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ABSTRACT 

Aggression is an evolutionarily conserved behavior across the animal kingdom. 

Aggressive behavior among conspecifics is critical for the acquisition and defense of 

important resources including food, mates, and shelter, hence contributing to the survival 

and reproduction of animals. Therefore, it is of particular interest to understand how this 

behavior is regulated. 

We use the fruit fly Drosophila melanogaster as a model system to understand the 

regulation of aggression. We identify Cyp6a20, a cytochrome P450, as a gene mediating 

the suppressive effect of social experience on the intensity of male-male aggression. 

Notably, Cyp6a20 has been previously identified by profiling Drosophila strains 

subjected to genetic selection for differences in aggressiveness. Therefore our findings 

reveal a common genetic target for environmental and heritable influences on 

aggressiveness. Interestingly, Cyp6a20 is expressed in a subset of non-neuronal support 

cells associated with pheromone-sensing olfactory sensilla, suggesting that olfactory 

pheromone(s) may contribute to the regulation of aggression. Consistent with this idea, 

we find that cis-11-vaccenyl acetate (cVA), a previously identified olfactory pheromone, 

promotes male-male aggression via a group of olfactory receptor neurons expressing 

Or67d. 

Despite its robust behavioral effect, cVA is not required for baseline male-male 

aggression, and exogenous cVA does not induce male-female aggression, suggesting that 

sex specificity of male aggression is independent of cVA. Our subsequent studies show 

that the sex specificity of male social behaviors is determined by a different class of 

pheromones, named male cuticular hydrocarbons. Male flies perform significantly less 
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aggression and more courtship towards male flies lacking male CHs, both of which can 

be rescued by synthetic (Z)-7-tricosene (7-T), the most abundant male cuticular 

hydrocarbon. The opposite influences of 7-T on aggression and courtship are 

independent, but both require the gustatory receptor Gr32a.  Surprisingly, sensitivity to 7-

T is required for the aggression-promoting effect of cVA, but not vice versa.  

Furthermore, the increased courtship in the absence of male cuticular hydrocarbons is 

induced by pheromone(s) detected by an olfactory receptor Or47b.  Thus, male social 

behaviors are controlled by gustatory pheromones that promote and suppress aggression 

and courtship, respectively, and whose influences are dominant to olfactory pheromones 

that enhance these behaviors. 
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Chapter 1 

 

Introduction 

Genetic and neural regulation of aggression in Drosophila melanogaster 
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Aggression is an evolutionarily conserved behavior across the animal kingdom. 

Conspecific aggressive behavior is critical for the acquisition and defense of important 

resources including food, mates, and shelter, hence contributing to the survival and 

reproduction of animals. Therefore, it is of particular interest to understand how this 

behavior is regulated.  

Despite the accumulated progress in the past decades, the biology of aggression is 

incompletely understood. The remaining questions include but are not limited to: how do 

the environment and the internal state influences aggression? How does previous 

experience modulate animal’s behavioral choice? What are the sensory modalities 

involved in the regulation of aggression, and how are they integrated? What is the genetic 

network underlying the development, initiation, and modulation of aggression? And what 

is the relationship between the connectivity/activity of various neuronal populations and 

aggression? 

In our laboratory we use Drosophila melanogaster as a model system to address 

these unresolved questions regarding the regulation of aggressive behavior. In this 

chapter, I will summarize the current understanding of the aggressive behavior in the fruit 

fly, and will discuss the possible future research directions. 

 

I: Drosophila as a model organism to study aggression: in retrospect 

The first laboratory study of aggressive behavior in Drosophila can be traced back 

to almost a century ago. In a paper published in 1915 (Sturtevant, 1915), Alfred 

Sturtevant noted “in such cases [two males courting with one female] they [two males] 
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may sometimes be seen to spread their wings, run at each other, and apparently butt 

heads. One of them soon gives up and runs away. If the other then runs at him again 

within the next few minutes he usually makes off without showing fight”. In this short yet 

landmark statement, Sturtevant not only characterized and classified several aggressive 

behaviors of male flies (now named “wing threat”, “chasing”, and “lunge” (Chen et al., 

2002)), but also noticed two important intrinsic and extrinsic factors that regulated 

aggression (the presence of female (Chen et al., 2002); and the effect of losing a fight 

(Penn et al., 2010; Yurkovic et al., 2006). See Section II.). Taken together, this very first 

documentation already ensured the fruit fly a good model system to study the biology of 

aggression.  

However, in the nearly 90 years after—although this tiny insect species became 

the workhorse of many branches of modern biology, including genetics, developmental 

biology, and neurogenetics—its potential as a model system to study aggression was long 

neglected. Evidently, there were only a handful of papers published between 1915 and 

2002 on the topic of fly aggression. Nevertheless, important discoveries were still made 

in this “silent” period. Multiple sex-specific aggressive behaviors were better 

characterized, such as lunge and wing threat in males (Dow and von Schilcher, 1975; 

Jacobs, 1960) and head butt in females (Ueda and Kidokoro, 2002). A variety of extrinsic 

factors that influenced the aggressive behavior in flies, such as size (Hoffmann, 1987b; 

Partridge et al., 1987), social experience and age (Hoffmann, 1990; Ueda and Kidokoro, 

2002) were investigated. The heritability of aggression/territoriality properties was also 

documented (Hoffmann, 1987a, 1988, 1991), implying that this behavior was encoded 

and regulated by the fly genome. Consistent with this idea, single-gene mutants that 



A–4 
 

showed altered motor pattern of aggression (Lee and Hall, 2000) or altered levels of 

aggression (Jacobs, 1978) were identified. As for a complementary approach beside the 

single-gene mutant studies, artificial selections of aggressive behavior were also 

conducted (Harshman and Hoffmann, 2000; Hoffmann, 1989). The selected hyper-

aggression phenotype could be stabilized after multiple rounds of selection, further 

confirming the heritability of this behavior. Besides, from a neurobiological perspective, 

the functions of biogenic amines in fly aggression were investigated, primarily by using 

pharmacological manipulations (Baier et al., 2002). Last but not least, the correlations of 

aggressive behavior, territorial defense, and mating success (Dow and von Schilcher, 

1975; Hoffmann, 1989) were reported, highlighting the ecological significance of this 

behavior.  

A few outstanding issues, however, burdened the progress of aggression research 

in Drosophila. There had been no standardized protocol for aggression assays. 

Aggression assays utilized by different researchers differed in environmental conditions 

(temperature, humidity, illumination, size and shape of aggression arena, presence of 

food or not, duration of observation, etc.) as well as fly conditions (number, age, prior 

housing condition, etc.). Therefore it had been proven difficult to generalize the 

observations and conclusions made in one laboratory to others. Besides, although both 

single-gene mutations as well as artificial selections were shown to influence fly 

aggression, the potential of fly genetics (e.g., unbiased genetic/neuronal screens, 

enhancer/suppressor screens, mutation mapping, mosaic analysis, etc.) had not been fully 

explored. Ironically, the fruit fly, if only considered as a non-genetic model organism (i.e., 

for ecological, ethological, or pharmacological studies), is probably not the best system to 
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investigate the biology of aggressive behavior, due to the low levels of aggression in lab 

strains of fruit flies, a possible result of domestication (Dierick and Greenspan, 2006).  

 In 2002, one paper largely addressed the first outstanding issue. Edward Kravitz 

and colleagues (Chen et al., 2002) tried to standardize the behavioral setup (an elevated 

food cup with a decapitated female was placed in the center of a rectangular shaped 

aggression arena to attract male flies and to increase aggression) and the fly conditions 

(single-housed male flies to increase aggression; flies older than 3 days). More 

importantly, Chen et al for the first time described male aggressive behavior in 

Drosophila in a comprehensive way. They carefully recorded and categorized multiple 

types of aggressive encounters, and characterized their temporal relationship using 

Markov chain analysis. The same group described the female aggression in Drosophila in 

a  similar way two years later (Nilsen et al., 2004). Most if not all subsequent studies on 

fly aggression more or less followed their protocols, making the observations and 

conclusions made in different laboratories more reliable and accessible. Ever since then, 

extensive studies to understand this evolutionarily conserved behavior in flies have been 

conducted from different perspectives. Aggression research therefore quickly moved into 

the neurogenetics era. 

In the following sections, I will focus on three distinct yet related questions: first, 

the extrinsic/intrinsic factors that influence Drosophila aggression and the underlying 

mechanism; the genetic basis of this behavior; and the neural circuitry basis of this 

behavior. 
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II: Extrinsic and intrinsic factors that influence fly aggression 

As a complex social behavior, aggression is influenced by numerous extrinsic and 

intrinsic factors. In this section I will review our up-to-date understanding of a few 

important aggression-regulating factors. 

Size. Conspecific animals engage in aggression primarily to compete for 

resources like food, mates, and territory. The size of an animal in an aggressive encounter 

seems to correlate (one way or the other) with its outcome. Ary Hoffmann and colleagues 

noted that wild mating males, as well as flies raised in low density in laboratory 

conditions, had larger sizes, and these larger flies showed higher mating success and 

territorial dominance (Hoffmann, 1987b; Partridge et al., 1987). A later study, however, 

argued that 25 ºC raised, smaller flies were advantageous in aggression compared to 18 

ºC raised larger ones. An alternative approach to examine the relationship of body size 

and aggression outcome is to look at the natural size variations.  Flies of the same genetic 

background and raised under identical conditions show considerable body size variations, 

and such variations correlate well with the aggression outcome (bigger=winner) (Hoyer 

et al., 2008; Partridge and Farquhar, 1983). Strikingly, a size difference of as little as ~ 8% 

is sufficient to determine the winner of a fight (Hoyer et al., 2008).  

Notably, all these foregoing studies were based on correlative observations rather 

than causative manipulations. Therefore it is difficult to know whether it is the size 

difference that determines the outcome of aggression, or whether the factors that 

influence the fly size (mating condition, housing density, temperature, and genetic 

polymorphism) also regulate aggression. Nevertheless, size is an important determination 
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factor of fly aggression, and should be taken into account when investigating the genetic 

and neural basis of this behavior. 

Competition for resources. It is not surprising that the presence of resources 

(food or female flies) promotes male aggressive behavior (Chen et al., 2002; Jacobs, 

1960). It is possible that specific cues released by the resource directly promote 

aggression by activating designated sensory neurons (e.g., food odor; sweet compounds 

in food; female-specific stripes on the abdomen; female pheromones). Alternatively, male 

flies may be able to abstract the sense of “resource” and escalate their aggressive 

behavior. It may be an interesting idea to see if the aggression-promoting resources like 

fly food, rotten fruits and female flies stimulate common sensory modality (e.g. sweet-

sensing gustatory neurons?), and, if not, how distinct types of resources are conveyed by 

the sensory system and fed onto the central aggression circuitry (see Section IV). Lastly, 

it is worth noting that the aggression-promoting effect of resources can also be an indirect 

one, secondary to an aggregation-promoting effect. 

Social experience. As in many other animal species (Day et al., 1982; Gallagher 

et al., 1972; Matsumoto et al., 2005), living with conspecifics greatly reduces aggression 

in male and female flies (Hoffmann, 1990; Ueda and Kidokoro, 2002; Wang et al., 2008). 

Such suppressive effect on aggression works autonomously through reducing 

aggressiveness towards opponent flies, rather than non-autonomously through evoking 

less aggression from other flies ((Ueda and Kidokoro, 2002), and also see Chapter 4). 

Also, this behavioral effect is reversible in the adult stage, suggesting social experience 

does not modulate aggression by altering the normal development of flies (Wang et al., 
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2008). Attempts have been made to use this unique and robust behavioral effect to 

identify genes that underlie the regulation of fly aggression (Ueda and Wu, 2009; Wang 

et al., 2008). For example, Cyp6a20, a fly cytochrome P450 gene, was found to mediate 

the social suppression of male aggression (Wang et al., 2008), possibly by regulating 

pheromone sensitivity. And two genes, Hyperkinetic and glutathione S-transferase-S1, 

have been shown to mediate the social suppression of female aggression, via a 

mechanism possibly involving neuromuscular hyperexcitability and reactive oxygen 

species metabolism (Ueda and Wu, 2009).  

Notably, social experience influences multiple fly behaviors besides aggression, 

including circadian rhythm (Levine et al., 2002), sleep (Ganguly-Fitzgerald et al., 2006), 

and courtship (Dankert et al., 2009). Several lines of evidence imply that the social 

regulation of fly behaviors involves chemosensory systems and pheromones (Ganguly-

Fitzgerald et al., 2006; Kent et al., 2008; Krupp et al., 2008; Levine et al., 2002; Wang et 

al., 2008). However, a direct prove is still missing. Alternatively the physical interactions 

among conspecific flies during group housing may be involved. Also, whether social 

experience modulates these behaviors via a common mechanism or discrete mechanisms 

is an important question that remains to be investigated. 

Prior aggressive experience. Besides living experience in a socially enriched 

environment, other types of social experience, especially prior antagonistic experience, 

greatly influence aggressive behavior. After one or several aggressive encounters, the 

socially defeated animals (subordinates) shift their behavioral choice from aggression to 

avoidance or surrender, which may contribute to the formation of social hierarchy (Huber 
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et al., 1997; Iwasaki et al., 2006; Siegfried et al., 1984; Yeh et al., 1996).  In invertebrate 

species, several neuromodulators such as octopamine (OA) (Adamo et al., 1995; Hunt, 

2007; Stevenson et al., 2005; Stevenson et al., 2000), dopamine (DA) (Stevenson et al., 

2000), and serotonin (5-HT) (Yeh et al., 1996) have been implicated in the behavioral 

switch after social defeat. In Drosophila, subordinate males show similar behavioral 

switch in subsequent fighting (aggressionretreat/avoidance) (Penn et al., 2010; 

Yurkovic et al., 2006). It remains unclear, however, whether biogenic amines like 

OA/DA/5-HT are also involved in the behavioral switch in loser fruit flies.  

Notably, in rodents, prior aggression experience not only modulates behavioral 

choice in subsequent fighting, but also influences a variety of non-aggressive behaviors, 

such as mating (D'Amato, 1988), performance in depression/anxiety assays 

(Bartolomucci et al., 2005), addiction (Ribeiro Do Couto et al., 2009), pain sensation 

(Siegfried et al., 1984), etc. Therefore, it is possible that social defeat induces a general 

“depressive” state in which multiple behaviors that rely on arousal and/or motivational 

state of animals are suppressed. It may be interesting to see if in fruit flies social defeat 

also has a general behavioral effect, and if we can better understand the relationship of 

social defeat, arousal states and human depressive disorders in this genetically tractable 

organism. 
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III: Identification of aggression-regulating genes in Drosophila 

The first aggression-regulating genes in Drosophila were identified decades ago. 

M. E. Jacobs found that flies carrying mutant alleles of black or ebony genes, both of 

which were involved in β-alanine metabolism, showed altered aggression levels (Jacobs, 

1978). Another class of genes, the sex determination hierarchy genes fruitless and 

dissatisfaction were also shown to influence fly aggression (Lee and Hall, 2000). Notably, 

Lee and Hall found that several alleles of fruitless and dissatisfaction mutant males 

exhibited distinct a motor pattern of aggression: “head-to-head interaction”, which was 

soon found to be a typical female type aggressive posture (head butt) (Nilsen et al., 2004). 

Therefore, unlike black and ebony, fruitless and dissatisfaction regulate the sex-specific 

output of aggression in Drosophila.  

Nevertheless, during this early stage, the attempts to identify aggression-

regulating genes were still quite limited and sparse: mutants representing only 4 genes 

were characterized between 1915 and 2000! But since the “re-discovery” and detailed 

characterization of Drosophila aggression by Edward Kravitz and colleagues (Chen et al., 

2002; Nilsen et al., 2004),  the identification of aggression-regulating genes have 

exploded in the past decade. Here I will briefly review the recent progress. 

Gene discovery from behavioral variations. One effective way to hunt for 

genes that regulate behaviors is to look for behavioral variations, naturally occurred or 

artificially established, and investigate the underlying genetic mechanism (Greenspan, 

2003). As discussed in Section II, natural variations in aggression are present in the 

population of fruit flies. And multiple generations of artificial selection of aggressive 
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behavior could stabilize the natural variations (Greenspan, 2003; Hoffmann, 1989). So far, 

artificial selections of aggressive behavior have been used to identify aggression-

regulating genes in two different laboratories (Dierick and Greenspan, 2006; Edwards et 

al., 2006). In both cases, for each round of the selection, male flies that showed high 

levels of aggression were selected and paired with random females to produce progeny 

used for the next round of selection. The hyper-aggressive phenotype could be stabilized 

after as short as 10 generations of selection (Dierick and Greenspan, 2006). Both 

laboratories used whole genome gene expression profiling to examine the differentially 

expressed genes between hyper-aggressive populations after generations of targeted 

selection vs. control populations (derived from either random selections (Dierick and 

Greenspan, 2006) or selections towards low aggression (Edwards et al., 2006)). As a 

result, a collection of aggression-promoting or -suppressing genes were identified (Robin 

et al., 2007).  

A similar approach has also been applied to identify genes whose expression 

profiles might contribute to the natural variations of aggression in multiple inbred fly 

strains (Edwards et al., 2009b). Notably, the variations of aggression, either naturally 

occurred or artificially selected, may also be a result of genomic polymorphism rather 

than gene expression, which cannot be revealed by only profiling the gene expressions 

(e.g., microarray analysis). Quantitative trait loci (QTL) analysis was therefore performed 

as a complementary method to identify aggression-regulating genomic polymorphisms 

(Edwards and Mackay, 2009). Taken together, the above studies identified a few hundred 

of aggression-regulating genes that fell into highly diverse functional groups (Dierick and 

Greenspan, 2006; Edwards et al., 2009a; Edwards et al., 2009b; Edwards and Mackay, 
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2009; Edwards et al., 2006), underscoring the complex nature of aggression regulation in 

Drosophila. In spite of the progress, it is worth noting here that how these genes regulate 

aggression remains largely elusive. 

Besides the heritable variations of aggression, environmental variations of 

aggression are also present in fly populations (Hoffmann, 1990; Wang et al., 2008). We 

also took the gene expression profiling approach to study how social experience 

suppressed male aggression. Strikingly, we found that Cyp6a20, a cytochrome P450 gene 

involved in the heritable variations of fly aggression after generations of artificial 

selection (Dierick and Greenspan, 2006), also mediated the social suppression of 

aggression within a single generation (Wang et al., 2008). The discovery of a single gene 

that mediates both the environmental and heritable influences on the same behavioral trait 

suggests a possible “nature vs. nurture” example: a gene involved in the regulation of a 

behavioral “state” (nurture) may be selected over generations to establish a behavioral 

“trait” (nature).  

Gene discovery from genetic screens. Besides the behavioral variation-based 

gene discovery, Drosophila is highly amenable for identifying behavior-regulating genes 

by mutagenesis-based genetic screens, as first demonstrated by Seymour Benzer and 

colleagues (Benzer, 1967; Konopka and Benzer, 1971; Quinn et al., 1974). So far only 

one small-scale screen has been done to identify single gene mutations that give rise to 

aggression phenotypes in Drosophila. In this study, Trudy Mackay and colleagues 

screened 170 P-element mutant lines and identified 59 lines that exhibited increased or 

decreased aggressive behavior (Edwards et al., 2009a). Notably, in this study the 
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candidate mutant lines were not selected in an unbiased/random way, but were selected 

based on a gene expression profiling study of flies artificially selected for aggressive 

behavior (Edwards et al., 2006). Therefore the full potential of unbiased genetic screens 

to identify aggression-regulating genes has not been reached. The recently developed 

computer programs for automated behavioral analysis in flies (Dankert et al., 2009; 

Hoyer et al., 2008) may greatly facilitate large-scale, unbiased forward genetic screens 

(chemical mutagenesis or P-element based) for the discovery of aggression-regulating 

genes. Alternatively, RNA interference (RNAi) based (Dietzl et al., 2007; Ni et al., 2009; 

Ni et al., 2011) reverse genetic screens may also be performed to identify aggression-

regulating genes. Notably, such reverse genetic screens could be done in a time- and cell- 

type-specific manner (Neely et al., 2010a; Neely et al., 2010b; Yapici et al., 2008), 

helping to elucidate how particular genes contribute to behavioral phenotypes.  

 

IV: Sensory input and aggression 

Fly aggression heavily relies on precisely presented sensory cues. These sensory 

cues either derive from the environment or from the opponent flies. On the one hand, 

food and the presence of females promote male-male aggression (Chen et al., 2002; 

Nilsen et al., 2004), suggesting sensory input from resources like food and female flies 

can influence aggression. On the other hand, a male fly never exhibits any aggressive 

posture when placed alone or when paired with a female (Dankert et al., 2009), 

suggesting the requirement of specific sensory cues from male opponents. Here I will 
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review how different sensory modalities influence fly aggression, primarily emphasizing 

on the detection of sensory cues from opponent male flies.  

Olfactory system. The molecular and neuronal organizations of the olfactory 

system in Drosophila have been well understood (Vosshall and Stocker, 2007). And its 

function in fly social behaviors including courtship and aggression has become a 

remarked research topic in the past decade (Dickson, 2008; Montell, 2009; Vosshall, 

2008). Olfactory input is required for male-male aggression, as mutant males flies lacking 

Or83b receptor, the co-receptor required for the normal function of ~ 70% olfactory 

receptor neurons (ORNs), show aggression deficit (Wang and Anderson, 2010). cis-11-

vaccenyl acetate (cVA), a male-specific volatile pheromone previously shown to promote 

social aggregation and to suppress courtship (Ejima et al., 2007; Kurtovic et al., 2007; Xu 

et al., 2005), was found to greatly enhance male-male aggression via a group of ORNs 

expressing Or67d (Wang and Anderson, 2010), the cVA receptor (Ha and Smith, 2006; 

Kurtovic et al., 2007; van der Goes van Naters and Carlson, 2007). Although cVA 

detection via Or67d is not required for baseline male-male aggression, the activity of 

Or67d+ ORNs is (at least partially) sufficient for aggression (Wang and Anderson, 2010). 

Whether there is additional olfactory pheromone(s) that regulate male-male aggression, 

and if so how it is detected, remains unknown. 

Unlike most odorants, cVA is not directly detected by its olfactory receptor Or67d. 

Structural and electrophysiological evidence suggest that cVA is presented to the receptor 

by a cargo, an odorant binding protein named LUSH (Kim et al., 1998). In the absence of 

functional LUSH, cVA cannot activate Or67d+ ORNs (Ha and Smith, 2006; Xu et al., 
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2005). And mutant LUSH proteins that resemble its cVA-bound confirmation activate 

Or67d+ ORNs in the complete absence of cVA and mimic its behavioral effects 

(Laughlin et al., 2008; Ronderos and Smith, 2010). In addition, cVA detection by Or67d+ 

ORNs requires SNMP, a fly CD36 homolog working downstream of LUSH (Benton et 

al., 2007; Jin et al., 2008). Both LUSH and SNMP are not required for the detection of 

most fruit-derived odorants, suggesting their specific functions in pheromone (that is, 

cVA) detection. LUSH and SNMP may function to facilitate the delivery/transportation 

and hence the sensitivity of cVA. And conversely, they may also involve in the regulation 

of cVA sensitivity under different circumstances. It is also worth noting here that 

although LUSH and SNMP have been shown to be involved in cVA detection, there is no 

evidence that they are dedicated to the detection of this particular pheromone. 

Or67d+ ORNs express fruitless, a sex determination hierarchy gene that 

determines the sexual dimorphism of fly nervous system (Manoli et al., 2006) (See 

Section V.). The S exon of fruitless is sex-specifically spliced to produce functional FruM 

isoforms in males but not in females (Demir and Dickson, 2005). Males lacking FruM 

show courtship deficit and female-type aggression, and females ectopically expressing 

FruM exhibit (male-type) courtship and male-type aggression, suggesting that sex-specific 

splicing of fruitless is both necessary and sufficient to determine the “sex” of social 

behaviors in flies (Demir and Dickson, 2005; Manoli et al., 2005; Vrontou et al., 2006). 

FruM is expressed in ~ 2% of neurons in the male nervous system, including clusters of 

neurons in the brain and ventral nerve cord, as well as peripheral sensory neurons such as 

Or67d+ ORNs (Kimura et al., 2005; Manoli et al., 2005; Stockinger et al., 2005).  

Therefore, it is of interest to understand whether and how the FruM-positive neurons are 
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involved in cVA detection and mediating its behavioral effects. Richard Axel and 

colleagues found that the direct downstream neurons of Or67d+ ORNs, the projection 

neurons (PNs) that innervated with DA1 glomerulus in the antennal lobe, were also FruM-

positive (Datta et al., 2008). These DA1 PNs are cVA-responsive and they send FruM-

dependent, sexually dimorphic projections to the lateral horn, where they innervate with 

downstream targets (Datta et al., 2008). Given cVA has distinct behavioral effects in 

males (courtship-suppressing (Kurtovic et al., 2007), aggression-promoting (Wang and 

Anderson, 2010)) vs. in females (receptivity-increasing (Kurtovic et al., 2007)), the 

sexually dimorphic projection patterns of DA1 PNs may have behavioral relevance.  

Tracing further down into the cVA circuitry, Richard Axel and colleagues 

identified the third-order cVA-responsive neurons in the fly brain (Ruta et al., 2010). 

Strikingly, the third-order neurons located in the lateral horn also exhibit sexual 

dimorphism. Two clusters of third-order neurons, DC1 and LC1, are present only in 

males but not in females; and both clusters are FruM-positive (Ruta et al., 2010). These 

two clusters of neurons may mediate the male-specific cVA responses like courtship-

suppressing and aggression-promoting. Notably, LC1 cluster neurons are inhibitory and 

DC1 neurons are excitatory (Ruta et al., 2010). There is therefore an attractive possibility 

that LC1 and DC1 neurons mediate cVA’s suppressive (on courtship) and stimulatory (on 

aggression) effects in male flies, respectively. This may just be an over simplified 

hypothesis but it may worth testing experimentally. 

Gustatory system. Contact-dependent, non-volatile pheromones are also 

involved in the regulation of fly social behaviors (Montell, 2009). One the one hand, 
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gustatory input from males suppresses male-male courtship. Eliminating all gustatory 

sensilla (Krstic et al., 2009), specific gustatory receptors (Miyamoto and Amrein, 2008; 

Moon et al., 2009), or male cuticular hydrocarbons (CHs) (Billeter et al., 2009; Savarit et 

al., 1999), the putative ligands of fly gustatory receptors (Ferveur, 2005; Lacaille et al., 

2007), results in increased male-male courtship. (z)-7-tricosene (7-T), the most abundant 

male CH, has been shown to suppress both male-male and male-female courtship 

(Billeter et al., 2009; Lacaille et al., 2007). On the other hand, gustatory system is 

necessary for normal levels of male-male aggression. Genetic ablation of CH-producing 

oenocytes (Krupp et al., 2008) in males results in the elimination of male CHs and the 

decrease of male-male aggression (Fernández et al., 2010). We further showed that 7-T 

could restore aggression towards oenocyte-eliminated males in a manner dependent on 

one gustatory receptor Gr32a (Miyamoto and Amrein, 2008) (see Chapter 4). Therefore, 

a single male CH, 7-T, is sufficient to define appropriate male-male social interactions by 

suppressing and inducing male-male courtship and aggression, respectively. 7-T activates 

bitter-sensing gustatory receptor neurons (GRNs) (Lacaille et al., 2007). Consistently, 

Gr32a, the receptor required for the behavioral effects of 7-T, is expressed broadly in 

bitter-sensing GRNs (Weiss et al., 2011) and is required for the detection of a variety of 

bitter compounds (Lee et al., 2010). Given that fly bitter-sensing GRNs often co-express 

multiple gustatory receptors (Weiss et al., 2011) and that Drosophila only has limited 

ability to distinguish different bitter compounds (Masek and Scott, 2010), it is possible 

that 7-T simply tastes bitter to male flies, and that such a generic bitter taste is sufficient 

to determine appropriate male-male social behaviors. Alternatively, 7-T may activate a 

specific subset of GRNs (expressing specific combination of gustatory receptors; located 
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in specific organs; etc.) and exert its behavioral effects via a rather dedicated circuitry, 

like cVA does. Experiments to distinguish these alternatives remain to be conducted. 

Furthermore, the identity of downstream neurons that convey 7-T information to the 

central brain remains elusive. Analogous to the cVA circuitry studies, it is of interest to 

see if 7-T circuitry is also FruM-positive, and if similar trans-synaptic tracings can be 

performed to reveal the structure of 7-T circuitry (Datta et al., 2008; Koganezawa et al., 

2009; Ruta et al., 2010). 

The interplay between olfactory and gustatory systems. The olfactory and 

gustatory systems work in a hierarchical manner to define male-male social behaviors. 

On the one hand, the aggression-promoting effect of cVA/Or67d pathway is dependent 

on the presence of 7-T/Gr32a pathway but not vice versa (Chapter 4). On the other hand, 

in the absence of male CHs, the increased male-male courtship is blocked by a mutation 

in Or47b gene (Chapter 4), suggesting that the courtship-suppressing effect of gustatory 

pheromones is also dominant to the courtship-promoting effect of olfactory pheromone(s). 

The circuitry basis of their interactions is of particular interest. 

The fact that Gr32a is required for the aggression-promoting effect of cVA 

suggests that 7-T circuitry may feed onto the cVA circuitry and regulate its activity. 

Strikingly, the male-specific DC1 cluster of third-order cVA neurons may receive 

gustatory information: DC1 dendrites interdigitate with axonal projections of presumable 

gustatory neurons located in the subesophageal ganglion (SOG) (Ruta et al., 2010). 

Consistently, a male-enriched cluster of FruM neurons (mAL neurons. See Section V.) 

project to lateral protocerebrum and SOG, suggesting a possible function of these 
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neurons to relay gustatory information to the central fruitless circuitry (Kimura et al., 

2005), e.g., 7-T/Gr32a (Koganezawa et al., 2009). Therefore, it is possible that the third-

order cVA-responsive neurons or their downstream neurons are modulated by gustatory 

input such as 7-T. Calcium imaging of cVA responses in cVA circuitry (e.g., in DC1 

neurons) +/- 7-T stimulation (direct stimulation or neuronal activation by 

channelrhodopsin) may be the best way to test this hypothesis. 

It is worth noting that the behavioral gating of cVA responses by 7-T/Gr32a 

pathway does not necessarily imply circuitry-level gating. It is also possible that certain 

amount of baseline aggression is required for the aggression-promoting effect of cVA. 

Alternatively, the gating mechanism may be indirect at circuitry level: neurons other than 

the lateral protocerebrum-SOG connection mediate the gating. Given FruM is both 

necessary and sufficient for male aggression (Vrontou et al., 2006), it may be a valid 

approach to screen for FruM-positive neuronal populations that mediate the behavioral 

gating of cVA response by 7-T (e.g., in a gain-of-function setting, whether activating a 

specific cluster of FruM-positive neurons permits cVA responses in the absence of 7-

T/Gr32a) (von Philipsborn et al., 2011; Yu et al., 2010).  

The circuitry basis of the interaction between male CHs and Or47b is another 

interesting question. Like Or67d, Or47b is expressed in FruM-positive ORNs (Couto et al., 

2005; Fishilevich and Vosshall, 2005). It is therefore possible that some FruM-positive 

interneurons (like DC1 and LC1 neurons) mediate the suppressive effect of male CHs on 

Or47b pathway. It may be interesting to trace down the Or47b circuitry and examine its 

interaction with the gustatory system.  
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Visual, auditory, and mechanosensory systems. Besides the extensively studied 

chemosensory systems, non-chemosensory systems like vision, audition, and tactile 

sensation also influence fly social behaviors. Male flies exhibit much reduced aggression 

in dark, so do blind mutant flies, suggesting an indispensible role for vision in fly 

aggression (Hoyer et al., 2008). It is not clear, however, whether vision plays a sole 

permissive role in aggression (e.g., to locate the opponent fly), or rather a more 

constructive role (e.g., to detect a specific visual pattern that indicates an opponent fly). 

Notably, a subset of neurons in fly visual system (in medulla, lobula, and optic tubercle) 

is FruM-positive, implicating their possible roles in regulating fly social behaviors 

(Manoli et al., 2005; Stockinger et al., 2005). It is of interest to test if the FruM-positive 

visual circuitry plays a role in fly aggression. 

Auditory and tactile systems are both involved in the regulation of courtship 

behavior in Drosophila (Ejima and Griffith, 2008; Gailey et al., 1986). It is not clear, 

however, whether these sensory systems play a role in aggression (Jonsson et al., 2011). 

Similarly, it will be interesting to examine if FruM-positive neurons in these sensory 

systems are involved in the regulation of both social behaviors (Manoli et al., 2005; 

Stockinger et al., 2005).  

 

V: Central circuitry governing aggression 

As discussed above, a great deal of effort has been put into the understanding of 

how different sensory systems regulate fly aggression. The various sources of 
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information collected by these sensory modalities are conveyed into the central brain, 

how they are integrated and are combined with various internal factors to determine 

appropriate behavioral responses. Here I will discuss the current understanding of the 

neural circuitry in the central nervous system (CNS) that regulates aggression in 

Drosophila. 

Biogenic amines. Multiple biogenic amines including dopamine (DA), serotonin 

(5-HT), octopamine (OA), tyramine (TA), and histamine (HA) are present in the insect 

nervous system (Monastirioti, 1999), playing important roles in various developmental 

and physiological processes. The best-studied biogenic amine in insect aggression is OA. 

OA levels increase during agonistic interactions of male crickets Gryllus bimaculatus 

(Adamo et al., 1995), suggesting its aggression-promoting function. Consistent with this 

idea, pharmacological depletion of OA in crickets abolishes aggression, and topical 

application of OA agonists enhances it (Stevenson et al., 2005; Stevenson et al., 2000). In 

Drsophila, OA is present in ~ 100 neurons in the adult brain and OA-positive neurons 

send extensive projections over the fly brain (Busch et al., 2009). The function of OA in 

regulating fly aggression has been documented in recent years (Dierick, 2008; Potter and 

Luo, 2008). Genetic manipulations demonstrate that OA and OA-positive neurons are 

necessary and sufficient for aggression in the fruit fly (Hoyer et al., 2008; Zhou et al., 

2008). Strikingly, restoring OA synthesis in as few as 2–5 neurons located in the SOG is 

sufficient to restore aggression in OA-depleted, tyramine beta hydroxylase mutant (Tβh-/- 

(Monastirioti et al., 1996)) (Zhou et al., 2008). It was also reported that male flies with 

low/no OA activity showed increased tendency to court rather than to fight male flies 

(Certel et al., 2007). Such an effect of OA on male behavioral choice is likely mediated 
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by a separate group of OA-positive neurons (named ventral unpaired median (VUM) 

neurons), which co-express FruM (Certel et al., 2010; Certel et al., 2007). The relationship 

between OA’s function to promote aggression and to modulate behavioral choice remains 

unclear. It is possible that two effects are mediated by FruM-negative and FruM-positive 

OA neurons, respectively (Certel et al., 2010). Four OA receptors have been identified in 

the fly genome (Evans and Maqueira, 2005). It is therefore also possible that different 

OA receptors mediate different behavioral effects of OA. Notably, OA has also been 

implicated in the regulation of non-aggressive behaviors in the fruit fly, including sleep 

(Crocker et al., 2010), appetitive learning (Schwaerzel et al., 2003), and ovulation (Lee et 

al., 2009). It is of interest to investigate how OA is engaged in various behaviors.  

DA was also implicated in the regulation of fly aggression by pharmacological 

studies (Baier et al., 2002), although this conclusion so far has not been well supported by 

genetic manipulations that target all DA neurons (Alekseyenko et al., 2010). Notably, DA 

is involved in the modulation of a variety of behaviors, including courtship (Liu et al., 

2008, 2009), arousal (Andretic et al., 2005; Lebestky et al., 2009), learning and memory 

(Claridge-Chang et al., 2009; Schwaerzel et al., 2003; Zhang et al., 2007), and 

locomotion (Friggi-Grelin et al., 2003; Kong et al., 2010). Therefore, it is possible that 

manipulating all DA neurons evokes global behavioral responses (especially those related 

to locomotion) which “mask” the aggression-modulating effect of DA. Selective labeling 

and manipulation of subsets of DA neurons may be a better way to examine the function 

of DA neurons in aggression. 
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There is also some controversy about the function of 5-HT in the regulation of fly 

aggression. An earlier study showed pharmacological manipulations of 5-HT levels (by 

feeding 5-HT precursor 5-HTP or 5-HT synthesis inhibitor pCPA) did not influence 

aggression (Baier et al., 2002). A later study, however, showed that 5-HTP feeding 

greatly enhanced aggression in certain lab-selected strains (Dierick and Greenspan, 2007). 

In this same study, Dierick and Greenspan found that activating both DA and 5-HT 

neurons promoted aggression while activating DA neurons alone did not, suggesting that 

5-HT neurons were positive regulators of fly aggression (Dierick and Greenspan, 2007). 

Consistent with this observation, an independent study that manipulated only 5-HT 

neurons confirmed their positive influence on the escalation of aggressive behavior 

(Alekseyenko et al., 2010). It is worth noting that in different studies, different fly strains, 

5-HT drugs, and GAL4 drivers targeting different neuronal populations were used, which 

may contribute to the inconsistent observations. In addition, pharmacological 

manipulations also implicated the role for 5-HT receptors in fly aggression (Johnson et al., 

2009).  

 fruitless circuitry. As discussed earlier, fruitless specifies the sex of the fly 

nervous system (Manoli et al., 2006) via sex-specific splicing (Demir and Dickson, 2005). 

The male-specific isoform FruM is expressed in ~ 2% of neurons of the male nervous 

system, including clusters of neurons in the brain and ventral nerve cord, as well as 

peripheral sensory neurons including cVA neurons (Datta et al., 2008; Kimura et al., 

2005; Manoli et al., 2005; Ruta et al., 2010; Stockinger et al., 2005). Given that FruM is 

both necessary and sufficient for male-type aggression and courtship (Demir and Dickson, 

2005; Manoli et al., 2005; Vrontou et al., 2006), and that FruM-positive neurons are 
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interconnected to form an intact neural circuitry (Yu et al., 2010), it is reasonable to 

hypothesize that different subsets of FruM-positive neurons work in an coordinative 

manner to regulate fly social behaviors. The role of FruM-positive sensory neurons has 

been discussed in Section IV. Here I will mainly focus on the central fruitless circuitry.  

FruM-positive neurons in male CNS show remarkable morphological dimorphism 

(Cachero et al., 2010; Kimura et al., 2005; Yu and Dickson, 2006; Yu et al., 2010). And 

these sexually dimorphic FruM neurons are likely to be involved in the regulation of male 

social behaviors including aggression and courtship. Some FruM-positive neuronal 

clusters are quantitatively different between male and female. For  example, mAL (aDT2, 

aDT-b) cluster of FruM-positive neurons is composed of ~ 30 neurons in male vs. ~ 5 

neurons in female (Kimura et al., 2005; Stockinger et al., 2005). mAL neurons also 

exhibit sexually specific projection patterns: male mAL neurons project both contra-

laterally and ipsi-laterally, while female mAL neurons only project contra-laterally and 

show folk-like arborization patterns (Kimura et al., 2005). Both male and female mAL 

neurons project to lateral protocerebrum and SOG, suggesting a possible function of 

these neurons to relay gustatory information to the central fruitless circuitry (Kimura et 

al., 2005). One possibility may be that mAL neurons convey 7-T information to the 

central fruitless circuitry (Koganezawa et al., 2009). Given 7-T/Gr32a is required for 

male-male aggression (Chapter 4), it is of interest to test if FruM-positive mAL neurons 

play a role in aggression. 

In addition to exhibiting sex-specific differences in cell numbers and/or branching 

patterns, some FruM-positive clusters are male-specific. For example, the P1 (or pMP4 or 
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pMP-e) cluster that is located in the lateral protocerebrum is only present in males 

(Cachero et al., 2010; Kimura et al., 2005; Yu et al., 2010). Masculinization of randomly 

labeled P1 neurons in female is sufficient to evoke male-type courtship behaviors 

(Kimura et al., 2005), and activation of randomly labeled P1 neurons in males triggers 

courtship (Kohatsu et al., 2011; von Philipsborn et al., 2011), suggesting that P1 cluster is 

involved in the regulation of male courtship behavior. It will be interesting to test 

whether P1 cluster neurons are also involved in the regulation of male-male aggression, 

especially the wing threat behavior, given that P1 neurons induce the courtship song 

production by wing vibration.  

In addition to mAL and P1, multiple FruM clusters are male specific or show 

quantitative morphological differences between males and females (Cachero et al., 2010; 

Yu et al., 2010). Some of them have been shown to be involved in male courtship 

behavior (von Philipsborn et al., 2011). The characterization of these sexually dimorphic 

FruM clusters opens a way to systematically examine their functions in regulating male 

aggression. It is therefore of particular interest to conduct cluster-based (von Philipsborn 

et al., 2011; Yu et al., 2010) and/or random labeling-based (Kohatsu et al., 2011; von 

Philipsborn et al., 2011) screens to identify specific FruM neurons that regulate different 

aspects of aggression in male Drosophila. 
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VI: Concluding remarks and future directions 

This is probably the best time ever to study the genetic and neural basis of a complex 

social behavior like aggression in Drosophila melanogaster. With the recent progress in 

standardized behavioral assays (Chen et al., 2002; Nilsen et al., 2004), automated 

behavioral analysis software (Dankert et al., 2009; Hoyer et al., 2008), genetic toolboxes 

(Dietzl et al., 2007; Ni et al., 2009; Ni et al., 2011), and neurobiological toolboxes 

(Hadjieconomou et al., 2011; Hampel et al., 2011; Lee et al., 2000; Luo et al., 2008; 

Pfeiffer et al., 2008; Pfeiffer et al., 2010; Potter et al., 2010; Ruta et al., 2010; Tian et al., 

2009), it becomes possible to systematically identify and characterize the genetic as well 

as neural circuitry components of fly aggression. I foresee that the biology of aggressive 

behavior will soon emerge in the fruit fly.  
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ABSTRACT 

Environmental as well as genetic factors can modulate aggressiveness, but the biological 

mechanisms underlying their influence are largely unknown.  Social experience with 

conspecifics suppresses aggressiveness in both vertebrate and invertebrate species, 

including Drosophila.  We have searched for genes whose expression levels correlate 

with the influence of social experience on aggressiveness in Drosophila, by performing 

microarray analysis of head tissue from socially isolated (aggressive) vs. socially 

experienced (non-aggressive) male flies.  Among ~200 differentially expressed genes, 

only one was also present in a gene set previously identified by profiling Drosophila 

strains subjected to genetic selection for differences in aggressiveness.  This gene, 

Cyp6a20, encodes a cytochrome P450.  Social experience increased Cyp6a20 expression, 

and decreased aggressiveness, in a reversible manner.  In Cyp6a20 mutant, 

aggressiveness was increased in group-housed, but not socially isolated, flies.  These data 

identify a common genetic target for environmental and heritable influences on 

aggressiveness.  Cyp6a20 is expressed in a subset of non-neuronal support cells 

associated with pheromone-sensing olfactory sensilla, suggesting that social experience 

may influence aggressiveness by regulating pheromone sensitivity. 
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INTRODUCTION 

Aggression is critical for the survival and reproduction of many animal species 

(Kravitz and Huber, 2003; Loeber and Hay, 1997; Tecott and Barondes, 1996).  Although 

aggression is an innate behavior subject to genetic influences, levels of aggressiveness 

are subject to environmental modifications as well.  An important unanswered question is 

whether these influences act by independent, or shared, biological mechanisms.  While 

genes underlying heritable differences in aggressiveness are beginning to be identified 

(Dierick and Greenspan, 2006; Edwards et al., 2006), very little is known about the 

molecular mechanisms underlying environmental influences on aggression.   

Environmental influences on aggressiveness have been well-documented in a 

variety of animal models.  Social status established by previous agonistic experience 

influenced subsequent aggression-related behavior in the crayfish (Yeh et al., 1996) as 

well as in crickets (Stevenson et al., 2005).  Resident female Mediterranean fruit flies 

(Ceratitis capitata) located at a resource had a higher probability of defeating an intruder, 

suggesting that experience on a resource may increase aggressiveness (Papaj and 

Messing, 1998).  Male fruit flies (Drosophila melanogaster and Drosophila simulans) 

raised at high density failed to successfully defend their territories against males raised at 

low density, an effect potentially related to differences in body size (Hoffmann, 1987b).  

Social experience with conspecifics is one environmental influence on 

aggressiveness that is common to many species, including humans (Loeber and Hay, 

1997).  Socially isolated male mice are more aggressive than group-housed males 

(Matsumoto et al., 2005).  Similar phenomena have been reported in the rat (Luciano and 

Lore, 1975), cichlid fish (Haplochromis burtoni) (Ferno, 1978) and other vertebrate 
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species.  Effects of social experience on aggressiveness have also been described in 

invertebrates.  Hoffman (Hoffmann, 1990) reported that male Drosophila held in 

isolation exhibited more aggressive behaviors, and required less time to establish their 

territories, than males held in groups, suggesting that social experience suppresses 

aggressiveness in the fruit flies.  Analogous observations have also been reported for 

female Drosophila melanogaster (Ueda and Kidokoro, 2002).  

Taken together, these data suggest that the effect of social experience on 

aggressiveness is shared among many species.  However, the nature of the molecular 

mechanisms mediating this effect, and whether they are evolutionarily conserved, are 

poorly understood.  Here we have used Drosophila melanogaster, a genetically tractable 

organism in which aggression has been well characterized (Chen et al., 2002; Hoffmann, 

1987a; Skrzipek et al., 1979) to investigate the molecular basis of the influence of social 

experience on aggressiveness.   
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RESULTS 

Group housing suppresses aggressiveness in a reversible manner 

Flies raised in isolation ,after eclosion, are more aggressive than those raised in 

groups (Hoffmann, 1990).  To quantify more easily this behavioral difference, we 

modified a fight chamber (Hoyer et al., 2008) to permit multiplex analysis of 

aggressiveness (Supplementary Fig. 1).  A pair of male flies of similar age and social 

experience (raised in isolation immediately following eclosion, or in groups of 10 male 

flies, for 3 days prior to the test) was transferred into a fighting arena containing a small 

food patch.  Consistent with earlier reports (Chen et al., 2002), we observed that lunging 

behavior, in which one fly rears up on its hind legs and charges the other fly, was the 

predominant form of aggression (Hoyer et al., 2008).  We therefore counted lunges as a 

measure of aggressiveness, during a 20-minute observation period.  Three different 

parameters were measured: 1) the fighting frequency, defined as the percentage of fly 

pairs that exhibited at least one lunge (Fig. 1A, B); 2) the lunging intensity, defined as the 

average number of lunges, calculated for all pairs that exhibited at least one lunge (Fig. 

1C); and 3) the average latency to the first lunge (Fig. 1D).  Flies single-housed for 3 

days exhibited a mean fighting frequency of ~50% (53.3±14.3%) during the 20 min 

observation period, while group-housed flies did not exhibit any lunges (Fig. 1A, 

p<0.01).  A similar difference was observed between flies group- or single-housed for 6 

days (but transferred to a new vial at day 3) (Fig. 1B, GG vs. SS, p<0.05).  These 

data confirm that in flies, as in other animals including mice, social experience 

suppresses aggressiveness.   
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The effect of social experience on aggressiveness was reversible.  When flies 

were single-housed for 3 days, followed by 3 days of group housing prior to the test, the 

fighting frequency was as low as that of flies group-housed for 6 days (Fig. 1B, GG vs. 

SG, p>0.05). Conversely, when flies were group-housed for 3 days, followed by 3 days 

of single housing, their aggressiveness was approximately as high as that of flies single-

housed for 6 days (Fig. 1B, SS vs. GS, p>0.05). The median lunging intensity and 

latency among pairs exhibiting at least one lunge were not significantly different across 

all social conditions (Fig. 1C, D, p>0.21, p>0.12).  

 

Cyp6a20 shows differential expression levels in single- vs. group-housed flies 

To investigate the molecular basis of social influences on aggressiveness, we 

performed comparative gene expression profiling on heads from 6-day-old, group- vs. 

single-housed male flies.  Using criteria of fold change>1.25 and p<0.002, we identified 

141 probe sets that were up-regulated, and 48 that were down-regulated, in single- vs. 

group-housed males (Supplementary Tab. 1).  The differentially expressed genes fell into 

diverse ontological and biological categories, including neurotransmitter metabolism, 

immunity and olfaction.  

While this work was underway, a report appeared (Dierick and Greenspan, 2006) 

describing a microarray comparison, using head mRNA, between Drosophila strains 

selected for increased aggressiveness (AggrI and AggrII), and strains selected for 

decreased aggressiveness (NeutrI and NeutrII).  Multiple differentially expressed genes 

were identified, allelic variation in which may underlie heritable differences in 

aggressiveness.  To determine whether there is any commonality in the molecular 
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mechanisms through which aggressiveness is modified by heritable and environmental 

factors, we compared the differentially expressed genes identified in our social 

experience experiments, with those identified by selective breeding.  Applying the same 

criteria (fold change>1.25; p<0.002), we identified Cyp6a20, a cytochrome P450 gene, as 

the only gene similarly regulated in both datasets. Cyp6a20 was expressed at relatively 

lower levels both in AggrI&II vs. NeutrI&II (Dierick and Greenspan, 2006), and in 

socially isolated vs. group-housed flies.  An independent microarray experiment 

identified many genes differentially expressed in flies selected for increased 

aggressiveness, but Cyp6a20 was not among them (Edwards et al., 2006).  However that 

study differed in several important details from the methods used in our own 

experiments, as well as in (Dierick and Greenspan, 2006), including the conditions under 

which flies were tested, and the criteria used to define aggressive behavior.   

These data led us to further investigate the role of Cyp6a20 in the effect of social 

experience on aggressiveness.  We first confirmed the correlation between Cyp6a20 

expression levels, and social experience, using quantitative RT-PCR (qRT-PCR).  

Cyp6a20 expression was almost 3-fold lower in flies single-housed for 3 days, than in 

group-housed flies of same age (Fig. 2A, p<0.01).  Furthermore, in flies switched from 

single housing to group housing after 3 days, or vice-versa, the levels of Cyp6a20 

expression changed in parallel with, but in the opposite direction to, the changes in 

aggressiveness caused by these social manipulations (Fig. 2B).  The fact that there is, on 

the one hand, a positive correlation between levels of Cyp6a20 expression and social 

experience (Fig. 2A, B), and on the other hand, a negative correlation between social 

experience and aggressiveness (Fig. 1), suggested that Cyp6a20 expression levels might 
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be negatively correlated with aggressiveness.  Indeed, a plot of Cyp6a20 mRNA levels 

vs. aggressiveness was well fit by a linear regression function, with a correlation 

coefficient = -0.96 (Fig. 2C).   

 

Cyp6a20 mediates the suppressive effect of group housing on aggressiveness 

If Cyp6a20 plays a role in mediating the effect of social experience, then flies 

deficient in Cyp6a20 should exhibit higher fighting frequencies under group- but not 

single-housing conditions.  Indeed, group-housed flies bearing a homozygous P-element 

insertion in the Cyp6a20 locus showed a significantly higher fighting frequency than 

group-housed Cyp6a20+/- flies (Fig. 3A, gray bars, Cyp6a20-/- vs. Cyp6a20+/-, p<0.05), 

while there was no significant difference between these genotypes under single housing 

conditions (Fig. 3A, white bars, Cyp6a20-/- vs. Cyp6a20+/-, p>0.05).  Furthermore, the 

fighting frequency of group-housed Cyp6a20-/- mutant flies was as high as that of single-

housed Cyp6a20-/- mutant flies, while heterozygous Cyp6a20+/- flies (like wild-type 

Canton-S flies) showed a significantly reduced fighting frequency under group housing 

conditions (Fig. 3A).  There was no statistically significant difference in locomotor 

activity between Cyp6a20+/- and Cyp6a20-/- flies under group housing conditions, nor 

between single- vs. group-housed Cyp6a20+/- flies, as measured by the total distance 

traveled during a 20-minute filming period (Fig. 4A). Furthermore, Cyp6a20-/- flies 

exhibited normal odor-guided behavior (Fig. 4B), and normal courtship behavior towards 

wild type virgin females (Fig. 4C-F), arguing that the mutation in Cyp6a20 does not 

cause general deficits in olfaction or social behavior. 



B–9 

 

To confirm that the selective increase in aggressiveness under group housing 

conditions was indeed caused by the P-element insertion in the Cyp6a20 locus, we tested 

the Cyp6a20 insertion over a deficiency spanning the Cyp6a20 gene, Df(2R)BSC11 

(Dierick and Greenspan, 2006). Like Cyp6a20-/- flies, Cyp6a20Df/- mutant flies showed a 

significantly higher fighting frequency than Cyp6a20Df/+ hemizygous flies under group 

housing conditions (Fig. 3A, gray bars, Df(2R)BSC11/+ vs. Cyp6a20/Df, p<0.05), while 

there was no significant difference between these genotypes under single housing 

conditions (Fig. 3A, white bars, Df(2R)BSC11/+ vs. Cyp6a20/Df, p>0.05).  In addition, 

the fighting frequency of Cyp6a20Df/- flies under group housing conditions was as high as 

that under single housing conditions (Fig. 3A).  There was no statistically significant 

difference in locomotor activity between Cyp6a20Df/+ and Cyp6a20Df/- flies under group 

housing conditions, or between group- vs. single-housed Cyp6a20Df/+ flies (Fig. 4A).  

The lunging intensity and latency remained unchanged in all the four genotypes (Fig. 3B, 

C, p>0.11; p>0.08).  Previous experiments have shown that the levels of Cyp6a20 mRNA 

in Cyp6a20-/- and Cyp6a20Df/- flies are only 8%-15% of those in Cyp6a20+/- and 

Cyp6a20Df/+ flies (Dierick and Greenspan, 2006).  Taken together these data suggest that 

the phenotype of the P-element insertion indeed reflects a reduction in Cyp6a20 

expression or function, although rescue experiments will be required to formally confirm 

this.  Thus, in flies with reduced levels of Cyp6a20 expression, group housing is much 

less effective in suppressing aggressiveness (for more detailed analysis, see 

Supplementary Fig. 2).  These genetic data, when taken together with the observation that 

Cyp6a20 mRNA levels are up-regulated by group housing (Fig. 2A, B), suggest that 

Cyp6a20 mediates the effect of social experience to suppress aggressiveness (Fig. 3D).  
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Cyp6a20 is specifically expressed in a subset of olfactory sensory organs 

As an initial step towards investigating the mechanism of action of Cyp6a20, we 

investigated where the gene is expressed, using an enhancer trap line, P[GawB]NP2593, 

in which Gal4 is integrated into the Cyp6a20 locus.  In P[GawB]NP2593/UAS-

mCD8GFP adult flies, the reporter was expressed in the antennae and maxillary palps, 

the two main Drosophila olfactory sensory organs (Fig. 5A, B).  Scattered GFP signal 

was also seen in the brain (data not shown).  Thus, like other P450 genes described 

previously in Drosophila (Wang et al., 1999), Cyp6a20 appears antennal-enriched.  We 

wished to verify that the Gal4-targeted GFP expression faithfully recapitulated the 

expression pattern of endogenous Cyp6a20 mRNA.  However the small number and 

inaccessibility of GFP+ cells in the antennae precluded a comparison of Cyp6a20 mRNA 

levels between GFP+ and GFP- cells, and Cyp6a20 expression was undetectable by in situ 

hybridization (not shown). We therefore examined the expression of Cyp6a20 mRNA in 

larvae, where strong GFP expression was observed specifically in the salivary gland of 

P[GawB]NP2593/UAS-mCD8GFP specimens (Supplementary Fig. 3A).  RT-PCR 

experiments performed on larval tissues confirmed that Cyp6a20 transcripts were 

enriched in salivary gland (Supplementary Fig. 3B).  The fact that the P[GawB]NP2593 

insertion in Cyp6a20 correctly reports expression in larval tissues makes it reasonably 

likely that the same holds true for the adult, although further experiments will be required 

to confirm this. 

Intriguingly, the GFP+ cells in the adult antennae were preferentially if not 

exclusively associated with trichoid sensilla, which are thought to be involved in 
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pheromone detection (van der Goes van Naters and Carlson, 2007).  Such trichoid 

sensillar-specific expression has been described for two P450 genes in the moth 

Mamestra brassicae (Maibeche-Coisne et al., 2004a), but has not been previously 

reported in Drosophila.  More surprisingly, while it is often assumed that antennal-

specific P450 enzymes are expressed by olfactory receptor neurons, GFP+ cells in both 

the antennae and palps did not coexpress ELAV, a neuronal marker (Robinow and White, 

1988) (Fig. 5C, D).  However a subset of GFP+ cells co-expressed LUSH (Fig. 5E, F), an 

odorant binding protein that marks a subpopulation of non-neuronal support cells (Kim et 

al., 1998).  Thus, Cyp6a20 is a P450 gene specifically expressed in a subset of olfactory 

sensory support cells.  
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DISCUSSION 

Both genes and environment can influence aggressiveness, However it has not 

been clear whether there is a commonality to the underlying biological mechanisms has 

not been clear.  Using Drosophila as a model system, we show that an evolutionarily 

conserved environmental influence on aggressiveness, social experience, is associated 

with changes in gene expression.  Detailed analysis of one of the regulated transcripts, 

Cyp6a20, indicates that it is up-regulated by social experience, in a manner that correlates 

with the effects of social experience to suppress aggressiveness.  Genetic experiments 

confirm that Cyp6a20 is a negative regulator of aggressiveness (Dierick and Greenspan, 

2006), but reveal that its influence is only observed under conditions of group housing, 

where its expression is relatively higher.  These data suggest that Cyp6a20 is required to 

mediate the effect of group housing to suppress aggressiveness.  Cyp6a20 was the only 

gene in our dataset in common with a set identified in an independent expression 

profiling analysis of Drosophila populations selected for differential levels of 

aggressiveness (Dierick and Greenspan, 2006).  Taken together, these data suggest that 

Cyp6a20 represents a common genetic target of heritable and environmental influences 

on aggressive behavior in fruit flies. (Fig. 6C) Whether Cyp6a20 is the only such target 

remains to be determined. 

 

Social experience influences aggressiveness by regulating gene expression 

Prior social experience with conspecifics influences numerous aspects of animal 

behavior.  Social isolation causes behavioral abnormalities in rodents, including anxiety 

and hyper-aggressiveness (Barrot et al., 2005; Champagne and Curley, 2005; Matsumoto 
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et al., 2005).  Drosophila melanogaster reared as groups exhibit circadian rhythm 

coherence (Levine et al., 2002), and longer periods of day-time sleep (Ganguly-Fitzgerald 

et al., 2006).  Social experience has also been shown to regulate courtship behavior in 

fruit flies (Svetec and Ferveur, 2005).  In cichlid fish, social interactions can regulate the 

brain expression of genes encoding neuropeptides (White et al., 2002) and steroid 

hormone receptors (Burmeister et al., 2007), but it has been difficult to extend such 

observations from correlation to causality.  Here we have demonstrated that extended 

male-male social interactions regulate gene expression in Drosophila, a system affording 

facile genetic manipulations.  Recent studies have shown that rapid-onset changes in gene 

expression accompany male-female courtship in Drosophila (Carney, 2007). (We have 

not yet examined the influence of male-female interactions in group housing, on 

aggressiveness.) Further investigation of these genes may lead to a more comprehensive 

understanding of the effect of social experience on animal behaviors. 

Under our stringency conditions, we identified 141 probe sets exhibiting higher 

expression in socially isolated than in group-housed flies, and 48 probe sets exhibiting 

higher expression under group-housing conditions.  Since aggressiveness is higher in 

socially isolated flies (Hoffmann, 1990), genes in the first category are candidate positive 

regulators of aggressiveness, while those in the second category are candidate negative 

regulators.  Loss-of-function mutations in candidate negative regulators should increase 

aggressiveness, as shown previously for Cyp6a20 mutants (Dierick and Greenspan, 2006).  

The present analysis confirms this, but reveals that flies homozygous for a hypomorphic 

allele of Cyp6a20 only show increased aggressiveness under group-housing conditions. 
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Interestingly, flies bearing mutations in two other candidate negative regulators of 

aggressiveness, which we identified in a similar analysis using a different fly strain, 

exhibited increased aggressiveness under single-housed conditions, but their 

aggressiveness could still be suppressed by group housing (L.W. and D.J.A., unpublished 

observations).  These data suggest that there are at least two classes of genes that 

negatively regulate aggressiveness, and whose expression levels are relatively higher in 

group-housed compared to single-housed flies:  (A) genes such as Cyp6a20, an 

hypomorphic allele of which overrides the effect of group-housing to suppress 

aggressiveness, but which does not increase aggressiveness under single-housed 

conditions (Fig. 3A, D, Class II); and (B) genes such as those identified in our second 

screen, hypomorphic mutations in which cause increased aggressiveness under single-

housed conditions, but not under group-housed conditions (Fig. 3D, class I).  In principle, 

a third category of negative regulators may promote constitutively increased 

aggressiveness when mutated, under both single- and group-housing conditions, but we 

have not yet identified exemplars of this class.  Recent studies have implicated serotonin, 

octopamine and neuropeptide F in the control of aggressiveness in Drosophila. Genes 

related to these neuromodulatory pathways were not among those identified in our screen 

(Baier et al., 2002; Certel et al., 2007; Dierick and Greenspan, 2007; Hoyer et al., 2008). 

 

Environmental and heritable influences on aggressiveness 

Genes can influence behavior through both polymorphic variation, on which 

natural selection can act, and by environmentally regulated changes in expression that 

occur within the lifetime of an individual.  For example, naturally occurring 
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polymorphisms in the foraging gene, which encodes a guanosine 3’, 5’-monophosphate 

(cGMP)-dependent protein kinase (PKG), cause modifications of feeding behavior in 

Drosophila melanogaster (Osborne et al., 1997), while developmental changes in the 

expression of its honey bee ortholog, Amfor, modulate feeding behavior during the life 

history of single individuals (Ben-Shahar et al., 2002).  It is not yet known whether 

naturally occurring polymorphisms in Cyp6a20 itself, or rather in genes that encode 

upstream regulators of its expression, underlie the differences in Cyp6a20 transcript 

levels between the Neutr and Aggr strains selected in (Dierick and Greenspan, 2006).  

Nevertheless our results, taken together with the genetic selection experiments in (Dierick 

and Greenspan, 2006), identify a common genetic target of environmental and heritable 

influences on aggressive behavior within a single species (Fig. 6).  

Previous studies have shown that increased aggressiveness promotes enhanced 

mating success (Dow and Schilcher, 1975).  This raises the question of why, if aggressive 

behavior provides a general selective advantage, the ability of social experience to 

suppress aggressiveness is not eventually lost over many generations, and replaced by 

constitutively aggressive populations.  One explanation is that there may be positive 

selection for the ability of social experience to suppress aggressiveness.  For example, 

under conditions where food resources are scarce and flies tend to feed in groups, 

individuals engaged in ongoing aggressive activity, despite this enriched social 

experience, might divert their energy and attention from feeding and reproductive 

behavior, thereby reducing their likelihood of reproductive success. 

 

Control of aggressiveness by social regulation of cytochrome P450s 
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The fact that social experience suppresses aggressiveness in many species leaves 

open the question of whether the underlying molecular mechanisms are also conserved.  

Although Cyp6a20 does not have a clear vertebrate ortholog, and appears to function in 

an insect-specific olfactory pathway (see below), it encodes a cytochrome P450, which 

encompasses a large family of proteins with diverse enzymatic activities (Robin et al., 

2006).  In vertebrates, one member of this family is aromatase, which converts 

testosterone to estrogen and is required for inter-male aggressiveness (Matsumoto et al., 

2003; Toda et al., 2001).  Interestingly, the expression of brain aromatase has been shown 

to be regulated by social experience and other environmental influences (Black et al., 

2005; Soma et al., 2003).  While flies lack testosterone, it is interesting that, in addition to 

Cyp6a20, 5 additional cytochrome P450 genes exhibited significant differential 

expression, by our criteria, between single housing vs. group housing conditions 

(Supplementary Tab. 1).  Thus, the general role of aromatases in mediating 

environmental influences on aggressiveness may be conserved, even if the pathways in 

which they act are not. 

The antennal-specific expression of Cyp6a20, taken together with its up-

regulation by group housing and its functional role as revealed by genetics, suggests that 

social experience may cause changes in olfactory sensitivity, via regulation of Cyp6a20.  

Consistent with this interpretation, previous studies have shown that the effect of social 

experience on male-male interactions requires pheromonal perception (Svetec and 

Ferveur, 2005).  Whether changes in Cyp6a20 expression caused by social experience 

indeed influence pheromonal sensitivity, and if so in what direction, are not yet clear.  

Pharmacologic inhibition of antennal-enriched cytochrome P450’s eliminates pheromone 
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sensitivity in some insects (Maibeche-Coisne et al., 2004b), suggesting a requirement for 

these proteins for maintaining olfactory sensitivity.  If Cyp6a20 were a positive regulator 

of pheromone sensitivity, then its increased expression under group-housing conditions 

might enhance sensitivity to an aggression-suppressing pheromone, resulting in a lower 

level of aggressiveness.  Such a model would be consistent with the suggestion that 

inhibitory pheromones are used to suppress male-male interactions (Svetec and Ferveur, 

2005).  Alternatively, as suggested previously (Dierick and Greenspan, 2006) Cyp6a20 

may function to decrease sensitivity to an aggression-promoting pheromone.  

Distinguishing these hypotheses will require identification of the relevant pheromones 

and their functional role in aggression. 
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METHODS 

Fly stocks and rearing conditions.  

All fly stocks were reared in plastic vials containing yeast, corn syrup and agar 

medium, at 25°C, 60% humidity and 12h-light: 12h-dark cycle. Newly eclosed males 

were reared either individually (single housing) or at 10 flies (group housing) per vial 

[2.4 cm (Diameter) x 9.4 cm (Height)] for 3 or 6 days before performing the behavioral 

assay.  Wild-type Canton-S (CS) flies were used for all experiments unless otherwise 

indicated. Cyp6a20-/- was introgressed into the CS background from y1w67c23; 

P{y[+mDint2] w[BR.E.BR]=SUPor-P}KG04665 as described (Dierick and Greenspan, 

2006). Cyp6a20+/- flies were generated by crossing Cyp6a20-/- males with Canton-S 

females.  Cyp6a20Df/+ (Df(2R)BSC11/+) flies were generated by crossing 

Df(2R)BSC11/SM6a males with Canton-S females. Cyp6a20Df/- (Cyp6a20/Df) flies were 

generated by crossing Df(2R)BSC11/SM6a males and Cyp6a20-/- females. 

P[GawB]NP2593 flies were from Drosophila Genetics Resource Center, Kyoto Institute 

of Technology, Japan.  

 

Aggression assay 

A multiplex aggression apparatus containing 5 arenas was constructed as 

illustrated in Supplementary Fig. 1. Two males of the same age and social experience, but 

from different vials, were introduced into each well by gentle aspiration without 

anesthesia. The behavior of 5 pairs was video-captured for 20 minutes and analyzed 

manually, by counting the number of lunges in each arena.  Lunging behavior was 

defined as previously described (Chen et al., 2002). The temperature and humidity of the 
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apparatus was set to ~25°C and ~40%, respectively.  Aggression assays were performed 

between 5pm and 12am. 

 

Microarray analysis  

Three biological replicates were performed for both single housing and group 

housing conditions. For each replicate, 20 heads were isolated from 6-day-old, single-

housed or group-housed male flies that were collected and frozen at 5pm-6pm on 

different days. Total RNA was prepared using Trizol as described (Guan et al., 2005). 

The following steps, including RNA quality test, reverse transcription, cRNA labeling, 

fragmentation and hybridization (Affymetrix Drosophila Genome Array 2.0) were 

performed by the Millard and Muriel Jacobs Genetics and Genomics Laboratory at the 

California Institute of Technology. The raw data from all arrays are available online at 

http://www.ncbi.nlm.nih.gov/project/geo under series GSE6994. 

 

Quantitative RT-PCR 

Four biological replicates were performed for each group indicated in Fig. 2. For 

each replicate, 20 heads were isolated from flies which were collected and frozen at 5pm-

6pm on different days. Total RNA was prepared using Qiagen RNeasy Micro Kit. For 

each biological replicate, three RT-PCR (technical) replicates were performed. 

 

Other behavioral assays 

Locomotor activity of flies was measured using a customized program written in 

Matlab (Dankert et al., in preparation).  For each measurement, a pair of 6-day-old male 
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flies was introduced into a fighting arena with a food patch and agar, videotaped for 20 

minutes and analyzed. To facilitate the automatic tracking of fly trajectories, the fighting 

arena used here was square-shaped instead of round-shaped as Supplementary Fig. 1. For 

food trap assay, male flies were group-housed (10 flies/vial) for 5 days and wet-starved 

for an additional day on 1% agar medium before the test.  On the day of the test, 10 flies 

were carefully aspirated into a plastic cylinder with the same dimensions as the fighting 

arena (Supplementary Fig. 1), containing two odor traps (one food+ and one food-).  The 

trap was made by inserting a P1000 pipette tip into a 5mL glass serum bottle (1.6cm 

(Diameter) x 3.4cm (Height)), containing 1ml of standard fly food (food+), or, as a 

control, 1% agar (food-).  After two hours, the number of flies trapped in each trap was 

counted and analyzed.  For courtship assay, male flies were raised at 10 flies/vial for 5-6 

days before testing.  On the day of the test, one male fly of a given genotype, and a wild-

type (C-S) virgin female of a similar age were carefully aspirated into a square-shaped 

fighting arena, and videotaped for 30 minutes.  Fly pairs that did not perform copulation 

were not included in the analysis. Three parameters were analyzed: courtship latency (the 

latency to the first courtship behavior exhibited towards the female), copulation latency 

(the latency of copulation) and courtship index (the percentage of time spent on courtship, 

including copulation, during the first 10 minutes of videotaping). 

 

Statistical analysis of behavioral data 

For two-group comparisons, the student’s t test (Fig. 4D, 4E, 4F) or Mann-

Whitney U test (Fig. 1A) were performed for parametrically or non-parametrically 

distributed data. For comparisons of more than two groups, ANOVA (Fig. 1B, 3A, 4A) 
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or Kruskal-Wallis ANOVA (Fig. 1C, 1D, 3B, 3C, 4B) was performed for parametrically 

or non-parametrically distributed data, respectively. We used Student-Newman-Keuls test 

(Fig. 3A) or Dunnett’s C test (Fig. 1B, 4A, 4B) as a post hoc test following ANOVA, to 

identify significantly different groups, with or without the assumption of homogeneity of 

variance, respectively. Significance levels for ANOVA and Kruskal-Wallis ANOVA 

were set to 0.05. Bar graphs are used to illustrate comparisons of means, with error bars 

representing s.e.m.. Boxplots are used to illustrate comparisons of medians, with the 

lower and upper edges of the boxes representing the 25% and 75% quantiles, 

respectively, and the whiskers representing the 5% and 95% quantiles. The only 

exception was Fig. 1A, in which a bar graph (mean±s.e.m.) is used for illustrative 

purposes, while the statistical comparison was made between medians. This was done for 

the consistency with the other “Fighting frequency” graphs (Fig. 1B, 3A). 

 

Statistical analysis of microarray and quantitative RT-PCR data 

Array data were analyzed using the Rosetta Resolver platform through the default 

processing pipeline, including normalization, grouping and inter-group comparison. A 

fold-change of 1.25 and a P-value of 0.002 were used to identify differently expressed 

genes (Supplementary Tab. 1). For quantitative RT-PCR, Student’s t-test was performed 

for the comparison between two normally distributed data sets (Fig. 2A). ANOVA 

followed by Student-Newman-Keuls post hoc test was used for the comparison between 

four normally distributed data sets with homogeneity of variance assumed (Fig. 2B). 

 

Immunohistochemistry 
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Whole mount antibody staining was adapted from (Manoli et al., 2005). 3-6 days 

old male P[GawB]NP2593/UAS-mCD8GFP flies were anesthetized and dissected in 

PBS. Antennae (both 2nd and 3rd segments) and palps were fixed in 4% paraformaldehyde 

in PBS for 30 min at room temperature (RT), washed 2X10 min in PBS, incubated in 

PBS containing 5% Triton X-100 (5% PBT) for 5 min, washed 3X10 min in 0.3% PBT, 

blocked 1h in 0.3% PBT containing 5% heat inactivated normal goat serum (0.3% 

PBT/S), and incubated with primary antibody in 0.3% PBT/S overnight at 4°C. On the 

following day, samples were incubated in 0.3% PBT/S at RT for 1h after 3X10 min wash 

in 0.3% PBT. Samples were then incubated with secondary antibody and TOPRO-3 in 

0.3% PBT/S for 2h at RT in dark, washed 3X5 min in 0.3% PBT, mounted in Vectashield 

(Vector Labs), and imaged on confocal microscope (Leica).  

Antibody staining of frozen sections was performed exactly the same as described 

in (Vosshall et al., 2000). 3-6 days old male P[GawB]NP2593/UAS-mCD8GFP flies 

were anesthetized, aligned using Martin Heisenberg fly collar, mounted in frozen Tissue 

Tek OCT, sectioned at 14μm, fixed in 4% paraformaldehyde in PBS at RT for 7 min, 

washed 2X10 min in PBS, penetrated in 0.1% PBT for 30 min, blocked in 0.1% PBT/S 

for 30 min, and incubated with primary antibodies in 0.1% PBT/S overnight at 4°C. On 

the following day, slides were washed 3X10 min in 0.1% PBT, blocked in 0.1% PBT/S 

for 30 min, incubated with secondary antibodies and TOPRO-3 in 0.1% PBT/S for 2h in 

dark, washed 3X5 min in 0.1% PBT, mounted in Vectashield, and imaged on confocal 

microscope (Leica).  

Antibodies were used in dilution as followed: rabbit anti-GFP (Invitrogen, 1:800), 

chicken anti-GFP (Chemicon, 1:300), rabbit anti-LUSH (D. P. Smith, 1:20), rat anti-
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ELAV (DSHC 7E8A10, 1:10), Alexa488/Cy3-conjugated secondary antibodies 

(Molecular Probes, 1:500), TOPRO-3 (1:2000).  
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FIGURES 

Figure 1.  Social experience influences Drosophila aggressiveness 

Upper diagrams illustrate experimental manipulations. (A) Mean fighting frequencies in 

3-day-old, single-housed and group-housed flies (mean±s.e.m. n=6 groups each 

containing 5 fly pairs. **p<0.01). (B) Mean fighting frequencies in 6-day-old, SS, 

GS, GG and SG flies (mean±s.e.m. n=6 groups each containing 5 pairs.  

Significant differences (p<0.05) are indicated by letters above bars). (C) Median lunging 

intensities of 3-day-old, single-housed flies, and 6-day-old, SS, GS, GG and SG 

flies (n=16, 25,19,1,2 pairs, respectively; N.S., not significantly different (p>0.05)). (D) 

Median lunging latencies of 3-day-old, single-housed flies and 6-day-old, SS, GS, 

GG and SG flies (n=16,25,19,1,2 pairs, respectively; N.S. (p>0.05)). Comparisons 

between groups were made using the Mann Whitney U test (A), ANOVA followed by 

post hoc test (B) and Kruskal-Wallis ANOVA (C, D).  
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Figure 2.  Cyp6a20 expression is correlated with social experience 

Upper diagrams illustrate experimental manipulations. (A) Relative levels of Cyp6a20 

mRNA (normalized to Ddc mRNA levels) in 3-day-old, single-housed and group-housed 

flies (mean±s.e.m. n=4. **p<0.01).  (B) Relative levels of Cyp6a20 mRNA in 6-day-old, 

SS, GS, GG and GS flies (mean±s.e.m. n=4. Significant differences are 

indicated by letters above each bar.) (C) Negative correlation between relative levels of 

Cyp6a20 mRNA and fighting frequency.  The linear regression plot (R2=0.922) is 

compiled using the data in Figs. 1A, B and 2A, B.  Comparisons between groups were 

made using student’s t test (A), or ANOVA followed by a post hoc test (B). 
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Figure 3.  Cyp6a20 mutants exhibit increased aggressiveness only under group 

housing conditions 

(A) Mean fighting frequencies of 6-day-old, single-housed and group-housed flies, of the 

indicated genotypes (mean±s.e.m. n=6 groups each containing 5 pairs; significant 

differences (p<0.05) are indicated by letters above the bars.) Comparison between groups 

was made using ANOVA followed by a post hoc test. (B) Median lunging intensities of 

6-day-old, single- or group-housed flies of the indicated genotypes 

(n=9,11,10,2,15,1,17,13 pairs, respectively; N.S., p>0.05). (C) Median lunging latencies 

of 6-day-old, single- or group-housed flies of different genotypes (n=9,11,10,2,15,1,17,13 

pairs, respectively; N.S., p>0.05). Comparisons between groups were made using 

Kruskal-Wallis ANOVA. (D) Two classes of negative genetic regulators of 

aggressiveness and their interaction with social experience.  Class I genes, when mutated, 

increase aggressiveness under single-housing conditions, where their expression levels 

are normally relatively lower, but this phenotype can be overridden by group-housing.  

Class II genes, when mutated, increase aggressiveness under group- but not single-

housing conditions, overriding the effect of social experience to suppress aggressiveness.  

Cyp6a20 is a Class II gene.   
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Figure 4. Cyp6a20 mutants exhibit normal locomotor, olfactory and courtship 

behavior 

(A) Mean walking distances of 6-day-old, single-housed and group-housed flies of the 

inidicated genotypes (n=20; N.S., p>0.05). Comparisons between groups were made 

using ANOVA followed by post hoc test.  (B) Median number of flies of the indicated 

genotypes (n=15) trapped in food-containing (food+) vs. empty (food-) traps.   

Significant differences are indicated by letters above the bars). Comparisons between 

groups were made using Kruskal-Wallis ANOVA followed by a post hoc test. (C-F) 

Cyp6a20 mutants have normal courtship behavior. (C) Percentage of fly pairs of the 

indicated genotypes that copulated in 30 minutes. (D) Mean courtship latency of flies of 

the indicated genotypes (n=21, 20, respectively; N.S., p>0.05). (E) Mean copulation 

latency of flies of the indicated genotypes (n=21, 20, respectively; N.S., p>0.05). (F) 

Mean courtship index of flies of the indicated genotypes (n=21, 20, respectively; N.S., 

p>0.05). For (D-F), comparisons between groups were made using Student’s t test. 
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Figure 5.  Cyp6a20 expression in olfactory sensory organs 

(A, B) GFP expression in the antennae (A) and palps (B). Whole mount antennae and 

palps were stained with rabbit anti-GFP (green). (C, D) GFP+ cells are non-neuronal. 

Frozen sections were stained with rabbit anti-GFP (green) and rat anti-ELAV (red). (E, F) 

a subset of GFP+ cells in the antennae (E), (but not in the palps (F)), coexpressed LUSH. 

Frozen sections were stained with chick anti-GFP (green) and rabbit anti-LUSH (red). 

Confirmation of colabeling of one cell (white arrow) by z-series analysis is shown below 

and to the right of (E).  Inset in (E) is a higher magnification view of the boxed region 

(arrowhead), illustrating a GFP+, LUSH- cell and a GFP+, LUSH+ cell.  In all images, 

TOPRO-3 (blue) was used for nuclear staining. (scale bars, 50 m). 
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Figure 6.  Cyp6a20 is a common genetic target of environmental and heritable 

influences on aggressive behavior 

 (A) Social experience influences aggressiveness in a reversible manner (bi-directional 

arrows), mediated by differential expression of Cyp6a20.  (B) Genetic selection over 

multiple generations establishes Neutral and Aggressive populations with differential 

levels of aggressiveness, which correlate with differential Cyp6a20 expression.  (C) 

Cyp6a20 regulation constitutes a common molecular target of environmental and genetic 

influences on aggressiveness.  Circular arrowheads indicate that both positive and 

negative influences are possible.  Environmental influences act on a timescale of the 

lifespan of the organism (left), while genetic influences act over multiple generations as a 

consequence of selection (natural or artificial). 
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Supplementary Figure 1. Aggression arena 

The apparatus was modified from an original design by Hoyer SC et al. [Hoyer SC, et al. 

(2008) Octopamine in male aggression of Drosophila Curr Biol 18:156–167]. The 

dimensions of each arena were 5.0 cm (D) X 11.4 cm (H). The center of the arena 

contains an inner square well (1.2 cm X 1.2 cm) filled with sucrose-apple juice-agar 

medium, and an outer square well (2.2 cm X 2.2 cm) filled with 1% agar medium. Fluon 

was painted on the inner surface of the wall of each arena, to prevent flies from climbing 

out. Arenas were covered by transparent plastic lids to prevent flies from escaping and to 

facilitate video capture. 

 

 



B-38 

 

Supplementary Figure 2. Cumulative probability distributions of lunging thresholds 

for Cyp6a20 mutant analysis 

For each lunge threshold criterion (x axis), the cumulative probability (y axis) represents 

the cumulative percentage of pairs that can be accounted for by X lunges or less (in 20 

min). (A) Cumulative probability distributions for Cyp6a20+/- and Cyp6a20-/- (n=6, same 

datasets used in Fig. 3, error bars represent s.e.m.). (B) Cumulative probability 

distributions for Cyp6a20Df/+ and Cyp6a20Df/- (n=6, same data used in Fig. 3, error bars 

represent s.e.m.). Curves that approach 100% more rapidly indicate a lower level of 

aggressiveness. Squares represent homozygous mutants (Cyp6a20-/- in A and Cyp6a20/Df 

in B), triangles represent heterozygous controls (Cyp6a20+/- in A and Df(2R)BSC11/+ in 

B). Open and solid symbols indicate single- and group-housing conditions, respectively 

(refer to Supplementary Text). 
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Supplementary Figure 3. Larval Cyp6a20 expression is enriched in salivary gland 

(SG) 

For B, C-S third instar larvae were dissected in PBS and both SG and SG-removed larval 

tissue were collected. Equal amount of RNA extracted from both tissues were reverse-

transcribed and simultaneously amplified using RpL32 and Cyp6a20 primers, producing 

423 bp and 962 bp, respectively. RpL32 (CG7939) was used as an internal control of 

gene expression. PCR products were loaded on 1.2% agarose gel and visualized by 

ethidium bromide.  

(A) GFP expression was seen in SG of P[GawB]NP2593/UAS-mCD8GFP (Left, arrow 

head), but not in SG of P[GawB]NP2593/+ (Right) larva. (Scale bar: 1 mm.) (B) RT-PCR 

confirmed Cyp6a20 transcripts were enriched in SG. 
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SUPPLEMENTARY TEXT 

Cumulative probability distribution (CDP) analysis 

The most sensitive criterion for fighting is that a given pair of flies exhibits at 

least one lunge during the 20 minute observation period. However, arbitrarily less 

sensitive (more stringent) criteria can also be used. We wished to examine systematically 

how criteria of different stringencies affected the comparison between housing conditions 

and genotypes. To do this, we first measured the total number of lunges exhibited by each 

pair of flies, during the 20 minute observation period. We then plotted the data as a 

cumulative probability distribution curve, for each genotype and housing condition 

(heterozygous/single-housed; homozygous/single-housed; heterozygous/group-housed; 

homozygous/group-housed). Due to different genetic backgrounds, separate comparisons 

were made for P-element heterozygotes vs. homozygotes (Cyp6a20+/- vs. Cyp6a20-/-, 

A), and Df heterozygotes vs. Df/P-element homozygotes (Df(2R)BSC11/+ vs. 

Cyp6a20/Df, B). 

In each case, group-housed heterozygous controls (A, Cyp6a20+/- and B, 

Df(2R)BSC11/+) were chosen as the “reference” datasets for comparison to other 

conditions/genotypes. For each stringency criterion (lunge number), a Kruskal-Wallis 

ANOVA (significance level=0.05) was performed on each dataset from the four curves. 

If there was significant difference between the four datasets, then a Mann Whitney U test 

(significance level=0.05) was performed between the “reference” dataset and the three 

other “test” datasets. This analysis permitted a comparison of the aggressiveness of 

different genotypes under different housing conditions, at progressively higher 

stringencies. 
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At the origin of each curve, when X=0, the group-housed heterozygous controls 

(A, Cyp6a20+/- Group housing, and B, Df(2R)BSC11/+ Group housing) are significantly 

different from all other groups. As the lunge threshold criterion (X) increases, the 

difference between the four datasets becomes gradually indistinguishable. This is to be 

expected, because if the lunge threshold were set arbitrarily high (e.g., at least 1,000 

lunges/20 min), then none of the pairs in any condition or genotype would be scored as 

having a fight (Fighting Frequency = 0), and therefore all the curves would be 

statistically indistinguishable. The question is, how do the different curves behave as they 

approach this point of statistical equivalence? The asterisks above the reference curve 

represent points that are statistically different from “test” datasets in some or all of the 

other three curves. “N.S.” above the remaining curves represents the point after which 

these curves become indistinguishable from the reference curve. 

 

Four major conclusions can be drawn from this analysis: 

1) The behavior of the three “test” curves with respect to each other is clearly 

different in A and B. In general, flies containing the Df(2R)BSC11 deficiency 

chromosome (B) are more aggressive than those containing the P-element insertion 

chromosome (A). This difference could reflect a difference in the genetic backgrounds of 

CS and Df(2R)BSC11/Cyo flies, or haplo-insufficiency of genes other than Cyp6a20 that 

are encompassed by the deficiency. Therefore the most conservative conclusions are 

those that can be drawn from the analysis of the P-element insertion data (A). 

2) The three “test” datasets in A and B are indistinguishable from each other by 

Kruskal-Wallis ANOVA, in the range X=0-19. In addition, all “test” datasets are 
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significantly different from the “reference” (heterozygous/group-housed) dataset for 

threshold criteria X=0 (A) or X=0-4 (B), at each of the individual lunge threshold values 

within these intervals. This indicates that the Cyp6a20 homozygous mutation renders 

flies equally aggressive under group-housed and single-housed conditions, and that under 

both housing conditions, these mutant flies are more aggressive than group-housed 

heterozygous controls. This supports the conclusion that the suppressive effect of 

enriched social experience on aggressiveness is mediated, at least in part, by Cyp6a20. 

3) The curves for homozygous P-element mutant flies, in either the single- or 

group-housing conditions, become statistically indistinguishable from the reference curve 

at the same lunge criterion (X=1, Cyp6a20-/- group housing, and Cyp6a20-/- single 

housing, A). This indicates that single-housed homozygous flies are no more aggressive 

than group-housed homozygous flies, in comparison to group-housed heterozygous flies. 

This would suggest that most or all of the difference in aggressiveness between single 

and group-housed heterozygous flies is due to Cyp6a20, and therefore that this gene is 

the primary, if not the exclusive, mediator of the effect of social experience on 

aggressiveness. However, in experiments using the deficiency-containing chromosome 

(B), the two homozygous curves reach statistical equivalence with the “reference” curve 

at different points (X=5 for Cyp6a20/Df, group housing, X=11 for Cyp6a20/Df, single 

housing, B). This indicates that under single housing conditions, the homozygous mutants 

are still somewhat more aggressive than they are under group housing conditions. Subject 

to the caveats in 1), this would imply that additional genes besides Cyp6a20 mediate the 

effect of social experience on aggressiveness. 
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4) The curves for single-housed flies (homozygous or heterozygous) become 

indistinguishable from the reference curve at the same point in (A) (X=1, Cyp6a20-/-, 

single housing and Cyp6a20+/-, single housing). This implies that single-housed flies are 

no more aggressive in the presence or absence of Cyp6a20, in comparison to group-

housed heterozygous flies. This would suggest that Cyp6a20 exclusively functions in 

mediating the effect of group housing to suppress aggressiveness. However, in (B), the 

two single-housing curves reach statistical equivalence with the reference curve at 

different points (X=8 for Df(2R)BSC11/+, single housing, X=11 for Cyp6a20/Df, single 

housing). This suggests a difference of aggressiveness between single-housed 

heterozygous (Df/+) and homozygous (Df/P-element) Cyp6a20 mutants. If so, then 

subject to the caveats in 1), Cyp6a20 may function not only in mediating the effect of 

group housing on aggressiveness, but also in controlling the level of aggressiveness under 

single housing conditions. 
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SUMMARY 

Aggression is regulated by pheromones in many animal species (Chamero et al., 2007; 

Keverne, 2002; Shorey, 1973).  However in no system have aggression pheromones, their 

cognate receptors and corresponding sensory neurons been identified.  Here we show that 

11-cis-vaccenyl acetate (cVA), a male-specific volatile pheromone, robustly promotes 

male-male aggression in the vinegar fly Drosophila melanogaster.  The aggression-

promoting effect of synthetic cVA requires olfactory sensory neurons (OSNs) expressing 

the receptor Or67d (Ha and Smith, 2006; Kurtovic et al., 2007; van der Goes van Naters 

and Carlson, 2007), as well as the receptor itself. Activation of Or67d-expressing OSNs, 

either by genetic manipulation of their excitability or by exposure to male pheromones in 

the absence of other classes of OSNs, is sufficient to promote aggression.  High densities 

of male flies can promote aggression through release of volatile cVA.  In turn, cVA-

promoted aggression can promote male fly dispersal from a food resource, in a manner 

dependent upon Or67d-expressing OSNs.  These data suggest that cVA may mediate 

negative feedback control of male population density, through its effect on aggression.  

Identification of a pheromone-OSN pair controlling aggression in a genetic organism 

opens the way to unraveling the neurobiology of this evolutionarily conserved behavior. 
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Male-male aggression (hereafter referred to as “aggression”) in the vinegar fly 

Drosophila melanogaster was first described almost a century ago (Sturtevant, 1915).  

Since then, considerable progress has been made in understanding its regulation (Baier et 

al., 2002; Chen et al., 2002; Dierick and Greenspan, 2006, 2007; Hoyer et al., 2008; 

Vrontou et al., 2006; Wang et al., 2008; Zhou et al., 2008).  Nevertheless, little is known 

about how this behavior is controlled by sensory stimuli, in particular by pheromones.  

Recently, we showed that Cyp6a20, a cytochrome P450 gene previously identified by 

genetic selection for aggressiveness (Dierick and Greenspan, 2006), also mediates the 

influence of social experience on aggression(Wang et al., 2008).  We found that Cyp6a20 

is expressed in pheromone-sensitive trichoid sensilla (van der Goes van Naters and 

Carlson, 2007) by support cells that co-express LUSH (Wang et al., 2008), an odorant 

binding protein required for detection of cVA (Laughlin et al., 2008; Xu et al., 2005), a 

male-specific volatile pheromone (Bartelt et al., 1985; Ejima et al., 2007; Kurtovic et al., 

2007; Xu et al., 2005).  These observations raised the question of whether cVA is 

involved in the pheromonal regulation of aggression in Drosophila.  

We used CADABRA software (Dankert et al., 2009) to assess the influence of 

cVA on the behavioral interactions between pairs of Canton-S male flies.  When 500 µg 

synthetic cVA was provided on a piece of filter paper in the behavior chamber (Hoyer et 

al., 2008) (Fig. 1g), a significantly higher number of lunges, the predominant aggressive 

behavior (Chen et al., 2002; Dankert et al., 2009; Hoyer et al., 2008), was observed (Fig. 

1a).  The effect of synthetic cVA to promote aggression was dose-dependent (Fig. 1m).  

Other aggressive behaviors, including wing threat (Fig. 1b), tussling (Fig. 1c) and chasing 

(Fig. 1d), were also up-regulated by addition of synthetic cVA (see ethograms in 
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Supplementary Fig. 1). The total walking distance of the fly pair was only modestly 

increased by cVA, and was unaltered if only a single fly was present (Fig. 1j), suggesting 

that the aggression-promoting effect of the pheromone is not due to an increase in 

locomotor activity (Hoyer et al., 2008).   

Since courtship and aggression are opponent social behaviors that may 

reciprocally inhibit each other (Certel et al., 2007), we tested whether the stimulatory 

effect of synthetic cVA on aggression is associated with any influence on male-male 

courtship. No change in male-male courtship was observed in response to 500 µg of 

synthetic cVA, as measured by the occurrence of unilateral wing extension (Fig. 1e), or 

circling behavior (Fig. 1f). Thus cVA promotes aggression without altering the frequency 

of male-male courtship behaviors (Fig. 1h,i, and Supplementary Fig. 1).  

cVA has also been shown to suppress male mating behavior towards females 

(Ejima et al., 2007; Kurtovic et al., 2007).  However, under our conditions 500 µg of 

synthetic cVA was insufficient to suppress such behavior, as measured by cumulative 

latency to copulation (Fig. 1k).  The effect of cVA to promote aggression can, therefore, 

be observed under conditions where the pheromone does not affect male sexual 

behaviors.  Nevertheless, 5 mg of synthetic cVA was sufficient to suppress male-female 

mating (Fig. 1l), while no further increase in lunging was observed using this higher 

amount of cVA (Fig. 1m).  Thus, synthetic cVA can regulate two different male social 

behaviors, aggression and mating, in opposite directions with different dosage 

requirements.  



C–5 
 

            

Two different olfactory receptors, Or67d and Or65a, have been identified as cVA 

receptors (Ejima et al., 2007; Ha and Smith, 2006; Kurtovic et al., 2007; van der Goes 

van Naters and Carlson, 2007).  Silencing Or67d-expressing OSNs by expressing the 

inwardly rectifying potassium channel Kir2.1 (Baines et al., 2001) blocked the effect of 

synthetic cVA to promote aggression (Fig. 2a). This effect of cVA was also eliminated in 

Or67dGAL4/GAL4 mutant flies (Kurtovic et al., 2007) (Supplementary Fig. 2a), indicating 

that Or67d receptors, as well as Or67d-expressing OSNs, are required.  Consistent with a 

previous report that the Or67d gene is required for the mating-suppressing effect of 

synthetic cVA (Kurtovic et al., 2007), silencing Or67d-expressing OSNs blocked the 

effect of cVA to suppress male mating towards females (Fig. 2b).  In contrast, silencing 

Or65a-expressing OSNs did not impair either promotion of aggression or suppression of 

male-female mating by cVA (Fig. 2d,e).  These data suggest that synthetic cVA exerts its 

aggression-promoting effect, as well as its mating-suppressing effect, via Or67d-

expressing OSNs.  

We then asked whether increasing the excitability of Or67d-expressing OSNs is 

sufficient to promote aggression, in the absence of added cVA, by expressing a 

bacterially-derived sodium channel (“NaChBac”) (Ren et al., 2001) in Or67d-expressing 

OSNs.  Pairs of Or67dGAL4/UAS-NaChBac male flies exhibited a significantly increased 

number of lunges in comparison to Or67d+/UAS-NaChBac controls (Fig. 2c).  These data 

indicate that increasing the excitability of Or67d-expressing OSNs can enhance 

aggression, and that the magnitude of this effect is similar to that obtained by addition of 

synthetic cVA.  Activation of Or65a-expressing OSNs, in contrast, did not promote 

aggression (Fig. 2f).  Negative results obtained using the Or65a-GAL4 driver should be 
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interpreted with caution, however, because its strength may not be equivalent to that of 

Or67dGAL4 driver (Ejima et al., 2007). 

As endogenously produced cVA is able to activate Or67d-expressing OSNs 

(Laughlin et al., 2008), we next asked whether these neurons are sufficient to mediate the 

effect of endogenously produced cVA to promote aggression.  Male flies bearing a null 

mutation in Or83b, which encodes an obligatory co-receptor for olfactory receptors 

expressed in ~70-80% of OSNs (Larsson et al., 2004), exhibited a significant reduction in 

lunging behavior (Fig. 3a).  This aggression deficit could be rescued by expressing an 

Or83b cDNA under the control of an Or83b-GAL4 driver (Fig. 3b).  These data indicate 

an essential role for one or more classes of Or83b-expressing OSNs, and thereby 

implicate one or more volatile pheromones released by male flies, in aggression.   

We then tested whether restoring Or83b expression selectively in Or67d-

expressing OSNs could also rescue the aggression deficit of Or83b-/- mutant males.  

Indeed, this manipulation produced a significant rescue of the reduced aggression 

phenotype of Or83b-/- mutants, to a level ~80% of that obtained using the O83b-GAL4 

driver (Fig. 3c).  Or83b-/- mutant males expressing Or83b under the control of Or65a-

GAL4, in contrast, did not exhibit a significant rescue of the aggression phenotype, 

although there was a slight trend in this direction (Fig. 3d).  As Or67d-expressing OSNs 

respond essentially exclusively to cVA (Schlief and Wilson, 2007), these results indicate 

that activation of Or67d OSNs by endogenously produced cVA is sufficient to promote 

aggression, when all other classes of Or83b-expressing OSNs are inactive.  Taken 

together, these gain-of-function data indicate that activation of Or67d-expressing OSNs 
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(using NaChBac) is sufficient to promote aggression, and that these neurons are sufficient 

to mediate the aggression-promoting effect of endogenous cVA. 

As cVA is a volatile pheromone, its concentration should be proportional to the 

number of male flies in a given environment.  If so, then increased levels of aggression 

might be observed in a setting containing a high density of male flies, in a cVA-

dependent manner.  To eliminate the confound that a higher density of male flies could 

produce a higher number of lunges per fly pair simply because of an increased frequency 

of interaction, we developed an assay to examine the effect of a high density of “caged” 

male flies on the aggressiveness of a single pair of neighboring “tester” males.  The 

“donor” caged male flies were separated by a meshed compartment from the “tester” 

males, permitting transmission of volatile odorants while preventing physical interactions 

between the “donor” and “tester” males (Fig. 4a).  The “tester” males indeed performed a 

higher number of lunges in the presence of “donor” males, in a manner proportional to 

the number of these caged donors (Fig. 4b).  Importantly, the ability of the “donor” males 

to enhance aggression was eliminated by silencing Or67d-expressing OSNs in the 

“tester” males (Fig. 4c), or by eliminating the Or67d gene (Supplementary Fig. 2b).  

These data indicate that proximity to a high density of male flies can increase the level of 

aggression, and that this increase is mediated predominantly, if not exclusively, by 

release and detection of endogenous cVA.   

The observation that aggression is enhanced by proximity to a high density of 

male flies raised the question of whether aggressive behavior might, in turn, regulate 

population density.  Aggressive males chase competing males (Chen et al., 2002) from a 
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resource as part of their territorial behavior (Hoffmann, 1987), and thereby disperse them.  

If a high fly density promotes aggression via elevated levels of cVA, and if increased 

aggression in turn enhances dispersal, then cVA-promoted aggression might ultimately 

limit the density of male flies on a given resource.  To test this hypothesis, we first 

examined whether synthetic cVA promotes fly dispersal in a setting where multiple (six) 

male flies compete for a limited food resource territory (Fig. 4d).  In the absence of 

synthetic cVA, control Or67d+/UAS-Kir2.1 and Or67dGAL4/+ male flies quickly 

congregated on the food resource and remained there for at least 30 minutes after 

introduction into the chamber (Fig. 4e,f, blue line).  In the presence of synthetic cVA, 

however, the number of these control male flies on the food cup declined following their 

initial attraction to the resource, indicating dispersal (Fig. 4e,f, green line).   cVA did not 

promote dispersal from the food resource if individual male flies, instead of 6 flies, were 

introduced into the behavior chamber (data not shown), suggesting that the dispersal 

observed in the 6-fly assays is due to aggression.  Indeed, under these conditions cVA 

also robustly promoted aggression (Supplementary Fig. 3a).  In contrast, Or67dGAL4/UAS-

Kir2.1 male flies exhibited neither increased dispersal (Fig. 4g), nor increased aggression 

(Supplementary Fig. 3a), in response to synthetic cVA.  These data suggest that cVA 

promotes dispersal of male flies through Or67d-expressing OSNs.  Consistent with this 

interpretation, increasing the excitability of Or67d-expressing OSNs (using “NaChBac”) 

promoted dispersal and aggression in a manner similar to that of exogenously added cVA 

(Fig. 4h and Supplementary Fig. 3b).   

These data indicate that activation of cVA-responsive OSNs can reduce the 

number of male flies on a food resource, by promoting aggression.  cVA has also been 
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reported to function as an aggregation pheromone in Drosophila (Bartelt et al., 1985; Xu 

et al., 2005).  Taken together, these data suggest that cVA may play a role in the 

homeostatic control of male fly population density on a food resource: at low population 

densities, cVA causes more flies to accumulate on the resource via its aggregation-

promoting function; once the population density of male flies increases above some 

threshold, the increased levels of cVA promote aggression and dispersal, thereby 

reducing the population density to a level that achieves an optimal balance between 

feeding, reproduction and competition (Fig. 4i).  How the different behavioral functions 

of cVA are exerted through a common population of OSNs is an interesting question for 

future study (Benton, 2007). 

The control of aggression by pheromones and other semiochemicals in insects has 

been extensively studied (Kou et al., 2006; Ono et al., 2003; Shorey, 1973).  Such studies 

have established correlations between the quantity of certain pheromones in tissue 

extracts and the intensity of aggressive behavior (Kou et al., 2006), and in some cases 

have demonstrated the ability of such pheromones, in pure or synthetic form, to promote 

aggression (Ono et al., 2003).  However, with few exceptions (Chamero et al., 2007), it 

has been difficult to establish whether these pheromones actually play a physiological 

role in regulating aggression.  The genetic tools available in Drosophila have permitted 

us to establish that cVA, both in synthetic form and when released endogenously by male 

flies, promotes aggression in this species, via Or67d-expressing OSNs and the Or67d 

receptor itself.  Further dissection of the circuits engaged by these OSNs (Datta et al., 

2008) should facilitate our understanding of the neurobiology of this evolutionarily 

conserved, innate social behavior. 
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METHODS 

Behavioral assays 

Behavioral assays in most experiments were performed using 5-6 day-old male 

flies that were raised after eclosion in groups of 10 flies/vial prior to testing.  Single-

housed flies were used in the experiments shown in Fig. 3, in order to provide a higher 

level of baseline aggression against which to evaluate decreases in aggression caused by 

the Or83b mutations.  In all experiments involving genetic manipulations, comparisons 

between genotypes were made on equivalent genetic backgrounds.  Or67dGAL4/GAL4 flies 

contain an insertion of GAL4 into the chromosomal Or67d gene that produces a null 

mutation; the genetic control for this allele, Or67d+/+, is derived by excision of the GAL4 

insertion, reverting Or67d to a functional gene6.   

Most experiments (Fig. 1-3) were performed in a behavior chamber similar to that 

described previously14 except that the floor was uniformly filled with apple juice-sugar-

agar medium (Fig. 1a).  Two males (taken from different housing vials) were introduced 

into the chamber by gentle aspiration without anesthesia, videotaped for 20 minutes and 

behavioral data extracted from the videotape using CADABRA (Dankert et al., 2009) 

software.  For mating assays between males and virgin females, the latency to copulation 

was scored manually.  Where indicated, synthetic cVA dissolved in acetone (or acetone 

alone as a control) was delivered by spotting onto a small piece of filter paper placed in 

one corner of the arena.  
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Different chamber designs were used for the experiments involving caged 

“donor” males (Fig. 4a), or males competing for a food resource (Fig. 4d), and the 

number of lunges (Fig. 4b-c) or the number of flies on the food cup (Fig. 4e-h) were 

scored manually for these experiments.  Detailed descriptions of fly stocks, experimental 

designs and statistical analysis are provided in the Supplementary Methods. 

Fly stocks and rearing conditions 

All fly stocks were reared on medium containing yeast, corn syrup, and agar at 

25°C and 60% humidity, on a 12-h light:12-h dark cycle. Newly eclosed males were 

reared either individually (single-housed) or at 10 flies (group-housed) per vial [2.4cm 

(Diameter) x 9.4cm (Height)] for 5-6 days before the behavioral assays. Virgin females 

were also collected shortly after eclosion and reared at 20 females per vial for 5-6 days 

before courtship assays. Canton-S flies were obtained from M. Heisenberg; Or67d+/+ and 

Or67dGAL4/GAL4 flies were from B. Dickson; Or67d-GAL4, Or65a-GAL4, Or83b-GAL4, 

UAS-Or83b and Or83b-/- flies were from L. Vosshall. 

Experimental design 

Experiments shown in Fig. 1-3 were performed in the behavior chamber shown in 

Fig. 1g.  The chamber was coated with Fluon and placed on top of a thin layer of apple 

juice-sugar-agar medium. The arena was illuminated by a fluorescent light bulb 

underneath. In some experiments, acetone (solvent) or acetone containing a given amount 

of liquid cVA (Phenobank) was applied to a small piece of filter paper and placed in one 

corner of the arena. Two flies were introduced into the arena by gentle aspiration and 
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their activities videotaped for 20 minutes and analyzed using CADABRA (Dankert et al., 

2009) software.  For mating assays between males and virgin females, the latency to 

copulation was scored manually.  Cumulative copulation latency curves represent the 

percentage of male-female pairs that copulate as a function of time. 

For the experiments shown in Fig. 4b-c, a plastic tube coated with Fluon was used 

as the behavior chamber as shown (Fig. 4a).  A 70 µm cell strainer (BD Falcon) was 

placed in the center as the meshed compartment. The indicated number of male or female 

“donor” flies was transferred into this compartment using light anesthesia at least one 

hour before the behavioral assays. A drop of yeast paste was placed onto the center of the 

meshed compartment. A pair of group-housed “tester” males of the indicated genotype 

was introduced into the chamber, but outside the meshed compartment, by gentle 

aspiration and videotaped for 20 minutes. The total number of lunges performed on the 

meshed compartment was scored manually.  

For the experiments shown in Fig. 4e-h, a plastic tube coated with Fluon was used 

as the behavior chamber and a small cup containing standard fly food was place in the 

center (Fig. 4d). In experiments shown in Fig. 4e-g, acetone or acetone containing 500 g 

cVA was applied to a small piece of filter paper and placed on the food cup. 6 group-

housed male flies of the indicated genotype were introduced into the chamber 

simultaneously and videotaped for 30 minutes. The total number of lunges was scored 

manually and the total number of flies on top of the food cup was counted every 30 

seconds. 

Statistical analysis 
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Mann-Whitney U test (for pair-wise comparisons) and Kruskal-Wallis ANOVA 

(for comparisons among >2 groups) were applied unless otherwise noted.  Significant 

difference among groups detected by Kruskal-Wallis ANOVA were analyzed using 

Dunn’s post-test (including a correction for multiple comparisons) as the post hoc test to 

identify groups exhibiting statistically significant differences. For the comparisons 

between cumulative copulation latencies, 2-way ANOVA was applied. For Fig. 4e-h, 

two-way ANOVA was used to identify data points that show significant differences 

(p<0.05). 

 
 



C–15 
 

            

FIGURES 

Figure 1. Synthetic cVA promotes aggression 

(a-f) Number of (a) lunges, (b) wing threats, (c) tussles, (d) chases, (e) unilateral wing 

extensions and (f) circling behaviors (per 20 minutes) performed by pairs of Canton-S 

(CS) males in the presence of solvent alone or 500 µg cVA (n=28-30). The temporal 

distribution of behaviors is shown in raster plots to the right of each panel.  Each row of 

spikes represents one fly pair, and each spike represents one occurrence of the behavior. 

The histogram integrates the occurrences of each behavior in 1-minute bins. (g) 

Illustration (to scale) of the behavior chamber used for experiments shown in Fig. 1-3. 

(h,i) Number of all aggressive (h) and courtship (i) actions, based on the data in (a-f). (j) 

Walking distance of pairs of (n=28-30) or individual (n=16) CS males in the presence of 

solvent alone or 500 µg cVA. (k,l) Cumulative latency of CS males to copulate with 

virgin CS females in the presence of solvent (acetone) alone or 500 µg cVA (k; n=29), or 

solvent alone or 5 mg cVA (l; n=30). (m) Number of lunges performed by pairs of C-S 

males in the presence of solvent alone, 100 µg cVA, 500 µg cVA or 5 mg cVA (n=20-

24). * P<0.05, ** P<0.01 and *** P<0.001. Error Bars are s.e.m. in this and all figures. 
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Figure 2. Or67d-expressing OSNs mediate the aggression-promoting effect of 

synthetic cVA. 

(a,c,d,f) Number of lunges (per 20 minutes) performed by pairs of males of the indicated 

genotype, in the presence of solvent alone or 500 µg cVA (a,d; n=18-20), or with no 

added pheromone (c,f; n=20-26). * P<0.05, ** P<0.01 and *** P<0.001. (b,e) 

Cumulative latency of males of the indicated genotype to copulate with virgin females in 

the presence of solvent alone or 5 mg cVA (n=20-28).  Note that silencing of Or67d-

expressing OSNs impairs the suppression of mating by cVA (green open circles in b).  

*** P<0.001. 
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Figure 3.  Or67d-expressing OSNs are sufficient to mediate the aggression-

promoting effect of endogenously produced cVA. 

In all graphs, the number of lunges (per 20 minutes) performed by pairs of males of the 

indicated genotype is shown (n=20-34).  For this experiment, single-housed male flies, 

which exhibit a higher baseline level of aggression(Wang et al., 2008) were used in order 

to more readily detect the decreased aggression caused by the Or83b mutation.  Note that 

restoration of Or83b expression to Or67d-expressing neurons rescues the loss of 

aggressiveness in Or83b-/- flies (c).  * P<0.05, ** P<0.01 and *** P<0.001.   
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Figure 4.  cVA promotes aggression at high fly densities and dispersal of male flies 

from a food resource 

(a) Illustration (to scale) of the behavior chamber used for the experiments shown in 

(b,c). (b) Number of lunges (per 20 minutes) performed by pairs of “tester” Canton-S 

males together with the indicated number of caged male “donor” flies (n=15);  (c) 

Number of lunges (per 20 minutes) performed by pairs of “tester” males of the indicated 

genotype, in the presence or absence of 100 male “donor” flies (n=15). *** P<0.001.  (d) 

Illustration (to scale) of the behavior chamber used for the experiments shown in (e-h). 

(e-h) Number of flies of the indicated genotype on the food cup in the presence of solvent 

only (blue line) or 500 µg cVA (green line) (n=8).  Note gradual dispersal of flies from 

the food cup in the presence of cVA.  Blue bars represent data sets that are significantly 

different (P<0.05).  (h) Flies of the indicated genotype tested in the absence of solvent or 

cVA (n=10).  (i) Model illustrating hypothetical negative feedback regulation of fly 

population density by cVA-promoted aggression.  
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Supplementary Figure 1. Ethograms of fly behaviors upon cVA application. 

Ethograms of group-housed Canton-S male flies in the presence of solvent only (a) or 

500 μg synthetic cVA (b) showing the transitions between fly behaviors within 10 

seconds. The thickness of the arrows represents transition probabilities (grey scale bar: 

probability=0.5). Arrow stumps represent transitions within the same behavior. 

Diameters of the circles (log scaled) and the numbers in the circles represent frequencies 

of behaviors. 
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Supplementary Figure 2. The Or67d gene is required for the aggression-promoting 

effect of both synthetic and endogenous cVA. 

(a) Number of lunges (per 20 minutes) performed by pairs of mutant Or67dGAL4/GAL4 

males and Or67d+/+ control males, in the presence of solvent only (blue) or 500 μg cVA 

(green) (n=20-22). The experiments were performed in the setup shown in Fig. 1g. (b) 

Number of lunges (per 20 minutes) performed by pairs of mutant Or67dGAL4/GAL4 males 

and Or67d+/+ control males, in the presence of no donors (blue), or 100 caged male 

“donor” flies (red) (n=10). The experiments were performed in the setup shown in Fig. 

4a. *** P<0.001. Error bars are s.e.m. Note that due to the low aggression level of the 

genetic background of the mutants, single-housed flies were used for both experiments. 
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Supplementary Figure 3. Activation of Or67d-expressing OSNs promotes aggression 

in dispersal assay. 

(a) Number of lunges (per 30 minutes) performed by six males of the indicated genotype 

in the presence of solvent only (blue) or 500 μg cVA (green) (n=8). (b) Number of lunges 

(per 30 minutes) performed by six males of the indicated genotype (n=10). The 

experiments were performed in the behavior chamber shown in Fig. 4d. *** P<0.001. 

Error bars are s.e.m. 
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ABSTRACT 

Pheromones regulate male social behaviors in Drosophila, but the identities and 

behavioral role(s) of these chemosensory signals, and how they interact, are incompletely 

understood.  Here we show that (Z)-7-tricosene (7-T), a male-enriched cuticular 

hydrocarbon (CH) previously shown to inhibit male-male courtship, is also essential for 

normal levels of aggression.  The opposite influences of 7-T on aggression and courtship 

are independent, but both require the gustatory receptor Gr32a.  Surprisingly, sensitivity 

to 7-T is required for the aggression-promoting effect of 11-cis-vaccenyl acetate (cVA), 

an olfactory pheromone, but 7-T sensitivity is independent of cVA.  7-T and cVA 

therefore regulate aggression in a hierarchical manner.  Furthermore, the increased 

courtship caused by depletion of male CHs is suppressed by a mutation in the olfactory 

receptor Or47b.  Thus, male social behaviors are controlled by gustatory pheromones that 

promote and suppress aggression and courtship, respectively, and whose influences are 

dominant to olfactory pheromones that enhance these behaviors. 
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INTRODUCTION 
 

Social interactions between male Drosophila involve relatively high levels of 

aggression, and low levels of courtship (Dankert et al., 2009; Vrontou et al., 2006).  How 

the normal balance between these two behaviors is achieved is poorly understood.  

Previous studies have implicated pheromones detected by both the gustatory and 

olfactory systems in regulating these social interactions.  Males lacking all gustatory 

sensilla (Krstic et al., 2009), specific gustatory receptors (Miyamoto and Amrein, 2008; 

Moon et al., 2009), or their normal complement of CHs (Billeter et al., 2009; Savarit et 

al., 1999), non-volatile pheromones that include ligands of gustatory receptors (Ferveur, 

2005), exhibit elevated levels of male-male courtship. These data suggest that gustatory 

pheromones play a suppressive role in male-male courtship. Conversely, a genetic 

manipulation that eliminates CHs (Billeter et al., 2009) has recently been suggested to 

reduce male-male aggression (Fernández et al., 2010). Whether the same or different CH 

molecules inversely regulate these two male social behaviors is not clear.   

A single olfactory pheromone, cVA, has been implicated in both suppressing 

male-male courtship and enhancing male-male aggression.  Mutants lacking Or67d 

(Kurtovic et al., 2007), a receptor for cVA (Ha and Smith, 2006; Kurtovic et al., 2007; 

van der Goes van Naters and Carlson, 2007), have been reported to exhibit elevated male-

male courtship, implying that cVA may ordinarily suppress this behavior.  However, a 

subsequent study is unable to replicate this observation (Krstic et al., 2009), and 

exogenously applied cVA does not reduce male-male courtship (Wang and Anderson, 

2010).  In contrast, cVA strongly promotes male-male aggression, in an Or67d-dependent 

manner (Wang and Anderson, 2010).  Although detection of cVA by Or67d receptor is 
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not essential for aggression between isolated pairs of male flies, it may play a role under 

conditions of high male population density (Wang and Anderson, 2010).   

Despite this recent progress, the nature of the chemosensory signals that control 

the normal balance between male-male aggression and courtship is incompletely 

understood.  Furthermore, the extent to which gustatory and olfactory systems function 

independently vs. interdependently or hierarchically to regulate these behaviors has not 

been investigated. In the present study, we have investigated the interplay between the 

gustatory and olfactory pheromones in the regulation of male-male social behaviors 

(Supplementary Fig. 1). 
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RESULTS 

Male CHs control the balance between male social behaviors 

We first asked whether male CHs were required for male-male aggression.  

Previous studies show that the production of these non-volatile pheromones requires 

oenocytes, a group of cells located beneath the abdominal cuticle of male flies (Billeter et 

al., 2009; Krupp et al., 2008). Male oenocytes can be selectively ablated in adults using 

genetic tools (Billeter et al., 2009) (see Methods).  This manipulation eliminated most if 

not all male CHs (Billeter et al., 2009), including the two most abundant male-enriched 

CH molecules (Everaerts et al., 2010; Ferveur, 2005; Jallon, 1984) (7-T and (Z)-7-

pentacosene, 7-P), without affecting the levels of cVA, an olfactory pheromone 

synthesized in the male ejaculatory bulb (Butterworth, 1969) (Supplementary Fig. 2a, b 

and Fig. 1a, orange vs. blue bars). Strikingly, pairs of oenocyte-eliminated (oe–) males 

exhibited significantly reduced levels of male-male aggression, compared to pairs of 

control (oe+) males (Supplementary Fig. 3a), in addition to higher levels of male-male 

courtship(Billeter et al., 2009) (Supplementary Fig. 3b).  However, aggression between 

such oe– males was not completely eliminated, consistent with a recent report (Fernández 

et al., 2010). 

To distinguish whether eliminating male CHs influenced the social behaviors of 

oe– males in a fly-autonomous or non-autonomous manner, we paired a wild-type 

Canton-S “tester” male with either an oe+ or an oe– “target” male. Canton-S testers 

performed significantly lower levels of male-male aggression towards oe– than towards 

oe+ targets, as measured by the occurrence of lunges (Fig. 1b, orange vs. blue bars; also 

see Supplementary Fig. 4). Wing threat, a behavioral display exhibited during male-male 
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aggressive encounters (Chen et al., 2002; Dow and von Schilcher, 1975; Vrontou et al., 

2006), was not affected by the elimination of male CHs (data not shown).  Canton-S 

tester males also performed significantly higher levels of courtship towards oe– than 

towards oe+ target males, as measured by the occurrence of unilateral wing extensions 

(Fig. 1c, orange vs. blue bars) and circling episodes (Dankert et al., 2009) (data not 

shown).  To prove that the alteration of tester male behaviors was due to the lack of CHs 

on oe– target males, and not to some other, unknown effect of this genetic manipulation, 

we restored normal levels of male CHs to oe– males by passive transfer from control 

males (Savarit et al., 1999) (Supplementary Fig. 2c and Fig. 1a, green bars; see Methods).  

This manipulation rescued both the decreased male-male aggression and increased male-

male courtship (Fig. 1b, c, green bars; also see Supplementary Fig. 4) exhibited by the 

testers.  These data indicate that male CHs not only inhibit male-male courtship, but 

positively regulate aggression as well. 

The reciprocal influences of male CHs could reflect independent and opposite 

effects on male-male aggression vs. male-male courtship, or a primary effect exclusively 

on one behavior, which then indirectly inhibits the performance of the other.  cVA can 

strongly enhance aggression without causing a concomitant decrease in male-male 

courtship (Wang and Anderson, 2010), implying that aggression does not behaviorally 

inhibit male-male courtship.  To ask whether, conversely, enhancing male-male courtship 

indirectly decreased aggression, oe+ target males were perfumed with synthetic (Z,Z)-

7,11-heptacosadiene (7,11-HD), a typical female-specific CH molecule (Billeter et al., 

2009; Ferveur, 2005) (Supplementary Fig. 5 and Fig. 1d).  This treatment elevated 

courtship by wild-type tester males towards the targets, without reducing their level of 
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aggression (Fig. 1e, f).  Thus elevated male-male courtship does not behaviorally inhibit 

aggression.  The reciprocal effects of CHs on male-male aggression vs. male-male 

courtship therefore reflect parallel, direct influences of such pheromones on these two 

social behaviors. 

 

7-T reciprocally regulates male aggression and courtship 

Male CHs are comprised of multiple classes of compounds (Ferveur, 2005; Jallon, 

1984); among these, 7-T has been shown to suppress courtship (Billeter et al., 2009; 

Lacaille et al., 2007).  The requirement of CHs for normal levels of male-male aggression 

may therefore reflect the influence of a different male-enriched CH(s).  Alternatively, 7-T 

might both promote aggression and suppress male-male courtship.  To distinguish 

between these alternatives, we chemically synthesized 7-T and 7-P, the two most 

abundant male-enriched CHs (Ferveur, 2005), and asked whether perfuming oe– targets 

with either of them was sufficient to restore the normal balance of social behaviors by 

male testers (Supplementary Fig. 6 and Fig. 2a; see Methods).  Remarkably, synthetic 7-

T was sufficient both to restore normal levels of aggression, as well as to suppress 

courtship (Fig. 2b, c, green bars), by wild-type tester males.  In contrast, synthetic 7-P 

exhibited no behavioral effect in this assay (Fig. 2b, c, purple bars).  These data indicate 

that a single CH species can exert opposite-direction influences on aggression and male-

male courtship, in the absence of other CH molecules synthesized by oenocytes.   

We next investigated whether these distinct influences of 7-T might be exerted at 

different concentrations of the pheromone.  We generated oe– target males carrying 

different amounts of 7-T, ranging from ~20% to ~2 fold of the amount of 7-T present on 
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oe+ males (Supplementary Fig. 7 and Fig. 2d; see Methods).  These flies were then paired 

with wild-type tester males.  Surprisingly, as little as ~30% of the wild type amount of 7-

T applied to oe– males could produce a significant increase in aggression and exhibited a 

trend to inhibit courtship (Fig. 2e, f).  Further increasing the level of 7-T, to ~2-fold of 

the normal level, did not cause additional changes in either social behavior.  These data 

indicate that 7-T oppositely influences aggression and inter-male courtship over a similar 

concentration range. 

 

Gr32a mediates the behavioral effects of 7-T 

Next, we investigated the chemosensory receptor(s) that mediates the behavioral 

effects of 7-T.  Previous work has shown that 7-T can activate bitter-sensing GRNs 

(Lacaille et al., 2007), which express multiple gustatory receptors (Thorne et al., 2004; 

Wang et al., 2004; Weiss et al., 2011), but no specific receptor for 7-T has yet been 

identified.  The fact that Gr32a is expressed in bitter-sensing GRNs (Lee et al., 2010; 

Marella et al., 2006; Thorne et al., 2004; Wang et al., 2004; Weiss et al., 2011), and that 

Gr32a–/– mutant males exhibit increased courtship towards decapitated males (Miyamoto 

and Amrein, 2008), suggests Gr32a as a candidate receptor mediating the behavioral 

effects of 7-T.  

We first asked whether Gr32a was required for normal levels of aggression.  

When paired with oe+ target males, Gr32a–/– mutant tester males (Miyamoto and Amrein, 

2008) showed a diminished aggression level compared to Gr32a+/– heterozygous control 

males (Fig. 3a, Gr32a+/– vs. Gr32a–/–; also see Supplementary Fig. 8).  This Gr32a 

mutant phenotype was reverted by expression of a Gr32a genomic rescue construct 
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(Miyamoto and Amrein, 2008) (Fig. 3a, Gr32a–/– Rescue; also see Supplementary Fig. 8).  

In contrast, the Gr32a–/– mutation did not affect the level of courtship towards oe+ target 

males (Fig. 3b), although it did impair courtship towards oe– target males perfumed with 

7-T (see below).  Although a previous study reports that Gr32a–/– mutant males show 

increased male-male courtship towards decapitated target males (Miyamoto and Amrein, 

2008), a result that we independently replicated (Supplementary Fig. 9), such decapitated 

male targets may fail to provide additional signals, such as behavioral feedback (Krstic et 

al., 2009), that intact males normally provide to suppress male-male courtship.  It has also 

been reported that Gr32a–/– mutant males exhibit increased bilateral wing extension 

behaviors towards females (Koganezawa et al., 2010), but we did not observe such 

behavior towards oe+ male targets. 

We then asked whether Gr32a is required for the effects of 7-T to promote 

aggression and inhibit male-male courtship.  Indeed, Gr32a–/– mutant tester males failed 

to show increased aggression and decreased courtship towards oe– targets perfumed with 

7-T (Fig. 3c, d, Gr32a–/–, orange vs. green bars).  In contrast, control Gr32a+/– tester 

males, like wild-type males, exhibited increased aggression and decreased courtship 

towards such target males (Fig. 3c, d, Gr32a+/–, green bars), at levels comparable to those 

displayed towards oe+ targets (Fig. 3c, d, Gr32a+/–, orange bars vs. dashed lines).  The 

phenotype of Gr32a–/– mutants could be reverted by Gr32a genomic rescue (Fig. 3c, d, 

Gr32a–/– Rescue, orange vs. green bars).  These data indicate that Gr32a is required for 

the inverse effects of 7-T on aggression and male-male courtship (Supplementary Fig. 1, 

green), suggesting that Gr32a may encode a 7-T receptor. Whether Gr32a is required for 
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the electrophysiological response to 7-T by GRNs (Lacaille et al., 2007) is an interesting 

question that remains to be investigated.  

Notably, as fly GRNs often co-express >1 gustatory receptor (Thorne et al., 2004; 

Wang et al., 2004; Weiss et al., 2011), and as detection of bitter compounds in flies may 

require multiple receptors (Lee et al., 2010; Lee et al., 2009), our data do not exclude the 

possibility that other gustatory receptors besides Gr32a are involved in the response to 7-

T.  Moreover, the fact that Gr32a is required for the suppression of male-male courtship 

by 7-T, but not by the full complement of male CHs present on oe+ target males (Fig. 3b), 

likely indicates the existence of additional, functionally redundant CH species (e.g., 

CH503 (Yew et al., 2009)), and receptor(s) other than Gr32a (Moon et al., 2009), that are 

involved in the suppression of male-male courtship (Supplementary Fig. 1, grey). 

To test whether Gr32a+ GRNs directly mediate both of the behavioral effects of 7-

T, or simply play an indirect, permissive role, we asked whether artificial activation of 

these GRNs would be sufficient to restore aggression and suppress courtship towards oe– 

target males.  To do this, we ectopically expressed TRPV1, a mammalian capsaicin 

receptor (Caterina et al., 1997) previously used to activate Drosophila GRNs (Marella et 

al., 2006), in Gr32a+ GRNs. We paired Gr32a-GAL4/UAS-TRPV1 tester males with oe– 

target males, and asked whether applying capsaicin to these target males restored the 

normal balance of social behaviors exhibited by the TRPV1-expressing testers.  Indeed, 

the presence of capsaicin on oe– targets elicited aggression and suppressed courtship 

towards these targets by the Gr32a-GAL4/UAS-TRPV1 testers (Supplementary Fig. 10), 

although the magnitude of this behavioral rescue was much lower than that obtained 

using 7-T.  Control tester lines carrying either Gr32a-GAL4 or UAS-TRPV1 did not 
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respond to capsaicin (Supplementary Fig. 10).  Thus, artificial activation of Gr32a+ 

GRNs in tester males partially mimicked the behavioral effects of 7-T.  The incomplete 

penetrance of the capsaicin/TRPV1 manipulation likely reflects the expression of the 

Gr32a-GAL4 driver (Wang et al., 2004) in only a subset of all Gr32a+ GRNs(Weiss et al., 

2011) (M. H. and Kristin Scott, personal communications).  However a requirement for 

activation of additional, Gr32a– GRNs to mimic a full behavioral response to 7-T, could 

also explain the difference.  Whatever the case, the data suggest that 7-T is likely to act 

directly on Gr32a+ GRNs to exert its opposing effects on aggression and male-male 

courtship (Supplementary Fig. 1, green).  

 

7-T and cVA hierarchically regulate male aggression 

The observation that 7-T plays a key role in aggression raised the question of how 

it interacted with cVA, an olfactory pheromone that regulates the intensity of male-male 

aggression (Wang and Anderson, 2010).  Exogenous, synthetic cVA did not promote 

aggression in Gr32a–/– males, although it did so in Gr32a+/– control flies and in Gr32a–/– 

genomic rescue flies (Fig. 3e).  The inability of synthetic cVA to promote aggression in 

Gr32a–/– mutant flies was particularly striking in light of the fact that these mutants still 

showed residual (yet greatly reduced) levels of aggression (Fig. 3a). Therefore, the failure 

of synthetic cVA to promote aggression of Gr32a–/– mutant flies cannot be simply 

ascribed to the absence of this behavior per se. Rather, the results imply that Gr32a-

mediated signaling is required for (i.e., gates) the aggression-promoting effect of cVA. In 

contrast, the male-female courtship-suppressing effect of cVA (Ejima et al., 2007; 

Kurtovic et al., 2007) was undiminished in Gr32a–/– mutant males (data not shown).  
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Thus the inability of cVA to promote aggression in Gr32a–/– mutants does not simply 

reflect a general insensitivity to cVA caused by Gr32a mutation.   

We then asked whether, conversely, cVA sensitivity was required for the ability 

of 7-T to restore aggression towards oe– targets.  Or67dGAL4/GAL4 mutant males are 

anosmic to cVA (Kurtovic et al., 2007) and are insensitive to its aggression-promoting 

effect (Wang and Anderson, 2010). We paired them with oe– targets or oe– males 

perfumed with synthetic 7-T.  Or67dGAL4/GAL4 mutant males and the control Or67d+/+ 

males showed comparable aggressive responses to 7-T (Fig. 3f).  Similarly, ectopic 

expression of Kir2.1 in Or67d+ ORNs, which has been shown to eliminate the 

aggression-promoting effect of cVA (Wang and Anderson, 2010), did not interfere with 

the aggressive responses to 7-T (Supplementary Fig. 11).  Thus, sensitivity to cVA is not 

required for the ability of 7-T to restore normal levels of aggression towards oe– males.  

This finding confirms and extends our previous observation that sensitivity to cVA is not 

required for normal levels of aggression between pairs of wild-type male flies (Wang and 

Anderson, 2010).  Taken together, these data indicate that the aggression-promoting 

effect of cVA is dependent upon signaling through 7-T/Gr32a, but not vice versa, 

suggesting a hierarchical interaction between the gustatory and olfactory systems in 

regulating aggression (Supplementary Fig. 1, green and blue).  

 

Or47b mutations suppress courtship toward oe– males 

The foregoing observations raised the question of whether hierarchical 

interactions between the gustatory and olfactory systems might also regulate male-male 

courtship.  Specifically, we investigated whether the elevated levels of male-male 
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courtship caused by genetic depletion of male CHs might require detection of olfactory 

pheromones.  Previous studies have identified two olfactory receptors, Or47b and Or88a, 

that respond to odors present on both males and females (van der Goes van Naters and 

Carlson, 2007).  Or47b+ ORNs express FruM and project to a sexually dimorphic 

glomerulus, VA1lm (also known as VA1v) (Couto et al., 2005; Fishilevich and Vosshall, 

2005), suggesting a potential role in regulating social behaviors.  Consistent with this 

idea, disruption of GABAergic signaling in Or47b+ ORNs has suggested a possible role 

for Or47b+ ORNs in the location of females by males (Root et al., 2008).  We therefore 

investigated a possible role for Or47b in the elevated courtship exhibited towards oe– 

target males.  

We examined two independent Or47b null alleles, Or47b2/2 and Or47b3/3, 

generated by homologous recombination (see Methods) (Fig. 4a, b).  In situ hybridization 

confirmed the elimination of Or47b mRNA in the third antennal segment, where it is 

normally expressed (Fig. 4c). The projections of Or47b+ ORNs to the VA1lm/VA1v 

glomerulus (Couto et al., 2005; Fishilevich and Vosshall, 2005) were unaffected by the 

mutation (Fig. 4d), indicating that lack of Or47b does not perturb proper targeting of 

these ORNs.  Elimination of Or47b in tester males suppressed the elevated courtship 

exhibited towards oe– target males (Fig. 4e), but did not affect the level of aggression 

(Fig. 4f).  To determine whether this phenotype reflected a general deficit in courtship 

behavior, we also tested these mutants in male-female interactions.  Both Or47b2/2 and 

Or47b3/3 mutant males exhibited normal latencies to copulate with virgin females, 

compared to Or47b+/+ controls (Fig 4g).  The frequency of unilateral wing extensions 
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towards females also did not show a statistically significant difference among genotypes, 

although there was a trend, if anything, to a slightly higher level in the mutants (Fig. 4h).   

These data reveal that the increased levels of male-male courtship caused by 

genetic depletion of male CHs can be suppressed by a mutation in Or47b.  This implies 

the existence of one or more male courtship-promoting cues detected by this receptor, 

whose influence is normally subordinate to the courtship-suppressing effects of male CHs 

(Billeter et al., 2009; Savarit et al., 1999) (Supplementary Fig. 1, green and red).  It is 

also possible that the presence of male CHs suppresses the synthesis/release of 

pheromone(s) detected by Or47b. However this is an unlikely explanation given that 

odors from wild type males can activate Or47b (van der Goes van Naters and Carlson, 

2007). The normal behavioral role of Or47b is not clear.  Or47b and its unknown ligand 

may function in male-male behavior, e.g. by promoting social interactions that facilitate 

the detection of short-range chemosensory cues, such as 7-T. Effects of the Or47b 

mutation on male-female courtship have not yet been detected (J. D. L. and Leslie 

Vosshall, personal communications), but this receptor could play a role that is redundant 

with that of other olfactory (or non-chemosensory) cues (Fig. 4g, h).   
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DISCUSSION 

The interplay between different chemosensory systems in the regulation of 

specific social behaviors is poorly understood.  Here we provide evidence that non-

volatile pheromones detected by the gustatory system dominantly control behavioral 

responses to olfactory cues that promote male-male social interactions.  On the one hand, 

a male CH (specifically 7-T) is essential for the aggression-promoting influence of cVA; 

on the other hand, 7-T and other gustatory pheromones inhibit a courtship-promoting 

signaling pathway dependent upon Or47b.   

The epistatic influences of male CHs on the behavioral effects of olfactory pheromones 

may be an indirect consequence of behavioral state changes, or may involve more direct 

sensory gating mechanisms (Supplementary Fig. 1, solid vs. dashed arrows).  One way 

that male CHs could indirectly regulate the influence of olfactory pheromones is through 

a principal role in sex discrimination (Billeter et al., 2009) (Supplementary Fig. 1, dashed 

arrows).  According to this view, courtship and aggression reflect behavioral states that 

are automatically engaged as a consequence of recognizing the opponent fly as female vs. 

male, respectively.  Consistent with this idea, masculinization of CH profiles can alter 

sex-specific patterns of male-female social interactions (Fernández et al., 2010).  

However, in the case of male-male social interactions, while oenocyte ablation increases 

male-male courtship (Billeter et al., 2009) it does not fully eliminate male-male 

aggression (Fig. 1b, c).  Since male aggression towards normal females almost never 

occurs (Fernández et al., 2010), this residual aggression implies that male testers still 

recognize oenocyte-ablated targets as male.  Therefore, instances of male-male courtship 

exhibited towards CH-depleted targets do not necessarily imply sex mis-identification 
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(unless such identification must be made repeatedly upon each social encounter).  The 

functional significance of courtship displays in male-male social encounters in 

Drosophila remains to be understood.  In some arthropod species, male-male mating 

plays a role in establishing dominance (Issa and Edwards, 2006), as it does in some 

human populations (Wolff and Jing, 2009).   

The foregoing considerations suggest that the effects of CH-depletion on male-

male social interactions, and sensitivity to olfactory pheromones, may not be an indirect 

consequence of behavioral state changes caused by impaired sex discrimination.  In that 

case, these gustatory pheromones may regulate olfactory influences on these social 

behaviors via a more direct gating mechanism (Supplementary Fig. 1, solid green and 

black arrows).  The circuit-level mechanisms by which such gating occurs will be an 

interesting topic for future investigation. 

The chemosensory “logic” of male social interactions revealed here has some 

intriguing parallels in mice (Dulac and Torello, 2003).  A mutation in TrpC2, which 

impairs the detection of pheromones by the vomeronasal organ (VNO (Mombaerts, 

2004)), results in both decreased male-male aggression and increased male-male 

courtship (Leypold et al., 2002; Stowers et al., 2002).  By contrast, mutations affecting 

the main olfactory epithelium (MOE) reduce male-male aggression without increasing 

inter-male courtship (Mandiyan et al., 2005; Yoon et al., 2005).  These phenotypes are 

similar to those caused by manipulating CH and cVA signaling, respectively, in 

Drosophila.  This similarity suggests a division-of-labor between these two insect 

pheromonal systems that may be analogous to that between the accessory and main 

olfactory systems in vertebrates (Touhara and Vosshall, 2009).  Major urinary proteins 
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(MUPs) have recently been shown to function as murine aggression pheromones, and are 

detected by a subset of VNO neurons (Chamero et al., 2007).  However their molecular 

receptor(s) remain to be identified.  The identification and genetic manipulation of these 

and other pheromone-receptor pairs regulating aggression and courtship in mice should 

further clarify whether the hierarchical interactions revealed here represent a conserved 

“logic” for the chemosensory regulation of social behaviors. 
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FIGURES 

Figure 1. Male CHs are important for the normal balance of male-male social 

behaviors 

(a) Quantification of cVA and major CH molecules from oe+ (blue), oe– (orange) or oe– 

males perfumed with male CHs (green) (n=10).  (b, c) Quantification of aggression (b) 

and courtship (c) performed by Canton-S tester males towards target males of the 

indicated genotypes and CH perfuming treatments (n=20). (d) Quantification of cVA and 

major CH molecules from oe+ (blue) or oe+ males perfumed with synthetic 7,11-HD (red) 

(n=9). (e, f) Quantification of aggression (e) and courtship (f) performed by Canton-S 

tester males towards target males of the indicated genotypes and CH perfuming 

treatments (n=16). Error bars are s.e.m. in this and all subsequent figures. NS: p>0.05, 

*p<0.05, **p<0.01 and ***p<0.001.  
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Figure 2. 7-T reciprocally regulates both male-male aggression and courtship 

(a) Quantification of cVA and major CH molecules from oe+ (blue), oe– (orange) or oe– 

males perfumed with synthetic 7-T (green) or 7-P (purple) (n=11–12). (b, c) 

Quantification of aggression (b) and courtship (c) performed by Canton-S tester males 

towards target males of the indicated genotypes and CH perfuming treatments (n=20). (d) 

Relative levels of 7-T carried by oe– males incubated after 7-T transfer for various 

periods of time (green), shown as a percentage of wild-type levels of 7-T (blue) (n=9–

11).  Absolute quantification is shown in Supplementary Fig. 6.  Green shading 

represents relative amount of synthetic 7-T carried by oe– males (darker = higher). (e, f) 

Quantification of aggression (e) and courtship (f) performed by Canton-S tester males 

towards oe– targets (orange), oe+ targets (blue), or oe– target males carrying different 

amounts of synthetic 7-T (green) (n=18). NS: p>0.05, *p<0.05, **p<0.01 and 

***p<0.001.  
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Figure 3. Gr32a mediates the behavioral effects of 7-T and permits the aggression-

promoting effect of cVA 

(a, b) Quantification of aggression (a) and courtship (b) performed by tester males of the 

indicated genotypes towards oe+ target males (n=26–28). (c, d) Quantification of 

aggression (c) and courtship (d) performed by tester males of the indicated genotypes 

towards oe– target males (orange) or oe– males perfumed with synthetic 7-T (green) 

(n=26–30). Dashed lines represent control levels of social behaviors (performed by 

Gr32a+/– testers towards oe+ targets (from Fig. 3a, b)). (e) Quantification of aggression 

performed by pairs of males of the indicated genotypes, in the presence of acetone alone 

(blue), or in the presence of 500 g synthetic cVA (green) (n=18–20). Note the flies were 

group-housed prior to the behavioral assays to better reveal the effect of cVA (see 

Methods). (f) Quantification of aggression performed by tester males of the indicated 

genotypes towards oe– target males (orange) or oe– males perfumed with 7-T (green) 

(n=20). NS: p>0.05, *p<0.05, **p<0.01 and ***p<0.001.  
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Figure 4. Or47b is required for elevated male-male courtship caused by depletion of 

male CHs 

(a) Schematic illustration of the targeting construct (top) and site of homologous 

recombination (bottom) in Or47b locus. The flanking gene (nompA) included in the 

targeting construct is not disrupted. (b) PCR validation of two independently recovered 

mutant alleles lacking the first two exons of Or47b. (c) RNA in situ hybridization 

for Or47b (green) and Or88a (magenta).  (d) Projections of Or47b+ ORNs to the VA1lm 

glomeruli visualized using Or47b-GAL4; UAS-mCD8GFP in flies of the indicated 

genotypes; nc82, neuropil counter-stain. Scale bar = 50 mm in (c, d). (e, f) Quantification 

of aggression (e) and courtship (f) performed by tester males of the indicated genotypes 

towards oe+ (blue) or oe– (orange) target males (n=20). (g, h) Cumulative latency to 

copulation (g; n=20) and unilateral wing extension frequency (h; n=17–18) by males of 

the indicated genotypes towards virgin females. NS: p>0.05, *p<0.05, **p<0.01 and 

***p<0.001.  
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Supplementary Fig. 1. Diagram illustrating the interactions between gustatory and 

olfactory pheromones that control male social behaviors.  

The requirement of 7-T/Gr32a for the aggression-promoting influence of cVA may 

represent an indirect, permissive effect (solid arrow), or may involve more direct sensory 

gating (dashed arrow). Similar alternative mechanisms could explain the effect of male 

CHs to suppress the courtship-promoting effect of an unknown pheromone(s) (“?”) 

detected by Or47b. “CH X/Gr X” indicates additional gustatory pheromones/receptors 

that redundantly suppress male-male courtship. 
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Supplementary Fig. 2. Ablation of male oenocytes eliminates male CHs. 

Representative gas chromatography traces of CHs from individual oe+ (a, blue), oe– (b, 

orange) or oe– males perfumed with male CHs (c, green). Arrows in (a) indicate the 

internal standard and representative pheromone peaks. Quantification of major 

pheromones peaks is shown in Fig. 1a. In this figure or following figures, the oe+ and oe– 

males were generated by crossing male +; PromE(800)-GAL4, tub-GAL80TS; + with 

female +; UAS-StingerII; + or +; UAS-StingerII, UAS-hid/CyO; +, respectively (see the 

Methods section for details).  
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Supplementary Fig. 3. Male CHs are important for the normal balance of male-male 

social behaviors. 

Quantification of aggression (a) and courtship (b) performed by pairs of oe+ (blue) or oe– 

(orange) tester males (n=20). Tester males were single-housed 5–7 days before 

behavioral assays. Error bars are s.e.m. in this and all following supplementary figures. 

***p<0.001.  
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Supplementary Fig. 4. Elimination of male CHs delays the onset of male-male 

aggression.  

Cumulative percentage of pairs that exhibit any lunge by the Canton-S tester flies at a 

given time point, towards oe+ (blue), oe– (orange), or oe– target males perfumed with 

male CHs (green) (n=20). The down-shift of the orange curve suggests the increase of 

latency to the first lunge. ***p<0.001. 
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Supplementary Fig. 5. Perfuming oe+ males with synthetic 7,11-HD. 

Representative gas chromatography traces of CHs from individual oe+ males (a, blue) or 

oe+ males perfumed with synthetic 7,11-HD (b, red). Arrow in (b) indicates the 7,11-HD 

peak. Quantification of major pheromone peaks is shown in Fig. 1d. 

 

 

 

  



D–32 
 

 

Supplementary Fig. 6. Perfuming oe– males with synthetic 7-T and 7-P. 

Representative gas chromatography traces of CHs from individual oe+ (a, blue), oe– (b, 

orange), or oe– males perfumed with synthetic 7-T (c, green) or 7-P (d, purple). Arrows 

indicate 7-T (c) and 7-P (d) peaks. Quantification of major pheromone peaks is shown in 

Fig. 2a. 
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Supplementary Fig. 7. Perfuming oe– males with different amounts of synthetic 7-T. 

(a) Representative gas chromatography traces of CHs from individual oe– (orange), oe+ 

(blue) or oe– males perfumed with various amounts of synthetic 7-T (green). Male oe– 

flies were incubated after 7-T transfer for various periods of time. Green shading 

represents relative amount of 7-T carried by oe– males (darker=higher). (b) Quantification 

of 7-T from male flies (n=9–11). Fly conditions as in (a). Note the oe+ data were the same 

as in Fig. 2a. The relative quantification of this data set was shown in Fig. 2d.  
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Supplementary Fig. 8. Elimination of Gr32a delays the onset of male aggression. 

Cumulative percentage of pairs that exhibit any lunge by tester flies of the indicated 

genotypes at a given time point, towards oe+ target males (n=26–28). The down-shift of 

the orange curve suggests the increase of latency to the first lunge. ***p<0.001. 
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Supplementary Fig. 9. Gr32a is required for the suppression of courtship towards 

decapitated males. 

Quantification of courtship performed by male flies of the indicated genotypes towards 

decapitated oe+ target males (n=18–20). The experimental setup was identical as Fig. 3a, 

b, except that the target males were decapitated and placed in the center of the behavior 

arena before assays. *p<0.05. 
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Supplementary Fig. 10. Activating Gr32a+ GRNs partially mimics the behavioral 

effects of 7-T. 

Quantification of aggression (a) and courtship (b) performed by males of the indicated 

genotypes towards oe– tester males (orange) or oe– males carrying capsaicin (aqua) 

(n=20). NS, p>0.05, *p<0.05, **p<0,01, ***p<0.001. Note in this experiment, flies were 

aged for ~12–14 d prior to behavioral assays, to ensure adequate expression of GAL4 

protein. 
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Supplementary Fig. 11. Or67d+ ORNs are not required for the aggression 

promoting effect of 7-T. 

Quantification of aggression performed by male flies of the indicated genotypes towards 

oe– target males (orange) or oe– males perfumed with 7-T (green) (n=18). ***p<0.001. 
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METHODS 

Fly stocks 

Fly stocks were raised in vials containing standard fly medium made of yeast, 

corn and agar. The stocks were maintained in fly incubators at 25 °C and 60% humidity 

on a 12h:12h light-dark circle. In most cases, flies for behavioral assays were collected 

within 8 h after eclosion and were raised individually (“tester” males), or at 30 males/vial 

(“target” males) for 5–7 d before behavioral assays.  

Canton-S flies were obtained from M. Heisenberg. Gr32a–/–, the genomic rescue 

strains, and the Gr32a-GAL4 strains (Miyamoto and Amrein, 2008) were from T. M. and 

H. A.. The fly strains for the ablation of oenocytes were from J-C. B. and J. D. L.. The 

Or47b mutant alleles were generated and characterized by J. M. at L. Vosshall’s 

laboratory, and were backcrossed into the Canton-S background by J-C. B. and J. D. L.. 

 

Genetic elimination of male CHs 

Ablation of male oenocytes (Billeter et al., 2009) was achieved by crossing male 

“+; PromE(800)-GAL4, tub-GAL80TS; +” flies to female “+; UAS-StingerII, UAS-

hid/CyO; +” or female “+; UAS-StingerII; +” at 18 °C to generate oe– or oe+ male 

progeny, respectively.  Adult male progeny were collected within 8 h after eclosion and 

kept at 25 °C for 1 d.  Subsequently, both oe+ and oe– males were maintained at 30 °C 

during the daytime and at 25 °C during the nighttime for 3 more d. The flies were then 

maintained at 25 °C for 1–2 d before use. The expression of UAS-hid (Zhou et al., 1997) 

in oenocytes specifically in the adult stage (under the control of tub-GAL80TS) (McGuire 

et al., 2003) eliminates most if not all male CHs. 
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Behavioral assays 

Unless otherwise indicated, the behavioral assays were performed using mixed fly 

pairs consisting of one single-housed “tester” male and one group-housed “target” male.  

As previously shown, group housing suppresses both aggression and courtship by male 

flies (Dankert et al., 2009; Wang et al., 2008).  Using a single-housed tester and a group-

housed target male forces aggression and courtship to be conducted predominantly by the 

tester males.  This uni-directional bias in the initiation of aggressive or courtship 

behaviors by the tester towards the target male facilitated analysis of the effects of 

experimental manipulations on the tester vs. the target. 

To measure social interactions, one tester male and one target male were 

introduced into the behavior chamber (see below) by gentle aspiration. Their behavioral 

interactions were videotaped for 20 min and analyzed manually or by using custom 

CADABRA software (Dankert et al., 2009). To distinguish testers and targets, a blue dot 

was painted on the thorax of target males under CO2 anesthesia, 1–2 d before behavioral 

assays were performed.  

The design of the behavior arena was adapted from previous reports (Dankert et 

al., 2009; Hoyer et al., 2008). Briefly, a rectangular chamber (4 cm X 5 cm X 12 cm) was 

placed on top of an acrylic base. In the center of the base, a 1 cm X 1 cm X 0.5 cm hole 

was filled with apple juice-agar-sucrose medium, surrounded by a 0.5 cm wide border 

containing 1% agar medium. The behavior arena was illuminated by a ring-shaped 

fluorescent lamp.  Videotaping was performed using a commercial camcorder (Sony 

DCR-HC38) placed on top of the arena.  
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For experiments involving synthetic cVA, the experimental design was as 

previously reported (Wang and Anderson, 2010). Briefly, before and during behavioral 

assays, a small piece of filter paper containing 5 l solvent (acetone) or 5 l solvent 

containing 500 g cVA was placed at one corner of the behavior arena. Male flies of the 

indicated genotypes were housed at 10 flies/vial for 5–7 d before behavioral assays. A 

pair of male flies of identical genotype and age was introduced into the behavior arena 

and their behavioral interactions were recorded for 20 min and analyzed by using custom 

CADABRA software. 

For courtship assays between males and females, virgin Canton-S females were 

group-housed (10 flies/vial) for 5–7 d before behavioral assays. One tester male fly and 

one virgin Canton-S female were introduced into the behavior arena and their behavioral 

interactions were recorded for 10 min. The latency to copulate and the occurrence of one 

wing extensions were scored if applicable. 

 

Chemical synthesis of CH molecules 

(Z)-7-pentacosene (7-P) was synthesized as follows.  n-BuLi (2.5 M in hexanes, 

8.86 ml, 22.2 mmol) was added drop-wise to a solution of 1-octyne (2.22 g, 20.2 mmol) 

in THF (100 ml) at –78 °C and the mixture was stirred at –78 °C for 30 min and at 0 °C 

for 30 min. The resulting solution was treated with a solution of 1-bromoheptadecane 

(5.10 g, 16.0 mmol) in THF (10 ml), tetrabutylammonium iodide (0.74 g, 2.02 mmol), 

and refluxed for 15 h. The reaction mixture was quenched with saturated aqueous NH4Cl 

and extracted with ether. The combined ether extracts were washed with brine, dried 
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(MgSO4), and concentrated under vacuum. The residue was chromoatographed (hexanes) 

to give 7-pentacosyne as a colorless viscous oil (2.93 g, 42 %). 

To a solution of 7-pentacosyne (0.920 g, 2.64 mmol) in hexanes (35 ml) was 

added quinoline (0.853 g, 6.60 mmol) and Lindlar catalyst (0.562 g). The resulting 

suspension was vigorously stirred under a hydrogen balloon for 2 h. The catalyst was 

filtered off through a pad of Celite. The solvent was evaporated and the residue was 

purified by flash chromatography (hexanes) to afford (Z)-7-pentacosene as a colorless oil 

(0.823 g, 89%) with greater than 98% purity by gas chromatography. 

 

(Z)-7-tricosene (7-T, greater than 98% purity by gas chromatography) was 

synthesized from 1-octyne and 1-bromopentadecane employing a procedure analogous to 

that used to synthesize (Z)-7-pentacosene. 

 

(Z,Z)-7,11-heptacosadiene (7,11-HD) was prepared employing a modification of 

published procedures (Davis and Carlson, 1989; Wenkert et al., 1985). A solution of 

methylmagnesium bromide (3.0 M in ether, 2.11 ml, 6.34 mmol) was added drop-wise to 

a stirring suspension of (dppp)NiCl2 (1.56 g, 2.88 mmol) in benzene (40 ml) and the 

mixture was refluxed for 15 min. A solution of hexylmagnesium bromide (2.0 M in ether, 

36.0 ml, 72.0 mmol) was added and most of the ether was removed by distillation under 

N2. Benzene (100 mL) and dihydropyran (9.09 g, 108 mmoL) were added and mixture 

was refluxed for 16 h. The reaction mixture was quenched with saturated aqueous NH4Cl 

and extracted with ether. The combined ether extracts were washed with brine, dried 

(MgSO4), and concentrated under vacuum. The residue was twice chromatographed 
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(hexanes/EtOAc = 20/1 to 10/1), the second time on silica gel embedded with AgNO3 

(10% w/w) to give (Z)-4-undecan-1-ol as a colorless viscous oil (0.675 g, 6 %). 

A mixture of (Z)-4-undecan-1-ol (0.635 g, 3.73 mmol) and PCC (1.21 g, 5.60 

mmol) was stirred in CH2Cl2 (10 ml) for 1 h. The suspension was diluted with ether, 

filtered through a pad of Celite, and concentrated under vacuum. The residue was 

chromoatographed (hexanes/EtOAc=10/1) to give (Z)-4-undecanal as a colorless oil 

(0.338 g, 54 %). 

n-BuLi (2.5 M in hexanes, 0.63 ml, 1.57 mmol) was added drop-wise to a solution 

of hexadecyltriphenylphosphonium bromide (0.975 g, 1.72 mmol) in THF (30 ml) at –30 

°C. The reaction mixture was allowed to warm to room temperature for 20 min, then 

cooled to –30 °C, HMPA (5 ml) was added, and cooled to –60 °C.  A solution of (Z)-4-

undecanal (0.240 g, 1.43 mmol) in THF (10 ml) was added drop-wise and the mixture 

was allowed to warm to room temperature. The reaction mixture was quenched with 

water and extracted with ether. The combined ether extracts were washed with brine, 

dried (MgSO4), and concentrated under vacuum. The residue was chromoatographed 

(hexanes) to give (Z, Z)-7,11-heptacosadiene as a colorless oil (0.361 g, 67%) with 

greater than 98% purity by gas chromatography. 

 

Quantification of male CHs 

The quantification method was adapted from earlier reports (Billeter et al., 2009; 

Krupp et al., 2008). Briefly, individual male flies were CO2 anesthetized and washed for 

5 min in 25 µl of iso-octane containing 20 ng/µl of octadecane as an internal standard. 

The iso-octane extracts were analyzed by gas chromatography.  1 µl of each male CH 
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extract was injected into a Hewlett-Packard 5890 II gas chromatograph coupled with a 

HP 5972 mass selective detector system. The injector was held at 300 °C and operated in 

splitless mode for 0.75 min after injection.  A 30 m x 0.25 mm ID x 0.25 µm film 

thickness RTX-5MS column from Restek Corporation (Bellafonte, Pennsylvania, US) 

was operated with a flow of 0.9 ml/min helium corresponding to a linear velocity of 34.4 

cm/sec.  The oven temperature began at 55 °C for 1.5 min and was ramped at 40 °C/min 

to 135 °C and then at 25 °C/min to 235 °C and then at 3 °C/min to 275 °C where it was 

held for 1 min. Electron impact spectra (70 eV electron energy) were recorded from 50 to 

550 m/z at a rate of 1.5 scans per sec.  HP Chemstation G1701 BA version B.01.00 

software was used to calculate the retention time, the total peak area, and the identity of 

each compound. 

 

Perfuming of male flies with CH molecules 

The procedure for perfuming live oe– males with male CHs was based on a 

passive transfer protocol adapted from a previous report (Savarit et al., 1999). Briefly, ten 

5–6 d old oe– male flies were mixed with 100 oe+ males in small vials (~10 cm3).  The 

vials were placed upside-down in a 25 °C incubator for 1 d before behavioral assays or 

gas chromatography. Such a protocol ensured that a wild type-equivalent amount of male 

CH molecules was transferred to individual oe– males. For behavioral assays, these oe– 

males were marked by a blue dot on the thorax, which could be used to sort them out 

from oe+ males without anesthesia. For gas chromatography, these males were instead 

marked by cutting off one wing before mixing. 
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The procedure for perfuming male flies with synthetic CH molecules was also 

adapted from a previous report (Billeter et al., 2009). Briefly, the compound of interest 

(2.5 µl for 7-T, 1 µl for 7-P and 1.5 µl for 7,11-HD, or no compound for control) was 

applied directly onto a small piece of filter paper in a 5 ml glass vial. Groups of 5–8 

males were introduced into the vial by gentle aspiration, and vortexed twice at medium 

speed, each for 20 sec. The male flies were then transferred to fresh vials containing fly 

food.  The vials were placed upside-down in the  25 °C incubator for 24 h before 

behavioral assays or gas chromatography. Such a protocol ensured that a wild type-

equivalent amount of 7-T, 7-P or 7,11-HD was transferred to individual males.  

To perfume different amounts of synthetic 7-T, an identical procedure was 

followed, except that the oe– males carrying synthetic 7-T were allowed to recover in 

vials for 6 h, 24 h, 72 h and 96 h before behavioral assays or gas chromatography, 

resulting in the oe– males carrying progressively smaller amounts of 7-T as a function of 

recovery time.  Target males flies were used at a comparable age for behavioral assays or 

gas chromatography, independent of their post-transfer recovery times. 

For experiments involving TRPV1, capsaicin (Sigma M2028) was dissolved in 

ethanol at 400mM, and subsequently diluted at 1:25 in acetone (adapted from ref. 

(Marella et al., 2006)).  0.5 l of this solution was carefully pipetted onto the abdomen of 

individual male flies under CO2 anesthesia.  For control males, the same procedure was 

applied, except that no capsaicin was added in the ethanol:acetone solution.  Flies were 

transferred back to vials and were allowed to recover for ~12 h before behavioral 

experiments.   
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Generation of Or47b mutant alleles 

Mutants for Or47b were generated by homologous recombination, using the 

“ends-out” technique (Gong and Golic, 2003), which replaces the exons of interest with a 

selectable marker, in this case the eye color pigmentation gene, white.  Regions 5’ and 3’ 

of the gene were amplified by PCR from genomic DNA as follows: 

5’ ARM 5.218 kb: Or47b.up-for and Or47b.up-rev 

3’ ARM 3.369 kb: Or47b.dn-for and Or47b.dn-rev 

 

Or47b.up-for TCGCTTTTCGGCTTGTCT 

Or47b.up-rev TTGCGATGGATGGATAGG 

Or47b.dn-for CACCCACTCGCAAATGAA 

Or47b.dn-rev CATTTTCACCGCAACCTG 

 

Fragments were subcloned into the CM105 (S. Chen and G. Struhl) vector which 

contains two polylinkers flanking the mini-white gene with a unique I-SceI site 5’ of the 

white gene, flanked by FRT sites and containing conventional P element repeats.   The 5’ 

arm was cloned into the AvrII site and the 3’ arm was cloned into the NotI site. The 

construct was designed to delete sequences containing the first two exons and 1kb of 

DNA upstream of the translation start site. Virgin female flies carrying one targeting 

construct were crossed to w118, 70FLP, 70I-SceI, Sco/CyO and 3-day-old progeny were 

heat shocked at 38ºC for 60 min.  Homozygous transgenic lines were created by standard 

techniques.  To check that the targeted homologous recombination took place, PCR 

primers Or47b.2-for and Or47b.2-rev were used to amplify sequence containing the first 

2 exons of the Or47b gene, which were deleted in the null mutant.  Primers Or47b.3-for 
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and Or47b.3-rev were used to amplify sequence containing the last 4 exons of 

the Or47b gene, which is intact in the Or47b null mutants. 

Or47b.2-for CATGTGCAATGTGATGACCA 
Or47b.2-rev CGATGCAAAGCAACTTGAGA 
Or47b.3-for TCAAGTTGCTTTGCATCGAG 
Or47b.3-rev ATGCAAATGGCCAGAAAAAG 

 

Statistical analysis 

Most of the behavioral data were non-parametrically distributed.  Mann–Whitney 

U tests (for pair-wise comparisons) and Kruskal-Wallis analysis of variance (ANOVA) 

(for comparisons among >2 groups) were applied. Significant difference among groups 

detected by Kruskal-Wallis ANOVA was analyzed using Dunn’s post hoc test (with 

corrections for multiple comparisons) to identify groups with statistically significant 

differences. Two-way ANOVA was applied for comparisons among cumulative 

copulation latency curves. 
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Social experience and fly behaviors 

In Chapter 2, I showed that long-term (i.e., in the period of days) social 

experience with conspecific males suppressed male aggression in Drosophila in a 

reversible manner. Furthermore, this robust and reversible behavioral effect allowed me 

to identify genetic components underlying the social regulation of male-male aggression 

(Wang et al., 2008).  

I would like to point out here that social experience has been shown to influence 

multiple animal behaviors besides aggression. And there is unlikely to be a generic 

mechanism that underlies the social regulation of all animal behaviors. How social 

experience regulats behaviors is an interesting direction for future studies.  

In the fruit fly, social experience also influences courtship behavior of male flies 

(Dankert et al., 2009). Group-housed male flies show reduced courtship towards 

decapitated virgin females, measured by the occurrence of one wing extension, a typical 

courtship behavior. The mechanism of the social suppression of courtship is not clear. 

Besides social behaviors, social experience also influences multiple non-interactive 

behaviors. Group-housed flies synchronize their circadian rhythm (measured by 

locomotor activity) (Levine et al., 2002), and increase daytime sleep (Ganguly-Fitzgerald 

et al., 2006). Both effects seem to be chemosensory system–dependent. It is therefore an 

intriguing question how social experience modulates fly behaviors: it may down-regulate 

the arousal state of fruit flies, which in turn suppresses multiple behaviors that rely on 

arousal state, including aggression, courtship, and sleep; or it may suppress multiple 

behaviors directly through different mechanisms.  
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One way to approach this question is to ask whether there is a condition or 

manipulation that disassociates the effect of social experience on different behaviors. It 

may be an interesting idea to perform unbiased genetic or neural circuitry screens (GAL4 

based) to identify genes and neuronal populations that underlie the social regulation of 

different behaviors. It will provide a comprehensive understanding of how social 

experience regulates different behaviors, and whether there is any general “principle” 

(e.g., genetic network, neural circuitry, etc.) that mediates the regulation of various 

animal behaviors. 

Another possible approach is to examine the functions of neurotransmitters, 

especially biogenic amines. Biogenic amines, such as dopamine (DA), serotonin (5-HT), 

octopamine (OA), tyramine (TA), and histamine (HA), have been shown to modulate 

various developmental and physiological processes in the fruit fly, including behaviors. 

For example, OA system has been shown to be necessary for male aggression and female 

ovulation (Certel et al., 2007; Hoyer et al., 2008; Monastirioti et al., 1996; Zhou et al., 

2008), as well as appetitive learning (Schwaerzel et al., 2003) and sleep (Crocker et al., 

2010). And DA modulates a variety of fly behaviors, including learning and memory 

(Claridge-Chang et al., 2009; Krashes et al., 2009; Schwaerzel et al., 2003; Zhang et al., 

2007), arousal state (Andretic et al., 2005; Kume et al., 2005; Lebestky et al., 2009), 

locomotion (Kong et al., 2010), and social behaviors (Liu et al., 2008, 2009). Notably, 

activating the OA system reverses the social suppression of aggression (Zhou et al., 2008) 

(however, it is not clear whether such effect is only seen in group-housed flies or not); 

and DA is involved in the social promotion of daytime sleep (Ganguly-Fitzgerald et al., 

2006). Therefore, it is a reasonable assumption that biogenic amines play important roles 
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in mediating the social regulation of fly behaviors. I propose that by studying which and 

how biogenic amines mediate the effect of social experience on different behaviors, we 

will gain a better understanding about how social experience influences multiple aspects 

of animal lives. 

   

Cyp6a20 underlying the social regulation of fly aggression 

In Chapter 2, I showed that Cyp6a20, a previously identified aggression 

suppressing gene (Dierick and Greenspan, 2006), mediates the suppression of aggression 

by social experience in the fruit fly (Wang et al., 2008). The discovery of Cyp6a20 as an 

aggression-suppressing gene and its enriched expression in pheromone sensing olfactory 

organs led to the discovery of cis-11-vaccenyl acetate (cVA), the first identified 

aggression-promoting pheromone in the fruit fly (Chapter 3) (Wang and Anderson, 2010). 

However, it is not clear how this gene mediates the social suppression of fly aggression.  

One attractive hypothesis, as I discussed in Chapter 2, is that Cyp6a20 may 

regulate the sensitivity of aggression-regulating pheromones (e.g., cVA) upon social 

experience. Cyp6a20 encodes a cytochrome P450 enzyme, a member of a large and 

diverse group of enzymes that are present in all domains of life (Danielson, 2002; Schuler, 

2011). Cytochrome P450s metabolize a broad variety of substrates, endogenous (e.g., 

lipids and steroid hormones) or exogenous (e.g., drugs and pesticides). Notably, 

cytochrome P450s have been implicated in the normal function of chemosensory systems 

in insects. Multiple cytochrome P450s have been shown to be expressed in insect 



E–5 
 

antennae, where the olfactory receptor neurons (ORNs) are located (Hovemann et al., 

1997; Maïbèche-Coisne et al., 2005; Maïbèche-Coisne et al., 2004; Wang et al., 1999; 

Wojtasek and Leal, 1999). In particular, antennal cytochrome P450s of the pale-brown 

chafer P. diversa metabolize and degrade species-specific pheromones in vitro (Wojtasek 

and Leal, 1999), and inhibiting cytochrome P450s in the antennae of P. diversa 

desensitizes pheromonal responses in ORNs (Maïbèche-Coisne et al., 2004). Taken 

together, these data suggest that cytochrome P450s may regulate sensitivity of insect 

chemosensory systems by degrading pheromones: they may clear up excess amount of 

pheromones in the extracellular lymph of ORNs to permit the acute detection of varying 

pheromone concentration (Maïbèche-Coisne et al., 2004); alternatively they may degrade 

pheromones to decrease their sensitivity (Dierick and Greenspan, 2006).  

Therefore I hypothesize that Cyp6a20 may mediate the aggression-suppressing 

effect of social experience in male flies by degrading cVA (and/or other aggression-

promoting pheromones) and suppressing their sensitivity in group-housed males. There 

are three sets of experiments we can do to test this hypothesis: A) Does social experience 

regulate olfactory sensitivity? The most straightforward experiment will be to record 

from the ORNs of single- vs. group-housed male flies, and ask whether cVA (or the 

crude mixture of male fly odors) elicits differential responses. We can also use behavioral 

responses to probe pheromonal sensitivity; e.g., whether single-housed flies show higher 

sensitivity to the aggression-promoting and/or courtship-suppressing effects of cVA, etc. 

If A) is true, then B) becomes is Cyp6a20 involved in the social regulation of pheromonal 

sensitivity? This question can also be asked in an electrophysiological or behavioral 

setting, or both. Alternatively, we can test C) Can Cyp6a20 degrade cVA or other 
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pheromones under in vitro or ex vivo conditions? And if so, does suppressing such 

enzymatic activity (pharmacologically or genetically) in vivo phenocopy Cyp6a20-/- 

mutants in aggression assays? 

Notably, although the possible link of social experience, Cyp6a20 and cVA 

(and/or other pheromones) sensitivity is a very attractive one, we have no data supporting 

this hypothesis at all at this moment. Therefore it is important to bear in mind the 

presence of other plausible mechanisms. It is still possible that the non-antennal 

expression of Cyp6a20 (in the abdomen, in the CNS, etc) plays a role in regulating male 

aggression by a completely different mechanism. Also, cytochrome P450s may be 

involved in the survival and normal functioning of antennal cells, rather than directly 

involved in the clearance/degradation of pheromones.  

 

Olfactory and gustatory pheromones in fly social behaviors 

In Chapters 3 and 4, we identified at least three classes of pheromones that 

worked in a hierarchical manner to define appropriate male social behaviors: olfactory 

pheromones (e.g., cVA via Or67d) that regulated the intensity of male-male aggression; 

gustatory pheromones (e.g., 7-T via Gr32a) that regulated the gender-specificity of male 

social behaviors; and some unknown pheromone(s) that promoted male courtship 

behavior via Or47b. However, it is important to mention here that cVA/7-T/Or47b-ligand 

probably only represents a small (yet critical) portion of the pheromones that are involved 

in the regulation of fly social behaviors. Also, the neural basis of phermonal regulation of 
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fly behaviors is only starting to be uncovered. The identification and characterization of 

additional pheromones and the underlying neural circuitry may shed important light on 

the understanding of pheromonal regulation of fly behaviors. 

First of all, although cVA is sufficient to promote male-male aggression, lack of 

cVA sensitivity (either by eliminating its receptor Or67d or by silencing the ORNs 

expressing Or67d) does not affect baseline aggression between pairs of male flies (Wang 

and Anderson, 2010). This seeming discrepancy suggests that additional olfactory 

pheromone(s) may be able to permit male-male aggression even in the absence of cVA 

detection (Chapter 3). What are these pheromones? And how are they detected? In 

Chapter 3, I showed that Or83b-/- mutant flies, in which ~ 70% of ORNs lose sensitivity 

(Larsson et al., 2004), had aggression deficit. And rescuing Or83b specifically in Or67d+ 

ORNs in Or83b-/- background is sufficient (at least partially) to restore aggression. 

Similarly, we can rescue Or83b in other groups of ORNs in Or83b-/- background and ask 

whether and which group of ORNs may also be sufficient to restore aggression. By doing 

so, we expect to identify additional olfactory receptor(s) and ORNs that are involved in 

the regulation of male-male aggression, which will also help the identification of any 

additional olfactory pheromones that regulate aggression. It will be interesting then to 

examine the interactions among multiple aggression-regulating olfactory pheromones, at 

both behavioral and circuitry levels. 

Similarly, 7-T is only one of the male cuticular hydrocarbons (CHs) identified 

from male flies. To make the story more complicated, 7-T detection seems to be 

necessary for the induction of male-male aggression, but not for the suppression of male-
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male courtship, suggesting the presence of  an additional gustatory pheromone that 

suppresses male-male courtship (such as CH503 (Yew et al., 2009)) (Chapter 4). It is also 

puzzling why 7-pentacosene (7-P), the second most abundant male CHs (Everaerts et al., 

2010), does not exert any behavioral effect. There is some indirect evidence suggesting 7-

P may promote courtship (Savarit and Ferveur, 2002; Sureau and Fervuer, 1999). 

However direct examination of the behavioral effect of 7-P under different circumstances 

is needed. In addition, the functions of female-specific CHs such as (Z,Z)-7,11-

heptacosadiene (7,11-HD) and (Z,Z)-7,11-nonacosadiene (7,11-ND) (Ferveur, 2005; 

Marcillac et al., 2005) are largely unknown. Female CHs seem not to be required for 

normal male-female courtship (Billeter et al., 2009). Consistent with this idea, male flies 

lacking gustatory sensilla court normally towards females (Boll and Noll, 2002; Krstic et 

al., 2009). However, gustatory input like 7,11-HD and 7,11-ND may still play a role in 

male-female courtship in the absence of other sensory input. For example, in Chapter 4 I 

showed that 7,11-HD was sufficient to promote courtship towards males; and male flies 

lacking both olfactory and gustatory inputs show deficit in male-female courtship (Krstic 

et al., 2009). Therefore, it is of interest to study how female CHs are sensed by males and 

modulate male behaviors. Furthermore, it is not clear whether female CHs play a role in 

the regulation of female-female aggression. 

One unexpected discovery I showed in Chapter 4 is that male-male courtship is 

not a default behavioral state, but is rather triggered by pheromone(s) detected by Or47b. 

Although we haven’t identified the ligand(s) of Or47b receptor, the idea that male-male 

courtship is an induced rather than default behavior itself is very important, given that it 

argues against the prevailing view in the field. One immediate question is why the male 
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flies carry a courtship-promoting pheromone. One possibility is that the primary function 

of Or47b is to recognize conspecifics (Drosophila melanogater); and the “default” 

behavior towards conspecific animals (regardless the sex) is courtship (note: it is not a 

“default” behavior towards any animals per se, but only towards conspecifics). In other 

words, Or47b ligand(s) is not a courtship-promoting pheromone per se, but a species 

“tag”. And on top of it, male CHs define appropriate male social behaviors towards 

different sexes of Drosophila melanogaster individuals. If this hypothesis is correct, then 

we would assume that males of other Drosophila species will not court D. melanogaster, 

and such courtship suppression will diminish if Or47b signaling is eliminated in these 

males. This is a testable hypothesis and may lead to a better understanding of the 

contribution of behaviors in speciation. Alternatively, Or47b signaling may play an active 

role in defining male-male social interactions. For example, it is possible that male-male 

courtship (induced by Or47b) may be necessary to bring two male flies in close proximity, 

which facilitates the detection of short-range, sex-specific pheromones such as 7-T. In 

this regard, male-male courtship may be the prerequisite of male-male aggression. This is 

also a plausible hypothesis which can be directly tested by asking whether male-male 

courtship always precedes male-male aggression and if so whether eliminating Or47b 

signaling has any effect on male-male aggression under different circumstances. 

 

The interplay between olfactory and gustatory systems 

One important implication from Chapter 4 is the hierarchical interactions among 

three classes of pheromones in the regulation of male social behaviors: male CHs (7-
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T/Gr32a) behaviorally gated the aggression-promoting effect of olfactory pheromones 

(cVA); and male CHs were also epistatic to the courtship-promoting effect of Or47b. 

However, the circuitry basis of such hierarchical interactions remains unknown. 

The fact that Gr32a is required for the aggression-promoting effect of cVA 

suggests that 7-T circuitry may feed onto the cVA circuitry and regulates its activity. 

Recent progress in the characterization of cVA circuitry has made it possible to test this 

hypothesis directly. By doing photoactivatable-GFP (PA-GFP) based tracing, the second- 

and third-order neurons in cVA circuitry have been identified, with their responses to 

cVA recorded by both electrophysiology and calcium recording (Datta et al., 2008; Ruta 

et al., 2010). Strikingly, one male-specific cluster of the third-order neurons located in the 

dorsal anterior protocerebrum (DC1) may receive input from gustatory system: DC1 

dendrites overlap and interdigitate with axonal projections of neurons located in the 

subesophageal ganglion (SOG), presumptively the gustatory interneurons (Ruta et al., 

2010). Therefore, it is possible that the third order cVA-responsive neurons or their 

downstream targets are modulated by gustatory input such as 7-T. Calcium imaging of 

cVA responses in cVA circuitry (e.g., DC1 neurons) +/- 7-T stimulation (direct 

stimulation or neuronal activation by channelrhodopsin) may be the best way to test this 

hypothesis. 

Interestingly, the two male-specific clusters of third-order cVA neurons, DC1 and 

LC1, have distinct properties. Although both clusters are cVA-responsive, DC1 neurons 

are excitatory while LC1 are inhibitory (GABA+) (Ruta et al., 2010). Coincidently, the 

opposite effects of cVA on male social behaviors have been reported: an inhibitory effect 
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on courtship (Kurtovic et al., 2007), and stimulative effect on aggression (Wang and 

Anderson, 2010). Therefore an attractive hypothesis is that DC1 and LC1 neurons 

mediate the aggression-promoting and courtship-suppressing effects, respectively. In 

addition, cVA’s aggression-promoting and courtship-suppressing effects are only salient 

in male-male and male-female interactions, respectively (Wang and Anderson, 2010). 

Therefore following the same logic, DC1 neurons may dominate the cVA response 

(aggression-promoting) in the presence of 7-T stimulation, while LC1 may dominate the 

courtship-suppressing response in the absence of 7-T. Whether this hypothesis is true, 

and if so how DC1 and LC1 neurons interact in the presence or absence of gustatory 

input, are both interesting questions remained for future studies. 

It is also worth noting that male CHs suppress the courtship-promoting effect of 

Or47b. The circuitry basis for the interaction between male CHs and Or47b is another 

interesting question. Like Or67d, Or47b is also expressed in Fru+ ORNs (Couto et al., 

2005; Fishilevich and Vosshall, 2005). It is therefore possible that some Fru+ 

interneurons (like DC1 and LC1 neurons) mediate the suppressive effect of male CHs on 

the Or47b pathway. It may be interesting to dissect Or47b circuitry (using PA-GFP 

tracing and calcium imaging or electrophysiology) and examine its interaction with 

gustatory system.   
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