL2+ is obtained by means 

of the usual theoretical treatment seen in basic solid-state physics textbooks, i.e., 

by considering the Fermi-Dirac statistics or "the so-called maximum probability 

method" [3.86]. The result is given by 

NEL2+ = NEL2 - NEL20 

_ N _ NEL2 
- EL2 1 + (go/gi)e(Ep-Eo)/k5T 

_ NEL2 
- 1 + (gif go)e(Eo-Ep)/kBT' (AS) 

where go and g1 are the degeneracy factors for the EL2+ and EL2° levels, 

respectively, and EF and En are the Fermi energy and the energy of the EL2° 

level, respectively, measured from the conduction band. The value of gif go in Eq. 

(AS) is 2 because of the two spin states at the EL2° level [3.86]. The temperature 

dependence of the energy En is approximated by En = 0.76 - 2.5 x 10-4T (eV) 

for SI GaAs [3.96], but this temperature dependence is negligible in the range of 

our interest ( 200K<T<400K). So we assume that En and EF are constant in 

200k<T<400K. The energy difference EF - En at room temperature is found by 

using Eq.(AS) together with the data of NEL20 and NEL2+ at T=300K (see Table 

3 .4). The result is 

(A6) 
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where NEL2 = 1.704 x 1016 cm- 3 . 

d) Thermal ionization rate: f3e 

At thermal equilibrium in the dark, Eq. (2.2a) is written as 

8NEL2+ at = 0 = f3e(N EL2 - NEL2+) - ,enNEL2+. 

Thus 

NEL2 
NEL2+ = 1 + n,e/ f3e. 

(A1) 

(AB) 

We neglect the recombination of electrons· in the conduction band with holes 

in the valence band so that n is thermally excited from the EL2° level to the 

conduction band. We also assume that the Fermi energy is larger than kB T, which 

is appropriate in SI GaAs. Then it is easy to show that 

(A9) 

where Ne= 2(21rm*kBT)312/h3 . Substitution of Eq. (A9) into Eq. (A8) yields to 

N NEL2 
EL2+ = 1 + (Nc,e/ f3e)e-Ep/ksT. (AlO) 

Comparison of Eq.(Al0) with Eq.(AS) immediately gives 

(All) 

where C is constant. Using the fact that the dark conductivity O'd = 1 x 

10-8 (Ocm)- 1 at room temperature and f3e/se = ud[se(NEL2 - NEL2+ )rReeµe]- 1 

at thermal eq\lilibrium in the dark, we obtain 

nwf3e = 5 X 107T 2e-0·83/ksT mW/cm2 t \ 1 09 a "'= . µm, 
Se 

(A12) 

where Se is assumed to be constant in the range of our interest (200K < T < 

400K) and TRe = l/(,eNEL2+) = 3 X 10-s sec. at T=300K is used. When 
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f3e = selo/nw, i.e., the number of photoexcited electrons per unit time is the 

same as that of thermally excited electrons per unit time, it is found to be 

I0 =3 x 1014 photons/ cm2 .sec = 0.06 mW/ cm2 at A = 1.09 µm at room temperature. 

For BaTi03, using Nn = 1017 - 1018 cm-3, NA = 2 x 1016 cm-3, ,e = 

5 x 10-8 cm3 /sec, Se = 10-19 - 10-18 cm2 and ud = 1.3 x 10-12 sec [3.97], we 

find Io = 2 x 1015 - 2 x 1017 photons/ cm2 .sec = 0.8-80 mW/ cm2 at A = 0.5 µm 

at room temperature. 
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CHAPTER 

FOUR 

Four-wave Mixing 
in Photorefractive Crystals 

Generation of phase-conjugate waves by four-wave mixing in photorefractive 

crystals has been studied extensively in the pa.st. The main interest is in real-time 

holographic applications which include distortion correction and real-time optical 

information processing [4.1]. In photorefractive crystals with large nonlinearities, 

self-pumped generation of phase-conjugate waves without external pump beams can 

take place [4.2]. This unique property has led to novel phenomena and applications 

[4.3]. In this chapter four-wave mixing for scalar and vector wavefront reversal is 

described briefly in terms of nonlinear polarizations. Next the properties of self

pumped PCM's (SPPCM's) are described. Several SPPCM geometries are shown. 

The phase shifts of conjugate waves from a SPPCM, one of the most interesting 

properties of SPPCM's, are also discussed theoretically and experimentally. 

4.2 Four-wave mixing for wavefront reversal 

4.2.1 Nonlinear polarization 

Let us consider the basic four-wave mixing geometry shown in Fig. 4.1. We 

take the four waves E 1 , ••• , E 4 as follows: 

• 2 

Ej(r,t) = ½ I:eY)A;-1\r)ilk;;>.r-wt] +c.c. (j = 1,2,3,4), (4.1) 
l=l 

where e;-1) is the lth eigen polarization vector of the Ph wave, k1 = -k2, k3 = -k4, 
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Figure 4.1 Schematic of the four-wave mixing in a nonlinear medium. A1 and 

A2 are pump waves, As is a conjugate wave, and A4 is an input wave. 
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and a degenerate case (i.e., W1 = w2 = w3 = w4 = w) is considered. In isotropic 

media the third-order nonlinear polarization PNL relevant to the generation of the 

conjugate wave E 3 ( ex E4) can be written as [4.4] 

where A, B, and C are coefficients depending on the type of nonlinear medium and 

the geometry. 

Equation ( 4.2) consists of a superposition of three gratings. The first two 

brackets, (E1 · E 4) and (E2 · E 4), denote static gratings that scatter off E 2 and E 1, 

respectively, to generate the conjugate wave Es. In this case the polarization state 

of E 4 must have a nonzero overlap with those of either E 1 or E 2 to keep these terms 

meaningful. This requires a special choice of the pump-probe polarization. We note 

that these two gratings are analogous to those in conventional holography [4.5,6] 

and give scalar phase conjugation. On the other hand, the third bracket, (E1 • E 2 ), 

in Eq. (4.2) denotes a moving grating at 2w and has a nonzero value unless the 

two pump waves are either orthogonally linearly polarized or co-circularly polarized. 

Since this condition is independent of the polarization state of E 4 , the third bracket 

gives vector phase conjugation. We note that this grating has no holographic analog 

and is inherent to the third-order nonlinear optical effect. 

4.2.2 Scalar wavefront reversal 

In photorefractive crystals only the first two terms in Eq. (4.2) are important, 

since the photorefracitve gratings result from the second-order nonlinear effect (i.e., 

the Pockels effect). (We note that the quadratic electrooptic effect is not considered 

in this thesis. See Section 2.3 in Chapter 2). In this case the (photorefractive) 

nonlinear susceptibility tensor .:lx can be expressed as 
. 2 (l) (l)* (l) (l)* (l) (l)* 

A~_ 1 '°'['714A1 A4 +'123 A2 A3 :U)~ ik~ 1>,r ux - - ~ I - 8 c1Ure 471" o 
l=l 
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where Io is the total intensity, 11t.> = (e?)* · e!f)), UI - [e : ('; : e 8 c1) : €], B!~)I 

is given, for example, by Eq. (3.9) with K = lkf ') I, and kf l) = ki') - k~l) = 

k (l) - k(l) k(l) - k(l) - k(l) - k(l) - k(l) k(l) - 2k(l) d k(l) - 2k(l) U . 
2 3 ' II - 1 3 - 4 2 ' III - 1 , an IV - 4 • smg 

the same procedure as that done in Chapter 3, we can obtain a set of ( at least) 

eight coupled-wave equations for E 1 , ••• ,E4 • This set of eight equations can be 

reduced to four coupled-wave equations for a scalar case and/ or special polarization 

geometries. The approximate and exact solutions to the scalar four coupled-wave 

equations have been obtained for the cases of copolarized pump waves [4.2, 7] and 

cross-polarized pump waves [4.8-10]. The property of phase of conjugate wave for 

the case of copolarized pump waves has also been studied [4.11]. 

4.2.3 Vector wavefront reversal 

As discussed in Subsection 4.2.1, vector phase conjugation for an arbitrary 

polarized input can be obtained by taking advantage of the third term in Eq. 

(4.2). This vector phase conjugation is required, for example, when a polarization 

distortion is associated with a spatial distortion. The "wrong" conjugate wave 

generated from the first two terms in Eq. (4.2) can be eliminated when ki(= -k2) is 

chosen to be orthogonal to k4 so that the first two terms vanish. As an example, for 

an isotropic third-order nonlinear medium with counterrotating circular polarized 

pump waves, ~NL relevant to the generation of E4 is given by 

(4.4a) 

with 

( 4.4b) 
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h J . . . d h 1 . (3) (3) (3) (3) d w ere ts a umt matrt.x, an t e re at1ons x1111 = X1221 + x1122 + x1212 an 

x~~b2 = x~~)12 are used [4.12]. It is seen that Ax is unit diagonal and thus vector 

phase conjugation occurs. This method for vector phase conjugation was suggested 

originally by Zel'dovich et al. [4.4], and demonstrated by several workers in liquid 

CS2 [4.13,14], the D2 resonance line of sodium [4.15], and the 3s 1; 2 -+ 6s1; 2 two

photon transition of sodium [4.16]. 

The more direct method has also been considered by conjugating each 

orthogonal polarization component using a scalar PCM (in this case, a PCM 

using stimulated Brillouin scattering [4.17]). This method has been applied to a 

photorefractive BaTiO3 crystal [4.18]. We note that this method requires the same 

amplitude phase-conjugate reflectivity for both polarization components in order to 

obtain perfect vector phase conjugation. 

A completely different method has recently been demonstrated [4.19] and 

analyzed[4.20-23]. This method uses modal dispersal of input polarization, and 

spatial information and phase conjugation of only one polarization component. In 

this case a tandem combination of multimode fiber and photorefractive PCM is 

used. The detailed theoretical and experimental studies of this method will be 

described in Chapter 6. 

4.3 Self-pumped phase-conjugate mirrors (SPPCM's) 

4.3.1 Geometry of SPPCM's 

The nonlocal nature of photorefractive gratings gives the two-beam coupling 

phenomena discussed in Chapter 3. This leads to the possibility of self-pumped . 
phase conjugation without additional external pump beams. This happens when 

scattering of a single input beam creates noisy gratings in a photorefractive crystal. 

Certain gratings generate the pump beams and are enhanced in turn by the four

wave mixing process [4.2,24,25]. 
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Figures 4.2(a) - 4.2(d) show several geometries of SPPCM's. In particular, the 

SPPCM's shown in Figs. 4.2(a), 4.2(b), and 4.2(c) require external mirrors, whereas 

the SPPCM shown in Fig. 4.2(d) uses total internal reflection at one corner inside 

the crystal [4.26,27]. The properties of these SPPCM's have been analyzed [4.2] 

and their :fidelity of phase conjugation has been studied [4.28]. The self-starting 

"threshold coupling strength" [denoted by (fl)th] is 0 for the linear SPPCM, 4.98 for 

the semi-linear SPPCM, 2 for the ring SPPCM, and 9.36 for the SPPCM using total 

internal reflection, all with negligible loss and when the feedback by the external 

mirrors is unity [4.2]. For this reason large nonlinear materials such as BaTiO3 

and SBN have been the photorefractive materials of choice for constructing these 

seif-starting SPPCM's (see Table 3.5). 

The other types of SPPCM's, called "double PCM's", have also been 

demonstrated. In these SPPCM's two (or more) mutually incoherent beams are 

incident on the crystal and are phase conjugated simultaneously without any 

crosstalk with respect to spatial information. This happens because each input 

beam writes gratings with its scattered beams and the stimulated build-up of these 

gratings takes place when one set of gratings (written by one of the inputs) matches 

the other set of gratings (written by the other input). In this case only these matched 

gratings (which convert one input to a phase-conjugate replica of the other input 

and vice versa by time-reversal symmetry) are enhanced and survive at the steady 

state. Figures 4.3(a) - 4.3(d) show several geometries of double PCM's (a) without 

internal reflection [4.29], (b) with two internal reflections [4.30], (c) with one internal 

reflection, called a "bird-wing" mirror [4.31], and (d) with three internal reflections, 

called a "frog-legs" mirror [4.32]. These geometries are different from each other by 

their paths which are determined by the orientation and dimensions of crystals in 

an optimum way so that the photorefractive two-beam coupling at each interaction 
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(b) 

(c) (d) 

Figure 4.2 Geometry of SPPCM's. (a) Linear SPPCM. (b) Semi-linear 

SPPCM. (c) Ring SPPCM. (d) SPPCM using total internal reflection. The 

circles denote the four-wave mixing interaction regions. 
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(a) (b) 

(c) (d) 

Figure 4.3 Geometry of double PCM's. (a) Zero internal reflection type. (b) 

Two internal reflection type. ( c) "Bird-wing" type. ( d) "Frog-legs" type. The 

circles denote the four-wave mixing interaction regions. 
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region is maximized. 

4.3.2 Phase shift of a SPPCM 

Because of compactness, robustness against vibration, and self-alignment, 

SPPCM's shown in the previous subsection become a key component in an ever 

increasing number of image processing and interferometric applications [4.23,32]. 

The key issue in these applications is the relation between the phase {more precisely, 

the change of phase) of the input beam and that of the output (i.e., the reflected) 

beam. Feinberg [4.33] reported on an interferometer with a SPPCM in one arm 

and showed that it compensated for the effects of optical distortions in the beam 

path. The fact that the device functioned as an interferometer implied, as noted 

and explained by Feinberg, that spatially uniform phase shifts due to path delays 

were not reversed in sign by~ SPPCM as they would be in an externally-pumped 

PCM [4.34]. The observation of distortion correction, however, implied that the 

relative phases of the partial (plane) waves making up the distorted input beam 

were reversed. When Feinberg's explanation for the instantaneous response of the 

SPPCM to uniform phase shifts is applied to each partial wave, it appears that 

the SPPCM cannot function as a conjugator for the distorted input beam since a 

uniform phase carried by each partial wave is not reversed (but preserved) upon 

reflection and the relative phases ( and therefore the distorted wavefront of the input) 

are not reversed either. A related observation by Ewbank et al. [4.35] showed that 

the relative phase between two input beams was reversed in an interferometer using 

two coupled SPPCM's. Since a basic understanding of these observations is of great 

importance for many applications, in this subsection we will clarify the nature of 

the phase shifts of conjugate waves from a SPPCM theoretically and experimentally 

[4.36]. 
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Let us first consider the case of a single plane wave input. Figure 4.4 ( a) shows 

the basic four-wave mixing geometry where the incident wave E 4 of frequency w4 

and wave vector k4 interacts with two externally-supplied pump waves E 1 and E2 of 

the same frequency Wp and opposite wave vectors kp and -kp traveling in opposite 

directions and the conjugate wave Es of frequency Ws and wave vector ks traveling 

in opposition to E4. All the waves are assumed to be linearly polarized. 

·The reflected conjugate wave Es at the input to the interaction region is written 

as 

Es(r, t) = ½As exp [i(wst - ks· r)] + c.c. 

(4.5) 

where r denotes the complex phase-conjugate reflectivity and is in general a function 

of A1, A2, and A4 [4.11]. If we take A;= IA;I exp(i</>;) (j = 1, · · ·,4), the phase of 

the complex amplitude As is then written as 

(4.6) 

where </>o is the absolute phase shift that can be determined from the solution of the 

coupled-wave equations describing the "nonlinear" four-wave mixing process, and in 

general depends on material parameters of a nonlinear medium and the intensities 

of E1,E2 and E4 (e.g., </>o=O or ,r for ,r/2-shifted photorefractive gratings). It is 

seen from Eq. (4.6) that any phase change 6</>4 of the input is reversed upon phase 

conjugation, i.e., </>s -. </>s - 64>4 as </>4 -. </>4 + 64>4. This has been verified recently 

by quantitative measurements of the phase shifts of reflection from an externally

pumped PCM, [4.34]. 

In SPPCM's where E 1 and E2 derive directly from the fanning of E4 and thus 

possess the same initial phase </>4, we can write </>1 and </>2 as 

(i = 1,2), (4.7) 
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(a) ( b) 

Figure 4.4 Four-wave mixing geometry for ( a) a single plane-wave input and 

(b) two plane-wave inputs. 
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where 'Pi denotes some constant phase determined by the photorefractive beam 

coupling and oscillation associated, in general, with the frequency detuning !:J.w ( = 

Wv - w4 ) [4.3]. We note that E1 and E2 would spatially be conjugates of each 

other [4.37] but the uniform phase ¢1 is not in general equal to -¢2 in a SPPCM. 

(Otherwise <Ps _. ¢3 - 6¢4 as <P4 _. ¢ 4 + 6¢4 , which is not the case in SPPCM's.) 

Then in a manner similar to Eq. (4.6) we obtain 

(4.8) 

where 8(= <Po+ cp1 + cp2 ) is fixed in a given set up. It is seen from Eq. ( 4.8) that, in 

contrast to the externally-pumped PCM result, any phase change 6¢4 of the input 

is not reversed but is preserved upon phase conjugation, i.e., ¢ 3 _. ¢3 + 6¢4 as 

¢ 4 _. ¢ 4 + 6</,4 • In addition, since all the waves involved in the four-wave mixing 

process share the common phase 4'4, the conjugate wave responds instantaneously 

to any phase change of the input. The above explanation is essentially that given 

by Feinberg [4.33]. 

Let us next consider the case where two separate but mutually coherent input 

plane waves Ei1
> and Ef1

> of frequency W4 and wave vectors ki1) and kill), 

respectively, are involved in the phase conjugation process, [see Fig. 4.4(b)]. In 

this case we postulate that in a SPPCM a coherent superposition of Ei1) and 

EiII) acts as an input to generate by two-beam coupling [4.3] the two counter

propagating oscillating (pump) fields Et{= 1/2IA~I exp[i(w~t - k~ · r +</>DJ+ c.c.} 

and EH= 1/2jA21 exp[i(w~t+k~•r+</>2)]+c.c.} inside the phase-conjugating crystal. 

(Again </,~ is not in general equal to -¢2.) In this case the phases 4>i1> and </>in) of 

the reflected waves E~I) and Eiu) are found, by the same procedure used to obtain . 
Eq. (4.6), as 

(q = I, II). (4.9) 

We thus find that the input waves Ei1
) and EiII) are reflected as EiI) and EiII) with 

their relative phase t:J..¢4(= <t>iI) _<l>iII)) reversed to -!:J.</>4 as it must be for wavefront 
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reversal. We note, however, the existence of a common phase w(ElI), ElII))(= 

</>o + </>~ + </>~) in both the reflected waves EiI) and Ef1
). Since we have assumed 

that the pump waves E~ and E~ are generated from a linear combination of El1
) 

and ElII), they can be written in the form of exp {i<l>i1)) + a exp (i<l>iII)), where 

a is a contribution of EiII) (normalized by Ei1
)) to the pump waves and so 

a ex: IEiII) / Ei1
\ We can thus express the common phase 'IV as 

[ 
sin <I> (I) + a sin <I> (II) ] 

'V=2tan- 1 (I) (II) +<l>o+f31+f32, 
cos </>4 + a cos </>4 

{4.10) 

where {31 and {32 are some constant phases of E~ and E~, respectively. Then it is 

seen from Eqs. {4.9) and {4.10) that <1>11) and <l>1II) depend upon the phases of the 

input waves EiI) and EiII) and the parameter a. This dependence implies "phase 

cross talk", i.e., a dependence of <l>1II) on <1>i1> {and of <1>11) on <t>iII)) for a given a. 

Also, cross talk between the i~put amplitudes and the output phases is seen via a. 

We are now in a position to apply the above result to a general case where the 

input wave E4 suffers a wavefront distortion caused by some random scatterers 

during propagation (e.g., by air turbulence or modal scrambling in multimode 

fibers [4.231). In this case it is possible to express the complex amplitude A 4 as 

a summation over plane wave components Aik), where k is a wave vector. We then 

replace <t>iII) in Eq. (4.9) by the phase ¢4 at the center wave vector k4 of A4 [i.e., 

the uniform (or average) phase of the wavefront] and <l>f) in Eq. {4.9) by the phase 

<t>ik) at wave vector k of A4. Then from Eq. {4.9) the phase <t>ik) of component 

Aik) is expressed by 

{4.11) 

where '11'' is a common phase similar to 'V given by Eq. ( 4.10) and ~<l>ik) = <l>ik) -¢4. 

Since the phase factor '11' - ¢4 is common to all <t>1k) 's and is in this case a function 

of all <l>ik),s, we see from Eq. {4.11) that a SPPCM can reverse the relative phase 

~<l>ik) but not the uniform phase <l>i'Jq), i.e., it can correct phase distortions but not 
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unifrom phase changes in a double pass. This explains Feinberg's observation [4.33] 

and our experiments described below. This main difference between an externally

pumped PCM and a SPPCM is schematically shown in Fig. 4.5. 

To test our model, we performed a series of experiments. In particular we 

measured the phase shifts of reflected conjugate waves from a SPPCM with two 

(coherent) input beams as a function of a uniform phase change of one of the inputs. 

Figure 4.6 shows the experimental arrangement. A collimated beam ( ~ 11 mm 

diameter) derived from a single-longitudinal-mode argon-ion laser at 514.5 nm was 

divided into two beams Ef) and EiII) by a beam splitter (BS2). These beams were 

polarized as extraordinary rays and loosely focused into a BaTiO3 crystal employed 

as the SPPCM using internal reflection. One of the beams, Ei1
), was reflected 

off a piezoelectrically-driven (PZT) mirror so that a uniform phase shift of Ei1
) 

was introduced. The input power of Ei1
) and Ei11

) to the crystal was 3.5 mW 

and 3.0 mW, and their phase-conjugate reflectivities were about 10 % and 15 %, 

respectively. 

In the first experiment the conjugate beam Ef) interfered with a reference 

beam via BS3 with Ei11
) blocked. Figures 4.7(a) - 4.7(c) show the photographs 

of the interference patterns between the reference beam and E!1
) at D 1 without a 

glass plate [Fig. 4.7(a)], with a glass plate inserted in a half part of the reference 

beam [Fig. 4.7(b)], and with a glass plate inserted in a half part of the input beam 

Ef) [Fig. 4.7(c)]. It is seen that the SPPCM can reverse a nonuniform wavefront 

distortion caused by the glass plate since no fringe shift is seen in Fig. 4.7(c). We 

also measured the response of the SP PCM to a uniform phase shift. The movement 

of the interfer~nce fringe due to the phase shift of Ei1
) was detected by D 1 with 

a pinhole of 100 µm diameter (much smaller than the fringe spacing). The sign 

of the phase shift was determined by the direction of the fringe movement. The 
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Figure 4.5 Wavefront reversal by an externally-pumped PCM and a SPPCM. 

In the externally-pumped PCM, the uniform phase factor ikl at the mirror as 

well as the nonuniform phase factor eic5(:z:) caused by the phase distorter (shown 

as a hatched object in the figure) is reversed on reflection. In the SPPCM, eic5(x) 

is reversed but eikl is preserved on reflection. 
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Figure 4.6 Experimental arrangement for the measurement of the phase shifts 

of conjugate beams from the SPPCM. EiI) and EfI) are the input beams, and 

E!I) and E!II) are their conjugate beams, respectively. The intensity changes of 

the interf~rence fringes due to the movement of the PZT mirror are detected by 

D1 and D2 • The recombined conjugate beams from different ports of BS2 are 

detected by D3 and D4 , respectively. F: Faraday isolator; BE: beam expander; 

BS: beam splitter; M: mirror; D: detector; L: lens. 
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(a) (b) 

(c) 

Figure 4. 7 Interference fringe patterns between the reference beam and the 

conjugate beam E~I). In (a) no glass plate is inserted between the beams. In 

(b) and ( c) a glass plate is inserted in a half part of (b) the reference beam or 

( c) the input beam. The radius of curvature of the input beam is estimated to 

be about 1.6 m. 
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measurement was completed within a time interval much shorter than the period 

of the frequency detuning ~w ( ~0.014 Hz in the first experiment) of E~I). (During 

the measurement a phase distorter ( a sheet of etched glass), not shown in Fig. 4.6, 

was placed in front of the crystal so that the distortion-correction capability of the 

SPPCM was also examined at the same time. We observed that the phase distortion 

of EiI) was always corrected in a double pass throughout scanning of the phase of 

EiI) .) Figure 4.8 shows the result. It is seen that the phase of E~I) increases almost 

linearly with the increase of the input phase, as expected from Eq. ( 4.8). 

In order to see the response time of the SPPCM on the phase shift, we also 

phase-modulated the input Ei1
) by <Pm sin Ot ( <Pm ~ 1r /2). Figure 4.9 shows the 

result of the temporal change of the fringe intensity detected by D 1 due to the 

sinusoidal phase modulation. It is seen that the phase of Ef) follows the phase 

modulation of the input. In fact it was found that the phase of E11
) could follow 

the phase modulation at any speed (up to ~1 kHz in the experiment), while the 

phase-conjugate reflectivity remained the same. (Note that the response time of 

the crystal was about one second.) This instantaneous response of the SPPCM 

is consistent with Feinberg's observation [4.33] and quite different from the case 

of phase-modulated conjugate-wave generation from an externally-pumped PCM 

[4.38]. 

In the second experiment we allowed two input beams Ei1> and EiII) to be 

incident on the crystal and measured the phase shifts of the corresponding reflected 

beams EiI) and EfI) as a function of the uniform phase change of Ei1>. The speed 

of the phase change of the input was chosen to be about 0.4 rad/sec, so that the 
. 

crystal could respond to the input phase change with the stable conjugate-wave 

reflection and the phase shifts of E~I) and E~II) could be measured adiabatically. 

We confirmed this by monitoring D3 , i.e., the intensity at D3 was constant in time 

( and close to zero) when the crystal smoothly responded to the input phase change 
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t--; 
10msec 

Figure 4.9 The upper trace shows the sinusoidal voltage applied to the PZT 

mirror, while the lower trace is the signal from the interference fringe intensity 

between the conjugate and reference beams. 
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during the continuous linear movement of the PZT mirror. Otherwise it was found 

that linear movements of the PZT mirror (faster than ~ 1.0 rad/sec) caused the 

erratic change of the intensity at Ds and the supression of the phase-conjugate 

reflection because of the erasure of photorefractive gratings inside the crystal. 

Figure 4.10 shows the result when the two phase shifts were measured independently. 

The effect of the frequency detuning ( ~0.025 Hz) was taken into account and 

corrected for the result shown in Fig. 4.10. It is seen that the accumulated phase 

shifts of E!1
) and E111

) increase almost linearly with the increase of the phase of 

Ei1
) and their rates of changes (i.e., slopes) are different. But the relative phase 

shift ~<Ps(= ¢11
) - ¢111

)) is almost equal to -~cp4[= -(4>i1) - ¢i11>)]. This means 

that, despite the phase cross talk, the relative phase ~cp4 between Ei1
) and Ef I) is 

reversed to -~cp4 , as predicted by Eq. (4.9). We did not observe a noticeable 

amplitude dependence of E11
) and E111

) on the phase shift of Ei1
). Also, no 

"amplitude cross talk" (more precisely, cross talk of spatial structures) between 

Ei1
> and E~II) was observed [4.37]. 

The observed linear dependence of the phase shifts of Ei1
) and Ei11

) on the 

input phase change can be explained by our model. Since a continuous small change 

of ¢i1) was introduced in the second experiment, we may approximate the shift of 

'II given by Eq. (4.10} by 20¢i1> /(1 + a:) for each small increment ocpi1>(« 1) of 

ct>i1>, where we set ct>iII) = 0 without loss of generality (because 4>i11
) was constant 

in the experiment). It then follows from Eq. (4.9) that oct,11
) ~ ocpiI) (1- a:)/(1 + a:) 

and o<f>in) ~ 20<1>i1> /(1 + a:), showing the linear dependence of 8¢11
) and S</>111

) on 

ocpf>. Using these expressions, we also find that the relative difference between 

two values of a (i.e., one from the slope of 04>;1> and the other from that of oct,;11
)) 

estimated from the result in Fig. 4.10 is about 2%. This supports the validity of 

the above equations. We also made a measurement of the dependence of the phase 

shifts of 4>11) and cp;II) on riII) /Ii1
) (= IEf1

> / Ei1
) I). In this case, the total intensity 
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CHAPTER 

FIVE 

Applications of Photorefractive 
Wave Mixing to Temporal and 
Spatial Information Processing 

Over the past years, a number of real-time information processing applications 

based on two-wave and four-wave mixing in photorefractive crystals have been 

reported. These include (a) temporal information processing (e.g., temporal 

differentiation and transient image detection), (b) spatial information processing 

(e.g., mathematical operations on images, distortion correction and interferometry), 

and (c) spatio-temporal information processing (e.g., optical interconnections and 

bidirectional communications). In this chapter, three applications to transient 

image detection, image subtraction, and one-way image transmission through 

distorting media are described. 

5.2 Optical tracking filter using transient two-beam coupling 

The two-beam coupling phenomena in photorefractive crystals [5.1] have 

been used for various novel applications, such as image amplification [5.1,2], 

unidirectional ring oscillators [5.3], optical limiters [5.4], beam cleanup [5.5], and 

beam steering [5.6]. Most of the proposed applications use steady-state energy 

coupling in photorefractive crystals with an induced index grating, which is 1r /2 

phase shifted from the light-interference pattern. On the other hand, the transient 

behavior of the energy coupling (e.g., response time) is an important factor in 

characterizing device performance [ 5. 7]. Transient energy coupling (TEC), including 
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the interaction between two coherent beams and the induced grating formation, has 

been studied theoretically, and approximate analytic [5.8 - 12] and numerical [5.13] 

solutions have been obtained. We have already shown in Chapter 3 that, although 

there is no steady-state energy exchange between the beams in unshifted dynamic 

holographic media, TEC occurs in such media with noninstantaneous responses. 

In particular, it is shown that TEC can be realized in photorefractive crystals by 

applying an appropriate external electric field and using large grating periods, i.e., 

by operating in the drift regime. 

In this section we demonstrate an optical tracking filter [5.14] based on TEC. 

First we qualitatively describe the physical origin of TEC by means of scalar steady

state two-beam coupling equations derived in Chapter 3. We then describe the 

experiment, which uses a photorefractive Bi12Si020 (BSO) crystal with an external 

electric field. 

Let us consider the steady-state two-beam coupling. We rewrite the 

corresponding equations given by Eqs. (3.10a) - (3.10d) [see also Fig. 5.l(a)]: 

(5.la) 

dL = -rI+L _ "'I 
ds Io ..... _, (5.lb) 

d(6t/;) = r' (I+ - L)' 
ds Io 

(5.lc) 

wheres= z/cosO', I0 =I++ L, 6t/; = t/J+ -t/J-, I+andL(t/J+and'f/;_) are the 

intensities (phases) of the interacting beams, respectively, a is the linear absorption 

coefficient, and f[= 2Re(1)] and f'[= Im(,)] are the real and imaginary parts, 

respectively, of the (complex) two-beam coupling constant "f, which for a degenerate 

case at a frequency w, is given by Eq. (3.8) for scalar two-beam coupling and is 

rewritten as 
3 wreffno ~ 

"(=---~ 2c -sc• (5.2) 
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In Eq. (5.2) reff is the relevant effective electrooptic coefficient given by 

(5.3) 

where nA, e 1, e2, and tlq are given in Section 3.3 of Chapter 3, n0 is the ordinary 

refractive index of the crystal, and E11c is given, for example, by Eq. (3.9). From 

Eqs. (3.9) and (5.2), when Eo=0 or Eo »En, Eqe, r is finite and f'=0 (because 

Esc is real). This is the case when the index grating is 1r /2 phase shifted from 

the light-interference pattern and steady-state energy coupling occurs. (Remember 

that a space--charge electric field Esc is given by -imE11c, where m is a modulation 

index of the light-interference pattern.) On the other hand. when the intermediate . . 

fields Eo(# 0) and large grating periods are used, there exists a region where Esc is 

nearly pure imaginary so that jf'I » jfj. This corresponds to the unshifted (local) 

grating case, in which from Eq. (5.1) there is almost no energy transfer but phase 

transfer between the interacting two beams provided that I+ # L. Because of the 

phase transfer, the equiphase contour of the index grating is tilted with respect to 

the z axis in the crystal in the steady state (t=0) [Fig. 5.l(a)]. If there is any 

change in the input-beam intensities, the light-interference pattern will modify its 

position according to Eq. (5.lc). In this case, for a medium with noninstantaneous 

response, a transient phase mismatch between the light-interference pattern and the 

index grating is created in the time period 0 < t < r (r is the medium response time) 

[Fig. 5.l(b)]. This phase mismatch is responsible for TEC between the interacting 

beams. When the input-beam intensities become stationary at the time t » r, the 

index grating catches up with the change of the light-interference pattern. As a 

result, TEC then ceases [Fig. 5.l(c)]. Therefore the conditions for TEC can be 

listed as follows: 

1. The medium possesses the unshifted index grating with respect to the light

interference pattern and does not respond instantaneously, i.e., r # 0; 
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t = 0 

(a) 
z 

0< t < T 

(b) 

Figure 5.1 Diagram to illustrate the dynamics of the holographic index grating 

formation. Solid lines indicate light-interference fringes, and dashed lines 

indicate index gratings. (a) t = 0 (both lines overlap), (b) 0 < t < r, and 

( c) t ~ T (both lines overlap). 
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2. The intensities of the two beams are different at z=0, i.e., I+(0) :/= L (0). 

The approximate analytical expression for the amount of TEC under a lumped 

change of the input beam is given by Eq. (3.12). In the drift regime for the 

formation of the photorefractive grating it can be written as [see Eq. (3.15)] 

t t t 
I±(l) - I±(0) oc: ~[I+(0) - L (0)JI+(0)L (0) exp(--)[-+ exp(--) - 1], (5.4) 

T T T 

where r is given by Eq. (2.17a). Equation (5.4) indicates that the energy transfer 

always occurs from the stronger beam to the weaker beam. A typical plot of the 

energy transfer versus the normalized time t/r is shown in Fig. 5.2. The maximum 

energy transfer occurs at t ~ 1.59r. When r is small enough to follow a sudden 

change in the input-beam intensities, TEC can be approximated as the temporal 

differentiation of input information. In what follows we describe the experimental 

demonstration of an optical tracking using TEC. 

Figure 5.3 shows the experimental setup. The photorefractive BSO crystal 

(10mm x 10mm x 3mm) was used. An external electric field E0 (=6 kV /cm) 

was applied along the crystal < 001 > direction to ensure that the formation of 

photorefractive gratings was in the drift regime. With this external electric field, the 

amplitude of the space-charge electric field is high for the grating periods A > 5 µm, 

and the phase shift between the index grating and the light-interference pattern is 

less than 0.1 rad [5.15,16]. These features are depicted in Figs. 5.4(a) and 5.4(b). In 

these figures we used Eac = IEacleiqi- ~ -iBac (i.e., m/(l+f3ehw/selo) ~ 1) together 

with the relevant material constants shown in Table 5.1. The time constant r in 

Eq. (5.4) is a!so shown in Fig. 5.5. We see that the larger the grating period is, 

the smaller r is. This is because BSO is a long drift length material like GaAs 

(see also Fig. 3.13). A single-longitudinal-mode argon-ion laser (A = 0.5145 µm, 

500 mW output power) was expanded and divided by a beam splitter BS. The 

higher intensity beam L passed through a transparency T and was imaged onto 
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Figure 5.2 Dependence of transient energy transfer on the normalized time t/r. 
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Figure 5.3 Experimental setup to demonstrate the optical tracking filter. 
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Figure 5.4 Dependence of the space-charge electric field Esc on an external 

electric field E0 for grating periods of A = 0.5, 1.5 and 7.4µm. The incident 
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angle between the two input beams is denoted by fJ for each grating period. 

( a) The amplitude IEsc I of E8c. (b) The phase 'V of Esc. 
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Table 5.1 Relevant material constants of BSO. 

Material Constants Values 

€11 56 

µe 0.03cm2 /V • sec 

TRe 5 x 10-6 sec 

Tde 5 x 10-5sec 

NTe(~ N;) 2 x 1016cm-3 

T 300°K 

.\ 0.5145µm 

a See Chapter 2 for the definition of the above parameters. 
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and 7.4 µm. The incident angle between the two input beams is denoted by 0 

for each grating period. 
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the crystal (110) surface. A neutral-density filter ND was inserted into the path 

of the other uniform beam I+ and the ratio L /I+ was set to approximately 

10. According to Fig. 5.4, the angle between the two beams was chosen to be 

20 ~ 1.5° so that TEC was enhanced. The measurement of the steady-state two

beam coupling gain versus the input-beam polarization was made beforehand. We 

found that the gain was nearly maximum when the linear polarization was close 

to the crystal < 001 > direction (see Fig. 5.6). This is so because BSO has large 

optical activity by which the polarization direction of the incident beam is rotated 

by 95° after propagation in the crystal. The beam I+ transmitted through the 

crystal was imaged onto a TV camera. 

The L beam carrying the pictorial information of the letter O from the 

transparency is shown in Fig. 5.7(a). Some defects on the crystal surface can 

be seen. When the transparens:y is moving across the beam L, the corresponding 

letter O appears on the output beam I+ [Fig. 5.7(b)]. Subsequently, when the 

transparency returns to rest, only the uniform intensity distribution of the output 

beam I+ is seen [Fig. 5.7(c)]. Figure 5.7(d) shows the output beam I+ when the 

optical table is shaken with the transparency at rest. In this case the letter O is also 

seen. The response time in this experiment was found to be faster than 100 msec. 

From these figures the tracking novelty operation (in other words, the temporal 

differentiation) of the moving object is apparent. 

An optical tracking filter using a phase-conjugate interferometer together with 

the spatial light phase modulator was reported by Anderson et al. [5.17]. The time 

constant of their device was limited by the time response of the phase conjugator. 

Cronin-Golomb et al. [5.18] and Ford et al. [5.19] reported optical tracking filters 

based on two-beam coupling in photorefractive crystals with nonlocal 7r /2 phase 

shifted gratings. Cudney et al. [5.20] also reported a transient detection microscopy 
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Figure 5.6 Experimental result of dependence of the two-beam coupling gain 
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Figure 5.7 (a) The L beam transmitted through the crystal. This beam 

carries the pictorial information of the letter 0. (b) The I+ beam recorded 

when the transparency was moving across the beam L. (c) The I+ beam 

recorded subsequently when the transparency returned to rest. ( d) The I+ 

beam recorded when the optical table was shaken with the transparency at 

rest. 
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using the above effect. In these schemes BaTi03 crystals (whose response time is 

typically of the order of 0.1 - 1 sec for an input intensity of 100 mW /cm2 at visible 

wavelengths) were used to obtain either large phase-conjugate refl.ectivities or large 

steady-state two-beam coupling gains for better contrast of the output images. In 

our scheme, faster response materials, such as a Kerr medium, can be used. The 

contrast of the output image can be improved by increasing the intensity difference 

between the two input beams. The uniform background in the signal beam I+ can be 

reduced by cross-polarization beam coupling in cubic crystals [5.21] (see Chapter 3). 

Another possible advantage of our scheme is that, as in Cronin-Golomb's and Ford's 

schemes, it utilizes a simple spatial light intensity modulator such as a commercially 

available liquid-crystal television without any modification. 

5.3 Real-time image inversion, subtraction and addition 

using wave polarization and phase conjugation 

Over the past years several methods of optical image subtraction have been 

reported [5.22,23]. Most of them have employed either conventional interferometric 

techniques or spatial light modulators for real-time operation. Kwong et al. [5.24] 

and Chiou et al. [5.25,26] have employed the phase-conjugate interferometric 

method for real-time image processing. Because of the use of phase conjugation, 

their method, based on the Stokes principle of the time reversibility of light for 

any lossless dielectric mirror, has two advantages over conventional interferometric 

methods: the temporal stability of the operation against fluctuations in the optical 

path length of the two arms and the insensitivity against phase irregularities of input 

images. However the method requires equal amplitude phase-conjugate reflectivities 

and/ or losses for both inputs for image subtraction, and image subtraction and 

addition are obtained at two different places. 

In this section we describe a method of real-time image subtraction, addition 
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and intensity inversion usmg two orthogonally polarized image-bearing phase

conjugate waves [5.27]. This method in fact enables us to obtain any linear 

combination of the two images at the same plane by simply rotating an analyzer. 

The need for equal reflectivities and/or losses in the two arms of the phase-conjugate 

interferometer is obviated in this method. The basic idea is shown in Fig. 5.8. A 

linearly polarized beam is divided into two orthogonal beams by a polarizing beam 

splitter PBS. The two linearly polarized beams pass through transparencies T 1 , 

T 2 and are reflected by phase-conjugate mirrors PCM1 and PCM2, respectively. 

After retracing their paths backward, the two phase-conjugate beams are combined 

into one beam that has two orthogonal polarizations and spatial information: one 

poiarization for T 1 and the other for T 2 • This phase-conjugate beam is then picked 

off by a beam splitter BS and passes through an analyzer A rotated by an angle 8 

from the y axis. The intensity at a plane S is then given by 

(5.5) 

where c 1 and c2 denote complex constants due to the reflection and transmission at 

the BS and the PBS, and r 1 and r2 denote amplitude phase-conjugate refrectivities 

of the PCM1 and the PCM2, respectively. Rewriting Eq. (5.5), we have 

(5.6) 

where p = c2 r2 /c1r 1 • Therefore for real p we obtain image subtraction 

when the analyzer is rotated to 

and image addition 
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Figure 5.8 Schematic of image subtraction using polarization and phase 

conjugation. 
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when 

Note that any other linear combination can also be achieved by simply varying the 

angle 8. It should also be noted that even when pis complex, e.g. arg(ri) i= arg(r2 ), 

the above conditions can easily be realized by placing a phase plate in front of the 

analyzer A. Since the present method is, as mentioned before, valid even when 

r1 i= r2 and/or c1 i= c2, low-cost liquid crystal televisions (1CTV's) [5.28] can 

easily be incorporated as input spatial light modulators without any modification 

[5.29]. 

The experimental arrangement is shown in Fig. 5.9. The multilongitudinal-

mode argon ion laser beam(A = 514.5 nm) of linear polarization was collimated by 

a beam-expanding system BE and divided into two orthogonally polarized beams 

by the PBS. In our experiment the double phase-conjugate mirror (DPCM) [5.30] 

configuration was used for phase conjugating two beams. The DPCM of the zero 

internal reflection type was used (see also Fig. 4.3(a) for this particular geometry). 

We note that a fiber-coupled phase-conjugate mirror [5.31,32] or a polarization

perserving phase conjugator [5.33] can also be used for this purpose. However, one 

big advantage of the present DPCM scheme is the large tolerance of the temporal 

coherence requirement between the two beams [5.30]. In the experiment the path 

difference between the two beams was chosen to be about 50cm, which is much 

larger than the coherence length of the laser (a few cm), so that stable phase 

conjugation can be obtained. After the PBS one beam of horizontal (in the y - z 

plane) polariz.ation passed through the transparency T 1 and was loosely focused 

into a 45°-cut BaTiO3 crystal (see Fig. 5.9) by a lens 1 1 (f = 500 mm) with the 

angle of about 11 °. Similarly, the other beam of vertical polarization passed through 

the transparency T 2 after it was converted into the horizontal polarization by a A/2 

plate. It was loosely focused into the crystal by a lens 1 2 (f=120mm) with an angle 
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t 

Figure 5.9 Experimental arrangement. The double phase-conjugate mirror 

(DPCM) configuration is used. 
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of about 13.5°. The phase-conjugate beams (As = r1Af and A4 = r2A2) retrace 

their paths backward to the PBS, where they are combined into a single beam. The 

phase-conjugate refl.ectivities of the two beams were lr11
2 = 0.08 and lr212 = 1.07 

for IA112 = 1.7 mW and IA21 2 = 0.4 mW, respectively, when binary transparencies 

of "A" and "A" were used as T 1 and T 2. It should be noted that although the 

two input beams A1 and A2 are mutually incoherent at the crystal, they can be 

coherently combined at the PBS after phase conjugation, since the phase-conjugate 

beams As and A4 are essentially due to the diffraction of the incident beams A2 and 

A1, respectively [5.30]. Therefore the present system can be regarded as a common

path polarization interferometer with phase conjugation. The beam after the PBS 

was imaged by a iens Ls (f = 200 mm) onto the piane S through the analyzer A. 

We measured beforehand the possible relative phase difference between As and A4 

upon phase conjugation at the crystal by means of the ellipsometric method at the 

plane S. The effect of the BS was also taken into account. The results are shown 

in Fig. 5.10, together with the reflectivities of R1 = lr112 and R2 = lr21 2. It is 

seen that the relative phase difference de/>(= c/>s - c/>4 + c/>1 - ¢2) resulting from the 

photorefractive phase shift is as small as about 10° for the incident beam ratios 

q (= IAi/A212) = 0.1 - 13. Consequently, the combined phase-conjugate beam is 

almost linearly polarized as long as the input beam is linearly polarized. 

Figure 5.11 shows the experimental results of image subtraction and addition. 

The phase-conjugate images of the binary transparencies of "A" and "A" are shown 

in Figs. 5.ll(a) (IJ = 0°) and 5.ll(b) (0 = 90°), respectively. Figures 5.ll(c) and 

5.ll(d) show image subtraction (IJ = -41.5°) and addition (IJ = 41.5°), respectively. 

Figure 5.12 shows intensity inversion when a U.S. Air Force Resolution Chart is used 

for the transparency T 2 with the transparency T 1 removed. 

The present new method allows reliable and stable results with almost complete 

flexibility for the system parameters ( e.g., reflectivities and losses). It is also 
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(a) (b) 

(c) (d) 

Figure 5.11 (a) Phase-conjugate image "A", (b) phase-conjugate image "A", 

( c) image subtraction, and ( d) image addition. 



- 158 -

(a) 

(b) 

Figure 5.12 (a) Phase-conjugate image of the resolution chart, and (b) 

intensity inversion of the resolution chart. 
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applicable to "exclusive or (XOR)" logic operation and image differentiation [5.24]. 

In addition, since the present system acts as a phase-conjugate common-path 

interferometer, a phase-conjugate multimode fiber-optic Sagnac interferometer can 

be constructed for rotation sensing applications [5.32,33] if multimode fiber coils 

are incorporated into the beam paths in the system. In this scheme the fast 

phase modulation for biasing (i.e., for obtaining better signal-to-noise ratio) can 

be employed since the DPCM prefers mutually incoherent inputs for stable phase

conjugate reflection. 

5 .4 One-way image transmission through distorting media 

using orthogonally polarized beams and phase conjugation 

Transmission of an image through a phase-distorting medium has been 

demonstrated using phase conjugation [5.35 - 38]. This has been done by retracing 

the distorted image-bearing signal back through the distorter using a phase

conjugate mirror in a double-pass configuration. Since this method requires the 

signal to be received in the same half space as the source, several single-pass schemes, 

where the signal passes through the distorter only once, have also been suggested 

[5.39 - 43]. Recently, a further simplification of this method, where the receiver 

does not need access to the space beyond the distorter, has been demonstrated by 

impressing nearly the same distortion as that in the signal beam onto a separate 

beam and combining them in a degenerate four-wave mixing configuration [5.44]. 

In this method, however, only a slowly (spatially) varying phase distortion can 

be corrected since the two beams are spatially separated at the distorter. In this 

section, we describe a method which obviates this problem by using two orthogonally 

polarized beams traveling exactly the same path through the distorter [5.45,46]. 

The method relies on the nonlinear polarization in a four-wave mixing setup to 

eliminate the distorted phase factor ei1>(:i:,y) at the nonlinear medium and therefore 
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reconstruct the original information. Consider photorefractive four-wave mixing in 

the crystal shown in Fig. 5.13. The index change Lln inside the crystal is given 

by Eqs. (2.32) and (2.34) and is proportional to the modulation index via the 

space-charge electric field. Assuming a scalar four-wave mixing, we can write 

(5.7) 

where E 1 is the reference beam and E3 is the signal beam possessing the distorted 

image information. Then, the nonlinear polarization PNL arising from the four-wave 

mixing is proportional to [see Eqs. (2.30) and (2.34)] 

(5.8) 

where E2 is the uniform readout beam propagating opposite to E 1 • Therefore the 

phase distortion superimposed on the signal can be eliminated at the crystal if the 

reference beam has the same distorted phase factor ei,J;(z,u) as that of the signal 

beam impressed at the distorter and that phase factor is preserved at the crystal. 

The setup for the system is shown in Fig. 5.14. An argon-ion laser operating 

at A = 514.5 nm was used as a light source. One of the two beams leaving the 

beam splitter BS2 was converted to an orthogonal (vertical) polarization by the 

A/2 plate. One became the signal beam and the other served as the reference. The 

two were recombined at BS3 and both pass through the phase distorter, which was 

an acid-etched glass. This way, both beams underwent the same phase distortion, 

which insured that the distorted phase information carried by the two beams was 

identical. When two spatially separate beams are used, as is the case in Ref. [5.44], 

it is more difficult to insure that this occurs. 

As previously mentioned, it is necessary to avoid phase mixing due to Fresnel 

diffraction during propagation, and to preserve the distorted phase factor, ei4>(z,y) 
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0 
A(x,y) -

Figure 5.14 Experimental setup for the passive one-way transmission system 

using orthogonally polarized signal and reference beams. The variable beam 

splitter (VBS) was used to vary the intensity ratio of the signal and reference. 

The A/2 ~late rotates the polarization of the reference to the vertical direction, 

and the two passes through the A/ 4 plate restores it to horizontal polarization 

so the two beams can write the grating. The readout beam was picked off from 

the same argon-ion laser source, but can be from a different laser as well. 
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at the nonlinear medium, in this case a 10mm x 10mm x 1mm photorefractive 

strontium barium niobate (SBN) crystal. This necessitates the imaging of the 

distorter onto the crystal. In addition, the distorter must be thin enough to fall 

within the depth of focus of the imaging system. In this experiment, the telecentric 

imaging geometry was used to circumvent unwanted wavefront curvatures at the 

image plane [5.4 7]. Two lenses of focal length / = 40 cm were used, with the lenses 

spaced 80 cm apart. The distances from the distorter to lens 1 1 and from lens 1 2 

to the crystal were both 40 cm. 

After passing through the lenses, the two beams are separated by the polarizing 

beam splitter (PBS) and the vertically polarized component is rotated again by 90° 

in a double-pass through the >../4 plate so the two beams can write a distortion

free grating in the crystal by perfect calcellation of ei4>(z,u). The beam intensities 

were chosen as Iref = 16 mW/cm2 and I11ig = 4 mW/cm2 , so that the grating ~n, 

and also the nonlinear polarization PNL, in the crystal are proportional to E3 [see 

Eqs. (5. 7) and (5.8)]. The second mirror is necessary in the leg that is transmitted 

through the PBS so that the image is properly oriented. After the grating is written, 

a plane wave directed from behind the crystal and Bragg-matched with the grating 

is used for readout, and the reconstructed signal picked off by BS4 is imaged onto 

the screen by lens 1 3 • We note that in order to create the photorefractive grating, 

the readout beam need not be coherent with the writing beams. 

The results of the distortion correcting capability of this experiment are shown 

in Figs. 5.15. Figure 5.15(a) is the original image, and Fig. 5.15(b) is the image 

after the distorter. Figures 5.15(c) and 5.lS(d) are the output images without and 
. 

with the distorter, respectively. It is seen from Fig. 5.15(d) that the system has 

reconstructed the original image from the given information, and that the image 

quality with Fig. 5.15(c) is roughly the same. 

This new method for passive one-way image transmission through a distorting 
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{a) (b) 

(c) (d) 

Figure 5.15 Experimental results showing the distortion correction capability 

of the system, where (a) is the original image, (b) is the image after the 

distorter, (c) is the phase-conjugate image without the phase distorter, and 

( d) is the corrected image as viewed on the screen. 
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medium uses two orthogonally polarized beams - one carrying the signal and the 

other probing the distortion in order to write the distortion-free grating in the 

crystal for the reconstruction of the original image by the independent readout 

beam. This procedure, although valid only for phase distortions in isotropic media, 

is useful in instances where it is not possible to retransmit the phase-conjugate 

signal back through the distorter in a double-pass configuration. We finally note 

that a single, circularly ( or elliptically) polarized beam can also be used as the 

signal and reference beams in the present system instead of preparing the beams 

separately. In this case, however, the transparency as an input is limited to a binary 

one in order to maintain the original contrast. 
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CHAPTER 

SIX 

Polarization and Spatial 
Information Recovery by Modal 

Dispersal and Phase Conjugation 

6.1 Introduction 

Optical phase conjugation has been investigated extensively in many areas of 

nonlinear optics [6.1]. In particular it is well known that it can be used to correct 

phase distortions because of the wave-front-reversal properties of an incoming 

optical wave. For this reason the main emphasis has been on the study of the 

properties of ordinary phase .. conjugate mirrors (PCM's) that reflect waves of a 

particular polarization ( usually a linear polarization). In spite of the usefulness 

of the ordinary PCM's, however, they cannot be applied to the cases where 

the distortions include optical anisotropies by which incident waves suffer from 

polarization scrambling as well as phase distortions. This is caused, for example, 

by the induced birefringence in high power ( e.g., Nd-doped glass) optical amplifier 

stages, and by the strong intermodal coupling in multimode fibers. These call for 

phase conjugation of both polarization components of the beam. 

In the late 1970's researchers in the Soviet Union theoretically and 

experimentally studied the possibilities of complete polarization and spatial 

wavefront reversal in stimulated Brillouin scattering (SBS) [6.2-5], degenerate four

wave mixing (DFWM) [6.6], and stimulated scattering of the Rayleigh line wing 

[6.7], for correcting wavefront and polarization distortions caused in high power 

optical amplifier stages. They found that the complete reversal of an arbitrary 

polarized wave can be achieved by means of the tensorial property of the phase 
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conjugation process via DFWM, whereas the usefulness of the above stimulated 

scattering processes is limited to the reversal of depolarized pump waves [6.8]. 

Subsequently the experimental demonstrations of complete reversal were conducted 

using DFWM in liquid CS2 [6.9,10], Nd-doped glass [6.11], sodium vapor [6.12], and 

biochrome films [6.13]. Phase conjugation using self-pumped photorefractive PCM's 

[6.14,15] was also used for the complete reversal of an arbitrary polarized wave [6.16]. 

In this method, which is similar to Basov's scheme [6.5], an arbitrary polarized 

incident wave is decomposed into two orthogonally linear polarized components. 

The polarization of one of the two is rotated by 90° and the two components, now 

similarly polarized, are then reflected by a single self-pumped photorefractive PCM 

[6.17], and their phase-conjugated waves are coherently recombined into one wave. 

Consequently this method results in the vectorial wavefront reversal, provided that 

the phase-conjugate reflectivities of these two components are exactly equal both 

in amplitude and phase (i.e., the net reflectivity is scalar [6.18]). 

A new and fundamentally different scheme for vector phase conjugation was 

reported by Kyuma et al. [6.19]. This scheme, which consists simply of a tandem 

combination of a multimode fiber and a self-pumped photorefractive PCM (see 

also Fig. 6.1), uses the inherent strong intermodal coupling (i.e., modal dispersal) 

in the fiber combined with phase conjugation of one polarization component of 

the depolarized field emitted from the fiber. It will be shown in this chapter 

that since the polarization and spatial information of an arbitrary polarized input 

wave is distributed via the strong intermodal coupling among all the fiber modes, 

this scheme permits vector phase conjugation in spite of the elimination of one 

polarization ~omponent upon phase conjugation. This is due to the fact that 

the surviving single polarization modes contain sufficient information about the 

missing modes so that the latter are reconstructed during the reverse propagation 

and the intermodal coupling in the fiber. The fact that modal scrambling plays a 
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role in phase conjugation of polarized beams was speculated several years earlier 

by Dunning and Lind [6.20]. Following the initial demonstration the properties 

of this phase conjugation process have been investigated both theoretically and 

experimentally [6.21-26]. Yariv et al. [6.21] explained the experimental observation 

of almost perfect polarization recovery by means of a model based on modal 

dispersal of input information and modal averaging upon phase conjugation. The 

first experiment [6.19] employed a spatial filter that limited the number of fiber 

modes excited at the inputs. The effect of increasing the number of input fiber 

modes on the fidelity of the phase conjugation was elucidated by several studies 

[6.22-26] where it was shown that nearly half the reflected power was not truly 

phase conjugated and was spread more or less among all the fiber modes ( of both 

orthogonal polarizations), contributing a "white" spatial and polarization noise 

background. The detailed theoretical and experimental studies on these subjects 

will be discussed in this chapter. In parallel with these studies, a number of new 

applications have also been demonstrated [6.27-31]. Some of them will be described 

in the next chapter. 

6.2 Theory 

6.2.1 Basic physical processes 

The theoretical models of polarization and spatial information recovery are 

based on modal dispersal of input information and modal averaging upon phase 

conjugation. In this section we describe a general theoretical treatment by means of 

a coherency matrix formalism [6.26]. The theory treats the analysis of the fidelity of 

polarization and spatial information recovery as a function of input-beam launching 

conditions. 

The physical processes considered are twofold:(!) a (time-reversed) phase 

conjugation process, which is deterministic in nature and permits vector phase 
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conjugation, and (2) a scattering process in the fiber, which results from partial 

phase conjugation of the mode-scrambled field and is seemingly completely 

random(or stochastic) but is in fact constrained by the unitarity condition of the 

scattering matrix(i.e., the energy conservation condition). The latter becomes a 

noise source. In this case we take the coupling strength in the scattering process 

to be essentially the same between all the fiber guided modes, but its relative 

phases to be random under the constraint of the unitarity condition. In the 

analysis of the polarization properties of conjugate fields, modal averaging over 

phase mismatched fields after phase conjugation is used. (Unlike the treatment 

of the Jones calculus for random media [6.32], a statistical ensemble average over 

the coherency matrix elements is not applied because one fiber is involved in phase 

conjugation experiments.) This treatment may be analogous to the phase-matching 

condition in the coupled-mode theory [6.33]. In the SNR treatment, however, the 

analysis is simplified by using an a priori knowledge of the statistical properties 

of the (speckle) noise field instead of considering the statistical properties of the 

scattering matrix and its relation to the properties of the noise field. This is done 

by assuming a probability density function of the noise field in the free space, and 

the SNR can then be obtained from the root-mean-square (rms) value of (statistical) 

intensity fluctuations of the noise field. 

With the above treatment the present analysis enables us to evaluate 

theoretically the properties of the fiber-coupled PCM and to give a criterion for 

the limitation of the use of the fiber-coupled PCM. 

6.2.2 Basic formulation using scattering matrices 

Figure 6.1 is a schematic diagram of the fiber-coupled PCM. An image-bearing 

incident field E(l) of an arbitrary polarization is launched into a multimode modal

scrambling fiber which is assumed to be linear in response to optical fields with 
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Multimode Fiber 

0 Polarizer PCM 

Figure 6.1 Schematic of the fiber-coupled PCM for polarization and spatial 

information recovery. The (polarization and modal-scrambling) multimode 

fiber is assumed to be linear with negligible loss. 
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negligible loss. Because of the strong intermodal coupling in the fiber, the input 

power initially coupled into any one fiber mode is distributed essentially uniformly 

among all the other spatial and polarization modes during propagation, and the 

outcoupled beam E(2) from the fiber exhibits speckled spatial structures and nearly 

complete depolarization. The PCM, e.g., a self-pumped PCM [6.14,15], is placed 

after a polarizer (set to the x direction) and phase conjugates only the x component 

of the field E(2 ). The phase-conjugate field E(3) retraces the original path and is 

launched in reverse into the output side of the fiber. After the propagation and 

the strong intermodal coupling in the fiber, the left-traveling field forms the output 

field E(4) at the input end of the fiber. 

The input field E(l) is expressed, in terms of the fiber guided modes, as 

N 

E(l) = """' (a< 1>e + a< 1>e ) L.J zn zn yn yn 

n.=l 
(1) 

azl 

(1) 
( A (1)) azN - (1) = A!l) ' ayl 

(6.1) 

( 1) 
ayN 

where N is the total number of the fiber guided modes in one polarization, ezn. is the 

nth transverse fiber guided mode, which is predominantly x-polarized, eyn is the nth 

y-polarized mode, and A~1
) and AL1

) are column vectors of rank N whose elements 

are the complex amplitudes ai~ and aL~, respectively. Note that we neglect the 

coupling into .the other possible fiber modes (e.g., leaky and radiation modes) for 

simplicity of the analysis. The propagation left to right through the fiber, including 

the intermodal coupling, can be expressed by the following matrix form: 

(6.2) 
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where M is the scattering matrix of the fiber in the forward direction given by 

(6.3) 

in which M;,i (i,j = x, y) are N x N submatrices. The field E(2) is then passed 

through the polarizer and phase conjugated by the PCM, so the field E(3) is given 

by 

(6.4) 

where r is the PCM amplitude reflectivity and the matrix C, representing the 

removal of the y polarization by the polarizer, is given by 

(6.5) 

where I is an N x N unit matrix. A more general form of the matrix C will be 

considered in Chapter 7 where nonreciprocal and/ or amplitude distortions prior to 

the PCM are taken into account. 

The output field E(4) is expressed as 

(6.6) 

where M' is the scattering matrix in the backward direction. Note that a mode

independent (scalar) reflectivity r of the PCM is assumed in Eq. (6.6). If a mode

dependent reflectivity is taken into account, r should be replaced by a 2N x 2N 

diagonal matrix. This effect will be considered later in the next subsection. 

In what follows we examine the properties of the scattering matrices and express . 
the fields E(2 ) and E(4) in terms of the scattering matrix elements. Firstly because 

of the conservation of the energy in a lossless linear fiber, we require the following 

unitarity condition: 

MtM= (I 0) 
O I ' 

(6.7) 
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where t denotes the Hermite transpose operation. By using Eq. (6.3), Eq. (6.7) 

can be translated into the following sum rules: 

and 

fll \ fll \* , fll \ f'Ar \* _ ~ 
\.J.Y.Lyy}ki\.J.Y.Lyy}k'i T \.lY.l.y:,;}ki\1Y.l.y:,;)k'i - Vkk', 

where henceforth summation over repeated indices is understood. 

(6.8a) 

(6.8b) 

(6.8c) 

(6.8d) 

(6.9a) 

,,. "o'' \O.~ J 

(6.9c) 

(6.9d) 

Secondly consider the ideal case of vector phase conjugation by the PCM 

with the polarizer removed (i.e., the case where the field E(2) is completely phase 

conjugated). In this case, viewing the fiber as some arbitrary lossless linear dielectric 

medium, the time-reversal symmetry of any field applies and we must recover the 

original field E(4 ) = r(E( 1))*. This happens when 

M'M* = ( ~ ~) · (6.10) 

From Eqs. (6.7) and (6.10) it is found that 

(6.11) 

where t denotes the transpose operation. Using the submatrices given in Eq. (6.3), 

Eq. (6.11) can be rewritten as 

(6.12a) 
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(6.12b) 

(6.12c) 

(6.12d) 

Here we note that the elements of the scattering matrices are interrelated by the 

constraint given by Eqs. (6.8), (6.9) and (6.12), which are used to find the results 

shown furtheron. 

6.2.3 Polarization recovery 

a) Spatial and Polarization Properties of the Field E(2) 

With the relation E(2) = ME(l) the correlations between the 2N modes of the 

field E(2) can be expressed by means of the following 2N x 2N Hermitian coherency 

matrix: 

where< 

given by 

(6.13) 

> denotes the time average and Li;) (ij=x,y) are N x N matrices 

L (2) - M £( 1)M t M £( 1)M t M £(1) tM t M £( 1)M t (6 14 ) xx - .xx :i::i: .:i::i: + xx .:i:11 .:i:11 + :i:11 .:i:11 xx + :i:11 1111 :i:11 ' • a 

L (2) M L( 1)M t M £( 1)M t M £(1) tM t M £( 1)M t (6 14b) 
1111 = 11:i: :i::i: 11:i: + 11:i: .:i:11 1111 + 1111 :i:11 11:i: + 1111 1111 1111 ' • 

L (2 ) - M £( 1)M t M £( 1)M t M £( 1) tM t M £( 1)M t (6 14 ) 
:i:11 - :,;:,; :z;:z; 11.x + .xx .:i:11 1111 + :i:11 :i:11 11.x + .:i:11 1111 1111 ' • C . 

in which £( 1) =< E( 1)E(l)t > denotes the correlations between the 2N modes of 

the input field E(l). We note that the effect of possible decrease of the temporal 

coherence of the light source at the output, which is due to the modal dispersion in 

the fiber [6.34], is not taken into account in the present analysis. This implies the 
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assumption of a coherence time of the light source that is long enough to neglect 

the above effect. 

We now introduce the following "modified" 2 x 2 coherency matrix: 

( 

(2) 

J (2) = Jxx 
- (2)* 

Jxy 
(6.15) 

Since the partition of the total power among the x and y polarization components 

in the field E(2) is of interest, each element Ji~~) (i,j = x,y) in Eq. (6.15) is defined 

as 

N 

= (const.) x :~::)L!J))kk 
k=l 

= (const.) x Tr(L!J)). (6.16) 

In Eq. (6.16) Tr denotes a trace of a matrix, and the orthogonality of the fiber modes 

[6.35] is used, i.e., JJO'eimeindxdy =(const.) X bmn (i, j = x, y; m, n = 1, · · ·, N), 

where u denotes the whole fiber cross section and a circular fiber is assumed. It is 

seen from Eq. (6.16) that the off-diagonal elements of L1~, L1~ and Li~ do no 

contribute to J(2) on the detection of the field E(2) over u. We note that, unlike 

the usual definition of the coherency matrix [6.36], the elements of J(2) have the 

dimensionality of power [hereafter, however, we omit the constant in Eq. (6.16) for 

brevity]. 

For the sake of simplicity we consider the x-polarized input here. Then, with 

L1~ = Li~ =. O, we can write the diagonal elements of the submatrices LiJ) in Eq. 

(6.13) as follows: 

(L1~)ii = (Mxx)ik(Mxx)tk,(L1~)kk' 

= /(Mxx)ik/ 2 (L1~)kk + (Mxx)ik(Mxx):k,(L1~) kk' , 
(k-c;t:k') 

(6.17a) 
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(6.17b) 

(6.17c) 

where summation over repeated indices [but not over i in Eqs. (6.17a) - (6.17c)] 

is again understood. At this point, because of the strong intermodal coupling in 

the fiber, the amplitudes of the matrix elements Mii, i.e., the coupling strength 

between modes, are assumed to be essentially the same ( or symmetrically and 

widely distributed with respect to the diagonal elements Mii), while their relative 

phases are distributed essentially uniformly over the -1r - +1r interval (henceforth 

we refer this to as the random-coupling approximation; see Appendix B). Then we 

see from Eqs. (6.17a) - (6.17c) that the input power initially coupled into any one 

fiber guided mode is redistributed during propagation among all the other fiber 

guided modes, including those of the orthogonal y polarization. Consequently the 

out-coupled different spatial modes possessing random phases interfere with one 

another at any point, resulting in the speckled spatial structures in the free space. 

The polarization state of the field E(2) can be obtained using J(2). Introduce 

the following parameters: 

(6.18a) 

(6.18b) 

N 

d = L(Li~)kk, (6.19) 
k=l 

2akk' (Li~) kk' 
q = (k;ck') 

d 
(6.20a) 

and 

(6.20b) 
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By substituting these parameters into Eqs. (6.15) - (6.17) together with the sum 

rules from Eqs. (6.8), (6.9), and (6.12), it is found that 

JJ;> = akk(L1~)kk + ½qd, 

JJ;) = (1 - ½q)d - akk(L1~)kk, 

1 
J(2) = -ud 

x11 2 • 

(6.21a) 

(6.21b) 

(6.21c) 

Here we note that the terms a ,.,., and bkk' in Eqs. (6.21a) - (6.21c) are much 
(le",.,) 

smaller than akk due to the modal averaging (see Appendix B), and that d is the 

total input power to the fiber. The Stokes parameters (so, s 1 , s2 , s3 ) and the degree 

of polarization (P(2)) of the field E(2) [6.36} are then given by 

and 

so = J(2) + J(2) = d 
- xx 1111 ' 

s2 = JJ;) + Ji;> = [Re(u)]d, 

ss = i(Ji;> - JJ;>) = [Im(u)]d, 

p(2) = ✓ 8~ + 8~ + 8~. 
So 

(6.22a) 

(6.22b) 

(6.22c) 

(6.22d) 

(6.23) 

By using the random-coupling approximation so that akk ~ 0.5 for any k, p(2) is 

reduced to 

(6.24) 

and the power emitted from the fiber at each polarization is given by 

1 JJ;> = 2(1 + q)d (6.25a) 

and 

JJ;> = !(1 - q)d. 
2 

(6.25b) 
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We see that the residual polarization of the field E(2) is due to the parameters q 

and u, and is in general much smaller than unity in the strong intermodal coupling 

regime. For the complete modal scrambling (i.e., q, u = 0) the output power is 

equally divided between both orthogonal polarizations, i.e., JJ;) = JJ;) = d/2, so 

that the field E(2) is completely depolarized, i.e.,P(2) = 0. As will be seen from the 

experimental results in the next section, the field E(2) exhibits spatial distortions 

and nearly complete depolarization due to the strong intermodal coupling in the 

fiber, thus verifying the random-coupling approximation and the modal averaging 

assumption. However we note that the parameters q and u will play a role in the 

fidelity of the reconstruction of the original information, as discussed below. 

b) Spatial and Polarization Properties of the Field E( 4) 

Here we will show that tJ:ie spatially distorted and depolarized field E(2) can 

be corrected, under certain conditions, even when only one polarization component 

of the field E(2) is phase conjugated. 

First rewrite Eq. (6.6) as 

(6.26) 

where the scattering matrix 8 in the round-trip propagation is given by 

8 = M'CM*. Here we again use the random-coupling approximation, i.e., 
N N 

Ll(Ma:a:)u,12
, Ll(Ma:11 )ikl2 ~ 0.5. Then 8 = 81 + 82, where 

1 (J 0) 81 = 2 O I ' 

and 

82 = ( ~ i,), 
in which D, D' and Qare N x N submatrices given by 

(i j) 
(i =I= j) 

(6.27a) 

(6.27b) 

(6.28a) 
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The field E(4) given by Eq. (6.26) becomes 

(i j) 
(i =I;') (6.28b) 

(6.28c) 

(6.29) 

where V = rS2{E( 1))*. We note that the decomposition of S given in Eq. (6.26) 

leads to the first term in Eq. (6.29), which corresponds to the true phase-con;'ugate 

replica of E(l), and the second term in Eq. (6.29), which corresponds to the noise 

that possesses random phases in the field E(4). 

Figure 6.2 shows a diagramatic explanation of the formation of the field E( 4). 

The x-polarized ith fiber guided mode excited initially at the input plane of the fiber 

is coupled into all the fiber guided modes at the output in the forward direction. 

After the elimination of the y-polarized component and phase conjugation of the 

x-polarized component, each mode at the output plane is, again, coupled into all 

the fiber guided modes at the input plane in the backward direction. In Fig. 6.2(a) 

the (time-reversed) paths in the backward direction are exactly the same as those 

in the forward direction, resulting in a constructive coherent superposition of the 

scattered fields at each mode at the input plane. This constructive interference 

is expressed by the scattering matrix S 1, and the resulting true phase-conjugate 

field, corresponding to the term r(E( 1))• /2 in Eq. (6.29), has almost one half of 

the total reflected power. On the other hand, in Fig. 6.2(b) the remainder of the 

paths in the b~ckward direction are random and different from those in the forward 

direction. This random interference at each mode at the input plane is expressed 

by the scattering matrix S2 , and the resulting field forms the noise V given in 

Eq. (6.29). The total power of this noise is nearly the same as that of the true 

phase-conjugate field, but, as we will see later, it is distributed essentially uniformly 
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Figure 6.2 Diagramatic description of the formation of the field E(4):(a) 

deterministic phase-conjugate paths that result in true phase conjugation of 

the input'field E( 1), (b) randomly scattered phase-conjugate paths that result 

in the noise. 
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among all the fiber guided modes, independently of the input-beam numerical 

aperture (N.A.). For this reason the noise power per mode is much smaller than 

that of the true phase-conjugate field, provided that the input field initially excites 

only a small fraction, say f, of the fiber guided modes (i.e., that a small input-beam 

N.A. is used) and that the detection is made within such a small input N.A. In this 

case we can, to the order off, neglect such noise contributions Vin Eq. (6.29), and 

the detected part of the field E(4) can be the true phase-conjugate replica of the 

input field E( 1). [Also see Appendix C for the qualitative proof of Eq. (6.29).] It is 

interesting to note that the above round-trip (time-reversed) scattering process is 

reminiscent of localization and coherent backscattering of photons in disordered 

media [6.37], which has recently attracted a great deal of attention mainly in 

connection with analogous phenomena on Anderson localization of electrons [6.38]. 

The correlations between the 2N modes of the field E(4) can also be expressed 

by means of the following 2N x 2N Hermitian coherency matrix: 

£(4) =< E(4)E(4) t > 

= lrl2SL(l)* st 

= lrl2[ !L(l)* + S2L( 1)* 82 t + !{S2L(1)* + £( 1)* 82 t)]. 
4 2 

(6.30) 

In the right-hand side of the last equation above, the first term corresponds to a 

time-reversed polarization state of the input field E(l), while the rest of the terms 

correspond to the noise. It is again sufficient to consider the case of the x-polarized 

incidence. In this case the noise terms in Eq. (6.30) can be expressed in terms of 

the submatrices D and Q given in Eq. (6.27b) as . 

{6.31a) 

(6.31b) 
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Each diagonal element in Eq. (6.31a) can be rewritten as 

(Qt Li~* Q)ii = 1Qul2 (Li~)u + Q,tQl'i(Li~) :,~;,>, 

(DLi~* Q)ii = DilQ1 1i(Li~)i1 1 , 

(6.32a) 

(6.32b) 

(6.32c) 

where the summation over l and l' is understood. In the above expressions Eq. 

(6.32a) corresponds to the noise power of the x-polarized ,-th fiber guided mode of 

the field E( 4). This consists of the interference between the other initial modes 

that are finally coupled into the x-polarized ith fiber guided mode through different 

scattering paths after the round-trip propagation. Likewise Eq. (6.32b) corresponds 

to they-polarized noise power of the ,-th fiber guided mode. Each diagonal element 

in Eq. (6.31b) can also be rewritten as 

(DLC1)* £C 1)*nt) .. - R [D· (LC 1))* J :z::z: + :z::z: n - 2 e ,l :z::z: li , (6.33a) 

(6.33b) 

where the summation over l is again understood. Equation (6.33a) corresponds to 

the interference between the true phase-conjugate field and the noise field at the 

ith fiber guide mode of the x polarization. This term is related to the residual 

polarization of the field E(2). [Note that Dil = ail for i =j:. l and therefore the 
N 

total power of this noise contribution, L[ DL1;}* + L1;}* nt]u/2, is equal to qd/2, 
i=l 

see Eqs. (6.18a), (6.20a), and (6.28a).] We also note that this noise is distributed 

only inside the input-beam modal distribution (L~~)ii, i.e., this noise is localized 
.. 

in space and polarization (in this example, x-polarized). 

In order to estimate the ratio of this noise power to the true phase-conjugate 

beam power per mode, we consider the simple form of the scattering matrix 

elements, Mij = 1/,Jwexpi(</>ij) [6.21]. Then, by inserting this form into Eqs. 
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(6.32a) -(6.32c), we immediately see that (DLi~* Dt)ii and ( Qt Li~* Q)ii are of the 

order of d/N independently of the mode number i, where the total input power d 

is given by Eq. (6.19a). It is therefore seen that the x- and y-polarized noise power 

given by Eqs. (6.32a) - (6.32c) do not differ from each other significantly at any ith 

mode, so the noise power of the field E(4) is almost essentially uniformly distributed 

among all the fiber guided modes, independently of the input-beam N.A., i.e., of 

the distribution of (Li~)ii• We will see below that this noise is nearly completely 

depolarized. Therefore we refer this to as "the depolarized noise". The ratio of 

this noise power to the true phase-conjugate beam power per mode is of the order 

of Mo/N (Mo is the number of the fiber guided modes that are excited initially). 

In addition, the noise given by Eq.(6.33a) is of the order of lqld/M0 , where q is 

given by Eq.(6.20a). The ratio of this noise power to the true phase-conjugate 

beam power per mode is of t~e order of lql. Although this noise is x-polarized and 

resides within the mode number Mo, its spatial structure is distorted because of 

the random phases. Therefore we refer this to as "the polarized noise". These two 

main noise contributions can be, however, negligibly small when M0 /N ~ 1 and 

lql ~ 1, that is, when a small input N.A. is used and the field E(2) is nearly 

completely depolarized (i.e., in the strong intermodal coupling regime). 

We are now in a position to evaluate quantitatively the polarization recovery 

of the input field E(l) as a function of input-beam N.A.'s. Suppose that the whole 

power of the field E(4) is detected. Then the polarization state of the field E(4) is 

expressed by means of the following 2 x 2 modified coherency matrix of the field 

E(4): 

(6.34) 



where 

and 
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J(l) = (d 0) 
0 0 ' 

J(4} = ( Tr(Li~) - ¼lrl
2
d Tr(Li~)) . 

noise ( ( 4) t) ( ( 4)) Tr Lxy Tr Lyy 

(6.35a) 

(6.35b) 

After some calculations using Eqs. (6.30) - (6.32) together with the sum rules from 

Eqs. (6.7) and (6.11), each component of Jl!lse can be written as 

where 

( (4) ) - ( ! ) I 12 Jnoise xy - 0:2 + 
4 

vd r , 

0:2 = Tr(DLi~* Q), 

2(Mxx) kl ( Mxy) ki ( Li~)il 
v= d ' 

and the total noise power PN is found to be 

(6.36a) 

(6.36b) 

(6.36c) 

(6.37a) 

(6.37b) 

(6.37c) 

(6.38) 

where q (lql < 1) is given by Eq. (6.20a). It is seen from Eqs. (6.34) - (6.38) that 

almost one ha.If of the reflected power (i.e., lrl 2 (1 + 2q)d/4) is from the noise and 

the rest is from the true phase-conjugate beam. Since the polarization noise terms 

(given by o:1irl 2 for the x polarization and by (d/4- o:1)lrl2 for they polarization) 

can be regarded as the probabilities that the initial l th mode of the x polarization is 

randomly coupled into all the other modes after the round-trip propagation, these 
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two terms may be almost equal, and then we have a1 ~ d/8. Consequently we can 

write the 2 x 2 coherency matrix of the noise as 

J(4~ ~ >. ( 1 + 4q 2v) 
noise 2v* 1 ' (6.39) 

where >. = lrl 2d/8 and we have neglected a2 because it is much smaller than vd/4 

due to the complete phase mismatching. Note that, since v is the same order 

of magnitude as that of q and u, most of the noise expressed by Eq. (6.39) is 

nearly completely depolarized, except for the excess x-polarized noise denoted by 

4q>.. From Eqs. (6.34) - (6.39) the degree of polarization of the total integrated 

intensity of the field E(4) is then given by 

p(4) ~ 1+2q 
- 2(1 + q)' (6.40a) 

and the reflectivity R , defined as a ratio of the x-polarized reflected power to the 

input beam power for the x-polarized input, is given by 

(6.40b) 

where the definition of the degree of polarization is given by Eq. (6.23) and the 

second order terms in q and v are neglected. It is seen from Eqs. (6.40a) and 

(6.40b) that p(4) and R depend on the residual polarization of the field E(2), i.e., 

nonzero values of q. Furthermore the degree of polarization recovery p [6.19], which 

is defined as p = (JJ!) - JJ!))/(JJ!) + JJ!>), i.e., the recovery of the linearly 

x-polarized component, is found to be equal to p(4) to the first order in q and 

v. Likewise if a lineary y-polarized light is used as an input, the same results 

with q = 2D~1(LL~);,/d can be obtained. Finally if the field E(2
) is completely 

depolarized (i.e., q = v = 0), it is found that 

(6.41) 
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so that the noise field in the field E(4) is also completely depolarized and one half of 

the reflected power is equally distributed among all the fiber guided modes of both 

polarizations. In this case the degree of polarization p(4 ) and the reflectivity R of 

the total integrated intensity of the field E(4) become 0.5 and 3jrj 2 /8, respectively. 

In practice, however, the input field E(l) excites only a fraction of all the fiber 

guided modes (i.e., the input-beam N.A. is smaller than the fiber's N.A.), as was the 

case in the first experimental observation [6.19]. In this case the detection is usually 

made only within the same (input-beam) N.A., and therefore the total noise power 

within the detection area is smaller than the total noise power discussed above. 

To see the effect of the input-beam N.A. on the degree of polarization p(4), we 

introduce the following modal partition functions for the true phase-conjugate field 

and the noise field, respectively: 

0
. = true phase conjugate power in the ith mode 
' - 2.X 

(L(l)) .. 
:z::z: n 

d 
(6.42a) 

, . = polarized noise power in the i th mode 
11., - 4q.X 

_ Re(DL1~t)ii 
- (1) 

(6.42b) 

A
. = depolarized noise power in the ith mode of each polarization 
,- .X 

(6.42c) 

Using these partition functions and the maximum mode number Mon the detection, 

and then by diagonalizing J(4), we can express the polarized power Ppol. and the 
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depolarized noise power PM as 

M M 

PP°'·= 2.x(Lei + 2qL~), 

and 

i=l i=l 

M 

PM= 2,\L~r:, 
i=l 

(6.43a) 

( 6.43b) 

where we neglect the contributions of the off-diagonal elements in £(4) and also 

the second order terms in q and v. Then the degree of polarization p( 4) and the 

reflectivity R on the detection are given by 

p(4) = Ppo1. 
P,,o1. + PM 

1 + 2q/31 
(6.44a) 

and 
1 M 

R = 8 jrj2~0r:(2 + 4qf31 + /32), 
i=l 

(6.44b) 

where 

(6.45a) 

and 

(6.45b) 

It is seen that p(4) is again equal to the degree of polarization recovery p, and p(4) 

and Rare reduced to Eqs. (6.40a) and (6.40b), respectively, as M -+ N. 

So far we have treated r as a scalar value, i.e., r is independent of the spatial 

structure of the field E12
). Since the field E(2) emitted from the fiber has a large 

field of view, the fidelity of phase-conjugate field E(3) reflected by the PCM may 
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be degraded because of the spatial frequency dependence of a phase-conjugate 

reflectivity of the PCM. To take this possible degradation into account, a scalar 

quantity r should be replaced by a 2N x 2N diagonal matrix. In what follows we 

consider the effect of this possible degradation on the polarization recovery. 

We first decompose the field E(3 ) into the true phase-conjugate field Ei2 ) * 

multiplied by a scalar reflectivity r0 and the possible "wrong" phase-conjugate field 

E};): 

(6.46) 

where [r1 ] is a mode-dependent reflectivity that is a 2N x 2N matrix. The explicit 

form of [r1 ] may depend on a type of the PCM. We then identify the scalar 

reflectivity r used so far as an effective scalar reflectivity such that 

We then define the efficiency 1J (0 < 11 ~ l) as 

_ lrol2 ,,=w, 

(6.47) 

(6.48) 

which denotes a fractional power of the true phase-conjugate field Ei2> in the total 

power of the field E(3 ) reflected by the PCM. For the output field E(4 ) we can write 

[see Eq. (6.26) for comparison] 

E(4) = r0 SE( 1)* + M'E},,3) 

= E(4) + E(4) - t w • (6.49) 

We further assume that each mode of the wrong phase-conjugate field Et4) has no 

correlation to the other modes (i.e., the field Et4) is completely depolarized), so that 
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we can neglect the interference between E!4
) and Et4) and the residual polarization 

of EL4
) (and therefore 2Re{Tr[r0Ei2)*EL3)t]}). Under these assumptions we may 

express J(4) as 

2v) ( 1 + q O ) 
1 + 2(1 - ,, ).\ 0 1 + q ' {6.50) 

where we have assumed that the detection of the whole power of the field E(4) and A 

is again given by lrl 2 d/8. From relation {6.50) we see that the true phase-conjugate 

beam power is decreased by the factor 17 but the depolarized noise power is increased 

because of the field EL4
). Consequently we can write the following general formulas 

for p(4) and R [see Eqs. (6.44a) and (6.44b) for comparison]: 

p(4) = 1 + 2q/31 
1 + 2q/31 + [1 + 2(E - 1)(1 + q)]/32 

(6.51a) 

and 
1 M 

R = BE lrl2~8.:{2 + 4q/31 + [1 + 2(E - 1)(1 + q)]/32}, 
i=l 

(6.51b) 

where E = ,,- 1 , and we have assumed that the additional depolarized field EL4
) has 

the same partition function as 6.i. 

Consider now two specific forms of the modal partition functions. A uniform 

distribution of the depolarized noise field gives 

In the case of a gaussian distribution, a discrete modal intensity can be replaced by 

a continuous <?Ile for a large N, that is, 

(6.52) 

where Id is the average depolarized noise intensity in each polarization in the 

detection plane (which is usually a far-field plane of the fiber end), t/; is an effective 
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diameter of the depolarized noise intensity distribution in the detection plane, and 

10 = lrl 2 d/tt,2
1r so that JJ~

00 
Iddxdy = lrl 2d/8. We then find that 

M 

Lil,:== 1 - exp[-2(¢/¢0 )
2 /(t/;/¢0 )

2
], (6.53) 

i=l 

where 

<Po = the input beam diameter corresponding to N 

and 

<P = the input beam diameter corresponding to M, 

where the parameter (<P/<Po)2 is equal to M/N and to (input-beam N.A./fiber's 

N.A.) 2 [6.39]. 

Figure 6.3 shows the theoretical curves of (a) R/ Ro (Ro = lrl2d(l + 2q)/4E) 

and (b} p(4 ) as a function of (<P/<Po) 2 (i.e., the input-beam N.A.) for uniform and 

gaussian( fP / <Po = 0.5) distributions where, according to the experimental situation, 
M 

M=Mo is used so that LE>,: = 1 and /31 = 1, i.e., the detection aperture is the 
i=l 

same as the input-beam N.A. Three values of q's (q = 0, ±0.035) are used to see 

the effect of the residual polarization of the field E(2). These values correspond to 

p(2) = 0 and p(2) = 0.05, respectively, when lql == lul is assumed [see Eq. (6.24)]. 

Here T/ = l(E = 1) is used, i.e., the PCM faithfully phase conjugates the field E12
). 

It is seen that p(4) decreases as (<P/<Po) 2 increases. Note, however, that when the 

input-beam N.A. is much smaller than the fiber's N.A. (i.e., (<l>/¢0 ) 2 <t:1), then 

p(4) is close to unity independently of q, i.e., almost complete polarization recovery 

is possible. This is because the noise power is distributed among all the fiber guided 

modes so that for small input-beam N .A. 's, the noise power occupied within such 

a small fraction of all the fiber guided modes can be negligible compared to that of 

the true phase-conjugate beam. We see that the behavior of p(4) and R is sensitive 

to the forms of the noise distribution and the values of q's. When q is negative, the 
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Figure 6.3 Theoretical curves of (a) the normalized reflectivity R/ Ro and 

(b) the degree of polarization p(4 ) as a function of (¢/¢0 ) 2 for the uniform 

distribution and the gaussian noise distribution ( t/J / ¢0 = 0.5). The values 

q = 0, ±0.035 and r, = 1 are used. 
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values of R and p(4 ) are higher than those for q ~ 0. This is because the residual 

x-polarized power is increased independently of q and Rolq>O > Rolq<O• We also 

see that as (¢/¢0 ) 2 approaches unity, R/Ro increases up to 1.5 while p(4 ) decreases 

down to 0.5 for q = 0. 

6.2.4 Spatial information recovery 

In this subsection we consider the SNR of the reconstructed spatial information 

in the present phase conjugation process. As was mentioned at the begining of this 

section, we employ the statistical treatment here. Goodman [6.40] analyzed the 

SNR, which is defined as the ratio of the deterministic image intensity I., to the rms 

value u1 of the total image intensity at the same point, in a reconstructed image by 

a hologram. In our case it is necessary to derive the expression for the rms value of 

speckle noise intensity that results from the depolarized noise field reflected from 

the fiber on phase conjugation. In addition, this speckle field, possessing both 

polarizations, is coherently added to the true phase-conjugate field, which acts as 

the x-polarized uniform coherent background signal. 

The statistical properties of the sum of speckle patterns with coherent 

background intensities were studied theoretically by Ohtsubo et al. [6.41] for 

uncorrelated, partially developed speckles and by Steeger et al. [6.42] for partially 

polarized, partially developed speckles. For the case of speckles from a multimode 

fiber, Steeger et al. [6.43] found experimentally that the partially polarized speckle 

field of a multimode fiber follows a negative exponential distribution in each linearly 

polarized speckle intensity and the speckle field is spatially stationary in its intensity 
. 

and polarization statistics when all the fiber modes are equally excited. From these 

results we may calculate the SNR in our case (for simplicity we put q = 0 and r, = 0 

in the following calculation). Before the calculation, the following features of the 

field E(4) should be repeated: 
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(1) The true phase-conjugate field acts as a coherent background intensity I., in 

the x-polarized intensity. 

(2) The speckle noise field is completely depolarized so that there is no correlation 

between two orthogonal x- and y-polarized components, and that such speckle 

intensities in both polarizations are equal at one point in the detection plane. 

(3) Each polarized component of the speckle noise field is fully developed and 

therefore its intensity statistics obey a negative exponential distribution. 

First consider the x-polarized intensity that is the sum of fully developed 

speckle intensity and coherent background intensity. The probability-density 

function of such intensity is well known and is called a modified Rician density 

[6.44]. Its characteristic function [6.41] is given by 

( . ) 1 [ I., I., ] ~I.. iv = . - exp - ___ + _ . _ , 
(1 - 1vlnoi11e) Inoi11e Inoise(l - IVlnoi11e) 

(6.54) 

where !noise is the ensemble-averaged speckle noise intensity of one polarization at 

one point in the detection plane. For the y-polarized intensity, which is only fully 

developed speckle intensity, its characteristic function can be obtained from Eq. 

(6.54) with I.,=O: 
1 

~1 11 (iv) = ----
(1 - ivlnoise) · 

(6.55) 

Since there is no correlation between two orthogonal speckles, it follows immediately 

that the total characteristic function of interest is the product of Eqs. (6.54) and 

(6.55): 

( . ) 1 [ I., I., ] 
~I iv = ( . _ )2 exp----+ - ( . - ) . 

1 - IV Inoi11e Inoise Inoise 1 - IV Inoise 
(6.56) 

The rms noise intensity is then given by 

(6.57) 
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It is seen from Eq. (6.57) that the rms noise intensity is expressed by Inoise and the 

interference term between the true phase-conjugate field and the depolarized noise 

field. The SNR can be written as 

(6.58) 

where 1 = Ia/2lnoise is the beam ratio parameter [6.44]. If an analyzer (set to the 

x-polarization direction) is used to measure only the x-polarized component of the 

field E(4), then the SNR can be found straightforwardly to be 

(6.59) 

To illustrate the dependence of these SNR's on the input-beam N.A., we 

identify Ia = JrJ 2 d/(1r¢2 ) [i.e., the input is assumed to be a two-dimensionally 

uniform beam with the diameter 4> so that the total power of the true phase

conjugate beam is JrJ 2d/4. See also Eq. (6.34)] and !noise is given by JrJ 2 d/(2,r¢~) 

for a uniform distribution and by Id [see Eq. (6.52)] for a gaussian distribution. 

Then the beam ratio parameter I at the center of the signal beam is given by 

for a uniform distribution; 

for a gaussian distribution. 

We therefore see the parametric dependence of the SNR on p(4) given by Eq. 

{6.44a) through (4>/4>o) 2 (i.e., an input-beam N.A.). 

Figure 6.4 shows the dependence of the two SNR's, as given by Eqs. (6.58) and 

(6.59), on (4>/4>o) 2 at the center of the true phase-conjugate beam for a uniform and 

a gaussian( ¢ / ¢0 =0.5) distributions. It is seen that for the gaussian distribution the 
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Figure 6.4 Theoretical curves of the two SNR's, (SNR):i:11 , and (SNR):i:, at the 

center of the signal beam as a function of (<l>/</>0 ) 2 for the uniform distribution 

and the gaussian noise distribution ( t/J / </>o = 0.5). The values q=O and 11 = 1 

are used. 
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two SNR's decrease rapidly when (¢,/¢,o) 2 exceeds about 0.01, i.e., the input-beam 

N.A. exceeds about 10% of the fiber's N.A., while for the uniform distribution the 

changes of the SNR's are slower. This is because, given a deterministically constant 

value of the phase-conjugate reflective power (i.e., Jrj 2d/4), the intensity I., at the 

center of the phase-conjugate beam decreases as the input-beam N.A. increases, 

while the noise intensity Inmae is almost constant independently of the input-beam 

N.A., resulting in decrease of, (i.e., a decrease of the SNR). On the other hand, 

if the input-beam N.A. is much smaller than the fiber's N.A., then the intensity 

I., is much larger than the noise intensity Inoise, resulting in a large value of , 

and therefore in the increase of the SNR. It is also seen that the (SNR).:z:11 and 

the {SNR).:z: are almost the same over an entire range of the input-beam N.A.'s. 

This indicates that, although an analyzer is inserted in order to eliminate unwanted 

speckle noise of the orthogonal polarization, the improvement of the SNR is very 

small [6.45]. Finally it should be noted that the qualitative dependence of the SNR 

on the input-beam N .A. is the same as that of the degree of polarization shown in 

Fig. 6.3(b), although the SNR in a linear scale seems to be more sensitive to the 

input-beam N.A. 

6.3 Experiment 

6.3.1 Polarization and spatial information recovery for 

small numerical aperture inputs 

The experimental arrangement is shown in Fig. 6.5. The input-beam N.A. 

was about 0.01 which was much smaller than the fiber's N.A. If E(4) is the true 

phase-conjugate replica of E( 1) (including the polarization state), then the output 

light E(5) having retraversed the wave plate must return to the complex conjugate 

of the initial x-polarized state E(O). Thus the degree of polarization recovery 

p= (P 1 - P 2) / (P 1 + P 2) defined in the previous section can be a measure of the 
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Figure 6.5 Experimental arrangement for polarization and spatial information 

recovery. In (a), the x-polarized component Ei2> in the depolarized light E(2) is 

used to generate the phase conjugate light. In (b), they-polarized component 

Et2> is used. 
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polarization recovery, where P 1 and P2 are, respectively, the power of the two 

orthogonal polarization components of E(5). In Fig. 6.S(b), they-polarized, rather 

than the x-polarized, component of E(2) was used to generate the phase-conjugate 

field. Since the crystal reflects preferentially the x-polarized field, the polarization 

direction was rotated by 90° by the ')../2 plate prior to incidence of the crystal. 

Figure 6.6{a) shows the experimentally observed dependence of pas a function 

of the direction of polarization{ip) of the linearly polarized light entering the fiber. 

This direction was controlled by the angular position of the ')../2 plate. The quantity 

pis seen to be very nearly unity over the whole range, indicating a very good (better 

than 96%) restoration of the original linear polarization. Also plotted in Fig. 6.6( a) 

is the reflectivity R 1 of the phase conjugator defined by R 1 = Pi/Po (Po=input 

beam power at the crystal). When arbitrary elliptically-polarized light was used 

as the input E( 1), p was als<;> close to unity. Figure 6.6(b) shows p and R 1 as 

a function of Po for the three different polarization states at the input: linearly

polarized, circularly-polarized and elliptically-polarized. The quantity p is seen to 

be also close to unity for the inputs of several polarization states, indicating the 

complete reversal of an arbitrary polarized input beam whose input-beam N.A. is 

much smaller than the fiber's N.A.: in this experiment {<f,/<f,0 ) 2 = 0.001 [see the 

theoretical curves at this input-beam N.A. shown in Fig. 6.3{b)J. These results 

were obtained for both the experimental arrangements of Fig. 6.S(a) and 6.S(b). 

The spatial recovery of the input E(l) (a uniform beam in the experiment) was also 

observed with high quality, as is predicted from the theory. 

6.3.2 Fidelity of polarization and spatial information recovery 

Here we show several experiments on the fidelity of the phase conjugation 

process as a function of the input-beam N.A. and compare them with the theory 
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Figure 6.6 (a)Degree of polarization recovery p and reflectivity R of the 

fiber-coupled PCM are plotted as a function of the angle <p between the 

polarizat~on direction of the input linearly polarized light and the x-axis; (b) 

Degree of polarization recovery p and reflectivity R 1 of the fiber-coupled PCM 

are plotted as a function of the input power Po for the three different input 

polarization states: linearly polarized( o), circular polarized(•) and 45° elliptical 

polarized( x). 
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given in the previous section. The experimental arrangement is shown in Fig. 

6.7. The x-polarized input beam E(l) from the multilongitudinal-mode argon-ion 

laser beam (.X = 514.5 nm) was focused into the multimode graded-index fiber 

(0.29 N.A., 5 m long) through a lens (Ll). The input-beam diameter <P (and 

therefore the input-beam N.A. which we will also designate by <P) was controlled 

by an aperture (APl). The microscope objective (L2) of 0.40 NA at the output 

end of the fiber was used to collect all the modes emitted from the fiber. A 

BaTiO3 crystal (5 mm x 5 mm x 4 mm) was used as a self-pumped PCM [6.14] 

for an x-polarized incident beam of 1 mW. The detectors (D2 and D3) measure 

the power of the beam Ei2> and of the phase-conjugate beam E(3), respectively. 

The transmissivity of the fiber (= I E(2) /E(l) 1
2 ) was about 60% (without Fresnel 

reflection correction), and the phase-conjugate reflectivity ( = I E(3 ) /Ei2
> 12) at the 

crystal was 30%, independent of</). The phase-conjugate beam E(4) from the input 

end of the fiber is reflected by the non polarizing beam splitter (BSl). Its power and 

spatial structure were recorded by the detector (D4) and a TV camera, respectively. 

It was ascertained by means of the .X/4 plate and the analyzer (A) that BSl has 

no effect on the ellipsometric measurement of the Stokes parameters (so, s 1 , s2 , s3) 

and the degree of polarization p(4
) (= Js1 + s~ + sVso) given by Eq. (6.23) for 

E(4) • An aperture (AP2) with a diameter ~ was placed in front of the .X/4 plate 

to limit the detecting area for E(4). 

Figure 6.8 shows a typical photograph of the field E(2). It is seen that the field 

has speckled structures because of the strong intermodal scattering in the fiber. 

Also, the measured polarization states of the field E(2) for the different values of 

the input-beam N.A.'s are shown in Table 6.1. It is seen that s 1 , s2 , and s3 are 

much smaller than s0 , so the degree of polarization is much smaller than unity, i.e., 

the beam E(2) is almost completely depolarized, independent of the input-beam 

N.A. This data clarifies the validity of the random-coupling approximation and the 
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Figure 6.7 Experimental arrangement. BE:beam expander; Pl,P2:polarizers 

to guarantee the x-polarized input to the fiber and the crystal, respectively; 

Dl,D2,D3:detectors for measuring the power of the beams E( l), E12
), and E(3), 

respectively. 
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Figure 6.8 Photograph of the field E(2 ) emitted from a multimode fiber. 
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Table 6.1 Experimental data of the Stokes parameters and the degree of 

polarization of the field E(J) 

Input-beam NA sif s0 s2 / so s3 / s0 p(2) 

0.02 0.003 0.008 -0.016 0.018 

0.11 0.033 0.023 -0.028 0.049 

0.25 0.004 0.041 -0.021 0.046 
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modal averaging assumption [i.e., the assumption that due to random phases of 

Mi/s the cross terms a ,.,., and bkk' given by Eqs. (6.18) and also q and u given 
(/c"ic') 

by Eqs.(6.20) are much smaller than unity]. 

Figure 6.9 shows the experimental results of R( = IE14
) /E(l) 12 ) [Fig.6.9(a)] 

and p( 4 ) and p [Fig.6.9(b)], as a function of (¢/¢0 ) 2 for the linearly x

polarized input(p, P > 0.99). The theoretical plots of R and p(4) from Eqs. 

(6.51a) and (6.51b) are also shown using a gaussian distribution for the noise 

intensity(?J,/¢0 =0.5), and (q,17)=(0,1), (0.035,1), (0,0.8), and (0.035,0.8). According 

to the data shown in Table 6.1, a positive value of q ( = 0.035) was used in the 

theoretical calculation. [Note that s 1 > 0 corresponds to q > 0. See Eq. (6.22b) 

with akk ~ 0.5.] Since the experimental data for R included unwanted losses due to 

reflection and absorption by optical components, the proportionality factors in the 

theoretical curves for R were ~etermined by least square fits with the experimental 

data. The diameter ~ of AP2 was set to be ~ = </J for all </J's. All the data was 

obtained within uncertainties of ±10%. It is shown that for very small </J(i.e.,when 

the input-beam N.A. is very small compared to the fiber's N.A.), pis almost unity, 

i.e., true phase conjugation of the input beam E(l) is possible, whereas R is low. On 

the other hand, p decreases appreciably with an increase of ¢, accompanied by an 

increase in R. It is also seen that p ~ p(4) for all </J's, indicating that the polarized 

part of the phase-conjugate beam is almost x-polarized and that the rest of the 

phase-conjugate beam is completely depolarized. Thus the power in the depolarized 

component of the reflected beam increases with the increase of <P, making the total 

R increase but p and p(4) decrease. Note that the theoretical curves are in good 

agreement with the experimental data when the gaussian distribution of the noise 

intensity, the residual polarization of the field E(2) and the fidelity of the PCM are 

taken into account [i.e., when (q,17) = (0,0.8) and (0.035,0.8).] The measurements 

of p and p(. 4) were also performed as a function of ~ / </J for ( </J /<Po) 2 = 0.005 and 
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Figure 6.9 (a) Experimental data of the reflectivity R versus (¢/¢0 )2. The 

solid lines are theoretical curves using a gaussian noise distribution ( t/J / </>o = 

0.5) and (q, 11) = (0,1), (0,0.8), (0.035,1), and (0.035,0.8). The proportional 

factor of -?Z in the theoretical calculation is determined by least squre fits with 

the experimental data shown here. (b) Experimental data of the degree of 

polarization recovery p( o) and the degree of polarization p( 4) ( •). The solid 

lines are theoretical curves whose parameters are the same as those in (a). 
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(¢/<l>o) 2 = 0.69. It was found that for a small N.A. they start decreasing when ~/<I> 

exceeds unity, while for a large N .A. they are nearly constant regardless of ~ / </J. 

These results were also obtained with the single longitudinal-mode operation of an 

argon-ion laser, indicating that the phase conjugation process of interest was less 

sensitive to the source temporal coherence. 

The results shown above support the theoretical model given in the previous 

section, according to which nearly 50% of the reflected power that is not the power of 

the true phase-conjugate component but is that of the depolarized noise component 

is distributed essentially uniformly over all the fiber modes, thus occupying <l>o 

independently of ¢. If the input beam occupies <I> < <l>o, the full recovery of 

the true phase-conjugate signal is accomplished with an acceptance-beam diameter 

~ = </>, resulting in a rejection of most of the noise power since only a small fraction 

[(<l>/¢0 ) 2 < 1] of the noise power is contained within the N.A. (i.e., </>) occupied 

by the signal. This leads to high values (~ 0.95) of p and p(4) with ~/<I>~ 1. It 

also follows that under the above conditions as ~/<I> exceeds unity all the additional 

power reaching D4 is due to the noise power, leading to decreases of p and p(4). If, 

on the other hand, the input-beam N.A. is increased untill <I>~ <l>o so that the input 

signal excites almost all the fiber modes, the signal power per mode is reduced, 

while that of the noise remains the same, thus leading to a large Ras well as to low 

constant values of p and p(4) that are almost independent of</>. This model is also 

confirmed by the data of Fig. 6.10. These were measured by means of one line scan 

of the TV camera at the center of the phase-conjugate beam, where the background 

noise was electronically eliminated with the aid of a digital oscilloscope. It is seen 

that for a small NA ((<l>/¢0 ) 2 = 0.005) the noise intensity [see Fig. 6.l0(b)] is much 

smaller than that of the true phase-conjugate component [see Fig. 6.10( a) J and is 

distributed more or less uniformly over ¢. In the case ( <I>/ ¢0 ) 2 = 0.69 the noise is 

distributed over ¢0 , but most of the noise power is occupied inside </>, resulting in 
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(a) 

( bl (d) 

Figure 6.10 Intensity distributions of phase-conjugate output beams for the 

linearly x-polarized input: (a) x-polarized component (signal + noise) and (b) 

y-polarized component (noise) for (<l>/</>0 ) 2 = 0.005; (c) x-polarized component 

(signal+ noise) and (b) y-polarized component (noise) for (<l>/</>0 ) 2 = 0.69. 
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the insensitivity of p and p( 4) to if!/</). 

Figure 6.11 shows the photographs of the x-polarized phase-conjugate images 

of the letter H when (</J/</)0 ) 2 = 0.015 [Fig.6.ll(a)] and (</J/</)0 ) 2 = 0.74 [Fig.6.ll(b)]. 

As was discussed in the previous section, the degradation of the SNR is apparent 

from these two distinct photographs. 
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(a) (b) 

Figure 6.11 Photographs of the x-polarized phase-conjugate images of the 

letter H for (a) (<l>/</>0 )
2 = 0.015 and (b) (<l>/</>0 )

2 = 0.74. 
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APPENDIX 

B 

Random Coupling Approximation 

Each element of the scattering matrix M is expressed as 

(Bl) 

These elements are interrelated by the unitarity condition given by Eqs. (6.8) and 

(6.9). For the case of strong intermodal coupling in the fiber, the initially excited 

fiber guided modes at the input are redistributed among all the fiber guided modes 

during propagation. Then it is appropriate to assume that the amplitudes mi; are 

either nearly the same or symmetrically and widely distributed with respect to the 

diagonal elements mii, while the phases <Pi; are distributed essentially uniformly 

over the -1r - +1r interval under the constraint of the unitarity condition. In this 

case the following random-coupling approximation may be adequate from Eqs. (6.8} 

and (6.9}: 

(B2) 

(B3) 

where k,l = x,y and i,j = 1,···,N. In addition, because of the modal averaging 

over phase-mismatched terms, all the other cross terms are much smaller than unity 

for large N. 
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APPENDIX 

C 

Qualitative Proof of Polarization 
and Spatial Information Recovery 

In what follows, the qualitative proof of polarization and spatial information 

recovery is given by means of the random-coupling approximation. As the simplest 

form of the scattering matrix M it is written as 

Mii = ~ exp (i</>ii)· (Cl) 

Then the scattering matrix S in the round-trip propagation given by Eq. (6.26) 

can be expressed as 

(C2) 

and 

(C3) 

where summation over repeated indices is made and Eqs. (6.12a) - (6.12d) are 

used. The N- 1/ 2 in Eq. (C3) is due to the random-walk nature represented by 

the summation of the phasors exp{i[(<Pxx)ki - (4>:z::z:)k;]}, independently of the fiber 

guided modes that are excited initially. 

In a similar fashion we find that 

fori = j, 
fori -=I= j, 



Then it is found that 

and 
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(M~a:M;y)ii = 0(1/VN), 

(M;a:M;a:)ii = 0(1/VN). (C4) 

(CS) 

where S1 and S2 correspond to Eqs. (6.27a) and (6.27b), respectively, and V 

denotes the phase-mismatched noise field. We note that Eq. ( CS) is equivalent to 

Eq. (6.29). 
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CHAPTER 

SEVEN 

Applications of Modal 
Dispersal and Phase Conjugation 

to Information Retrieval and Sensing 

7.1 Introduction 

Image transmission and recovery in multimode fibers using phase conjugation, 

proposed by Yariv [7.1-3], may be the first application of a combination 

of multimode fibers and a PCM [7.4]. In this case multimode fibers act 

not only as thick modal distorters but also as polarization scramblers. The 

experimental demonstrations of image recovery based on a round-trip propagation 

via phase conjugation employed non polarization-preserving PCM's (NPPPCM's) 

which correspond to the present scheme [7.5-8]. We have discussed the quality of 

the image recovery in the previous chapter. This quality was also compared to the 

case of the polarization-preserving PCM (PPP CM) [7.9]. It was found that for large 

N .A. inputs the resolution of the restored image is limited by the finite number of 

the fiber guided modes independently of whether the PCM preserves polarization, 

and that the contrast is restored only when the PPPCM is used. The fiber

PCM combination that uses modal dispersal of information and phase conjugation 

[7.10], (which is described in the previous chapter), has also led to a number of 

new applications that include correction of nonreciprocal polarization distortions 

[7.11], correction of lossy amplitude distortions [7.12], temporal data channeling 

between beams [7.13], and all-optical beam thresholding [7.14]. Other applications 

using this combination include fiber-optic interferometers/sensors [7.8,10,15,16] 

and gyros [7.17-21]. Since these applications do not, in general, require large 
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N.A. inputs, high-quality returned signals can be obtained with the NPPPCM's. 

Also, photorefractive oscillation with multimode fibers [7.18, 22] and optical 

interconnection and communication [7.23, 24] have been reported so far. We note 

that the polarization-preserving property of the present scheme is also applicable 

to real-time image processing using wave polarization and phase conjugation [7.25]. 

In this chapter we describe three main applications using modal dispersal 

and phase conjugation: (a) correction of nonreciprocal polarization distortions 

[7.10,11]; (b) correction of lossy amplitude distortions [7.12]; and (c) phase

conjugate multimode fiber-optic sensors [7.10]. 

7 .2 Correction of nonreciprocal polarization distortions 

The basic property of time reversal and distortion correction by phase 

conjugation breaks down if the propagation path includes nonreciprocal media such 

as magnetic ( or gyrotropic) components. This follows mathematically from the 

fact that the presence of imaginary elements in the expressions for the magnetic 

susceptibility tensor spoils the invariance of Maxwell equations under complex 

conjugation for the reflected wave. To illustrate the effect, consider the case shown 

in Fig. 7.l(a), where a plane wave initially with complex transverse components 

(E:i: 1 ,Ey 1) propagates through an element A, is phase conjugated, and returns to 

the initial plane after passing A in reverse. If the element A is a Faraday rotator 

with a Faraday angle fJ, the round trip is described by 

( 
E:i: ) ( cos 2fJ 
Ey 

4 
- sin2fJ (7.1) 

The vector E(4) is thus not the complex conjugate of E(l). [This can be compared 

to the case where the element A is dielectric (reciprocal), say, a retardation plate. 

Then the effect of the (reciprocal) retardation plate is canceled after a round trip 

(see Fig. 4.7).] 
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Figure 'T .1 ( a) Schematic diagram of a wave that propagates through an 

element A, is phase conjugated, and returns to the initial plane. (b) A method 

to undo the nonreciprocal effect. P, polarizer;F, Faraday rotator. 
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In this section we describe a method to undo the non-reciprocal effect on 

polarization by modal dispersal and phase conjugation [see Fig. 7.l(b)]. Assume 

a multimode fiber with a circular cross section. Adopting the same notations and 

procedure as those used in the previous Chapter but using a rotating coordinate 

(i.e., a circular polarization) representation, the phase-conjugate beam E(4) can be 

written as 

(7.2) 

where 

(7.3a) 

and 

(7.3b) 

are the 2N-rank scattering matrices of the fiber for the forward and the backward 

directions, respectively, and R (L) denotes a right (left) circular polarization; 

(7.4a) 

and 

I (e-i{JJ Q ) 
F = O i 8 I ' (7.4b) 

are the 2N-rank Faraday rotation matrices for traveling along and opposite the 

magnetic field, respectively. In Eqs. (7.3a) and (7.3b) we assume that all the fiber 

guided modes suffer the same amount of Faraday rotation 8; 

(7.5) 

is the matrix for the linear polarizer. 

Substituting Eqs. (7.3) - (7.5) into Eq. (7.2), we obtain 

1 M ' M * - 2io M' M * M' M * + M' M * 2i 8 
E(4) = -( RR RR e + RR LR + RL RR RL LR e 

2 M l M * -2i8 + M' M * + M' M * + M' M * 2i8 LR RR e LR LR LL RR LL LR e 
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M l M * -2i8 M' M * + M' M * M' M * 2i8 RR RL e + RR LL RL RL + RL LL e )(E{l))* 
M'r,RMRL * e-2i8 + M£RMLL * + M'r,LMRL * + M£LMLL * e2i 8 • 

Using the random-coupling approximation used in Appendix C of Chapter 6, that 

1s, 

and 

we find that 

(7.6) 

where U, like V in Eq. (6.29), denotes the depolarized noise field. We note that 

Eq. (7.6) has the same form as Eq. (6.29) except for the factor cos 28. 

From the same arguments as those described in obtaining Eqs. (6.43a) and 

(6.43b) the polarized power Ppol. and the depolarized noise power I'M can be 

expressed as 
M 

Ppol. = 2Acos22IJL0i, 
i=l 

M 

I'M= 2A(2 - cos228) L~i, 
i=l 

(7. 7a) 

(7.7b) 

where A is again given by lrl 2d/8 and the effects of the residual polarization and 

of the quality of phase conjugation by the PCM are neglected for simplicity (i.e., 

q = 0 and 11 = 1). From Eqs. (7.7a) and (7.7b) the degree of polarization p(4) and 

the reflectivity R for the field E(4) can be written as 

~ P, (7.8a) 
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1 M 
R(O) = 8irl2L0i[(2 - /32)cos220 + 2/32], (7.8b) 

i=l 

where ;32 is defined by Eq. (6.45b). From Eqs. (7.6) and (7.8) we notice that the 

polarization and spatial information of the field E(l) can be recovered, provided 

that the input-beam N.A. is small (i.e., ;32 ~ 1) and that the Faraday rotation 0 

gives non-negligible values of cos220 compared to ;32 in Eqs. (7.8a) and (7.8b). 

The experiment was performed using the x-polarized input beam with an N.A. 

of 0.01 (see Fig. 7.2). A variable Faraday rotator was used as the nonreciprocal 

media. The degree of the polarization recovery p ( defined in Chapter 6) and the 

x-polarized phase-conjugate power at D 1 were measured. The experimental results 

are shown in Fig. 7.3, together with the theoretical curves of p(4) and R(O)/ R(O) 
M 

calculated from Eqs. (7.8a) and (7.8b). In the theoretical curves L0,=1 and the 
i=l 

gaussian distribution of the noise intensity given by Eq. (6.52) with (</,/</,0 ) 2 = 0.001 

and 1/J / </, = 0.5 are used. It is seen that the normalized reflectivity R(O) / R(O) varies 

almost as cos220, while pis almost unity except in the vicinity of 0=45°. It is seen 

that these theoretical curves are in good agreement with the experiment. 

7 .3 Correction of lossy amplitude distortions 

Most of the distortion correction schemes which are based on phase-conjugate 

optics involve phase distorting media (see, for example, Section 5.4 in Chapter 

5). This is due to the fact that distortion corrections cannot be achieved in cases 

involving inhomogeneous losses since part of the spatial information is lost and is 

not available for a reconstruction. 

In this section we describe a method of recovering an original image, including 

its polarization state, that has propagated through a lossy distorter by using modal 

dispersal in a multimode fiber and a photorefractive PCM. In this method, before its 

incidence upon the lossy distorting medium the image-bearing beam is intentionally 
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Figure 7.2 The experimental arrangement used to demonstrate polarization 

recovery with a nonreciprocal medium. P 1, P2 , are x polarizers; BS, beam 

splitter: PBS, polarizing beam splitter; 11, 12, lenses; D1, D2, photodetectors; 

F, variable Faraday rotator. 



- 227 -

- 1.0 1.0 
0 oO 0 0 - C: cc 0 - 0.8:; -~ - N Q. cc ·.:: 

ca ~ 
>- 0.6 0.6 7i ~ - a: > ·s; 

:.;::::; - _o 
~ 0.4 0.4 0 ~ - Q) cc 
Q) Q) 
cc ... 

C> ,:, 0.2 0.2 a., 
Q) C N 

1 0 0 ... 10° 20° 30° 40° 50° 
0 

Faraday Rotation Angle, 0 z 

Figure 7 .3 Experimental results of the degree of polarization recovery p( o) 

and the normalized reflectivity R(O)/R(O) (•). The solid lines are theoretical 

curves using the gaussian noise distribution( TJ, / 4>o = 0.5) and ( q, rJ) = ( 0, 1). 



- 228 -

mode dispersed by propagating through a (multi)mode- and polarization-scrambling 

fiber so that the field exiting the fiber has the original pictorial and polarization 

information spread among a large number of modes; this robustness enables it, 

within certain limits, to reconstruct the original field including the polarization. 

We note that, unlike the past studies of image transmission through multimode 

fibers [7.1-9], the multimode fiber is used as a way to achieve mode and polarization 

scrambling of the input information. 

The method is illlustrated in Fig. 7.4. In this case the lossy distortion occurs 

between the fiber and the PCM. Therefore the matrix C in Eq. (6.5), which accounts 

for the modal loss and mixing of the incoming field by the distortion, has the form 

of 

C = (Ca:a: 0) 
0 0 ' 

(7.9) 

where Ca:a: is an N x N submatrix which accounts for the elimination of the y

polarized field and the modal loss and mixing of the x-polarized field in the distorting 

medium. The form of the matrix C also implies that the loss does not scramble the 

polarizations. In particular we have (Ca:a:)i,i = 8i.i when only a polarizer (oriented 

to the x direction) acts as the distorting medium [see Eq. (6.5)]. From Eqs. (6.3) 

and (7.9) we find that 

(7.10) 

In the case of a large number of nonvanishing elements ( Ca:a:)i,i and using the random 

coupling approximation, each element in Eq. (7.10) can be approximated by 

(M'CM*)·· { 2~t(Ca:a:)kk' Jori =j 
•J-+ k=l 

0 ( 1 / v'N) , for i =/= i 
where Mi.i = 1/../2N exp(i<l>i,i) is used (see Appendix C in Chapter 6). We therefore 

get 

(7.11) 
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Figure 7.4 A method to undo the lossy distortion effect by means of the 

tandem combination of the mode-dispersing medium (M) and the PCM. The 

lossy distortion due to the distorting medium ( C) occurs between the M and 

the PCM. 
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where W is a 2N rank vector whose elements depend on the elements of E( 1) 

and C:u: as well as N. We note that the first term on the right-hand side of Eq. 

(7.11) corresponds to the true phase-conjugate replica of the field E(l) including its 

polarization state. The second term W corresponds to ( depolarized) noise. And 

as shown in Chapter 6, in the absence of the lossy distorter [i.e., (Cu)i; = Ci;] 

this noise contribution can be negligible in the limit where the input beam E(l) 

excites, at the input, only a small fraction of the total number of modes 2N, and 

the detection aperture is close to the input aperture so that only a small fraction 

of the noise power is included in the input aperture. In the present case it is seen 

from Eq. (7.11) that the true phase conjugation is possible, within the above limits, 

even when a large number of modes are lost by the distorting medium as long as 

the near equipartition of modal energy in the mode-dispersing medium is satisfied 

so that the input information is distributed equally among all the modes. 

In the experiment shown in Fig. 7 .5, a knife edge F was used as the simulated 

amplitude distorter ( or medium) in order to eliminate some portions of the input 

information. In Fig. 7.5(a) a transparency T containing pictorial information was 

illuminated by the x-polarized beam from the multilongitudinal-mode argon-ion 

laser (.\=514.5 nm). The image-bearing beam E(l) (5 mm in diameter) was 

launched into a multimode graded-index fiber (100 µm core diameter, 0.29 N.A. and 

5 m long) with about 0.036 N.A. input by using an aperture AP and an f 70 mm 

lens 11. With this small N.A. of the input compared to the fiber's N.A., the 

( depolarized) noise contribution [ corresponding to W in Eq. (7.11)] is negligible for 

the formation of the true phase conjugation. The knife edge F was placed in the 

image plane of the fiber end and eliminated some portions of the out-coupled beam 

E(2). In this case the microscope objective 12 of 0.40 N.A. covering 0.29 N.A. of 

the fiber was used to image the fiber end through a polarizer P oriented to the x 

direction. A poled BaTiO3 crystal was used as a self-pumped PCM, and its phase-
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Figure 'T .5 The experimental arrangement. In ( a) the out-coupled beam E(2) 

is imaged onto F. In (b) E(2) is quasi-collimated onto F. 
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conjugate reflectivity was 35 % for the incident power of 3 mW on the crystal. The 

reflected beam E(4) from the input end of the fiber is picked off by a nonpolarizing 

beam splitter BS and forms the reconstructed image on the screen S. The analyzer 

A was used to partly eliminate the noise contribution. 

In Fig. 7.S(b) F was placed in the far-field plane of the fiber end for a 

comparison of the results with those of the former configuration. In this case the 

out-coupled beam E(2) was quasi-collimated (about 3 mm in diameter) by 12, and 

some portions of the quasi- collimated beam were eliminated by F. 

First we measured the Stokes parameters ( so, s1, 82, ss) of the fields E(l), E(2), 

and E(4) so that the degree of polarization [P(i) (i = 1, 2, 4)] and the degree of 

polarization recovery p could be caicuiated. The x-polarized uniform beam ( 5 mm 

in diameter and p(l), p > 0.99) was used as the input field E( 1) together with the 

configuration shown in Fig. 7.5(a). Because of the strong intermodal scattering 

in the fiber the field E(2) exhibited speckled structures and nearly complete 

depolarization (P(2), p < 0.09). Figure 7.6 shows p(4 ) and p as a function of 

various transmission losses due to F. It is seen that p and p(4) are almost equal 

for all losses and both decrease as the loss increases. This shows that the original 

polarization recovery deteriorates gradually because of the relative increase of the 

depolarized noise as the loss increases. This may indicate, as noted before, that 

the equipartition of the input information among all the modes in the fiber used is 

incomplete. Nonetheless we see that the polarization recovery is still about 0.66, 

even in the case of the largest loss of 67%, i.e., 66% of the reflected beam power is 

in the true phase-conjugate beam and the remainder is in the depolarized noise. 

Figures 7.7(a) - 7.7(f) show the results when the knife edge F was placed at 

the image plane of the out-coupled field E(2). It is seen from Fig. 7.7(b) and 7.7(c) 

that the phase-conjugate image with F removed preserves its original polarization 

and spatial structure. It is also clear from Fig. 7.7(d) - 7.7(f) that, although the 
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Figure 7 .6 The degree of polarization recovery p( o) and the degree of 

polarization p(4) (•) of the output field E(4) as a function of the transmission 

loss due to F for the linearly x-polarized input beam. 
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(a) (d) 

(b) (e) 

(c) ( f) 

Figure 7.7 (a) The x-polarized input image. (b) Phase-conjugate image of 

the x polarization without F (12 times the intensity-attenuated image). (c) 

Phase-conjugate image of they polarization without F. ( d)-( f) Phase-conjugate 

images of the x polarization with various transmission losses due to F; ( d) 

loss 23% (12 times the intensity-attenuated image), (e) loss 53% (2 times the 

intensity-attenuated image), (f) loss 68.5%. 
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intensities of the phase-conjugate images decrease as the transmission loss due to 

F increases, the phase-conjugate replica of the input image can be reconstructed. 

However, we see the apparent degradation of the spatial structure of the phase

conjugate image shown in Fig. 7. 7(f). This may also be attributed, as mentioned 

above, to the incomplete equipartition of the input information among all the modes 

in the fiber. Therefore above a certain limit of the loss by F, [e.g., the case of Fig. 

7.7(f)], the reconstructed image bears less information than the original image, 

resulting in the apparent degradation. This effect may be analogous to the case of 

image reconstruction in holography with a diffused signal [7.26], when the resolution 

in the reconstructed image decreases as the fragment of hologram becomes smaller. 

In the present scheme the degradation depends strongly on the modal-scrambling 

nature in the fiber. We could also obtain the same result with the configuration 

shown in Fig. 7.S(b). This fact indicates that, although the mode scrambling of 

the input information in the fiber used is not complete, the input information is 

redistributed among a sufficiently large number of modes (viz., spatial frequencies) 

of the out-coupled field from the fiber, and therefore the present method is almost 

insensitive to the position of the distorter between the fiber and the PCM [7.27]. 

'T .4 Phase-conjugate multimode fiber-optic sensors 

Fiber-optic sensors for detecting various physical perturbations (such as 

magnetic, acoustic, temperature, and rotation) offer orders of magnitude increased 

sensitivity over existing technologies with remote-sensing capabilities and flexible 

interconnections within instruments [7.28]. In order to obtain stable operations, 

single-mode fl.hers have been used, (particularly in the Mach-Zehnder-, Michelson

' and Fabry-Perot-type arrangements for interferometer configurations). On the 

other hand, multimode fibers have usually been employed as amplitude sensors, 

rather than as (interferometric) phase sensors, with less sensitivities [7.28]. This 
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is because coherent light suffers polarization scrambling and speckling during 

propagation in multimode fibers, as shown in Chapter 6. However, because of 

several advantages over single-mode fibers such as ease of use, cost, and multichannel 

carrying capability, multimode fiber-optic interferometers for sensor applications 

are still favored and suggested [7.29,30]. In this section we describe several possible 

applications as amplitude and/or phase sensors. 

'T.4.1 Amplitude sensors 

The interesting property of correction of nonreciprocal polarization distortions 

described in Section 7.2 can be applied to several sensing schemes. One application 

is a magnetic field sensor. In such a case a tandem combination of the Faraday 

medium F and the PCM (or a part of the fiber) acts as the sensor part [7.31]. The 

magnetic field along the mediupi F (or along the sensor part of the fiber) induces 

Faraday rotations and can be detected by measuring the reflectivity R given by 

Eq.(7.8b). Because the detected signal is from the phase-conjugate wave of the 

input signal, self-aligned and stable operations can be expected. 

Another application is a current sensor. In this case the current to be measured 

is enclosed by the multimode fiber coil (see Fig. 7.8). The current will be measured 

through the dependence of the reflectivity R on the magnetic field induced by the 

current. This proposed scheme is free from the problem of modal coupling that 

arises when a single-mode nonpolarization-preserving fiber is used for this purpose 

[7.32]. 

To simulate the above applications, i.e., distributed Faraday rotations in a fiber, 

the theory given in Section 7 .2 was generalized to a sequence of N Faraday rotators 

separated by sections of fibers. The result, which was also proved experimentally 
N 

with N=2, simply replaces cos220 in Eqs.(7.8a) and (7.8b) by IT cos2 (20i), An 
i=l 

experiment in which the magnetic field was directly applied along a fraction of the 
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Figure 7 .8 Schematic diagram of a proposed current sensor. A beam from the 

laser propagates through a linear polarizer P and a multimode fiber. It is then 

reflected by the PCM and retraces its path. 
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multimode fiber (about 3 m of the 20 m long fiber) was also conducted. It was 

observed that the degree of polarization recovery pis nearly unity in the range of 0 

to 2 KG of the magnetic field, while the reflectivity R decreases monotonically with 

the increase of the magnetic field. It was found that Eq. (7.8b) replaced cos220 

by cos2N26 with 6=VHL/N (Vis the Verdet constant of the fiber material, H the 

magnetic field, and L the fiber length under the magnetic field) fit well with the 

experimental data when N =100 was used. Although the reason for good agreement 

with N=l00 has not been clear yet and should be the subject of future study, the 

insensitivity of the polarization recovery to the magnetic field in this situation is 

also an important factor for fiber-optic gyro applications [7.33]. 

7 .4.2 (Interferometric) phase sensors 

The use of PCM's for multimode fiber-optic interferometers can suppress 

polarization-scrambling and speckling noise problems. In particular the 

multimode fiber-optic Michelson interferometer using a self-pumped PCM has been 

proposed[7.8,15,16]. The reason why this scheme functions as an interferometer is, 

as described in Chapter 4, the fact that a self-pumped PCM preserves the same 

uniform phase change of the input probe beam upon reflection. Feinberg [7.34] 

qualitatively demonstrated this property, together with the correction capability 

of nonuniform phase distortions, in a Michelson interferometer with a self-pumped 

PCM using internal reflection in one arm. Tomita et al. [7.35] also showed the 

excellent linearity of the instantaneous response to the uniform phase change of the 

input by means of quantitative phase measurements . 
. 

The scheme, first proposed by Fischer and Sternklar [7.8], is shown in Fig. 

7.9(a) where polarization scrambling and speckling of the field emitted from the 

fiber can be corrected in a double pass, yet the uniform phase change caused by 

some external perturbations to the fiber can be detected by the movement of the 
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Figure 7.9 Two configurations of phase-conjugate multimode fiber

optic interferometers: ( a) Michelson interferometer; (b) Mach-Zehnder 

interferometer. Input beams are linearly polarized for both (a) and (b). 

Uniform phase changes of the input beams propagating in the fibers are 

impressed by some external perturbations such as temperature changes. Note . 
that the frequency shifters illustrated in (a) and (b) are not essential but are 

used for compensating the frequency shift of the conjugate beams relative to 

the input beams and/or for the heterodyne detection of the phase changes. 

P:polarizer; M:mirror; BS:beam splitter. 
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interference fringe. The problem of a frequency shift ( ~ a few Hz) of the conjugate 

beam relative to the input beam in a self-pumped PCM [7 .36,37] may be eliminated 

by introducing a frequency shift in the reference beam. This intentional frequency 

shift also enables us to employ the heterodyne detection scheme used in usual fiber

optic interferometers [7.28]. Another scheme, proposed by Sternklar et al. [7.15], 

is also shown in Fig. 7.9(b). In this case a Mach-Zehnder interferometer with 

multimode fibers is used together with a double phase-conjugate mirror (DPCM) 

[7.38]. Because of the property of the DPCM a uniform phase change impressed 

on the beam propagating in the fiber is transfered to the other conjugate beam 

without any wavefront aberration, and the phase change can be detected by the 

fringe movement. In particular, these schemes can be applied to a temperature 

sensor since the temperature change at a small portion of the fiber causes the 

change of the refractive index of the fiber, thereby giving the fringe movement. 

We note that these interferometers using multimode fibers and the self-pumped 

PCM and/or the DPCM give not only many advantages of multimode fibers over 

single-mode fibers but also give high sensitivity and stability to the system. 

Another possible application is a fiber-optic gyroscope [7.28,33] which is one 

of the most important applications in fiber-optic sensor systems. Because of the 

polarization-preserving property (even under a magnetic field) of the multimode 

fiber-PCM combination for small N.A. inputs, the combination can be applied 

to this purpose. A Sagnac interferometer has usually been employed for this 

purpose because it is inherently insensitive to reciprocal phase shifts but is sensitive 

to nonreciprocal phase shifts. In this case the phase difference <P between the 

recombining beams on the detection is given by 

(7.12) 

where R and L are the radius and length of the fiber coil, respectively, and n is 

the rotation rate, ). is the wavelength, and c is the speed of light. We note that, 
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because of the round-trip propagation nature of phase conjugation, for given R and 

L the phase difference </> is 2 times larger than that in a conventional fiber-optic 

loop interferometer [7.33]. This new type of gyro using the multimode fiber-PCM 

configuration also has advantages in that inexpensive and easy-to-use multimode 

fiber and couplers can be used, and that self-aligned coupling to the fiber can be 

obtained by phase conjugation. 

The experimental proof-of-principle demonstrations of rotation sensing with 

phase-conjugate fiber-optic gyros were performed for the first time by using a 

Michelson interferometer with an externally pumped NPPPCM [7.19] and a Sagnac 

interferometer with a self-pumped PPPCM [7.20}. In both cases, however, single

mode polarization-preserving fibers were used. It should be noted that even for 

the latter case (i.e., the use of the self-pumped PCM) the nonreciprocal phase 

shift between two counter-propagating beams in the fiber can be detected since the 

relative phase change between the two input beams is truly reversed in a self-pumped 

PCM [7.35] {see Fig. 4.10). Later a multimode fiber and a self-pumped NPPPCM 

were employed for a Sagnac interferometer, and rotation sensing of 6° /sec {which 

corresponds to a phase shift of 0.09 rad in that experiment) was demonstrated 

[7.39}. A different type of multimode fiber-optic gyro [7.18}, using a photorefractive 

ring passive PCM in which the ring consists of a multimode fiber, was previously 

reported. 

In these phase-conjugate fiber-optic gyros the dynamic correction of reciprocal 

phase shifts is limited by the finite response time of phase conjugators, and changes 

in the phase-conjugate reflectivity of phase conjugators may be responsible for drift . 
of output signals on a larger time scale [7.39}. The improvement of the system 

performance especially for the above problems may be done by using, for example, 

the double PCM configuration as shown in Fig. 5.9 with the phase modulation. 
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