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Abstract 

There exists a critical Reynolds number (at which a linear instability first appears) for 

an incompressible fluid flowing in a channel with compliant walls (Hains and Price, 

[1962]). It is proven that, for fixed non-dimensionalized wall parameters, to any un- 

stable disturbance in three dimensions there corresponds an unstable disturbance in 

two dimensions at a lower Reynolds number. Consequently, the Ginzburg-Landau 

equation is used to study the weakly nonlinear two-dimensional evolution of a distur- 

bance in a channel with compliant walls for Reynolds number near its critical value. 

The coefficients of this equation are found by numerically integrating solutions of 

the Orr-Sommerfeld equation and its adjoint as well as solutions of the perturbation 

equations. 

For rigid walls the finite amplitude two-dimensional plane wave solution that bi- 

furcates from laminar Poiseuille flow at the critical Reynolds number is itself unstable 

to two-dimensional disturbances. It is found that for compliant walls this solution is 

stable to disturbances of the same type. 

The formalism developed by Landman [I9871 is used to study a class of qua- 

sisteady solutions to the Ginzburg-Landau equation. This class includes solutions 

describing a transit ion from the laminar solution to finite amplitude states and non- 

periodic, "chaotic" attracting sets. It is shown that for compliant walls the transition 

solutions persist while the "chaotic" ones do not. 



Preface 

A person familiar with scientific literature will immediately notice that I have ignored 

the usual convention of using the word "we" when I really mean "I". This choice is 

deliberate. One reason I made this choice is that any mistakes, errors, or omissions in 

this work are my responsibility, not ours, and I do not wish to share this responsibility, 

even by implication. Another reason is the use of "we" in a work by a single author 

sounds too aristocratic and presumptuous, especially for a U.S. citizen and a native 

of the state of Texas. 

The text, I find, is much more readable. 
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Chapter 1 
Introduction 

The study of the interaction of incompressible shear flow with a compliant surface was 

initially motivated by the experiments of Kramer, who was himself motivated by the 

observations of R. W.L. Gwan [I9481 and J.Gray [1957]. Using straightforward energy 

arguments, Gray concluded that for a dolphin to maintain the swimming speed of 22 

miles per hour the flow of water over practically the entire animal's surface must be 

laminar. Kramer [1961,1965], who reported the drag-reducing capabilities of compli- 

ant coatings, conjectured that damping in the coating inhibited the development of 

Tollmien- Schlichting waves in the boundary layer, and, consequently, delayed or pre- 

vented the transition to turbulence. It should be noted, however, that despite much 

work by subsequent investigators no independent evidence has been obtained for the 

drag-reducing capabilities of Kramer 's coatings (Carpenter and Garrad, [1985]). 

The theoretical study of the effects of a flexible boundary on the hydrodynamic 

stability of a boundary layer was conducted by Benjamin [1960,1964], Landahl[1962], 

and Landahl and Kaplan [1965]. Similar studies for channel flow were conducted 

by Hains and Price [1962]. These investigators derived the linearized compliant 

boundary conditions, which is no mean feat since Korotkin [I9651 and subsequent 

Soviet authors have apparently incorrectly implemented the no-slip condition at the 

compliant wall. In particular, let the displacement of the wall into the fluid be given 

by 1) and the displacement tangential to the undisturbed wall be given by 6, as 

illustrated in Figure 1.1. The no-slip boundary conditions require that 



Figure 1 .I: The definition . . of q and t. 

at the walls. Expansion in a Taylor series about ( t ,  q) = (0,O) yields 

Assuming that the wall has little freedom of movement in the x-direction, I take 

0 , and, letting q be small, find that 

where u and v are the fluid velocities evaluated at the location of the undisturbed 

wall. For q = 0 these linearized boundary conditions reduce to the usual no-slip 

boundary conditions 

~ ( 2 ,   wall, t )  = 0 r U(X, ~ w a l i ,  t) = 0 

Following previous investigators, I introduce an additional boundary condition, 

one of which models how the compliant surface responds to the change in the pressure 

at the wall, 6Fw : 



where B is the flexural rigidity of the surface, the tension, k the spring stiffness, 

pg the mass density, & the wall thickness, and J the damping coefficient. I make 

no distinction between the mechanical pressure and the thermodynamical pressure 

in this incompressible flow. Non-dimensional variables can be chosen so that the 

principle of Squire's theorem still applies (as will be shown explicitly in the next 

chapter), a fact known to Benjamin [I9641 but apparently not known to Riley, et a]., 

[1988], who scale their parameters quite differently. 

To describe the linear stability analysis of parallel flow (Drazin and Reid [1981]), 

let U (y) = a$,/ay be the undisturbed laminar velocity in the x-direction and (u, v)  = 

($,, -&) be the infinitesimal perturbations to this velocity. Decomposing $J into 

normal modes, 

and substituting $, + $ into the two-dimensional incompressible Navier-Stokes equa- 

tions (shown explicitly in Chapter 2) yields, upon linearization, 

the Orr-Somrnerfeld equation, where D G dldy. For rigid walls, the boundary 

conditions become 

4 = 0 ,  + ' = O  at the wall (s) , 

and this equality is an eigenvalue equation for the complex wavespeed c = c (a, Re). 

When this equation is solved numerically, a single eigenfunction can be found for 

plane Poiseuille flow that has an eigenvalue c (a, Re) whose imaginary part , ci , be- 

comes greater than zero in a region of the a-Re plane. The curve of marginal stability, 

ci (a ,  Re) = 0, is shown in Figure 1.2. It is still an open question whether such unsta- 



Figure 1.2: The curve of marginal stability. 

ble regions exist for any of the other eigenfunctions. The minimum Reynolds number 

on the curve of marginal stability is the critical Reynolds number, Re,, and its cor- 

responding wavenumber is a,-. A similar curve is found when the undisturbed flow 

is the Blasius boundary layer. An interesting result concerning the maximum value 

of the imaginary part of c (a, Re) for this eigenfunction is discussed in Appendix A. 

Assuming that the wall displacement q was of the same order of magnitude as 

the perturbation velocities, Benjamin extended conventional linear stability theory 

to parallel flows with compliant boundaries and found that for flows with no wall 

damping (l 0 in equation 1.3) the neutral stability curves are shifted to lower 

wavenumbers and larger Reynolds numbers. Landahl's [I9621 numerical examples, 

however, showed that the increase in the critical Reynolds number is modest. Ben- 

jamin also found that damping destabilizes these waves. 

Benjamin identified three different types of wave disturbances, which he called 

classes A, B, and C. Class A disturbances are the Tollmien-Schlichting waves modified 

by the response of the compliant boundary (discussed above). Class B disturbances 

are associated with the free surface waves in the flexible wall. Class C instabilities 

are of Kelvin-Helmholtz type and arise when a class A wave coincides with a class B 



wave in both wavespeed and wavelength. I will only be concerned with values of the 

wavelength, Reynolds number, and the flexibility parameters of equation 1.3 where 

class A wave disturbances are unstable (since I am concerned with the onset of the 

viscous inst ability). Class B instabilities depend fundament ally on surface flexibility 

and could exist in an inviscid fluid flow. It is not known whether a curve of marginal 

stability exists similar to Figure 1.2 where class B wave disturbances are unstable. 

Carpenter and Garrad [1985,1986] numerically solved the Orr- Sommerfeld equa- 

tion for a variety of compliant wall models and concluded that a transition de- 

lay is theoretically possible. However, this linear theory determines the stability 

of infinitesimal periodic disturbances. The Orr- Sommerfeld neutral curve is the 

zero amplitude intersection of a nonlinear neutral surface for finite amplitude two- 

dimensional waves (Bayly, et al., [1988]), and it is this bifurcation from the zero 

amplitude waves to finite amplitude waves I wish to study. 

In order to extend linear theory for rigid walls to account for small, but finite, 

amplitude disturbances in the flow, Stewartson and Stuart [I9711 used a weakly 

nonlinear formulation based on the method of multiple scales. The stream function 

1C, is expanded about the base flow in both a power series in the small parameter €'I2 

(proportional to the amplitude of the modulation) and in a harmonic series of the 

traveling wave found from linear theory at R e c .  In this analysis the perturbation 

stream function is given by 

where and T are the scaled slow streamwise coordinate and slow time, respectively, 

given by 

t = E'/~(+ - cgt) , T = E ~ .  (1.6) 



The values for c,,, the real part of the wavespeed at the critical point, a, , the 

wavenumber, c, , the group velocity at which the energy of the modulation propa- 

gates, and +(y) , the Orr-Sommerfeld eigenfunction at the nose of the neutral stability 

curve where Re = Re, , are found using the linear stability theory. In this expansion 

about the nose, the change in the Reynolds number is proportional to E and is given 

by 

s,(Re - Re,) = €0, , 

where E is greater than zero, a, is either +1 or -1 , and s, is a fixed positive constant 

included for consistency with Stewartson and Stuart. The Ginzburg-Landau equation 

is found by substituting an expansion for $ correct to order c3I2 into the Navier- 

Stokes equations and enforcing a solvability condition for the c3I2 inhomogeneous 

equation, thereby leading to: 

The complex constants b , s , and n are also found numerically. In Chapter 3 I will 

derive equations for these constants for channel flow where the walls of the channel 

are compliant. 

The normal form of the Ginzburg-Landau equation is found by rescaling A to A 

and F to x (distinct from the fast scale x )  by letting 

Upon this substitution I obtain 

d A d2A 
- = (a, + iai)- + o ~ A  + (d, + i d i )AI~I2  , 
d7 dx2 

where, for b = br + ibi and n = n, + ini in equation 1.7, 



Landman [I9871 studied a particular class of solutions of this equation of the form 

which he called quasisteady solutions, and found that their spatial variation may be 

periodic, quasiperiodic, or apparently chaotic. In Chapter 4 I will use this formalism 

to study the quasisteady solutions of the Ginzburg-Landau equation for compliant 

walls. 



Chapter 2 
Squire's Theorem 

I would like to generalize a theorem of Squire [I9331 that states that for any unstable 

disturbance in three dimensions there corresponds an unstable disturbance in two 

dimensions at a lower Reynolds number. An important consequence of this theorem is 

that to obtain the critical Reynolds number for periodic disturbances I need consider 

only two-dimensional disturbances. I am assuming that the undisturbed flow is given 

where the channel walls are the parallel lines ij = +L and 5 = -L . A similar theorem 

for the Blasius boundary layer requires only minor modifications. The motion of the 

lower wall (the proof is the same for either wall) in the 5-direction, ij, written in 

dimensional variables, is given by 

where B is the flexural rigidity of the wall, F the tension, it the spring stiffness, p~ 

the mass density, &the wall thickness, (Z the damping coefficient, and 6fiw the change 

in the mechanical fluid pressure at the wall. Nondimensionalize the equation using 

the fluid density p , channel width 2 x L , centerline velocity U , and viscosity p : 

to obtain 



With these definitions I will prove 

Theorem 1 (Squire's Theorem for compliant boundaries) Given a set of com- 

pliancy parameters B , T , n , M , and d ,  and an unstable periodic disturbance in 

three dimensions there corresponds an unstable periodic disturbance in two dimen- 

sions for the same compliancy parameters at a lower Reynolds number. 

Given the x-momentum equation, 

the z-momentum equation, 

and the boundary conditions at the walls, 

I let U(y) = 1 - y2 be the undisturbed parallel flow (which vanishes at the wall) and 

impose a periodic disturbance: 

Letting 



-10- 

at the wall, I substitute and linearize by assuming that the functions j , ii , 6 , and 

G and the constant l j  are all small quantities to obtain 

1 
-iacii + iaU(y)i'i + 6U' + i a j  = -[iiff - (a2 + 12)ii] , 

Re 
1 

-iacG + iaU(y)G + ilfi = -[GN - 
R e  

(a2 + 12)G] , 

and 

-iaclj = 6 )  and 

at the wall. Evaluating the momentum equations at the wall gives 

1 
h 

i a j  = -[;"- v 

Re (a2 + 12)2] + i ac  [i'i(Y) - -uf ] , zac 

Eliminating l j  , 

at the wall. Substituting in equation 2.2 I obtain 

If I apply the Squire transformation, 



to the equations at the wall I obtain 

imc I 

A v B T K - 2 2 d P = -- imc [-m4- - m2- - + ~ r n  c + imc-] , 
Re Re Re Re 

which are the boundary conditions for two-dimensional disturbances for ii , 6  , p , the 

wavenumber m , and the Reynolds number Re . If I apply the Squire transformation 

to equations 2.3 and 2.4 I obtain 

the x-momentum equation for ii ,  and the continuity equation, 

becomes the two-dimensional continuity equation 

Consequently, for fixed B , T , K , M , and d , the minimum critical Reynolds 

number occurs for a two-dimensional disturbance, and it is reasonable to use a two- 

dimensional model to study the onset of the instability of the flow. 



Chapter 3 
Ginzburg-Landau equation 

In this chapter I will present the details of a model of the flow over a compliant surface 

and study the stability of that flow. First I will derive the Ginzburg-Landau equation 

for channel flow with compliant walls, and then I will discuss what properties of the 

finite amplitude steady waves that bifurcate from channel flow can be inferred from 

this weakly nonlinear model. 

3.1 Derivation of the Ginzburg-Landau equation 

In this derivation of the Ginzburg-Landau equation I follow the original derivation 

of Stewartson and Stuart [I9711 and that of Davey, et  al., [1974]. Several of the 

formulae used in this derivation will be used to find the boundary conditions of 

compliant walls. 

As a notational convenience I define P(') and P ( ~ )  as the pressure gradients in 

the x and y directions, respectively, and relate these functions by the consistency 

equation 

This equation, along with the two-dimensional Navier-Stokes equations, 

are the equations of motion. These equations must be modified in the method of 



multiple scales to conform with equation 1.6 by making the substitutions 

Letting a, be the critical wavenumber on the curve of marginal stability and c,, be 

the real part of the wavespeed at the nose (Figure 1.2), expand the velocities and 

pressure gradients in a harmonic series of the form 

and similarly for v , P(') , and P ( ~ )  . The overbar denotes the complex conjugate. 

The functions uo , ul , and 212 are functions of y , [ , and T only. The Ginzburg- 

Landau equation is found from a solvability condition at order e3l2 , SO I let: 



Plane Poiseuille flow is chosen for the base flow because it is a truly parallel flow and 

can be exactly described by a polynomial in y . These expressions are substituted 

into the two-dimensional Navier-Stokes equations and coefficients of Em (n, m = 

0 , 2 , )  are equated to zero. 

From the coefficient of E I obtain 

where, here and throughout, I let D = d / d y  and write a , c for the more cumbersome 

a, , c,, . Eliminating the pressure gradients and u11 in the above equations gives 

i 
L v l l  -(02 - a2)2v11 + (1 - y2 - c)(02 - a2)v11 + 2v11 = 0 , 

aRe 

the Orr-Somrnerfeld equation. 

From the coefficient eE I obtain 

which implies that 



The solvability condition for this equation gives the value of c, , but I have found 

this constant using a method discussed in Appendix B. 

From the coefficient eE2 I obtain 

Eliminating the pressure gradients, u22 , and ull in the above equations gives 

From the coefficient eEo I obtain (omitting the formula from the y-momentum 

equation) 

For rigid walls the no-slip boundary conditions require that v20(H)  = 0 , and since 

bvzO/dy = 0 throughout the fluid, I find that vzo = 0 . In the next section I will show 

that v2o = 0 for flexible walls as well. Consequently, I conclude pi:) is a function of 

6 and T only and, eliminating ull , I have 



From the coefficient P I 2 ~  I obtain 

Eliminating the pressure gradients, ull , ul2 , and 2122 gives 

This equation has a solution only if the right-hand side satisfies a certain integral 

condition; this integral condition gives the Ginzburg-Landau equation. 

If I let 

then equation 3.5 becomes 



When the walls are rigid, both vl3 and $J have the same boundary conditions, viz., 

furthermore, the adjoint to the Orr-Sommerfeld eigenfunction, @ ( y )  , where 

is also adjoint to the homogeneous equation 

However, when 1C, and v13 have different boundary conditions, @ is no longer adjoint 

to equation 3.6, and the calculation of the Ginzburg-Landau coefficients is not as 

straightforward. This calculation will be examined in more detail in the next section. 

Making these substitutions into equation 3.4 gives 

a2u20 -- a a all, 
- R~[P;;) + ia jA2 -($- - 

a y 2  a y  a y  

and letting uZO( f  1) = 0 (rigid walls) yields 



This choice of variables is motivated by the fact that 

and the time averaged fluid flux, Q , is given by 

3.2 The Compliant Boundary Conditions 

The only known unstable eigenfunction of the Orr-Sommerfeld equation for channel 

flow is symmetric about the center of the channel (y = 0), as are its adjoint, @(y) , 

and the function $ ~ ~ ~ ( y )  . Taking advantage of that symmetry, I will derive the 

compliant boundary conditions for the lower wall alone. The symmetry implies that 

the equations for the walls are identical except when the response of the wall to the 

mechanical pressure is specified. In particular, if I define ij , the displacement of the 

wall in the y-direction, at the upper and lower walls as shown in Figure 3.1 and 6Cw 

as the change in the pressure at the wall, then for a simple Hooke's law wall I have 

N N 

6jw = +kij upper wall 6jw=-nv lowerwall, 

since when the pressure change is positive I expect i )  at the upper wall to increase 

and i) at the lower wall to decrease. I will now use the dimensionless variables defined 

in Chapter 2. 



Figure 3.1: The displacement of the upper and lower walls. 

For undisturbed Poiseuille flow with fluid velocity U ( y )  = 1 - y 2 ,  let the upper 

wall be the line y = +1 and the lower wall y = -1 . Expand 77 in a harmonic series 

where the are functions of y , ( , and T only, and overbar denotes complex 

conjugation. Expand each of these in a power series in r'I2 : 

770 = 0 by hypothesis 

1)' = €112 1111 + eq21 + ~ ~ ' ~ ~ 3 1  + 0 ( c 2 )  

772 = e 722 + 0 ( ~ ~ 1 ~ )  . 

It is necessary to assume that the wall displacement due to the changes in the mean 

flow, 110 , is identically zero in order to satisfy the continuity equation. This assump- 

tion is equivalent to requiring a fictitious force opposing the mean pressure on the 

walls at the O ( E )  level. 

Expanding the no-slip boundary conditions (equation 1.1) in a Taylor series gives 



-20- 

For simplicity I will assume a Hooke's law with no damping, 

(lower wall) . 

The pressure gradient is related to the lower wall displacement by the equation 

with the opposite sign at the upper wall. 

From the coefficient of E'I~E I obtain 

and, eliminating 711 , 

The continuity equation and x-momentum equation hold throughout the fluid, and, 

evaluating these equations at the lower wall, 

I can eliminate the variables ull and pi(:) to find 

Here I have used the fact that the derivatives of the continuity equation are also 

valid at the wall. Similarly, at the upper wall, 

and the symmetry of vll(y) about the center of the channel is preserved. 



From the coefficient of CEO I obtain 

Substituting the expressions for qll , vll , and ull I find that 

1 V l l  dull fill dull 2 V l l  fill 
v20 = 0 , u20 + - [-- + --I - -- - - 

c ( - ia )  dy i a  dy  c2 (-ia) ia - 0 ,  

and, since dvzo/ay = 0 throughout the fluid, 

Using the notation of the previous section, I have 

where I have used the symmetry of S ( y )  , and 

Defining the adjoint Q, by 



implies that 

and the adjoint is symmetric with respect to y = 0 . 

From the coefficient of cE2 I obtain 

Eliminating 722 and gives 

Evaluating the x-moment urn equation at the wall 

(1 )  and eliminating P22 gives 

Use the continuity equation, 

to eliminate u22 : 

R e  d3 v22 vll dull - [c- (-) + 8a2 (-?-) + a ( 4 a  - ic ~ e )  (-) - 
K dy3 -22a -2za -za dy 



Substituting 

into this relation gives 

The boundary conditions at y = +1 and equation 3.3 require that $ J ~ ( ~ )  be an odd 

function about y = 0 . 

From the coefficient of cE I obtain 

and, eliminating 712 and 711 , 

c g a  Vll 
iac u12 - 2v12 - 2-- (-) = o 

c  at -za 

The continuity equation and x-momentum equation hold throughout the fluid, and, 

evaluating these equations at the lower wall to obtain 

I can eliminate the variables ull , ul2 , and P,(;' to find 



Substituting 

eliminating d3+/dy3 , and factoring out BA/d< gives 

From the coefficient of e3l2 E I obtain 

and, eliminating 713 , 

dull avll d~~~ dva2 + 7722 (iac- + 2-) + 711 (iac- + 2-) 
a y  a y  ay  8~ 

a2ull a2vll v?, a2&1 + 77llqll (iac- + 2-) + (iac-) a!Y2 a y  ay2 
K a77 a77 

= -[Vl3-(c-  --- 
c Re2 '")at d7 

d ~ l l  dv22 d2Vll $1 a2g11 + 722- 
ay 

+ 711- 
a y  

+ 7 ~ 7 1 1 ,  + --I 
dy 2 dy2 

The continuity and x-momentum equation hold throughout the fluid, and, evaluating 

these equations at the lower wall, 



I can eliminate the variables u11 , 2112 , U13 , 711 , 9712 , 713 , 2120 , and pi(:) to find 

avls 2 d A  2 2i(c - cg)  a2A 
C- + 2 v13 = --- + ia Re  P$) $A + i a (F  + -G)AIAI2 + a~ c d r  c c Icw 

2 ia 2ia Re d A ( 1 )  a2Re 2a v13] - ia v13 = -(y c - I)$% + (ia Rep20 $)- K A 

cRe2 ia 2 c Re2 
- 1) (F+-G)+-  

G 
+a2 [n(x c K H - - 1 ~ 1 ~ 1 ~  c 

a 2ia Re a d 2 A  
- [ ; ( ~ C - C , ) K  + $ - - [ - ( 3 c - c g ) ~ + i c g ~ e ~ + 3 $ ] ] -  K C  at2 

where 

all evaluated at y = -1 . 

Define a new function 

where the constants r2 and ro are chosen so that 



Since G13 and the Orr-Sornmerfeld eigenfunction $ have the same boundary condi- 

tions, if is the adjoint to 1C, , then 

From the above definition I find that 

where 3 is a function of y. Multiplying the right-hand side by and, taking advan- 

tage of the symmetry, integrating from zero to one gives 

where 

*(I) ia3 0, = A' @{(02 - a2)+(y) - -[2 - a 2 ( l  - y2 - c) + -]}dy 
c Re 

4ia  $ $ 
0, = i 1' m {(I - y2- cg - %)(D2 - a2)(t,blo + -) - 2a2(1 - y2- c) ($lo + -) 

a a 
2ia  + 2 1C, 1L 

+2($10 + 9) - [(c - c - - )  + a )  + (1 - y - c)D2- + 2-1 + F(r1,  ro)}dy 
a Re a a a 

+(I) 2 2 a K  + 3$(1) 2iaRe 
r l = { ~ + - + - - (  a i Re + cg1c)>/c(- K - 1) 

- Cg I( C - cg 
ro - 

C 
1. = +lO(l) + -*(I) a c  



and the constants F , G , and H are now evaluated at y = +1 and given by 

C - C  
I< *lo+-----+b 

ac 

The Landau equation for JAJ2  is found by assuming A is a function of T only and 

adding A times equation 3.8 with A times the complex conjugate of equation 3.8 to 

obtain 

Consider the equation for the mean-flow (or time averaged) pressure gradient, 

the time averaged fluid flux, 

and the Landau equation. A constant solution of this equation, 

shown in Figure 3.2 bifurcates at E = 0 from plane Poiseuille flow at Q = 4U/3 , and 

the parameter F is seen as a measure of the amplitude of A . However, since tP 



Poiseuille flow 

4 ~ 1 3  Q 

Figure 3.2: Configuration space for two-dimensional finite amplitude waves in 

Poiseuille flow. 

also measures the change in the flux and the change in the mean pressure gradient 

(even when IAI2 = O), k can also be interpreted as the change in the Reynolds 

number. As shown in Figure 3.2, this weakly nonlinear formalism gives the linear 

approximation of the bifurcation to finite amplitude disturbances of Poiseuille flow 

(Landman, [1987]), and the actual value of chosen is unimportant. What is irnpor- 

tant is whether the bifurcation is supercritical (i.e. IAI2 > 0 for Re > Recrirical) or 

subcritical. A subcritical bifurcation is shown in Figure 3.2 since this is what occurs 

for rigid wall Poiseuille flow. From the Landau equation it is easily seen that for a 

supercritical bifurcation the solution 1 A l2 is stable with respect to spatially homoge- 

neous (a2A/BE2 = 0) disturbances and that for a subcritical bifurcation the solution 

is unstable to these disturbances. For consistency with Stewartson and Stuart [I9711 

I will let = 213 Re . 

3.3 Numerical Results 

The values of the Ginzburg-Landau coefficients must be calculated numerically. Us- 

ing an initial guess for 1C, , @ , lC,lo , and +2 for Re << 1 (Drazin and Reid, [lgsl]),  

I continued the solution branch using the program AUTO developed by Doedel and 



Table 3.1 : The Ginzburg-Landau coefficients for rigid walls. 

Kernevez [I9851 to Re, = 5772 . The integrals for O1 , O2 , O3 , and O4 are performed 

in AUTO using a composite Gaussian quadrature formula for Lagrange basis poly- 

nomials. The coefficients calculated at Re, agree very well with those calculated by 

Davey, Hocking, and Stewartson [I9741 for rigid walls (Table 3.1). 

Since from equation 2.1 

101 grid points 

1.020547 

5772.2218 

0.264000 

0. 

0.3831 

-87.067 

1. 

< 10- 

0.1867 

0.02748 

0.16825 x 

0.81128 x 

30.95619 

- 172.83342 

ac 

Rec 

CCT 

Cci 

cs 

so 
real 

imag O1 

real O2 

imag O2 

real O3 

imag e3 

real O4 

imag e4 

M N 6fiw = -nq, 

I will identify the limit of i; + co (and since K = i ;L3p/p2 ,  K -+ 00 as well) as the 

rigid wall limit and can use the solution for rigid walls as an initial guess for the finite 

Davey, et .al. 

1.02055 

5772.22 

0.264 

0. 

0.383 

-87.2 

1. 

0. 

0.187 

0.0275 

0.168 x 

0.811 x 

30.8 

-173 

89 grid points 

1.020547 

5772.2218 

0.264000 

0. 

0.3831 

-87.067 

1. 

< 10- 

0.1867 

0.02748 

0.16825 x 

0.81128 x 

30.95616 

-172.83343 



Table 3.2: The effect of compliant walls on stability. 

K Re, real part of 04/01 

K branch at n = 1.0 x 10'' . Once on this solution branch I continued in decreasing 

K as shown in Table 3.2. For the Orr-Sommerfeld eigenfunction, li, , the boundary 

condition 

1.4 x lo7  

1 . 3 x 1 0 7  

1.2 x lo7  

1.1 x lo7  

must hold at the upper wall. For rigid walls 

at the upper wall, so an estimate of the value of K for which 

8757.69 

9296.14 

10118.25 

11646.88 

is n - lo7 , and it is no surprise that the Ginzburg-Landau constants begin to deviate 

-0.082 

-0.311 

-0.473 

-0.532 

significantly from the rigid wall values for K - lo8 . 
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Figure 3.3: Subcritical and supercritical bifurcations from zero amplitude. 

The eigenvalues of the eigenfunction and its adjoint form a complex conjugate 

pair, but numerically each is calculated independently, and these calculations provide 

a test for numerical accuracy. In all my calculations these eigenvalues differed by less 

than one part in 10'' . Another numerical test is the value of the imaginary part of 

cg , which should be zero at Re = Re, (Stewartson and Stuart, [1971]). For single 

precision calculations on a Cray XM/P the ratio of the imaginary part to the real 

part of cg was , and for double calculations on a Sun 31260 the ratio 

was . 

As Benjamin showed [1960,1964], the critical Reynolds number grows as K de- 

creases, but for the range I have considered its value has less than doubled. The 

real part of O4/o1 has decreased monotonically from its rigid wall value of 30.956 to 

a value of -0.532 at  n = 1.1 x lo7  , and the bifurcation to finite amplitude distur- 

bances has gone from subcritical to supercritical (Figure 3.3). Although this wealily 

nonlinear formalism is only valid in the limit of small amplitude, there must be a 

range of amplitude where the nonlinear wave is stable. I will discuss the implications 

of this result in Chapter 5. 



Table 3.3: The effect of damping on stability. 

K 

3 x lo7  

3 x lo7 

3 x lo7  

To get an intuitive idea of how flexible the wall must be at n = 1.1 x lo7 , consider 

the experiment a1 result for rigid wall boundary layer flow that three-dimensional 

perturbations grow rapidly once the Tollmien-Schlichting waves reach a threshold 

amplitude of about 1% of the free stream velocity (Bayly,et al., [1988]). If I take this 

amplitude as an upper limit for a small two-dimensional disturbance and let Spw be 

0.01 and t c / ~ e ~  to be 0.1 (K = 1.1 x lo7 in Table 3.2), then 7 must be 0.1 or about 

5% of the channel width. 

If I make the substitution 

in the boundary condition at the upper wall, I include the nondimensional damping 

coefficient in the wall model. The results of these calculations are shown in Table 3.3 

for the value of n = 3 x 10' . The decrease in the critical Reynolds number was 

interpreted by Benjamin as evidence that damping destabilizes the flow. Since the 

energy supply to a neutral wave on the boundary balances the rate of energy ab- 

sorption, he argued that the Reynolds number has to be reduced in order to make 

the relative viscous dissipation sufficient to restore the energy balance. I have found 

that, in addition to the decrease of Re, , damping also causes the real part of 04/01 

to grow larger. Because the finite amplitude disturbance is stable when the real part 

of 04/01 is less than zero, the effect of damping in the weakly nonlinear formalism is 

damping coefficient 

0 

I x lo6 

2 x lo6 

Re, 

6685.39 

6475.32 

6290.51 

real part of 04/0, 

6.247 

7.487 

8.703 



destabilizing as well. 



Chapter 4 

Quasisteady solutions 

In this chapter I will discuss the quasisteady solutions of the Ginzburg-Landau equa- 

tion for compliant walls using the formalism of Landman [1987]. For rigid walls, the 

spatial variation of these solutions may be periodic, quasiperiodic, or chaotic. I have 

found that although the periodic and quasiperiodic solutions persist a t  n = 1.1 x lo7  , 

the chaotic solutions do not. 

The quasisteady solutions of the normal form of the Ginzburg-Landau equation, 

d A  d 2 A  
- = (a ,  + iai)- + oTA + (d, + idi)AIAI2 , 
d r  dx2 

are of the form 

A(x ,  T )  = e-inT @ ( x  - C T )  , 

where the wavespeed c provides an order €'I2 correction to the group velocity, c, + 
e'l2c . This c should not be confused with the eigenvalue of the Orr-Sommerfeld 

equation, which is fixed at c,, . The values of the Ginzburg-Landau coefficients are 

given in Table 4.1. The numerical value of a, is +1 for the wall models I have stud- 

ied. Substituting into the Ginzburg-Landau equation gives an ordinary differential 

equation for @ ( X )  : 

(a,  + iai)@" + c@' + (a, + i n ) @  + (dr + idi)@l@12 = 0 , 

where X = x - C T  . Following Landman I rewrite this equation as 

where 



Table 4.1: The coefficients for the normal form of the Ginzburg-Landau equation for 

rigid and compliant walls. 

The coefficients y , 6 2  , and a0 are determined by the Ginzburg-Landau coefficients, 

and p , 61 , and cl depend linearly on the two undetermined parameters fl and c , 

the temporal frequency of oscillation and the group velocity correction. 

This second order complex ordinary differential equation can be written as a 

first order system in four real variables, but because of the phase invariance of the 

Ginzburg-Landau equation this system possesses a rotational symmetry. Following 

Sirovich and Newton [1986], I remove this apparent degree of freedom by defining 

the variables r , s , and w where 

= r112 exp [i J X  s d ~ ]  , 

The system of first order ordinary differential equations is given by 

The reflectional symmetry of the Ginzburg-Landau equation (where the equation 

remains invariant under the transformation x + -2) appears in this 3D system 



under the transformation 

X + - X ,  c + - C ,  (r, 3, w) -+ (r, -s, -w) . 

Furthermore, for a modified reduced system with coordinates (r2, s, w) I find that 

and the flow is converging for c > 0 , diverging for c < 0 , and volume preserving for 

c = 0 . As noted by Landman, the phase contraction for c > 0 does not imply that 

phase volumes remain bounded in a region of phase space, although solutions may 

approach an attracting set in phase space as X + oo . 

There are four critical points for this 3D system called D+ , D- , T+ , and T- 

given by 

where 

The critical points D* are zero amplitude solutions, while the T* are the plane wave 

solutions 

A = r~ 112 eisTX e-i(i2+sTe)t . 
7 



Figure 4.1: -Phase portraits in the r = 0 plane. 

however, these solutions are only valid when r~ > 0 . Since r = IAI2 , the critical 

points with r~ < 0 are mathematical artifacts that are not solutions of the Ginzburg- 

Landau equation, and the plane r 0 is an invariant subspace. The two lines in 

parameter space 
7 .  

are the locations where each of the plane waves T* bifurcates from zero amplitude 

(Landman, [1987]), and, although the r~ < 0 critical points are artifacts, taking 

them into account at this bifurcation shows that this is a transcritical bifurcation 

(Guckenheimer and Holmes, [1983]). 

In the plane r = O , a branch cut in parameter space must be chosen in order to 

represent the critical points D* continuously and unambiguously. The usual choice 

is to take x = 0 when < 0 , and the branch cut corresponds to the parabolic 



Table 4.2: The numbers of stable and unstable eigenvalues of the critical points in 

the regions of Q - c parameter space. 

Region 

I 

IIa 

IIb 

I11 

IVa 

IVb 

Va 

Vb 

VI 

segment 

On crossing this cut by varying Q and c , D+ and D- swap identities. The 

eigenvalues of the critical points are given by 

Critical point stability 

Number of (negative,positive) eigenvalues 

and their phase portraits are shown in Figure 4.1 for rigid walls and a, = +1 . 

In discussing the stability of these critical points, I will mean the stability of 

the 3D system with respect to the variable X and not that of the Ginzburg-Landau 

equation as discussed in the previous chapter. 

T+ 

- 

(291) 

(073) 

(271) 

(2,l) 

r~ < o 

(271) 

(093) 

PT < o 

T- 

- 

(390) 

(172) 

(172) 

r~ < 0 

(1,2) 

(370) 

(172) 

r~ < o 

D+ 

(271) 

(271) 

(271) 

(271) 

(3,O) 

(2,l) 

( 2 J )  

(271) 

(2,1) 

D,  

(1 92) 

(172) 

(1 72) 

(12) 

(192) 

(073) 

(1 92) 

(172) 

(172) 
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Figure 4.2: Stability diagram for rigid walls of the 3D system. 

The characteristic equation of the linearization about the plane wave fixed points 

T* is given 

Table 4.2 lists the number of negative and positive eigenvalues, or, more specifically, 

the number of eigenvalues with negative real parts and positive real parts, of each 

of the four critical points T* and D* in the different regions of parameter space. 

Figure 4.2 illustrates the location of these regions for rigid walls, while Figure 4.3 

shows them for K = 1.1 x lo7 for a, = $1 . As noted by Landman, 10,l can always 

be scaled to be 1 , so these diagrams are representative of all supercritical Reynolds 

numbers. This table and figures were found by numerically calculating the eigenval- 

ues and eigenvectors directly at  the critical points a t  representative parameter values 

and studying the bifurcations numerically. 

In addition to the transcritical bifurcation discussed above, T* also coalesce in 

a saddle-node bifurcation along the parabola 



IIa 

I I b  \ 

Figure 4.3: Stability diagram for K. = 1.1 x lo7 of the 3D system. 

For rigid walls, T* exists for 

whereas for n = 1.1 * lo7 (or any other value of n where d, = -1) these critical 

points are found when 

Since 
imag part of 04/01 

diJdT = real part of 04/e1  ' 

the parabola is found further to the left in Figure 4.2 as n becomes larger (and the 

real part of 04/01  approaches zero) until the real part of 04/01  changes sign, and 

the parabola is to the right of the line Cl  = ai/aT . A study of Figures 4.2 and 

4.3 will show that the regions I, IV, and VI maintain their identity throughout this 



Figure 4.4: The continuation in c of the Hopf bifurcating branch from T- into region 

111. Solid lines are stable periodic orbits. Supercritical period doubling bifurcations 

occur at (i) and (ii). 

deformation although region V vanishes. 

To find the Hopf bifurcations of T* , I set X = -w2 with w real in equation 4.1 

and eliminate w , ST , and r~ to find 

This equation is cubic in 0 and c: (hence is symmetric with respect to c = O ) ,  and the 

curve crosses the line c = 0 only at f2 = a i / a ,  and = d i /d r  . In Figures 4.2 and 4.3 

the portions of the solution curve with r~ < 0 are identical to values where R < a i / a ,  

and have been omitted. The actual calculation of these curves was done from the 

original 3D system by using the program AUTO to compute the two-parameter curve 

of Hopf bifurcation points. Landman [1987] has shown that the eigenvalue equation 



-42- 

governing the side-band instability of the Ginzburg-Landau equation (where the 

plane wave solutions are unstable to long wave modulations) is equivalent to the 

above equation for Hopf bifurcations in c - 0 space. 

In order to calculate the branch of periodic orbits that bifurcate from T- , I 

set 0 = 2 and began the continuation at the boundary of regions IIa and I11 in 

parameter space. For rigid walls (Landman, [1987]) the branch undergoes at least two 

supercritical period doubling bifurcations (Figure 4.4) which may be the beginning of 

a period doubling cascade since at c = 0.14 there exists a nonperiodic and possibly 

chaotic attractor. At n = 1.1 x lo7 the periodic orbits that bifurcate from this 

boundary remain stable down to c = 0 in all cases I checked numerically. At c = 0 

the periodic orbit bifurcates to a (presumably stable) two-torus, and as c decreases 

the unstable periodic orbit shrinks and is finally absorbed by the critical point T+ 

at the boundary of regions I11 and IIb. 

For rigid walls Landman found five families of heteroclinic and homoclinic con- 

nections for the 3D system as the parameters 0 and c are varied. There are the 

homoclinic orbits for the fixed points T* , 

HO : T+ + T+ and T- + T- , 

the heteroclinic orbits joining D- to D+ in the r G 0 plane, 

the heteroclinic orbit joining D+ to D- which leaves the r 0 plane at these critical 

points, 

H2 : D+ -+ D- , 

the heteroclinic orbits joining T+ and T- , 

H3 : T- -+ T+ and T+ + T- , 



Figure 4.5: Orbits in the 3D system as examples of homoclinic (HO) and heteroclinic 

connections ( H I  - H4) .  

and the orbits joining D* and T* , 

H 4  : D+ + T* and T* -+ D- . 

These orbits are illustrated in Figure 4.5 although it should be understood that not 

all of these orbits exist simultaneously for given values of S2 and c . 

The orbits H 4  describe the transition from undisturbed Poiseuille flow to finite 

amplitude waves and are structurally stable in the sense that they persist under 

~erturbations in both R and c . ~umer ica l  computations suggest that the H4 orbits 

(T+ + D+) exist in the entire region IVa of parameter space for compliant as well as 

rigid walls. Figure 4.6 is a typical example of H4 for both rigid walls and n = 1.1 x lo7 

where fl = 10.0 and c = 20.0 . 

The orbits H3 are transitions between finite amplitude waves of different ampli- 

tudes and would be expected to exist throughout regions IIa and IIb. Figure 4.7 is 

an example of H3 for rigid and compliant walls where R = 10.0 and c = 9.0 . This 
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Figure 4.6: The heteroclinic connection H4 from a plane wave to a zero amplitude 

solution a t  S2 = 10 and c = 20 . 

N G I D  WALLS 

Z.6 1 

Figure 4.7: The heteroclinic connection H3 between two plane waves with different 

amplitudes a t  0 = 10 and c = 9 . 



RIGID WALLS 

Figure 4.8: The heteroclinic connection H4 from a zero amplitude solution to a plane 

wave at S1= 10 and c = 9 . 

same point in parameter space also has as H4 orbit from D+ + T- (Figure 4.8). 

In Figure 4.9 an orbit in (r, s, w )  space is shown for f2 = 20.0 and c = 0.96 , 

and Figure 4.10 is the orbit for n = 1.1 x lo7  for the same parameter values ( r  is 

in the z-direction in these ~ l o t s ) .  When R = 10.0 the critical point T- undergoes 

a Hopf bifurcation at  c = 1.726 and c = 3.599 for rigid and compliant boundaries, 

respectively, and the periodic orbit undergoes a period doubling bifurcation a t  c = - 

1.210 for rigid walls and remains stable to c = 0 for compliant walls. The orbit 

for rigid walls (Figure 4.9) appears to approach a nonperiodic and possibly chaotic 

attracting set, and the orbit for n = 1.1 x lo7 approaches (very slowly) a stable 

periodic orbit. I have been unable to find any period doubling bifurcations for n = 

1.1 x lo7 or orbits like that in Figure 4.9, and from this evidence I claim that the 
. 

"chaotic" solutions found when d, = +1 do not exist when d, = -1 . 



Figure 4.9: A nonperiodic orbit at  R = 10 and c = 0.96 for rigid wall boundary 

conditions. 

Figure 4.10: An attracting periodic orbit a t  R = 10 and c = 0.96 for compliant wall 

boundary conditions (n = 1.1 x lo7). 



Chapter 5 

Conclusions 

The two-dimensional finite amplitude traveling wave solutions which bifurcate from 

the Orr-Sommerfeld curve for the linear stability of Poiseuille flow are of the form 

Q = F ( x  - cpt, y,  Re, a)  

where F is of period 2nla in the first variable and cp is determined by a and Re . 

These equilibrium states are found on a surface in Re , a , amplitude space illustrated 

for rigid boundaries in Figure 5.1 (J.P. Zahn, et al., [1974]; Herbert, [1981]; Landman, 

[1987]). For Re < Re, the zero amplitude solutions are st able equilibria and the lower 

branch of the finite amplitude surface is unstable. Although the calculation of this 

nonlinear neutral surface for compliant boundaries is beyond the scope of this thesis, 

the weakly nonlinear calculations show that for small amplitude near Re = Re, and 

a = ac the finite amplitude solutions are stable for Re > Re, . I have shown by 

direct calculation that values of the compliancy parameters B , T , n , M , and d 

exist where d, = - 1 , and, consequently, the bifurcation to finite amplitude solutions 

must be supercritical at Re = Re, and a = a, . 

These results may also be true for other flows where there is a neutral curve of 

the Orr-Sornmerfeld type, in particular boundary layer flow. In the Blasius bound- 

ary layer the Reynolds number (based on the displacement thickness) grows like the 

square root of the distance from the leading edge, and, consequently, at some point on 

the plate the flow reaches Re, and begins to grow exponentially. These growing solu- 

tions are generally believed to be unstable to three-dimensional disturbances (Squire's 

theorem only concerns the initial, linear disturbance), and experiments show that 

three- dimensional perturbations grow rapidly once the Tollmien- Schlichting waves 



Figure 5.1: Surface of two-dimensional finite amplitude traveling waves for rigid wall 

Poiseuille flow as a function of Reynolds number and wavenumber. 

reach a threshold amplitude of about 1% of the free stream velocity (Bayly, et a]., 

[1988]). If, however, the compliancy parameters are such that the bifurcation is su- 

percritical, then the growth of the amplitude is initially linear (along the nonlinear 

neutral curve), and the transition to large amplitude three-dimensional disturbances 

is delayed. Further analysis of this bifurcation using a time dependent Navier- Stokes 

calculation would be illuminating. 

There is little evidence I am aware of that supports the idea that fully developed 

turbulence can be modeled by an attracting set of small dimension imbedded in the 

very large dimensional state space of the fluid system. Nevertheless, a recent experi- 

mental study of Rayleigh-Binard convection (B. Cast aing , G. Gunaratne, F. Heslot, 

L. Kadanoff, A. Libchaber, S. Thomae, X.-2. Wu, S. Zaleski, G. Zanetti, [1988]) 

shows that while most of the previous investigators describe the fluid as turbulent as 



soon as the behavior is nonperiodic, there is actually a nonperiodic behavior which 

is very different from fully developed turbulence. In this nonperiodic state (which 

the authors call "chaotic") only the time coherence is lost while the space coherence 

persists. This result should be compared to the nonperiodic envelope solution in 

the slow variable X = x - C T  shown in Figure 4.9. If this nonperiodic solution of 

the Ginzburg-Landau equation corresponds to a set of chaotic intermediate states 

between laminar flow and turbulence, then its absence when d, = -1 indicates that 

the process by which turbulent flow develops and replaces laminar flow has changed 

in a fundamental way. Whether it changed to such an extent to explain Kramer's 

experimental results is still an open question. 



Appendix A 
Orr-Sommerfeld maximum growth rate 

The Orr-Sommerfeld neutral stability curve illustrated in Figure 1.1 divides the a- 

Reynolds number plane into a region where ci is less than zero and one where ci 

is greater than zero. Shen [I9541 calculated curves of constant ci by perturbing 

the neutral curve obtained by Lin [I9451 for plane Poiseuille flow and found that ci 

reached a maximum of 0.0076 at a = 0.79 and Re = 48000 . If there exists a more 

recent calculation of the maximum value of ci , denoted here as ci,,, , then it is not 

widely known since both Orszag and Patera [I9831 and Bayly, et al. [I9881 cite these 

results (although there is no specific reference to Shen). I have found that the value 

of c;,,, is 0.01051 at Re = 105029 and a = 0.674 . 

This value of ci,,, was found using multiparameter continuation. First I fixed 

the value of the Reynolds number and increased ci (leaving a free to vary) until ci 

reached a maximum (a fold in a - ci space). Then I increased ci again allowing both 

the Reynolds number and a to vary in a two parameter continuation described in 

Keller [I9871 and implemented in the AUTO program (Doedel and Kernevez, [1985]). 

Table 6 shows the values of a , Re , and c at this fold point when 101 and 141 grid 

points are used to solve the Orr-Sommerfeld equation. This type of fold point is 

called an elliptic point. Figure A1 illustrates the location of this point within the 

contour ci = 0.0104 in the a-Reynolds number plane (The curve ci = 0 cannot be 

seen on this scale). 

The discrepancy between this result and Shen's calculation is due to his method 

of calculation. He calculated the rate of change for c in both the a and Re direction 

at points along the neutral stability curve obtained by Lin, fit these rates to a cubic 



Table A.l: The location of the maximum value of ci in the or - Re plane. 

a 

Re 

Cr 

ci 

in a at constant Re , and interpolated to find the contours of constant ci . The 

critical Reynolds number found by Lin's procedure is about 10% too low, and Shen 

points out that the errors he introduces by interpolation could be as large as 20%. 

101 grid points 

0.6740137 

105028.8 

0.1279359 

0.01051284 

Along with those introduced by the polynomial approximation, these errors account 

141 grid points 

0.6740131 

105029.4 

0.1279357 

0.0151284 
A 

for the difference between Shen's result and my numerical one. 

This value of ci,,, does not alter conclusions based on the old value. Bayly, et 

a]., [I9881 note that at a Reynolds number of 48,000 the growth rate of the periodic 

disturbance is a factor of 10 in 300 non-dimensional time units, and, compared to the 

explosive growth observed experiment ally over a few channel widths, the inst ability 

is quite feeble. For the actual maximal growth rate attained at Re = 105029 , a 

factor of 10 is attained in 220 non-dimensional time units. The conclusion that the 

growth rates induced by viscosity are small compared to the convective timescale is 

still a valid one. 



Reynolds Number 1 o m 3  

Figure A. l :  Contour of c; in the a - Re plane. 



Appendix B 
The calculation of c, 
In this appendix I will describe the method I used to calculate the value of c, nu- 

merically. The method should be applicable to any inhomogeneous boundary value 

problem with an undetermined constant on the right-hand side. Let me begin with 

a simple example. 

The requirement for the existence of a solution to the boundary value problem 

d2 w 
+ w  = s inx -d  w(0) = 0 ,  w(n) = O  , 

dx2 (B.1) 

to exist is a solvability condition: 

[ sin $(sin x - d) dx = o + d = n/4 . (B.2) 

If d is not equal to a /4  there is no solution to equation B.1, and if d is equal to x/4 

the solution is 

X C O S X  7r 
w(x) = C s inx--+z(cosx-l ) .  

2 

where C is an arbitrary constant. This arbitrary constant can be fixed by an addi- 

tional boundary condition independent of those in equation B. 1 : 

This integration method (equation B.2) is used by Stewartson and Stuart [I9711 to 

calculate cg (where cg corresponds to d in equations B.1 and B.2). 

The program AUTO developed by Doedel and Kernevez [I9851 calculates solution 

branches of systems of ODES by a collocation method on an adaptive mesh. I solve 

equation 3.2 with AUTO by letting c, be an unknown parameter and adding the 



independent boundary condition 

to the flexible boundary conditions (equations 3.7) for $lo . When this system 

(equation 3.2 and the boundary conditions) is solved numerically, not only is a value 

for cg found which agrees with the previous (rigid wall) results, but the value of the 

imaginary part of cg (which should be zero) is much smaller than that found using 

integration (the solvability condition). I interpret this result to mean that integration 

gives a less accurate numerical result than the alternative met hod described here. 

Since the integration of the right-hand side of equation 3.2 multiplied by the 

adjoint function does not require the calculation of +lo it is the less computationally 

expensive method to find cg , but because I need calculate +lo to obtain the higher 

order Ginzburg-Landau coefficients, I effectively get cg at no cost at all. All of the 

other Ginzburg-Landau coefficients are found using integration. 
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