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Using Holzer's method of frequency calculation, the natural 

frequencies for the first t"J{Q modes of tors ional vibration of the 

wing were determined for a representative conventional airplane 

(B24-C) in the customary manner, the fuselage being considered as 

a rigid body. Next, using a method developed by N. O. Myklestad 

of the Guggenhei."rn Aeronautics Laboratory at the California In­

stitute of Technology, combined with Holzer's method, the natural 

frequencies for the sa~e two modes of vibration were agai n deter­

mined, but with the fuselage this time being considered as flex­

ible. 

A comparison of results of the two methods indi cates that in 

considering the fuselage as being flexible, a decrease in the 

natural frequency of torsional vibration may be expected. For 

the particular airplane selected, this decrease amounted to 6.68ro 

for the first mode of vibration and to 39.1ro for the second. , 

The investigation reported in this paper was entirely theo­

reti cal and was performed during the 1943-1944 school year at the 

Gugge~~eim Aeronautics Laboratory at the California Institute of 

Technology, Pasadena, California under the direction and super­

vision of Dr. Jr. O. Myklestad, research associate in aeronautics 

at the Institute. 
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INTRODUCTION 

In the design of modern aircraft for ~igher and higher speeJs, 

the designers are bec~~ingincreasingly more interested in the 

proble~s of flutter and vibration. One of these problems is that 

of the torsional vibration of the wings, which is dependent upon 

a number of factors, such a.s (1) the mass distribution both span­

wise and chordwise of the wings themselves and of all units sup­

ported either on them or within them, (2) the torsional stiffness 

of the wings, (3) the torsional moment applied to the wings at the 

shifting center of pressure by the air loads, (4) the coupling be­

tween the wings in bending and the wings in torsion, (c:;) the tor­

sional m.oment applied at the root of the wings by a. flexing fuse­

lage, and (6) the effect of compres sibility as local veloc i ties 

over the wing approach the velocity of sound. It is believed to 

be ca~non practice in the aircraft industry generally to consider 

all but the last two of the factors enunerated above. 

This paper then has as its objective the quantitative deter­

mination of the effect on a repre sentative large airplane of the 

fifth factor enumerated above, na'llely, the effect of the torsional 

mo:nent applied at the root of the. wings by a flexing fuselage on 

the natural frequencies of the wing torsional vibration. 
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DEFINITION OF SYMBOLS 

mn - Fuselage mass concentrated at any station n, Ibs. seconds 

squared per inch. 

n - N~ber of any wing or fuselage station. 

I - ~{ass moment of inertia of wing in inch lbs. seconds squared 

or ben~ing moment of inertia of fuselage in inches to the 

fourth power. 

Io - Convenient reference value of bending moment of inertia for 

fuselage as a whole. 

E Modulus of elasticity of fuselage bending material in lbs. 

per square inch. 

(3,. .Angular deflection of wing at any station n in radians. 

w - Frequency of vibration in radians per second. 

J.." - Panel length of wing or fuselage between stations n and 

n + I in inches. 

Sn 3hear at fuselage station t1 i n lbs. 

Mn Bending moment at fuselage station n in inch lbs. 

11 " of fuselage tail at elastic axis. 

" " " " nose " " " 
()(11 - 3 lope of fuselage axis at any station.n. 

O(b - tI " " tail at elastic axis. 

I 

" 
I, ., 

" " " £xb - nose 

'tn - Jeflecticn of' fuselage at any station · n in. inches. 

'to II II " tail at elastic axis. 
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tt~ ~)eflection of fuselage nose at elastic axis. 

vPn Change in slope frcm 1'\ to n + I due to a unit force at n. 

VM" 
t! " " " YI n n r\ It " II " :lament at n . 

d Fn " " deflection frcm n to Y\+\ due to a unit force at n. 

dM" - It " " " n !! n +\ " " " " moment !it 

cp SlopE) of fuselage axis at extreme end of tail or nose. 

Coefficients appearing in equation for CK n • 

" " " 
Me. -, Total coupling moment introduced into wing by fuselage at the 

elastic axis. 

a." a: In/Io - -ron-dimensional sy:nbol for fuselage bending moment of 

inertia at any station n. 

lTon-dimensional symbol for increase in 

fuselage bending moment of inertia from 

station n to station n + , 

- Variable di r::tance from 3tation n to any point in pa.nel .in 

(between ' 11 and n+ I /. 

G" ... 

, . 
K" - Torsl onal rigi1ity of wing in lb. inches Der radian. 
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3ecause of the nature of this Lwostigation and the difficulties 

involved in the measure.ne':1t of the effect of one factor at a time 

on the torsional vibration of a wine, no experi;nental work was undor­

taken. I':1stead, the authors approached the proble~1l frOOl a purely­

theoretical viewpoint, and the investigation was perfonned entirely 

on that 1,t13is. 

Aftr;)r a represcnta-t:ive airplane for the investigation had been 

selected, it was necessary first to obtain the follovring inforrnation 

concerning it: 

A. The wi':1g (Table I), considering its ~ass and the ~asses of 

all bodies either attached to it or stored within it as 

being concentrated at a number of stations along its span: 

(1) the distance of each station frcrn the wing root in 

i:'1ches, 

(2) the:nass polar mo:nent of inertia In about the clastic 

axis of the wing of the ma.ss considered to be concen­

trated at each station in lb-inches seconds squared, 

and 

(3) the rigidity \{~ in Ib-inches per radian, or its 

reciprocal, of the 7finG 1."11 torsion between each sta-

tion. 

B. The fuselage (Table II), considering its nass and thenaGses 

of all bodies either attached to it or stored -wit hi:!. it as 

being concentrated at a number of s-t~ations alons its length: 
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(1) the distance of each station fran the fuselage nose 

in inches, 

(2) the bending moment of inertia about a hon zontal axis 

perpendicular to the longitudinal axis of the fuselage 

In in inches to the fourth power, and 

(3) the total :nass mTl considered as concentrated at each 

station in lbs. seconds squared per inch. 

After receipt of the required information for the wing, it was possible 

to calculate the natural frequencies of the wing in torsion for as 

many modes of vibration as were desired, considering the wings as being 

built-in to a stiff fuselage with an extr~~ely high moment of inertia 

compared with that of each station along the wing. This calculation 

was actually carried out for two modes of vibration following Holzer's 

method as outlined on pages 228 and 229 of Ref. 1, an exa~ple of which 

has been appended to this paper as Table III with an explanation in-

cluded in the appendix. The results of this calculation have been 

tabulated in Table IV and plotted on Fig. 1, and show that the natural 

frequencies for the first two modes as determined by this calculation 

are 33.67 and 71.70 radians per second respectively. 
I 

This completed the first phase of the investigation; and with the 

required information for the fuselage then at hand, it was possible 

to proceed with the second phase, namely, the calculation of the natu-

ra1 frequencies of the wing in torsion for as many modes of vibration 

as were desired, considering the torsional moment applied at the root 

of the wings by a flexing fuselage. The prob1ans immediately con-
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fronting the authors in this phase of the investigation were those 

of determining (1) the torsional moment produced at the root of a 

wing by a flexing fuselage and (2) the method of coupling this moment 

into the wing at its root. 

For the solution of the first of these problems a method devel­

oped in Ref. 2 for the antisymmetric bending of wings was applied 

to the flexing fuselage, considering the fuselage to be made up of 

two independent beams extending in opposite directions from the lo­

cation of the elastic axis at the root of the wing. This method has 

the advantage of yielding immediately the bending moment at any par­

ticular station along a cantilever beam and the slope of the beam at 

that station as linear functions of the nonnal displacement of the 

beam. Consequently, the procedur.e followed was, first, to cal<;lulate 

the bending mcments and the slopes, at the location of the elastic 

axis at the root of the wing, of both the portion of the fuselage 

aft of this location and the portion of the fuselage forward of this 

location resulting from a unit downward displacement of the extreme 

end of both the tail and the nose. The bending moment at the elastic 

axis and the slope at that location of the after portion of the fuse­

lage were designated as Mb and OC b respectively, and of the forward 

portion of the fuselage as M~ and cx.~ respectively. 

Next, since the fuselage is actually a continuous structure 

throughout its length, its slope on either side of the elastic axis 

must equal the slope on the other side of the elastic axis. This 

leads to the result that, since the initial displacements of both the 
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tail and the nose were taken to be positive d~vards, in order for 

the slope forward of the elastic axis to equal that aft ?f the elastic 

axis. the slopeo fOl"'l'1ard of the elastic axis Ot:~ must be multiplied by 

the ratio (- Ot.bjo!,.) This same res '..llt would have been obtained had 

the initial displacement of the nose b'3cn multiplied by this ratio 

(- O(.j,/O(~) ; and since the bending moment developed is a linear func-

tion of the dis placement of the free end. the bending moment produced 
I 

at the elastic axis b~ the forwoard portion of the f1.<selage Mb should 

also be multiplied by this sa~e ratio. We then have that, for the 

continuous fuselage, the bending moments at the elastic axis due to 

the after and forward portions of the fuselage are given by the ex-

respectively. However, these two 

components oppose one another; consequently, in order to detennine the 

total bending moment Me> from the fuselage to be coupled into the root 

of the wing, one must be subtracted from the other. If the direction 

of Mb is taken to be the positive direction, it may readily be seen 

then that Me - Mb - (~~~/«~) M~ co Mb + (()(..,,/o/.~) M~. And since the bend-

ing moment from the fuselage at the elastic axis enters the wing as 

a tors ional moment, Me is the tors ional moment produced at the root 

of the wing, the amotmt of it entering each side of the wing being1Mc., 

assuming symmetrical twisting of the wing. 

For the method of coupling this moment into the wing at its root, 

one side of the wing W80S considered as a free body in tors ion with this 

torsional mament of -kMe applied at its root. Assuming arbitrary tmit 

angular deflections of the wing tiP. the Holzer's calculations made 
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during the first phase of this investigat i on yielded t he following in-

fonnation for each frequency selected= 

(1) The torsional moment developed within the wing at the first 

station outboard of the root due to the rotational inertia 

from Table III), and 

(2) The -angle of twist developed at the root of the wing (~7 

fran Table III). 

3ince in this calculation the torsional moment developed at any 

particular station and the angle of twist at that station are given 

as linear functions of the arbitrar,y angular deflection of the wing 

tip. any desired angle of twist at the wing root can be obtained by 

properly adjusting the arbitrary angular deflection of the wing tip, 

Since the wing can be considered to be built-in to the fuselage. its 

angle of twist at the root should equal the slope of the fuselage at 

the wing I s elastic axis. and in order to obtain this angle of twist 

at the root it is necessary to multiply the original arbitrary angular 

deflection of the wing tip by the ratio (oc.b/,e~). Having multiplied 

the original arbitrary angular deflection of the wing tip by this 

ratio, it is then necessary to multiply the torsional moment devel-

oped within the wing at the first station outboard of the wing root 

by this ratio also. Hence, this moment is then found to equal 

and adding this to the torsional moment applied at 

the root -of the wing by the fuselage. a re s idual torsional moment or 

0'" 
torque on the wing of M - tM ... +(rxj,fo,)!:, I"tl,8" is found. This residual 

torque is then the additional applied moment required in order to force 
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the wing to vibrate at the assumed frequency. This value of the re-

sidual torque is then plotted against the assumed frequency; and the 

prooess is then repeated for othe r as su.'l1ed frequenoies, one point 

on the plot being obtained for each assumed frequenoy. A oomplete 

example of the calculation by this method for one assumed frequenoy 

has been appended to this paper as Tables V(a), V(b), VI(aj, VI(b) 

and VII, with a brief explanation of them included in the appendix. ' 

The results of this oalculation have been tabulated in Table VIII. 

After a suffioient number of points have been obtained, a curve 

may be drawn through them as has been'done in Fig. 1. Again the 
\ 

points at which this curve crosses the frequency axis determine the 

natural frequencies of torsional vibration for the wing, for at these 

points the residual torque becomes zero, and hence the additional 

applied moment required to force the wing to vibrate at that frequen-

oy also beoanes zero. Fran Fig. 1 it can be seen that the natural 

frequencies for the first two modes as determined by this calculation 

are 31.42 and 43.65 radians per second respectively. (See Table IX 

for tabulation of final results.) These are reductions of 6.68ro and 

39.1ro respectively fran the frequencies of the first two modes found 

in the first phase of this investigation. Accordingly, it may be oon-

eluded that, whereas the consideration of a flexing fuselage has a 

small but appreciable effect on the frequency of the first mode of 

torsional vibration of the wing, it has a very decided effect in 

lowering the frequency of the second mode. Probably, considering the 

trend of the curves of Fig. 1, this s~me effect is oarried on in pro-
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gression to subsequent modes of vibration; hence it is the studied 

opinion of the authors that this effect should be considered in the 

calculation of the natural torsional frequencies of the wing. 

The closing phase of this investigation was the determination of 

the fuselage deflection curves for each of the two modes of vibration 

detennined above. This was accomplished with facility from the cal-

culations involved in the detennination of the bending moments and 

slopes of the forward and the after portions of the fuselage in the 

second phase of this investigation. The deflection at any station of 

the fuselage is designated as ~n and columns so headed may be 

found ih both TablesVI(aj and VI(b). Again, the values of ~n' 

given in Table VI Caj m.ust be multiplied by the ratio (-ocb/CXi.) in 

order to give them the correct magnitude with respect to those given 

. 
in Table VICb). Fuselage deflections are tabulated in Table X. A 

plot of the values of ~n calculated ,for the two natural frequencies 

found in the second phase of this investigation was made and has been 

appended to this report as Fig. 2. A perusal of this figure will in-

dicate that the deflection curves for the fuselage for the two modes 

of wing torsional vibration are very similar, there being no reflex 

curvatures along the fuselage length in either case. In the first 

mode the nose deflection is about one-seventh that of the tail whereas 

in the second mode it is almost twice that of the tail, fran which it 

can be seen quite readily that for a given deflection of the nose the 

fuselage curvature will be much greater for the first mode than it 

will for the second. 
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The relative angular deflections of the wing at each station 

along its sp~~ can be detennined very readily by referring to the col­

UJl::1S headed,d in Table III for the calculation for a rigid fuselage 

and in Table VIr for the calculation for a flexing fuselage. These 

values must be:nultiplied by the ratio (6(1./,.5.,) for each frequency 

selected in the calculation for a flexing fuselage, as has already 

been done in the detennination of the residual torque acting on the 

wing, in order to dete:rmine the actual magnitudes corresponding to 

a unit downward deflection of the tail. This has been done and the 

results for the ~NO modes tabulated in Table XI and plotted in Fig. 3. 

Fig. 6 is a schematic illustration of the two modes of vibra­

tion ~ assuning a unit downward deflection of the extreme tail in each 

case. 
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CONCLUS I01IS 

In the case of the airplane investigated herein, the consideration 

of a flexing fuselage has a small but appreciable effect on the fre­

quency of the first mode of torSional vibration of the wing, but it 

has a ver,y decided effect in lowering the frequency of the second mode. 

The deflection curves for the fuselage for the first ~Nomodes 

of wing torsional vibration are very s~nilar, there being no reflex 

curvatures along the fuselage length in either case. However, for a 

given deflection of the nose, the fuselage curvature will be much 

greater for the first mode than it will be for the second. 

It must be understood that the above conclusions apply only to 

the particular .airplane which has been investigated herein. This 

paper is not submitted with the intent to show that. effects of similar 

magnitude can be expected for all airplanes, but simply that the effect 

should be investigated with the thought in mind that it might prove 

appreciable~ particularly in the case of higher modes. 
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APPENDIX 

I. CALCULATION FOR THE RIGID FUSELAGE 

The method used is outlined on pages 228 and 229 of Ref. 1, and 

is known as ~olzer's method. The wing data (See Table I.) furnished 

for the airplane in q~estion assumed the mass moments of inertia ][n 

of the wing to be concentrated at '7 spanwise stations, the first and 

last stations being located at the tip and the root respectively. 

The notation used is the sa~e as that for the fuselage and is demon-

strated in Fig. 4. 

A positive (climbing) pitching angle at the tip ( 11- I ) of 
• 

one radian was as sUllled , (,.<3." I ) and for a given frequency, the 

11»1 '2. 

inertia torque~I" ()lA, was calculated for station n =- \ This 

inertia torque multiplied by the torsional flexibility for panel 

length 1.. gave the amount of twist or the reduction in angle f:1 be-

t'l"l'een stations n=-\ and ., ... 2. • This angle of twist was then sub-

,tracted from ,13, to give ;Sa the angular deflection at station 

"::2. ... 

, the inertia torque at station n = '1. ,~I" wj3", 
"" 

was then calculated. 

The remainder of the table was completed in like manner until 

"<1 

the residual inertia torque .;?" In w"',i3" (at the wing root) was found. 

This value of inertia torque was tabulated in Table TV and plotted 

against w in Fig. 1. The residual inertia torque is the shaking 

mo.~ent which would be required at the wi ng root to cause the wi ng to 

vibrate torsionally at the assumed frequency t.ll In the case 
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.. , 
of a rigid fuselage and assuming symnetric torsional vibration, ~J:ft~~~ 

must equal zero at a natural torsional frequency of the wi~g . Consequent-

ft -' 
ly these natural frequencies can be f~und by plotting ~ ~~A. agains'f:; 

w to detetmine points of intersection with the w axis as was done 

in Fig. 1. This calculation was carried out for the first two modes, 

the final res ults appearing in Table IX under "Rigid Fuselage", 

n-' ~ 
A sa.llple calculation for ~ I"wA, appears as Table III. 

II. CALCULATION FOR THE FLE..'<.IBLE FU3ELAGE 

(a) Outline- of Method Used: 

The method used here for the fuselage is that derived in Ref. 2 

for the antisy%lletric bending of airplane.wings. A brief resume of 

the method foll~Ns herewith. 

Using the notation demonstrated in Fig. 4, the shear at any. sta-

tion n is given by 

(1) 

and the bending moment at any station n is given by 

,,-W'\"1 

M n = ~ rnA. w"''k.: (x .. -Xn) (2) 

, The slope at any station n + I is given by 

(3) 
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and the deflection at any station n + I is given by 

(4) 

where 

VFn = change in slope from n+\ to n due to a unit force at \'1. 

vMn=-change in slope fran n+1 to n due to a unit moment at n. 

d F., ~ change in deflection fran n .. I to n due to a unit force at n. 

d",,, = change in deflection from n~1 to n due to a unit moment at n. 

The method of calculation of these parameters is outlined in sec-

tion II (d) of this appendix. 

Substi tuting the expressions for S" and M 1\ fran equations (1) 

and (2) into equations (3) and (4) 

( 1;) 

(6 ) 

At the end of the fuselage, assume 

'3-. = I 

so that ( 5a) 

Continuing with equations (5) and (6) in like m~~ner yields 

(7 ) 
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(8~ 

where coefficients ~"" f" , 'it", ' and k" are independent of eft 

one complete set being obtained for each frequency. The method of 

detennination of these coefficients is outlined in section II (b) of 

this appendix. For the present, these coefficients are assumed to 

be known for any particular frequency w 

For antisymmetric bending, the case where the fuselage is being 

shaken by a shaking moment M C03 vJt about the elastic axis of the 

wing, the deflection at the elastic axis is zero ~b=O 1 and from 

equation (8) 4>., h 
, "" With this value of ~ , all of the def1ec-

tions '6" may be found by means of equation (8), as can the bending 

moment at any station t1 

In the particular calculation with whic.l-t this paper is concerned, 

the two quantities desired are the bending moment co-TIling in from the 

tailor nose M .. ' and the slope of the fuselage at the elastic axis 

(9) 

(10) 

Putting (11) 

and (12) 

also (13 ) 
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Then 

-l,G, +i,.(G,-tG,.) t.Q.w(G; tG-1 +G3 )-t-- lb_.(G-, +~+-- ' Gb-') 

I. L • 

= .'£ ~l~ ~ 6;1 1=' ~:, 

and similarly E'lK~ </> ~"lJ = <j/~' [~ ~4 KJ 

Mb = ~'tQ~ ~ G~l - <pA~' ll4 ~ \\J so 

Referring to Table VI (b) 

. z;. 

2: K~ is given by column (2) and 
~<1 

.s;:~ 

::E: ' G 
.3~1 .5 

is given by colt1'l1n (6), the second 

ring in columns (3) and (7) which columns give 

and 

From this it is seen that 

and from equation (7) 

summations 

(14 ) 

(16 ) 

occur-

(17 ) 

(18) 

(19 ) 

(20) 

where {. .. and f .. are given on line n,.s under coltmns (4) and (8) 

res pe cti ve ly. 

The method was repeated for the nose using the same frequency 

- 22 -



(Table VI (a)) to obtain M~ and oc.~. and the four values thus de-

tennined were tabulated at the top of' Table 'In. 

With an assumed positive (d~Nnward) deflection of one inch at the 

tail the total moment introduced at the elasti c axis by the fuselage 

is given by 

' and the slope of the fuselage at the elastic axis is ClCb 

(b) Detennination of Coefficients 

With the original assumptions at .the end of the fuselage ~I = ¢ 

and ~I. I ,from equations (7) and (8) 

it is obvious that 

~,"" I f, - 0 ~I:o. I k,'" 0 , and 

from equations ( Sa) and (6a) 

OC'2. = ¢- f2. 

,!- .. - a-~ ' - 1, tp 

are obtained -A. .. - I and k.. ~ 1., 

Subs ti tuting equations (7) and (8 ) into equations (5) and (6) • 
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By equating terms containing ~ and those not containing ¢ on the 

two sides of each of equations (21) and (22), the following equations 

are obtained: 

Equating coeffi~ievts of p 

.i=n 

~"+l - ~ .. + IA)2.VFn ~, rn .. ):' ... 
1:,,"1 

+ W1.VM"~, mi k.; ex .... -xJ (23) 

(24) 

Equating constant terms: 

i·rH 

+- ~"'VM .. ~ I\'\ .. ~ ... (~c X.,) (25) 

(26) 

Using sUbstitutions and relations developed in (11), (12), (13), (15) 

and (16): 

(27) 

K. .... l (28) 

,iA'" i:.ff-' s:: 4 

f"+1 = f" +- VF'1 .fu GL + VM" ~l [1,; ~, GJ (29 ) 

«i"+1 ~,,+- 1 .. f"+1 - d F .. ~ G;; - d M .. i~' 11~ ?~ GJ (30) 

All the coefficients ..e,.. , k" , f" , and ~" can be found by pro­

gressive calculation with the aid of a table (such as Tables VI (a) and 

VI(b)) based on these equations. 

(c) Procedure Used in Filling out Tables VI(a) and VI(b) 
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Parameters VF,., VIII." d F,., and d ... " were calculated (see section 

II(d) of this appendix) and written in the spaces indicated. Like-

wise the values for 1... were entered in the tables. 
~ 

Then, for a given frequency, values of mnw were calculated and 

entered in the appropriate column. 

Next, in line n"l the following values were entered in 

columns (1), (4) and (5) respectively: 

k," 0 '3, = I 

and in line n~ Z l.Ulder column (1): 

The table was then worked across from left to right starting with 

line n c I then proceeding with line 0-2 etc., each ste.p being in­
I 

dicated in the column heading. 

In computing values to enter in columns (Ii, (3), (5) and (7 J. one 

must remember to ~se infonnation appearing in the preceeding line. 

The remainder of the steps are self explanatory, the desired 

quanti ties of the calculation being Mb and Q(.b' 

(d) Calculation of Para..'lleters vF., . ' v"' .. ' dF.. , and d", ... 

The fuselage data received (Table II.) indicated bending moments 

of inertia equal to zero at each end of the fuselage. but in order 

to more nearly approximate the probable moment of inertia distribution 

in the regions from the extreme ends to the next stations inboard, 

a trapezoidal distribution over these regions was assumed in both 

cases with the end ordinates approximately half the value of the next 

ordinates inboard. The assumed values were 

I, (TAIL) '" ~oo in.-4 I, (NO~E) = 3,500 ill.1-
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A fuselage stiffnes s curve (such as Fig. 5) could be drawn for 

the given and assumed (end) values of bending moment of inertia, where 

the bending moment of inertia is plotted against fuselage distance 

as abscissa. such that the areas between succeeding stations would be 

trapezoids. If I. is taken as a convenient refevoence value of the 

bending moment of inertia for the fuselage as a whole, then at any 

point between stations n and YI +-1 

T.'s ing the moment area method: 

(31 ) 

(32) 

(33 ) 

Referring to Tables V(a) and (b), E I. Vias t aken as 10
10

• Columns 

(1) and (2) were filled in with values of ~ and a", f rom the data 

furnished. The value (a,,~b,,) in column (3) is determined fran 

a"~1 - a. ... + b., 

Due to lack of availability of a seven place table of natural 

logarithms, common logarithms were used and values converted to 

natural logarithms in columns (8) and (9) by the relation 

The remainder of the table is self explanatory and follows from 
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equations (31), (32) and (33). The desired parameters appear in c01-

umns (8), (12) and (18). 

(e) Procedure Used in Filling out Table VII. 

Again using the same frequency as was used in Tables VI(a) ~~d 

VI(b), Holzer's calculation (as explained in section I of this appen-

dix) was repeated in Table VII, the desired quanti ties being the 

angular deflection of the wing at the root ;47 and the inertia torque 

at the next station outboard from the root This inertia 

torque adjusted so as to make the angular deflection of the wing at 

the root equal to the slope of the fuselage at the elastic axis is 

, and this adj us ted ine rtia torque added to half 

the bending moment introduced at the elastic axis by the fuselage 

~ ~c gives the residual torque acting at the wing root which would 

be required to make the wing vibrate torsionally at the chosen frequency. 

At a natural frequency of the system this residual torque is zero. 

Table VIII gives a tabulation of the results of this calculation. 

Fig. 1 shows a plot of thi s residual torque against wand the natural 

frequencies (first and second modes) occur when this curve crosses the 

w axis. The · final results are tabulated in Table IX under "Flexible 

Fuselage tt. 
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OJ w-:t M )( 10-'-

20.00000 400 0 .1079923 

Z6.28427 800 I. a 198740 

29.154-7" 8S0 0 . 9994380 

31.14482 g70 0 .43(01850 

3/ .32092 96) 0 . 2045320 

* 3\ .-"\-214-8 ~37. 30~ +0.0041245 

31.43247 986 -0 . 0123650 

31."22.78 1000 D. 7522720 

31.93740 1020 -22.84"4700 

32 . 24900 1040 -i'3 . 81717Z0 

32 .8(0940 1080 2 . 1023500 

33. <;.72/5 1133.8Igf, J . 1240340 

38. 13000 (SOO \. 1'291610 

4aS8~00 /900 . 0 . 0230745 

43. "4G3\ I c;) 05 +0 . 00 19 884 

~ 43. <DS 170 1905.4-715 o e" INTeRPOLATION 

44. 72100 2000 -0.4468940 

* NATUI\AL FIt"QUU/ CI£l> 

TABLE VIII - RES ULTS CF FlEXIBLS F1.DELA E CAI CDLAT'ON 
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.RIGID flE.XIBLE 
FU5EUd;'£ FUSELAGE PERUNTAGE. 

MODE W W DECREASE 
(RA PlANS! SEC) (RADI AN ~/~ft) 

F\RST 33.~7215 32.42 '148 b.GS 

SE.COND 71.70349 4'3.<05\11 3~. , 

TA0LE IX - FI ~A.u RiSULT5 

.. 3~ -



NUM8r:R DISTANC.£ FIR5T MODE "'~31 . 42..14e SECOND MOOE w=4;3. '"+~ ~O57 
OF 

STATIOI'! FROM 1)E.FlfC.TION DiF'lEC"TION 

n FO R HO~E FOfll N"~& 
FUSE-

g' x (-0( .. /01:;) ~'" (-o("/cJ.~) 
110 ..J l A-6! 

~OILTAIL 0() - FOR. TAIl.. -0 < 1'(0 Sf , 
~I Z ,.... 

!.J 't- '6-
I 0 1.00000 O.14~115 I. 000000 \.8\1 89'3 

2 74.50 0.119 J 19 0.\ 051 11 0.'-.84'(,4- \. 740538 

3 15/.00 0.442298 0.0,"41:-53" 0.38,3022- 0.(09399.5 

4 Z25.00 0.208 II?. 0.03042\ 0.1 S 418" 0.2793"9 

5 2 58.S(" 0.11733~ + 0 . 017\ S Z 0.078781 +0.142743 , 9 30!.OO 0 0 0 0 

8 349.50 - 0.000047 - O.O~2598 

7 436.00 + 0.011"88 - O.OI7~84 

~ 50".00 0.183"97 + 0.009384-

s 594-.00 0,317753 O.209~13 

4 ,"93.00 O.G.21O 103'?J 0 .50-/35<0 

3 114.00 0.1'2.7 0 II O.'''3G:.~2~ 

2 15B.oO 0.81~ 17~ O.B373~'2 

I 191.50 I. 000000 1.000000 
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NUMBfR PISTANU FIRSi MODE w~gl.4214a ~H.ON'D MODE w::'4'3.<04(;~O$7 
, 

OF OF ANG-ULA It ANGULAR 

DEI'UiCTION DE'F1.fCT. ,IQN 
IliING ~iTATtON 

(ADJI.lS7FD) ( .... t>.J U $T Ell) 

STATIoN F~OM 

t1 ROOT /-3 ~ ,,(.,(,,/,.e .. )X 102 j.3 ;S X (oIf, / fJ.,))( \ 01 

I "38 I. 000000 ~ I. I <D 7 1.000000 +0. 413 

2- S48 O.99~1-+0 I . I (0 '3 O. ~'1181 0.409 

3 428 0 .977290 \ . 14-1 O.95~301 0.395 

4- 301 0.9«' "'309 /.! 28 O.<33~57Z. -I- 0.387 

.5 2./1 0 . 4(04538 0.542 -0.002559 - 0.00 t 

b 153 0 .332.\51 0.388 - 0 .241594 -0.10'2. 

7 0 0 . OZ~148 - 0.03 , - O.4~ 1093 0 - 0.205 

TABLE XI - ~'{nTG A GUL.A s 
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