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Prologue
I vividly remember the drive to Palomar Mountain on October 5, 2006. Professor Shri

Kulkarni was driving his bottlegreen van and bragging about how he knew the mountain

roads so well that there was no need to bother using brakes.

I had recently passed my qualifying exam in the astrophysics Ph.D. program at Caltech.

I had also completed several small research projects exploring the optical, infrared and X-

ray wavelengths. I was in search of a thesis topic – something fun, something challenging,

something simple enough whose jist I could convey to my parents in a few minutes. To me,

this was the beauty of astronomy. Even in the 21st century, scientists were seeking answers

to very simple questions.

Caltech is a fun place and so this was a “problem of choice”. I had talked to several

professors about several different ideas. I had walked into their offices with a blank slate

and possible questions and walked out with a well-defined plan of which telescopes could

answer these and what would be a list of papers suitable for background reading. This

evening though was somehow different.

We were discussing a rather simple yet age-old conundrum in the venerable field of cosmic

explosions – the brightest nova was a thousand times fainter than the faintest supernova

leaving a wide gap in-between. Nature abhors gaps, then why hadn’t astronomers found

things in-between? It turned out that novae and supernovae were simply the easiest things

to find; novae because they are so abundant and supernovae because they are so bright and

long-lived.

So, what could we do differently to bridge the gap? How could we find these elusive

transients that were fainter, faster and rarer than supernovae? Shri told me to suspend all

practical concerns and just let my imagination run wild. We discussed a Plan A, B and

C. But it was really Plan D that was the most compelling. Plan D was also the craziest

to imagine implementing on a graduate thesis timescale. It involved taking over all the

telescopes on Palomar mountain and running it like a “factory” systematically churning

out transients.

I enjoyed thinking about how to find an answer to this simple question. It was definitely

something that kept me awake at night. Theoretically, there were several predictions of

fundamental stellar physics that should result in transients in the gap. Observationally,



vii

there appeared to be an opportunity to work on a story from the very beginning and chart

unexplored territory. As with roads not taken, one could expect a lot of hard work and

the most likely outcome of an upper limit. We should be able to better quantify how hard

these transients were to find but the odds of finding anything were very small. As we were

driving back, Shri said, “There is no question that this is a high-risk high-gain thesis topic.

The decision is now yours.”
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Abstract
For centuries, we have known that our dynamic universe is adorned by cosmic fireworks:

energetic and ephemeral beacons of light from a single star that are a million (nova) to a

billion (supernova) times brighter than our sun. However, it had been an age-old conundrum

that the brightest nova is approximately 1000 times fainter than than the faintest supernova;

why should nature leave such a wide “gap”?

In search of an answer, I undertook three systematic surveys for my thesis. Since I

was looking for transients fainter, faster and rarer than supernovae, I focussed my search on

galaxies in the local universe. We now have convincing evidence of multiple, distinct popula-

tions of rare transients bridging this “gap”. Perhaps, we are witnessing new stellar physics

— shell detonations in ultra-compact white dwarf binaries, electron-capture supernovae,

white dwarfs collapsing into neutron stars and birth of black-holes.

A small number of intensively followed-up discoveries of elusive transients sets the stage

for population studies with the upcoming “Large Synoptic Survey Telescope”. This effort

works towards building a complete inventory of transients in the local universe (d< 200

Mpc). It better prepares us for the search for potential electromagnetic counterparts to

events in the emerging fields of gravitational wave, neutrino and ultra high energy cosmic

ray astronomy as these experiments are also limited to the local universe.
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Chapter 1

Introduction

1.1 Framework of Explosions: 2005

The venerable field of cosmic explosions has a rich history. Since the discovery of the first

supernova in A. D. 185 and the first nova in A. D. 1670, we have discovered ≈ 6600 su-

pernovae and ≈ 1000 novae. In the past century, explosions have unveiled the synthesis of

elements heavier than iron, the acceleration of the universe’s expansion and dark energy.

However, our studies have been limited to thermonuclear supernovae (white dwarf detona-

tion), core-collapse supernovae (massive star death) and classical novae (accretion-driven

burning on a white dwarf).

Two fundamental parameters that describe an explosion are the peak luminosity and

the duration. Using these two parameters to characterize transient events, we present a

graphical summary of the framework of cosmic explosions in the year 2005 in Figure 1.1.

Thousands of supernovae and novae can be neatly squared away into the three gray regions.

As is evident, this framework is plagued with gaping white-spaces. Specifically, there is a

wide “gap” spanning three orders of magnitude in luminosity between novae and super-

novae. The regime of short-duration transients more luminous than novae is also virtually

unpopulated.

“Nature abhors gaps” and so it is no surprise that the above-mentioned framework is

a product of observational bias towards finding the most luminous (supernovae) and most

populous (novae) events first. My thesis effort comprised three systematic surveys for elusive

transients that bridge the aforementioned gap.

My motivation, beyond an insatiable curiosity and an intriguing opportunity to navigate
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Figure 1.1 Framework of cosmic explosions in the year 2005. Note the wide “gap” in

luminosity spanning three orders of magnitude. Also, note the emptiness on timescales

shorter than 10 days. This thesis concludes with the framework in the year 2011, presented

in Figure 8.1.

uncharted territory, is twofold: the stellar physics one can hope to learn from finding elusive

explosions, and the timeliness of a complete inventory in the context of upcoming frontiers

in physics.

1.2 The Physics

Theoretically, a wide variety of fundamental stellar outcomes are expected to result in

transients in the gap. Recent discoveries have motivated detailed modelling to predict the
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explosion signature of several of these outcomes.

1.2.1 Compact Binaries

First, let us take a closer look at accretion-powered thermonuclear runaways on surfaces of

white dwarfs. Both classical novae and supernovae of Type Ia (SN Ia) are outcomes of this

process. A key difference between them is that classical novae have an ejecta mass of only

10−4–10−5 M⊙ and SN Ia undergo a complete detonation with an ejecta mass of 10−1–1

M⊙.

Naturally, the question arises of whether there are explosions where the ejecta mass is

intermediate. One scenario that gives ejecta between 10−2–10−1 M⊙ is a “.Ia” explosion

(Bildsten et al. 2007a; Shen et al. 2010). In an ultra-compact white-dwarf white-dwarf sys-

tem, with a period shorter than an hour, suppose that mass is transferred from the lower

mass Helium white dwarf to the higher mass Carbon-Oxygen white dwarf. A series of novae

will result. If the final Helium flash is such that the nuclear timescale is shorter than the

hydrodynamical, then the entire shell could detonate, resulting in a “.Ia” explosion. The

name “.Ia” is drawn from characteristics that are a tenth of that seen in SN Ia, specifically

the explosion mass, the characteristic timescale and the peak luminosity. Whether or not

the shock wave also detonates the core is an open question (Waldman et al. 2010).

Next, we consider a scenario involving a total ejecta mass between 10−3–10−2 M⊙: ac-

cretion induced collapse (AIC) of a rapidly rotating O-Ne-Mg white dwarf into a neutron

star before ignition in the core (Metzger et al. 2009; Darbha et al. 2010). O-Ne-Mg white

dwarfs require a relatively lower density for electron captures than C-O white dwarfs and

thus are more likely to undergo AIC. As the white dwarf accretes mass, it also accretes

angular momentum, leading to rapid rotation. After AIC, to conserve angular momen-

tum, the proto-neutron star is expected to have a centrifugally supported disk. As this

disk spreads to larger radii and cools, heavy nucleons form, causing the disk to become

unbound. Although initially neutron rich (Ye ≡
np

np+nn
≈ 0.1), the irradiation of electron

neutrinos by the protoneutron star evens out the neutron-to-proton ratio (Ye ≈ 0.5). Thus,

Nickel-56 is synthesized and a radioactivity-powered explosion follows. The characteristics

of this explosion are short lifetime, low luminosity, very high ejecta velocities approaching

0.1c and absence of intermediate mass elements.
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Next, consider another situation where the powerhouse of a radioactivity-powered ex-

plosion is not Nickel-56. Specifically, in the case of neutron-star neutron-star coalescence,

the abundance of free neutrons allows significant quantities of very neutron-rich material

(e.g. Iodine-135, Antimony-129, Tellurium-129, Xenon-135, Tin-127) to be built up by the

r-process (Li & Paczyński 1998; Kulkarni 2005; Metzger et al. 2010). The half-life of these

elements is only a few hours and consequently, the explosion is also ephemeral. The peak

luminosity is predicted to be in the range of 1040–1042 erg s−1. This class of objects have

been referred to as mini-supernovae (Li & Paczyński 1998) or macronovae (Kulkarni 2005)

or kilonovae (Metzger et al. 2010).

1.2.2 Massive Stars

Let us first review the current understanding of the core-collapse of massive stars. The

detailed underpinning of how the gravitational potential energy of the collapsing iron core

is converted into a shock-induced explosion is still being ironed out. Several mechanisms,

including neutrino-heating-driven, magnetohydrodynamic, acoustic and phase-transition-

induced explosions, are being simulated. Recent three-dimensional simulations have finally

been able to reproduce an explosion (Nordhaus et al. 2010).

Observationally, the different flavors of core-collapse appear to be related to the enve-

lope mass. The more massive the envelope, the lower the peak luminosity and slower the

evolution (hence, the sub-classes of Type IIB, Type IIL and Type IIP from least massive

to most massive envelope). Core-collapse supernovae which have expelled their hydrogen

shell are called Type Ib and those with neither hydrogen nor helium are called Type Ic.

Unambiguous identification of eight progenitor stars in deep imaging prior to the explo-

sions has directly shown that Type IIP supernovae come from red supergiants in the mass

range of 8.5–16.5 ± 1.5M⊙ (see recent review by Smartt 2009 and references therein). It is

expected that red supergiants in the mass range 15–25M⊙ result in Type IIL supernovae

but this hasn’t yet been observationally demonstrated. Two peculiar Type II supernovae

have been seen from blue supergiants (SN1987A; SN2000cb, Kleiser et al. 2011).

We currently have very little direct evidence for the fate of more massive progenitors.

The three cases where we have seen > 25M⊙ progenitor star (or precursor eruption) resulted

in three different types of supernovae (Type Ic SN2005gl, Gal-Yam & Leonard 2009; Type
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IIn SN2006jc, Pastorello et al. 2007; Type IIB SN2008ax, Crockett et al. 2008). Thus, the

fate of stars more massive than > 25M⊙ and stars in the transition range of 8–10M⊙ are

open questions.

Stars > 25M⊙ may undergo black hole formation at the time of collapse. More massive

stars have larger regions in the mantle that have increasing ρ r3 such that the shockwave

slows and significant material falls back onto the core (Woosley & Weaver 1995; Heger et al.

2003). Such fallback can result in the formation of a black hole instead of a neutron

star. Depending on the amount of fallback, the observed explosion is expected to be lower

luminosity, lower velocity and lack a radioactive tail in the light curve. In extreme cases,

the shock-wave may not be revived at all and the star would simply disappear into a black

hole without any electromagnetic signature (O’Connor & Ott 2011; Fryer 1999). The lower

the metallicity, the lower the mass loss due to winds and larger the probability of black hole

formation (Heger et al. 2003)

Stars in the 8–10 M⊙ range are expected to have O-Ne-Mg cores. Neutrinos produced by

electron capture on the Neon-20 and Magnesium-24 nuclei efficiently carry away the energy

produced by nuclear burning. The core can collapse to form a neutron star; neutrino heating

and neutrino-driven wind can power an explosion. Such an explosion is expected to have

low energy, produce little Nickel-56, have an extended plateau phase and eject very little

Oxygen (Kitaura et al. 2006).

Thus, there are at least five stellar outcomes that motivate a search for transients in

the gap. Additional ideas for unusual transients occuring earlier in stellar evolution include

the merger of main sequence stars (Soker & Tylenda 2003) and planets being swallowed by

their host star (Retter & Marom 2003). I summarize theoretically predicted rates (albeit

uncertain) and compare them to to rates of supernovae in Table 1.1.

1.3 A Complete Inventory

My second motivation is derived from the surge of excitement in the physics community

as several large experiments probing entirely new cosmic frontiers are coming online this

decade — ICECUBE1 at the South Pole now has 86 strings and is sensitive to very high

1http://icecube.wisc.edu/
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Table 1.1. Theoretically Predicted Rates of Transients in the Gap

Scenario Peak Luminosity Timescale Universal Rate Reference

(Abs. Mag.) (Days) (Mpc−3 yr−1)

.Ia Explosion −15..−18 2..7 0.6..2×10−6 Shen et al. 2010; Bildsten et al. 2007a

Macronovae −12..−16 0.1..1 10−5..10−7 Metzger et al. 2010; Kulkarni 2005

AIC −13..−16 0.1..4 10−6..10−8 Darbha et al. 2010

Fallback SN −4..−21 0.5..2 5×10−6 Fryer, C., priv. comm.

Type Ia SN −17..−20 20..40 3.0×10−5 Li et al. 2011

Core Collapse SN −15..−20 30..300 7.1×10−5 Li et al. 2011

energy (TeV) neutrinos; advanced LIGO2 and advanced VIRGO3 are gravitational wave

interferometers that will come online in 2016; the Pierre Auger observatory4 is sensitive to

ultra high energy cosmic rays. Each of these endeavors have one thing in common. They

are all limited in sensitivity, due to instrumental or physical effects, to the local horizon of

200Mpc.

I eagerly look forward to searching for electromagnetic counterparts to these new phe-

nomena. In preparation, I am motivated to systematically build a complete inventory of

the explosive phenomenon in the local universe.

1.4 Thesis Outline

My thesis is organized as follows. First, I begin with a discussion of observed extremes in

supernovae and novae in Chapters 2 and 3 respectively (an exemplar of extremely short

timescales is presented in Appendix A). Next, I discuss details of survey design, operations

and net yield in Chapter 4. Finally, I discuss three new classes of transients that bridge

the gap between novae and supernovae in Chapters 5, 6 and 7. I summarize the progress

to date with an eye to the future in Chapter 8.

2http://www.ligo.org/
3http://www.ego-gw.it/public/virgo/virgo.aspx
4http://www.auger.org/
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Chapter 2

Understanding Extreme Supernovae: SN2007ax⋆

M. M. Kasliwal1,2, E. O. Ofek1, A. Gal-Yam1, A. Rau1, P. J. Brown3, S. B.

Cenko4, P. B. Cameron1, R. Quimby1, S. R. Kulkarni1, L. Bildsten5, P. Milne6

1 Astronomy Department, California Institute of Technology, 105-24, Pasadena, CA 91125, USA

2 George Ellory Hale Fellow, Gordon and Betty Moore Foundation

3 Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory,

University Park, PA 16802, USA

4 Space Radiation Laboratory, California Institute of Technology, MS 220-47, Pasadena, CA 91125, USA

5 Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California,

Santa Barbara, CA 93106, USA

6 Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721, USA

Abstract

We present multi-band photometric and optical spectroscopic observations of SN2007ax,

the faintest and reddest Type Ia supernova (SN Ia) yet observed. With MB = −15.9 and

(B − V )max = 1.2, this SN is over half a magnitude fainter at maximum light than any

∗A version of this chapter is published with the title “SN2007ax: An Extremely Faint Type Ia Supernova”

in the The Astrophysical Journal Letters, 2008, vol. 683, L29–L32, and is reproduced by permission of the

AAS.
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other SN Ia. Similar to subluminous SN2005ke, SN2007ax also appears to show excess in

UV emission at late time. Traditionally, ∆m15(B) has been used to parameterize the decline

rate for SNe Ia. However, the B-band transition from fast to slow decline occurs sooner than

15 days for faint SNe Ia. Therefore we suggest that a more physically motivated parameter,

the time of intersection of the two slopes, be used instead. Only by explaining the faintest

(and the brightest) supernovae, we can thoroughly understand the physics of thermonuclear

explosions. We suggest that future surveys should carefully design their cadence, depth,

pointings and follow-up to find an unbiased sample of extremely faint members of this

subclass of faint SNe Ia.

2.1 Introduction

Inspired by the application as a standard cosmological candle, the progress in understanding

Type Ia supernovae (SNe Ia) has grown in leaps and bounds. However, the understanding of

their weakest subluminous cousins has been purposefully overlooked as their atypical light

curve and atypical spectra make them contaminants for cosmological studies. We suggest

here some characteristics that make the physics of the explosions of faint SNe Ia intriguing

in their own right.

In this paper, we present SN2007ax which, with a peak absolute magnitude of MB =

−15.9 and (B − V )max = 1.2, is the faintest and reddest Type Ia supernova yet discov-

ered. Although the class of SNe Ia is remarkably homogenous, subluminous SNe Ia show

atypical spectral and light curve features (Garnavich et al. 2004, Taubenberger et al. 2008).

Photometrically, not only do they fade much faster than predicted by the Phillips relation,

they are also very red at maximum and (at least SN2005ke and SN2007ax) appear to show

UV excess at late-time. Spectroscopically, they have broad Ti II features and moderate

expansion velocities.

SN2007ax was discovered in NGC2577 on UT 2007 Mar 21.978 by Arbour (2007) at an

unfiltered magnitude of 17.2. Upper limits of > 18.5 mag on Mar 17.636 and > 19.0 mag

on Mar 9.959 were also reported. Spectra obtained on Mar 26 by Blondin et al. (2007)

and Morrell & Folatelli (2007) showed that it was a SN Ia near maximum light similar to

SN1991bg.

In this paper, we present multi-epoch, multi-band imaging and spectroscopic follow up of
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SN2007ax including optical, ultraviolet, and near-infrared. We summarize our observations

in § 2, present our analysis and comparison with other faint SNe Ia in § 3 and discuss possible

scenarios for faint thermonuclear explosions in § 4. We conclude with how future surveys

can systematically design their cadence, limiting magnitude and pointings to search for

more members belonging to this subclass of faint SNe Ia.

2.2 Observations and Data Reduction

The automated Palomar 60-inch telescope (Cenko et al. 2006a) started daily observations of

SN2007ax on UT 2007 Mar 29 in g′ and r′ bands . Data were reduced using custom routines.

Aperture photometry was done after image subtraction using two custom modifications of

the ISIS algorithm (Alard & Lupton 1998), hotpants1 and mkdifflc (Gal-Yam et al. 2004,

Gal-Yam et al. 2008). The two reductions gave consistent results. Errors were estimated

by first placing artificial sources of the same brightness and at the same distance from the

galaxy center as the SN and then measuring the scatter in measured magnitudes. Finally,

the zeropoint was calibrated with reference magnitudes of stars from the Sloan Digital Sky

Survey (Adelman-McCarthy et al. 2007).

We triggered Target of Opportunity observations to obtain spectra with the Double

Beam Spectrograph (Oke & Gunn 1982) on the Hale 200-inch telecope. Two spectra were

obtained around maximum light (UT 2007 Mar 29 and Mar 30) and a third a fortnight

later (Apr 13). Spectra were taken using the red grating 158/7500, blue grating 300/3990

and using a dichroic to split the light at 5500 Å . This gave us a total wavelength coverage

of 3800 Å – 9000 Å and dispersion of 4.9 Å pix−1 and 2.1 Å pix−1 on the red and blue side,

respectively. Data were reduced using the standard IRAF2 package apall.

We triggered Swift Target of Opportunity observations for SN2007ax starting UT 2007

Mar 29.84 and obtained eight epochs of roughly five kiloseconds each distributed between the

uvw2, uvm2, uvw1, u, b and v bands. We also obtained a reference image over eight months

after peak to subtract galaxy light. Aperture photometry was performed using a 3′′ circular

1http://www.astro.washington.edu/becker/hotpants.html
2IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the As-

sociation of Universities for Research in Astronomy, Inc., under cooperative agreement with the National

Science Foundation.
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radius. To estimate the galaxy brightness at this location, a 3′′ aperture at the supernova

position in the reference image was used. Poole et al. (2008) photometric zeropoints were

applied after appropriately scaling for aperture size. For consistency with calibration, a

5′′ aperture was used in the computation of coincidence loss. The supernova is detected in

uvw1 in four epochs, and not detected in the uvw2 and uvm2 filters. The b band light curve

was independently reduced using image subtraction with consistent results. We note that

due to the faintness of the supernova and brightness of galaxy background, coincidence loss

is dominated by the galaxy light and not a point source, possibly introducing a systematic

error in the Swift u, b, and v bands.

Further late-time BV RI observations were obtained using the SLOTIS and Bok tele-

scopes and light curves were obtained using image subtraction based on ISIS and IRAF

routines. We also obtained near-infrared K ′ imaging using the Keck NIRC2 instrument

with Natural Guide Star adaptive optics on UT 2007 Apr 4.

2.3 Analysis

We present analysis of the optical and ultra-violet light curve and optical spectrum of

SN2007ax below. We also compare it to other subluminous SN Ia. We adopt a distance

modulus of 32.2 (B. Tully, personal communication) to NGC2577.

2.3.1 Optical Light Curve

We plot the multi-band light curve of SN2007ax in Figure 5.4. The key characteristic of

SN2007ax is its rapid decline. Traditionally, ∆m15 (the difference between the peak B-mag

and the B-mag 15 days after the peak) has been used to parametrize the decline of the light

curve. However, this parameter can be misleading when applied to the faint SNe Ia because

the knee in their light curve (transition from fast initial decline to slow late-time decline) is

sooner than fifteen days from the peak. Therefore, we choose to compare the light curves of

subluminous Ia using three parameters first introduced by Pskovskii (1984) — initial slope

(β), late-time slope (γ) and the time of intersection of the two slopes (tb). This time of

intersection parameter (defined from maximum in B-mag) was also used by Hamuy et al.

(1996) as tB2 and shown to be empirically proportional to ∆m15 for some SNe Ia.
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For the subclass of faint SNe Ia, we find that tb is better correlated with the peak

absolute B-mag than β and γ slopes of the B-band light curve. We fit an empirical relation

to the intersection time as a function of peak absolute magnitude and find that MB =

−13.7(±0.5)−0.22(±0.03)× tb . Moreover, this transition to slower decline should represent

the time at which the optical depth to thermalized radiation becomes thin. We report these

three parameters for a sample of subluminous SNe Ia in Table 2.1 and and show the linear

fits in Figure 2.2.

Another crucial property of subluminous SNe Ia is that the fainter they are, the redder

they are at maximum. We find that SN2007ax is consistent within uncertainties of the

empirical relation derived first by Garnavich et al. (2004): MB = −18.7 + (B − V )max ×

2.68(±0.32). This relation predicts a color in the range of 1.0–1.3 mag and we observe 1.2 ±

0.1 mag. This color has been derived based on synthetic photometry of the spectra around

maximum.

2.3.2 Ultraviolet Light Curve

In Figure 5.4, we compare the Swift UVOT light curve of SN2007ax to another subluminous

SN Ia 2005ke (Immler et al. 2006) and a typical SN Ia 2005am (Brown et al. 2005). The key

similarity between SN2005ke and SN2007ax is that both show an excess in UV starting ≈ 20

days after the peak. Immler et al. (2006) propose that SN2005ke showed a UV excess due to

circumstellar interaction. Perhaps, subluminous supernovae are optically thin below 3800 Å

simply due to lower production of iron-group elements. The question of whether UV excess

is a more general property of faint SNe Ia merits further investigation with timely follow-up

of a larger sample. With a larger sample, one could also consider whether the break in the

UV light curve also depends on absolute magnitude.

2.3.3 Spectral Evolution

We compare optical spectra of SN2007ax to SN1991bg in Figure 3.10. The prominent

absorption features are Ti II, O I, Si II and Ca I. The presence of intermediate mass

elements like Oxygen and Titanium is indicative of the presence of unburned material or a

low burning efficiency. The absorption features become broader as the supernova evolves.

Comparing our spectra to SN1991bg one day, two days and sixteen days after maximum
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Figure 2.1 Multi-band light curve of SN2007ax based on data from P60, Swift/UVOT,

SLOTIS, Bok and Keck II/NIRC2. Unfiltered magnitudes from Arbour 2007. Note that

similar to subluminous SN2005ke (dashed line), SN2007ax also appears to show an excess

in UV emission at t> 20 days while typical SNe Ia (SN2005am, dotted line) continue to

decline.
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Figure 2.2 B-band light curve of SN2007ax in comparison with other subluminous SNe Ia.

The best linear fits are overplotted and give the early-time and late-time slope. We note

that the time of intersection, tb of the early-time and late-time slopes is more strongly

correlated with the absolute magnitude than the slopes, α and β.

in B-band, we find that the spectra are very similar. In the first epoch, we see a hint of

carbon in the small bump immediately redward of the Si II feature at 6150 Å . However,

the signal-to-noise ratio in the spectrum is too low for any conclusive evidence.

Using the technique described by Nugent et al. (1995), we estimate the temperature

diagnostic R(Si II) — the ratio of the depths of the two Si II features at 5800 Å and 6150 Å

— to be 0.33. This is smaller than what is implied by the empirical relations derived by

Garnavich et al. (2004) and Taubenberger et al. (2008).

We also measure the velocity of the Si II 6150 Å line in the two epochs around maximum

and we obtain 9300 km s−1 and 8800 km s−1. This is consistent with lower velocities

observed in other faint SNe Ia (Benetti et al. 2005).

2.3.4 NIR Imaging and Extinction

We measure a K′ magnitude of 16.7 ± 0.1 on UT 2007 Apr 4. We determined the contribu-

tion of galaxy light at the supernova position by fitting a Sersic profile to the galaxy using

GALFIT (Peng et al. 2002). The best-fit parameters are: a Sersic index of 1.90, axis ratio
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Figure 2.3 Three epochs of P200 DBSP spectra of SN2007ax (with arbitrary vertical offsets

for clarity). Overplotted is another subluminous Type Ia supernova, SN1991bg, one day,

two days and sixteen days after the peak (scaled by a multiplicative factor for comparison).

of 0.60, effective radius of 4.98′′, position angle of 105.6◦ and diskiness of −0.14. We find

no evidence of dust lanes in this image suggesting that the host extinction is minimal. This

is also consistent with the absence of the interstellar Na D line at 5893 Å . We compute an

upper limit on the equivalent width as 0.1 Å . Using the relations derived in Turatto et al.

(2003), we get an upper limit of E(B − V ) < 0.01 mag on the extinction.

Based on the Galactic position, l=201.1◦, b=29.6◦, the extinction along the line of sight

is E(B − V )=0.054 mag (Schlegel et al. 1998a). Therefore, we account for AB = 0.23 and

Av= 0.18 in our calculations of absolute magnitude and luminosities.

2.3.5 Bolometric Luminosity and 56Ni Mass

Arnett et al. (1985) gives an estimate of the 56Ni mass in the ejecta using the peak bolo-

metric luminosity and the rise time:

MNi = L43 × [6.31 exp(−tr/8.8) + 1.43 exp(−tr/111)]
−1
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. For SN2007ax, the extinction-corrected peak bolometric luminosity is 2.3×1042 ergs s−1.

We estimate this by using the photometric points to calibrate our spectrum near maximum

light and integrating. The rise-time is unknown and unfortunately, the literature somewhat

arbitrarily assumes 17 days for faint SNe Ia and 19.5 days for typical SNe Ia. Recently,

Taubenberger et al. (2008) used SN1999by early-time data to estimate a rise-time of 14

days. The only observational constraint we have for SN2007ax is that the rise-time is

longer than 6 days. Thus, for the range of rise-times from 6–14 days, we find a 56Ni mass

of 0.05–0.09 M⊙. This is consistent with other techniques to estimate 56Ni of faint SNe Ia.

For SN1991bg, Cappellaro et al. (1997) model the V-band light curve and obtain a mass of

0.1 M⊙, and Mazzali et al. (1997) model the photospheric and nebular-epoch spectra and

obtain 56Ni mass of 0.07 M⊙.

2.4 Discussion

To summarize, the primary observational characteristics of subluminous SNe Ia (of which

SN2007ax is an extreme case) are small tb in the optical B-band light curve, extremely

red B − V color at maximum, possible excess in UV emission at late-time, presence of

intermediate mass elements in spectra, medium ejecta velocities, low 56Ni mass in ejecta

and short rise-times.

Several theoretical models have been proposed to explain faint SNe Ia — complete

detonation of a sub-Chandrashekhar mass white dwarf, a delayed detonation model, a

failed neutron star model and a small-scale deflagration model. The detonation of a sub-

Chandrashekhar C-O white dwarf (e.g., Livne 1990, Woosley & Weaver 1994) produces

more 56Ni than observed and is more blue at maximum than observed (Hoeflich & Khokhlov

1996). If we consider detonation of a sub-Chandrashekhar O-Ne-Mg white dwarf (Isern et al.

1991), the total nuclear energy is smaller and the predicted ejecta velocities are lower than

observed (Filippenko et al. 1992). Mazzali et al. (2007) use detailed spectral modeling to

show a common explosion mechanism for all SNe Ia, likely delayed detonation. The failed

neutron star model (Nomoto & Iben 1985) suggests that if the accretion rate of carbon and

oxygen from a companion onto a white dwarf is high enough, it may prematurely ignite

CO on the white dwarf surface. Thus, instead of a neutron star, we may see a faint SNe Ia.

Small-scale deflagration models suggest that either the burning is restricted to the outer
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layers or that it occurs slowly.

Another intriguing theoretical possibility recently proposed by Bildsten et al. (2007b)

is faint thermonuclear supernovae from ultracompact double degenerate AM CVn systems.

This supernova is tantalizingly at the brightest end of their predictions (MV =−14 to −16,

timescale = 2–6 days, Mej < 0.1 M⊙). However, the decay time predicted by these models

is much shorter and the 56Ni mass less than that observed in SN2007ax. Also, the spectrum

does not show any feature which suggests being powered by different radioactive material

(48Cr, 44Ti, 52Fe) produced by some of these models.

None of the above models convincingly explain all the observed characteristics of sub-

luminous SNe Ia. SN2007ax compels the question of what is the (and whether there is)

lower limit of 56Ni mass in a thermonuclear explosion. Only if we can explain the extremely

faint (and the extremely bright) supernovae will we thoroughly understand the limitations

in physical processes involved in the thermonuclear explosion, in particular, the 56Ni mass

production.

Future supernova surveys which have a shorter cadence and a deeper limiting magnitude

will provide invaluable clues to understanding the nature of subluminous SNe Ia. Follow-up

of these supernovae with well-sampled UV light curves and well-calibrated multi-epoch UV

spectra would also be important to understand the apparent excess at late-time.

We suggest how a near-future survey, for example, the Palomar Transient Factory3, can

systematically search for faint SNe Ia. The parameters of the survey design are sky coverage,

cadence, depth, filter and choice of pointings. Howell (2001) shows that faint SNe Ia occur

preferentially in early-type galaxies and Taubenberger et al. (2008) suggest that they occur

in lower metallicity, old stellar mass populations. Since they decline by a magnitude in five

days, the cadence of the search should be faster than five days so that the detection sample

is complete. Since faint SNe Ia are extremely red at maximum, we should choose a red filter

for the search. To maximize sky coverage, searching with a single red filter should suffice

(with multi-band follow-up). Since the local universe is clumpy (e.g., ≈ 25% of the total

light at the distance of Virgo is in the Virgo supercluster), the sky coverage must include

concentrations in stellar mass, such as the Virgo, Perseus and Coma galaxy clusters. The

3The Palomar Transient Factory is a dedicated time-domain astronomy project to come online on Palomar

48-inch in Nov 08.
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rate of normal SNe Ia is 3 per 1011L⊙ per century (Scannapieco & Bildsten 2005). Li et al.

(2001) estimate a rate for subluminous SNe Ia to be 16% of normal SNe Ia rate based on

LOSS and BAOSS surveys. To a depth of absolute magnitude of −15.5, and with a limiting

magnitude of 20.5, the survey volume would be 1.5× 107 Mpc3. Using the 2MASS K-band

luminosity function of 5.1×108L⊙Mpc−3 (Karachentsev & Kutkin 2005, Kochanek et al.

2001), we expect a rate of the faintest subluminous supernovae to be ≈ 370 all sky per year.

The Palomar Transient Factory plans a 5-day cadence 2700 deg2 experiment which would

give ≈ 24 faint SNe Ia per year.

We thank Nick Scoville, Milan Bogoslavejic and the Swift team for performing our Target

of Opportunity observations flawlessly. We would like to thank Brent Tully for providing

his catalog of nearby galaxies. LB thanks NSF grants PHY 05-51164 and AST 02-05956.
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Table 2.1. Comparison of Faint Type Ia Supernovae

Supernova Galaxy DM MB,max α β tb (B − V )max Reference

mag mag day−1 mag day−1 days mag

SN2007ax NGC2577 32.2 −15.9±0.2 0.16 0.04 10.3 1.2 This Paper

SN1991bg NGC4374 31.2 −16.6±0.3 0.16 0.03 14.8 0.8 Leibundgut et al. (1993),Filippenko et al. (1992)

SN1998de NGC252 34.3 −16.8±0.2 0.18 0.03 14.5 0.7 Modjaz et al. (2001)

SN2005ke NGC1371 31.8 −17.0±0.2 0.15 0.02 14.9 0.7 Immler et al. (2006)

SN2005bl NGC4070 35.1 −17.2±0.2 0.18 .03 14.0 0.6 Taubenberger et al. (2008)

SN1999by NGC2841 30.9 −17.3±0.2 0.18 0.02 16.0 0.5 Garnavich et al. (2004)
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Table 2.2: Summary of Photometric Observations of

SN2007ax

UT MJD Facility Band Exposure Magnitude

04-Apr-2007 54194.29 Keck-NIRC2 K’ 600 s 16.7 ± 0.1mag

29-Mar-2007 54188.147 Palomar-60 r′ 3× 180 s 15.65 ± 0.06mag

30-Mar-2007 54189.230 Palomar-60 r′ 3× 180 s 15.75 ± 0.05mag

30-Mar-2007 54189.331 Palomar-60 r′ 3× 180 s 15.60 ± 0.02mag

31-Mar-2007 54190.232 Palomar-60 r′ 3× 180 s 15.73 ± 0.03mag

31-Mar-2007 54190.329 Palomar-60 r′ 3× 180 s 15.59 ± 0.03mag

01-Apr-2007 54191.137 Palomar-60 r′ 3× 180 s 15.68 ± 0.05mag

01-Apr-2007 54191.234 Palomar-60 r′ 3× 180 s 15.69 ± 0.03mag

01-Apr-2007 54191.137 Palomar-60 r′ 3× 180 s 15.68 ± 0.05mag

02-Apr-2007 54192.233 Palomar-60 r′ 3× 180 s 15.36 ± 0.04mag

03-Apr-2007 54193.138 Palomar-60 r′ 3× 180 s 15.56 ± 0.03mag

03-Apr-2007 54193.231 Palomar-60 r′ 3× 180 s 15.59 ± 0.22mag

04-Apr-2007 54194.238 Palomar-60 r′ 3× 180 s 15.45 ± 0.04mag

05-Apr-2007 54195.223 Palomar-60 r′ 3× 180 s 15.43 ± 0.03mag

06-Apr-2007 54196.239 Palomar-60 r′ 3× 180 s 15.50 ± 0.03mag

07-Apr-2007 54197.307 Palomar-60 r′ 3× 180 s 15.94 ± 0.06mag

11-Apr-2007 54201.145 Palomar-60 r′ 3× 180 s 16.41 ± 0.07mag

14-Apr-2007 54204.146 Palomar-60 r′ 3× 180 s 16.69 ± 0.03mag

14-Apr-2007 54204.245 Palomar-60 r′ 3× 180 s 16.31 ± 0.12mag

18-Apr-2007 54208.165 Palomar-60 r′ 3× 180 s 17.09 ± 0.04mag

25-Apr-2007 54215.164 Palomar-60 r′ 3× 180 s 17.58 ± 0.07mag

28-Apr-2007 54218.157 Palomar-60 r′ 3× 180 s 17.62 ± 0.05mag

29-Apr-2007 54219.195 Palomar-60 r′ 3× 180 s 17.64 ± 0.14mag

30-Apr-2007 54220.154 Palomar-60 r′ 3× 180 s 17.74 ± 0.09mag

08-May-2007 54228.159 Palomar-60 r′ 3× 180 s 18.18 ± 0.18mag

Continued on Next Page. . .
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Table 2.2 – Continued

UT MJD Facility Band Exposure Magnitude

29-Mar-2007 54188.127 Palomar-60 g′ 3× 180 s 16.27 ± 0.09mag

29-Mar-2007 54188.142 Palomar-60 g′ 3× 180 s 16.30 ± 0.05mag

30-Mar-2007 54189.128 Palomar-60 g′ 3× 180 s 16.37 ± 0.04mag

30-Mar-2007 54189.222 Palomar-60 g′ 3× 180 s 16.23 ± 0.11mag

30-Mar-2007 54189.323 Palomar-60 g′ 3× 180 s 16.20 ± 0.14mag

31-Mar-2007 54190.129 Palomar-60 g′ 3× 180 s 16.36 ± 0.08mag

31-Mar-2007 54190.225 Palomar-60 g′ 3× 180 s 16.37 ± 0.12mag

31-Mar-2007 54190.321 Palomar-60 g′ 3× 180 s 16.22 ± 0.12mag

01-Apr-2007 54191.130 Palomar-60 g′ 3× 180 s 16.45 ± 0.11mag

01-Apr-2007 54191.227 Palomar-60 g′ 3× 180 s 16.43 ± 0.12mag

01-Apr-2007 54191.130 Palomar-60 g′ 3× 180 s 16.30 ± 0.13mag

02-Apr-2007 54192.130 Palomar-60 g′ 3× 180 s 16.49 ± 0.11mag

02-Apr-2007 54192.226 Palomar-60 g′ 3× 180 s 16.39 ± 0.12mag

02-Apr-2007 54192.322 Palomar-60 g′ 3× 180 s 16.39 ± 0.09mag

03-Apr-2007 54193.224 Palomar-60 g′ 3× 180 s 16.45 ± 0.11mag

03-Apr-2007 54193.320 Palomar-60 g′ 3× 180 s 16.53 ± 0.12mag

04-Apr-2007 54194.132 Palomar-60 g′ 3× 180 s 16.59 ± 0.09mag

04-Apr-2007 54194.230 Palomar-60 g′ 3× 180 s 16.26 ± 0.11mag

05-Apr-2007 54195.216 Palomar-60 g′ 3× 180 s 16.47 ± 0.09mag

06-Apr-2007 54196.138 Palomar-60 g′ 3× 180 s 16.66 ± 0.07mag

06-Apr-2007 54196.231 Palomar-60 g′ 3× 180 s 17.06 ± 0.12mag

07-Apr-2007 54197.300 Palomar-60 g′ 3× 180 s 17.03 ± 0.07mag

11-Apr-2007 54201.138 Palomar-60 g′ 3× 180 s 17.62 ± 0.14mag

11-Apr-2007 54201.235 Palomar-60 g′ 3× 180 s 17.47 ± 0.17mag

14-Apr-2007 54204.139 Palomar-60 g′ 3× 180 s 17.80 ± 0.13mag

14-Apr-2007 54204.237 Palomar-60 g′ 3× 180 s 17.59 ± 0.12mag

17-Apr-2007 54207.159 Palomar-60 g′ 3× 180 s 18.11 ± 0.19mag

Continued on Next Page. . .
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Table 2.2 – Continued

UT MJD Facility Band Exposure Magnitude

18-Apr-2007 54208.158 Palomar-60 g′ 3× 180 s 18.04 ± 0.13mag

18-Apr-2007 54208.275 Palomar-60 g′ 3× 180 s 17.98 ± 0.15mag

20-Apr-2007 54210.140 Palomar-60 g′ 3× 180 s 18.09 ± 0.23mag

22-Apr-2007 54212.267 Palomar-60 g′ 3× 180 s 18.20 ± 0.23mag

25-Apr-2007 54215.157 Palomar-60 g′ 3× 180 s 18.49 ± 0.42mag

26-Apr-2007 54216.155 Palomar-60 g′ 3× 180 s 18.61 ± 0.34mag

28-Apr-2007 54218.150 Palomar-60 g′ 3× 180 s 18.57 ± 0.39mag

29-Apr-2007 54219.188 Palomar-60 g′ 3× 180 s 18.42 ± 0.22mag

30-Apr-2007 54220.147 Palomar-60 g′ 3× 180 s 18.73 ± 0.40mag

09-May-2007 54229.159 Palomar-60 g′ 3× 180 s 18.71 ± 0.10mag

02-Apr-2007 54192.8 Swift-UVOT v 419 s 15.87 ± 0.08mag

04-Apr-2007 54195.0 Swift-UVOT v 229 s 16.10 ± 0.09mag

10-Apr-2007 54201.0 Swift-UVOT v 227 s 16.75 ± 0.14mag

17-Apr-2007 54207.2 Swift-UVOT v 225 s 17.42 ± 0.23mag

21-Apr-2007 54211.4 Swift-UVOT v 516 s 17.94 ± 0.33mag

29-Mar-2007 54189.0 Swift-UVOT b 189 s 16.96 ± 0.05mag

02-Apr-2007 54192.8 Swift-UVOT b 419 s 17.22 ± 0.05mag

04-Apr-2007 54195.0 Swift-UVOT b 205 s 18.02 ± 0.11mag

10-Apr-2007 54201.0 Swift-UVOT b 202 s 18.57 ± 0.16mag

17-Apr-2007 54207.2 Swift-UVOT b 324 s 18.62 ± 0.14mag

21-Apr-2007 54211.4 Swift-UVOT b 679 s 18.64 ± 0.12mag

30-Apr-2007 54220.2 Swift-UVOT b 677 s 19.70 ± 0.29mag

06-May-2007 54226.3 Swift-UVOT b 134 s 19.15 ± 0.30mag

11-May-2007 54231.9 Swift-UVOT b 723 s > 19.8mag

02-Apr-2007 54192.8 Swift-UVOT u 419 s 17.82 ± 0.08mag

04-Apr-2007 54194.0 Swift-UVOT u 229 s 18.26 ± 0.13mag

10-Apr-2007 54201.0 Swift-UVOT u 227 s 18.94 ± 0.22mag

Continued on Next Page. . .
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Table 2.2 – Continued

UT MJD Facility Band Exposure Magnitude

17-Apr-2007 54207.2 Swift-UVOT u 648 s 18.86 ± 0.14mag

29-Mar-2007 54188.9 Swift-UVOT uvw1 432 s 20.02 ± 0.47mag

02-Apr-2007 54192.8 Swift-UVOT uvw1 844 s 20.07 ± 0.40mag

04-Apr-2007 54195.2 Swift-UVOT uvw1 1669 s > 20.42mag

10-Apr-2007 54201.2 Swift-UVOT uvw1 1369 s > 20.45mag

17-Apr-2007 54207.2 Swift-UVOT uvw1 1620 s > 20.42mag

21-Apr-2007 54211.4 Swift-UVOT uvw1 3400 s 20.51 ± 0.40 mag

30-Apr-2007 54220.7 Swift-UVOT uvw1 3390 s 20.86 ± 0.50 mag

06-May-2007 54226.7 Swift-UVOT uvw1 6681 s > 20.12mag

11-May-2007 54232.4 Swift-UVOT uvw1 3615 s > 20.62mag

18-Apr-2007 54208.6 Super-LOTIS I 13 × 60 s 17.01 ± 0.02 mag

19-Apr-2007 54209.6 Super-LOTIS I 10 × 60 s 17.22 ± 0.02 mag

20-Apr-2007 54210.6 Super-LOTIS I 9 × 60 s 17.18 ± 0.02 mag

27-Apr-2007 54217.6 Super-LOTIS I 6 × 60 s 17.59 ± 0.04 mag

04-May-2007 54224.6 Super-LOTIS I 18 × 60 s 18.00 ± 0.05 mag

11-May-2007 54231.6 Super-LOTIS I 16 × 60 s 18.35 ± 0.10 mag

26-May-2007 54246.6 Super-LOTIS I 18 × 60 s 18.90 ± 0.29 mag

29-May-2007 54249.6 Super-LOTIS I 22 × 60 s 19.05 ± 0.18 mag

30-May-2007 54250.6 Super-LOTIS I 14 × 60 s 19.15 ± 0.10 mag

18-Apr-2007 54208.6 Super-LOTIS R 12 × 60 s 16.79 ± 0.23 mag

19-Apr-2007 54209.6 Super-LOTIS R 12 × 60 s 16.97 ± 0.22 mag

20-Apr-2007 54210.6 Super-LOTIS R 14 × 60 s 17.10 ± 0.20 mag

23-Apr-2007 54213.6 Super-LOTIS R 15 × 60 s 17.24 ± 0.22 mag

26-Apr-2007 54216.6 Super-LOTIS R 47 × 60 s 17.32 ± 0.29 mag

27-Apr-2007 54217.6 Super-LOTIS R 12 × 60 s 17.47 ± 0.29 mag

04-May-2007 54224.6 Super-LOTIS R 10 × 60 s 17.72 ± 0.38 mag

11-May-2007 54231.6 Super-LOTIS R 16 × 60 s 17.96 ± 0.46 mag

Continued on Next Page. . .
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Table 2.2 – Continued

UT MJD Facility Band Exposure Magnitude

26-May-2007 54246.6 Super-LOTIS R 17 × 60 s 18.11 ± 0.40 mag

27-May-2007 54247.6 Super-LOTIS R 11 × 60 s 18.55 ± 0.37 mag

31-May-2007 54251.6 Super-LOTIS R 11 × 60 s 18.16 ± 0.46 mag

05-Jun-2007 54256.6 Super-LOTIS R 20 × 60 s 18.20 ± 0.54 mag

18-Apr-2007 54208.6 Super-LOTIS V 9 × 60 s 17.84 ± 0.15 mag

19-Apr-2007 54209.6 Super-LOTIS V 6 × 60 s 17.80 ± 0.15 mag

20-Apr-2007 54210.6 Super-LOTIS V 8 × 60 s 17.80 ± 0.15 mag

27-Apr-2007 54217.6 Super-LOTIS V 16 × 60 s 18.30 ± 0.15 mag

04-May-2007 54224.6 Super-LOTIS V 9 × 60 s 18.94 ± 0.15 mag

11-May-2007 54231.6 Super-LOTIS V 17 × 60 s 18.87 ± 0.15 mag

27-May-2007 54247.6 Super-LOTIS V 18 × 60 s 19.55 ± 0.23 mag

29-May-2007 54249.6 Super-LOTIS V 22 × 60 s 19.27 ± 0.16 mag

27-May-2007 54247.6 Bok-2.3m B 4 × 180 s 20.53 ± 0.04 mag
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Chapter 3

Understanding Extreme Novae: P60-FasTING⋆

M. M. Kasliwal1, S. B. Cenko2, S. R. Kulkarni1, E. O. Ofek1, R. Quimby1, A.

Rau3

1Astronomy Department, California Institute of Technology, 105-24, Pasadena, CA 91125, USA

2 Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720, USA

3 Max-Planck Institut fuer Extraterrestrische Physik, 85748 Garching, Germany

Abstract

We present photometric and spectroscopic follow-up of a sample of extragalactic novae

discovered by the Palomar 60-inch telescope during a search for “Fast Transients In Nearest

Galaxies” (P60-FasTING). Designed as a fast cadence (1-day) and deep (g < 21mag) survey,

P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-

FasTING nova sample includes 10 novae in M31, 6 in M81, 3 in M82, 1 in NGC2403 and

1 in NGC891. This significantly expands the known sample of extragalactic novae beyond

the Local Group, including the first discoveries in a starburst environment. Surprisingly,

our photometry shows that this sample is quite inconsistent with the canonical Maximum

Magnitude Rate of Decline (MMRD) relation for classical novae. Furthermore, the spectra

of the P60-FasTING sample are indistinguishable from classical novae. We suggest that

∗A version of this chapter is published with the title “Discovery of a new photometric sub-class of faint

and fast classical novae” in the The Astrophysical Journal, 2011, vol. 734 and is reproduced by permission

of the AAS.
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we have uncovered a sub-class of faint and fast classical novae in a new phase space in

luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in

both luminosity and time. Perhaps, the MMRD, which is characterized only by the white

dwarf mass, was an over-simplification. Nova physics appears to be characterized by quite a

rich four-dimensional parameter space in white dwarf mass, temperature, composition and

accretion rate.

3.1 Introduction

Since the discovery of classical novae, astronomers have pursued their use as standard can-

dles to determine distances (see Hubble 1929). Zwicky (1936) first noticed some regularity

in nova light curves and termed this the “life-luminosity” relation. Arp (1956) undertook a

comprehensive search for novae in M31, discovering thirty novae in 290 nights, and found a

clear relation — luminous novae evolve faster than less luminous novae. The modern name

for this observation is the maximum-magnitude rate-of-decline relation (MMRD relation).

The MMRD relation has attracted considerable theoretical attention (e.g., Livio 1992).

The basic idea is that the relation is entirely due to the mass of the accreting white dwarf.

The more massive the white dwarf, the higher the surface gravity, the higher the pressure

at the base of envelope and the stronger the thermonuclear runaway (and hence, higher the

peak luminosity). Also, the more massive the white dwarf, the smaller the envelope mass

to attain the critical pressure for thermonuclear runaway (TNR) and hence, the faster the

decline.

In more recent times, della Valle & Livio (1995) used a sample of novae in M31 and

LMC to propose an arctangent relation between the peak luminosity and rate of decline.

Downes & Duerbeck (2000) used a sample of Galactic novae to propose a linear relation

between the same two parameters. Darnley et al. (2006) used a score of novae in M31

from POINT AGAPE survey and claimed their observations were consistent with the

della Valle & Livio (1995) formulation of the MMRD.

In comparison to supernovae, classical novae are not very luminous. Hence, searches

(e.g., Shafter & Irby 2001, Ciardullo et al. 1987) have traditionally focussed only on the

Milky Way and its nearest neighbors (Andromeda and the Large Magellanic Cloud). Hornoch et al.
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(2008) looked into archival data and found 49 nova candidates1 in M81 in the past 20 years

— unfortunately, these candidates neither have light curves nor spectra. Ferrarese et al.

(2003) undertook a search for novae using 24 orbits of the Hubble Space Telescope and

found nine nova candidates in M49. Even with their sparsely sampled light curves for nine

novae, they concluded that novae are not good standard candles. Another survey, CFHT-

COVET2 (aimed at finding transients in the gap between novae and supernovae) found a

dozen nova candidates in many galaxies in the Virgo supercluster, including some in the far

outskirts of galaxies (Kasliwal et al 2011, in prep).

Here, we report on novae discovered in high cadence monitoring observations of a repre-

sentative collection of galaxies with distance less than that of the Virgo cluster. The original

motivation of this search, P60-FasTING3, was to explore rapid transients (those which last

less than a couple of nights) in the nearest galaxies. A strong spectroscopic follow-up effort

was a part of P60-FasTING. The survey was capable of finding novae in the major galaxies

out to 4Mpc: M31, M81, the star-burst M82 and NGC2403. We present our sample

of 21 transients, which although spectroscopically indistinguishable from classical novae,

photometrically occupy a new region of phase space.

The paper is organized as follows: § 3.2 describes the discovery, photometric and spec-

troscopic follow-up observations of this nova sample, § 3.3 describes the data analysis, § 3.4

discusses the implications and § 3.5 presents our conclusion.

1We use the term candidate where the light curve is very sparse and/or there is no spectrosopic confir-

mation.
2
Canada France Hawaii Telescope COma Virgo Exploration for Transients

3
Palomar 60-inch Fast Transient In Nearest Galaxies
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Table 3.1. Novae Discovered by P60-FasTING

Nova Host Discovery Date RA(J2000) DEC(J2000) Offset from Host Reference

P60-NGC2403-090314 NGC2403 2009 Mar 14.160 07:36:35.00 +65:40:20.8 101.0”W, 252.0”N Kasliwal et al. (2009a)

P60-M82OT-090314 NGC3034 2009 Mar 14.496 09:56:12.60 +69:41:32.3 104.2”E, 48.2”N · · ·

P60-M81OT-090213 NGC3031 2009 Feb 13.404 09:55:35.96 +69:01:51.0 15”E, 124”S Kasliwal et al. (2009b)

P60-M31OT-081230 (2008-12b) NGC224 2008 Dec 30.207 00:43:05.03 +41:17:52.3 233.4”E,103.8”N Kasliwal et al. (2009c)

P60-M81OT-081229 NGC3031 2008 Dec 29.373 09:55:38.15 +69:01:43.6 26.7”E, 131.4”S Rau et al. (2009a)

P60-M81OT-081203 NGC3031 2008 Dec 3.303 09:55:16.92 +69:02:17.7 87.2”W, 97.4”S Kasliwal et al. (2008a)

P60-M82OT-081119 NGC3034 2008 Nov 19.536 09:55:58.39 +69:40:56.2 29.5”E, 10.4”N Kasliwal et al. (2008b)

P60-M81OT-081027 NGC3031 2008 Oct 27.402 09:55:36.11 +69:03:22.0 15.8”E, 33.1”S Kasliwal et al. (2008g)

P60-M81OT-080925 NGC3031 2008 Sep 25.49 09:55:59.35 +69:05:57.1 2.35’E, 2.03’N Kasliwal et al. (2008i)

P60-M31OT-080915 (2008-09c) NGC224 2008 Sep 15.36 00:42:51.42 +41:01:54.0 1.34’E, 14.24’S Kasliwal et al. (2008f)

P60-M31OT-080913 (2008-09a) NGC224 2008 Sep 13.18 00:41:46.72 +41:07:52.1 10.8’W, 8.3’S Kasliwal et al. (2008e)

P60-NGC891OT-080813 NGC891 2008 Aug 13.45 02:22:32.70 +42:21:56.1 8”W,59”N Kasliwal et al. (2008c)

P60-M31OT-080723 (2008-07b) NGC224 2008 Jul 23.33 00:43:27.28 +41:10:03.3 8.1’E,6.1’S Kasliwal et al. (2008d)

P60-M82OT-080429 NGC3034 2008 Apr 29.24 09:55:21.00 +69:39:42.0 165” W, 64” S Kasliwal et al. (2008h)

P60-M81OT-071213 NGC3031 2007 Dec 13.40 09:55:25.98 +69:04:34.8 40”W,40”N Kasliwal et al. (2007)
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Table 3.2. Additional M31 Novae

Nova Discovery Date Classification Reference

2007-10a 54380.606 Fe II Pietsch et al. (2007); Gal-Yam & Quimby (2007)

2007-11f 54433.716 · · · Ovcharov et al. (2007)

2007-12b 54444.528 He/N Nakamo,Hornoch Lee et al. (2007); Bode et al. (2009)

2008-08c 54708.127 · · · Valcheva et al. (2008);Hornoch

2008-10b 54759.698 Fe II Henze et al. (2008); Di Mille et al. (2008); Barsukova et al. (2008)

2008-11a 54774.438 Hybrid Nishiyama;Hornoch Shafter et al. (2008)

3.2 Observations

3.2.1 Experiment Design

P60-FasTING was designed with the specific goal of probing new phase space, particularly,

fast transients with peak luminosity in the gap between novae and supernovae. The sample

of galaxies included the brightest and nearest galaxies (< 20Mpc, majority around 10Mpc).

The survey was undertaken in a single filter (primarily Gunn-g and some Gunn-i data just

around full moon). The limiting magnitude was typically Gunn-g < 21 and cadence was

< 1 day. The field of view of P60 is 13.5′×13.5′ and all galaxies except M31 were covered

in a single pointing. For M31, five pointings were chosen to cover a larger fraction of the

galaxy.

A real-time data reduction and transient search pipeline was written and implemented in

April 2008. P60-FasTING ended in March 2009. The search pipeline was written in python.

A deep reference image was constructed by combining images from several of the best seeing

dark nights. Next, wcsremap was used to align every new image with the reference and

hotpants was used to compute a convolution kernel prior to image subtraction (both codes

supplied by A. Becker 4). Although the image subtraction software was quite sophisticated

in its convolution of the new image to match the reference prior to subtraction, we suffered

from a large number of false positives. To distill the false subtraction residuals from the

bonafide astrophysical sources, a variety of automatic filters were used (e.g., the shape

4http://www.astro.washington.edu/users/becker/c software.html
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characteristics of the PSF of the candidate, how well it resembles the PSF characteristics

of other stars in the image). However, the final step in the vetting process was done by

human eyes on candidate thumbnails every morning. Due to the myriad trade-offs for

maximum completeness and minimum contamination, the complex issue of quantifying the

completeness of the nova sample is beyond the scope of this publication.

Our survey was sensitive to classical novae only in a handful of the nearest galaxies in our

sample (distance, d< 4Mpc). Classical novae discovered by P60-FasTING are summarized

in Table 3.1. Some novae in M31 were announced by different groups before P60-FasTING’s

first detection (usually due to bad weather at Palomar) — these are summarized in Table 3.2.

Figure 3.1 Location of ten novae in M31. Background image is a mosaic based on Massey data.
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Figure 3.2 Location of three novae discovered by P60-FasTING in the starburst environment of

M82. Background image is an HST/ACS mosaic.

Figure 3.3 Location of one nova discovered by P60-FasTING in NGC2403. Background image is a

deep co-add of P60 data.

3.2.2 Photometry

The robotic Palomar 60-inch has a standard data-reduction pipeline (Cenko et al. 2006).

This pipeline performs basic detrending (flat-fielding and bias subtraction) and computes

an astrometric solution. In August 2008, we added a new functionality: computation of a
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Figure 3.4 Location of six novae discovered by P60-FasTING in M81. Background image is a color

mosaic using SDSS data.

photometric solution. We used the SDSS catalog where available, otherwise the NOMAD

catalog. Note that where NOMAD was used (e.g., M31), the transformation from Johnson

UBV RI magnitudes to SDSS ugriz magnitudes was done following Jordi et al. (2006).

To compute a light curve, we first measured the magnitude of the nova on the subtracted

image. The subtracted image was scaled to the same flux level as the new image. Thus, we

measured the magnitude of ∼ 150 reference stars on the new image to compute a relative

zeropoint with appropriate outlier rejection. Finally, we applied this relative zeropoint to

the instrumental magnitude of the nova.

3.2.3 Spectroscopy

An integral part of P60-FasTING was follow-up spectroscopy to confirm and classify discov-

ered candidate transients. Since we were looking for fast evolving phenomenon, we triggered

our Target Of Opportunity program on the Keck I and Palomar Hale telescopes soon after
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Figure 3.5 Lightcurves of novae in M31 discovered by P60-FasTING. Note the well-sampled rise.

discovery. Sometimes due to bad weather or bright moon-phase5, neither of these was an

option. We resorted to the queue-scheduled service-observed programs on Gemini or HET

telescopes. A log of spectroscopic observations can be found in Table 5.1.

We emphasize that spectroscopy is crucial in distinguishing between an optical transient

which happened to be co-incident with a nearby galaxy and a classical nova. For instance,

we took spectra of several optical transient candidates which did not turn out to be no-

vae: a foreground M-dwarf flare in the Milky Way spatially coincident with NGC7640; a

background supernova; a luminous blue variable in NGC925.

Data were reduced in iraf using standard tasks in the NOAO package onedspec and

the spectra are shown in Figure 3.10.

5Low resolution spectrographs are usually available on both these telescopes only during the dark fort-

night.
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Figure 3.6 Lightcurves of novae in M81.

3.3 Analysis

The primary photometric analysis was to measure the peak absolute magnitude and rate

of decline. The peak magnitude had to be corrected for extinction using spectra or colors.

The primary spectroscopic analysis was to classify the spectra.
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Figure 3.7 Lightcurves of novae in M82 and NGC2403. Note that P60-M82OT-081119 is much

redder than typical novae.

3.3.1 Extinction

A multitude of methods have been used in the literature to measure extinction to novae.

Darnley et al. (2006) compared a synthetic dust-free stellar r−i map of M31 to an observed

r− i color map of M31 and used the difference between the maps to generate a dust map of

M31. The location of the nova on this map determined how much extinction needed to be

applied. This assumed that the novae were behind the galaxy and suffered extinction due to

the entire column of dust. The average extinction as determined by this method is Ai=0.8.

The galactic extinction along the line of sight of M31 of Ai=0.13 (Schlegel et al. 1998b).

Shafter et al. (2009) compared the observed color of the new nova to that of a well-studied

nova to derive the extinction. Kogure (1961) used the Balmer decrement (Hα/Hβ) and

attributed the excess in the ratio over the theoretical Case B value to dust.

Our preferred method of computing extinction is by using the spectroscopic Balmer
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Figure 3.8 Lightcurves of additional novae in M31.

decrement where nebular spectra are available. We subtract the continuum, measure the

flux ratio of the two lines, and then use:

Ag = 3.793 × E(B − V ) = 3.650 × E(g − r)

= 3.650 × log10(Hα/Hβ)− 1.75 ± 0.14
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Figure 3.9 Lightcurve of possible nova in NGC891. This was not spectroscopically confirmed and

is not used in the MMRD analysis.

. The uncertainty comes from the range in expected ratios for Case B of 2.76–3.30.

Our second choice is to use the g − i color of the nova at maximum, compare against

the typical g − i color and attribute the reddening to dust.

van den Bergh & Younger (1987) compiled photometry of several Galactic novae and

derived an average color at maximum of 〈B−V 〉0=0.23 ± 0.06mag. Following Shafter et al.

(2009), we can use the colors of an A5V star (T=8200K) to translate 〈B−V 〉0 to 〈g− i〉0.

Using colors of an A5V star from Kraus & Hillenbrand (2007a), we get:

〈g − i〉0 = 1.88 − 2.15 = −0.27mag

. Now,

Ag = 3.793 × E(B − V ) = 2.223 × E(g − i)

. Hence,

Ag = 2.223 × [(g − i)obs − 〈g − i〉0] = 2.223 × [(g − i)obs + 0.27]
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.

For the case of M31N2007-11d (Shafter et al. 2009), where data for both the above

options are available, we get consistent answers: g − i=0.7mag at maximum suggests

Ag =0.75mag and a Balmer decrement of 4.6 suggests Ag =0.65mag.

If neither a color at maximum nor a spectrum at late-time is available, we use the

average line-of-sight extinction to the host galaxy using the Schlegel maps. The uncertainty

in extinction calculation significantly contributes to the uncertainty in the peak magnitude.

We note here that for the case of P60-M82OT-081119, the light curve was unusually red

for a nova and the extinction correction may be overestimated.

3.3.2 Rate of Decline

The heterogenity in nova light curves suggests that a single parameter may not characterize

the decline well. Traditionally, the time to decay from peak by one magnitude (t1), two

magnitudes (t2) or three magnitudes (t3) is used. For several novae (e.g., M31N2007-10a,

M31N2008-08c, M31N2008-11a), the decline is more or less linear and t1 can be approxi-

mated as half of t2. For some novae (e.g., M31N2008-10b), the light curve behavior is more

complex and this simplification is not applicable. In Table 3.4, we see that t2 values (where

available) are sometimes larger and sometimes smaller than twice the t1 value.

We note here that we did not have data to measure the decline of the nova in NGC891

and hence it is excluded from further MMRD analysis.

3.3.3 Rate of Rise

Given the cadence of P60-FasTING, we were able to catch several novae on the rise. We

define the rate of rise as the average slope between first detection and peak detection and

summarize in Table 3.4. We find a wide range of rise-times, from > 1.8magday−1 (e.g.,

M31N2008-11a) to 0.2mag day−1 (e.g., M31N2008-09a). It is not clear how previous deter-

minations of the MMRD in the literature dealt with the uncertainty in the peak magnitude

due to inadequate coverage. Especially since previous surveys likely had a relatively slower

cadence, missing the peak may be a substantial source of error. Slower cadence and/or

shallower depth would correspond to a weaker constraint on the rise time of the nova. Due

to gaps on account of weather, some of the P60 light curves have constraint weaker than
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0.1mag day−1 on the rate of rise. Hence, we do not use the lightcurves of P60-M81OT-

080926 or P60-M82OT-080429 for subsequent analysis of the MMRD relation.
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Figure 3.10 Optical spectra of P60-FasTING novae. Majority are Fe II class. Note that they have

been arbitrarily offset along the y-axis for clarity.
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Table 3.3. Spectroscopic Observations of P60-FasTING Novae

Nova Spectroscopy Date Telescope Instrument Classification Observer

P60-NGC2403-090314 2009 Mar 20.145 P200 DBSP (Oke & Gunn 1982) Fe Class? Kasliwal,Ellis

P60-M81-090213 2009 Feb 18.510 Keck I LRIS (Oke et al. 1995) Fe Class Ofek

P60-M81-081229 2008 Dec 31.40 P200 DBSP (Oke & Gunn 1982) Fe Class Rau,Salvato

P60-M31-081230 2008 Dec 31.104 P200 DBSP (Oke & Gunn 1982) Fe Class Rau,Salvato

P60-M81-081203 2008 Dec,4,5,16 P200,Gemini DBSP,GMOS-N (Hook et al. 2004) Fe Class Kasliwal

P60-M81-080925 2008 Sep 29.51 P200 DBSP (Oke & Gunn 1982) Fe Class Quimby

P60-M31-080915 2008 Sep 20.2 HET LRS (Hill et al. 1998) Fe Class Shafter

P60-M31-080913 2008 Sep 22.4 HET LRS (Hill et al. 1998) Fe Class Shafter

P60-M31-080723 2008 Aug 1 P200 DBSP (Oke & Gunn 1982) Fe Class Ofek

P60-M82-080429 2008 May 2.28 P200 DBSP (Oke & Gunn 1982) · · · Cenko

P60-M81-071213 2007 Dec 15.565 Keck LRIS (Oke et al. 1995) · · · Ofek
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Table 3.4. Characteristics of P60-FasTING Novae

Nova Balmer Decrement Spectral Phase Color at Peak Extinction Rate of Rise Abs-Mag t1 t2

FHα/Hβ g − i(mag) Ag(mag) mag day−1 Mg(mag) days days

P60-NGC2403-090314 5.0 Nebular · · · 0.8 1.3 −9.0 3.3 >6

P60-M82-090314 · · · · · · −0.3 0.6 >1.2 −8.5 2.4? >3.3

P60-M81-090213 · · · Nebular 0.7 2.2 0.2 −9.9 5? >10.9

P60-M31-081230 (2008-12b) · · · · · · −0.17 0.24 0.6 −7.5 12.3

P60-M81-081229 2.4 Near-Max 0.1 0.90 >0.1 −8.7 2.9 · · ·

P60-M81-081203 · · · · · · −0.03 0.53 0.7 −8.0 7.5? >23

P60-M82-081119 · · · · · · 0.98 2.8 0.6 −10.7 4.0 · · ·

P60-M81-081027 · · · · · · · · · 0.3 0.2 −7.6 4.0 · · ·

P60-M81-080926 1.4 Near-Max -0.2 0.13 · · · −8.5 8.9 14.0

P60-M31-080915 (2008-09c) 1.4 Near-Max −0.72 0.24 0.4 −7.8 9.1 16.6

P60-M31-080913 (2008-09a) 2.5 Near-Max −0.30 0.24 0.2 −6.8 6.3 16.0

P60-M31-080723 (2008-07b) 14.3 Nebular? −0.20 2.5 0.2 −7.6 5.0 12.0

P60-M82-080429 6.3 Nebular? · · · 1.2 · · · −8.5 8.1 · · ·

P60-M81OT-071213 3.8 Nebular? 0.5 0.4 >0.6 −7.8 1.0 · · ·

2007-10a · · · · · · · · · >0.24 >1.2 −7.0 4.1? 8.6

2007-11f · · · · · · −0.16 0.24 >0.1 −5.1 5.0 >8.0

2007-12b · · · · · · · · · >0.24 >0.6 −6.3 3.5 >5.0

2008-08c · · · · · · · · · >0.24 0.3 −7.5 11.0 26.3

2008-10b · · · · · · −0.58 >0.24 0.2 −6.5 6.0 12.3?

2008-11a · · · · · · 0.41 1.5 >1.8 −7.7 2.9 7.5
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Figure 3.11 Maximum magnitude (absolute g-band) versus rate of decline (time to decay from

peak by 1 mag). Gray region denotes the della Valle & Livio (1995) MMRD relation. The dark gray

dots denote the nova sample used by della Valle & Livio (1995) — we derived t1 by dividing t2 by

two and we converted from V -band to g-band assuming the colors of an A5V star (Shafter et al.

2009). The P60-FasTING sample is shown with symbols that denote spectral type — Fe II class

(star), He/N class (circle), spectrum with no prominent features for classification (squares) and no

spectrum (empty square).

3.3.4 Spectral Classification

For spectroscopy the primary analysis was to classify the novae by their spectra. The

taxonomy of novae were laid out by Payne-Gaposchkin (1964) and McLaughlin (1960). The

most prominent feature in all classical novae is Balmer emission. Williams (1992) propose

that there is a two-component structure of the emitting gas — discrete shell and continuous
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Figure 3.12 Maximum magnitude (absolute g−band) versus rate of decline (time to decay from

peak by 2 mag). Only the six novae (P60-M31OT-080915, P60-M31OT-080913, P60-M31OT-080723,

M31N2007-10a, M31N2008-08c,M31N2008-11a) with the best sampled light curves are shown. Sym-

bols denote spectral type as in Figure 6.1.

wind. If the wind mass-loss rate is low, the effective photosphere is smaller, the radiation

temperature is higher and the level of ionization of the shell is higher, resulting in a shell-

dominated He/N spectrum. If the wind mass-loss rate is high, it results in a wind-dominated

Fe II spectrum.

Thus, classical novae are divided into two principal families — the “Fe” class (dominated

by Fe II lines, often low velocity and showing P-Cygni profiles) and the “He/N” class

(dominated by He and N lines, often high velocity and flat or jagged-topped profiles).

These evolve into nebular spectra with four classes based on the prominent forbidden lines

— standard (e.g., [N II], [O II], [O III]), neon (e.g., [Ne V], [Ne III]), coronal (e.g., [Fe X])
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Figure 3.13 Comparison of the P60-FasTING nova sample (green symbols) with the Galactic recur-

rent novae (blue circles, data from Smartt (2009)). Symbols denote spectral type as in Figure 6.1.

or no forbidden lines. The Fe class novae are expected to evolve into standard or neon

nebular spectra. The He/N class are expected to evolve into neon, coronal or no forbidden

line spectra. Some novae are classified as “hybrid” as they start out with high velocity

Fe II features and quickly evolve into showing He/N features (e.g., V745 Sco, V3890 Sgr,

M31N2008-11a).

Majority of the P60-FasTING spectra show clear permitted lines from Fe II (42), Fe II

(37,38) and O I. The line velocities are low and typical Gaussian FWHM are < 2500 km s−1

with the exception of P60-M81-080925 where Hα velocity is 3000 km s−1. P60-NGC2403-

090314 shows weak Fe II(42) and weak P-Cygni profiles in Balmer lines and can tentatively

also be classified as Fe II class. P60-M81-071213 and P60-M82-080429 have very low SNR
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Figure 3.14 Theoretical results of Yaron et al. (2005) over a wide range of nova parameters — we

use the colors of an A5V star to convert L4max to Mg and approximate t1 as tml/3. The size of the

symbol is proportional to the mass of the white dwarf. The color of the symbol denotes temperature

— 10 million K (red), 30 million K (green), 50 million K (blue). Empty circles denote lower accretion

rate in the range 10−12.3–10−10M⊙yr
−1 and filled circles denote higher accretion rate in the range

10−9–10−6M⊙yr
−1. Note that the density of circles is unrelated to the relative populations.

and no feature other than the Balmer lines are detected, hence, we cannot classify them.

Multiple spectra of P60-M81-081203 were taken — initially, the spectra show a featureless

continuum (obtained a few days prior to maximum light) and later (about a week after

maximum light), evolved to show Balmer lines, Fe II (42), O I. We summarize spectral

classifications in Table 5.1. For four novae in M31, other groups obtained spectra and we

summarize their classification in Table 3.2.
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3.4 Discussion

In comparison to traditional nova searches, P60-FasTING was designed as a faster cadence

and deeper survey. Weather-permitting, galaxies in the sample were imaged every night to

a mean depth of Gunn-g < 21mag. Hence, P60-FasTING was sensitive to transients that

are less luminous and evolve faster than classical novae.

Given that our light curves are well-sampled, and we have spectra or color measure-

ments to correct for extinction, we can securely measure both the maximum magnitude and

the rate of decline. To our surprise, as demonstrated in Figure 6.1, we find that the P60-

FasTING nova sample is evidently inconsistent with the MMRD relation (della Valle & Livio

1995).

In Figure 6.1, the decay time is measured as the time to decay by one magnitude. To

test whether the apparent photometric diversity is consistent with the MMRD over a longer

timescale, we plot the time to decay by two magnitudes in Figure 3.12. Furthermore, we

restrict this to the sub-sample of six classical novae in M31 with the best-sampled light

curves (see lightcurves of P60-M31OT-080915, P60-M31OT-080913, P60-M31OT-080723,

M31N2007-10a, M31N2008-08c, M31N2008-11a in Figure 3.5 and Figure 3.8). Even this

sub-sample does not obey the MMRD relation. This scatter is larger than the ±0.8mag

predicted on theoretical grounds by Shara (1981).

Despite the atypical photometric signature, the P60-FasTING nova sample shows no

spectroscopic peculiarities. In Figure 6.1, the symbols indicate the spectral class — majority

are Fe II class (stars), a couple are He/N class (circles), some have spectra with no prominent

features for classification (filled squares) and a few have no spectra (empty squares).

We could hypothesize that some of the P60-FasTING novae are not classical but recur-

rent (classical novae which recur on a timescales shorter than a century) since recurrent

novae are also known not to obey the MMRD relation. Recurrent novae are expected to

occur in the most massive white dwarfs with high accretion rates. A small amount of

mass accreted on a short timescale is sufficient to trigger thermonuclear runaway. Recently,

Smartt (2009) compiled all available photometry over the past century on the ten recurrent

novae in our galaxy — overplotted to compare with the P60-FasTING sample in Figure 3.13.

There are three ways to test the recurrent nova hypothesis. First, spectra of recurrent

novae have high velocities and belong to either He/N or hybrid class (e.g., V3890 Sgr, V745
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Sco, V394 CrA in Williams 1992 and Williams et al. 1994). We find that majority off the

P60-FasTING novae do not share the spectroscopic properties of recurrent novae. P60-

FasTING novae mostly belong to the Fe II class and have low velocities. Second, recurrent

novae are often a few magnitudes brighter than classical novae at quiescence. Smartt (2009)

suggests that recurrent novae range from −4.1 < MV < 3.2 and classical novae range from

1.1 < MV < 7.0 at quiescence. Given the distance modulus to these galaxies, this test is

within reach of 10-m class telescopes and easy with HST (e.g., see Bode et al. 2009). Third,

the unambiguous test of whether an eruption is recurrent is to continue to monitor these

galaxies for the next few decades until another eruption is witnessed.

In order to decipher the nature of this new sub-class of novae we turn to the fundamental

physics of classical novae. The physics is governed by four parameters — mass of the white

dwarf, temperature, accretion rate and composition. The MMRD relation is explained

with the mass of the white dwarf being the single, dominant parameter. Perhaps, the

P60-FasTING sample of faint and fast novae can be explained based on an unexplored

region of this four-parameter phase space? Could some P60-FasTING novae come from hot

and massive white dwarfs? If it is hot, then the thermonuclear runaway would not be as

explosive and thus, the peak luminosity would be fainter. Also, the higher temperature

would result in a smaller amount of envelope mass being sufficient to trigger thermonuclear

runaway and thus, the timescale would be faster.

Recent theoretical efforts have explored nova diversity (e.g. Townsley & Bildsten 2004,

Shen & Bildsten 2009, Epelstain et al. 2007, Jose & Hernanz 1998, Scott 2000). Yaron et al.

(2005) present an extended grid of nova models to explore a wider parameter space (in mass,

temperature and accretion rate) than traditionally explored for classical novae subject to

physical constraints (such as conditions for thermonuclear runaway). We summarize the

results of the variety of models they run in Figure 3.14. Some hot and massive white dwarfs

with high accretion rates can result in a faint and fast nova population consistent with

the P60-FasTING sample. Indeed, Yaron et al. (2005) predict the existence of remarkably

small amplitude novae across the entire span of decay rates.

Finally, we note that more than half of the P60-FasTING nova sample is inconsistent

with the MMRD. This suggests that faint and fast novae are commonplace and cannot be

explained by a rare type of white dwarf.
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3.5 Conclusion

We conclude that P60-FasTING has uncovered classical novae in a new region in the

luminosity-timescale phase space of optical transients. Classical novae span at least two

orders of magnitude in time and two orders of magnitude in luminosity. Future surveys

would have a large enough sample to meaningfully constrain the relative populations of

classical novae in the different areas of phase space.

P60-FasTING was designed as a pilot project, to begin to set the stage for future projects

such as Palomar Transient Factory (PTF6, Law et al. 2009, Rau et al. 2009b, Rahmer et al.

2008), PanSTARRS (PS17) and Large Synoptic Survey Telescope (LSST8). Both PTF and

PS1 are now underway. PTF is looking at several nearby galaxies with a similar depth and

cadence as P60-FasTING. Among nearby galaxies, PS1 day-cadence fields only cover M31

but are a couple of magnitudes deeper. LSST will be both deeper and faster cadence and

cover the visible sky. P60-FasTING is only the trailblazer for the uncovering of a wealth of

information about classical novae by near-future synoptic surveys.
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Chapter 4

Systematic Survey Design: CFHT-COVET &

PTF-TILU

4.1 Introduction

Our understanding of the landscape of optical transients in the past century has been

dominated by novae and supernovae. Novae and supernovae are relatively easy to find.

Novae, although fainter than supernovae by factor of 1000, are abundant (20 galaxy−1

year−1). Supernovae, although rarer than novae (0.01 galaxy−1 year−1), are luminous and

long-lived. To find explosions at least ten times fainter and faster than supernovae, we need

a deeper and higher cadence search.

Telescope time is a zero sum game — both for discovery and follow-up. The design

trade-off for discovery is between cadence and survey volume. Survey volume, in turn,

depends on depth and either area (blind pointings) or number of galaxies searched (targeted

survey). Most surveys have optimized two out of the four parameters. For example, the Lick

Observatory Supernova Search (LOSS; Filippenko et al. 2001), chose depth and galaxies and

searched thousands of galaxies to 19mag at a slow weekly cadence. LOSS found several

hundred supernovae in the local universe in the past decade. The Texas Supernova Search

(TSS; Quimby 2006), chose cadence and area and searched a large area daily to a shallow

depth of 17mag. TSS found a rare class of luminous supernovae. The Supernova Legacy

Survey (SNLS; Astier et al. 2006) chose depth and cadence and searched a small area of

4 deg2 to 24mag every few days. SNLS found a large number of Type Ia supernovae at high

redshifts.
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Since our goal was to study explosions fainter and faster than supernovae, it was clear

that our best bet would be to target galaxies in the local universe. When I started my thesis,

the rates for transients in the gap, both observational constraints as well as theoretical

predictions, were uncertain by order(s) of magnitude. I worked on three deep and fast

cadence surveys, scaling the number of galaxies by an order of magnitude each time.

In Chapter 3, we discussed the simplest search (P60-FasTING) which targeted ≈ 60 of

the nearest and brightest galaxies at a < 1 day cadence and a depth of 21mag for one year

(April 2008 to March 2009). We learned that although this search yielded two dozen novae

and two supernovae, it did not include enough galaxies to find transients in the “gap”.

Therefore, we decided to scale our search in two phases: CFHT-COVET (≈ 500 galaxies)

and PTF-TILU (≈ 10,000 galaxies).

Lesson 1: Gap transients are rarer than supernovae. Several hundred (if not several

thousand) galaxies will need to be searched to uncover them.

4.2 CFHT-COVET

Using the one square degree MegaCAM camera on the 3.6m Canada France Hawaii Tele-

scope (CFHT), we decided to undertake “Coma and Virgo Exploration for Transients”

(COVET; PI Marten van Kerkwijk). We chose seven pointings of the Virgo Cluster (Fig-

ure 4.1) and three pointings of the Coma Cluster, since they are very dense nearby galaxy

concentrations. To image 10 deg2 and cycle through each pointing twice in a single filter

(r-band), we needed a total of half hour nightly, including overheads. As Megacam was only

available on CFHT during dark fortnights, we proposed for a total of 30 hours. Our program

was top-ranked in semester 2009A1 and this ensured that our half-hour block indeed got

systematically queue-scheduled on every night that weather allowed.

4.2.1 Real-Time Pipeline

Given the exquisite image quality and fine pixel scale (0.18 arcsec pixel−1) of Megacam, we

were able to architect a transient discovery pipeline with a very high detection efficiency.

1During semester 2008A, we obtained some data as well but the cadence was very poor due to queue

scheduling priorities. Nevertheless, the data served as a dry run to test our pipelines and demonstrate the

feasibility of this search.
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Figure 4.1 Left: Shown above are the seven pointings of the Virgo Cluster for our CFHT-

COVET survey. Magenta circles denote galaxies in the Virgo Cluster. Right: Also shown

is a zoomed-in view of one pointing.

We were able to probe deep down into the cores of bright galaxies and find faint transients.

Furthermore, the data volume and low false positive rate allowed me to manually vet every

single candidate transient by eye every morning.

Our real-time pipeline worked as follows:

1. Ingestion and Characterisation. Download detrended data the minute they are avail-

able on CFHT webpage, insert them into our local database, characterize them by

computing seeing, zeropoint and sky, and solve for a precise World Coordinate System.

2. Reference Image Subtraction. Query our postgres database for appropriate reference

image (deep combined image), precisely align the new image to it with sub-pixel

accuracy, convolve the reference image point spread function (psf) and flux level to

match the new image, and subtract the two. We implemented two codes developed

by A. Becker2 (hotpants and wcsremap) in our pipeline.

2http://www.astro.washington.edu/users/becker/
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3. Candidate Identification. Find candidates on subtracted images, characterize their

brightness and PSF, and insert them into database.

4. Filtering. Use multiple criteria to separate junk and moving objects from bonafide

extragalactic transient candidates (e.g., filter based on whether the shape of the PSF

of the candidate consistent with that of other stars in the same field)

5. Cross-Correlation with Known Objects. Query databases to check if there is a known

asteroid, star or galaxy at that position (Minor Planet Center, Simbad, SDSS).

6. Visualisation and Manual Vetting. Post thumbnails of filtered candidates on a web-

page for manual scanning. The webpages were generated on-the-fly (cgi scripts queried

the database for candidates that fulfilled specified filtering thresholds).

7. Follow-up. Undertake multi-band photometry and spectroscopy of real transient can-

didates as necessary.

To measure the detection efficiency of our pipeline, we inserted over 100,000 fake sources

with magnitudes between 18< r < 24mag at random locations in images spanning a rep-

resentative range in seeing conditions and galaxy surface brightness. Then, we ran these

images through all the steps outlined above and checked how many sources were recovered

(Figure 4.2). We found that even for an underlying host galaxy surface brightness of 18mag

arcsec−2, we recovered transients with r ≈ 22mag with 72% efficiency and r ≈ 20mag with

80% efficiency. At the easier low surface brightness end, our efficiency was 90% (where

7% of the missing 10% was due to imperfect overlap between the new image and reference

image).

4.2.2 Discoveries

The net result was that with a very modest investment of telescope time (30 hours), we

found ≈ 140 transients. We even found a nova and supernova on the same chip in the

same exposure (see Figure 4.3). The majority of transients were supernovae and active

galactic nuclei in galaxies that were likely at distances much further than the targeted nearby

cluster. We also found two dozen transients in the Virgo Cluster which were consistent

with classical novae given their peak luminosity and light curves. The locations of several
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Figure 4.2 Left: Detection efficiency as a function of magnitude of transient. Over a range

of seeing and background surface brightness conditions, we were able to recover 75% of

simulated transients as faint as r≈22. Right: Detection efficiency as a function of underlying

surface brightness of host galaxy. We could recover 72% of transients as faint as 22mag

buried under 18mag arcsec−2.

of these novae was in-between galaxies in regions of low surface brightness. For example,

comparing against a map of the surface brightness of the Virgo core (Mihos et al. 2005),

the locations of COVET-090420A, COVET-090423B and COVET-090423C corresponded

to very low surface brightness of 23.5, 22 and 23 mag arcsec−2 respectively. Since 15% of

the mass is expected to be in the intergalactic medium, it is not surprising that we have

three inter-galactic novae.

Unfortunately, the CFHT-COVET search did not yield any new transients in the lumi-

nosity gap between novae and supernovae. However, the systematic nature of the search

placed strict constraints on the rates of these events. COVET surveyed a volume at the

distance of Virgo of 9.5× 1010 L⊙-yr and at the distance of Coma of 4.4× 1011 L⊙-yr. There-

fore, it constrained the rates of transients on a timescale longer than 1 day and brighter than

−9mag to < 7.9× 10−12 L−1
⊙ yr−1. COVET also constrainted the rates of transients on a

timescale longer than 1 day and brighter than −13mag to < 1.7× 10−12 L−1
⊙ yr−1. For com-

parison, the rates of supernovae are roughly 6× 10−12 L−1
⊙ yr−1 (Mannucci et al. 2005).

We needed a survey that probed a significantly larger survey volume to find “gap” tran-

sients. To build survey volume in the local universe, one magnitude in depth is equivalent
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Figure 4.3 We discovered both a classical nova as well as a supernova on one of 48 chips in

a single 60 s exposure with the MegaCAM camera on the CFHT.

to a factor of four in areal sky coverage. However, the follow-up challenge (especially spec-

troscopy) is formidable if the transients are faint. Despite Keck and Palomar Target Of

Opportunity programs, we were able to spectroscopically classify only a handful of COVET

transients. Therefore, we needed a wide-angle survey that surveyed thousands of galaxies

in the local universe at a rapid cadence.

Lesson 2: Follow-up is key. The depth of the survey should be chosen to match the

follow-up capabilities.

4.3 PTF-TILU

The Palomar Transient Factory (PTF3; Law et al. 2009; Rau et al. 2009b; Rahmer et al.

2008) was designed with a single dedicated goal of systematically charting the transient

sky. PTF has two ongoing major experiments: a 5 day Supernova Cadence4 and a 1 day

Dynamic Cadence. My thesis project, “Transient in the Local Universe” (TILU) allowed

me to design the “Dynamic Cadence” experiment.

3PI Shri Kulkarni; http://astro.caltech.edu/ptf
4In 2011, the supernova cadence is set to 3 day.
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We chose a 1 day cadence5 so as to be more sensitive to short timescale transients relative

to previous supernova searches (typical cadence of a week to ten days). We chose a depth of

21mag (60 s exposure on the Palomar 48-inch) to facilitate timely spectroscopic follow-up.

This flux limit constrained our sensitivity to transients with a luminosity lower than that

of supernovae to 200Mpc. Therefore, to maximize the odds of finding rare transients, we

would need to carefully optimize pointings on nearby galaxies and clusters.

4.3.1 Catalog of the Local Universe

First, I compiled a catalog collating all existing galaxy databases including NASA/IPAC

Extragalactic Database (NED)6, Hyperleda7 and Extragalactic Distance Database (EDD)8.

It was necessary to combine data from these sources as there were galaxies/redshifts missing

in each of these compilations. The total number of galaxies within 200Mpc was 150,000.

Of the 150,000 galaxies, sizes were available for 100,000 and integrated B-band luminosities

for 140,000. Wherever available, I used distances based on Tully-Fischer, Faber-Jackson,

or from the Tully model (EDD estimates were used for the nearest galaxies). Otherwise,

I used kinematic velocity-based distances corrected for infall of the Local Group towards

Virgo. B-band magnitudes are corrected for galactic extinction, internal extinction and

k-correction wherever available. Size of a galaxy is measured out to the surface brightness

contour of 25 mag arcsec−2. The combined catalog still captured only 50% of the starlight

at 200Mpc (Figure 4.4). We need an all-sky spectroscopic survey down to 21mag to be

100% complete. Given how crucial this catalog is, we are undertaking a narrow-band survey

during full-moon nights with PTF to complete this catalog, starting in May 2011.

Next, leveraging the clumpiness of the local universe, I used a fine grid to choose the top

200 pointings that would maximize the amount of galaxy light. I maximized the galaxy light

in seven logarithmic bins in distance (uniform bins in distance modulus). I also ensured that

galaxies didn’t fall on chip gaps or the one non-working CCD. The resulting set of pointings

gave me a factor of four more light at 200Mpc than an equivalent number of randomly

5We note here that due to challenges in scheduling the robotic telescope, only a small fraction of the

planned Dynamic Cadence fields were actually observed at the 1 day cadence. We now have an improved

scheduler and look forward to a more successful second year of operations.
6http://ned.ipac.caltech.edu
7http://leda.univ-lyon1.fr/
8http://edd.ifa.hawaii.edu
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Figure 4.4 Left: Fraction of total theoretical light accounted for by galaxies in the catalog as

a function of distance. A correction has been applied for the local overdensity by scaling the

Schechter function by the observed luminosity brighter than L⋆. This correction is applied

every 10 Mpc and is a factor of three at 10Mpc and one at 200Mpc. Right: Completeness

of galaxy catalog as a function of apparent magnitude limit of survey. The largest surveys

are represented by lines at the depth of the survey, the height of the line is proportional

to the fraction of all-sky covered by survey. Unshaded region represents how much of the

catalog is incomplete.

chosen pointings (Figure 4.5). Choosing nearby galaxies and galaxy clusters gave me the

advantages of both a targeted and an untargeted survey. Since ≈ 100 pointings would be

surveyed at any given time, this experiment was designed to be sensitive to transients whose

rates were a few percent of the rate of supernovae (Figure 4.6).

4.3.2 Operations and Follow-Up

The design sensitivity of PTF-TILU inspired confidence. However, we also needed robust

real-time operations and an arsenal of follow-up resources.

Our pipelines are completely automated and run in real-time. Discoveries from the Palo-

mar 48-inch automatically trigger the Palomar 60-inch for multi-band follow-up during the

same night without any human intervention. Automated pipelines on the 60-inch promptly

return the photometry (with image subtraction relative to the Sloan Digital Sky Survey

where available) to the central “Follow-Up Marshal” database. The PTF collaboration
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Figure 4.5 Cumulative galaxy light as a function of distance. The top axis denotes the

limiting luminosity of a transient that PTF would be sensitive to at that distance. The

known all-sky luminosity is shown in red, a random choice of 2700 sq deg is shown in light

blue. The light in the PTF 1-day cadence experiment is shown in dark blue and the 5-day

experiment is shown in purple. Note that although the 1-day experiment has a factor-of-

four less area, the careful choice of galaxy light concentrations gives the same amount of

light as the 5-day experiment.

then uses different selection criterion based on the data obtained from these two telescopes

to trigger follow-up spectroscopy.

A major improvement over the CFHT-COVET pipeline described above is that PTF

has an ongoing effort to completely automate the final step of manual vetting. We do this

by improved machine learning algorithms as well as outsourcing the visualization step to

citizen scientists via the supernova zoo portal 9. While these efforts have been successful in

netting the majority of transients, unfortunately, they are still incomplete in the especially

challenging identification of faint transients buried inside bright galaxies. Therefore, I have

been running a script that spatially cross-correlates the PTF discovery stream against the

galaxies in this catalog (out to twice the radius of the 25 mag arcsec−2 contour, B25). I

9http://supernova.galaxyzoo.org
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Figure 4.6 Volume probed by various surveys (in specified cadence period) as a function of transient

absolute magnitude. Red plusses represent the minimum survey volume needed to detect a single

transient event (the uncertainty in the y-axis is due to uncertainty in rates and the error in the x-

axis represents luminosity range). Key: SDSS is the Sloan Supernova search, PS-MD is PanStarrs1

Medium Deep search, PTF-5DC is the 5-day cadence experiment and PTF-1DC is the Dynamic

cadence experiment, LSST is the Large Synoptic Survey Telescope. Note that the design sensitivity

of the PTF-1DC experiment is second only to LSST.

continue to manually vet this subset of PTF candidates daily for prompt follow-up.

The first and most critical step in follow-up was rapid response spectroscopy. Therefore,

we applied for Target Of Opportunity (ToO) time on the Keck and Palomar telescopes. To

hedge against weather and the unavailability of low resolution spectrographs when the moon

is bright, we also applied for a Gemini program. The PTF collaboration has also been helpful

in obtaining spectra of local universe candidates on classically scheduled nights. For multi-

band follow-up, we have ToO programs on the Swift satellite (X-ray, UV) and Expanded

Very Large Array (radio). As needed, we applied for time on the Hubble, Spitzer and Galex
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space telescopes.

4.3.3 Discoveries

PTF obtained first light in December 2008, found its first supernova in March 2009 and was

fully commissioned by July 2009. Unfortunately, the Station fire10 shut down operations at

Palomar mountain from August to November 2009. In just over a year of rolling operations,

PTF has discovered and spectroscopically classified 1044 extragalactic transients (as of

February 9, 2011). Of these, 270 transients were in the local universe (z < 0.05). We show

the division of this group between core-collapse (59%) and thermonuclear (37%) supernovae

in Figure 4.7. Of special note is the 4% unclassified slice. These are transients with no good

match in libraries of supernova spectra. Case studies of some of these are discussed in the

next few chapters.

Figure 4.7 The Palomar Transient Factory has discovered 270 transients in the local universe

(z<0.05). Of these, 4% have unclassified spectra, with no matches in supernova or nova

libraries.

In Figure 4.8, we show the distribution of peak luminosities of PTF supernovae. SN2007ax

10http://www.fs.fed.us/fire/station fire report.pdf
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(discussed in Chapter 2) continues to be the recordholder for the faintest SN Ia. Only 16

out of 270 transients are fainter than −16mag, i.e. 1.5%. Of these, the characteristics of 11

transients are consistent with extreme versions of hydrogen-rich core-collapse supernovae

(e.g., PTF10vdl, Gal-Yam et al. 2011); the new record-holder for the faintest Type IIP

supernova is now PTF10ehy (−13mag). PTF10aaxi has curious three-peaked Balmer line

profiles and we are investigating this in more detail (Smith et al., in prep). PTF10fqs and

PTF10acbp are members of a new class of explosions in the gap (discussed in Chapter 5).

PTF09dav and PTF10iuv also appear to be yet another class of explosions in the gap

(discussed in Chapter 7).
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Figure 4.8 Histogram of peak R-band luminosities of PTF transients in the local universe.

Note that of the 16 transients fainter than −16mag, 11 are consistent with being faint

analogs of core-collapse supernovae and 5 are peculiar transients whose physical nature is

yet to be determined.

In conclusion, we have discovered multiple, distinct populations of transients in the gap.

These transients are nothing like anything we have seen before and nothing like each other.

It appears we have just begun to explore the tips of icebergs.
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Abstract

The Palomar Transient Factory (PTF) is systematically charting the optical transient and

variable sky. A primary science driver of PTF is building a complete inventory of tran-

sients in the local Universe (distance less than 200Mpc). Here, we report the discovery of

PTF10fqs, a transient in the luminosity “gap” between novae and supernovae. Located

on a spiral arm of Messier 99, PTF10fqs has a peak luminosity of Mr = −12.3, red color

(g− r = 1.0) and is slowly evolving (decayed by 1mag in 68 days). It has a spectrum dom-

inated by intermediate-width Hα (≈ 930 km s−1) and narrow calcium emission lines. The

explosion signature (the light curve and spectra) is overall similar to that of M85OT2006-1,

SN2008S, and NGC300OT. The origin of these events is shrouded in mystery and con-

troversy (and in some cases, in dust). PTF10fqs shows some evidence of a broad feature

(around 8600 Å) that may suggest very large velocities (≈ 10,000 km s−1) in this explosion.

Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy,

infrared monitoring and statistics (e.g., disk versus bulge) will eventually make it possible

for astronomers to unravel the nature of these mysterious explosions.

∗A version of this chapter is published with the title “PTF10fqs: A Luminous Red Nova in the Spiral

Galaxy Messier 99” in the The Astrophysical Journal, 2011, vol. 730, pp. 134 and is reproduced by permission

of the AAS.
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5.1 Introduction

Two reasons motivate us to search for transients in the local Universe (distance < 200Mpc).

First, the emerging areas of gravitational wave astronomy, high-energy cosmic rays, very

high-energy photons, and neutrino astronomy are limited to this distance horizon either due

to physical effects (optical depth) or instrumental sensitivity. Thus, to effectively search for

an electromagnetic analog, understanding the full range of transient phenomena is essential.

For instance, the electromagnetic counterpart to the gravitational wave signature of neutron

star mergers is expected to be fainter and faster than that of supernovae (e.g., Metzger et al.

2010).

Our second motivation is one of pure exploration. The peak luminosity of novae ranges

between −4 and −10mag1, whereas supernovae range between −15 and −22mag. The large

gap between the cataclysmic novae and the catastrophic supernovae has been noted by early

observers. Theorists have proposed several intriguing scenarios producing transients in this

“gap” (e.g., Bildsten et al. 2007a; Metzger et al. 2009; Shen et al. 2010; Moriya et al. 2010).

The Palomar Transient Factory2 (PTF; see Rahmer et al. 2008; Law et al. 2009; Rau et al.

2009b) was designed to undertake a systematic exploration of the transient sky in the opti-

cal bands. One of the key projects of PTF is to build a complete inventory of transients in

the local Universe. PTF has a “Dynamic” cadence experiment which undertakes frequent

observations of fields, optimized for inclusion of galaxies in the local Universe. A description

of the design sensitivity is given elsewhere (Kulkarni & Kasliwal 2009b). Here, we report

on the discovery of PTF10fqs, a transient in this “gap” between novae and supernovae.

5.2 Discovery

On 2010 April 16.393 (UT dates are used throughout this paper), the Palomar Transient

Factory discovered an optical transient toward Messier 99 (M99; see Figure 5.1). Following

the PTF discovery naming sequence, this transient was dubbed PTF10fqs and reported via

an ATEL (Kasliwal & Kulkarni 2010).

M99 (NGC 4254)3, an Sc galaxy, is one of the brighter spiral members of the Virgo

1Unless explicitly noted, quoted magnitudes are in the R band.
2http://www.astro.caltech.edu/ptf
3http://seds.org/messier/m/m099.html
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cluster. The recession velocity of the galaxy is about 2400 km s−1. Over the past fifty years,

three supernovae have been discovered in this galaxy: SN1967H (Type II?, Fairall 1972),

SN1972Q (Type II; Barbon et al. 1973)4, and SN1986I (Type II; Pennypacker et al. 1989).

At discovery, the brightness of PTF10fqs was R = 20.0±0.2mag. There are no previous

detections in PTF data taken on and prior to April 10. If located in M99, the absolute

magnitude (for an assumed distance of 17Mpc; Russell 2002) corresponds to MR = −11.1

We concluded that the object could be (in decreasing order of probability) a foreground

variable star, a young supernova, or a transient in the “gap”. These possibilities can be

easily distinguished by spectroscopic observations.

Figure 5.1 The discovery image of PTF10fqs (obtained with the Palomar Oschin 48-inch telescope

on 2010 Apr 16.393). The transient is marked by a cross and located at α(J2000) = 12h18m50.16s

and δ(J2000) = +14◦26′39.2′′. With respect to the host-galaxy nucleus, the transient is offset by

8.1′′E and 99.9′′N.

4Curiously, the reported position of SN1972Q was only 3.6′′ from PTF10fqs. We did a careful registration

of the discovery image of SN1972Q (Barbon et al. 1973) and PTF 10fqs and find that the offset is actually

11.0′′ E,0.8′′ S.



66

5.3 Follow-Up Observations

5.3.1 Spectra

We triggered our Target-of-Opportunity (TOO) program on the 8-m Gemini-South tele-

scope. On 2010 April 18.227, the Gemini Observatory staff observed PTF10fqs with the

Gemini Multi-Object Spectrograph (GMOS; Hook et al. 2004). The parameters for the

observations were: R400 grating, order-blocking filter GG455 G039, and a 1.0′′ slit. Two

10-min integrations centered on 6700 and 6800 Å were obtained. The two observations al-

lowed for coverage of the gap between the chips. The package gemini gmos working in the

iraf framework was used to reduce the data. The spectrum is shown in Figure 5.2.
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Figure 5.2 Gemini GMOS spectrum of PTF10fqs (black) taken two days after discovery. The

wavelength coverage is continuous over the range 4600 to 8800 Å. The most prominent emission

feature is Hα. Plotted below for comparison, the spectrum of M85OT-2006-1 (red; Kulkarni et al.

2007)

The most prominent emission feature is an intermediate width (13 Å, 600 km s−1)5 Hα

line consistent with the recession velocity of the galaxy (2400 km s−1; see below). Hβ was

not detected. From this spectrum alone, we concluded that PTF10fqs is in M99 and the

5The velocity quoted here is corrected for instrumental resolution and is measured as the Gaussian Full

Width Half Maximum (GFWHM) of the emission line.
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Table 5.1. Log of Spectroscopic Observations

Date (UT 2010) MJD Exposure Facility Grating/Grism

Apr 18.23 55304.23 2× 600 s Gemini-S/GMOS 400

Apr 21.31 55307.31 2× 800 s HET/LRS 360

Apr 25.29 55311.29 2× 600 s HET/LRS 360

Apr 30.12 55316.12 2× 600 s HET/LRS 360

May 3.28 55319.28 2× 600 s HET/LRS 360

May 15.26 55331.26 3×600 s Keck I/LRIS 831

May 15.26 55331.26 1×2000 s Keck I/LRIS 300

May 15.31 55331.31 3×650 s Keck I/LRIS 600

intermediate line width made it unlikely to be a supernova. PTF10fqs appeared to be a

transient in the “gap,” and we initiated extensive multi-band follow-up observations.

We continued to monitor the spectral evolution with the Marcario Low-Resolution Spec-

trograph (LRS; Hill et al. 1998) on the Hobby Eberly Telescope6. We used the G1 grating,

with a 2′′ slit and a GG385 order-blocking filter, providing resolution R = λ/∆λ ≈ 360 over

4200–9200 Å. Data were reduced using the onedspec package in the iraf environment, with

cosmic-ray rejection via the la cosmic package (van Dokkum 2001), and with spectropho-

tometric corrections applied using standard-star observations (specifically, BD332642).

On May 15, we also obtained relatively higher resolution spectroscopic observations and

relatively better blue coverage with the Low Resolution Imaging Spectrograph (Oke et al.

1995) on the Keck I telescope. First, we used the 831/8200 grating centered on 7905 Å to

get higher resolution spectra of the Calcium lines. On the blue side, we used the 300/5000

grism to cover Ca H+K lines. For higher resolution covering the Balmer lines, we used the

600/7500 grating (centered on 7201 Å ) in conjunction with the 600/4000 grism.

The log of spectroscopic observations in given in Table 5.1. The spectral evolution is

shown in Figure 5.3.

6Director’s Discretionary Time, PI D. Fox
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Figure 5.3 Spectra of PTF10fqs at various epochs (phase in days is defined relative to

discovery epoch). Also shown are spectra of NGC300-OT (Bond et al. 2009), M85OT2006-

1 (Kulkarni et al. 2007) and SN2008S (Botticella et al. 2009). The wavelength has been

corrected for the recession velocity of each galaxy (z = 0.0024 for M85, z = 0.008 for M99,

z = 0.00048 for NGC300 and z = 0.00016 for NGC6946).
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5.3.2 Optical and Near-Infrared Imaging

Observations with the robotic Palomar 60-inch telescope (Cenko et al. 2006b) on April 20.4

confirmed that PTF10fqs was rising (r = 19.4 ± 0.1 mag) and red (g − r = 1.0 mag). We

show the photometric evolution in gri-bands in Figure 5.4 and Table 5.6. On April 27.2,

the light curve peaked at r = 18.9 ± 0.1 mag corresponding to Mr = −12.3 (correcting for

foreground Galactic extinction of E(B-V)=0.039; Schlegel et al. 1998b). Aperture photom-

etry was done after image subtraction using a custom modification of the CPM algorithm,

mkdifflc (Gal-Yam et al. 2004). Template images for subtraction and reference magnitudes

for zeropoint computation were taken from the Sloan Digital Sky Survey (Abazajian et al.

2009).

Near-infrared images were obtained with the Peters Automated Infrared Imaging Tele-

scope (PAIRITEL; Bloom et al. 2006a), and reduced by an automated reduction pipeline.

We lack sufficiently deep template images, which are free of light from PTF10fqs, to perform

reliable image subtraction. Thus, we measure the flux from the source in a small circular

aperture, removing the sky with a nearby background region, and adopt a systematic error

of 0.2 mag in the J and H bands and 0.3 mag in Ks band. The values reported in Table 5.6

have been calibrated against the 2MASS system (Cohen et al. 2003).

5.3.3 Radio Observations

We observed PTF10fqs with the EVLA on April 20.19–20.26 at central frequencies of 4.96

GHz and 8.46 GHz. We added together two adjacent 128 MHz subbands with full polariza-

tion to maximize continuum sensitivity. Amplitude and bandpass calibration was achieved

using a single observation of J1331+3030, and phase calibration was carried out every 10

min by switching between the target field and the point source J1239+0730. The visibility

data were calibrated and imaged in the AIPS package following standard practice.

A radio point source was not detected at the position of the transient. After removing

extended emission from the host galaxy, the 3σ limits for a point source are 93 µJy and 63

µJy at 4.96 GHz and 8.46 GHz, respectively. At the distance of M99, this corresponds to

Lν < 2.1 × 1025 erg s−1 Hz−1. Comparing with the compilation in Chevalier et al. (2006),

this upper limit is at the level of the faintest Type II-P (SN2004dj; Beswick et al. 2005)

and Type Ic (SN2002ap; Berger et al. 2002) supernovae. As noted by Berger et al. (2009),



70

0 20 40 60 80 100
Days from peak luminosity

22

21

20

19

18

M
ag

ni
tu

de

g
V

r/R
i/I

Figure 5.4 Multi-band light curve of PTF10fqs obtained with the Palomar 48-inch (squares)

and Palomar 60-inch (circles) telescopes. Upper limits are denoted by downward arrows.

Note that the evolution is relatively faster in the g-band compared to r-band. Also shown

for comparison are the V RI-band lightcurves of SN2008S (dotted; Botticella et al. 2009)

and NGC300-OT (dashed; Bond et al. 2009). The light curves are shifted vertically by a

constant (+3mag for SN2008S and +5.2mag for NGC300-OT) such that their R-band light

curves are at the same level as the r-band light curve of PTF10fqs.
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Table 5.2. Broadband Measurements of PTF10fqs

Date MJD Filter Magnitude/Flux ν ν Fν Facility

(UT 2010) (Hz) (erg cm−2 s−1)

Apr 20.23 55306.23 4.96 GHz <93 µJy 4.960× 109 4.613× 10−18 EVLA

Apr 20.23 55306.23 8.46 GHz <63 µJy 8.460× 109 5.330× 10−18 EVLA

Apr 20.466 55306.466 0.3–10 keV <4.6×10−4 cps 4.200× 1017 2.864× 10−15 Swift/XRT

Apr 24.646 55310.646 NUV (AB) >22.7mag 1.295× 1015 3.885× 10−14 GALEX

the nearby NGC300-OT was also not detected in the radio to deeper luminosity limits.

5.3.4 Ultraviolet Observations

We observed PTF10fqs with GALEX (Martin et al. 2005) on two consecutive orbits starting

at 2010 April 24.387 (total exposure of 2846 s). All images were reduced and coadded using

the standard GALEX pipeline and calibration (Morrissey et al. 2007).

To create a reference image, we coadded 22 images of M99 prior to 2005 April 2 (to-

tal exposure of 18571 s). Next, we subtracted the reference image from observations of

PTF10fqs (see Figure 5.6). No source is detected. We find a 3σ upper limit of NUV 22.7

AB mag in an aperture consistent with a GALEX point source (7.5′′ × 7.5′′).

To constrain the pre-explosion counterpart, we measured the limiting magnitude at

the position of PTF10fqs in the coadded reference image. The faintest detected object

consistent with being a point source within the galaxy had NUV = 20.1 AB mag. The 3σ

limit based on measuring the sky root-mean square (rms) is NUV > 21.8 AB mag.

5.3.5 X-Ray Observations

We observed PTF10fqs with Swift/XRT on April 20.466 for 2507.3 s and April 22.024 for

2623.5 s. No source is detected to a 3σ limiting count rate (assuming an 18′′ radius) of

4.6 × 10−4 counts s−1. Assuming a power-law model with a photon index of two, this

corresponds to a flux limit of 1.6× 10−14 erg cm−2 s−1.
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Figure 5.5 Observation of PTF10fqs (denoted by a plus sign) with the EVLA at 4.96GHz,

just four days after discovery. The gray-scale range is −40 to 1000 µJy per beam and the

size of the synthesized beam is shown at the bottom-left corner.

Figure 5.6 Observation of PTF10fqs with GALEX. Reference data are taken from 22 images

between 28 March 2005 and 2 April 2005 (left panel). Observations of PTF10fqs were taken

on 24 April 2010 (center panel). No source is detected in the difference image (right panel).
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5.4 Archival Data

5.4.1 Hubble Space Telescope (HST)

A query to the Hubble Legacy archive returned HST images of M99 in the F606W (2001),

F336W (2009), and F814W (2009) filters. We multidrizzled this data (PI Regan, Proposal

ID 11966) and registered our Gemini/GMOS acquisition image with the HST/WFPC2

images. Unfortunately, PTF10fqs is just off the edge of the chip for the F606W filter

image.

The total 1σ registration error, added in quadrature, was 0.59 pixels. The sources of

error are as follows: centroiding error (0.17 in x, 0.30 in y), registration error between the

Gemini image and HST/F814W image (0.19 in x, 0.44 in y) and registration error between

HST/F814W image and HST/F336W image (0.04 in x, 0.02 in y). Hence, in Figure 5.7 we

plot a 5σ radius of 3 pixels or 0.27′′.

No source is detected at the location of PTF10fqs. To estimate the limiting magnitude,

we ran sextractor and performed photometry following Holtzman et al. (1995). We find 3σ

limiting Vega magnitudes of I > 26.9 and U > 26 in the 1800 s and 6600 s exposures,

respectively.

5.4.2 Spitzer Space Telescope

M99 was part of the sample of the SIRTF Nearby Galaxies Survey (SINGS) galaxies

(Kennicutt et al. 2003). This program undertook IRAC and MIPS imaging in 2004–2005.

No point source is detected at the location of PTF10fqs (see Figure 5.8). We downloaded

IRAC images from the final data release of SINGS and MIPS images from the standard

Spitzer pipeline. Computed upper limits (see Table 5.3) assume a 2-pixel aperture radius

and sky-rms based on a 20 × 20 pixel box at the location.

5.4.3 Katzman Automatic Imaging Telescope

The 0.76m Katzman Automatic Imaging Telescope (KAIT7; Li et al. 2000; Filippenko et al.

2001) had extensively imaged M99 in the past decade — 113 images in the period 1999–

2010. We stacked the images in each season and find no point source at the location of

7http://astro.berkeley.edu/∼bait/kait.html
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Figure 5.7 HST/F814W and HST/F336W observations from 2009. Top panel: Zoomed-in

view (2.8′′× 2.6′′) to show the absence of a pre-explosion counterpart. This rules out red

supergiants fainter than MV = −3mag and blue supergiants fainter than MV = −4.3mag.

Bottom panel: Zoomed-out view (81.2′′× 82.1′′) to show registration stars. Stars used to

register the Gemini/R-band image with the HST/F814W image are denoted by triangles.

Stars used to register the HST/F814W image with the HST/F336W are denoted by squares.

Figure 5.8 Pre-explosion observations with Spitzer/IRAC. No source is found to be consis-

tent with PTF10fqs.
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Table 5.3. Progenitor constraints for PTF10fqs

Date Filter Magnitude/Flux Facility

2005 NUV (AB) >21.8mag GALEX

2009 F336W (Vega U) >26mag HST/WFPC2

2009 F814W (Vega I) >26.9mag HST/WFPC2

2004 3.6µm <5.3 µJy Spitzer/IRAC

2004 4.5µm <3.5 µJy Spitzer/IRAC

2004 5.8µm <51 µJy Spitzer/IRAC

2004 8.0µm <344 µJy Spitzer/IRAC

2004 23.68 µm <240 µJy Spitzer/MIPS

PTF10fqs. Limiting magnitudes for each season are summarized in Table 5.4.

5.4.4 DeepSky Imaging

DeepSky8 (Nugent 2009) also has imaging at the position of this field over the interval

2006–2008. No point source is detected in a yearly sum of these images (see Table 5.4).

5.5 Analysis

5.5.1 SED

We fit a blackbody spectrum to the optical and near-infrared fluxes of PTF10 fqs without

taking into account any local extinction. The best fit gives a lower limit on the temperature

of ∼ 3900K.

5.5.2 Spectral Modelling

We combined the four spectra obtained with HET (between +5days and +17 days). The

most prominent (narrow) features in the spectra of PTF10fqs are Hα, [Ca II], the Ca II

near-IR triplet, Na I D, and Hβ. The measured line fluxes and equivalent widths are sum-

marized in Table 5.5. The Hα FWHM is ≈ 930 km s−1 (taking into account the instrumental

8http://supernova.lbl.gov/∼nugent/deepsky.html.
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Table 5.4. Historical Optical Observations

Date Range Exposure Limiting Mag Facility

(UT) (seconds) (R band)

1998-12-27 – 1999-06-01 680.0 > 20.4 KAIT

1999-11-26 – 2000-06-07 567.0 > 20.4 KAIT

2001-04-11 – 2001-06-07 192.0 > 20.1 KAIT

2002-01-14 – 2002-06-08 486.0 > 20.4 KAIT

2003-01-15 – 2003-06-04 318.0 > 20.4 KAIT

2004-01-29 – 2004-06-16 392.0 > 20.3 KAIT

2004-12-25 – 2005-06-01 110.0 > 20.3 KAIT

2006-01-12 – 2006-05-18 665.7 > 22.2 DeepSky

2006-03-24 – 2006-05-18 78.0 > 20.4 KAIT

2007-01-04 – 2007-05-06 1749.9 > 22.4 DeepSky

2007-01-13 – 2007-06-04 178.0 > 20.4 KAIT

2007-12-22 – 2008-06-16 332.0 > 20.4 KAIT

2008-05-18 – 2008-05-18 241.2 > 20.7 DeepSky

2009-03-28 – 2009-04-27 64.0 > 20.3 KAIT

2010-02-11 – 2010-03-22 32.0 > 20.0 KAIT

Note. — All images in a season were stacked.
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Table 5.5. Spectral Features of PTF10fqs

Line Obs λ Flux Eq. Width

( Å ) (erg cm−2 s−1) Å

Hα 6621.2 1.0× 10−15
−19.9

Hβ 4907.3 1.3× 10−16
−3.7

Na I D 5939.0 −3.1× 10−16 6.4

[Ca II] 7355.8 2.9× 10−16
−6.1

[Ca II] 7387.2 1.8× 10−16
−3.7

Note. — Above line fluxes are measured on com-

bined HET spectra (phase between +5days and

+17 days).

resolution).

The Ca II near-IR triplet is of particular interest. The HET spectra appear to show a

flux excess longward of 8300 Å beyond that expected from a simple, low-order polynomial fit

to the continuum. Together with a possible broad flux deficit near 8300 Å, the overall effect

suggests a P-Cygni profile. If we fit three Gaussians, the Ca II near-IR triplet features are

broader than the [Ca II] doublet, and quite likely even broader than the narrow component

of the Hα profile. There is a surplus of flux at 8600 Å, which falls right between the

8498.02, 8542.09 Å pair and the more isolated 8662.14 Å line, such as one would expect

from an underlying broad feature.

We test this hypothesis further with SYNOW (Jeffery & Branch 1990) modelling. We

do not get a good fit to the overall shape of the spectrum with an extinguished blackbody

of any temperature (assuming standard dust). To fit the red end of the spectrum, we need

high temperature and extinction (consistent with the strong Na I D absorption). We find

that in addition to narrow emission from Ca II IR, there is also a likely underlying broad

component (see Figure 6.3). The width (FWHM) of this feature is ≈10,000 km s−1.

A caveat to this interpretation is that a similar broad feature is not seen in the Hα profile.

However, as noted below (§ 5.6.2), reinspection of the spectra of related transients shows



78

possible evidence of a similar broad feature. Thus, we cautiously accept the interpretation

that in addition to the low-velocity outflow seen in Hα, there is a higher velocity outflow in

this explosion.
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Figure 5.9 SYNOW fit to summed HET spectra of PTF10fqs. Note the broad, possibly P

Cygni, feature under the Ca II near-IR triplet.

5.6 What is PTF10fqs?

In a nutshell, PTF10fqs is a red transient with a peak luminosity of Mr = −12.3 and

a spectrum dominated by Hα, [Ca II], and Ca II emission. The width of the Hα line is

≈ 930 km s−1, and there is some evidence for a ≈ 10,000 km s−1 broad Ca II IR feature.

The peak absolute magnitude and the Hα line width of PTF10fqs are similar to those

seen in M85OT2006-1 (hereafter, M85-OT; Kulkarni et al. 2007), SN2008S (Prieto et al.

2008b; Smith et al. 2009), and NGC300-OT (Bond et al. 2009; Berger et al. 2009). How-

ever, there are some differences amongst these four sources. Thus, to aid a better classifi-

cation, we review the similarities and differences between these four sources.

5.6.1 The Light Curve

The light curves of all four transients (PTF 10fqs, SN2008S, NGC300-OT, and M85-OT)

were red and evolved slowly for the first couple of months. PTF10fqs had a well-sampled rise
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(Figure 5.4) — it rose by 1.1mag in r-band in 10.8 days. After maximum, PTF10fqs declined

slowly in r-band by 1mag in 68 days. Subsequently, it evolved more rapidly, declining by

the next 1.3mag in 16 days. PTF10fqs had g− r=1.0 at peak and declined relatively faster

in g-band (1mag in 40 days) than r-band. In comparison, SN2008S declined by 1mag in

51 days in R-band and 44 days in V -band. The epoch of maximum light is uncertain for

NGC300-OT due to lack of observations and is constrained to be anywhere between April

24 and May 15, 2008 (Bond et al. 2009). If we assume it to be April 27, the evolution in

R-band and I-band are similar to that for PTF10fqs (Figure 5.4).

5.6.2 The Spectrum

The spectral evolution of SN2008S (Botticella et al. 2009) and NGC300-OT (Berger et al.

2009) were very well studied as they were in very nearby galaxies. We took this opportunity

to reanalyze the spectrum of M85-OT reported by (Kulkarni et al. 2007)9.

Armed thus, we compare and contrast the spectral features of these four transients (see

Figure 5.10).

• The Hα profile of SN2008S showed a narrow component (unshocked circumstellar

material [CSM]; ≈ 250 km s−1), an intermediate component (shocked material be-

tween the ejecta and the CSM; ≈ 1000 km s−1 ), and a broad component (underlying

ejecta emission; ≈ 3000 km s−1). NGC 300-OT exhibited narrow (560 km s−1) and

intermediate-width components (1100 km s−1). M85-OT only had a narrow compo-

nent (350 km s−1). PTF10fqs shows an intermediate-width component (930 km s−1)

in the Hα emission line.

• SN2008S had an Hα/Hβ ratio that evolved from 4 to 10. NGC300-OT had a ratio

of 6, while M85-OT showed a ratio of 3.5. PTF10fqs has a ratio of 6.5. All events

show flux ratios higher than 3.1 (the expectation from Case B recombination). This

may be evidence for collisional excitation (Drake & Ulrich 1980).

9In addition to the features mentioned by Kulkarni et al. 2007, we can securely identify Ca II H&K and

see evidence of [Ca II] and the Ca II near-IR triplet. Furthermore, we can identify the lines previously

marked “unidentified”: 4115 Å is Hγ, 6428 Å is likely Fe II (multiplet 74), 6527 Å is likely Fe II (multiplets

40 and 92).
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Figure 5.10 Comparison of specific lines in spectra of PTF10fqs (black), M85-OT (red;

Kulkarni et al. 2007), SN2008s (blue; Botticella et al. 2009) and NGC300-OT (green;

Bond et al. 2009). From left to right: Panel 1 shows Ca II H&K in all three transients.

Panel 2 shows the extreme Na I D absorption in PTF10fqs. Panel 3 shows the similar Hα

widths in all three transients. Note the presence of Fe II in M85-OT. Panel 4 shows narrow

[Ca II] in all three transients. Panel 5 shows Ca II near-IR triplet. Note that in addition

to the narrow lines, there is possibly an underlying broad feature.
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• PTF10fqs, NGC300-OT and SN2008S exhibit three calcium features: Ca II H&K in

absorption, [Ca II] and Ca II near-IR triplet in emission. A reanalysis of M85-OT

shows Ca II H&K, as well as lower signal-to-noise ratio detections of both [Ca II] and

Ca II IR. Smith et al. 2009 show a similarity between the spectra of SN2008S and a

Galactic hypergiant (IRC+10420) and suggest that strong [Ca II] is due to destruction

of dust grains.

• As noted earlier (see also Figure 6.3), there is evidence for a broad feature around

8600 Å in the spectrum of PTF10fqs. Motivated by this finding, we reinspected the

spectra of previous transients and found that a similar broad feature may also be

present in the spectra of M85-OT and NGC300-OT.

• Narrow Fe II lines are visible in NGC300-OT and SN2008S. Reanalysis of M85-OT

spectra possibly shows Fe II(74) and Fe II (40, 92).

• For SN2008S, Na I D evolves from strong absorption at early times to emission at

very late times. This suggests a very dense CSM. O I λ7774 is also in emission at late

times. For NGC300-OT, Na I D has a much lower equivalent width at early times,

but it also evolves from absorption to emission. Neither Na I D nor O I are seen in

M85-OT, but there is possibly K I in emission. PTF10fqs has an equivalent width

of Na I D of 6.4, higher than SN2008S (2.3–4.4) and NGC300-OT (1.0–2.1). The

equivalent width of Na I D is too high to apply a standard correlation to estimate

extinction.

5.6.3 The Pre-Explosion Counterpart

We plot the upper limits on the pre-explosion counterpart for PTF10fqs in Figure 5.11.

The most constraining limits are in the optical. Following the Geneva stellar evolution

tracks (Lejeune & Schaerer 2001) for unenshrouded stars, the luminosity limit of MI > −4.3

corresponds to a progenitor mass <4M⊙. If there was extinction of, say 1.5mag, this would

change the limit to <7M⊙. None of SN2008S, NGC300-OT, M85-OT, and PTF10fqs have

an optical counterpart in deep, pre-explosion optical images. The limits in all cases are

deep enough to at least rule out red supergiants and blue supergiants.
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Figure 5.11 Spectral energy distribution (mid-IR to UV) constraints on the pre-explosion

counterpart of PTF10fqs. Upper limits are denoted by downward arrows.
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Figure 5.12 Pre-explosion detections (circles) or upper limits (downward triangles) from

Spitzer for PTF10fqs, SN2008S, NGC300-OT, and M85-OT. The non-detection of a pro-

genitor for PTF10fqs and M85-OT does not rule out a progenitor of luminosity comparable

to that detected for NGC300-OT and SN2008S.
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For both SN2008S and NGC300-OT, an extremely red and luminous mid-infrared

pre-explosion counterpart is seen (Prieto et al. 2008b; Thompson et al. 2009). Recently,

Khan et al. (2010) showed that such progenitors are as rare as 1 per galaxy (and possibly

associated with a very short-lived phase of many massive stars). Thus, both of these tran-

sients can be reasonably associated with massive stars. Unfortunately, the large distance

to M85 and M99 means that the pre-explosion Spitzer limits on M85-OT and PTF10fqs

are not deep enough by a factor of few to constrain their progenitors to similar depths (see

Figure 5.12).

5.6.4 The Large-Scale Environment

M85-OT is located in the lenticular galaxy M85 (also in the Virgo cluster). Fortunately,

this galaxy was observed with HST for the ACS Virgo Cluster Survey as well as for a

GO program. The transient is not associated with any star-forming region and the absolute

magnitude of the progenitor is fainter than Mg ≈ −4 (< 7M⊙ not correcting for extinction;

Ofek et al. 2008). Thus, a massive-star origin is quite unlikely.

In contrast, SN2008S, NGC300-OT, and PTF10fqs occurred in star-forming galax-

ies. It may be worth noting here that three supernovae (all of the core-collapse variety)

have previously been discovered in the host galaxy of PTF10fqs. It is perhaps of some

significance that eight supernovae (six core-collapse, two unclassified) were discovered in

NGC6946 in addition to SN2008S. Only one supernova (of Type Ia) has been discovered

in NGC300. Small-number statistics and discovery bias (incompleteness from variety of

different searches) notwithstanding, we make the suggestion that galaxies with a high su-

pernova rate preferentially produce luminous red novae. If this suggestion is correct, then it

would be worth the effort to systematically maintain close vigilance on the nearest galaxies

having large supernova rates.

Kulkarni et al. 2007 suggested that V838Mon, V4332 Sgr and M31 RV may also be

luminous, red novae. We note here that the two Galactic sources are located in star-

forming regions. Specifically, V838Mon is in a young (25Myr) star cluster and may even

have a B3 companion (Afşar & Bond 2007). V4332 Sgr (Martini et al. 1999) is located

towards the inner Galaxy (in Sagittarius). On the other hand, M31 RV is located in the

bulge of M31. HST observations (undertaken with WFPC2 in parallel mode) taken about
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a decade ago show that the immediate environs of M31-RV are typical bulge-population

stars (Bond & Siegel 2006). No unusual remnant star is seen at the astrometric position of

M31 RV, nor any evidence of a light echo (consistent with the absence of dense circumstellar

or interstellar gas that is essential to form echoes). Separately, there is no evidence for any

luminous outbursts in this area in the period 1942–1993 (Boschi & Munari 2004). Thus,

M31 RV appears to have been a cataclysmic event in the bulge of M31.

5.7 Conclusion

PTF10fqs is the fourth member of a class of extragalactic transients10 which possess a

peak luminosity between that of novae and supernovae, and have spectral and photometric

evolution that bear no resemblance to either supernovae or novae. The other members of

this class are M85-OT, NGC300-OT and SN2008S.

NGC300-OT and SN2008S are remarkable for their very bright mid-infrared progeni-

tors. Though sensitive pre-explosion observations of M85-OT and PTF10fqs do exist, the

large distance to the Virgo Cluster (17Mpc) relative to that of NGC 300 (1.9Mpc) and

NGC6946 (5.7Mpc) results in weak constraints on the luminosity of any pre-explosion star.

PTF10fqs, NGC300-OT, and SN2008S occurred in star-forming regions whereas M85-OT

was in the bulge. Prima facie, this group of explosive events can be divided into a disk and

a bulge group.

The discovery of PTF10fqs in itself cannot address whether the two groups of luminous,

red novae are one and the same. The proposed models to explain this group are diverse:

electron capture within an extreme asymptotic giant branch (AGB) star, common-envelope

phase (stellar merger), inspiral of a giant planet into the envelope of an aging parent star,

a most peculiar nova, and a most peculiar supernova.

The possible evidence of the broad feature centered around the Ca II near-IR triplet

with an inferred velocity spread of 10,000 km s−1 may be an important clue. It would mean

that these events possess both a low- and a high-velocity outflow. By comparison with

other astronomical sources, one can envisage a high-velocity polar outflow and a slower

equatorial outflow (but with a larger mass). To this end, continued sensitive spectroscopy

of PTF10fqs (and of course other such future events) would be very valuable.

10Henceforth we use the term “luminous red novae” as a functional short name for such events.
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The “Transients in the Local Universe” key project of the Palomar Transient Factory

is designed to systematically unveil events in the gap between novae and supernovae. It

surveys ≈ 20,000 nearby galaxies (d < 200Mpc) yearly at 1-day cadence and a depth of

R < 21 mag. (If the maximum luminosity of this class is −14 mag, then we would be

sensitive to events out to 100Mpc.) Furthermore, Spitzer has a growing archive of deep

images of nearby galaxies (e.g., SINGS, Kennicutt et al. 2003; LVL, Dale et al. 2009; and

S4G, Sheth et al. 2010), and WISE (Wright et al. 2010) has an ongoing all-sky survey in

the mid-IR. This will allow us to probe deeper in search of the pre-explosion counterpart

and possibly present a new channel for discovery of luminous red novae. The discovery of

PTF10fqs is only the harbinger of the uncovering of a large sample of such transients to

unveil the nature of this new class of explosions.

Acknowledgments.

M.M.K. thanks the Gordon and Betty Moore Foundation for a Hale Fellowship in sup-

port of graduate study. The Weizmann Institute PTF participation is supported in part

by the Israel Science Foundation via grants to AGY. The Weizmann-Caltech collaborative

PTF effort is supported by the US-Israel Binational Science Foundation. AGY and MS

are jointly supported by the “making connections” Weizmann-UK program. AGY further

acknowledges support by a Marie Curie IRG fellowship and the Peter and Patricia Gru-

ber Award, as well as funding by the Benoziyo Center for Astrophysics and the Yeda-Sela

center at the Weizmann Institute. A.V.F.’s group and KAIT are supported by National

Science Foundation (NSF) grant AST-0908886, the Sylvia & Jim Katzman Foundation, the

Richard & Rhoda Goldman Fund, Gary and Cynthia Bengier, and the TABASGO Founda-

tion; additional funding was provided by NASA through Spitzer grant 1322321, as well as

HST grant AR-11248 from the Space Telescope Science Institute, which is operated by As-

sociated Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

J.S.B. and his group are partially funded by a DOE SciDAC grant. E.O.O. and D.P. are

supported by the Einstein fellowship. L.B. is supported by the National Science Foundation

under grants PHY 05-51164 and AST 07-07633.

We are grateful to the staff of the Gemini Observatory for their promptness and high

efficiency in attending to our TOO request. Likewise, we thank the staff of the Very Large

Array and the Hobby Eberly Telescope. We acknowledge the following internet repositories:



86

SEDS (Messier Objects) and GOLDMine (Virgo Cluster). Finally, as always, we are grateful

to the librarians who maintain the ADS, the NED, and SIMBAD data systems.

The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at

Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universität

München, and Georg-August-Universität Göttingen. The HET is named in honor of its prin-

cipal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low-Resolution

Spectrograph is named for Mike Marcario of High Lonesome Optics, who fabricated several

optics for the instrument but died before its completion; it is a joint project of the Hobby-

Eberly Telescope partnership and the Instituto de Astronomı́a de la Universidad Nacional
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Table 5.6: Optical and Near-Infrared Light Curve

MJD Filter Magnitude Facility

55295.2 Mould-R >20.94 Palomar 48-in

55296.5 Mould-R >19.28 Palomar 48-in

55302.4 Mould-R 19.99 ± 0.19 Palomar 48-in

55313.2 Mould-R 19.27 ± 0.11 Palomar 48-in

55316.3 Mould-R 19.28 ± 0.11 Palomar 48-in

55317.3 Mould-R 19.30 ± 0.13 Palomar 48-in

55319.2 Mould-R 19.20 ± 0.10 Palomar 48-in

55320.2 Mould-R 19.42 ± 0.12 Palomar 48-in

55321.3 Mould-R 19.41 ± 0.12 Palomar 48-in

55323.2 Mould-R 19.39 ± 0.13 Palomar 48-in

55324.2 Mould-R 19.53 ± 0.15 Palomar 48-in

55329.2 Mould-R 19.55 ± 0.18 Palomar 48-in

55330.2 Mould-R 19.67 ± 0.20 Palomar 48-in

55331.2 Mould-R 19.74 ± 0.16 Palomar 48-in

55332.2 Mould-R 19.68 ± 0.11 Palomar 48-in

55333.2 Mould-R 19.65 ± 0.15 Palomar 48-in

55336.3 Mould-R 19.60 ± 0.12 Palomar 48-in

55337.3 Mould-R 19.61 ± 0.17 Palomar 48-in

55343.2 Mould-R 19.81 ± 0.12 Palomar 48-in

55346.2 Mould-R 19.66 ± 0.13 Palomar 48-in

55347.2 Mould-R 19.79 ± 0.17 Palomar 48-in

55348.2 Mould-R 19.66 ± 0.13 Palomar 48-in

55349.3 Mould-R 19.90 ± 0.19 Palomar 48-in

55351.2 Mould-R 19.78 ± 0.16 Palomar 48-in

55352.2 Mould-R 19.63 ± 0.12 Palomar 48-in

55353.2 Mould-R 19.83 ± 0.21 Palomar 48-in

Continued on Next Page. . .
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Table 5.6 – Continued

MJD Filter Magnitude Facility

55355.2 Mould-R 19.76 ± 0.16 Palomar 48-in

55356.2 Mould-R 19.69 ± 0.16 Palomar 48-in

55361.2 Mould-R 19.82 ± 0.16 Palomar 48-in

55362.2 Mould-R 19.80 ± 0.16 Palomar 48-in

55363.2 Mould-R 19.66 ± 0.16 Palomar 48-in

55364.2 Mould-R 19.84 ± 0.15 Palomar 48-in

55368.2 Mould-R 19.95 ± 0.14 Palomar 48-in

55371.2 Mould-R 19.93 ± 0.23 Palomar 48-in

55372.2 Mould-R 20.10 ± 0.16 Palomar 48-in

55373.2 Mould-R 20.15 ± 0.19 Palomar 48-in

55375.2 Mould-R 19.97 ± 0.17 Palomar 48-in

55377.2 Mould-R 20.00 ± 0.24 Palomar 48-in

55379.2 Mould-R 19.87 ± 0.10 Palomar 48-in

55304.4 r 19.85 ± 0.12 Palomar 60-in

55306.3 r 19.40 ± 0.05 Palomar 60-in

55310.3 r 19.29 ± 0.03 Palomar 60-in

55312.1 r 19.41 ± 0.03 Palomar 60-in

55313.2 r 18.87 ± 0.05 Palomar 60-in

55314.2 r 18.94 ± 0.17 Palomar 60-in

55316.3 r 19.16 ± 0.05 Palomar 60-in

55317.3 r 19.30 ± 0.05 Palomar 60-in

55319.2 r 19.32 ± 0.04 Palomar 60-in

55320.2 r 19.25 ± 0.01 Palomar 60-in

55321.2 r 19.33 ± 0.02 Palomar 60-in

55322.3 r 19.40 ± 0.02 Palomar 60-in

55323.3 r 19.55 ± 0.04 Palomar 60-in

55324.3 r 19.47 ± 0.02 Palomar 60-in

Continued on Next Page. . .
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Table 5.6 – Continued

MJD Filter Magnitude Facility

55341.3 r 19.61 ± 0.11 Palomar 60-in

55343.2 r 19.69 ± 0.06 Palomar 60-in

55347.3 r 19.80 ± 0.04 Palomar 60-in

55348.2 r 19.71 ± 0.01 Palomar 60-in

55350.2 r 19.76 ± 0.03 Palomar 60-in

55352.3 r 19.65 ± 0.03 Palomar 60-in

55354.2 r 19.80 ± 0.06 Palomar 60-in

55356.3 r 19.75 ± 0.08 Palomar 60-in

55357.3 r 19.68 ± 0.08 Palomar 60-in

55363.2 r 19.81 ± 0.03 Palomar 60-in

55368.3 r 20.01 ± 0.12 Palomar 60-in

55372.2 r 19.92 ± 0.03 Palomar 60-in

55381.2 r 19.90 ± 0.08 Palomar 60-in

55391.2 r 20.35 ± 0.05 Palomar 60-in

55406.2 r 21.26 ± 0.13 Palomar 60-in

55407.2 r 21.22 ± 0.14 Palomar 60-in

55306.3 g 20.32 ± 0.18 Palomar 60-in

55310.3 g 20.09 ± 0.05 Palomar 60-in

55313.2 g 19.91 ± 0.09 Palomar 60-in

55317.3 g 20.08 ± 0.06 Palomar 60-in

55319.2 g 20.00 ± 0.06 Palomar 60-in

55320.2 g 20.25 ± 0.10 Palomar 60-in

55321.2 g 20.19 ± 0.03 Palomar 60-in

55322.3 g 20.16 ± 0.08 Palomar 60-in

55323.3 g 20.23 ± 0.04 Palomar 60-in

55324.3 g 20.20 ± 0.02 Palomar 60-in

55341.3 g 20.52 ± 0.11 Palomar 60-in

Continued on Next Page. . .
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Table 5.6 – Continued

MJD Filter Magnitude Facility

55348.2 g 20.70 ± 0.07 Palomar 60-in

55350.2 g 20.66 ± 0.07 Palomar 60-in

55351.3 g 20.78 ± 0.11 Palomar 60-in

55352.3 g 20.80 ± 0.11 Palomar 60-in

55353.2 g 20.88 ± 0.09 Palomar 60-in

55354.2 g 21.01 ± 0.14 Palomar 60-in

55356.3 g 21.25 ± 0.25 Palomar 60-in

55304.4 i 19.32 ± 0.11 Palomar 60-in

55306.3 i 18.94 ± 0.07 Palomar 60-in

55310.3 i 18.98 ± 0.03 Palomar 60-in

55312.2 i 19.06 ± 0.04 Palomar 60-in

55313.2 i 18.98 ± 0.09 Palomar 60-in

55317.3 i 19.03 ± 0.06 Palomar 60-in

55319.2 i 19.02 ± 0.07 Palomar 60-in

55320.2 i 19.04 ± 0.03 Palomar 60-in

55321.2 i 19.13 ± 0.03 Palomar 60-in

55322.3 i 19.02 ± 0.04 Palomar 60-in

55323.3 i 19.14 ± 0.03 Palomar 60-in

55324.2 i 19.21 ± 0.04 Palomar 60-in

55341.3 i 19.21 ± 0.09 Palomar 60-in

55343.2 i 19.20 ± 0.02 Palomar 60-in

55349.2 i 19.33 ± 0.02 Palomar 60-in

55351.3 i 19.30 ± 0.03 Palomar 60-in

55353.2 i 19.29 ± 0.05 Palomar 60-in

55354.2 i 19.31 ± 0.03 Palomar 60-in

55356.3 i 19.23 ± 0.16 Palomar 60-in

55363.2 i 19.40 ± 0.05 Palomar 60-in

Continued on Next Page. . .
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Table 5.6 – Continued

MJD Filter Magnitude Facility

55368.3 i 19.41 ± 0.05 Palomar 60-in

55372.2 i 19.43 ± 0.07 Palomar 60-in

55381.2 i 19.55 ± 0.06 Palomar 60-in

55391.2 i 19.64 ± 0.06 Palomar 60-in

55406.2 i 20.38 ± 0.13 Palomar 60-in

55307.2 J 18.14 ± 0.29 PAIRITEL

55315.2 J 18.37 ± 0.39 PAIRITEL

55317.2 J 17.89 ± 0.30 PAIRITEL

55319.2 J 17.86 ± 0.26 PAIRITEL

55321.2 J 17.94 ± 0.24 PAIRITEL

55322.2 J 18.38 ± 0.25 PAIRITEL

55324.2 J 17.88 ± 0.21 PAIRITEL

55325.2 J 17.55 ± 0.32 PAIRITEL

55327.2 J 17.86 ± 0.25 PAIRITEL

55331.2 J 17.25 ± 0.18 PAIRITEL

55333.2 J 17.82 ± 0.24 PAIRITEL

55369.2 J 17.78 ± 0.31 PAIRITEL

55307.2 H 17.35 ± 0.21 PAIRITEL

55315.2 H 17.37 ± 0.27 PAIRITEL

55317.2 H 17.14 ± 0.22 PAIRITEL

55319.2 H 16.81 ± 0.27 PAIRITEL

55321.2 H 17.75 ± 0.18 PAIRITEL

55322.2 H 17.25 ± 0.16 PAIRITEL

55324.2 H 17.22 ± 0.20 PAIRITEL

55325.2 H 17.19 ± 0.30 PAIRITEL

55327.2 H 17.02 ± 0.20 PAIRITEL

55331.2 H 16.97 ± 0.32 PAIRITEL

Continued on Next Page. . .
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Table 5.6 – Continued

MJD Filter Magnitude Facility

55333.2 H 17.07 ± 0.29 PAIRITEL

55369.2 H 17.22 ± 0.22 PAIRITEL

55307.2 K 16.17 ± 0.18 PAIRITEL

55315.2 K 16.56 ± 0.31 PAIRITEL

55317.2 K 16.84 ± 0.19 PAIRITEL

55319.2 K 16.90 ± 0.25 PAIRITEL

55321.2 K 16.84 ± 0.40 PAIRITEL

55322.2 K 16.69 ± 0.21 PAIRITEL

55324.2 K 16.29 ± 0.15 PAIRITEL

55325.2 K 16.73 ± 0.18 PAIRITEL

55327.2 K 16.65 ± 0.22 PAIRITEL

55331.2 K >15.80 PAIRITEL

55333.2 K >16.60 PAIRITEL

55369.2 K >16.36 PAIRITEL
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Abstract

We present the discovery, photometric and spectroscopic follow-up observations of SN2010X

(PTF10bhp). This supernova decays exponentially with τd =5days, and rivals the cur-

rent recordholder in speed, SN2002bj. SN2010X peaks at Mr = −17mag and has mean

velocities of 10,000 km s−1. Our light curve modeling suggests a radioactivity powered

event and an ejecta mass of 0.16 M⊙. If powered by Nickel, we show that the Nickel mass

must be very small (≈ 0.02 M⊙) and that the supernova quickly becomes optically thin to

γ-rays. Our spectral modeling suggests that SN2010X and SN2002bj have similar chemical

compositions and that one of Aluminum or Helium is present. If Aluminum is present, we

speculate that this may be an accretion induced collapse of an O-Ne-Mg white dwarf. If

Helium is present, all observables of SN2010X are consistent with being a thermonuclear

Helium shell detonation on a white dwarf, a “.Ia” explosion. With the 1-day dynamic-

cadence experiment on the Palomar Transient Factory, we expect to annually discover a

few such events.
∗A version of this chapter is published with the title “Rapidly decaying supernova 2010X: a candidate “.Ia”

explosion” in The Astrophysical Journal Letters, 2010, vol. 683, L29–L32, and is reproduced by permission

of the AAS.
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6.1 Introduction

Our present knowledge of cosmic explosions is arguably biased by the searches themselves.

In particular, the cadence and depth of many supernovae searches are designed to efficiently

discover supernovae of type Ia (SNe Ia). A repeat visit to the sky on timescales of five days

maximizes sky coverage and is still sufficient to catch SNe Ia on the rise. The brilliance of

these events, peak absolute visual magnitude of −19, sets the sensitivity of the searches.

Conversely, fainter events and those with a shorter characteristic lifetime are likely to be

missed in such searches.

To illustrate the unexplored nature of this phase space, we plot the luminosity of op-

tical transients versus their characteristic timescale (Figure 6.1). SNe Ia are confined to a

narrow band (Phillips 1993) with decay timescales ranging from twelve days to three weeks.

Classical novae span a large range of timescales albeit at considerably lower luminosities.

Figure 6.1 brings two white-spaces to attention: the wide “gap” in luminosity between

novae and supernovae, and the apparent paucity of luminous events on short timescales.

Next, we discuss currently known exemplars of “faint” (i.e., lower luminosity than

SNe Ia) and “fast” (i.e., faster than SN2007ax) transients. SN2005E occurred in the

halo of its host galaxy and has been proposed as a Helium detonation on a binary white

dwarf (Perets et al. 2010b). SN2005cz has been proposed to have a massive star origin

(Kawabata et al. 2010). SN2008ha is also being widely debated both as a deflagration of a

white dwarf (Foley et al. 2009b,a) and core-collapse of a massive star (Valenti et al. 2009).

Until recently, the fastest event known was SN2002bj (Poznanski et al. 2010). It decayed

by one magnitude in five days and was quite spectroscopically peculiar. The origin of this

event is not yet clear.

The Palomar Transient Factory1 (PTF) was motivated in great measure to system-

atically explore the phase space for fast and faint explosive transients (Law et al. 2009;

Rau et al. 2009b). Here, we present the discovery of a fast event, SN2010X (PTF10bhp).

1http://www.astro.caltech.edu/ptf
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Figure 6.1 Top: The phase space of cosmic explosive transients. The color for each event represents the color

at peak brightness. The band to the top right denotes supernovae of type Ia. The fastest such event is SN2007ax

(Kasliwal et al. 2008j). Classical novae occupy a band between −6 and −10 magnitude. Note that the only two

transients with a timescale shorter than ten days are SN 2010X (PTF 10bhp) and SN 2002bj. Bottom: The multi-

band optical light curve of SN 2010X (colored circles; green is g-band, red is r-band, orange is i-band). Three white

light measurements have been calibrated to r-band and denoted by red circles with blue outline. Downward arrows

represent upper limits. All light curves are normalized and shifted so that peak magnitude is zero and the time at

peak is set to zero. For SN 2010X the epoch of maximum light is at MJD of 55239.5. The fast evolution of SN 2010X

is compared to the current recordholder for fast supernovae, SN2002bj (gray triangles; r-band; Poznanski et al. 2010).

Also shown is a prototypical “fast” Type Ic supernova, SN1994I (dashed line; Richmond et al. 1996) and templates 2

of the fast Type Ia SN1991bg and slow Type Ia SN1991T (Nugent et al. 2002). Note the rapid rise and the spectacular

decay of SN 2010X and SN 2002bj relative to the other Type I exemplars.
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6.2 Discovery

On UT 2010 February 7.07, D. Rich of Hampden, Maine, discovered a transient in the galaxy

NGC1573A at RA(J2000)=04h48m27.7s and Dec(J2000)=+73◦28′13′′. The discovery was

confirmed by P. Burke of Pittsfield, Maine, upon which a notification was issued (CBET

2166; Rich & Burke 2010) and the transient dubbed SN2010X. On UT 2010 February 19.13,

the Palomar Transient Factory independently detected this same transient and the pipeline

assigned the name, PTF10bhp. PTF had previously undertaken observations of this field

(as a part of the dynamic cadence experiment) on January 11, 17 and 25 but with no

detection.

6.3 Optical Light Curve

Energized by the apparent rapid fading, we initiated follow-up observations. The photomet-

ric observations from the 2-m Faulkes North Telescope (FTN) of the Las Cumbres Observa-

tory Global Telescope (LCOGT), PTF, the Palomar Hale 200-inch telescope (P200), as well

as white light observations provided by our amateur astronomer colleagues are summarized

in Figure 6.1.

SN2010X is located close to the nucleus of its host galaxy (4.4′′ E, 6.0′′ N) and as such

galaxy light subtraction is critical to produce reliable photometry. The images were sub-

tracted from a template image using the software hotpants and wcsremap to measure a

convolution kernel and align the images respectively (both codes supplied by A. Becker3).

Aperture photometry was performed on each of these in a self-consistent manner using

the same set of 22 calibration stars. Conversions from USNO-B1 magnitudes to SDSS gri

magnitudes were done adopting Jordi et al. (2006). The resulting light curve is plotted in

Figure 6.1.

Overplotting SN2002bj, we find that light curves of the two supernovae are remarkably

similar. Linearly fitting all the r-band detections post maximum light, we measure that

SN2010X decayed by 0.23± 0.01 mag day−1. The corresponding exponential timescale (in

the r-band) is τd = 4.7± 0.2 days.

The foreground Galactic extinction along the line of sight is E(B−V )=0.146 or Ar=0.4

3http://www.astro.washington.edu/users/becker/c software.html
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(Schlegel et al. 1998b). The redshift of NGC 1573A is 0.015. Assuming standard cosmology

(and h0=0.72), we adopt a distance of 62.5Mpc and a distance modulus of 34.0. Thus, the

peak absolute magnitude of SN2010X is Mr ≈ −17.0mag, 1.5mag less luminous than

SN2002bj.

6.4 Spectroscopic Follow-Up

On February 8 and 9, the first spectra (Figure 6.2) to classify the nature of this transient

were taken with CCDS on the 2.4m Hiltner telescope of the MDM observatory (CBET

2167, Milisavljevic & Fesen 2010). Comparison with a library of supernova spectra using

SNID (Blondin & Tonry 2007) showed resemblance to the Type Ic supernovae SN1994I

and SN2004aw a few days before maximum light. Further observations (Figure 6.2) were

undertaken on Gemini-North/GMOS (Feb 23), Keck I/LRIS (Mar 7) and the Hale 200-

inch/DBSP (Mar 18) telescopes. No perfect matches to Ic (or Ia, Ib) templates were found

for these spectra. The velocity evolved from 12000 km s−1 before maximum to 9000 km s−1

at late-time.

We used SYNOW (Jeffery & Branch 1990) to infer elements in the spectra of SN2010X

(Figure 6.3). The most prominent identifications are oxygen (O I lines), Calcium (both

Ca II IR triplet and Ca II H+K on the blue side), Carbon (C II lines), Titanium (Ti II)

and Chromium (Cr II). Ti II and Cr II explain the broad blue features and adding Fe II

improves the fit slightly. There is also some evidence for Mg I albeit based on single line.

The presence of Helium (He I), Sodium (Na D) and Aluminum (Al II) is less clear and

we illustrate this dilemma in the inset of Figure 6.3. He I has three relevant lines: 5876 Å ,

6678 Å and 7065 Å . The absorption feature around 5700 Å can be explained by both He I

as well as Na D. The absorption feature around 6850 Å can be explained by Al II or He I.

Since the central He I line is not prominent, SYNOW suggests that the combination of Na

D and Al II is a better fit. However, Branch (2003) discusses that this central He I line is

a singlet transition and this may both be suppressed and blueshifted in non-LTE relative

to the other two He I triplet transitions. Therefore, we cannot conclusively say whether or

not Helium is present in SN2010X.

Comparing the spectra, SN2002bj has substantially lower velocities (4000 km s−1 at

+7d vs. 10,000 km s−1 at +10d) and a bluer continuum (g − r=0.2 at +12d vs. g − r=1.2
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Figure 6.3 SYNOW fit to the Keck spectrum (+23 days) of SN2010X. Lines contributed by

each ion are shown. Fits with (purple) and without (red) Iron are overplotted on the data

(blue). Top Panel: The dilemma of whether SN2010X has Helium or a combination of

Sodium and Aluminum. The vertical dashed lines show Helium at 9500 km s−1. In non-

LTE, the singlet transition of λ6678 may be suppressed relative to the λ7065 and λ5876

triplet transition Helium lines.



101

at +23d) than SN2010X. Consistent with the SYNOW fit shown in Poznanski et al. 2010,

the elements in common between the two supernovae are O I, C II and Mg II. The primary

difference is the presence of Ca II in SN2010X and presence of S II in SN2002bj. We re-fit

the spectrum of SN2002bj with the same elements as in SN2010X. We find that the presence

of Al II vs. He I is just as ambiguous for SN2002bj as SN2010X. Similar to SN2010X,

including Fe II improves the fit but the presence of Fe-group elements in SN2002bj is not

conclusive.

6.5 Modeling the Light Curve

The excellent match between the normalized light curves of SN2010X and SN2002bj (see

Figure 6.1) suggests that these two SNe belong to the same class of explosions. Combin-

ing the two data sets allows a robust determination of the rise time4 (τr ≈ 6 d) and the

subsequent exponential decay (τd ≈ 5 d).

The peak bolometric luminosity of SN2010X is Lpeak = 1042 erg s−1. While the expan-

sion speed varies from 12,000 km s−1 at early times to 9,000 kms−1 at late times, we accept

vs ≈ 10, 000 km s−1 as a representative value.

The rise time in an explosion is the geometric mean of the initial photon diffusion

timescale and the initial hydrodynamic time scale5. Thus, τr
2 ∝ κMej/vs where κ is the

opacity. Assuming that the mean opacity of SN2010X is the same as that for SNe Ia

events, (for which, following Hayden et al. 2010, we adopt the following: Mej ≈ 1.4M⊙,

vs = 109 cm s−1 and τr ≈ 17.5 d), we obtain Mej ≈ 0.16M⊙. This gives an explosion energy,

E0 = 1/2Mejv
2
s ≈ 1.7 × 1050 erg.

Next, we investigate a physical model that satisfactorily accounts for the rise time, the

decay time, the peak luminosity and the expansion velocity.

6.5.1 Pure Explosion

The simplest model is an explosion in which all the explosive energy (E0) is deposited in-

stantaneously into the ejecta. The peak luminosity is then E0/td(0) where td(0) ∝ κMej/R0

is the initial photon diffusion time; here, R0 is the radius of the progenitor. Following peak

4time from explosion to peak brightness
5The derivation can be found in the textbooks, Arnett 1996 and Padmanabhan 2001.
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luminosity, the decay is rapid: log(L) ∝ −(t/τr)
2. The virtue of this model is that one can

obtain an arbitrarily rapid rate of decay since, over any limited stretch of time, the light

curve can be approximated by a linear decay with the desired value for the slope.

For SN2010X, we find R0 ∼ 4× 1012 cm. The large inferred radius would make sense if

the progenitor had an envelope (as in type II supernovae). The absence of hydrogen at any

phase of the supernova (see § 6.4) argues strongly against this model. Hence, we reject this

hypothesis.

6.5.2 Radioactivity Powered Explosion

The next level of models is that developed for SNe Ia explosions, where the peak luminosity

and subsequent decay is governed by radioactive material present in the ejecta. In this

model, expansion decreases the store of internal energy whereas radioactivity increases it.

If the photon diffusion time-scale is long, most of the radioactive energy goes into expansion.

Once the diffusion time-scale becomes smaller than the expansion time-scale, the light curve

tracks the radioactive luminosity (Arnett 1982), provided that there is sufficient optical

depth for the γ-rays emitted during radioactive decay to undergo multiple scatterings and

lose their energy to electrons.

The primary source of luminosity in a SN Ia model is the heat provided by γ-rays emitted

as 56Ni decays to 56Co and then to 56Fe. In SNe Ia, the column density of the ejecta is thick

enough to trap the γ-rays and successive Compton scatterings extract energy from the γ-

rays (at least for the first month). However, given the small ejecta mass for SN2010X,

attention has to be paid to the possibility that γ-rays from decaying nuclei may escape

without depositing their energy into the ejecta.

The electron (Thompson) optical depth is:

τe = neRσT =
3

4π

Mej

mp

Z

A

σT
R2

∼ 9

(

Mej

0.16M⊙

)(

t

15 day

)−2

(6.1)

where Z is the atomic number, A is the mass number, mp is mass of proton, σT is the

Thompson cross-section and R ∼ 6(t/day)AU is the radius at time t.

Thus, there appears to be sufficient optical depth at the epoch of peak luminosity to trap
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most of the γ-rays. Thus, for SN2010X, the peak luminosity of 1042 erg s−1 corresponds to

56Ni mass of about 0.02M⊙ — a very small amount by the standards of most supernovae.

For SN2002bj, the peak luminosity was 1043 erg s−1 (Poznanski et al. 2010) and the inferred

56Ni mass was correspondingly larger, 0.2M⊙.

Next, we use a fitting formula (as given in Kulkarni 2005; Equation 47) to estimate

the fraction of γ-rays which are effectively absorbed inside the ejecta, η(τe). The kinetic

energy of positrons (3.5% of LCo; Sollerman et al. 2002) dominates by day 51. Hence, the

radiated luminosity, Lrad = (0.965η + 0.035)LCo + ηLNi where LNi is the radioactive power

released by the decay of 56Ni, and LCo by the daughter 56Co. In Figure 7.7, we display the

luminosity due to radioactivity and that actually trapped in the ejecta — the latter shows

a satisfactory agreement with the observations.
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Figure 6.4 Shown above is the radioactive luminosity (solid line) and absorbed luminosity (dashed

line) for the following model parameters: Mej = 0.16M⊙, MNi = 0.02M⊙ and v = 109 cm s−1.

Also shown is a quasi-bolometric light curve of SN2010X estimated by (a) computing νFν in r-

band (empty circles are detections, inverted triangles are upper limits), and (b) integrating the

optical spectrum (filled circles). Also shown is a comparison to a “.Ia” light curve (red dotted

line; Shen et al. 2010) assuming: Mwd=1.2 M⊙, Menv=0.05 M⊙, Mej=0.036 M⊙, MFe= 0.005 M⊙,

MNi=0.02 M⊙, MCr= 0.0002 M⊙.
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6.5.2.1 Possible X-Ray Signature

An optically thin ejecta opens up the possibility of detecting the γ-rays (or degraded hard

X-rays) emitted during β-decay. The Swift Observatory observed SN2010X for 9758.7 s on

MJD 55248.775 (9 days past peak). We constrain the X-ray flux6 to be less than 0.00050

counts s−1 or 7.7×1039 erg s−1. By this epoch, our model shows that Lγ ∼ 1041 erg s−1.

Since photon number is conserved in scattering, the luminosity in the Swift band is expected

to be a factor of 200 smaller and hence, the upper limit is not constraining.

6.6 Environment

The host of SN2010X, NGC 1573A, is a small (1.6′ diameter), spiral galaxy variously

classified as Sb (UGC) and SABbc (RC3). The host of SN2002bj, NGC 1821, is a small

(1.1′ diameter), barred irregular galaxy classified as IB(s)m. Both transients occurred close

to the galaxy nucleus — 2.3 kpc for SN2010X and 1.8 kpc for SN2002bj. In Figure 6.5, we

show the location of the supernovae in deep images of the galaxy.

Figure 6.5 Left: R-band image of NGC 1573A, the host of SN2010X, taken with the Large

Format Camera on the Palomar 200-inch telescope. Right: Sum of all available Deepsky 7

(Nugent 2009) images of NGC1821, the host of SN2002bj.

6We note that the six photons in the XRT HPD PSF of 0.3′are likely from the galaxy nucleus.
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6.7 Conclusion

To summarize, SN2010X is the second member of a class of supernovae that declines ex-

ponentially on timescales shorter than 5 days. Relative to SN2002bj, SN2010X is less

luminous by 1.5mag (MR ≈ −17) and has higher velocities (10,000 km s−1) by more than

a factor of two. Both events have a small inferred ejecta mass. Both events are spectro-

scopically different from any other type I supernovae. The spectra for both supernovae can

be modeled with mostly similar elements (C, O, Mg, Si, Ti and Fe). The evidence (or lack

thereof) for Helium is not conclusive in both cases.

If SN2010X is powered by radioactive 56Ni, the combination of a rapid rise time and

low peak luminosity constrains the Nickel mass to be small, 0.02M⊙.
56Ni constitutes

≈13% of ejecta. However, under the same assumptions, 56Ni would constitute bulk of the

ejecta mass for SN2002bj. Thus, while in both cases the ejecta mass remains the same, the

nucleo-synthesis may be strongly variable. We also show that given the small ejecta mass,

γ-rays from decaying 56Ni can start escaping from the ejecta shortly after peak brightness.

This early escape reasonably accounts for the rapid decay of the light curve of SN2010X.

Perets et al. (2010a) have argued that SAndromeda (the first recorded SN in An-

dromeda) and SN1939B (the first recorded SN in Virgo) are also like SN2002bj. The claim

primarily rests on rapid rise and rapid decay at early-time. It is of some interest to note

that the late-time (2 months to nearly 1 year) decay rates, 0.03 mag/day for SAndromeda

and 0.02 mag/day for SN1939B (Perets et al. 2010a), are consistent with 56Co decay (with

some escape of γ-rays). A consistent explanation would require a two-zone model: compa-

rable amount of 56Ni in a slowly expanding core (to account for the late time light curve)

and a rapidly expanding shell (to account for the rapid decay seen after peak brightness).

An alternative model is that the early-time emission is powered by another suitably

rapidly decaying radio-active element(s). If powered solely by 48Cr, 0.02 M⊙ is ade-

quate. Recently, Shen et al. 2010 computed models and observables for “.Ia” explosions

(Bildsten et al. 2007a) powered by 48Cr, 52Fe and 56Ni: rise time between 2–10 days, ejecta

velocity between 9000–13000 km s−1, peak luminosity between 0.5–5×1042 erg s−1 and pres-

ence of Ca II and Ti II in the spectra. The properties of SN2010X are consistent with all

these predictions. Specifically, the light curve model presented for a core mass of 1.2 M⊙

and envelope mass of 0.05 M⊙ is a reasonable match (Figure 7.7). Furthermore, Shen et al.
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2010 also discuss that the presence of Helium in the spectra may be a non-LTE effect.

If Aluminum is indeed present in the spectra, the avenue for a speculative scenario

opens up. Neither 26Al nor 27Al is a product of Helium burning. Aluminum can be made

via explosive burning of Neon and/or Carbon (Arnett & Bazan 1997; Woosley & Weaver

1980). Perhaps, SN2010X is the outcome of accretion induced collapse of an O-Ne-Mg

white dwarf (Metzger et al. 2009).

Finally, we note that the rich, star-forming environment of SN2010X and SN2002bj

does not preclude a massive star origin. Fallback events, where a massive star collapses into

a black hole, are also expected to be fast declining (Fryer et al. 2009; Moriya et al. 2010).

However, the velocities expected from these models are significantly lower than observed

and the spectra are more substantially dominated by intermediate mass elements.

Regardless of all these rich possibilities, it is clear that further progress in understanding

the nature of these ephemeral transients would require a larger sample. Fortunately, PTF,

especially as it moves to “dynamic” 1-day cadence (Law et al. 2009) targetting nearby galax-

ies and clusters, is well equipped to annually find a few such events. Late-time photometry

is important to look for tell-tale signatures of 56Co decay. Sensitive optical (or better still,

ultra-violet) spectroscopy may directly reveal the radioactive element(s) powering these

events. It is also not inconceivable (given the history of SAndromeda and SN1939B) that

we will be lucky enough to observe a local analog of such an event with the hard X-ray

mission, NuSTAR (Harrison et al. 2010).
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Table 6.1. Optical Light Curve of PTF10bhp

MJD Filter Mag Facility

55207.3 r <20.91 Palomar 48-in

55207.4 r <20.85 Palomar 48-in

55213.2 r <20.48 Palomar 48-in

55221.2 r <20.42 Palomar 48-in

55234.1 r 17.95 ± 0.15 Rich

55237.1 r 17.43 ± 0.12 Rich

55239.2 r 17.41 ± 0.19 Brimacombe

55246.1 r 17.84 ± 0.09 Palomar 48-in

55246.2 r 17.79 ± 0.10 Palomar 48-in

55246.3 r 17.78 ± 0.09 Palomar 48-in

55246.3 r 17.83 ± 0.09 Palomar 48-in

55251.1 r 18.77 ± 0.12 Palomar 48-in

55251.3 g 19.61 ± 0.18 LCOGT/FTN

55251.3 r 18.87 ± 0.10 LCOGT/FTN

55251.3 i 18.74 ± 0.12 LCOGT/FTN

55254.3 g 21.02 ± 0.34 LCOGT/FTN

55254.3 r 19.74 ± 0.13 LCOGT/FTN

55254.3 i 19.57 ± 0.14 LCOGT/FTN

55255.3 r 19.96 ± 0.11 LCOGT/FTN

55256.3 g <20.66 LCOGT/FTN

55256.3 i 20.39 ± 0.17 LCOGT/FTN

55268.1 r <20.72 Palomar 48-in

55282.3 r <20.70 LCOGT/FTN

55294.1 r <22.55 Palomar 200-in
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Abstract

We present two mysterious transients (PTF09dav, PTF10iuv) with five distinguishing char-

acteristics: peak luminosity in the gap between novae and supernovae (MR ≈ −15), rapid

photometric evolution (trise ≈ 12 days), large photospheric velocities (≈ 10,000 km s−1),

early spectroscopic evolution into nebular phase (≈ 3months) and nebular spectra domi-

nated by Calcium. Additionally, both transients are located 40 kpc away from their putative

hosts and have no underlying host brighter than −11. We present extensive follow-up which

rules out standard thermonuclear and core-collapse explosions. If the progenitor is a massive

star, a non-standard channel specific to a low-metallicity environment needs to be invoked

(e.g., ejecta fallback leading to black hole formation). If the progenitor is a white dwarf,

we need a scenario that can explain both hydrogen in the nebular phase (e.g., shockfront

interaction with a previously ejected nova shell) and preference for remote locations (e.g.,

age).

7.1 Introduction

In the past decade, supernova surveys targeting nearby, luminous galaxies have been im-

mensely successful as the total starlight searched is significantly larger than blind pointings

of equal area. Recently, untargeted wide-angle transient surveys have also been success-

ful with the added advantage of finding supernovae independent of a host galaxy bias.

The Palomar Transient Factory (PTF; Law et al. 2009; Rau et al. 2009b) has an ongoing

Dynamic Cadence experiment that combines the advantages of both a targeted and an

∗A version of this chapter will shortly be published in The Astrophysical Journal, and is reproduced by

permission of the AAS.
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untargeted survey. This experiment searches wide-angle pointings on local (d< 200Mpc)

galaxy light concentrations at a 1-day cadence to a depth of 21mag. The depth, cadence

and locality allows us to find transients fainter, faster and rarer than supernovae. Further-

more, this facilitates the discovery of intra-cluster transients as well as transients in the

farflung outskirts of their host galaxies.

The location of a transient explosion has long been exploited as a clue to determin-

ing its nature. It has been suggested that the classical nova population is bimodal, de-

pending on whether it is in the disk or bulge of the galaxy (Shafter et al. 2011). Sev-

eral studies of supernova host galaxy properties, as well as the site of the supernova

within the host galaxy, have been undertaken (van den Bergh 1997; Prieto et al. 2008a;

Hakobyan et al. 2009; Boissier & Prantzos 2009; Anderson & James 2009). Core-collapse

supernovae (SNCC) and more luminous Type Ia supernovae (SN Ia) are preferentially found

in late-type galaxies. Type Ic supernovae are not found in dwarfs (Arcavi et al. 2010) and

Type Ibc supernovae are more centrally concentrated (Anderson & James 2009). Although

15% of the stellar mass is expected to be in the inter-galactic medium, only a handful of

intra-cluster supernovae have been discovered (Gal-Yam et al. 2003; Sand et al. 2011).

The sample of discoveries from the Palomar Transient Factory is homogenous and and

has been systematically followed up. We present the offset distribution of all PTF super-

novae with a redshift < 0.1 in § 1. The focus of this paper are two unclassified transients

which are also outliers on the offset distribution: PTF09dav and PTF10iuv. These two

transients have four distinguishing characteristics. Both are offset from their hosts by 40 kpc

and have no underlying host to a limiting absolute magnitude of −11. Both transients have

peak luminosities in the gap between novae and supernovae. Both rise and decline much

faster than supernovae. Both entered the nebular stage soon after explosion and showed

peculiar Calcium-dominated ejecta. These properties are reminiscent of only one other

explosion discussed in the literature, SN2005E (Perets et al. 2010b).

We present observations of PTF09dav and PTF10iuv in § 3 and § 4 respectively, analysis

in § 5, discussion in § 6 and conclusion in § 7.
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Figure 7.1 Left: Histogram of offsets from host galaxy for 520 spectroscopically classified transients

discovered by the Palomar Transient Factory with z<0.1. Stars denote the location of PTF10iuv

and PTF09dav. Right: Upper limits for an underlying dwarf host (MR) for transients with offset

greater than 20kpc.

7.2 Offset Distribution of PTF Supernovae

In just over a year, the Palomar Transient Factory discovered and spectroscopically con-

firmed 1040 extragalactic transients. We limit the study of the offset distribution of PTF

supernovae to a sub-sample of of 520 transients with z < 0.1, in order to constrain the

luminosity of underlying host galaxies to −16. We compute precise offsets from the host

galaxies for each transient and the resulting histogram is shown in Figure 7.1. We split

the population into core-collapse supernovae and thermonuclear supernovae. We find that

the core-collapse and thermonuclear population show similar distributions out to ∼ 9 kpc

suggesting that the average distribution is proportional to star light. Beyond 9 kpc, the ther-

monuclear population shows a heavy extended tail suggesting a second parameter governing

their rate or perhaps even two progenitor populations.

Next, we take a closer look at the population with offsets larger than 20 kpc. We co-add

available pre-explosion data to derive limiting magnitudes on a dwarf satellite host at the

location of the supernova (see Figure 7.1). Of the 520 transients, 9 SN Ia, 0 SNCC and 2

unclassified transients have offsets larger than 30 kpc. PTF09cex, PTF10fjg, PTF10xua,

PTF10xgb and PTF10xgc (30–36 kpc) have spectroscopically confirmed host redshifts.

PTF10qht (79 kpc) and PTF10qyx (48 kpc) are likely intra-cluster supernovae. The fur-
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thest offset SN Ia, PTF10ops (140 kpc) is the subject of another paper (Maguire et al. in

prep).

Note two more outliers on this distribution which are unclassified: PTF09dav is offset

from a spiral host by 40 kpc; PTF10iuv is in a galaxy cluster with early-type and late-type

galaxies and the closest galaxy is 37 kpc away. The limiting dwarf host luminosities are −10

and −11 for PTF09dav and PTF10iuv respectively.

7.3 Observations: PTF09dav

We presented the discovery, light curve and photospheric spectra of PTF09dav in a com-

panion paper by Sullivan et al. 2011 (hereafter, Paper I). Here we present late-time imaging

and nebular spectroscopy of PTF09dav.

Figure 7.2 Left: PTF09dav is offset from its late-type host by 40 kpc. Center: PTF10iuv is offset

from a galaxy group with early-type and late-type galaxies, the nearest host is 37 kpc away. Right:

SN2005E (Perets et al. 2010) is offset from its edge-on host by 23 kpc.

7.3.1 Late-time Imaging

We obtained deep imaging in the g-band and R-band filters at the position of PTF09dav

with the Low Resolution Imaging Spectrograph (LRIS; Oke et al. 1995) on the Keck I

telescope on UT 2010 May 15.603 and Jul 9.584. We registered these images with a Palomar

60-inch image of PTF09dav. No source is detected to a 3σ limiting magnitude of 26mag

(Table 7.1, Figure 7.3). This constrains any satellite, dwarf host to be fainter than Mg =
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−10.1.

We obtained deep imaging in the K ′-band with Laser Guide Star Adaptive Optics (LGS-

AO; Wizinowich et al. 2006; van Dam et al. 2006) on the Keck II telescope and the Near

Infrared Camera 2 (NIRC2). On 2010 Jun 17.568, we obtained 10 images of 10 s co-added

integrations. Zeropoint was derived relative to the 2MASS catalog (Skrutskie et al. 2006).

No source was detected to a 3σ limiting magnitude of 21.1mag.

Figure 7.3 Deep late-time g-band imaging with Keck I/LRIS showing no host galaxy under the

position of PTF09dav. The registration accuracy is 0.241′′. We denote the position of PTF09dav

with a 5σ position error circle.

7.3.2 Nebular Spectroscopy

On 2009 November 11, only three months after maximum light, a spectrum with LRIS on

Keck I revealed that PTF09dav had become nebular. The timescale to become nebular was

surprising, as it was faster than typical supernovae by a factor of few. Furthermore, only

two emission features are seen — Hα and [Ca II]. The width, redshift and flux of the lines is

summarized in Table 7.2. The absence of Ca II IR triplet is indicative of a low circumstellar

density. The presence of Hα is usually interpreted as the interaction of a massive star wind

with the circumstellar environment. However, no Hα was seen in the photospheric spectra

presented in Paper I. These characteristics of the nebular spectrum are unprecedented and

no match can be found in supernova libraries.
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Figure 7.4 Nebular Spectra of PTF09dav, PTF10iuv and SN2005E. All three are very Calcium-rich.

Also shown for comparison, nebular spectra of a Type Ia (SN1986G +257d; Asiago Catalog), Type Ib

(SN2007C +165d; (Taubenberger et al. 2009)), Type Ic (SN2002ap +249d; (Gal-Yam et al. 2002))

and Type IIP (SN2004et +454d; (Sahu et al. 2006)) supernova. The nebular spectra of Type Ia

supernovae are dominated by [Fe II], [Fe III] and [Co III] lines. The nebular spectra of core-collapse

supernovae has a much lower ratio of Calcium to Oxygen.



116

7.4 Observations: PTF10iuv

7.4.1 Discovery and Light Curve

On UT 2010 May 31.241, the Palomar Transient Factory discovered a new transient,

PTF10iuv. The location of this transient was α(J2000) = 17h16m54.27s and δ(J2000)

= +31◦33′51.7′′ and brightness was R=21.2mag. We monitored the light curve of this

transient with the Palomar 60-inch (P60) telescope in Bgriz filters for three months. Late-

time photometric observations were taken with the Large Format Camera (LFC) on the

Palomar 200-inch telescope and LRIS on the Keck I telescope.

Data was reduced following standard procedures and aperture photometry was per-

formed. Photometric calibration was done relative to photometry of field stars from the

Sloan Digital Sky Survey (Abazajian et al. 2009). A common set of calibration stars were

chosen for P48, P60, LFC and LRIS data for consistency. Conversion from ugriz to B-band

was done following Jordi et al. 2006.

The light curve is summarized in Figure 7.5. PTF10iuv peaked on Jun 10 withR=19.0mag.

It rapidly rose by 3mag in 12 days, followed by a rapid decline at the rate of 1mag in 12 days

for one month. Subsequently, PTF10iuv evolved slowly at the rate of 0.02magday−1 for

three months, followed by 0.005mag day−1. The color was neither extremely red nor blue.

It evolved from g − i ≈ 0.4 near maximum to g − i ≈ 0.7 one month later.

7.4.2 Spectroscopy

On Jun 7, we obtained a classification spectrum using ISIS on the WHT telescope. Sub-

sequently, we continued to monitor the evolution with the Keck I (LRIS) and Keck II

(DEIMOS) telescopes until the spectra became completely nebular (Figure 7.6).

The spectra evolved to show prominent Helium features, resembling Type Ib spectra.

The Calcium lines become stronger with time, especially [Ca II] relative to O I. As with

PTF09dav, the spectrum of PTF10iuv also became nebular in only 3 months. Both showed

prominent Calcium emission (Table 7.2, Figure 7.4). Unlike PTF09dav, PTF10iuv showed

O I emission.
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Figure 7.5 Light curve of PTF10iuv. Top: Note the rapid rise of 3mag in 12 days, followed by the

rapid decline at the rate of 1mag in 12 days. Bottom: R-band light curves of PTF10iuv (circles),

PTF09dav (dashed line) and SN 2005E (dotted line). All three events are subluminous, red and

evolve very rapidly compared to supernovae. For comparison, we show a normal Type Ia supernova

(dot-dash line).
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Table 7.1. Late-time Photometry of PTF09dav

Date Phase Facility Exposure Filter Magnitude

UT 2010 days sec mag

May 15.612 279.7 Keck I/LRIS 1230 g >26.0

May 15.614 279.7 Keck I/LRIS 1030 R >24.8

Jun 17.568 313.7 Keck II/NIRC2 100 K′ >21.1

July 9.584 334.7 Keck I/LRIS 1450 g >25.4

July 9.584 334.7 Keck I/LRIS 1200 R >26.2

7.4.3 Radio Observations

We observed PTF10iuv with the Expanded Very Large Array on 2010 Aug 25.060. We ob-

served in X-band (8.46 GHz) and added together two adjacent 128 MHz subbands with full

polarization to maximize continuum sensitivity. Amplitude and bandpass calibration was

achieved using the archival value of flux for J1721+3542, and phase calibration was carried

out every 10 min by switching between the target field and the point source J1721+3542.

The visibility data were calibrated and imaged in the AIPS package following standard

practice.

The transient was not detected with a 3σ upper limit of 189µ Jy. This corresponds to

Lν < 2.0 × 1027 erg s−1 Hz−1.

7.5 Analysis

7.5.1 Modeling the Light Curve: Radioactivity?

The light curve of PTF10iuv is very well-sampled. The rising portion of the light curve

can constrain the ejecta mass and the late-time decay can constrain the radioactive mass.

Therefore, we can test the hypothesis of whether this explosion is radioactively powered by

Nickel-56 as in Type Ia supernovae.

Mej ∝ v t2r (Arnett 1982). Therefore, assuming the same opacity, we can derive an

ejecta mass by scaling relative to a normal Type Ia supernova with parameters 1.4M⊙,
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Table 7.2. Lines in Nebular Spectra

Transient Ion Line Center Shifta Flux Width Velocity Width

Å km s−1 erg cm−2 s−1 Å km s−1

PTF09dav Hα 6820.4 840 7.6×10−17 23.5 1000

PTF09dav [Ca II] 7579.1 250 2.0×10−15 166.1 6600

PTF10iuv O I 6467.7 −460 1.7×10−16 170.8 8090

PTF10iuv [Ca II] 7465.4 −410 8.0×10−16 134.2 5510

PTF10iuv Ca II 8827.3 2150 9.4×10−16 312.8 10950

SN2005E O I 6360.6 −1120 2.0×10−15 107.8 5110

SN2005E [Ca II] 7367.0 −17 1.5×10−14 127.6 5240

SN2005E Ca II 8710.4 2530 2.7×10−14 299.0 10470

Note. — a Note that this shift is computed relative to the velocity of the putative host

galaxy.
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Figure 7.7 Modelling the light curve of PTF10iuv (empty circles) with radioactive Nickel-56 decay

(dashed line). We assumed an ejecta mass of 0.46 M⊙ and Nickel mass of 0.016 M⊙.
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11000 km s−1 and 17.4 days. PTF10iuv has a rise-time of 12 days, average photospheric

velocity of 7600 km s−1 and hence, an ejecta mass of 0.46M⊙. PTF09dav has the same

rise time but a lower velocity of 6000 km s−1, giving an ejecta mass of 0.36M⊙. There is

no data to constrain the rise-time of SN2005E. Assuming it was also 12 days and using its

photospheric velocity of 11,000 km s−1, we get an ejecta mass of 0.67M⊙.

For PTF10iuv, given the peak luminosity of 4.6× 1041 erg s−1 and 12 day rise, we can

derive a Nickel-56 mass of 0.016 M⊙. However, we find that the late-time photometry is

inconsistent with what is expected from radioactive decay of Nickel-56 (Figure 7.7). Thus,

there should either be a radioactive species other than Nickel-56 or another source powering

the light curve. Modeling of different combinations of other additional radioactive species

(Chromium-48, Titanium-44 and Iron-52) in the context of Helium shell detonations on

small (Waldman et al. 2010) and large CO white-dwarf cores (Shen et al. 2010) has been

undertaken. These efforts were limited by the missing light curve data in the rising and

very late phase of SN2005E. The well-sampled light curve of PTF10iuv should be able to

better constrain these models.

7.5.2 Comparison to Type Ia and Type Ib Supernovae

In Paper I, we discuss that although the photospheric spectra of PTF09dav share some

similarities to Type Ia supernovae, there are several differences: (i) PTF09dav does not

obey the Phillips relation (not even the modified relation for subluminous Type Ia that is

obeyed by the faintest SN Ia 2007ax; Kasliwal et al. 2008j), (ii) The photospheric spectra

have Scandium and Strontium (elements usually seen only in core-collapse supernovae),

(iii) Here, we show that the nebular spectrum of PTF09dav does not show any Fe-peak

elements, which is inconsistent with nebular spectra of all Type Ia supernovae (Figure 7.4).

The photospheric spectra of PTF10iuv around maximum light resemble Type Ib super-

novae. However, a month after maximum, Calcium emission starts to become prominent.

We have spectra at this phase of six other Type Ib supernovae from PTF (Figure 7.6).

While the Calcium IR triplet becomes prominent for all the Type Ib supernovae as they

evolve, the [Ca II] doublet is especially prominent for PTF10iuv. PTF10vnv and PTF10inj

also show [Ca II], but the relative flux ratio of [Ca II] to O I is much lower than that seen

in PTF10iuv. In the nebular phase, the flux ratio of [Ca II] to [O I] is also much lower for
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Type Ib supernovae relative to PTF10iuv (Figure 7.4). Furthermore, the light curve is less

luminous by at least two magnitudes and evolves faster by at least a factor of two.

7.5.3 Constraint on Electron Density

Using the flux ratio between [Ca II] and Ca II IR triplet, we can constrain the density

given a temperature. For PTF10iuv, the nebular spectrum at +87 d gives a ratio of 0.86

and the spectrum at +115 d gives a ratio of 1.8. For PTF09dav, the nebular spectrum

at +94 d gives a ratio of > 2.2 (assumed width of 300 Å, 3σ limit is 3×10−18 erg cm−2

s−1 Å−1). For SN2005E, the ratio at +65d is 0.55 (Perets et al. 2010b). Following Figure 2

of Ferland & Persson 1989, assuming a temperature around 4500K, the electron density is

of the order of 109cm−3 and decreases by a factor of few in a couple of months.

7.5.4 Modeling the Nebular Spectra

Next, we estimate the mass of the dominant species in the ejecta using the nebular spectrum.

We estimate the oxygen mass based on the luminosity of the [O I] line in the nebular

phase. We can assume the high density limit holds (> 106 cm−3) and estimate the oxygen

mass as:

MO = 108f[OI]D
2
Mpce

(2.28/T4)M⊙

(Uomoto 1986). Assuming a temperature of 4500K, we get 0.025 M⊙ of Oxygen for

PTF10iuv and 0.037 M⊙ for SN2005E. Note that the oxygen mass is consistent with

the mass derived in Perets et al. 2010b. A cautionary note here is that this calculation

is extremely sensitive to temperature. A difference of 500K in temperature changes this

estimate by a factor of two.

The luminosity in [Ca II] nebular emission for SN2005E, two months after maximum

was 2×1039 erg s−1 and the derived ejecta mass was 0.135M⊙ (Perets et al. 2010b). The

[Ca II] nebular luminosity is a factor of 2.5 smaller for PTF10iuv and factor of 2.6 larger

for PTF09dav relative to SN2005E. Under similar conditions, this may be representative

of the range in Calcium mass for these events.

Assuming an average ejecta velocity of 6000 km s−1 for three months and an average

electron density of 109 cm−3, we can derive the total number of electrons. Depending on
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which species is dominant (e.g., Calcium, Hydrogen, Oxygen), we can roughly estimate the

mass as 2M⊙
A
40

0.5
Z/A .

7.6 Discussion

The answer to the fundamental question of whether the progenitor of this class of transients

is a white dwarf or a massive star is not clear. We discuss each of the two possibilities below.

7.6.1 A Massive Star?

Four lines of evidence suggest a massive star origin. First, the presence of Hα in emission

in PTF09dav suggest a massive star wind interacting with circumstellar medium. Second,

the presence of Scandium and Strontium in the photospheric spectra of PTF09dav suggests

conditions (e.g., lower temperature) usually seen in core-collapse. Third, the absence of Fe-

group elements seen in all thermonuclear explosions and similarity to nebular spectra of core-

collapse (albeit with significantly enhanced Calcium) suggests this is a core-collapse. Fourth,

the inconsistency of the light curve of PTF10iuv with a radioactive Nickel-56 powered

explosion and disobedience of the Phillips relation suggest this is not a regular Type Ia

supernova.

The biggest challenge to this hypothesis are the deep broad-band, Hα and ultra-violet

imaging limits against in situ star formation. Next, we discuss the odds of finding a massive

star in such remote locations. Assuming that this is possible, we discuss possible explosion

channels.

7.6.1.1 Star formation in the outskirts?

Perets et al. 2010b convincingly argue against the progenitors being hypervelocity stars

formed in the disk. A more feasible option that allows massive stars to traverse large

distances is tidal stripping during galaxy interactions. This is especially intriguing given

the galaxy group surrounding the location of PTF10iuv.

Star formation in intra-cluster environments has also been well studied. It has been

shown that roughly 15% of the cluster’s mass is in the intra-cluster medium. Both an

old component and a young component are expected (Mullan et al. 2011; Williams et al.



124

2007). Sivanandam et al. 2009 show that 50% of metals come from intra-cluster super-

novae. Mullan et al. 2011 presented a study of tidal tails of interacting galaxies and found

young star clusters formed in situ in half the sample. Moreover, recent systematic surveys

(Werk et al. 2010b, 2008) suggest that star formation in the far outskirts of non-interacting

galaxies is also possible. About 10% of the galaxies in this study had outlying HII regions

with offsets between 20 kpc and 40 kpc.

7.6.1.2 Fallback Supernova?

Assuming there was some in situ star formation, since the IMF is quite universal and varies

little over a wide range of metallicity (e.g., Myers et al. 2011), one would expect regular

core-collapse supernovae in the outskirts as well. However, the absence of regular core-

collapse supernovae with offsets larger than 30 kpc in the PTF sample appears to be at

odds with the progenitors being massive stars (Figure 7.1).

A possible resolution is if the fate of massive stars in very low metallicity environments

is very different. Specifically, the lower metallicity in the outskirts lowers the mass-loss

rate, and it is expected that a larger fraction of massive stars would collapse directly to

a black hole (e.g., Heger et al. 2003, O’Connor & Ott 2011). Such a collapse results in a

subluminous explosion or no explosion at all. This could explain both the small numbers of

core-collapse supernovae in the outskirts and the dearth of regular Type Ib/c supernovae

in low metallicity environments. This is also consistent with studies that show that regu-

lar Type Ib/c supernovae are more centrally concentrated relative to Type II supernovae

(Anderson & James 2009). Some of the missing Type Ib/c explosions in low metallicity

environments (outer parts of galaxies, dwarf galaxies) could be subluminous and short-lived

fallback events. Fallback of some ejecta onto the proto-neutron star to form the blackhole

could explain the low ejecta mass, fast evolution and absence of heavy elements observed in

this class. It would not be surprising then that the first fallback events observed are located

in the outskirts of their hosts.

An important caveat here is that PTF10iuv and SN2005E were hydrogen-free. The

mass-loss would have to be tuned to be high enough to expel the hydrogen, low enough

such that there is fallback on the core, yet not too low such that there is no explosion at

all. Kawabata et al. 2010 proposed an alternate scenario where the hydrogen was removed
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by close binary interaction.

7.6.2 A White Dwarf?

All other lines of evidence suggest a white dwarf origin. The absence of a dwarf satellite

galaxy host to deep limits for all three events, combined with deep Hα and ultra-violet

limits for SN2005E, suggests that a recent episode of in situ star formation is unlikely.

If we invoke white dwarf scenarios, there are three options that explain the intermediate

luminosity. First, accretion induced collapse (AIC) of a rapidly rotating white dwarf into

a neutron star (Metzger et al. 2009). However, AIC predicts a spectrum dominated by

intermediate mass elements, much higher velocities (0.1 c) and much more rapid rise (1 day)

and decline (4–5 days) than what is observed. Second, a “.Ia” explosion following the final

Helium flash in an ultra-compact white-dwarf white-dwarf binary (Bildsten et al. 2007a;

Shen et al. 2010). The observed rise-time is too slow for a “.Ia” explosion. Third, a sub-

Chandrashekhar mass white dwarf deflagration (Woosley & Weaver 1994) is also expected

to give lower luminosity Type Ia supernovae. However, the late-time light curve and absence

of Fe-peak elements in the nebular spectra are inconsistent with this model. The presence

of Helium in SN2005E and PTF10iuv can be explained for some white dwarf models.

However, the presence of hydrogen poses a major challenge to all three models.

One possible scenario to explain late-time hydrogen in a white-dwarf explosion is as

follows: Consider a binary where mass-transfer is from a hydrogen rich companion star

onto a white dwarf. This accretion initially proceeded at a low rate, resulting in a series of

nova eruptions prior to the sub-Chandrashekhar explosion or Helium-shell detonation. The

photons from the final explosion would eventually reach one of the previously ejected nova

shells and the interaction would give Hα emission.

Quantitatively, the distance to this nova shell would be the speed of light multiplied

by 95 days, i.e., 2.5×1017 cm. Given the velocity of 1000 km s−1 to traverse this distance,

the nova eruption would then have occured 78 years ago. A rough estimate for the mass

of hydrogen needed to sutain the observed luminosity is 0.0004M⊙
t

1hour
1
n , where n is the

number of times the same hydrogen atom gets excited in the time t.
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7.7 Conclusion

Three transients, PTF09dav, PTF10iuv and SN2005E, share the following common prop-

erties — low peak luminosity, fast photometric evolution, large photospheric velocities,

quick evolution to nebular phase, Calcium-dominated ejecta and location in the outskirts of

their putative host galaxies. This set of properties in conjunction with peculiarities specific

to each of them (e.g., presence of hydrogen, scandium and strontium in PTF09dav, intra-

cluster environment of PTF10iuv, strong constraints againt star formation in SN2005E)

warrants a creative modification of standard thermonuclear or standard core-collapse sce-

narios.

We can estimate a lower limit on the rate of this class of events by comparing to the

rate of Type Ia supernovae discovered by PTF in the same volume in the same time.

Within 200Mpc, we found 100 Type Ia supernovae and 2 such events. Therefore, the rate

is > 6×10−7Mpc−3yr−1. We emphasize this is a lower limit as a few days of bad weather

would be much more detrimental for finding these short-lived and lower luminosity transients

compared to SN Ia. This rate of 2% relative to Type Ia supernovae is consistent with the

relative rate of 7±5% estimated by (Perets et al. 2010b)1.

To understand the origin, it is essential to first address whether the location is a red

herring or the most important clue. Progress theoretically requires more quantitative mod-

elling of the metallicity dependence of core-collapse to black holes scenario. Progress ob-

servationally requires a larger sample of discoveries as intensely followed up as PTF10iuv.

Fortunately, ongoing synoptic surveys such as the Palomar Transient Factory, are well-

poised to uncover and follow-up new members of this class.

1Unfortunately, the other possible candidates from the KAIT survey which may belong to this class given

some spectroscopic similarity have too poorly sampled light curves to constrain the photometric properties
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Chapter 8

Summary

8.1 Framework of Explosions: 2011

I end how I began. The framework of cosmic explosions today (Figure 8.1) has been

systematically colored with multiple, new populations of transients in the white spaces.

I discuss the progress on understanding each of the new classes below:

1. Observations of a “.Ia” Explosion: PTF10bhp (Chapter 6) can be reasonably ar-

gued to be a protypical “.Ia” explosion: short rise-time of 6 days, exponential decline

of 5 days, peak luminosity of −17mag, velocities of 9000 km s−1 and ejecta compo-

sition of Ca II, Ti II and He I. All lines of evidence appear to be consistent with

a Helium detonation in an ultra-compact white dwarf (AMCVn) system. The only

other supernova with as fast a photospheric evolution is SN2002bj (identified as so

eight years after explosion by an archive search; Poznanski et al. 2010). However, the

lower velocities (4000 km s−1) and the higher peak luminosity (−18.5mag) make the

case for SN2002bj as a “.Ia” explosion less clear. An unfortunate circumstance with

PTF10bhp was that it was too close to the sun at the time of discovery. With future

events, efforts to better quantify the late-time photometric evolution and the late-time

nebular spectrum to directly measure ejecta masses will be undertaken. There has

been steady progress on constraining the Galactic AMCVn population (Roelofs et al.

2007; Nelemans et al. 2001) and recently, candidates that will merge within the Hub-

ble time have also been identified (Kilic et al. 2011a). Further progress here requires

a larger sample to constrain the rates and hence, constrain the fraction of AMCVn



128

10
0

10
1

10
2

−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

Characteristic Timescale [day]

P
ea

k 
Lu

m
in

os
ity

 [M
V
]

V838 Mon
M85 OT

M31 RV

SCP06F6

SN2006gy
SN2005ap SN2008es

SN2007bi

SN2008S

NGC300OT

SN2008ha

SN2005E

SN2002bj

PTF10iuv
PTF09dav

PTF11bij

PTF10bhp

PTF10fqs

PTF10acbp

PTF09atu

PTF09cnd

PTF09cwlPTF10cwr

 Thermonuclear
 Supernovae

 Classical Novae

 Luminous
 Red

 Novae

 Core−Collapse
 Supernovae

 Luminous Supernovae

 .Ia Explosions

 Ca−rich
 Transients

P60−M81OT−071213

P60−M82OT−081119

10
38

10
39

10
40

10
41

10
42

10
43

10
44

10
45

P
ea

k 
Lu

m
in

os
ity

 [e
rg

 s
−

1 ]

Figure 8.1 Framework of Cosmic Explosions in the Year 2011. Note that until 2005 (Fig-

ure 1.1), we only knew about three classes (denoted by gray bands). Systematic surveys,

serendpitous discoveries and archival searches have yielded multiple, new classes of tran-

sients. Discoveries presented in thesis Chapters 3, 5, 6 and 7 are denoted by ⋆.

(Brown et al. 2011) that undergo such an explosion.

2. Luminous Red Novae: The defining characteristics of the emerging class of luminous

red novae (LRN) are: large amplitude (> 7mag), peak luminosity intermediate be-

tween novae and supernovae (−6 to −14mag), very red colors and long-lived infrared

emission. When the first LRN was discovered (Kulkarni et al. 2007), the similarities

to three Galactic explosions (including V838Mon) suggested a common origin. Since

then, 5 more extragalactic and 1 more Galactic LRN have been discovered. Recent

developments suggest there may be two progenitor channels.
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First, a less luminous but likely more prolific channel is the merger of main sequence

stars. In particular, the well-sampled ten year baseline of V1309 Sco showed clear

evidence of a decaying orbital period prior to eruption (Tylenda et al. 2011). As the

orbital period decayed, the second maximum in the light curve became weaker as the

secondary was engulfed by the primary. This suggests that it was a mergeburst of

a K-type main sequence star and a lower mass companion. The distance estimate is

uncertain and the peak luminosity is ≈ −6mag. It is plausible that other Galactic

events also have similar origin, with higher luminosity corresponding to higher masses

of the stars in the binary. However, this channel cannot be arbitrary scaled up in

luminosity beyond −10mag.

Second, a more luminous but rarer channel is electron-capture supernovae in extreme

Asymptotic Giant Branch (eAGB) stars. PTF has discovered two extragalactic LRN:

PTF10fqs (discussed in Chapter 5) and PTF10acbp (Kasliwal et al. 2010). We es-

timate a lower limit on the rate of > 7×10−5 Mpc−3 (based on finding 2 LRN in the

same volume as 13 core-collapse supernovae). The fundamental differences between

the extra-galactic and Galactic populations are: higher peak luminosity range (−10

to −14mag), higher velocities (10,000 km s−1) and an infrared progenitor vs. optical

progenitor. Based on the two nearest events, NGC300-OT and SN2008S, the progen-

itor in the mid-infrared has been identified to be at the extremely luminous and red

end of the AGB branch (Prieto et al. 2008b; Thompson et al. 2009). Thermal pulses

could result in significant dust formation and are consistent with the deep limits on

an optical progenitor. The luminosities, velocities and longevity in the redder bands

are all consistent with electron capture in an O-Ne-Mg core of an eAGB star.

Further progress to understand LRN will likely come from the mid-infrared. The

discovery of PTF10acbp prompted us to search the WISE1 data stream for Luminous

Red Novae. The subsequent detection (despite the large distance of 60Mpc) motivated

us to search for the older LRN (Cutri et al. 2011; Hoffman et al. 2011). Five were

detected, including two that exploded two years ago, and this opened a new channel

to discover LRN. Given that WISE made two all-sky scans separated by six months,

we will be searching this data for all LRN to obtain the best estimate yet of their

1http://www.nasa.gov/wise
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rates. There is also a proposal to NASA (PI J. Bloom) to revive the WISE mission

for 1 year. This mission, called WITS (WIse Transient Survey), would be dedicated

to time-domain astronomy.

3. Calcium-rich Halo Transients: PTF09dav, PTF10iuv, PTF11bij (see Chapter 7)

and SN2005E (Perets et al. 2010b) appear to constitute a family of transients in the

farflung outskirts of their hosts with the following characteristics: peak luminosity

lower than supernovae (−14 to −16mag), rise time of 12 days, large photospheric ve-

locities (≈ 10,000 km s−1), early spectroscopic evolution into nebular phase (3months)

and nebular spectra dominated by Calcium emission. The nature of this class remains

mysterious due to contradictory lines of evidence. While the halo location and no ev-

idence of in situ star formation to deep limits suggests a white dwarf origin, the

presence of hydrogen emission at late-time suggests a massive star. There are two

possible resolutions. One possibility is that the white dwarf explosion shockfront ran

into a previously ejected hydrogen-rich shell of a nova-like eruption. Another possibil-

ity is that the fates of massive stars formed in low metallicity environments is entirely

different, with a larger fraction undergoing significant fallback onto the core to form

black holes. Progress here requires statistics to address whether or not the remote

location is the key to explain this class or simply a red herring.

4. Low Velocity Transients: Another curious transient in the luminosity gap is SN2008ha

(−14mag; Foley et al. 2009b; Valenti et al. 2009). In addition to the low velocity

and the fast evolution, spectroscopically it is characterized by very low velocities

(2000 km s−1). We obtained a nebular spectrum of SN2008ha which was Calcium-

rich and showed trace of Hα emission. Additionally, PTF has found several very

low-velocity supernovae, spectroscopically similar to SN2008ha but spanning a wide

range in luminosities (−14 to −19mag). The R-band light curves in this sample

appear to have a similar rise and decline independent of peak luminosity. PTF09ego,

the most luminous member of this class, has a total ejecta mass of 4M⊙. Therefore,

there is plausible evidence for this class having a massive star origin.

5. Luminous Supernovae: The class of luminous supernovae is outside the scope of this

thesis. However, I discuss them very briefly here for completeness, as it is also a
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recently uncovered rare class of explosions (although in the distant universe). Specifi-

cally, SN2007bi (Gal-Yam et al. 2009) has a secure measurement of > 5M⊙ of Nickel

in the ejecta and likely represents a pair instability explosion of a 150M⊙ star.

The hydrogen-rich variety (SN2006gy-like) explodes with an incredible amount of

energy, likely powered by interaction (Ofek et al. 2007). The hydrogen-free variety

(SN2005ap-like) may even be powered by magnetars (Kasen & Bildsten 2010). Re-

gardless of origin, these supernovae are extermely blue and long-lived and can serve

as powerful light houses at high redshifts (Quimby et al. 2009).

Additionally, progress was made in understanding extremes in supernovae and novae.

The faintest thermonuclear supernova (SN2007ax, Chapter 2) had a Nickel-56 mass of

≈ 0.1M⊙. A sub-class of Type IIP supernovae are also subluminous, among the faintest are

PTF10vdl (−13.7mag; Gal-Yam et al. 2011) and PTF10ehy (−13). Subluminous Type

IIP supernovae (Pastorello et al. 2004) have lower energy, lower velocity and lower Nickel-56

mass and at least one member (SN 2005cs; Maund et al. 2005) has a direct detection of a

low to moderate mass red supergiant progenitor. P60-FasTING (Chapter 3) uncovered a

population of faint and fast classical novae. They appear to be well explained as hotter

white dwarfs or binaries with higher mass transfer rates. Attempts to parametrize novae

simply by the mass of the white dwarf, and hence, use them as distance indicators are not

fruitful. Nova physics is diverse and spans at least a four dimensional parameter space of

white dwarf mass, composition, accretion rate and temperature.

8.2 The Way Forward

We are at the brink of a new paradigm in understanding cosmic explosions. Systematic

searches have started to uncover a plethora of stellar outcomes that have given us much

work to do ahead. Searches such as the Palomar Transient Factory and the upcoming La

Silla Quest2 are well suited to probe the 2–10 day regime of phase space.

With the promise of advanced gravitational wave interferometers coming online in the

second half of this decade, the detection of neutron star binary coalescence once every month

is expected to become routine. The electromagnetic counterpart would reveal distance, en-

2http://hepwww.physics.yale.edu/lasillaquest/
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ergetics, kinematics and composition and be invaluable in probing the astrophysical nature

of the gravitational wave event.

However, the electromagnetic signal is theoretically predicted to be very low luminosity

(−13 to −16mag) and very short lived (1 hour to 1 day). Given the advanced LIGO3 (a-

LIGO) sensitivity limit of 200Mpc, we need to search to a depth of 24mag. Furthermore,

the localization of low frequency gravitational waves by triangulating the GW signal by

exploiting three baselines between a-LIGO in Hanford, a-LIGO in Louisiana and VIRGO

in Italy is inherently poor. Optimistic simulations (Wen & Chen 2010) of triple coincidence

detections suggest 50% of GW coalescence events will be localized within 23 deg2 and 90%

within 320 deg2.

A single 23 deg2 snapshot of the dynamic optical sky to a flux limit of 24mag would be

swamped with false positives: ≈ 210 background supernovae in galaxies more distant than

the local horizon and ≈ 60 foreground flare stars and cataclysmic variables in our own Milky

Way. Spectroscopic follow-up to classify each of these within one day would push the limits

of even 30-m class telescopes. We can make this intractable search feasible by leveraging

a-LIGO’s sensitivity limitation. By focussing our follow-up resources only on transients

spatially coincident with galaxies known to be in the local Universe, we can reduce the false

positive rate by three orders of magnitude. However, as discussed in Chapter 4, our existing

catalog of galaxies is missing ≈ 50% of the starlight at 200Mpc. We are now undertaking

a 3π narrow-band survey (using four filters centered on redshifted Hα) on the Palomar

48-inch to bring the completeness of this census to ≈ 90%.

We need a wider, deeper and faster cadence search than the current state of the art. With

an “A+” report card from the decadal survey, the astronomical community is optimistic

about the Large Synoptic Survey Telescope (LSST)4 coming online at the end of the decade.

The LSST will satisfy the wide (10 deg2) and deep (24mag) but at a slow 3day cadence.

To fill the important niche of ephemeral transients, the coals are in the fire for the Next

Generation Transient Facility on Palomar mountain (NGTF; PI Shri Kulkarni). NGTF will

satisfy the wide (35 deg2) and fast (minute to hour cadence) but only go down to 21mag.

There will be two major bottlenecks to leveraging synoptic surveys: rapid identification

of rare transients and prompt spectroscopic follow-up. To drink from the firehose of LSST,

3http://www.ligo.org
4http://www.lsst.org
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clever methods will need to be devised to identify rare transients worthy of further follow-

up. At the point of discovery, the only information in hand is the brightness, amplitude,

rise-time, color and location. Location can be further exploited to look for a quiescent

counterpart and historic evidence for variability in pre-explosion imaging. If located in a

galaxy with a known redshift, we can immediately derive a luminosity which can serve as an

effective unambiguous filter. This is yet another reason to complete the census of galaxies

in the local Universe.

If a transient class is dominated by specific line emission, wide-field narrow-band imaging

can serve as a filter. However, spectroscopy would be the critical follow-up step. Therefore,

NGTF is working on robotic, very low-resolution, integral field unit spectrographs (The

SED Machine5; PI Nick Konidaris). Efforts are also underway to multiplex spectrographs

with integral field units (HETDEX6) or programmable fibers (LAMOST7, BigBOSS8).

The holy grail of discovering the light associated with the sound is within reach. Here

is to an explosively fun decade ahead.

5http://sites.google.com/site/nickkonidaris/sed-machine
6http://hetdex.org/
7http://www.lamost.org/website/en/
8http://bigboss.lbl.gov/
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Abstract

GRB070610 is a typical high-energy event with a duration of 5 s. Yet within the burst

localization we detect a highly unusual X-ray and optical transient, Swift J195509.6+261406.

We see high amplitude X-ray and optical variability on very short time scales even at late

times. Using near-infrared imaging assisted by a laser guide star and adaptive optics, we

identified the counterpart of Swift J195509.6+261406. Late-time optical and near-infrared

imaging constrain the spectral type of the counterpart to be fainter than a K-dwarf assuming

it is of Galactic origin. It is possible that GRB070610 and Swift J195509.6+261406 are

unrelated sources. However, the absence of a typical X-ray afterglow from GRB070610 in

conjunction with the spatial and temporal coincidence of the two motivate us to suggest

that the sources are related. The closest (imperfect) analog to Swift J195509.6+261406 is

V4641 Sgr, an unusual black hole binary. We suggest that Swift J195509.6+261406 along

with V4641 Sgr, define a sub-class of stellar black hole binaries — the fast X-ray novae.

We further suggest that fast X-ray novae are associated with bursts of gamma-rays. If so,

GRB070610 defines a new class of celestial gamma-ray bursts and these bursts dominate

the long-duration GRB demographics.

∗A version of this chapter is published with the title “GRB 070610: A Curious Galactic Transient” in the

The Astrophysical Journal Letters, 2008, vol. 678, issue 2, pp. 1127-1135, and is reproduced by permission

of the AAS.
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A.1 Discovery of GRB070610

Launched in November 2004, the Swift Gamma-Ray Burst Explorer (Gehrels et al. 2004)

was designed to localize γ-ray bursts (GRBs) and undertake rapid and sustained X-ray and

Ultra-Violet observations of the resulting afterglow. With over two hundred events now

localized and studied, Swift has made fundamental contributions to both long-duration soft

bursts (LSBs) and short-duration hard bursts (SHBs). LSBs appear to trace cosmological

massive-star formation rate with one event at a redshift of 6.3. SHBs have been seen at

typical redshifts of ∼ 0.5 in both elliptical and star-forming galaxies. There is now some

circumstantial evidence for SHBs being the result of coalescence of compact objects.

At 20:52:26 UT on 2007 June 10 the Burst Alert Telescope (BAT; Barthelmy et al.

2005) aboard Swift triggered on GRB070610. The high-energy prompt emission had a

duration (T90) of 4.6 s (Pagani et al. 2007b). Over the range 15–150 keV the burst could

be fitted with a power law with photon index Γ = 1.76 ± 0.25, resulting in a fluence of

(2.4 ± 0.4) × 10−7 erg cm−2 (Tueller et al. 2007). A blackbody model is inconsistent with

this emission (reduced χ2 =1.7).

The burst profile consisted of a single symmetric peak (Figure A.1). Fitting the pro-

file (Norris et al. 1996), we calculate a rise time (i.e. half width at half maximum) of

1.68 ± 0.55 s. As can be seen from Figure A.2, the duration and the hardness ratio of

Swift J195509.6+261406 are both consistent with the broader population of extragalactic

long-duration GRBs observed by Swift.

The BAT localized GRB070610 to α = 19h55m13.′′1, δ = +26◦15′20′′ (J2000.0) and a

90%-containment radius of 1.8′. As can be seen in Figure A.3 the field is dense, which is

not surprising given the Galactic location (l = 63.3◦ and b = −1.0◦).

Here we report the discovery of an unusual X-ray transient (hereafter referred to as

Swift J195509.6+261406) in the error circle of GRB070610 and followup optical, near-

infrared (NIR) and radio observations.

A.2 Swift J195509.6+261406: A Transient X-ray Source

The X-ray Telescope (XRT; Burrows et al. 2005b) began observing the field of GRB070610

3.2 ks after the initial BAT trigger (prompt slewing was disabled due to an Earth limb con-
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Figure A.1 15-150 keV Swift-BAT light curve of GRB070610, with 1-s time resolution.

The conversion factor to translate the ordinate to cgs flux units is 5.6× 10−7 erg cm−2 c−1

det (1 det = 0.16 cm2).

straint). The XRT detected a single uncatalogued variable source in the BAT error circle

at α = 19h55m9.′′6, δ = +26◦14′6.′′7 (90% confidence error circle of 4.′′3 radius; Pagani et al.

2007a). This position was further refined to α = 19h55m9.′′66, δ = +26◦14′5.′′2 (90% confi-

dence error circle of 1.′′2 radius 1).

The XRT continued to monitor Swift J195509.6+261406 over the course of the next

month until the source was no longer detected.

The XRT data were processed with xrtpipeline (v0.10.6). All data were obtained

in photon counting mode. In this mode the entire CCD is read and the time resolution

is limited to 2.5 s. We extracted grade 0–12 events (Burrows et al. 2005b) from a 15 pixel

radius circular region centered on the source. To account for the background, we extracted

events within a 40 pixel radius circular region in the vicinity of the transient but not

encompassing any other source in the field. We adaptively extracted the light curve binning

the data in order to have 10 counts per bin. The light curve was corrected for the extraction

region losses and for CCD defects as well as for vignetting by using the task xrtlccorr

(v0.1.9), which generates an orbit-by-orbit correction based on the instrument map.

The X-ray light curve of Swift J195509.6+261406 is shown in Figure A.4 and com-

1http://astro.berkeley.edu/∼nat/swift/xrt pos.html
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Figure A.2 Plot of duration (T90) and hardness ratio (HR) of 226 Swift bursts from

GRB041217 to GRB070616. We define hardness ratio as (H − S)/(H + S), where S

and H are energy fluences in 15–50 keV and 50–150 keV, respectively. The values of T90

and hardness ratio for GRB070610 (marked by a large filled black circle) are 4.6±0.4 s and

0.09 ± 0.11 (90% confidence level), respectively.

pared to a small sample of long-duration GRB afterglows in Figure A.5. Kann et al.

2007 were the first to suggest that this GRB was likely to be of Galactic origin. Clearly,

Swift J195509.6+261406 differs from typical GRB X-ray afterglows in two fundamental re-

spects. First, it does not exhibit the strong (overall) secular decrease in flux over timescales

of hours (Nousek et al. 2006; Zhang et al. 2006). While the decay index in long-duration

GRBs can vary markedly from one phase to another, Swift J195509.6+261406 shows no

significant decline until very late times (∼ 106 s).

Secondly, the XRT light curve of Swift J195509.6+261406 consists of spikes — never seen

before in any afterglow. In particular we draw the attention of the reader to a dramatic

flare at t ∼ 7.86 × 104 s, jumping by a factor of ∆f/f ∼ 100 in flux over a time scale

of ∆t/t ∼ 10−4 (see Figure A.4, inset). None of the sixty nine XRT flares described

in Chincarini et al. (2007) exhibit a comparable amplitude spike at late time. While a

strong X-ray flare has been seen in GRB050502B (Falcone et al. 2006) (see Figure A.5)

the fractional duration, ∆t/t is much larger (∼ 0.5). Less significant variability is present

throughout the duration of observations of Swift J195509.6+261406 .
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Figure A.3 Optical image (i′-band) of the field of GRB070610 obtained by the automated

Palomar 60-inch telescope on UT 2007 June 12. The BAT localization of GRB070610

has a radius of 1.8′, while the XRT localization of Swift J195509.6+261406 has a radius

of 4.3′′; both are indicated with black circles. The bright source in the XRT circle is

Swift J195509.6+261406 .

We searched the XRT flare for pulsations. 521 photons were extracted within 60′′of the

source position and corrected to the solar system barycenter with the task barycorr. To

search for pulsations we constructed the Z2
1 power spectrum to a maximum frequency of

0.2Hz (Buccheri et al. 1983). The largest observed value of Z2
1 was 25.2 at a frequency of

0.1446 Hz. Since Z2
n is distributed as χ2 with 2n degrees of freedom, this value corresponds

to a single trial detection significance of 4.8σ in equivalent Gaussian units. Given that we

have performed 350 trials, the significance of this detection is 3.4σ, and thus we do not

consider this result to be conclusive evidence of periodicity.

For spectral analysis the ancillary response files were generated with the task xrtmkarf.

We used the latest spectral redistribution matrices (v009). Data were extracted from single

or consecutive orbits in order to have at least 100 counts per spectrum. Spectra were

binned to a minimum of 15 counts per energy bin. The resulting spectra were inconsistent

with a blackbody (reduced χ2 =1.9) and consistent with a power law model (task phabs).

The best fit column density (NH) and photon index (Γ) for each epoch are summarized
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Table A.1. XRT Spectral Analysis

Epoch Start Total Exposure NH Γ

(MJD) (s) (1022 cm−2)

54261.907 4811 0.30+0.29
−0.23 1.43 ± 0.37

54262.641 7912 0.76+0.24
−0.18 1.93 ± 0.18

54263.268, 54264.004 2947, 10500 0.59+0.31
−0.23 1.11 ± 0.22

54265.387 6026 0.61+0.53
−0.33 1.33 ± 0.40

Flare . . . 0.92+0.91
−0.57 1.74 ± 0.48

All but flare . . . 0.72+0.14
−0.12 1.71 ± 0.11

Note. — We have fit the XRT data to a power-law model of the form

N(E) ∝ E−Γ, leaving the line-of-sight NH as a free parameter.

in Table A.1. Overall, we find that the inferred flux conversion is approximately 1 count

s−1 ≈ 1.3 × 10−10 erg cm−2 s−1 in the 0.3–10 keV band.

We extrapolate the XRT flare spectrum to BAT (15–50 keV) and predict a flux of 1.8 ×

10−9 erg cm−2s−1. This corresponds to a BAT count rate of 0.0032 counts s −1 det−1. This

is consistent with a 2-σ upper limit from two 64s intervals of BAT data straddling the XRT

flare — 0.0038 counts s −1 det−1 (at 78499.8 s) and 0.012 counts s −1 det−1(at 78563.8 s).

The inferred interstellar extinction along this low Galactic latitude is quite high and thus

uncertain: NH of 1.1×1022 cm−2 (Dickey & Lockman 1990); 0.8×1022 cm−2 (Kalberla et al.

2005); and 1.56-1.89×1022 cm−2 (Schlegel et al. 1998b). The former two estimates are

based on H I data whereas the latter on diffuse infrared emission. Given the uncer-

tainty in the inferred NH the XRT spectrum cannot be used to determine the distance

to Swift J195509.6+261406.

A.3 A Flickering Optical Variable

Rapid observations in response to the BAT trigger, in particular by the OPTIMA-Burst

team (Stefanescu et al. 2007a), revealed a rapidly variable (time scales as low as tens of

seconds) optical transient inside the XRT error circle of Swift J195509.6+261406. As-
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Figure A.4 XRT light curve of Swift J195509.6+261406 in the energy band 0.3–10 keV.

The dramatic X-ray flare at t ∼ 7.86 × 104 s is shown in the inset.

tronomers using other facilities — including the OSN 1.5-m telescope (Postigo et al. 2007),

the 2-m Schmidt telescope of the Thüringer Landessternwarte (Kann et al. 2007), the 25-cm

TAROT facility (Klotz et al. 2007), and the 40-cm Watcher telescope (French et al. 2007)

— confirmed the detection of this variable source. Detections and upper limits reported to

the GRB Coordinates Network (GCN2) are shown in Figure A.6.

Drawn by the excitement of these discoveries, we began monitoring the field of

Swift J195509.6+261406 in the i′ filter with the automated Palomar 60-inch telescope (P60;

Cenko et al. 2006b) starting at 5:47 UT 2007 June 12 and continued over the next several

nights. In addition, we imaged the field in R-, I- and g- bands with the Low Resolution

Imaging Spectrograph (LRIS; Oke et al. 1995) mounted at the Cassegrain focus of the Keck I

10-m telescope. All images were reduced using standard IRAF3 routines.

The light curve obtained from our observations is also summarized in Figure A.6. The

P60 and the Keck photometry can be found in Table A.5 and Table A.2 respectively.

2http://gcn.gsfc.nasa.gov/gcn3 archive.html
3IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Associ-

ation for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
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Table A.2. Optical Observations of Swift J195509.6+261406 at Keck and Palomar

Mean Epoch Facility Filter Exposure Magnitude

(2007 UT) (s) (s)

Jun 13.570 LRIS I 120 × 3 > 24.0

Jun 15.517 LRIS I 200 × 3 24.37 ± 0.21

Jun 15.524 LRIS R 180 × 1 22.25 ± 0.06

Jun 15.527 LRIS R 180 × 1 24.21 ± 0.13

Jun 15.531 LRIS R 180 × 1 23.28 ± 0.07

Jun 15.534 LRIS R 180 × 1 24.09 ± 0.11

Jun 15.594 LRIS R 45 × 8 > 25.0

Aug 13.336 LRIS R 300 × 4 > 26.0

Sep 13.362 LFC i′ 360 × 26 > 24.5

Note. — Zeropoints computed in the Vega system. Errors

quoted are 1-σ photometric and instrumental errors summed in

quadrature. Upper limits quoted are 3-σ. No correction has been

made for the large line-of-sight extinction.
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Figure A.5 XRT light curves of a small sample of extragalactic long-duration GRBs

(GRBs 050315, 050318, 050319, 050416A, and 050502B) are shown in grey. Data are from

Evans et al. 2007. All show the approximately power-law decay typical of GRB afterglows.

GRB050502B exhibits a bright flare around t ∼ 103 s (see Falcone et al. 2006). However,

the rise time of this flare is much longer than the spike seen in Swift J195509.6+261406

(shown in black).

The P60 light curve is dominated by flickering and magnificent flares on the night of UT

2007 June 12 (see Figure A.7). We observed over eleven flares with amplitudes greater than

one magnitude in only three hours. The brightest of these flares rose and dropped by more

than 3.5 magnitudes within 6 minutes. The amplitude of the flares is a lower limit because

the P60 images are not deep enough to detect the quiescent counterpart (see below). The

timescale is also an upper limit because it is entirely possible that variability is more rapid

than our sampling rate (∼ 60 s). If we define duty-cycle as the fraction of time for which

the Swift J195509.6+261406 was brighter than i′ < 20, then the duty cycle based on the

first night of data is 18.6%. Given that there was no detection on subsequent ten nights,

the duty cycle reduces to 5.8%.

We see a dramatic flare in the LRIS data five days (UT 2007 June 15) after the high-

energy emission, even though the peak magnitude is much fainter. The brightest observed

flare in R-band was 2 magnitudes in three minutes (see Figure A.8). Much like the behavior
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seen in X-rays (§A.2), such dramatic optical variability at late times is unlike anything seen

before from an extragalactic GRB optical afterglow. Unfortunately none of our optical

data directly overlap the XRT light curve, making a direct correlation between the two

impossible.

Two months after the burst, the optical counterpart faded in R-band to fainter than

26.0 and three months after the burst, faded in i′-band to fainter than 24.5 (see Table A.2).

Figure A.6 Optical light curve of Swift J195509.6+261406, including data from P60

(black), Keck/LRIS (black), and the literature (grey). (French et al. 2007; Postigo et al.

2007; Kann et al. 2007; Updike et al. 2007a; Stefanescu et al. 2007b; Yoshida et al. 2007;

Klotz et al. 2007; Stefanescu et al. 2007c; Updike et al. 2007b).

A.4 A Near Infrared Counterpart

Given the large line-of-sight extinction, we undertook late-time NIR imaging at a variety

of facilities to search for a quiescent counterpart to Swift J195509.6+261406. The results

of our campaign are summarized in Table A.3.
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Figure A.7 P60 i′-band light curve from the night of 2007 June 12. Upper limits are

indicated by grey inverted triangles. The rapid variability (time scales less than 60 s, our

sampling rate) at late times is unlike any previous long-duration GRB optical afterglow.

In detail, we observed the field of Swift J195509.6+261406 with the Near InfraRed

Imager and spectrograph (NIRI; Hodapp et al. 2003) mounted on the 8-m Gemini North

telescope on two occasions. On 2007 June 19 we obtained 18 × 60 s images in the K -band

under exquisite seeing (∼ 0.4′′) and photometric conditions. The observations on UT 2007

July 15 suffered from poor seeing and clouds.

On UT 2007 June 21, starting 13:10, we observed the transient with Laser Guide Star

Adaptive Optics (LGS-AO; Wizinowich et al. 2006; van Dam et al. 2006) on the Keck II

telescope and the Near-Infrared Camera 2 (NIRC2). A total of 17 images were obtained,

each consisting of three 20s co-added integrations, in the K ′ filter using the wide-angle

camera. We also obtained further late-time observations on UT 2007 Sep 21 and UT 2007

Sep 30.

Finally, J- and H-band images were obtained with the Wide-Field Infrared Camera

(WIRC; Wilson et al. 2003) mounted on the Palomar Hale 200-inch (P200) telescope. Thirty
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Figure A.8 Close up view of the optical field of the Swift J195509.6+261406 optical transient

using the LRIS instrument on the Keck I 10-m telescope; 2007 June 15 starting at 12:33

UT. All four images were taken in the R-band with a 180 s exposure in sequence. The

transient brightens by over two magnitudes in only three minutes about five days after the

burst trigger. Such rapid variability at late times is unprecedented from an extragalactic

GRB optical afterglow.

four images each with integration time of 30 s were taken in each filter on the night of UT

21 June 2007.

All but the LGS data were processed with standard IRAF routines. Custom routines in

Python and IDL (written by JSB and LP) were used for the LGS-AO reductions; a custom

distortion correction (obtained by PBC 4) was applied to the LGS-AO imaging. We created

an astrometric solution using our Gemini/NIRI K-band image from the night of June 19

relative to about fifty point sources from the 2-µm All-Sky Survey(2MASS; Skrutskie et al.

2006). The resulting RMS positional uncertainty was 0.125′′ in right ascension and 0.098′′

in declination. This NIRI K-band image was then used to create a catalog of about one

hundred point sources for astrometric matching with all other images. The NIRI K-band

image was chosen because of the excellent seeing conditions (∼ 0.4′′) and the larger field of

view in comparison to NIRC2. Typical RMS positional uncertainties relative to the reference

4http://www2.keck.hawaii.edu/inst/n2TopLev/post observing/dewarp/
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Table A.3. NIR Observations of Swift J195509.6+261406

Epoch Facility Filter Magnitude

(2007 UT)

Jun 19.549 Gemini-N/NIRI K 19.30 ± 0.23

Jun 21.220 Keck II/LGS-AO+NIRC2 K′ 19.83 ± 0.15

Jul 15.309 Gemini-N/NIRI K > 19.5

Jun 21.352 P200/WIRC J > 20.5

Jun 21.400 P200/WIRC H > 19.5

Sep 21.632 Keck II/LGS-AO+NIRC2 K′ > 20.3

Sep 30.264 Keck II/LGS-AO+NIRC2 K′ > 21.5

Note. — Errors quoted are 1-σ photometric and instrumental

errors summed in quadrature. Upper limits quoted are 3-σ. No

correction has been made for the large line-of-sight extinction.

image were ≈ 0.07′′ in each coordinate. Using these astrometric solutions, we determine

a position for the optical transient in the Keck R-band flares of α = 19h55m09.′′646, δ =

+26◦14′05.′′62 (J2000.0).

Despite the presence of two nearby objects (A and B), our astrometric accuracy is

sufficient to unambiguously identify th K-band counterpart to Swift J195509.6+261406 (X

in Figure A.9). Using the LGS-AO/NIRC2 image, we find that the location of this NIR

counterpart is α = 19h55m9.′′649, δ = +26◦14′5.′′65 (J2000.0), with an uncertainty of 100mas

in each direction.

Due to the crowded field, PSF-matched photometry was performed on all images using

the IRAF DAOPHOT package. We summarize our NIR observations in Table A.3. For refer-

ence, the RIJHKs magnitudes of two extremely nearby objects A and B are provided in

Table A.4. Our late-time data, over three and a half months after the burst, constrains the

quiescent counterpart to be fainter than K ′ > 21.5 (see Figure A.9).
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Table A.4. Photometry of Nearby Contaminating Sources A and B

Epoch Facility Filter Magnitude Magnitude

(2007 UT) Source A Source B

Jun 15.594 Keck I/LRIS R > 25.0 > 25.0

Aug 13.336 Keck I/LRIS R > 26.0 > 26.0

Jun 15.517 Keck I/LRIS I 24.83 ± 0.21 24.93 ± 0.22

Jun 21.352 P200/WIRC J > 20.5 > 20.5

Jun 21.400 P200/WIRC H > 19.5 > 19.5

Jun 21.220 Keck II/LGS K′ 20.30 ± 0.16 19.44 ± 0.14

Note. — Source B is 471 ± 22mas West and 670 ± 22mas South

of Swift J195509.6+261406 . In images with poorer angular resolu-

tion, stars A and B may contaminate the photometry of the transient

(i.e. our NIRI imaging).

A.5 Search for a Radio Counterpart

On 2007 June 15 we undertook Very Large Array (VLA)5 observations of Swift J195509.6+261406.

The observations were obtained in 2× 50MHz bands around 8.46GHz and lasted about an

hour.

We observed 1956+283 (a phase calibrator) for 0.8 minutes and then switched to Swift J195509.6+261406

for 4.8 minutes. The sequence ended with a 6 minute observation of 0137+331 (3C48; flux

calibrator).

Data were analyzed using the Astronomical Image Processing System (AIPS) software

of National Radio Astronomy Observatory (NRAO). VLA antennas N16, W64, E72 and

W48 and baseline combinations EVLA antennas E16, W24, N64, W40, E56, W48 and N40

were flagged. In total, flagging resulted in a loss of about 100 baselines.

Owing to the VLA being in the “A” configuration, we obtained excellent image resolution

of 0.42′′ × 0.21′′. However, Swift J195509.6+261406 was not detected and we get an upper

limit of 7.3± 31.5µJy.

5The National Radio Astronomy Observatory is a facility of the National Science Foundation operated

under cooperative agreement by Associated Universities, Inc.
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Figure A.9 A K-band image of the field of Swift J195509.6+261406 obtained with NIRC-2

imager behind the Keck II Laser Guide Star (LGS) system on 2007 June 21 (left) and 2007

Sep 30 (right). The 2-σ error circle of the optical transient (taken from our LRIS imaging)

is shown as a black circle overlaid on the LGS image. Clearly we can identify the object

marked as ’X’ as the NIR counterpart of Swift J195509.6+261406.

A.6 Archival Observations

A query of the Simbad database reveals no catalogued object within the BAT localization.

The INTEGRAL observatory conducts regular scans of the Galactic plane and, in addition,

performed several long pointed observations of the field around Swift J195509.6+261406.

Over the past four years, this field has been observed with the IBIS instrument to total

1.5 Ms being within its fully-coded field-of-view (FCFOV, 9◦ × 9◦) and up to 2.5 Ms being

within the partially coded field-of-view (29◦ × 29◦). The efficiency of observations within

the FCFOV falls to zero at the field’s edge. The coverage of these 4 years by observations

was non-uniform with the maximum exposure reached in the fall of 2006 (for FCFOV).

There is no reported source close to the transient’s position in the recent IBIS/ISGRI

soft gamma-ray catalogs (Krivonos et al. 2007; Bird et al. 2007). We have also reanalyzed

the archival data of INTEGRAL and failed to detect the source. A 4-σ limit of 0.9 mCrab

in the 18–45 keV band (or 0.8 mCrab in the 17–60 keV band) has been received (flux of 1

mCrab corresponds to 1.1 and 1.4 × 10−11 erg cm−2 s−1 in these bands respectively for a

source with Crab-like spectrum). There was also no source detected on a time scale of one
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individual pointing (2.0–3.6 ksec). We derive a 4-σ limit of ∼20 mCrab.

Spitzer observed the position of Swift J195509.6+261406 during the Galactic Legacy

Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) on 2004 Oct 31st. Conservative

upper limits for a source at the K-band position are 280, 350, 1700 and 6350 µJy at

3.6, 4.5, 5.8 and 8.0µm respectively.

A.7 Basic Considerations: Distance, Energetics and Radius

The fluence, the hardness and the duration of GRB070610 are not atypical of GRBs. How-

ever, Swift J195509.6+261406 is an atypical afterglow in the X-ray band (§A.2). The optical

counterpart is also atypical. Correcting for the total interstellar extinction along the line

of sight, the apparent i′-band magnitude of the optical transient is as bright as ∼ 13mag

more than a day after the burst trigger — there is no other optical extragalactic afterglow

as bright at such late times.

The issue that faces us is quite simple: is GRB070610 related to Swift J195509.6+261406?

For extragalactic long-duration GRBs that the Swift-XRT was able to observe within an

hour of the burst trigger, the overwhelming majority have a detected X-ray afterglow.

We therefore consider it unlikely that GRB070610 arises from a background (i.e. extra-

galactic) event. The spatial and temporal coincidence of GRB070610 and Swift J195509.6+261406

suggest that these are strongly related. If so, the event is of Galactic origin. Accept-

ing this association we turn our attention to the fundamental parameters characterizing

Swift J195509.6+261406.

The extinction estimate based on the full X-ray spectrum excluding the flare (see Ta-

ble A.1) corresponds to E(B−V ) = 1.0–1.5 mag (Based on optical spectral classification of

nearby stars, we find E(B−V ) ∼ 1.1). Assuming R = 3.1, this corresponds to AK = 0.4–0.5

mag. The infrared K ′-band magnitude of the NIR counterpart Swift J195509.6+261406 is

no brighter than ∼ 21.5 (Table A.3). From late-time optical observations, we also know

that R > 26.0 (Table A.2). Since the farthest distance for a star in the disk of our galaxy

is 30 kpc, we get extinction-corrected absolute magnitude of MK >3.6 and MR >4.8. This

clearly rules out the luminosity class of giants and supergiants (Cox 2000a). This also con-

strains the spectral type to be cooler than G8 (Kraus & Hillenbrand 2007b). If we assume

a distance of 10 kpc, we can further constrain it to a spectral type cooler than M3.
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The prompt γ-ray burst peak flux is 5 × 10−8 erg cm−2s−1, the peak X-ray flare flux

is twice as faint and the mean flux over the first week is approximately a factor of 104

fainter than the burst peak flux. These translate to the following isotropic luminosities:

6× 1038 d210 erg s−1, 3× 1038 d210 erg s−1 and 5× 1034 d210 erg s−1.

The prompt gamma-rays can constrain the radius of the emission. The BAT burst

duration of several seconds (see Figure A.1) puts an upper limit on the size of the emitting

region (along the line of sight) to be smaller than ∼ 1011βc cm, where βc is the causal speed

in units of the light speed (i.e, the speed in which information, such as sound, travels).

Since we expect βc ≪ 1 in non-compact objects (e.g., main sequence stars) the source of

the prompt gamma-rays is a black hole, a neutron star or a white dwarf (the sound crossing

time of the latter is seconds).

On the other hand, the non-thermal gamma-rays can be used to put a lower limit on

the emission radius. If the gamma-ray spectrum continues to high energy (E > mec
2) then

pair production opacity starts playing a role. Using the formulation of Lejeune & Schaerer

(2001) and assuming a non-relativistic source we find that the size of the emitting region

has to be ∼> LσT /(0.1πmec
3) ≈ 109d210 cm, where the approximated numerical factor (taken

here as 0.1π) depends on the radiation spectrum and the geometry of the source (Svensson

1987). This radius implies that if the engine of the burst is a neutron star or a black hole

then the observed gamma-rays are produced far from the engine by (possibly relativistic)

ejecta.

A.8 A Curious Galactic Transient

With a compact object (§A.7) and a fainter than K-dwarf companion, Swift J195509.6+261406

is likely a binary system. We now turn our attention to investigate the mechanism powering

the unusual emission, with an emphasis on identifying analogous systems in our Galaxy.

At first blush, soft γ-ray repeater (SGR) flares appear to be a viable model for

Swift J195509.6+261406. SGR exhibits hard X-ray flares with durations ranging from

0.1 s to 10 s and isotropic luminosities of 1046 erg (Aptekar et al. 2001; Hurley et al. 2005).

Furthermore, variable X-ray afterglows have been detected after several SGR outbursts (see

e.g., Woods & Thompson 2006).

However, this interpretation has several problems. First, SGR flares lasting longer than
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1 s, dubbed “intermediate” SGR flares, have an energy release ≈ 1041 erg, two orders of

magnitude larger than our upper limit for Swift J195509.6+261406 (Woods & Thompson

2006). Second, pulsations are typically observed in SGR flare X-ray afterglows at the neu-

tron star spin rate. We see no evidence for pulsations from Swift J195509.6+261406 (though

constrained by the 2.5 s sampling interval). Finally, no known SGR has a companion. If

Swift J195509.6+261406 were caused by an SGR flare, a cooler than K-dwarf companion

would make Swift J195509.6+261406 the first binary magnetar.

Unlike SGR flares, the remaining possibilities are ultimately powered by accretion in-

stead of magnetic activity (Arefiev et al. 2003 provide a comprehensive review of such tran-

sients in the hard X-ray sky). Cygnus X-1, a black hole binary with a supergiant companion,

exhibits hard x-ray outbursts (Stern et al. 2001; Golenetskii et al. 2003). The INTEGRAL

mission has identified a class of bright hard X-ray transients, the so-called Supergiant Fast

X-ray Transients (SFXT; Negueruela et al. 2007). However, these events are relatively soft,

and have timescales of 103 s or longer. Furthermore, the super-giant donor is an essential

part of the SFXT story — the X-ray flares arise from accretion of “blobs” in the wind of

the supergiant star. The faintness of the quiescent counterpart convincingly rules out the

giant and supergiant scenarios.

The high peak luminosity strongly suggests an event like CICam (see Belloni et al.

1999). However, this too is a questionable analog for the reasons of the lack of a bright

optical/NIR counterpart and also the short flare duration. For the same reasons, the analogy

to A0538−66 (the well known Be-pulsar X-ray binary in the LMC) can also be ruled out.

The bursting pulsar GROJ1744−28 shares some properties with those from GRB070610.

From 1995–1997, thousands of bursts were detected by BATSE out to> 60 keV (Kouveliotou et al.

1996; Woods et al. 1999). The spectrum of the bursts in BATSE and RXTE was adequately

modeled by a thermal bremsstrahlung model having kT ∼ 10 keV; burst durations were ap-

proximately 10 s. GROJ1744−28 consists of a neutron star in an 11.8 d orbit with a low

mass companion (Finger et al. 1996). However, unlike Swift J195509.6+261406, there is

no evidence for a highly variable optical emission associated with these bursts. Also the

high-energy bursts from GROJ1744−28 are highly repetitive. Searches for other episodes

of emission from GRB070610 did not yield any obvious candidates either in the BAT data

or in the extensive INTEGRAL survey (§A.6) and the Interplanetary Network (§A.9).
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The best analog to the X-ray and optical emission from Swift J195509.6+261406 is

V4641 Sgr (Markwardt et al. 2007) — a transient which has been recognized by several

authors as being one of the fastest transients in the hard X-ray (in’t Zand et al. 2000;

Uemura et al. 2002; Arefiev et al. 2003). V4641 Sgr came to the attention of astronomers

through a major outburst in 1999 (see in’t Zand et al. 2000). We now infer that this object

is a binary consisting of a B9 III star orbiting a 9M⊙ black hole (Orosz et al. 2001). The

system exhibited strong and fast X-ray and optical variability — similar to what we see in

Swift J195509.6+261406.

Rapid (< 100 s) and intense (modulation index, S = 〈f〉/∆(f) ∼> 10; here f is the

X-ray flux and ∆f is the variability in f) variability but with mean X-ray luminosity

〈L〉 that is well below Eddington flux mark V4641 Sgr from the other black hole bi-

naries (Revnivtsev et al. 2002). The classical black hole LMXBs such as A0620−00 ex-

hibit X-ray novae with peak super-Eddington flux and a decline over a month (see re-

views by Tanaka & Shibazaki 1996; Remillard & McClintock 2006). Micro-quasars such as

GRS 1915+10 exhibit intense variations (with S approaching ten) but only when 〈L〉 is

extremely high, 〈L〉 ∼ 1039 erg s−1 (e.g. Belloni et al. 1997; Muno et al. 1999).

The first difference between Swift J195509.6+261406 and V4641 Sgr is the donor star:

Swift J195509.6+261406 has a cool dwarf donor, while V4641 Sgr has a B9 giant donor. We

suggest that the distinctive variability of V4641 Sgr arises from the black hole companion

and has less to do with the nature of the donor star. This conjecture would allow us to infer

that the compact object in Swift J195509.6+261406 is also a black hole. While V4641 Sgr

seems to be the closest event we have to Swift J195509.6+261406, it is clear that no perfect

analog to Swift J195509.6+261406 exists. In particular, there has been no report of a burst

of gamma-rays from V4641 Sgr. However, the absence could be due to the short duration

duty cycle of the gamma-ray bursts.

With two similar objects in hand—V4641 Sgr and GRB070610—we now have the luxury

of defining a new class of transients: fast X-ray novae which, in addition to the rapid X-ray

and optical variability but at sub-Eddington luminosities, are also (apparently) marked by

GRB-like bursts.

What differentiates fast X-ray novae from the regular X-ray novae? Regular X-ray novae

are essentially black hole binaries undergoing the equivalent of dwarf novae i.e. instabilities
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in the disk. During the major burst of 1999, V4641 Sgr exhibited radio emission and

relativistic motion (Hjellming et al. 2000). The radio flux of V4641 Sgr declined very steeply

initially; from 360 mJy at 8.3 GHz to 30 mJy at 8.46 GHz in one day (Hjellming et al.

2000). According to Orosz et al. 2001, the distance to V4641 Sgr is 7.4–12.3 kpc and the

apparent expansion velocity is > 9.5c (assuming the lowest proper motion estimate from

Hjellming et al. 2000) — making V4641 Sgr the most relativistic of Galactic sources. This

suggests that perhaps the key difference between fast X-ray novae and the regular X-ray

novae is the speed at which the ejecta is emitted. Unfortunately, neither was GRB070610

as bright as V4641 Sgr in the optical and X-ray immediately after the flare nor were our

radio observations undertaken promptly after the detection of GRB 070610 to verify this

hypothesis.

A.9 Implications: Galactic GRBs

Spurred by the connection between Swift J195509.6+261406 with a Galactic transient we

investigated whether this source or its analog V4641 Sgr emitted bursts of gamma-rays in

the past. We have constructed a list of 1211 GRBs detected by the IPN (Hurley et al.

1999), whose position is constrained by at least one annulus with semi-width smaller than

0.5 deg. This catalog contains events observed from 1990 November 12, to 2005 October 31

(see Ofek 2007 for more details). We did not find any IPN GRB that coincides with either

of these positions.

We also searched for Swift-BAT sub-threshold events which are consistent with the

positions of V4641 Sgr and Swift J195509.6+261406. There is no BAT sub-threshold event

within 5′ from the location of V4641 Sgr. But, we find an event at a signal-to-noise ratio

(SNR) of 5.0 located at RA=298.77◦, Dec=+26.221◦ (1.8′ from the position of GRB070610)

and occurring on UT 2006 Nov 17.7812. However, adjusted for the approximate number of

times this field has been observed, the significance drops below 2-σ. We consider it likely

this sub-threshold event is nothing more than a statistical fluctuation.

V4641 Sgr has been undergoing major bursts approximately every two years (see Uemura et al.

2004). The absence of a detection of a gamma-ray burst could simply be due to lack of

coverage or that not all such bursting activity are preceded by a burst of gamma-rays.

Another possible member of this class of fast X-ray novae is XTEJ1901+014 (Karasev et al.
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2007) which is potentially associated with GRB020406 (Remillard & Smith 2002).

Nonetheless, it is reasonable to speculate that a burst similar to Swift J195509.6+261406

occurs in our Galaxy, say, every decade. This alone immediately makes Swift J195509.6+261406

and related events as the most common of long-duration gamma-ray bursts. (The mean

time between cosmological GRBs in our Galaxy is no smaller than 105 yr).

Several hundred years ago, optical astronomers put all new apparitions of stars as novae

stella. Over the past century astronomers have shown that novae stella split into three

distinctly different phenomena: novae, supernovae of type Ia and core collapse supernovae.

The novae, in turn, are divided into five families which arise from instabilities in the accre-

tion disk feeding a white dwarf, neutron star or a black hole and on the surfaces of white

dwarfs and neutron stars.

History is repeating itself. Only thirty years ago, astronomers referred to all bursts of

gamma-ray radiation as GRBs. Over the last decade astronomers have established SHBs

and LSBs to be of cosmological origin (Metzger et al. 1997; Gehrels et al. 2005; Bloom et al.

2006b; Fox et al. 2005) and reasonably established their origin: coalescence of compact

objects and deaths of massive stars respectively.

However, fissures are already developing. Recently, hypergiant flares from magnetars in

our own Galaxy and nearby galaxies have been found to contaminate the SHB sample. The

Galactic rate of the hypergiant flares is likely 10−3 yr−1 (Ofek 2007) much larger than the

estimated Galactic SHB rate of 10−6 yr−1 (Nakar et al. 2006; Guetta & Piran 2006).

Our galaxy has at least two fast X-ray novae systems (V4641 Sgr and Swift J195509.6+261406).

The rate of GRB 070610-like events (with no assumption about beaming) is likely to be

about 3.5+8.0
−2.9 yr

−1 which is five orders of magnitude larger than the estimated cosmological

GRBs rate. However, these events are yet unobservable outside our galaxy with the current

limitation in sensitivity of high energy detectors. As usual the meekest events dominate the

demography.
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Table A.5: Optical Observations of Swift J195509.6+261406

with the Palomar 60-inch

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.2416 P60 i’ 32.92 30.0 × 1 19.1 ± 0.14

June 12.2422 P60 i’ 32.94 30.0 × 1 >19.8

June 12.2433 P60 i’ 32.96 30.0 × 3 >19.8

June 12.2444 P60 i’ 32.99 30.0 × 5 19.7 ± 0.16

June 12.2450 P60 i’ 33.00 30.0 × 5 19.6 ± 0.15

June 12.2456 P60 i’ 33.02 30.0 × 5 19.6 ± 0.15

June 12.2462 P60 i’ 33.03 30.0 × 5 19.7 ± 0.15

June 12.2467 P60 i’ 33.05 30.0 × 5 >19.8

June 12.2473 P60 i’ 33.06 30.0 × 5 >19.8

June 12.2479 P60 i’ 33.07 30.0 × 5 >19.8

June 12.2484 P60 i’ 33.09 30.0 × 1 >19.8

June 12.2484 P60 i’ 33.09 30.0 × 5 >19.8

June 12.2490 P60 i’ 33.10 30.0 × 1 18.9 ± 0.13

June 12.2496 P60 i’ 33.11 30.0 × 1 18.7 ± 0.12

June 12.2501 P60 i’ 33.13 30.0 × 1 >19.8

June 12.2513 P60 i’ 33.15 30.0 × 5 >19.8

June 12.2518 P60 i’ 33.17 30.0 × 3 19.8 ± 0.18

June 12.2518 P60 i’ 33.17 30.0 × 5 19.7 ± 0.17

June 12.2524 P60 i’ 33.18 30.0 × 3 19.7 ± 0.16

June 12.2529 P60 i’ 33.19 30.0 × 3 19.7 ± 0.16

Continued on Next Page. . .
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Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.2541 P60 i’ 33.22 30.0 × 5 >19.9

June 12.2547 P60 i’ 33.23 30.0 × 1 >19.8

June 12.2547 P60 i’ 33.23 30.0 × 5 >19.9

June 12.2552 P60 i’ 33.25 30.0 × 1 18.5 ± 0.14

June 12.2558 P60 i’ 33.26 30.0 × 1 >19.8

June 12.2569 P60 i’ 33.29 30.0 × 1 >19.9

June 12.2569 P60 i’ 33.29 30.0 × 3 >19.9

June 12.2569 P60 i’ 33.29 30.0 × 5 >19.9

June 12.2575 P60 i’ 33.30 30.0 × 1 19.2 ± 0.15

June 12.2581 P60 i’ 33.32 30.0 × 1 19.8 ± 0.17

June 12.2598 P60 i’ 33.36 30.0 × 5 19.9 ± 0.16

June 12.2604 P60 i’ 33.37 30.0 × 5 >19.9

June 12.2610 P60 i’ 33.39 30.0 × 5 >19.9

June 12.2615 P60 i’ 33.40 30.0 × 5 >19.9

June 12.2621 P60 i’ 33.41 30.0 × 5 >20.0

June 12.2626 P60 i’ 33.43 30.0 × 5 >20.0

June 12.2632 P60 i’ 33.44 30.0 × 3 19.9 ± 0.16

June 12.2632 P60 i’ 33.44 30.0 × 5 >20.0

June 12.2638 P60 i’ 33.45 30.0 × 3 19.7 ± 0.16

June 12.2644 P60 i’ 33.47 30.0 × 3 19.6 ± 0.15

June 12.2649 P60 i’ 33.48 30.0 × 3 19.8 ± 0.16

June 12.2655 P60 i’ 33.50 30.0 × 3 19.9 ± 0.17

June 12.2666 P60 i’ 33.52 30.0 × 3 >20.0

June 12.2666 P60 i’ 33.52 30.0 × 5 19.8 ± 0.16

June 12.2678 P60 i’ 33.55 30.0 × 1 19.4 ± 0.14

June 12.2678 P60 i’ 33.55 30.0 × 3 >20.0

June 12.2678 P60 i’ 33.55 30.0 × 5 19.9 ± 0.16

Continued on Next Page. . .
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Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.2689 P60 i’ 33.58 30.0 × 3 19.9 ± 0.17

June 12.3132 P60 i’ 34.64 30.0 × 3 20.2 ± 0.19

June 12.3225 P60 i’ 34.86 30.0 × 3 >20.4

June 12.3230 P60 i’ 34.88 30.0 × 3 19.9 ± 0.16

June 12.3236 P60 i’ 34.89 30.0 × 3 20.1 ± 0.16

June 12.3242 P60 i’ 34.90 30.0 × 3 20.3 ± 0.19

June 12.3247 P60 i’ 34.92 30.0 × 3 20.3 ± 0.19

June 12.3253 P60 i’ 34.93 30.0 × 1 >20.3

June 12.3253 P60 i’ 34.93 30.0 × 3 20.2 ± 0.19

June 12.3259 P60 i’ 34.94 30.0 × 1 19.1 ± 0.13

June 12.3265 P60 i’ 34.96 30.0 × 1 19.4 ± 0.14

June 12.3270 P60 i’ 34.97 30.0 × 1 >20.3

June 12.3288 P60 i’ 35.01 30.0 × 5 >20.3

June 12.3293 P60 i’ 35.03 30.0 × 5 >20.3

June 12.3299 P60 i’ 35.04 30.0 × 5 >20.3

June 12.3305 P60 i’ 35.05 30.0 × 5 >20.4

June 12.3311 P60 i’ 35.07 30.0 × 5 20.3 ± 0.17

June 12.3316 P60 i’ 35.08 30.0 × 5 20.2 ± 0.18

June 12.3322 P60 i’ 35.10 30.0 × 5 >20.4

June 12.3328 P60 i’ 35.11 30.0 × 5 >20.5

June 12.3334 P60 i’ 35.12 30.0 × 5 >20.5

June 12.3339 P60 i’ 35.14 30.0 × 3 20.4 ± 0.17

June 12.3339 P60 i’ 35.14 30.0 × 5 20.2 ± 0.17

June 12.3345 P60 i’ 35.15 30.0 × 3 20.3 ± 0.18

June 12.3351 P60 i’ 35.17 30.0 × 3 20.1 ± 0.16

June 12.3357 P60 i’ 35.18 30.0 × 3 20.3 ± 0.17

June 12.3363 P60 i’ 35.19 30.0 × 1 20.2 ± 0.20

Continued on Next Page. . .
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Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.3363 P60 i’ 35.19 30.0 × 3 20.1 ± 0.17

June 12.3369 P60 i’ 35.21 30.0 × 1 19.7 ± 0.17

June 12.3380 P60 i’ 35.24 30.0 × 3 20.0 ± 0.17

June 12.3386 P60 i’ 35.25 30.0 × 3 20.3 ± 0.17

June 12.3392 P60 i’ 35.26 30.0 × 1 >20.3

June 12.3392 P60 i’ 35.26 30.0 × 3 20.3 ± 0.19

June 12.3397 P60 i’ 35.28 30.0 × 1 19.1 ± 0.13

June 12.3403 P60 i’ 35.29 30.0 × 1 >20.3

June 12.3409 P60 i’ 35.30 30.0 × 1 >20.3

June 12.3420 P60 i’ 35.33 30.0 × 1 20.0 ± 0.16

June 12.3420 P60 i’ 35.33 30.0 × 3 20.0 ± 0.15

June 12.3432 P60 i’ 35.36 30.0 × 3 20.1 ± 0.17

June 12.3443 P60 i’ 35.39 30.0 × 5 >20.4

June 12.3449 P60 i’ 35.40 30.0 × 5 >20.4

June 12.3455 P60 i’ 35.42 30.0 × 3 20.2 ± 0.18

June 12.3455 P60 i’ 35.42 30.0 × 5 20.2 ± 0.18

June 12.3466 P60 i’ 35.44 30.0 × 5 20.2 ± 0.18

June 12.3472 P60 i’ 35.46 30.0 × 5 >20.3

June 12.3478 P60 i’ 35.47 30.0 × 5 >20.3

June 12.3484 P60 i’ 35.48 30.0 × 5 >20.3

June 12.3490 P60 i’ 35.50 30.0 × 5 >20.3

June 12.3495 P60 i’ 35.51 30.0 × 1 >20.3

June 12.3495 P60 i’ 35.51 30.0 × 5 >20.4

June 12.3501 P60 i’ 35.53 30.0 × 1 >20.3

June 12.3507 P60 i’ 35.54 30.0 × 1 >20.3

June 12.3513 P60 i’ 35.55 30.0 × 1 >20.2

June 12.3524 P60 i’ 35.58 30.0 × 5 >20.4

Continued on Next Page. . .
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Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.3530 P60 i’ 35.60 30.0 × 5 >20.3

June 12.3536 P60 i’ 35.61 30.0 × 5 >20.4

June 12.3542 P60 i’ 35.62 30.0 × 5 >20.4

June 12.3547 P60 i’ 35.64 30.0 × 5 >20.4

June 12.3553 P60 i’ 35.65 30.0 × 5 >20.4

June 12.3559 P60 i’ 35.66 30.0 × 5 20.4 ± 0.18

June 12.3565 P60 i’ 35.68 30.0 × 5 20.3 ± 0.18

June 12.3571 P60 i’ 35.69 30.0 × 5 20.3 ± 0.18

June 12.3576 P60 i’ 35.71 30.0 × 5 >20.3

June 12.3582 P60 i’ 35.72 30.0 × 5 >20.3

June 12.3588 P60 i’ 35.73 30.0 × 3 20.3 ± 0.17

June 12.3588 P60 i’ 35.73 30.0 × 5 20.3 ± 0.17

June 12.3594 P60 i’ 35.75 30.0 × 3 20.2 ± 0.18

June 12.3605 P60 i’ 35.78 30.0 × 5 20.2 ± 0.18

June 12.3611 P60 i’ 35.79 30.0 × 5 20.3 ± 0.18

June 12.3617 P60 i’ 35.80 30.0 × 5 >20.4

June 12.3623 P60 i’ 35.82 30.0 × 5 20.3 ± 0.18

June 12.3628 P60 i’ 35.83 30.0 × 3 20.3 ± 0.20

June 12.3628 P60 i’ 35.83 30.0 × 5 20.1 ± 0.18

June 12.3635 P60 i’ 35.85 30.0 × 3 20.1 ± 0.18

June 12.3641 P60 i’ 35.86 30.0 × 3 20.0 ± 0.17

June 12.3646 P60 i’ 35.87 30.0 × 3 20.2 ± 0.18

June 12.3652 P60 i’ 35.89 30.0 × 3 >20.4

June 12.3658 P60 i’ 35.90 30.0 × 3 20.2 ± 0.17

June 12.3670 P60 i’ 35.93 30.0 × 1 >20.4

June 12.3670 P60 i’ 35.93 30.0 × 3 19.9 ± 0.16

June 12.3676 P60 i’ 35.95 30.0 × 1 20.0 ± 0.16

Continued on Next Page. . .
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Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.3682 P60 i’ 35.96 30.0 × 1 20.2 ± 0.19

June 12.3694 P60 i’ 35.99 30.0 × 3 20.3 ± 0.18

June 12.3700 P60 i’ 36.00 30.0 × 3 20.2 ± 0.16

June 12.3705 P60 i’ 36.02 30.0 × 3 20.0 ± 0.16

June 12.3711 P60 i’ 36.03 30.0 × 3 20.0 ± 0.16

June 12.3717 P60 i’ 36.04 30.0 × 1 >20.4

June 12.3717 P60 i’ 36.04 30.0 × 3 >20.4

June 12.3729 P60 i’ 36.07 30.0 × 3 20.2 ± 0.19

June 12.3735 P60 i’ 36.09 30.0 × 3 20.2 ± 0.17

June 12.3740 P60 i’ 36.10 30.0 × 3 >20.4

June 12.3746 P60 i’ 36.11 30.0 × 3 20.3 ± 0.17

June 12.3752 P60 i’ 36.13 30.0 × 1 >20.4

June 12.3752 P60 i’ 36.13 30.0 × 3 20.2 ± 0.18

June 12.3764 P60 i’ 36.16 30.0 × 3 20.3 ± 0.18

June 12.3776 P60 i’ 36.18 30.0 × 5 20.3 ± 0.17

June 12.3782 P60 i’ 36.20 30.0 × 1 >20.4

June 12.3782 P60 i’ 36.20 30.0 × 5 >20.4

June 12.3787 P60 i’ 36.21 30.0 × 1 16.7 ± 0.12

June 12.3793 P60 i’ 36.23 30.0 × 1 19.2 ± 0.12

June 12.3799 P60 i’ 36.24 30.0 × 1 19.0 ± 0.13

June 12.3805 P60 i’ 36.26 30.0 × 1 >20.4

June 12.3817 P60 i’ 36.28 30.0 × 3 20.0 ± 0.16

June 12.3817 P60 i’ 36.28 30.0 × 5 20.4 ± 0.17

June 12.3823 P60 i’ 36.30 30.0 × 3 20.3 ± 0.18

June 12.3829 P60 i’ 36.31 30.0 × 3 20.3 ± 0.18

June 12.3840 P60 i’ 36.34 30.0 × 1 >20.4

June 12.3840 P60 i’ 36.34 30.0 × 3 >20.4

Continued on Next Page. . .
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Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.3840 P60 i’ 36.34 30.0 × 5 20.3 ± 0.18

June 12.3846 P60 i’ 36.35 30.0 × 1 18.5 ± 0.13

June 12.3852 P60 i’ 36.37 30.0 × 1 19.9 ± 0.16

June 12.3858 P60 i’ 36.38 30.0 × 1 >20.5

June 12.3869 P60 i’ 36.41 30.0 × 3 20.0 ± 0.17

June 12.3875 P60 i’ 36.42 30.0 × 3 20.1 ± 0.17

June 12.3881 P60 i’ 36.44 30.0 × 1 >20.5

June 12.3881 P60 i’ 36.44 30.0 × 3 20.2 ± 0.19

June 12.3887 P60 i’ 36.45 30.0 × 1 17.5 ± 0.11

June 12.3893 P60 i’ 36.47 30.0 × 1 19.3 ± 0.14

June 12.3899 P60 i’ 36.48 30.0 × 1 >20.4

June 12.3917 P60 i’ 36.52 30.0 × 5 20.3 ± 0.17

June 12.3923 P60 i’ 36.54 30.0 × 3 20.3 ± 0.18

June 12.3923 P60 i’ 36.54 30.0 × 5 20.3 ± 0.17

June 12.3935 P60 i’ 36.57 30.0 × 5 20.4 ± 0.18

June 12.3940 P60 i’ 36.58 30.0 × 5 20.4 ± 0.19

June 12.3946 P60 i’ 36.59 30.0 × 1 >20.4

June 12.3946 P60 i’ 36.59 30.0 × 5 20.4 ± 0.19

June 12.3952 P60 i’ 36.61 30.0 × 1 19.6 ± 0.15

June 12.3958 P60 i’ 36.62 30.0 × 1 20.0 ± 0.15

June 12.3970 P60 i’ 36.65 30.0 × 3 20.3 ± 0.19

June 12.3970 P60 i’ 36.65 30.0 × 5 20.4 ± 0.19

June 12.3976 P60 i’ 36.67 30.0 × 3 20.3 ± 0.19

June 12.3982 P60 i’ 36.68 30.0 × 1 >20.4

June 12.3982 P60 i’ 36.68 30.0 × 3 20.4 ± 0.18

June 12.3988 P60 i’ 36.69 30.0 × 1 18.7 ± 0.13

June 12.3993 P60 i’ 36.71 30.0 × 1 >20.5

Continued on Next Page. . .
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Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.4005 P60 i’ 36.74 30.0 × 3 20.2 ± 0.18

June 12.4011 P60 i’ 36.75 30.0 × 3 20.3 ± 0.19

June 12.4017 P60 i’ 36.76 30.0 × 3 20.4 ± 0.18

June 12.4029 P60 i’ 36.79 30.0 × 5 20.5 ± 0.19

June 12.4035 P60 i’ 36.81 30.0 × 5 20.4 ± 0.19

June 12.4041 P60 i’ 36.82 30.0 × 3 20.3 ± 0.18

June 12.4041 P60 i’ 36.82 30.0 × 5 20.3 ± 0.18

June 12.4047 P60 i’ 36.84 30.0 × 3 20.1 ± 0.18

June 12.4052 P60 i’ 36.85 30.0 × 1 >20.5

June 12.4052 P60 i’ 36.85 30.0 × 3 >20.5

June 12.4058 P60 i’ 36.86 30.0 × 1 >20.6

June 12.4064 P60 i’ 36.88 30.0 × 1 >20.6

June 12.4070 P60 i’ 36.89 30.0 × 1 >20.6

June 12.4076 P60 i’ 36.91 30.0 × 1 >20.6

June 12.4082 P60 i’ 36.92 30.0 × 1 >20.6

June 12.4088 P60 i’ 36.93 30.0 × 1 >20.7

June 12.4094 P60 i’ 36.95 30.0 × 1 >20.7

June 12.4118 P60 i’ 37.01 30.0 × 5 20.5 ± 0.18

June 12.4124 P60 i’ 37.02 30.0 × 5 20.5 ± 0.18

June 12.4130 P60 i’ 37.03 30.0 × 5 20.7 ± 0.20

June 12.4136 P60 i’ 37.05 30.0 × 3 20.5 ± 0.17

June 12.4136 P60 i’ 37.05 30.0 × 5 20.7 ± 0.20

June 12.4142 P60 i’ 37.06 30.0 × 3 20.6 ± 0.19

June 12.4153 P60 i’ 37.09 30.0 × 5 20.5 ± 0.19

June 12.4159 P60 i’ 37.11 30.0 × 5 >20.7

June 12.4165 P60 i’ 37.12 30.0 × 3 20.6 ± 0.20

June 12.4165 P60 i’ 37.12 30.0 × 5 20.7 ± 0.21

Continued on Next Page. . .
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Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.4171 P60 i’ 37.13 30.0 × 1 >20.7

June 12.4171 P60 i’ 37.13 30.0 × 3 20.5 ± 0.18

June 12.4177 P60 i’ 37.15 30.0 × 1 >20.7

June 12.4183 P60 i’ 37.16 30.0 × 1 >20.7

June 12.4195 P60 i’ 37.19 30.0 × 1 >20.6

June 12.4195 P60 i’ 37.19 30.0 × 3 20.6 ± 0.19

June 12.4201 P60 i’ 37.21 30.0 × 1 19.6 ± 0.15

June 12.4207 P60 i’ 37.22 30.0 × 1 20.4 ± 0.20

June 12.4219 P60 i’ 37.25 30.0 × 1 20.0 ± 0.19

June 12.4219 P60 i’ 37.25 30.0 × 3 20.0 ± 0.17

June 12.4225 P60 i’ 37.26 30.0 × 1 19.3 ± 0.14

June 12.4231 P60 i’ 37.28 30.0 × 1 20.4 ± 0.18

June 12.4243 P60 i’ 37.31 30.0 × 3 20.5 ± 0.18

June 12.4249 P60 i’ 37.32 30.0 × 3 >20.7

June 12.4255 P60 i’ 37.33 30.0 × 1 >20.6

June 12.4255 P60 i’ 37.33 30.0 × 3 20.6 ± 0.21

June 12.4261 P60 i’ 37.35 30.0 × 1 >20.6

June 12.4267 P60 i’ 37.36 30.0 × 1 >20.6

June 12.4273 P60 i’ 37.38 30.0 × 1 >20.6

June 12.4279 P60 i’ 37.39 30.0 × 1 19.6 ± 0.15

June 12.4285 P60 i’ 37.41 30.0 × 1 >20.6

June 12.4291 P60 i’ 37.42 30.0 × 1 >20.6

June 12.4297 P60 i’ 37.44 30.0 × 1 19.7 ± 0.14

June 12.4303 P60 i’ 37.45 30.0 × 1 19.8 ± 0.16

June 12.4309 P60 i’ 37.46 30.0 × 1 >20.6

June 12.4321 P60 i’ 37.49 30.0 × 3 20.4 ± 0.19

June 12.4327 P60 i’ 37.51 30.0 × 1 >20.5

Continued on Next Page. . .



165

Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.4327 P60 i’ 37.51 30.0 × 3 >20.6

June 12.4333 P60 i’ 37.52 30.0 × 1 19.6 ± 0.13

June 12.4339 P60 i’ 37.54 30.0 × 1 19.8 ± 0.14

June 12.4345 P60 i’ 37.55 30.0 × 1 >20.5

June 12.4357 P60 i’ 37.58 30.0 × 3 20.4 ± 0.19

June 12.4363 P60 i’ 37.59 30.0 × 3 20.6 ± 0.20

June 12.4368 P60 i’ 37.61 30.0 × 1 >20.6

June 12.4368 P60 i’ 37.61 30.0 × 3 20.5 ± 0.19

June 12.4374 P60 i’ 37.62 30.0 × 1 18.5 ± 0.13

June 12.4540 P60 i’ 38.02 30.0 × 1 20.1 ± 0.18

June 12.4552 P60 i’ 38.05 30.0 × 3 20.4 ± 0.18

June 12.4557 P60 i’ 38.06 30.0 × 3 20.4 ± 0.18

June 12.4563 P60 i’ 38.08 30.0 × 1 20.2 ± 0.19

June 12.4563 P60 i’ 38.08 30.0 × 3 20.2 ± 0.17

June 12.4570 P60 i’ 38.09 30.0 × 1 19.9 ± 0.18

June 12.4576 P60 i’ 38.10 30.0 × 1 20.4 ± 0.18

June 12.4582 P60 i’ 38.12 30.0 × 1 20.1 ± 0.20

June 12.4588 P60 i’ 38.13 30.0 × 1 >20.4

June 12.4594 P60 i’ 38.15 30.0 × 1 19.9 ± 0.17

June 12.4600 P60 i’ 38.16 30.0 × 1 19.6 ± 0.15

June 12.4606 P60 i’ 38.18 30.0 × 1 >20.4

June 12.4618 P60 i’ 38.21 30.0 × 3 20.0 ± 0.17

June 12.4624 P60 i’ 38.22 30.0 × 3 20.2 ± 0.17

June 12.4630 P60 i’ 38.24 30.0 × 3 20.4 ± 0.18

June 12.4636 P60 i’ 38.25 30.0 × 3 20.2 ± 0.16

June 12.4642 P60 i’ 38.26 30.0 × 1 >20.4

June 12.4642 P60 i’ 38.26 30.0 × 3 20.0 ± 0.15
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Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.4648 P60 i’ 38.28 30.0 × 1 20.4 ± 0.20

June 12.4654 P60 i’ 38.29 30.0 × 1 19.0 ± 0.13

June 12.4660 P60 i’ 38.31 30.0 × 1 20.1 ± 0.16

June 12.4666 P60 i’ 38.32 30.0 × 1 20.3 ± 0.18

June 12.4679 P60 i’ 38.35 30.0 × 3 20.1 ± 0.17

June 12.4685 P60 i’ 38.37 30.0 × 3 20.2 ± 0.18

June 12.4691 P60 i’ 38.38 30.0 × 1 >20.4

June 12.4691 P60 i’ 38.38 30.0 × 3 20.1 ± 0.17

June 12.4703 P60 i’ 38.41 30.0 × 3 20.0 ± 0.16

June 12.4709 P60 i’ 38.43 30.0 × 3 20.0 ± 0.17

June 12.4715 P60 i’ 38.44 30.0 × 3 >20.4

June 12.4721 P60 i’ 38.45 30.0 × 3 20.2 ± 0.18

June 12.4727 P60 i’ 38.47 30.0 × 3 20.0 ± 0.15

June 12.4733 P60 i’ 38.48 30.0 × 3 20.0 ± 0.15

June 12.4739 P60 i’ 38.50 30.0 × 3 20.1 ± 0.16

June 12.4748 P60 i’ 38.52 30.0 × 3 20.2 ± 0.17

June 12.4754 P60 i’ 38.53 30.0 × 3 20.2 ± 0.18

June 12.4766 P60 i’ 38.56 30.0 × 5 20.1 ± 0.18

June 12.4772 P60 i’ 38.58 30.0 × 5 20.2 ± 0.18

June 12.4778 P60 i’ 38.59 30.0 × 3 20.1 ± 0.17

June 12.4778 P60 i’ 38.59 30.0 × 5 20.2 ± 0.17

June 12.4784 P60 i’ 38.61 30.0 × 3 20.1 ± 0.17

June 12.4790 P60 i’ 38.62 30.0 × 3 19.7 ± 0.15

June 12.4796 P60 i’ 38.63 30.0 × 1 >20.0

June 12.4796 P60 i’ 38.63 30.0 × 3 >20.1

June 12.4816 P60 i’ 38.68 30.0 × 5 >19.8

June 12.4822 P60 i’ 38.70 30.0 × 1 19.4 ± 0.15

Continued on Next Page. . .
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Table A.5 – Continued

Epoch (2007 UT) Facility Filter Phase (hr) Exposure (s) Magnitude

June 12.4822 P60 i’ 38.70 30.0 × 5 19.7 ± 0.16

June 13.2392 P60 i’ 56.86 60.0 × 1 >20.2

June 13.2484 P60 i’ 57.08 60.0 × 5 >20.0

June 14.4137 P60 i’ 85.05 180. × 1 >18.4

June 15.2329 P60 i’ 104.7 180. × 1 >18.3

June 16.4076 P60 i’ 132.9 180. × 1 >18.8

June 17.2273 P60 i’ 152.5 180. × 1 >18.3

June 18.3801 P60 i’ 180.2 180. × 1 >18.4

June 19.3444 P60 i’ 203.3 180. × 1 >18.5

June 20.3703 P60 i’ 228.0 180. × 1 >18.4

June 20.3889 P60 i’ 228.4 180. × 1 >18.2
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Appendix C

Quotable Quotes by SRK

• Mansi has thrown a party at Cahill patio. Yummy food.

Date: Tue, 26 Apr 2011 17:05:34 -0700

• The committee UNANIMOUSLY suggested ”Go into a cave and contemplate all the

puzzles you have unearthed. Novae may not be fashionable but you have unearthed a

great puzzle. Deep contemplation is a necessary arsenal of a great scientist.

Date: Tue, 26 Apr 2011 17:05:34 -0700

• PTF is a bit of a loose federation.

Date: Wed, 4 May 2011 14:59:18 -0700

• Palomar Observatory: Present & Future; The talk is based on the idea that Less is

More and defy the general idea prevailing in Astronomy such of More is Less (XXXX

and other projects; some even local)

Date: Sun, 24 Apr 2011 21:37:44 -0700 (PDT)

• This is of direct benefit to the students. I have no desire to negotiate. We went through

this last time and I am done. Rarely, I am so definitive.

Date: Thu, 12 May 2011 10:03:52 -0700

• Subject: Drinks with famous astronomer

Date: Mon, 09 May 2011 15:54:42 -0700

• According to Mail Today of New Delhi I am the SRK of Space

Date: Sat, 16 Apr 2011 17:29:01 -0700
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• Subject: drinks today

I had a full day of TAC. I am TACed out.

Date: Wed, 13 Apr 2011 15:48:37 -0700

• Subject: Re: PTF11bij is also a gap transient

Hi Mansi: Congratulations. You will soon be the Queen of the 2005E hill and hopefully

also 2002bj.

Date: Fri, 08 Apr 2011 08:33:51 -0700

• Subject: Exciting Monday Lunch

Smart theorists could even finish a paper by the time the discussion is over.

Date: Mon, 4 Apr 2011 08:49:11 -0700 (PDT)

• Subject: IJL Monday

Reminder: Tomorrow is Monday (“It is Just Lunch” for busy astronomers)

Date: Sun, 20 Mar 2011 09:12:17 -0700 (PDT)

• The Eddington Lectures were a hit with the Brits. The humor was sizzling and the

PTF results simply stunned the audience. Thanks for all of you. The even better news

is that I think I can even try 60b60.

Date: Fri, 11 Mar 2011 22:54:28 +0000

• I fully appreciate that sequencing the beast is like managing olive-oil coated pasta

(spaghetti, vermicelli, capellini, pici, gomito, fusilli, rigatoni and others) with a chop

stick.

Date: Tue, 08 Mar 2011 07:13:11 -0800

• I am glad that you are helping your junior colleague. Remember that one good turn

always generates another good turn etc.

Date: Fri, 04 Mar 2011 06:39:35 -0800

• Subject: Re: Good News on Pappalardo

ha! raking in those fellowships.

Date: Fri, 07 Jan 2011 06:53:58 +0530
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• I am thinking of having an entire afternoon for a new festival ABSOLUT NERD This

is nominally to be held in the vicinity of the winter solstice. we will focus on crystal

ball gazing of Astronomy in the period 2011 through 2019.

Date: Tue, 21 Dec 2010 16:43:38 -0800

• I did get the note but not digested it yet. No point discussing until a bit more of

digestion and maturity.

Date: Wed, 01 Dec 2010 11:59:35 +0900

• This is short notice and nonetheless I am asking if you and Setu would be free for

dinner either today or tomorrow. The purpose is to celebrate the end of letters for

Mansi.

Date: Fri, 26 Nov 2010 14:35:20 -0500

• In life there (frequently) comes a time when one has to choose. Sometimes these are

big opportunities (e.g. job, marriage, choosing the right rabbit at the pound etc). but

the same yes/no decision event occurs routinely. Most people punt on it by not taking

a decision and letting a natural flow figure out the answer.

Date: Thu, 04 Nov 2010 07:32:32 -0700

• I am puzzled why people like to speak so much (and lose their audience). There must

be a primal urge to proselytize (perhaps this is the fundamental origin of religion).

Date: Wed, 27 Oct 2010 09:55:48 +0800

• Subject: Fwd: [IITDBatch1978] 4 jokes for the CWG event

India and Indians have lots of problems but quality of jokes has steadilyimproved over

the past two decades.

Date: Wed, 20 Oct 2010 06:12:45 -0700

• Subject: Re: 4-m run

WE NEED QUALITY FRESH CANDIDATES. EVERYONE; PLEASE SCAN, SCAN,

SCAN

Date: Sat, 09 Oct 2010 14:09:53 -0700

• When I woke up in the morning I realized that I had made a mistake in my writeup of

10vdl. Apparently, Eran realized that last night as well (though I was more efficient
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since I combined this activity with sleep!). In any case please see the corrected version

at the Twiki site.

Date: Thu, 07 Oct 2010 10:45:59 -0700

• Subject: AAS Meeting

Mansi ... you should register for a thesis talk;

Robert ... good time to network

Shriharsh and Kunal: Mainly for cultural experience and also to appreciate the kind

of research peers are doing and the start of networking

Branimir, Assaf: No rush but you are welcome to attend

Eran: You can now rest given that you have a good job.

Date: Thu, 16 Sep 2010 11:14:16 +0530

• The ratio of classified events to papers now stand at 200:1. [I realize that there are

some papers in prep but prep time of many months is not helpful].

Date: Sun, 29 Aug 2010 17:43:15 -0700

• Subject: Skype when you are rested

Date: Wed, 18 Aug 2010 14:31:49 +0800

• I regret to inform you that XXX died a truly fiery death (and that too in a footnote,

not even a regular paragraph). All decadal committees are allowed to make at least

one mistake.

Date: Fri, 13 Aug 2010 13:31:21 -0700

• Subject: Either Sucker Transient or Nobel-Prize time for Cenko

Date: Sat, 07 Aug 2010 19:41:26 -1000

• Subject: srk back in action

i am back in action starting Wednesday. Undergoing a root canal operation today,

a lobotomy tomorrow followed by being tarred in Canadian Maple Syrup (i.e. XXX

Board Meetings) let us get a few papers out over the next two weeks

Date: Mon, 12 Jul 2010 09:27:45 -0700
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• Subject: 10 nights of KPNO 4-m time

Good job, everyone. Maybe the tide is turning or simply we are experiencing random

positive fluctuations.

Date: Tue, 15 Jun 2010 21:51:15 -0700

• Subject: Some limelight on PTF

Dear TILU+CC gang: Here is an excerpt of a letter from the Director of IOA, Cam-

bridge University, UK: ”It is with immense pleasure that I write to invite you to visit

the UK next year as the 2011 Eddington Lecturer... We would be especially keen to

hear you talk about the Palomar Transient Factory and the wonderful science that is

coming out of PTF.”

All of you are the real heros (and heroines – Mansi gets a special nod) of this recog-

nition.

Date: Thu, 27 May 2010 19:09:03 -0700

• Subject: Theorists (General Advice)

In my mind, all observers should -severely- attempt to do the theory on their own.

They should read the papers but calling in 1-800-THEORIST is not a good idea.

Date: Sat, 15 May 2010 13:20:55 -0700

• Subject: NGTF (Welcome inputs from Young Turks)

Lessons I learnt from PTF are as follows: a. develop and stick to a clear goal (not

several goals) b. recognize the value of human capital c. never, never, underestimate

software (cost& complexity) d. followup is king e. assume that NSF will not fund

exceptional projects.

Date: Sun, 09 May 2010 14:52:31 -0700

• Subject: M99 (steps, questions)

First of all congratulations on finding the long awaited messenger. (V838 Mon is

Moses, M85OT was Jesus and M99 OT is Mohamed). With three objects the religion

is now complete (which means that there is nothing more to be learnt from these objects

in the future).

Date: Sun, 18 Apr 2010 12:59:43 -0700
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• We are now behind the fire, the smoke, the snow and the rain. The good season is

now upon us (March through October is our best time). This should be our great year

(hopefully not the greatest).

Date: Fri, 26 Mar 2010 09:46:16 -0700

• Subject: Future

Any scientist who works without ”unfair advantage” is a fool and deserves the fate of

fools.

Date: Wed, 17 Mar 2010 19:42:42 -0700

• Subject: Re: Please send out ATELS

”On behalf of PTF, Bloom, Bust and Bang report the following

PTF10xxx was identified as a transient by Bluff, an undergraduate student and spec-

troscopic observations were undertaken at the Big Bang Observatory on 1-April-2010

(observers: Bounty and Beautiful). Spectroscopic identification was done by Bravo

Bravado.

Herein we report the following additional observations. Beu Beauty and Binary Bunt

undertook radio observations at the Boundless Observatory and find the source to be

a Billion Janskys...

Date: Wed, 10 Mar 2010 16:44:05 -0600

• Subject: [Following the Oscar awards] Our Own Robert Quimby wins the ....

I am very happy to inform you that our own Robert Quimby wins the Astronomical

Society of the Pacific Trumpler Award for 2010

This is the best part of getting to be old (the other part is getting wiser ...) You

get to shine in both types of radiation: reflected (increasingly) and your own light

(decreasingly).

Date: Mon, 08 Mar 2010 20:55:40 -0600

• Subject: Re: PTF10bt!

You are a superwoman. Rest well.

Date: Sat, 09 Jan 2010 21:08:10 +0530
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• Subject: Maxi transient

We had a PTF telecon today (Mansi is relentless)

Date: Wed, 30 Dec 2009 22:28:53 +0200

• Subject: Xmas at B’lekem (Bethlehem)

I touched the Silver Star where JC was reportedly born (down in the grotto of the

Church of Nativity) – my Arab guide insisted that I do this.

Date: Fri, 25 Dec 2009 21:40:25 +0530

• Only by being diligent we can make discoveries.

Date: Mon, 23 Nov 2009 09:44:49 -0700

• Please remember the Golden rule: Figures tell the story. The text is merely to show

that you have done some work.

Date: Mon, 9 Nov 2009 10:56:24 -0800

• Subject: Cornell After Dinner Talk (Pictures)

Can you please send two pictures of each: picture when you entered Cornell (designed

to make you look cute and innocent) current picture (designed to make you look like

a power person)

Date: Sat, 10 Oct 2009 09:47:58 -0400

• Subject: Someone stole my idea of a pet restaurant (SRK at Cornell)

Date: Thu, 08 Oct 2009 23:12:12 -0400

• Subject: not to panic

Words were simply not coming out given the high pace of activity for the past few

days. But now that I relaxed I am fine.

Date: Thu, 1 Oct 2009 09:10:44 -0700

• The more rules you make the less you will achieve. You also do not need to consult

me anymore. Be respond but more than anything else respond rapidly. Fortune favors

the brave but bravery requires response.

Date: Wed, 02 Sep 2009 09:03:38 +0200
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• Subject: Got Bored and here is the product

The vacation is going well. I do not know how people can spend a day at the beach.

Date: Sat, 01 Aug 2009 17:54:04 -1000

• Subject: Re: couldn’t cancel ddt

not to worry. life in the fast lane is rarely smooth.

Date: Wed, 8 Jul 2009 13:28:47 -1000

• Subject: VLA Workshop

Mansi and I agreed we will drive to Socorro (saves $ and gives a chance to talk about

astronomy, life, girls, boys, economics).

Date: Thu, 30 Apr 2009 07:44:50 -0700

• Subject: SRK’s Gordon Lecture (NAIC)

The talk was uniformly agreed to be entertaining, ”provocative” (many) and ”brilliant”

(a few).

Date: Tue, 21 Apr 2009 08:38:43 -0700 (PDT)

• Subject: Solved all of our funding problems (Middle East Madness)

I have solved all of our funding problems. I bought a bunch of sewing machines and I

am prepared to sell it for the ”ballotechnic mercury” these machines contain. (refer-

ences Samuel Cohen, Saddam Hussein).

Date: Tue, 14 Apr 2009 23:06:29 -0700

• Subject: First Transient and Hopefully More to Come

I am glad to inform you that over the weekend the weather Gods cooperated. [We have

been having a very late wet season in Southern California]. Somewhat ahead of our

planned schedule PTF has found a genuine transient: a Ia supernovae.

Date: Mon, 9 Mar 2009 16:08:11 -0700

• Subject: Re: PTF Successful First Light

...Enough of this high school humor. What else should I say. CONGRATULATIONS!!

YOU GUYS ARE THE BEST. The Project went from concept to execution in less

than 2 years! That is why I say that Palomar is still the best (if not the biggest).
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As PI I am simply thrilled and hope we can deliver some stunning science (e.g. a new

star of Bethlehem).

Date: Sat, 13 Dec 2008 17:29:15 +0200

• Subject: good to see

young people talking to each other on the new transient and mapping out various

strategies (spitzer, lgs, etc). keep up. now i can get run over by a truck without

changing the time line for the world.

director shri (wasting my time in directing)

Date: Fri, 16 May 2008 11:20:05 -0700 (PDT)

• Subject: elocution

Remember that high speed talking in paragraph units is not effective communication!

Date: Thu, 3 Apr 2008 01:48:28 -0700

• Subject: Party today at my house?

Today is Mansi’s exam. Mansi insisted on an exam on a holiday since she is keen to

go to India and ride on an elephant while fiance rides on horse etc.

You are invited to a party at 5 pm regardless of the outcome of the exam!

Date: Mon, 21 Jan 2008 07:41:07 -0800 (PST)

• Subject: Re: nirspec ideas

The optical interferometry idea is *excellent*. I commend you for that. A wide and

innocent look at new phenomena is a strength of the young mind. Focusing and getting

the job done is what old hands conclude is the real business. You should maintain a

wide and innocent look (10/10 points on that) but also balance real accomplishments

Date: Sun, 21 Oct 2007 20:06:54 -0700

• I had a good time today. I met Dr. Buzz Aldrin, Ms. Eileen Collins ... Moral: Unless

your name is Enrico (F) or Albert (E) you should cultivate the art of giving at least

moderately humorous talk.

Date: Mon, 9 Apr 2007 21:16:50 -0700 (PDT)

• Hopefully your grandparents will not suggest a 2-in-1 deal and get you married at the
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same time!

Date: Fri, 2 Feb 2007 19:52:41 -0800

• Subject: SRK at 50

As befitting a micro celebrity I have been asked to write a piece about myself, state of

Indian science etc for various magazines and newspapers in India. It has the usual

story of how I trudged through 6 feet of snow and used abacus for calculations etc.

Date: Wed, 15 Nov 2006 08:20:27 -0800

• RSVP including whehter you are bringing swimming trunks or not.

Date: Sat, 2 Dec 2006 08:32:27 -0800 (PST)

• I am of the opinion that students must learn hard technical skills. I take it for granted

that they will figure out IRAF and data analysis. As I have said before I am not

terribly concerned about the number of papers a student writes (since it is not difficult

to do so). But they must do some practical work and develop confidence to solve

problems.

Date: Tue, 22 Nov 2005 14:17:50 -0800 (PST)
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