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Abstract

This dissertation is motivated by the lack of scalable methods for the analysis and synthesis

of different large-scale complex systems appearing in electrical and computer engineering.

The systems of interest in this work are power networks, analog circuits, antenna systems,

communication networks and distributed control systems. By combining theories from con-

trol and optimization, the high-level objective is to develop new design tools and algorithms

that explicitly exploit the physical properties of these practical systems (e.g., passivity of

electrical elements or sparsity of network topology). To this end, the aforementioned sys-

tems are categorized intro three classes of systems, and then studied in Parts I, II, and III

of this dissertation, as explained below:

Power networks: In Part I of this work, the operation planning of power networks using

efficient algorithms is studied. The primary focus is on the optimal power flow (OPF)

problem, which has been studied by the operations research and power communities in

the past 50 years with little success. In this part, it is shown that there exists an efficient

method to solve a practical OPF problem along with many other energy-related optimization

problems such as dynamic OPF or security-constrained OPF. The main reason for the

successful convexification of these optimization problems is also identified to be the physical

properties of a power circuit, especially the passivity of transmission lines.

Circuits and Systems: Motivated by different applications in power networks, electro-

magnetics and optics, Part II of this work studies the fundamental limits associated with

the synthesis of a particular type of linear circuit. It is shown that the optimal design of

the parameters of this type of circuit can be performed in polynomial time if the circuit is

passive and there are sufficient number of controllable (unknown) parameters. This result

introduces a trade-off between the design simplicity and the implementation complexity for

an important class of linear circuits. As an application of this methodology, the design of

smart antennas is also studied; the goal is to devise an intelligent wireless communication
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device in order to avoid co-channel interference, power consumption in undesired directions

and security issues. Since the existing smart antennas are either hard to program or hard

to implement, a new type of smart antenna is synthesized by utilizing tools from algebraic

geometry, control, communications, and circuits, which is both easy to program and easy

to implement.

Distributed Computation: The first problem tackled in Part III of this work is a very

simple type of distributed computation, referred to as quantized consensus, which aims to

compute the average of a set of numbers using a distributed algorithm subject to a quantiza-

tion error. It is shown that quantized consensus is reached by means of a recently proposed

gossip algorithm, and the convergence time of the algorithm is also derived. The second

problem studied in Part III is a more advanced type of distributed computation, which

is the distributed resource allocation problem for the Internet. The existing distributed

resource allocation algorithms aim to maximize the utility of the network only at the equi-

librium point and ignore the transient behavior of the network. To address this issue, it is

shown that optimal control theory provides powerful tools for designing distributed resource

allocation algorithms with a guaranteed real-time performance.

The results of this work can all be integrated to address real-world interdisciplinary

problems, such as the design of the next generation of the electrical power grid, named the

Smart Grid.
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Chapter 1

Introduction

Large-scale complex systems naturally appear in many areas of electrical and computer

engineering, such as circuits, power networks, communication networks, electromagnetics

and distributed computation. Although these systems are different in nature, they benefit

from some common features, namely sparsity in the topology or physical properties imposed

by the laws of physics. The main purpose of this dissertation is to investigate whether any

universal property of these practical large-scale complex systems makes it possible to study

these systems using scalable methods in polynomial time. In other words, the high-level

objective is to investigate how the physics of a real-world system can be used to simplify

its analysis or synthesis. Another objective is to develop new tools and algorithms for

the study of such systems based on combining theories from control and optimization.

Motivated by the current challenges of this century, the systems of interest in this work are

broadly categorized into three classes: power networks, circuits and systems, and distributed

computation.

This dissertation is composed of three parts, where each part studies one aforementioned

class of large-scale complex systems. In the following Sections 1.1, 1.2, and 1.3, we will first

introduce the systems studied in each part of this work and then outline our contribution.

After introducing these important categories of systems, we will discuss in Section 1.4

how the results of different parts of this work can be integrated to address an important

interdisciplinary problem.
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Figure 1.1: An example of a power network

1.1 Part I: Power Networks

A power grid is an interconnected network for delivering electricity from suppliers to con-

sumers. There are a number of optimization problems related to power grids, e.g., network

flow, unit commitment, and economic dispatch, which are solved periodically in practice on

different time scales (from a few minutes to several days) to set the decision parameters for

operation planning and pricing. These resource allocation and planning problems seem to

be very hard to solve for power systems due to the nonlinearity of the physical laws imposed

by electrical devices.

Part I of this dissertation aims to solve important optimization problems associated with

power networks using scalable global optimization techniques. This is explained in more

details in the sequel.

1.1.1 Optimal Power Flow Problem

Consider a power network consisting of a set of buses that are connected to each other

via transmission lines, transformers or other power electronic devices. Assume that some

buses, referred to as load buses, are connected to specific loads with given values, whereas
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the remaining buses, known as generator buses, are connected to generators. Figure 1.1

illustrates a 6-bus power network with the load buses 1–3 and the generator buses 4–6. It

is often the case that there exist an infinite number of possibilities to generate power by

the generators in order to supply the given loads. Hence, a question arises as to how much

power should be generated by each generator. In a broader context, it is needed to find

an optimal operating point of a power network. This problem is referred to as the optimal

power flow (OPF) problem.

The OPF problem is a fundamental optimization problem in the power area, which aims

to optimize the decision variables for a power network (e.g., voltage magnitudes at gener-

ator buses, values of capacitor banks, and transformer tap ratios) to satisfy the demand

and physical constraints [72]. This optimization problem is often solved every 5–15 minutes

in practice to decide how to operate the network and charge the consumers accordingly.

Started by the work [21] in 1962, the OPF problem has been extensively studied in the

literature and numerous algorithms have been proposed for solving this highly nonconvex

problem [40, 106, 112], including linear programming, Newton Raphson, quadratic pro-

gramming, nonlinear programming, Lagrange relaxation, interior point methods, artificial

intelligence, artificial neural network, fuzzy logic, genetic algorithm, evolutionary program-

ming and particle swarm optimization [72, 73, 74, 83]. A good number of these methods

are based on the Karush-Kuhn-Tucker (KKT) necessary conditions, which can guarantee

only the local optimality of the solution, in light of the nonconvexity of the OPF problem

[113]. The existing algorithms are not robust, lack performance guarantees, and may not

find a global optimum.

During the past few years, the idea of upgrading today’s transmission grid into a Smart

Grid has been seriously considered by the electric power industry, state and federal regula-

tors, government agencies, and academics [25]. At the high level, the goal is to modernize

the electricity transmission and distribution systems to maintain a reliable and secure elec-

tricity infrastructure that can meet future demand growth. The aforementioned issues for

the OPF problem become more critical in a smart grid because of two reasons: (i) a tremen-

dous increase in the size of the corresponding OPF problem, and (ii) the necessity to solve

the OPF problem on a shorter time scale to respond to the intermittency of renewable

resources.

Chapter 2 of this dissertation deals with the classical OPF problem. Although an arbi-



4

trary OPF problem might not be solvable in polynomial time unless P=NP, the objective

is to show that a physically structured OPF problem (corresponding to a practical power

network) can be solvable in polynomial time using convex optimization. To this end, a

semidefinite programming (SDP) optimization is proposed, which is the dual of an equiv-

alent form of the OPF problem. A global optimum solution to the OPF problem can be

retrieved from a solution of this convex dual problem whenever the duality gap is zero. A

necessary and sufficient condition is derived to guarantee the existence of no duality gap

for the OPF problem. This condition is satisfied by the standard IEEE benchmark systems

with 14, 30, 57, 118, and 300 buses as well as several randomly generated systems. Since

this condition is hard to study, a sufficient zero-duality-gap condition is also proposed that

holds widely in practice, leading to finding a global solution to the OPF problem in poly-

nomial time. The successful convexification of the OPF problem can be traced back to the

physical properties of transformers and transmission lines (e.g., passivity).

1.1.2 Energy-Related Optimization Problems

There are several important optimization problems arising in power systems, which are

obtained from a single or a set of classical OPF problems by adding more constraints and/or

variables. As an example, the security-constrained optimal power flow (SCOPF) problem

is one of such optimizations. This problem aims to optimize the performance of a power

system under the normal condition such that the load and physical constraints are still

satisfied after every pre-specified contingency [19]. Although energy-related optimization

problems based on OPF are NP-hard in general, a question arises as whether the physical

properties of a power network induce any useful structure on the corresponding optimization

problems so that they can be solved (globally) in polynomial time.

Chapter 3 of this dissertation addresses the above question and studies several OPF-

based optimization problems appearing in power networks, which are all nonconvex due

to the nonlinearity of certain physical quantities (e.g., active power, reactive power, and

magnitude of voltage). It is shown that zero duality gap for the classical OPF problem

implies zero duality gap for several other optimization problems in power systems such

as OPF with variable shunt elements and transformer ratios, dynamic OPF, SCOPF, and

scheduling of renewable resources [117]. These findings have the potential to change the

way the fundamental optimization problems are solved for power grids in real time.
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1.2 Part II: Circuits and Systems

There are many problems in circuits, electromagnetics, optics, and power networks that can

be reduced to the analysis and synthesis of some linear systems in the frequency domain.

These systems, in the circuit theory, consist of passive elements including resistors, induc-

tors, capacitors, ideal transformers, and ideal gyrators [76]. Since the seminal work [15],

there has been remarkable progress in characterizing such passive (dissipative) systems using

the concept of positive real functions. As witnessed in Part I of this dissertation, passivity

is also the key reason behind the tractability of a practical OPF problem.

The emerging optimization tools developed by control theorists, such as linear matrix

inequalities (LMIs) [13] and sum-of-squares (SOS) [84], have been successfully applied to a

number of fundamental problems in circuits. For instance, the work [110] is one of the ear-

liest papers connecting the convex optimization theory to circuit design, whose objective is

to optimize the dominant time constant of a linear resistor-capacitor circuit using semidef-

inite programming. The recent paper [36] proposes an LMI optimization to check whether

a given multi-port network can be realized using a pre-specified set of linear time-invariant

components (namely an inductor and small-signal model of a transistor).

Part II of this dissertation studies how a circuit can be synthesized efficiently using

advanced optimization techniques, e.g., LMI, when the circuit is known to be passive. To

this end, a general circuit synthesis problem is first tackled and the results obtained are then

applied to an antenna design problem. In what follows, we will introduce these problems

and subsequently summarize our contributions.

1.2.1 Analog Circuits

Consider the simple filter drawn in Figure 1.2. Assume that the goal is to find the numerical

values of the impedances Z1 to Z5 in such a way that the input-output gain of the filter is

maximized at a pre-specified frequency ω0. To this end, one can re-organize the elements of

this filter to obtain the equivalent model given in Figure 1.3, where the known elements are

clustered in the block “linear passive network” and the unknown components are grouped in

the block “control unit”. Under this setting, the objective reduces to designing the control

unit in Figure 1.3 so that the magnitude of the observed output of the circuit is maximized.

Motivated by the above example, consider the circuit given in Figure 1.4 consisting of
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Figure 1.2: A distributed circuit with variable impedances
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Figure 1.3: A re-arrangement of the circuit depicted in Figure 1.2

a known linear multi-port passive network and an unknown control unit. The objective is

to design the control unit in such a way that certain linear and convex constraints on the

input and outputs of the circuit are satisfied. Note that several problems in analog circuits,

electromagnetics, and optics can be reformulated as this circuit design problem. Moreover,

the OPF problem with variable shunt elements studied in Chapter 3 can also be cast as a

very similar circuit problem.

In Chapter 4 of this dissertation, the circuit given in Figure 1.4 is studied with the aim

of understanding what type of control unit simplifies the design process. To this end, it is

shown that finding a control unit in the form of a switching network, which is desirable for

antenna applications, to meet the design specifications is an NP-complete problem. Instead,

the design of a control unit in the from of an unstructured passive network can be cast as

a semidefinite optimization. Since this passive network may require many components
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Figure 1.4: A generic linear circuit with an unknown control unit

(electrical elements) for its implementation, the design of a sparse passive controller is also

studied. To this end, a rank-minimization problem is obtained that can be handled using

the convex-based heuristic method proposed in [27]. It is verified that this heuristic method

is able to solve the rank minimization problem exactly in certain practical examples.

1.2.2 Antenna Systems

Conventional antennas for wireless transmission, e.g., omni-directional antennas, radiate in

almost all directions. In order to save power, improve security and avoid co-channel inter-

ference, much attention has been paid to designing smart transmitting/receiving antenna

systems that can steer the beam towards a desired direction and make nulls in undesired

directions [66]. There are two main types of smart antennas as follows:

• Array (active) antenna system: This type of smart antenna comprises multiple active

radiating elements for varying the relative phases and amplitudes of the respective

signals in order to generate a desired radiation pattern. Although this type of antenna

is easy to program, its implementation is costly. The reason is that a satisfactory

radiation pattern can be attained only if several active elements are used and in

addition the size of the antenna system is several multiples of the signal wavelength

[30, 120].

• Passive antenna system: This type of smart antenna employs only one active element

surrounded by a number of tunable passive parasitic elements [79]. Although a passive

antenna can be implemented fairly easily, its programming is very hard. Indeed, the

radiation pattern of this type of antenna is a nonlinear function of the passive elements
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to be optimized. As a consequence of this nonlinearity property, it has been reported

in [97] that an optimal programming of such an antenna (based on heuristic methods)

can take as long as 4 weeks or more.

Chapter 5 of this dissertation aims to build on the results developed in [2] and Chapter 4

to propose a new type of smart antenna system, referred to as passively controllable smart

(PCS) antenna, which is both easy to program and easy to implement. A PCS antenna

system is composed of a main dipole (transmitting) antenna, a number of reflectors (or a

patch array), and a variable (tunable) passive controller. Since changing the parameters of

the passive controller modifies the radiation pattern generated at the far field, this act is

regarded as programming of the PCS antenna. To study the programming capabilities of a

PCS antenna, a number of receiving nodes are placed around the PCS antenna, which are all

equipped with short dipole antennas for signal reception. It is shown that a pre-determined

set of voltages can be sent to the receiving nodes if and only if the vector of voltages satisfies

an LMI problem. Using this result, it is proved that a pre-specified radiation pattern can be

generated for the receiving antennas if and only if the associated vector of voltages belongs

to an ellipsoidal region. This region characterizes both the individual signals that can be

sent to different directions as well as the correlation among them. Based on the obtained

properties, it is shown how the PCS antenna can be programmed to transmit data to an

intended node in such a way that many of the unintended nodes receive a zero signal (no

signal) simultaneously. Finally, an on-chip wavelength-size passive antenna is designed in a

few seconds (rather than 4 weeks) that can steer the beam to different directions and make

nulls in at least 8 directions concurrently.

1.3 Part III: Distributed Computation

During the past few decades, there has been a particular interest in the area of distributed

computation, which aims to compute some quantity over a network of processors in a de-

centralized fashion [107, 108]. The distributed averaging problem, as a particular case, is

concerned with computing the average of numbers owned by the agents of a group [82]. Mo-

tivated by a variety of applications, this problem has been investigated through the notion

of consensus in several papers [57, 103]. A more advanced type of distributed computa-

tion appears in the network resource allocation problem, where the goal is to find optimal
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transmission rates for a group of users sharing the links of a communication network.

Part III of this dissertation studies both the consensus and the distributed resource

allocation problems. We will explain the details of these problems together with our con-

tributions in the sequel.

1.3.1 Consensus

Several applications of the consensus problem have been reported in the literature; for

instance, the synchronization of coupled oscillators, arising in biophysics, neurobiology, and

systems biology, has been studied in [57] and [103] to explore how to reach a consensus on

the frequencies of some agents. Moreover, the problem of aligning the heading angles of

a group of mobile agents (e.g., a flock of birds) has been treated in [47]. Given a sensor

network comprising a set of sensors measuring the same quantity in a noisy environment,

the problem of consensus on state estimates has been discussed in [100].

Consider the distributed averaging problem in which the values associated with a set

of agents are to be averaged in a distributed way. Since all agents cannot update their

numbers synchronously in many practical situations, gossip algorithms have been widely

exploited by researchers to handle the averaging problem asynchronously [107]. This type

of algorithm selects a pair of agents at each time instant and updates their values based on

some averaging policy. The consensus problem in the context of gossip algorithms has been

thoroughly investigated in the literature [12]. In light of communication constraints, the

data being exchanged between a pair of agents is normally quantized. This has given rise to

the emergence of quantized gossip algorithms. The notion of quantized consensus has been

introduced in [52] for the case when quantized values (integers) are to be averaged over a

connected network with digital communication channels. This result has been extended in

[28] to the case when the quantization is uniform, and the initial values of the agents are

real (as opposed to being integer).

The problem of quantized consensus via gossip algorithm is studied in Chapter 6 of

this dissertation. In this chapter, a weighted connected graph is considered together with

a set of scalars sitting on its vertices. The weight of each edge represents the probability

of establishing a communication between its corresponding vertices through the updating

procedure. First, it is shown that a quantized consensus is reached under the stochastic

gossip algorithm proposed in [28], for a wide range of updating parameters and an arbitrary
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quantizer. The convergence time of the gossip algorithm is then studied. More precisely,

consider the expected value of the time at which a quantized consensus is reached, and

take its maximum over all possible initial states belonging to a given hypercube. Lower

and upper bounds on this quantity are provided for a uniform quantizer, which turn out to

be related to the Laplacian of the weighted graph. The upper bound is then minimized in

order to obtain the best weights resulting in a small convergence time. To do so, a convex

optimization problem is proposed, which can be solved by a semidefinite program.

1.3.2 Distributed Resource Allocation

As a special type of distributed computation, the network resource allocation problem has

been extensively studied in the context of congestion control ever since the first congestion

collapse occurred in the Internet [46, 98, 101, 23]. The main idea behind the existing

congestion control (resource allocation) algorithms is more or less the same: each user

measures some feedback signal, such as packet loss or queueing delay, and accordingly adapts

its transmission rate. From a mathematical standpoint, the available resource allocation

algorithms, namely the primal, dual, and primal/dual algorithms, are particularly designed

to solve the underlying problem in a distributed way asymptotically and ignore the transient

behavior of the network. More precisely, the existing congestion control algorithms are

obtained through the following steps [98]:

i) A static utility maximization problem is introduced and then the corresponding KKT

conditions are derived.

ii) Since the solution of the KKT conditions is to be found in a distributed way, a

dynamical updating algorithm is derived to solve the KKT conditions asymptotically.

This technique ignores the real-time behavior of the network. As a result, the link capacity

constraints can, for instance, be violated in this period. Furthermore, the current algorithms

have not been derived in such a way that they can be generalized systematically to include

real-time constraints such as a link capacity requirement.

In Chapter 7 of this dissertation, the congestion control problem is revisited from the

viewpoint of the optimal control theory. Indeed, it is proved that the resource allocation

controllers proposed by the primal, dual, and primal/dual algorithms all maximize some

meaningful dynamical behaviors. More precisely, there exist natural utility functionals
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whose maximization leads to these celebrated controllers. This result opens the possibility

of tackling network problems directly as optimal control problems, which not only take

the dynamics into account, but which also allow including physical constraints. Two other

applications of dealing with utility functionals directly are: (i) in deducing the stability of

the control system for free, and (ii) in gaining insight into how to perform joint routing

and congestion control. The ideas developed in this chapter open up the possibility of

designing optimal transmission protocols guaranteeing the real-time performance of the

network, something which can never be realized by the existing congestion controllers.

1.4 Design of Smart Grid as an Interdisciplinary Problem

In order to have a sustainable future, the area of energy systems has received much attention

in the past few years. In particular, a huge effort has been made to upgrade the existing

electricity grid into a smart grid, which not only has optimized performance, efficiency and

reliability, but is also friendly to the environment. A smart grid can be envisaged as a

modernized power network whose control and operation rely on information technology.

To design a smart grid, many considerations should be taken into account, including the

following [25]:

• The grid should be able to accommodate distributed generation so that many small

distributed generation units (rather than only a few hundred bulk generators) can

exist over each area.

• A part of the energy in the grid must be penetrated based on renewable resources

such as solar and wind.

• The grid should be associated with an efficient demand-response strategy so that

consumers can actively participate in energy savings.

• Large-scale charging of electric vehicles should be possible in the gird.

• Guaranteed reliability and efficiency are needed for the operation of the grid, especially

when a fault happens in the network.

A typical smart grid with the aforementioned properties includes all types of the large-scale

complex systems studied in this dissertation. Therefore, the results of this work are all
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useful for the design of a smart grid, as described below:

• There are several nonlinear and nonconvex optimization problems associated with

a smart grid, from operation planning to pricing and optimal charging of electric

vehicles. Part I of this dissertation proposes an efficient method to handle those

optimization problems.

• Part II of this work has applications in an important part of a smart grid, referred

to as advanced metering infrastructure (AMI), which is in charge of measuring, col-

lecting and analyzing energy usage of consumers [16]. Indeed, as opposed to an

electromechanical meter, every house should be equipped with a smart meter with

communication capabilities so that it will periodically transmit the load profile to a

utility company in a wireless way. However, since reading this wireless signal reveals

important information about the activities inside the house, this has created serious

security and privacy concerns [70, 6]. The ideas developed in Part II can be used

for designing efficient communication devices (e.g., on-chip directional antenna) to

guarantee the security at the physical layer.

• Two independent results are derived in Part III of this dissertation, which are both

useful for the control and operation of a smart grid. To be more precise, the state

of a smart grid should be estimated in a distributed way and this problem is related

to the first result of Part III on quantized consensus [26, 114]. In addition, a smart

grid is composed of a great number of wireless devices which want to transmit delay-

sensitive data over shared communication channels. Hence, the transmission rates of

these devices must be controlled by some appropriate protocols [16]. The second result

of Part III is on designing network protocols with a guaranteed real-time performance,

which can be used for the transmission control of delay-sensitive signals in a smart

grid.
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Part I

Power Networks
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Chapter 2

Zero Duality Gap in Optimal
Power Flow Problem

The optimal power flow (OPF) problem is nonconvex and generally hard to solve. In this

chapter, we propose a semidefinite programming (SDP) optimization, which is the dual of

an equivalent form of the OPF problem. A global optimum solution to the OPF problem can

be retrieved from a solution of this convex dual problem whenever the duality gap is zero. A

necessary and sufficient condition is provided here to guarantee the existence of no duality

gap for the OPF problem. This condition is satisfied by the standard IEEE benchmark

systems with 14, 30, 57, 118, and 300 buses as well as several randomly generated systems.

Since this condition is hard to study, a sufficient zero-duality-gap condition is also derived.

This sufficient condition holds for IEEE systems after small resistance (10−5 per unit) is

added to every transformer that originally assumes zero resistance. We investigate this

sufficient condition and justify that it holds widely in practice. The main underlying reason

for the successful convexification of the OPF problem can be traced back to the modeling

of transformers and transmission lines as well as the non-negativity of physical quantities

such as resistance and inductance.

2.1 Introduction

The optimal power flow (OPF) problem deals with finding an optimal operating point of

a power system that minimizes an appropriate cost function such as generation cost or

transmission loss subject to certain constraints on power and voltage variables [72]. Started

by the work [21] in 1962, the OPF problem has been extensively studied in the literature
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and numerous algorithms have been proposed for solving this highly nonconvex problem

[40, 106, 112], including linear programming, Newton Raphson, quadratic programming,

nonlinear programming, Lagrange relaxation, interior point methods, artificial intelligence,

artificial neural network, fuzzy logic, genetic algorithm, evolutionary programming and

particle swarm optimization [72, 73, 74, 83]. A good number of these methods are based on

the Karush-Kuhn-Tucker (KKT) necessary conditions, which can only guarantee a locally

optimal solution, in light of the nonconvexity of the OPF problem [113]. This nonconvexity

is partially due to the nonlinearity of physical quantities such as active power, reactive

power and voltage magnitude. In the past decade, much attention has been paid to devising

efficient algorithms with guaranteed performance for the OPF problem. For instance, the

recent papers [67] and [48] propose nonlinear interior-point algorithms for an equivalent

current injection model of the problem. An improved implementation of the automatic

differentiation technique for the OPF problem is studied in the recent work [49]. In an

effort to convexify the OPF problem, it is shown in [43] that the load flow problem of a

radial distribution system can be modeled as a convex optimization problem in the form

of a conic program. Nonetheless, the results fail to hold for a meshed network, due to the

presence of arctangent equality constraints [44]. Nonconvexity appears in more sophisticated

power problems such as the stability constrained OPF problem where the stability at the

operating point is an extra constraint [29, 17] or the dynamic OPF problem where the

dynamics of the generators are also taken into account [117, 116]. The recent paper [4] also

proposes a convex relaxation to solve the OPF problem efficiently and tests its results on

IEEE systems. Some of the results derived in the present work are related to this well-known

convex relaxation. However, [4] drops the rank constraint of the original OPF without any

justification in order to obtain the SDP formulation. We have derived the conditions under

which the SDP relaxation is exact.

As will be shown in this chapter, the OPF problem is NP-hard in the worst case. Our

recent work also proves that a closely related problem of finding an optimal operating

point of a radiating antenna circuit is an NP-complete problem, by reducing the number

partitioning problem to the antenna problem [61]. The goal of the present work is to exploit

the physical properties of power systems and obtain a polynomial-time algorithm to find a

global optimum of the OPF problem.

In this chapter, we suggest solving the dual of an equivalent form of the OPF problem
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(referred to as the Dual OPF problem), rather than the OPF problem itself. This dual

problem is a convex semidefinite program and therefore can be solved efficiently (in poly-

nomial time). However, the optimal objective value of the dual problem is only a lower

bound on the optimal value of the original OPF problem and the lower bound may not be

tight (in presence of a nonzero duality gap) [13]. A globally optimal solution to the OPF

problem can be recovered from a solution to the Dual OPF problem if the duality gap is

zero, meaning that strongly duality holds between these two optimizations. In this chapter,

we derive a necessary and sufficient condition to guarantee the existence of no duality gap.

Interestingly, this condition is satisfied for all the five IEEE benchmark systems archived at

[109] with 14, 30, 57, 118, and 300 buses, in addition to several randomly generated systems.

In other words, these practical systems can all be convexified naturally via the new formu-

lation proposed here. In order to study why the duality gap is zero for the IEEE systems,

we derive a sufficient zero-duality-gap condition, which reveals many useful properties of

power systems. This sufficient condition holds for IEEE systems after a small perturbation

in a few entries of the admittance matrix, in order to make the graph corresponding to the

resistive part of the power network strongly connected.

To study the sufficient zero-duality-gap condition provided, we first consider a resistive

network with only resistive loads. The OPF problem in this special case is also NP-hard.

We exploit some physical properties of power circuits and prove that the duality gap is zero

for a modified version of the OPF problem. Later on, we show that this modified OPF

problem is expected to have the same solution as the OPF problem. The results are then

extended to general networks with no constraints on reactive loads. It is shown that by

fixing the real part of the admittance matrix Y , there is an unbounded region so that if the

imaginary part of Y belongs to that region, the duality gap is zero. In other words, it is

shown that there is an unbounded set of network topologies for which the duality gap is zero

for all possible values of loads and physical limits. The results are then extended to a general

OPF problem. It is worth mentioning that we have proved in [60] that zero duality gap for

the classical OPF problem studied here implies zero duality gap for a general OPF-based

problem in which there could be more variables (such as transformer ratios and variable

shunt elements) and more constraints (such as dynamic or contingency constraints). Hence,

the results of this work make it possible to convexify several fundamental power problems

that have been studied for about half a century.
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Notations: The following notations are used throughout this chapter:

• i : The imaginary unit

• R: The set of real numbers

• Re{·} and Im{·}: The operators returning the real and imaginary parts of a complex

matrix

• ∗ : The conjugate transpose operator

• T : The transpose operator

• � and � : The matrix inequality signs in the positive semidefinite sense (i.e., given

two symmetric matrices A and B, A � B implies A − B is a positive semidefinite

matrix, meaning that its eigenvalues are all nonnegative)

• Tr: The matrix trace operator

• | · | : The absolute value operator

2.2 OPF Problem: Formulation and Computational Com-

plexity

2.2.1 Problem Formulation

Consider a power network with the set of buses N := {1, 2, ..., n}, the set of generator buses

G ⊆ N and the set of flow lines L ⊆ N ×N . Define the parameters of the system as follows:

• PDk
+ QDk

i: The given apparent power of the load connected to bus k ∈ N (this

number is zero whenever bus k is not connected to any load)

• PGk
+QGk

i: The apparent power of the generator connected to bus k ∈ G

• Vk: Complex voltage at bus k ∈ N

• Plm: Active power transferred from bus l ∈ N to the rest of the network through line

(l,m) ∈ L
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• Slm: Apparent power transferred from bus l ∈ N to the rest of the network through

line (l,m) ∈ L

• fk(PGk
) = ck2P

2
Gk

+ck1PGk
+ck0: Quadratic cost function with the given nonnegative

coefficients accounting for the cost of active power generation at bus k ∈ G

Let V, Pg, and Qg denote the unknown sets {Vk}k∈N , {PGk
}k∈G , and {QGk

}k∈G , respec-

tively. The classical OPF problem aims to minimize
∑

k∈G fk(PGk
) over the unknown pa-

rameters V, Pg, and Qg subject to the power balance equations at all buses and the physical

constraints

Pmin
k ≤ PGk

≤ Pmax
k , ∀k ∈ G (2.1a)

Qmin
k ≤ QGk

≤ Qmax
k , ∀k ∈ G (2.1b)

V min
k ≤ |Vk| ≤ V max

k , ∀k ∈ N (2.1c)

|Slm| ≤ Smax
lm , ∀(l,m) ∈ L (2.1d)

|Plm| ≤ Pmax
lm , ∀(l,m) ∈ L (2.1e)

|Vl − Vm| ≤ ∆V max
lm , ∀(l,m) ∈ L (2.1f)

where Pmin
k , Pmax

k , Qmin
k , Qmax

k , V min
k , V max

k , Smax
lm , Pmax

lm ,∆V max
lm are some given real numbers

such that Smax
lm = Smax

ml and Pmax
lm = Pmax

ml . Note that some of the constraints stated in (2.1)

may not be needed for a practical OPF problem, in which case the undesired constraints

can be removed by setting the corresponding lower/upper bounds as infinity. For instance,

the line flow constraints (2.1d) and (2.1e) might not be necessary simultaneously or the

constraint (2.1f) could be redundant, depending on the situation. Although not stated

explicitly, we assume throughout this work that the OPF problem is feasible and that

V = 0 does not satisfy its constraints.

Derive the circuit model of the power network by replacing every transmission line and

transformer with their equivalent Π models [72]. In this circuit model, let ykl denote the

mutual admittance between buses k and l, and ykk denote the admittance-to-ground at bus

k, for every k, l ∈ N (note that ykl = 0 if (k, l) 6∈ L). Let Y represent the admittance

matrix of this equivalent circuit model, which is an n × n complex-valued matrix whose

(k, l) entry is equal to −ykl if k 6= l and ykk +
∑

m∈N (k) ykm otherwise, where N (k) denotes

the set of all buses that are directly connected to bus k. Define the current vector I :=
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I1 I2 · · · In

]T
as YV. Note that Ik represents the net current injected to bus k ∈ N .

It is shown in Appendix 2.7.2 that the OPF problem is NP-hard, which implies that

an arbitrary (general) OPF problem may not be solvable in polynomial time. However,

the goal is to show that an OPF problem corresponding to a practical power network is

structured in such a way that it might be solved efficiently in polynomial time even if it

could have multiple local minima with a nonconvex (disconnected) feasibility region.

2.3 New Approach to Solving OPF

By denoting the standard basis vectors in Rn as e1, e2, ..., en, let a number of matrices be

defined now for every k ∈ N and (l,m) ∈ L:

Yk := eke
T
k Y, Ylm := (ȳlm + ylm)eleTl − (ylm)eleTm

Yk :=
1
2

 Re{Yk + Y T
k } Im{Y T

k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }


Ylm :=

1
2

 Re{Ylm + Y T
lm} Im{Y T

lm − Ylm}

Im{Ylm − Y T
lm} Re{Ylm + Y T

lm}


Ȳk :=

−1
2

 Im{Yk + Y T
k } Re{Yk − Y T

k }

Re{Y T
k − Yk} Im{Yk + Y T

k }


Ȳlm :=

−1
2

 Im{Ylm + Y T
lm} Re{Ylm − Y T

lm}

Re{Y T
lm − Ylm} Im{Ylm + Y T

lm}


Mk :=

 eke
T
k 0

0 eke
T
k


Mlm :=

 (el − em)(el − em)T 0

0 (el − em)(el − em)T


X :=

[
Re {V}T Im {V}T

]T
where ȳlm denotes the value of the shunt element at bus l associated with the Π model

of the line (l,m). For every k ∈ N , define Pk,inj and Qk,inj as the net active and reactive
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powers injected to bus k, i.e.,

Pk,inj := PGk
− PDk

, ∀k ∈ G

Qk,inj := QGk
−QDk

, ∀k ∈ G

Pk,inj := −PDk
, ∀k ∈ N\G

Qk,inj := −QDk
, ∀k ∈ N\G.

Lemma 1 The following relations hold for every k ∈ N and (l,m) ∈ L:

Pk,inj = Tr
{
YkXXT

}
(2.2a)

Qk,inj = Tr
{
ȲkXXT

}
(2.2b)

Plm = Tr
{
YlmXXT

}
(2.2c)

|Slm|2 =
(
Tr
{
YlmXXT

} )2 +
(
Tr
{
ȲlmXXT

} )2 (2.2d)

|Vk|2 = Tr
{
MkXXT

}
(2.2e)

|Vl − Vm|2 = Tr
{
MlmXXT

}
. (2.2f)

Proof: See Appendix 2.7.3.

Extend the definition of Pmin
k , Pmax

k , Qmin
k , Qmax

k from k ∈ G to every k ∈ N , with

Pmin
k = Pmax

k = Qmin
k = Qmax

k = 0 if k ∈ N\G. Using Lemma 1, one can formulate the OPF

problem in terms of X as follows.

OPF problem formulated in X: Minimize

∑
k∈G

{
ck2

(
Tr {YkW}+ PDk

)2 + ck1

(
Tr {YkW}+ PDk

)
+ ck0

}
(2.3)

over the variables X ∈ R2n and W ∈ R2n×2n subject to the following constraints for every

k ∈ N and (l,m) ∈ L
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Pmin
k − PDk

≤ Tr {YkW} ≤ Pmax
k − PDk

(2.4a)

Qmin
k −QDk

≤ Tr
{
ȲkW

}
≤ Qmax

k −QDk
(2.4b)

(Vk,min)
2 ≤ Tr {MkW} ≤ (V max

k )2 (2.4c)

Tr {YlmW}2 + Tr
{
ȲlmW

}2 ≤ (Smax
lm )2 (2.4d)

Tr {YlmW} ≤ Pmax
lm (2.4e)

Tr {MlmW} ≤ (∆V max
lm )2 (2.4f)

W = XXT . (2.4g)

Note that the constraint |Plm| ≤ Pmax
lm in the original OPF problem is changed to

Plm ≤ Pmax
lm in order to derive (2.4e). This modification can be done in light of the relations

Plm + Pml ≥ 0 and Pmax
lm = Pmax

ml . The above OPF formulation is not quadratic in X, due

to the objective function being of degree 4 with respect to the entries of X as well as the

constraint (2.4d). However, one can define some auxiliary variables to reformulate the OPF

problem in a quadratic way with respect to X. To this end, Schur’s complement formula

yields that the constraint (2.4d) can be replaced by


− (Slm,max)

2 Tr {YlmW} Tr
{
ȲlmW

}
Tr {YlmW} −1 0

Tr
{
ȲlmW

}
0 −1

 � 0. (2.5)

On the other hand, given a scalar αk for some k ∈ G, the constraint fk(PGk
) < αk is

equivalent to (by Schur’s complement formula)

 ck1Tr {YkW} − αk + ak
√
ck2 Tr {YkW}+ bk

√
cl2 Tr {YkW}+ bk −1

 � 0 (2.6)

where ak := ck0 + ck1PDk
and bk :=

√
ck2PDk

.

Using (2.5) and (2.6), one can reformulate the OPF problem formalized in (2.3) and

(2.4) in a quadratic way. This leads to Optimization 1 given below, which is equivalent to

the OPF problem.
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Optimization 1: Minimize
∑

k∈G αk over the scalar variables αk’s and the matrix

variables X and W subject to the constraints (2.4a), (2.4b), (2.4c), (2.4e), (2.4f), (2.4g),

(2.5), and (2.6).

The variable X can be eliminated from Optimization 1 by using the fact that a given

matrix W can be written as XXT for some (nonzero) vector X if and only if W is both

positive semidefinite and rank 1. Hence, Optimization 2 proposed below is an equivalent

form of Optimization 1 whose variables are only W and αk’s for k ∈ G.

Optimization 2: This optimization is obtained from Optimization 1 by replacing the

constraint (2.4g), i.e., W = XXT , with the new constraints W � 0 and rank{W} = 1.

Notice that since Optimization 2 has a rank constraint, it is nonconvex. However, re-

moving the constraint rank{W} = 1 from this optimization makes it a semidefinite program

(SDP), which is a convex problem (see Appendix 2.7.1 for a brief overview of SDP). This

gives rise to Optimization 3 presented below.

Optimization 3: This optimization is obtained from Optimization 2 by removing the

rank constraint rank{W} = 1.

Optimization 3 is indeed an SDP relaxation of the OPF problem. Assume that this

convex optimization problem has a rank-one optimal solution W opt. Then, there exists a

vector Xopt such that W opt = Xopt(Xopt)T . In that case, Xopt is a global optimum of the

OPF problem. However, since the OPF problem is NP-hard in general, Optimization 3

does not always have a rank-one solution. We numerically solved this optimization problem

for IEEE test systems with 14, 30, 57, 118, and 300 buses using SEDUMI and noticed that

each solution W opt obtained always has rank two. The next lemma explains the reason why

this occurs for IEEE systems.

Lemma 2 If Optimization 3 has a rank-one solution, then it must have an infinite number

of rank-two solutions.

Proof: See Appendix 2.7.3.

Lemma 2 states that Optimization 3 might have a rank-one solution that cannot be easily

identified by solving it numerically. However, using the method proposed later in this work,

one can verify that Optimization 3 always has a rank-one solution for all aforementioned

IEEE test systems. This implies that these power systems can be convexified by a convex

relaxation technique. However, the focus of this chapter will not be on Optimization 3 due
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to the following reasons:

• The number of scalar variables of Optimization 3 is quadratic with respect to n (in

light of the non-sparse structure of the matrix variable Wc). Hence, solving this

optimization problem might be expensive and time-consuming for large values of n.

• Since Optimization 3 may have an infinite number of solutions (see Lemma 2), it is

not clear how to numerically verify the existence of a rank-one solution.

• Optimization 3 has a general structure with several constraints from which it is hard

to analytically study when this optimization has a rank-one solution.

In this chapter, we consider the dual of Optimization 3. To this end, define the following

dual variables for every k ∈ N and (l,m) ∈ L:

i) λk, γk
, µ

k
: Lagrange multipliers associated with the lower inequalities in (2.4a), (2.4b),

and (2.4c), respectively.

ii) λ̄k, γ̄k, µ̄k: Lagrange multipliers associated with the upper inequalities in (2.4a), (2.4b),

and (2.4c), respectively.

iii) λlm, µlm: Lagrange multipliers associated with the inequalities (2.4e) and (2.4f), re-

spectively.

iv) r1lm, r
2
lm, ..., r

6
lm: The matrix 

r1lm r2lm r3lm

r2lm r4lm r5lm

r3lm r5lm r6lm


is the Lagrange multiplier associated with the matrix inequality (2.5).

v) r1k, r
2
k: If k ∈ G, the matrix  1 r1k

r1k r2k

 (2.7)

is the Lagrange multiplier associated with the matrix inequality (2.6).
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Let x and r denote the sets of all multipliers introduced in (i–iii) and (iv–v), respectively.

Define some aggregate multipliers for every k ∈ N as follows

λk :=

 −λk + λ̄k + ck1 + 2
√
ck2r

1
k if k ∈ G

−λk + λ̄k otherwise

γk := −λk + λ̄k

µk := −µ
k

+ µ̄k.

Furthermore, define the functions

h(x, r) :=
∑
k∈N

{
λkP

min
k − λ̄kP

max
k + λkPDk

+ γ
k
Qmin

k − γ̄kQ
max
k + γkQDk

+ µ
k

(
V min

k

)2 − µ̄k (V max
k )2

}
+
∑
k∈G

(
ck0 − r2k

)
−

∑
(l,m)∈L

{
λlmP

max
lm + µlm (∆V max

lm )2 + (Smax
lm )2 r1lm + r4lm + r6lm

}

and

A(x, r) :=
∑
k∈N

{
λkYk + γkȲk + µkMk

}
+

∑
(l,m)∈L

{(
2r2lm + λlm

)
Ylm + 2r3lmȲlm + µlmMlm

}
.

We propose an optimization problem in the sequel, which plays a central role in solving

the OPF problem.

Optimization 4 (Dual OPF): Maximize the linear function h(x, r) over the vectors

x ≥ 0 and r subject to the linear matrix inequalities

A(x, r) � 0 (2.8a)
r1lm r2lm r3lm

r2lm r4lm r5lm

r3lm r5lm r6lm

 � 0, ∀(l,m) ∈ L (2.8b)

 1 r1k

r1k r2k

 � 0, ∀k ∈ G. (2.8c)

The next theorem presents some important properties of Optimization 4.
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OPF Problem 

(nonconvex)

Optimization 1 

(nonconvex)

Optimization 2 

(nonconvex)

Optimization 4 

(convex)

Optimization 3 

(convex)
Equivalence:                  

strong duality

Equivalence

Equivalence:                

change of variable     

W=XX
T

Rank relaxation:        

removing constraint 

rank{W}=1

Dual 

relaxation

Figure 2.1: The relationship among OPF and Optimizations 1–4.

Theorem 1 The following statements hold:

i) Optimization 4 is the dual of the nonconvex problem of Optimization 1.

ii) Optimization 4 is the dual of Optimization 3 and strong duality holds between these

optimizations. Moreover, the matrix variable W in Optimization 3 corresponds to a

Lagrange multiplier for the inequality constraint A(x, r) � 0 in Optimization 4.

Proof: See Appendix 2.7.3.

The relationship among the OPF problem and Optimizations 1–4 are illustrated in

Figure 2.1. This chapter suggests solving Optimization 4, which is the dual of a reformulated

OPF problem (i.e., Optimization 1) as well as the dual of a convex relaxation of the OPF

problem (i.e., Optimization 3). Since Optimization 4 is an SDP, a globally optimization

solution to this problem can be found in polynomial time. However, this solution can be used

to retrieve a solution to the OPF problem only if the duality gap is zero for Optimization 1,

meaning that the optimal objective values of Optimizations 1 and 4 are identical. The next

theorem investigates this issue in more detail.

Theorem 2 The following statements hold:
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i) The duality gap is zero for Optimization 1 if and only if the SDP Optimization 3 has

a rank-one solution W opt.

ii) The duality gap is zero for Optimization 1 if its dual (i.e., the SDP Optimization 4)

has a solution (xopt, ropt) such that positive semidefinite matrix A(xopt, ropt) has a zero

eigenvalue of multiplicity 2.

Proof: See Appendix 2.7.3.

Due to the reasons outlined right after Lemma 2, this chapter mainly focuses on Condi-

tion (ii) (as opposed to Condition (i)), whose usefulness will become clear later this work.

The next corollary explains how to recover a solution to the OPF problem whenever this

zero-duality-gap condition is satisfied.

Corollary 1 If the zero-duality-gap condition (ii) given in Theorem 2 is satisfied, then the

following properties hold:

• Given any nonzero vector
[
XT

1 XT
2

]T
in the null space of A(xopt, ropt), there exist

two real-valued scalars ζ1 and ζ2 such that Vopt = (ζ1 + ζ2i)(X1 + X2i) is a global

optimum of the OPF problem.

• Given any arbitrary solution W opt of Optimization 3, the rank of W opt is at most 2.

Moreover, if the matrix W opt has rank 2, then the matrix (ρ1 + ρ2)EET is a rank-one

solution of Optimization 3, where ρ1 and ρ2 are the nonzero eigenvalues of W opt and

E is the unit eigenvector associated with ρ1.

Proof: See Appendix 2.7.3.

This work suggests the following strategy for finding a global optimum of the OPF

problem.

Algorithm for Solving OPF:

1. Compute a solution (xopt, ropt) of Optimization 4, which is the dual of an equivalent

form of the OPF problem.

2. If the optimal value h(xopt, ropt) is +∞, then the OPF problem is infeasible.

3. Find the multiplicity of the zero eigenvalue of the matrix A(xopt, ropt) and denote it

as ψ.
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4. If ψ is greater than 2, it might not be possible to solve the OPF problem in polynomial

time.

5. If ψ is less than or equal to 2, then use the method explained in Part (i) of Corollary 1

to find a globally optimal solution Vopt.

The main complexity of the above algorithm can be traced back to its Step 1, which

requires solving the dual OPF problem. It is noteworthy that this optimization is an SDP

problem and therefore can be solved in polynomial-time. We tested our algorithm on several

randomly generated power systems with all types of constraints given in (2.1) and observed

that this algorithm found a global optimum of the OPF problem for all trials. Then, we

considered the IEEE test systems with 14, 30, 57, 118, and 300 buses, whose physical

constraints are in the form of (2.1a)–(2.1d), and made the following observations:

• Optimization 3 always leads to a rank-two solution, from which a rank-one solution

can be found using the technique delineated in Part (ii) of Corollary 1. Hence, Part

(i) of Theorem 2 yields that the duality gap is zero for all these IEEE systems.

• Our algorithm based on the dual OPF works after a small perturbation of the matrix

Y . More precisely, if a small resistance (10−5) is added to each transformer that

originally has zero resistance, the graph induced by the matrix Re{Y } will become

connected for each aforementioned IEEE system. This perturbation makes ψ equal

to 2.

Before studying why the OPF problem associated with a real power system is expected

to be solvable using the algorithm proposed earlier, we make several important remarks

below.

Remark 1 The last step of the algorithm relies on Part (i) of Corollary 1, which states

that there exist two real-valued scalars ζ1 and ζ2 such that Vopt = (ζ1 + ζ2i)(X1 +X2i). In

order to find ζ1 and ζ2, two (linear) equations are required. The voltage angle at the swing

bus being zero introduces one such equation. The second one can be formed by identifying

the active voltage constraints. Indeed, if µopt
k (respectively, µ̄opt

k ) turns out to be nonzero for

some k ∈ N , then the relation |V opt
k | = V min

k (respectively, |V opt
k | = V max

k ) must hold.
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Remark 2 Optimization 4 has two interesting properties for a practical power system. Fist,

since most of the constraints specified in (2.1) are likely to be inactive, the vectors xopt and

ropt are sparse. Moreover, the number of variables of Optimization 4 is O(|L|) + O(|N |),

which is expected to be equal to O(|N |) due to the very sparse topology of real power systems.

Note that solving Optimization 3 for very large-scale power networks might be too costly, in

which case it is recommended to use some sub-gradient techniques [4, 91].

Remark 3 Optimization 4 has the interesting property that the given loads together with

the physical limits on voltage and power parameters only appear in the objective function,

whereas the network topology (the matrix Y ) shows up in its linear matrix constraints.

Therefore, there is a natural decomposition between the load profile and the network topology

in Optimization 4. This useful property, besides the linearity of Optimization 4, makes it

possible to solve many more sophisticated problems efficiently, such as the OPF problem with

stochastic and time-varying loads, optimal network reconfiguration for minimizing power

loss, etc.

Remark 4 Most of the algorithms proposed in the past decade to solve the OPF problem

are built on the KKT conditions written for the original or a reformulated OPF problem.

We highlight the differences between the Dual OPF and the KKT conditions in the following:

• The duality gap could be zero for an OPF problem whose feasibility region has several

disjoint components (see Section 2.7.2). Hence, the OPF problem may have many

local solutions, all of which satisfy the KKT conditions. In contrast, a global optimum

of the OPF problem can be recovered by solving the Dual OPF in presence of no duality

gap.

• The KKT conditions are based on both primal and dual variables (say X, x, r), whereas

the dual OPF depends only on the dual variables (say x, r).

• There is a constraint A(x, r) � 0 in the dual OPF, and besides an optimal solu-

tion to the OPF problem satisfies the relation A(xopt, ropt)Xopt=0 . The constraint

A(xopt, ropt)Xopt = 0 is part of the KKT conditions, implying that the matrix A(x, r)

should lose rank at optimality. However, the stronger constraint A(x, r) � 0 is missing

in the KKT conditions.
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Indeed, it can be shown that if the constraint A(x, r) � 0 is incorporated into the KKT

conditions, then the resulting conditions are able to find a global optimum of the OPF

problem in the absence of a nonzero duality gap.

2.4 Zero Duality Gap for Power Systems

In this section, we study the zero-duality-gap condition (ii) given in Theorem 2 in more

details to justify why this condition is expected to hold widely in practice. To this end,

we first study the OPF problem for DC networks, which is indeed an NP-hard problem.

This helps find the useful properties of the Dual OPF problem, which will later be used to

explore the solvability of the OPF problem for AC networks.

2.4.1 Resistive Networks with Resistive Loads

As can be seen in Case (ii) of Section 2.7.2, the OPF problem is NP-hard even if the network

is resistive and there are no reactive loads. This situation, which corresponds to DC power

distribution, is itself important because (i) the active power loss in a power system is due

to the resistive part of the network, and (ii) the study of this case reveals important facts

about the general OPF problem. In this section, we prove the existence of no duality gap

for DC networks under a mild assumption, which is expected to hold in reality.

Throughout this part, assume that the power system is a resistive network (i.e., Im{Y } =

0) and that all loads are resistive as well. In the formulation of the OPF problem, it was

assumed that the (active) power to be delivered to the load of bus k ∈ N must be exactly

equal to PDk
. Let the OPF problem be changed to allow delivering any power more than

PDk
to the load of bus k. To this end, define PLk

as the power delivered to the load of bus

k and PDk
as the desired power requested by the load of bus k. In the OPF problem, we

have the constraints

PLk
= PDk

, ∀k ∈ N . (2.9)

Modify the OPF problem by replacing the above constraints with the following

PLk
≥ PDk

, ∀k ∈ N (2.10)

and name the resulting problem as modified OPF problem. Note that this variant of the OPF
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problem allows for the over-satisfaction of the loads. This idea has already been considered

by some other papers too (see [45] and the references given therein). In what follows, we

first study the modified OPF problem, and then explain why the OPF and modified OPF

problems are expected to have the same solution.

Theorem 3 The duality gap is zero for the modified OPF problem.

Proof: It can be shown that the Dual (modified) OPF problem associated with the

modified OPF problem is the same as Optimization 4 with the exception of having the

extra constraints

λk ≥ 0, ∀k ∈ N . (2.11)

Let (xopt, ropt) denote a solution to the Dual modified OPF problem. The goal is to show

that the multiplicity of the zero eigenvalue of A(xopt, ropt) is at most two. To this end,

notice that the constraints (2.1b) and (2.1d) can be ignored due to the network and loads

both being resistive (note that Slk = Plk for DC networks). As a result,

γk = 0, ∀k ∈ N

r1lm = · · · = r6lm = 0, ∀(l,m) ∈ L.

Hence, the matrix A(xopt, ropt) can be expressed as

A(xopt, ropt) =

 T (xopt, ropt) 0

0 T (xopt, ropt)

 (2.12)

for some matrix T (xopt, ropt) ∈ Rn×n, where the (l,m) off-diagonal entry of T (xopt, ropt) is

equal to

Tlm(xopt, ropt) = −ylm

2

(
λopt

lm + λopt
ml + λopt

l + λopt
m

)
− µopt

lm − µopt
ml

if (l,m) ∈ L and is zero otherwise. On the other hand, since resistance is a nonnegative

physical quantity, it can be shown that ylm coming from the Π model of a transmission

line or a transformer is always nonnegative. It follows from this fact together with the

inequalities (2.11) and xopt ≥ 0 that all off-diagonal entries of the matrix T (xopt, ropt) are

non-positive.

Assume for now that the graph of the power system is strongly connected, meaning
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that there exists a path between every two buses of the network [31]. Assume also that

the nonnegative vector (λopt
1 , ..., λopt

n ) is strictly positive. These assumptions imply that the

matrix T (xopt, ropt) is irreducible and its off-diagonal entries are non-positive. Hence, the

Perron-Frobenius theorem yields that the smallest eigenvalue of T (xopt, ropt) is simple, and

as a result of (2.12), the smallest eigenvalue of A(xopt, ropt) is repeated twice [31]. Since

this matrix is positive semidefinite, this simply implies that the multiplicity of the zero

eigenvalue of A(xopt, ropt) is at most 2. Thus, the duality gap is zero for the modified OPF

problem, by virtue of Part (ii) of Theorem 2.

Now, suppose that the power network is strongly connected, but the nonnegative vector

(λopt
1 , ..., λopt

n ) is not strictly positive. Perturb the constraint (2.11) as

λk ≥ ε, ∀k ∈ N

for a small strictly positive number ε. Based on the above discussion, the duality gap is zero

for the perturbed modified OPF problem and hence Optimization 3 has a rank-one solution,

denoted by W opt
ε (see Part (i) of Theorem 2). Since W opt

ε has a bounded norm (due to the

voltage constraints in the OPF problem), this matrix converges to a rank-one solution if

ε tends to zero. Hence, Optimization 3 has a rank-one solution for ε = 0 and therefore

it follows from Condition (i) of Theorem 2 that the duality gap is zero for the modified

OPF problem. So far, it was assumed that the graph of the power system is connected. If

not, it means that the OPF problem can be broken down into a number of decoupled OPF

problems, each associated with a connected power sub-network. The proof is completed by

repeating the aforementioned argument for each small-sized OPF problem. �

Theorem 3 states that the duality gap becomes zero for the OPF problem if the load

constraints are changed from equality to inequality, meaning that the over-satisfaction of the

loads is permitted. It is important to study under what conditions the OPF and modified

OPF problems have the same solution. This is addressed in the sequel in terms of the duals

of these problems.

Lemma 3 The duals of the OPF problem and the modified OPF problem have the same

solution if the vector (λopt
1 , ..., λopt

n ) associated with the original (rather than the modified)

OPF problem is nonnegative.
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Proof: As stated in the proof of Theorem 3, the dual of the modified OPF problem is

the same as the dual of the OPF problem but with the additional constraints λ1, ..., λn ≥ 0.

Therefore, if the optimal solution of the dual of the OPF problem satisfies these constraints,

its means that the duals of the OPF and modified OPF problems have an identical solution.

This completes the proof. �

The following result can be easily derived from Lemma 3 and the proof of Theorem 3.

Corollary 2 The duality gap is zero for the OPF problem if (λopt
1 , ..., λopt

n ) is nonnegative.

Moreover, the sufficient zero-duality-gap condition given in Part (ii) of Theorem 2 holds for

the OPF problem if the vector (λopt
1 , ..., λopt

n ) is strictly positive and the graph of the power

network is strongly connected.

Assume that the OPF and modified OPF problems have the same solution. Then,

the duality gap is zero for the OPF problem, implying that Optimization 3 can solve the

OPF problem exactly. However, in order for the Algorithm proposed here (based on Op-

timization 4) to solve the OPF problem, two conditions must hold. The first one is the

connectivity of the power network that holds in reality. The second one requires that every

nonnegative aggregate multiplier λopt
k , k ∈ N , be strictly positive. This condition holds for

a generic OPF problem because λopt
k being zero implies that the load constraint PLk

= PDk

can be removed from the OPF problem without changing the solution, which signifies that

the given value PDk
is not important at all.

A practical power system is often maintained at a normal condition, where if a load

bus requests to receive a certain amount of active power or more, the optimal strategy is

to deliver exactly the minimum amount of power requested. This normal operation results

from the fact that generated power is not supposed to be sold at a negative price (note

that λopt
k in practice plays the role of nodal price for the load of bus k ∈ N ). However, an

abnormal operation may occur if the physical limits in the OPF problems are very tight

and unreasonable so that the OPF problem is over-constrained and each line has a huge

amount of power loss on purpose. Under this circumstance, it is possible that the OPF

and modified OPF problems achieve different solutions. The next theorem shows that this

cannot occur if some of the constraints are removed from the OPF problem to avoid making

it over-constrained by choosing inappropriate physical limits.
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Theorem 4 Consider a non-generator bus k ∈ N\G. If the voltage constraints (2.1c)

and (2.1f) associated with bus k and the flow constraint (2.1e) associated with every line

connected to this bus are removed from the OPF problem, then λopt
k corresponding to this

simplified OPF problem is nonnegative.

Proof: The (k, k) entry of A(xopt, ropt), under the assumptions made in the theorem,

can be written as

λopt
k

ykk +
∑

l∈N (k)

ykl

 . (2.13)

The proof follows from the following facts:

• The expression given in (2.13) must be nonnegative due to the positive semi-definiteness

of A(xopt, ropt).

• Although ykk might be negative, the overall term ykk +
∑

l∈N (k) ykl is always nonnega-

tive (note that this term corresponds to the (k, k) entry of Y , which is the admittance

of a passive network). �

Consider a non-generator bus k. Since the load is known at this bus, extra constraints

related to this bus can make the OPF problem infeasible or over-constrained if the limits

are not defined properly. Note that the result of Theorem 4 can be easily generalized to

generator buses as well. Hence, the multiplier λopt
k is expected to be nonnegative, something

which is needed in Corollary 2 to guarantee the existence of no duality gap for the OPF

problem.

In summary, in order to be able to solve the OPF problem in polynomial time, it suffices

to have either of the following properties:

• The over-satisfaction of a load is allowed and therefore the modified OPF problem

can be solved instead.

• The physical limits of the OPF problem are not chosen in such a way that the power

system operates in an abnormal condition, where the active power is offered to a load

at a negative price.
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2.4.2 General Networks with No Reactive-Load Constraints

As before, consider the modified OPF problem obtained by: (i) replacing the equality

constraint (2.9) with the inequality constraint (2.10), and (ii) ignoring the apparent line

flow limits and taking only the active line flow limits into account. Assume that the matrix

Y is complex, but any arbitrary (positive/negative) amount of reactive power can be injected

to each bus k ∈ N . In this case, the constraints (2.1b) can be ignored. On the other hand,

one can write the matrix A(xopt, ropt) as

A(xopt, ropt) =

 T (xopt, ropt) T̄ (xopt, ropt)

−T̄ (xopt, ropt) T (xopt, ropt)

 (2.14)

for some real matrices T (xopt, ropt), T̄ (xopt, ropt) ∈ Rn×n. It can be concluded from the

above relation and (2.12) that the matrix T̄ (xopt, ropt) becomes nonzero in the transition

from resistive to general networks. Unlike the symmetric matrix T (xopt, ropt), the matrix

T̄ (xopt, ropt) is skew-symmetric and therefore it cannot have only positive entries. This is

an impediment to exploiting the Perron-Frobenius theorem. In what follows, we build on

Theorem 3 to bypass this issue.

Given a small number ε > 0, consider the Dual OPF problem (Optimization 4) subject

to the extra constraints

‖x‖ ≤ 1
ε
, ‖r‖ ≤ 1

ε
, ε ≤ λk ≤

1
ε
, ∀k ∈ N (2.15)

where ‖ · ‖ is a vector norm. This optimization corresponds to the dual of a perturbed

version of the modified OPF problem, which is referred to as ε-modified OPF problem here.

Note that when ε goes to zero, the solution of this problem approaches that of the original

modified OPF problem. To derive the next theorem, with no loss of generality, assume that

the resistive part of the power network is strongly connected.

Theorem 5 Given ε > 0, consider an arbitrary matrix G ∈ Rn×n, which satisfies all

necessary properties for being the real part of the admittance matrix of a power network.

There exists an unbound open set TG in Rn×n such that for every Ḡ ∈ TG, the duality gap

is zero for the ε-modified OPF problem with Y = G + Ḡi, regardless of the specific values

of the loads and limits in the constraints (2.1).
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Proof: Write Y as G+ Ḡi, where G is a known matrix and Ḡ is a matrix variable. Now,

the matrix A(x, r) depends on the variable Ḡ, in addition to x and r. To account for this

dependence explicitly, we use the notation A(x, r, Ḡ) instead of A(x, r). Let C denote the

set of all triple (x, r, Ḡ) such that

• A(x, r, Ḡ) as well as the matrices given in (2.8b) and (2.8c) are all positive semidefinite.

• The dimension of the null space of A(x, r, Ḡ) is at least 3.

• The relations x ≥ 0 and (2.15) are satisfied.

The way C is defined makes it a closed semi-algebraic set (note that the set C can be

described by a number of polynomial inequalities). Recall that C belongs to the space

associated with the variable (x, r, Ḡ). Project this set on the subspace corresponding to

its variable Ḡ and denote the resulting subset as CG. Define TG as the complement of CG.

Notice that the sufficient zero-duality-gap condition given in Theorem 2 is satisfied for the

ε-modified OPF problem with Y = G + Ḡi as long as Ḡ ∈ TG. The proof of this theorem

follows from the facts given below:

• Since C is closed and bounded (due to the relations given in (2.15)), the projection

set CG is closed as well. Therefore, the complement of CG, i.e., TG, is an open set.

• Consider a diagonal matrix Ḡ. It can be verified that the matrix T̄ (x, r, Ḡ) is zero in

this case, Thus, the matrix A(x, r, Ḡ) has the block-diagonal structure (2.12), meaning

that the non-resistive part of the network has disappeared. Hence, it can be inferred

from the proof of Theorem 3 that the duality gap is zero in this case. As a result, Ḡ

must belong to TG.

• The set of diagonal matrices is unbounded. �

As done in the preceding subsection, the OPF and modified OPF problems are expected

to have the same solution; otherwise the power system may not work in a normal condition.

Note that the condition provided in Theorem 4 to guarantee the same solution for the

OPF and modified OPF problems still holds for a general network with no constraints on

reactive loads. In this subsection, we perturbed the modified OPF problem and defined an

ε-modified OPF problem. Theorem 5 states that for every Re{Y } (that could be arbitrarily

large or small), there exists an open, unbounded region for Im{Y } such that the algorithm
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proposed in this chapter can find a global optimum of the ε-modified OPF problem with

Y = Re{Y }+Im{Y }i in polynomial time. The importance of this result is as follows: when

the duality gap is zero for a topology Y , then the OPF problem corresponding

to every possible load profiles and physical limits can be convexified.

2.4.3 General Networks

In this part, we combine the ideas presented in the last two subsections to study the OPF

problem associated with a general network. For simplicity in the presentation, remove the

constraints |Slm| ≤ Smax
lm (where (l,m) ∈ L), because of its similarity to the constraint

|Plm| ≤ Pmax
lm . Consider the matrix A(xopt, ropt), which can be expressed as

A(xopt, ropt) =

 T (xopt, ropt) T̄ (xopt, ropt)

−T̄ (xopt, ropt) T (xopt, ropt)


where T (xopt, ropt) is symmetric and T̄ (xopt, ropt) is skew-symmetric. As observed in both

the resistive case and the general case with no reactive-load constraints, the duality gap

can be pushed towards zero if the off-diagonal entries of T (xopt, ropt) are all non-positive.

In what follows, we first study the sign structure of T (xopt, ropt).

As carried out in Section 2.4.1, define PDk
+QDk

i as the apparent power requested by

load k ∈ N and PLk
+QLk

i as the apparent power delivered to load k ∈ N . In the original

OPF problem, the equalities

PLk
= PDk

, QLk
= QDk

, ∀k ∈ N (2.16)

must hold. If these equalities are replaced by the inequalities

PLk
≥ PDk

, QLk
≥ QDk

, ∀k ∈ N (2.17)

then the optimal solutions λopt
k and γopt

k corresponding to the dual of the modified OPF prob-

lem will both become nonnegative. On the other hand, the (k, l) ∈ L entry of T (xopt, ropt)
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can be obtained as

Tkl(xopt, ropt) =− Re{ykl}
2

(
λopt

kl + λopt
kl + λopt

k + λopt
l

)
+

Im{ykl}
2

(
γopt

k + γopt
l

)
− µopt

kl − µopt
kl .

(2.18)

With no loss of generality, assume that there exists no phase shifting transformer in the

power system (for the analysis presented next, one may need to replace every phase shifting

transformer with the model proposed in [60]). Due to the particular models of transmission

lines and transformers as well as the non-negativity of resistance and capacitance, the matrix

Y has the following two properties:

P1) The off-diagonal entries of the real part of Y are non-positive.

P2) The off-diagonal entries of the imaginary part of Y are nonnegative.

It follows from these properties and the relation (2.18) that the off-diagonal entries of

T (xopt, ropt) are non-positive if λopt
k , γopt

k ≥ 0, ∀k ∈ N , or equivalently if the equality load

constraints (2.16) are replaced by the inequality load constraints (2.17). Unlike λopt
1 , ..., , λopt

n

that are expected to be all nonnegative, a few of γopt
1 , ..., , γopt

n might become negative.

Indeed, it is known that the injection of a negative reactive power to a bus might reduce

the optimal generation cost, especially when there exists a large capacitor bank at the same

bus.

Hence, the sufficient condition λopt
k , γopt

k ≥ 0, ∀k ∈ N , for guaranteeing a nice sign

structure on T (xopt, ropt) does not always hold. Now, we wish to study a less conservative

sufficient condition here. It follows from (2.18) that the off-diagonal entries of T (xopt, ropt)

are non-positive if

Re{ykl}
2

(
λopt

kl + λopt
kl + λopt

k + λopt
l

)
− Im{ykl}

2

(
γopt

k + γopt
l

)
≥ 0 (2.19)

for every (k, l) ∈ L. This condition is satisfied for IEEE benchmark systems. The interpre-

tation of this condition for a single (k, l) ∈ L is as follows:

• Define a modified OPF with the following active/reactive load constraints

PLm = PDm , QLm = QDm , ∀m ∈ N\{k, l}

PLm ≥ PDm , QLm ≥ QDm , ∀m ∈ {k, l}
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where the load over-satisfaction at buses k and l must obey the relations

PLk
− PDk

= PLl
− PDl

= τ × Re{ykl}

QLk
−QDk

= QLl
−QDl

= τ × Im{−ykl}

max{Plm, Pml} ≤ Pmax
lm − τ × Re{ykl}

for some nonnegative number τ .

• The dual of the above modified OPF problem can be obtained from the Dual OPF

by incorporating the extra constraint (2.19).

• If optimal τ becomes zero, then the OPF and modified OPF problems will have the

same solution, meaning that the (k, l) entry of T (xopt, ropt) is non-positive.

Notice that the modified OPF problem defined above allows the reactive load at bus k

to be over-satisfied, but enforces extra consumption of both active and reactive loads at

buses k, l and reduces the maximum flow limit on line (k, l). Therefore, it is very likely

to obtain τopt = 0 due to these penalties for load over-satisfaction (note that the imposed

over-satisfaction of active load often leads to more power loss). The above modified OPF

problem is defined to ensure the non-positivity of only the (k, l) entry of T (xopt, ropt). A

similar modified OPF can be defined corresponding to all off-diagonal entries of T (xopt, ropt).

So far, the reason why the off-diagonal entries of T (xopt, ropt) are expected to be non-

positive is investigated. Having assumed the presence of this sign structure on T (xopt, ropt),

consider the matrix  T (xopt, ropt) T̄ (xopt, ropt)× ω

−T̄ (xopt, ropt)× ω T (xopt, ropt)

 (2.20)

for a given real number ω. As argued in the proof of Theorem 3, the smallest eigenvalue

of the above matrix is repeated twice when ω = 0. Hence, there exists an interval [0, ωmax]

(where ωmax > 0) such that the smallest eigenvalue of the matrix (2.20) is repeated twice

for every ω belonging to this interval. Now, note that if ωmax > 1, then the zero-duality-

gap condition given in Theorem 2 is satisfied. This happens whenever T̄ (xopt, ropt) is

sufficiently smaller than T (xopt, ropt) with respect to a suitable measure on their entries.

As can be justified intuitively and verified in simulations, this is the case for practical

systems operating at a normal condition, including the IEEE test systems.
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It is noteworthy that Theorem 5 can be generalized to a general network (with arbitrary

constraints) to deduce that there exists an unbounded open set for Y such that the ε-

modified OPF problem has zero duality gap with respect to all network topologies Y in

that region.

2.4.4 Power Loss Minimization

In this subsection, we consider the loss minimization problem, as an important special case

of the OPF problem. This corresponds to the assumption fk(PGk
) = PGk

for every k ∈ G.

Most of the results to be presented here can be extended to a general OPF problem. With

no loss of generality, assume that Re{Y } has exactly one zero eigenvalue, implying that (i)

the graph associated with the resistive part of the network is strongly connected [31], and

(ii) every load modeled as a shunt admittance has no resistive part. Notice that the power

loss in a power system can be reduced by either increasing the voltage limits or decreasing

the resistance of transmission lines. The next lemma investigates an ideal case where the

power loss is zero.

Theorem 6 If the active power losses in the transmission lines were zero at optimality,

then there would exist an optimal dual point (xopt, ropt) satisfying the relations

ropt = 0, λopt
k = 1, γopt

k = µopt
k = λopt

lm = µopt
lm = 0

for every k ∈ N and (l,m) ∈ L. Moreover, this dual solution satisfies the zero-duality-gap

condition (ii) given in Theorem 2.

Proof: Consider a specific point (x, r) defined as r = 0 and

λk = γ
k

= γ̄k = µ
k

= µ̄k = λlm = µlm = 0

λ̄k :=

 0 if k ∈ G

1 otherwise

for all k ∈ N and (l,m) ∈ L. It is straightforward to verify that h(x, r) =
∑

k∈N PDk
.

On the other hand, since the OPF problem is feasible and the total power loss is zero, the

optimal objective value of the OPF problem is equal to the total demand. This shows that

the objective value of the dual problem at (x, r) is identical to the optimal value of the OPF
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problem. Hence, to prove that (x, r) is a dual solution, it suffices to show that (x, r) is a

feasible point of this optimization problem. To this end, it can be verified that

λk = 1, γk = 0, µk = 0, ∀k ∈ N

and hence

A(x, r) =

 Re{Y } 0

0 Re{Y }

 .
Therefore, A(x, r) is positive semidefinite and has a zero eigenvalue of multiplicity 2. This

means that (xopt, ropt) = (x, r) is indeed a maximizer of Optimization 4 for which the

sufficient zero-duality-gap condition (ii) given in Theorem 2 holds. �

Theorem 6 studies a special type of the OPF problem in an ideal case of no power loss,

and presents an optimal dual solution explicitly from which it can be seen that the duality

gap is zero. However, active power loss is nonzero, but small, in practice. In that case,

if the Lagrange multipliers λopt
k , γopt

k and µopt
k are treated as nodal prices for active and

reactive powers as well as voltage levels, it can be argued that the optimal point in a lossy

case is likely to be close enough to the dual solution given in Theorem 6 so that the matrix

A(xopt, ropt) will still have two zero eigenvalues. In other words, it is expected that a small

power loss in transmission lines does not create a duality gap.

2.5 Power System Examples

This section illustrates our results through two examples. Example 1 uses the IEEE bench-

mark systems archived at [109] to show the practicality of our result. Since the systems

analyzed in Example 1 are so large that the specific values of the optimal solution cannot

be provided here, some smaller examples are analyzed in Example 2 with more details.

The results of this section are attained using the following software tools:

• The MATLAB-based toolbox “YALMIP” (together with the solver “SEDUMI”) is

used to solve the Dual OPF problem (i.e., Optimization 4), which is an SDP prob-

lem [68].

• The software toolbox “MATPOWER” is used to solve the OPF problem in Example

1 for the sake of comparison. The data for the IEEE benchmark systems analyzed in



41

this example is extracted from the library of this toolbox [118].

• The software toolbox “PSAT” is used to draw and analyze the power networks given

in Example 2 [71].

2.5.1 Example 1: IEEE Benchmark Systems

Consider the OPF problems associated with IEEE systems with 14, 30, 57, 118, and 300

buses, where

• There are constraints on the voltage magnitude, active power and reactive power at

every bus as well as the apparent power at every line.

• The objective function is either the total generation cost or the power loss.

In simulations, we observed that the necessary and sufficient zero-duality-gap condition (i)

given in Theorem 2 is always satisfied for all these systems. However, since the main al-

gorithm proposed here is based on the sufficient zero-duality-gap condition (ii) delineated

in Theorem 2, we studied this condition for IEEE systems and noticed that the condition

is always satisfied after a small perturbation of Y , as discussed below. Due to space re-

strictions, the details will be provided only in one case: the loss minimization for the IEEE

30-bus system.

Consider the OPF problem for the IEEE 30-bus system, where the objective is to mini-

mize the total power generated by the generators. When Optimization 4 is solved, the four

smallest eigenvalues of the matrix

A(xopt, ropt) =

 T (xopt, ropt) T̄ (xopt, ropt)

−T̄ (xopt, ropt) T (xopt, ropt)


would be obtained as 0, 0, 0, 0. Since the number of zero eigenvalues is 4, condition (ii) in

Theorem 2 is violated. To explore the underlying reason, consider the circuit of this power

system that is depicted in Figure 2.2. The circuit is composed of three regions connected

to each other via some transformers. This implies that if each line of the circuit is replaced

by its resistive part, the resulting resistive graph will not be connected (since the lines

with transformers are assumed to have no resistive parts). Thus, the graph induced by

Re{Y } is not strongly connected. Although this does not create a nonzero duality gap,
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(a)

Figure 2.2: The circuit of the IEEE 30-bus system taken from [109]
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it causes our sufficient duality-gap condition to be violated (see Corollary 2). This is an

issue with all the IEEE benchmark systems. This can be easily fixed by adding a little

resistance to each transformer, say on the order of 10−5 (per unit). After this modification

to the real part of Y , the four smallest eigenvalues of the matrix A(xopt, ropt) turn out to

be 0, 0, 0.0053, 0.0053; i.e., the zero eigenvalues resulting from the non-connectivity of the

resistive graph have disappeared. Now, condition (ii) in Theorem 2 is satisfied and therefore

the vector of optimal voltages can be recovered using the algorithm described after Theorem

2.

To illustrate the discussions made in Section 2.4, we note that (for every k ∈ N )

λopt
k ∈ [1, 1.1466], γopt

k ∈ [−0.0062, 0.1443], µopt
k ∈ [−0.0216, 0].

Hence

• λopt
k ’s are all positive and around 1.

• γopt
k ’s are all but one nonnegative, and are around 0.

• µopt
k ’s are all very close to 0.

Moreover, the maximum absolute values of the entries of T̄ (xopt, ropt) is 0.1844, whereas the

average absolute values of the nonzero entries of T (xopt, ropt) is 4.2583. This confirms the

claim in Section 2.4.3 that the matrix T̄ (xopt, ropt) is expected to be negligible compared

to T (xopt, ropt).

The computation on the IEEE benchmark examples were all finished in a few seconds

and the number of iterations for each example was between 5 and 20. Note that although

Optimization 4 is convex and there is no convergence problem regardless of what initial

point is used, the number of iterations needed to converge mainly depends on the choice

of starting point. It is worth mentioning that when different algorithms implemented in

Matpower were applied to these systems, some of the constraints are violated at the optimal

point probably due to the relatively large-scale and non-convex nature of the OPF problem.

However, no constraint violation has occurred by solving the dual of the OPF problem due

to its convexity.
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Table 2.1: Parameters of the systems given in Figure 2.3

Parameters System 1 System 2 System 3
z̄12 0.05 + 0.25i 0.1 + 0.5i 0.10 + 0.1i
z̄13 0.04 + 0.40i None None
z̄23 0.02 + 0.10i 0.02 + 0.20i 0.01 + 0.1i
z̄14 None None 0.01 + 0.2i
ȳ12 0.12i 0.04i 0.12i
ȳ13 0.10i None None
ȳ23 0.04i 0.04i 0.04i
ȳ14 None None 0.04i

2.5.2 Example 2: Small Systems

The IEEE test systems in the previous example operate in a normal condition when the

optimal bus voltages are close to each other in both magnitude and phase. This example

illustrates that the sufficient zero-duality-gap condition (ii) given in Theorem 2 is satisfied

even in the absence of such a normal operation. Consider three distributed power systems,

referred to as Systems 1, 2, and 3, depicted in Figure 2.3. Note that Systems 2 and 3 are

radial, while System 1 has a loop. The detailed specifications of these systems are provided

in Table 2.1 in per unit for the voltage rating 400 kV and the power rating 100 MVA, in

which z̄lm and ȳlm denote the series impedance and the shunt admittance of the Π model of

the transmission line connecting buses l,m ∈ {1, 2, 3, 4}. The goal is to minimize the active

power injected at slack bus 1 while satisfying the constraints given in Table 2.2.

Optimization 4 is solved for each of these systems, and it is observed that the zero-

duality-gap condition derived in this work always holds. A globally optimal solution of the

OPF problem recovered from the solution of Optimization 4 is provided in Table 2.3 (Ploss

and Qloss in the table represent the total active and reactive power losses, respectively). It is

interesting to note that although different buses have very disparate voltage magnitudes and

phases, the duality gap is still zero. The optimal solution of Optimization 4 is summarized in

Table 2.4 to demonstrate that the Lagrange multipliers corresponding to active and reactive

power constraints are positive.

As another scenario, let the desired voltage magnitude at the slack bus of System 1 be

changed from 1.05 to 1. It can be verified that the optimal value of Optimization 4 becomes

+∞, which simply implies that the corresponding OPF problem is infeasible.
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Figure 2.3: Figures (a), (b), and (c) depict Systems 1, 2 and 3 studied in Example 2,
respectively.

Table 2.2: Constraints to be satisfied for the systems given in Figure 2.3

Constraints System 1 System 2 System 3
PD2 +QD2 i 0.95 + 0.4i 0.7 + 0.02i 0.9 + 0.02i
PD3 +QD3 i 0.9 + 0.6i 0.65 + 0.02i 0.6 + 0.02i
PD4 +QD4 i None None 0.9 + 0.02i
V max

1 1.05 1.4 1

Table 2.3: Parameters of the OPF problem recovered from the solution of Optimization 2

Recovered System 1 System 2 System 3
Parameters
V opt

1 1.05∠0◦ 1.4∠0◦ 1∠0◦

V opt
2 0.71∠−20.11◦ 1.10∠−25.73◦ 0.78∠−10.58◦

V opt
3 0.68∠−21.94◦ 1.08∠−31.96◦ 0.76∠−16.31◦

V opt
4 None None 0.95∠−10.82◦

P opt
loss 0.2193 0.1588 0.3877
Qopt

loss 1.2944 0.7744 0.5343
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Table 2.4: Lagrange multipliers obtained by solving Optimization 2 for the systems given
in Figure 2.3.

Lagrange Multipliers System 1 System 2 System 3
λopt

2 1.3809 1.4028 1.7176
λopt

3 1.4155 1.4917 1.7900
λopt

4 None None 1.0207
γopt

2 0.4391 0.2508 0.1764
γopt

3 0.4955 0.2633 0.1858
γopt

4 None None 0.0061
µopt

1 0.0005 0.0001 0.0005

We repeated several hundred times this example by randomly choosing the parameters

of the systems given in Figure 2.3 over a wide range of values. In all these trials, the

algorithm prescribed in Section 2.3 always found a globally optimal solution of the OPF

problem or detected its infeasibility.

2.6 Summary

This chapter is concerned with the optimal power flow (OPF) problem that has been studied

for about half a century and is notorious for its high nonconvexity. We have derived the

dual of a reformulated OPF problem as a convex (SDP) optimization, which can be solved

efficiently in polynomial time. We have provided a necessary and sufficient condition under

which the duality gap is zero and hence a globally optimal solution to the OPF problem

can be recovered from a dual optimal solution. This condition is satisfied for the IEEE

benchmark systems with 14, 30, 57, 118, and 300 buses. Since this condition is hard to

study, a sufficient zero-duality-gap condition is also proposed. We justify why this sufficient

condition might hold widely in practice. The main underlying reasons for zero duality

gap are (i) the particular modeling of transmission lines and transformers, and (ii) the

non-negativity of physical quantities such as resistance and inductance.

As expected and already reported in [4], local-search algorithms converge faster than

SDP algorithms for solving an OPF problem. However, the SDP problem derived here can

be useful for addressing many problems such as: (i) finding a globally optimal solution,

(ii) verifying whether a locally optimal solution is globally optimal, (iii) solving emerging
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optimization problems in smart grids where the existing local-search algorithms may not

work well [60], and (iv) identifying the number of solutions of a power flow problem. Note

that the current SDP solvers cannot handle OPF problems with several thousand buses

efficiently. However, we have observed that those SDP problems can be reduced to second-

order-cone programs, which can be solved in less than a minute for OPF problems with

as many as 10,000 buses. The details of this result and some other by-products of the

convexification of the OPF problem are currently under study.

2.7 Appendix

2.7.1 LMI and SDP Optimization Problems

The area of convex optimization has seen remarkable progress in the past two decades,

particularly in linear matrix inequalities (LMIs) and semidefinite programming (SDP) where

the goal is to minimize a linear function subject to some LMIs [13, 24]. The book [10]

describes several difficult control problems that can be cast as LMI/SDP problems and

then solved efficiently. The recent advances in this field have been successfully applied to

different problems in other areas, e.g., circuit and communications [110, 62]. A powerful

property in semidefinite programming is that the dual of an SDP optimization problem is

again an SDP problem and, moreover, strong duality often holds [24].

Given the scalar variables x1, ..., xn, consider the problem of minimizing

a1x1 + a2x2 + · · ·+ anxn (2.21)

subject to the LMI constraint

A0 +A1x1 + · · ·+Anxn � 0. (2.22)

where a1, ..., an are given real numbers and A0, ..., An are given symmetric matrices in

Rn0×n0 , for some natural number n0. Notice that the objective of the above optimization

problem is a linear scalar function, and its constraint is an LMI. The above optimization

problem is referred to as an SDP problem, which belongs to the category of convex opti-

mization problems that can be solved efficiently. To write the Lagrangian for the above
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optimization problem, a Lagrange multiplier should be introduced for the inequality (2.22).

In light of the generalized Lagrangian theory, the multiplier associated with the inequal-

ity (2.22) is a symmetric matrix W in Rn0×n0 that must be positive semidefinite. The

corresponding Lagrangian will be as follows:

n∑
k=1

akxk + Tr

{
W

(
A0 +

n∑
k=1

Akxk

)}

Note that the trace operator performs the multiplication between the expression in the

constraint (2.22) and its associated Lagrange multiplier. Minimizing the above Lagrangian

over x1, ..., xn and then maximizing the resulting term over W � 0 lead to the optimization

problem of maximizing

Tr{WA0}

subject to the constraints

Tr{WAk}+ ak = 0, k = 1, 2, ..., n

for a symmetric matrix variable W � 0. This optimization problem is the dual of the initial

optimization problem formulated in (2.21) and (2.22). If some mild conditions (such as

Slater’s conditions) hold, then the duality gap between the solutions of these two optimiza-

tion problems becomes zero, meaning that the optimal objective values obtained by these

problems will be identical. In this case, it is said that “strong duality” holds; otherwise,

only “weak duality” holds in which case the optimal value of the dual problem is only a

lower bound on the optimal value of the original problem. One can refer to [13] and [24]

for detailed discussions on LMI and SDP problems.

2.7.2 NP-Hardness of the OPF Problem

Consider two extremely special (artificial) instances of the OPF problem in the sequel:
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• Case 1: This case corresponds to the situation where G = N and

fk(PGk
) = PGk

, ∀k ∈ G

V min
k = V max

k = 1, ∀k ∈ N

Pmin
k = Qmin

k = −∞, ∀k ∈ G

Pmax
k = Qmax

k = +∞, ∀k ∈ G

Smax
lm = Pmax

lm = ∆V max
lm = ∞, ∀(l,m) ∈ L.

The above setting makes the power balance equations together with the constraints

(2.1a), (2.1b), (2.1d), (2.1e) and (2.1f) all disappear. It is straightforward to verify

that the OPF problem reduces to

min
V

(
Re{V∗YV}+

∑
k∈N

PDk

)

s.t. |Vk| = 1, ∀k ∈ N .

(2.23)

Note that if the lower limit Pmin
k chosen as −∞ is not allowed to be less than zero,

one can choose PDk
sufficiently large so that the OPF problem again turns into the

above optimization problem. Observe that the feasibility region of this OPF problem

in the space of V is a connected, but nonconvex, set (the nonconvexity comes from

the fact that this region encloses the origin but does not contain it).

• Case 2: This case is obtained from Case 1 by including the extra assumption Im{Y } =

0 and changing the limits Qmin
k = −∞ and Qmax

k = +∞ to Qmin
k = Qmax

k = 0 for every

k ∈ G. With no loss of generality, suppose that the voltage angle at bus 1 is equal to

0. Then, the OPF problem can be written as

min
V

(
V∗YV +

∑
k∈N

PDk

)

s.t. Vk ∈ {−1, 1}, ∀k ∈ N .

(2.24)

The feasibility region of this problem is a discrete set with an exponential number of

points in terms of n.
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The optimization problems given in (2.23) and (2.24) are both NP-hard [115]. Hence, the

OPF problem is NP-hard as well, due to its special (artificial) Cases 1 and 2 being NP-hard.

Note that although the NP-harness of the OPF problem was proved here by focusing on

the voltage constraints, one can come to the same conclusion by only considering the active

or reactive constraints. Indeed, Lemma 1 presented later in this work shows that these

constraints introduce indefinite quadratic constraints, which again make the OPF problem

NP-hard [115].

2.7.3 Proofs

In this subsection, we prove Lemmas 1–2, Theorems 1–2 and Corollary 1.

Proof of Lemma 1: In order to prove (2.2a), one can write:

Pk,inj = Re{VkI
∗
k} = Re{V∗eke

∗
kI} = Re{V∗YkV}

= XT

 Re{Yk} −Im{Yk}

Im{Yk} Re{Yk}

X

=
1
2
XT

 Re{Yk + Y T
k } Im{Y T

k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

X

= XTYkX = Tr
{
YkXXT

}
.

The inequality (2.2b) can be derived similarly. On the other hand, the technique used above

can be exploited to show that

S∗lm = V ∗
l (Vlȳlm) + V ∗

l (Vl − Vm) ylm = VYlmV∗

= Tr
{
YlmXXT

}
− Tr

{
ȲlmXXT

}
i.

Inequalities (2.2c) and (2.2d) follow immediately from the above equality. The remaining

inequalities in (2.2) can be proved similarly. �

Proof of Lemma 2: Assume that W opt is a rank-one solution of Optimization 3. Write

this matrix as Xopt(Xopt)T for some vector Xopt, and define Xopt
1 and Xopt

2 in such a way
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that Xopt =
[

(Xopt
1 )T (Xopt

2 )T
]T

. It can be verified that the matrix

1
2
Xopt(Xopt)T +

1
2

 Xopt
1 ω1 −Xopt

2 ω2

Xopt
1 ω2 + Xopt

2 ω1

 Xopt
1 ω1 −Xopt

2 ω2

Xopt
1 ω2 + Xopt

2 ω1

T

is a solution of Optimization 3 for every real numbers ω1 and ω2 such that ω2
1 + ω2

2 = 1.

The proof is completed by noting that the above matrix has rank 2 for generic values of

(ω1, ω2). �

Proof of Part (i) of Theorem 1: Consider the Lagrange multipliers introduced before

Optimization 4 with the only difference that the multiplier

 1 r1k

r1k r2k


given in (2.7) should be replaced by a general matrix

 r0k r1k

r1k r2k


(indeed, we do not yet know that r0k = 1.) The Lagrangian for Optimization 1 can be

written as (after some simplifications)

Tr
{
A(x, r)XXT

}
+ h(x, r) +

∑
k∈G

(1− r0k)αk.

To obtain the dual of Optimization 1, the Lagrangian should first be minimized over X and

αk’s, and then be maximized over the Lagrange multipliers. Observe that

• The minimum of
(
1− r0k

)
αk over the variable αk is −∞ unless r0k = 1, in which case

the minimum is zero.

• The minimum of the term

Tr
{
A(x, r)XXT

}
over X is −∞ unless A(x, r) is positive semidefinite, in which case the minimum is

zero.
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The proof follows immediately from these observations. �

Proof of Part (ii) of Theorem 1: One can derive the dual of Optimization 3 by

means of the standard procedure outlined in Appendix 2.7.1 (see [13] and [10] for more

details). This leads to Optimization 4, where its variable W plays the role of the Lagrange

multiplier for the matrix constraint (2.8a) in Optimization 3. The details are omitted for

brevity. In what follows, we will show that strong duality holds between Optimizations 3

and 4. Since these optimizations are both semidefinite programs and hence convex, it

suffices to prove that Optimization 4 has a finite optimal objective value and a strictly

feasible point (Slater’s condition). Since the OPF problem is feasible and equivalent to

Optimization 1, Optimization 1 has a finite optimal value. Optimization 4 is its dual

by Part (i) of Theorem 1, and is therefore upper bounded by the finite optimal value of

Optimization 1 (weak duality). To show that Optimization 4 has a strictly feasible point,

consider the point (x, r) given below

λk =

 ck1 + 1 if k ∈ G

1 otherwise
, λ̄k = 1, λlm = ε

γ
k

= γ̄k = 1,

µ
k

= 1, µ̄k = 2, µlm = 1,

r1k = 0, r2k = 1,

r1lm = r4lm = r6lm = 1, r2lm = r3lm = r5lm = 0

(2.25)

for k ∈ N and (l,m) ∈ L, where ε is some positive number. Then λk = γk = 0 and µk = 1.

Now, observe that

• The variable x whose entries are specified in (2.25) is strictly positive componentwise.

• The relations 
r1lm r2lm r3lm

r2lm r4lm r5lm

r3lm r5lm r6lm

 = I � 0

 1 rl1

rl11 rl2

 = I � 0

hold.
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• We have

h(x, r) = I + ε
∑

(l,m)∈L

Ylm +
∑

(l,m)∈L

Mlm

Since Mlm is positive semidefinite, h(x, r) becomes strictly positive definite for suffi-

ciently small values of ε.

In light of the above observations, (x, r) given in (2.25) is a strictly feasible point of Opti-

mization 4 for an appropriate value of ε. Hence, strong duality holds. �

Proof of Part (i) of Theorem 2: Recall that the following properties hold for Opti-

mizations 1–4:

• The optimal (objective) values of Optimizations 1 and 2 are the same, due to the

equivalence between these optimizations.

• The optimal values of Optimizations 3 and 4 are identical, due to strong duality.

These properties yield that the duality gap for Optimization 1 is equal to the difference

between the optimal values of Optimizations 2 and 3. The proof is completed by noting

that this difference is zero if and only if Optimization 3 has a rank-one solution.

Proof of Part (ii) of Theorem 2: Let W opt denote a solution of Optimization 3. It

follows from Part (ii) of Theorem 1 and the KKT conditions that

Tr
{
A(xopt, ropt)W opt

}
= 0. (2.26)

Denote the nonzero eigenvalues of W opt as ρ1, ..., ρf and their associated unit eigenvectors

as E1, ..., Ef for some nonnegative integer f . By writing W opt as
∑f

l=1 ρlElE
T
l , it can be

conduced from (2.26) and the positive semi-definiteness of W opt and A(xopt, ropt) that

A(xopt, ropt)El = 0, ∀l ∈ {1, ..., f}.

This implies that the orthogonal eigenvectors E1, ..., Ef all belong to the null space of

A(xopt, ropt), which has dimension 2. Hence, f is less than or equal to 2. On the other

hand, if f = 1, then Optimization 3 has a rank-one solution and consequently the duality

gap is zero for Optimization 1 (see Part (i) of Theorem 2). Therefore, assume that f is
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equal to 2. It can be shown that there exist two matrices T (x, r) and T̄ (x, r) such that

A(x, r) =

 T (x, r) T̄ (x, r)

−T̄ (x, r) T (x, r)

 . (2.27)

Decompose E1 as
[
ET

11 ET
12

]T
for some vectors E11, E12 ∈ Rn. It can be inferred from

the above equation that
[
−ET

12 ET
11

]T
is in the null space of A(xopt, ropt) as well. Since

this vector is orthogonal to E1, the vector E2 must be equal to ±
[
−ET

12 ET
11

]T
. Thus,

one can write

W opt = ρ1

 E11

E12

[ ET
11 ET

12

]
+ ρ2

 −E12

E11

[ −ET
12 ET

11

]
. (2.28)

Consider now the rank-one matrix

(ρ1 + ρ2)

 E11

E12

[ ET
11 ET

12

]
. (2.29)

Since W opt given in (2.28) satisfies the constraints of Optimization 3 and also maximizes its

objective function, it is easy to verify that the rank-one matrix in (2.29) is also a solution

of Optimization 3. In other words, Optimization 3 has a rank-one solution, which makes

the duality gap for Optimization 1 equal to zero (in light of Part (i) of Theorem 2). �

Proof of Corollary 1: As can be deduced from the proof of Part (ii) of Theorem 2,

since
[
XT

1 XT
2

]T
belongs to the null space of A(xopt, ropt), the vector

[
XT

2 −XT
1

]T
is also is in the null space of the same matrix. Now, recall that Optimization 3 has a

rank-one solution W opt that is decomposable as Xopt(Xopt)T , where Xopt is a solution of

Optimization 1. In light of the relation (2.26), Xopt belongs to the null space of A(xopt, ropt)

and hence there exist two real numbers ζ1 and ζ2 such that

Xopt = ζ1

 X1

X2

+ ζ2

 −X2

X1


or equivalently

Vopt = (ζ1 + ζ2i)(X1 +X2i).
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This completes the proof of Part (i) of Corollary 1. Part (ii) of this corollary follows

immediately from the proof of Part (ii) of Theorem 2. The details are omitted for brevity. �
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Chapter 3

Convexification of Fundamental
Nonlinear Power Problems

Most of the fundamental optimization problems for power systems are highly non-convex

and NP-hard (in the worst case), partially due to the nonlinearity of certain physical quan-

tities, e.g., active power, reactive power, and magnitude of voltage. The classical optimal

power flow (OPF) problem is one of such problems, which has been studied for half a cen-

tury. In the previous chapter, we obtained a condition under which the duality gap is zero

for the classical OPF problem and hence a globally optimal solution to this problem can be

found efficiently by solving a semidefinite program. We showed that this zero-duality-gap

condition is satisfied for IEEE benchmark systems and is likely to hold widely in practice

due to the physical properties of transmission lines. This chapter studies the case when

there are other common sources of non-convexity, such as variable shunt elements, vari-

able transformer ratios and contingency constraints. It is shown that zero duality gap for

the classical OPF problem implies zero duality gap for a general OPF-based problem with

these extra sources of non-convexity. This result makes it possible to find globally optimal

solutions to several fundamental power problems in polynomial time.

3.1 Introduction

The classical optimal power flow (OPF) problem aims to find a steady-state operating point

of a power system that minimizes a desirable cost function, e.g., power loss or generation

cost, and satisfies network and physical constraints on loads, powers, voltages, and line flows

[72]. The OPF problem is not only non-convex but also NP-hard, because of its possible
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reduction in a special case to the (0, 1)-quadratic optimization. Started by the work [21]

in 1962, many of the existing optimization techniques have been adapted to solve the OPF

problem, leading to algorithms based on linear programming, Newton Raphson, quadratic

programming, nonlinear programming, Lagrange relaxation, interior point method, artificial

intelligence, artificial neural network, fuzzy logic, genetic algorithm, evolutionary program-

ming, and particle swarm optimization [106, 73, 74, 83, 48]. Due to the non-convexity of

the OPF problem, these algorithms are not robust, lack performance guarantees, and may

not be able to find a global optimum.

By exploiting the physical properties of transmission lines, we showed in the previous

chapter that the classical OPF problem corresponding to a practical power system can

be convexified naturally and then solved efficiently. More precisely, we considered some

equivalent form of the OPF problem whose dual can be cast as a semidefinite program

[13]. Although this dual problem is solvable in polynomial time, its solution may not help

solve the OPF problem in light of the duality gap being possibly nonzero. We derived a

zero-duality-gap condition for the OPF problem in [63] and [64] under which a globally

optimal solution to the OPF problem can be recovered from a solution to its dual. This

condition is satisfied for all IEEE benchmark systems with 14, 30, 57, 118, and 300 buses,

and is expected to hold for every practical power system (for more details, see the algebraic

and geometric studies provided in [63, 64]).

Many of the fundamental optimization problems arising in power systems are based on

a single or a set of classical OPF problems with more constraints and variables. A question

arises as whether these problems can also be convexified. This chapter aims to address this

question. The objective is to show that zero duality gap for the classical OPF problem

implies zero duality gap for the following important problems (and any combinations of

them) as well:

• The OPF problem with extra variables associated with unknown shunt elements [72].

• The OPF problem with extra variables associated with unknown transformer ratios

[72].

• The security-constraint OPF problem (known also as contingency-constrained OPF),

which corresponds to a set of coupled OPF problems [19].
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The technique developed in this chapter can be used to generalize the above-mentioned

zero-duality-gap result to several other OPF-based problems such as the dynamic OPF

problem or the power system planning with renewable resources [117].

Notations: The following notations will be used throughout this chapter:

• i : The imaginary unit.

• R: The set of real numbers.

• Re{·} and Im{·}: The operators returning the real and imaginary parts of a complex

matrix.

• T : The transpose operator.

• ∗ : The conjugate transpose operator.

• � : The matrix inequality sign in the positive semidefinite sense [13].

3.2 Preliminaries and Problem Formulation

Given two natural numbers m and n such that m ≤ n, consider a power network with n

buses, labeled as 1, 2, ..., n, and m generators connected to buses 1, 2, ...,m. Assume that

each bus k ∈ {1, 2, ..., n} is connected to a load with the given apparent power PDk
+QDk

i

(this number is zero whenever a bus is not connected to any load). For every l ∈ {1, 2, ...,m},

let PGl
and QGl

denote the unknown active and reactive powers supplied by generator l,

respectively, and fl(PGl
) = cl2P

2
Gl

+ cl1PGl
+ cl0 denote a cost function associated with this

generator, for some nonnegative numbers cl0, cl1, cl2. Define Vk as the unknown complex

voltage at bus k ∈ {1, 2, ..., n} and V as the vector of all bus voltages. The classical

OPF problem aims to minimize
∑m

l=1 fl(PGl
) over the unknown parameters V, PG1 , ..., PGm ,

QG1 , ..., QGm subject to the constraints that every bus k ∈ {1, 2, ..., n} must be able to

deliver the power PDk
+QDk

i to its load and that

Pk,min ≤ PGk
≤ Pk,max, k ∈ {1, ...,m}

Qk,min ≤ QGk
≤ Qk,max, k ∈ {1, ...,m}

Vk,min ≤ |Vk| ≤ Vk,max, k ∈ {1, ..., n}

|Skl| ≤ Skl,max, k, l ∈ {1, ..., n}
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for some given limits Pk,min, Pk,max, Qk,min, Qk,max, Vk,min, Vk,max, Skl,max, where Skl denotes

the apparent power transferred from bus k to the rest of the network through the line (k, l)

(note that Skl is zero if the line (k, l) does not exist).

In order to mathematically formulate the problem, the first step is to find an equivalent

circuit model of the network with only three types of lumped elements: resistors, capacitors,

and inductors. This model can be obtained by replacing every transmission line and trans-

former with their equivalent Π models [72]. In the derived equivalent circuit, let ykl denote

the mutual admittance between buses k and l, and ykk denote the admittance-to-ground at

bus k, for every k, l ∈ {1, 2, ..., n}. Define the admittance matrix Y of the network as an

n×n complex-valued matrix whose (k, l) entry is equal to −ykl if k 6= l and ykk+
∑

r∈N (k) ykr

otherwise, where N (k) is the set of those buses that are connected to bus k. It is worth

mentioning that Y plays the role of a complex-valued (generalized) Laplacian matrix for a

weighted graph associated with the power system. Define the current vector I as YV and

represent its kth element with Ik, for every k ∈ {1, 2, ..., n}. Note that Ik is indeed the net

current injected to bus k.

Let e1, e2, ..., en denote the standard basis vectors in Rn. Define the following matrices

for every k, l ∈ {1, 2, ..., n}:

Yk := eke
T
k Y

Ykl :=
1
2
ek(bkli)eTk + ekykle

T
k − ekykle

T
l

Yk :=
1
2

 Re{Yk + Y T
k } Im{Y T

k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }


Ykl :=

1
2

 Re{Ykl + Y T
kl } Im{Y T

kl − Ykl}

Im{Ykl − Y T
kl } Re{Ykl + Y T

kl }


Ȳk :=

−1
2

 Im{Yk + Y T
k } Re{Yk − Y T

k }

Re{Y T
k − Yk} Im{Yk + Y T

k }


Ȳkl :=

−1
2

 Im{Ykl + Y T
kl } Re{Ykl − Y T

kl }

Re{Y T
kl − Ykl} Im{Ykl + Y T

kl }


X :=

[
Re {V}T Im {V}T

]T
where bkl denotes the capacitance of the transmission line (k, l) (note that Ykl, Ykl, Ȳkl
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are all zero if k = l or the line (k, l) does not exist). For every k ∈ {1, 2, ..., n}, denote the

net active and reactive powers injected to bus k as Pk,inj and Qk,inj, respectively. Given

l ∈ {1, ...,m}, l′ ∈ {m+ 1, ..., n}, and k, k′ ∈ {1, ..., n}, it can be shown that (see [63])

Pl,inj = PGl
− PDl

,

Ql,inj = QGl
−QDl

,

Pl′,inj = −PD′
l
,

Ql′,inj = −QD′
l
,

|Vk|2 = trace
{
MkXXT

}
Pk,inj = trace

{
YkXXT

}
, Qk,inj = trace

{
ȲkXXT

}
,

|Skk′ |2 =
(
trace

{
Ykk′XXT

} )2 +
(
trace

{
Ȳkk′XXT

} )2
where Mk ∈ R2n×2n is a diagonal matrix whose entries are all equal to zero, except for its

(k, k) and (n + k, n + k) entries that are equal to 1. To simplify the presentation, assume

that fl(PGl
) = PGl

for every l ∈ {1, 2, ...,m}, implying that the cost to be minimized is

simply the total power generation (the results being developed here are valid for the general

case as well). Hence, the classical OPF problem corresponds to the minimization of

m∑
l=1

(
trace

{
YlXXT

}
+ PDl

)
(3.1)

over the variable X ∈ R2n subject to the constraints

Pk,min − PDk
≤ trace

{
YkXXT

}
≤ Pk,max − PDk

(3.2a)

Qk,min −QDk
≤ trace

{
ȲkXXT

}
≤ Qk,max −QDk

(3.2b)

(Vk,min)
2 ≤ trace

{
MkXXT

}
≤ (Vk,max)

2 (3.2c)

trace
{
YklXXT

}2
+ trace

{
ȲklXXT

}2 ≤ (Skl,max)
2 (3.2d)

for all k, l ∈ {1, 2, ..., n}, where Pk,min, Pk,max, Qk,min, and Qk,max are considered as zero

(by convention) if k > m. In order to avoid triviality, assume that X = 0 (or equivalently

V = 0) is not a solution to the OPF problem. We introduce four optimization problems

in the sequel whose interrelation and relation to the OPF problem are illustrated in the

diagram given in Figure 3.1.
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Optimization 1: This optimization is obtained from the OPF problem formulated

in (3.1) and (3.2) by replacing its constraint (3.2d) with the equivalent condition of the

positive semi-definiteness of the matrix


(Skl,max)

2 trace
{
YklXXT

}
trace

{
ȲklXXT

}
trace

{
YklXXT

}
1 0

trace
{
ȲklXXT

}
0 1

 .

Optimization 2: This optimization is defined as the dual of Optimization 1, which

indeed minimizes

n∑
k=1

{
λkPDk

+ λ̄kQDk
+ λk,minPk,min − λk,maxPk,max

+ λ̄k,minQk,min − λ̄k,maxQk,max + µk,min (Vk,min)
2

− µk,max (Vk,max)
2 −

n∑
l=1

(
(Skl,max)

2 h11
kl + h22

kl + h33
kl

)}

over the nonnegative scalar variables λk,min, λk,max, λ̄k,min, λ̄k,max, µk,min, µk,max, and the

positive semidefinite matrices Hkl ∈ R3×3, ∀k, l ∈ {1, 2, ..., n}, subject to

A(λ, λ̄,µ,H) :=
n∑

k=1

{
λkYk + λ̄kȲk + µkMk + 2

n∑
l=1

(
h12

kl Ykl + h13
kl Ȳkl

)}
� 0

where hij
kl denotes the (i, j) entry of Hkl for every i, j ∈ {1, 2, 3}, and

λk :=

 −λk,min + λk,max + 1 if k = 1, ...,m

−λk,min + λk,max otherwise
,

λ̄k := −λ̄k,min + λ̄k,max, µk := −µk,min + µk,max,

λ := {λk,min, λk,max}n
k=1 , λ̄ :=

{
λ̄k,min, λ̄k,max

}n

k=1
,

µ := {µk,min, µk,max}n
k=1 , H = {Hkl}n

k,l=1

(note that Hkl can be taken as zero if the line (k, l) does not exist in the power system).

Optimization 3: This optimization is obtained from Optimization 1 by first replacing

every term XXT with a symmetric matrix variable W ∈ R2n×2n and then adding the

constraint W � 0 (thus, the variable has changed from X to W ).
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OPF Problem 

(nonconvex)

Optimization 1 

(nonconvex)

Optimization 4 

(nonconvex)

Optimization 2 

(convex)

Optimization 3 

(convex)
Equivalence:                  

strong duality

Equivalence

Equivalence:                

change of variable     

W=XX
T

Rank relaxation:        

removing constraint 

rank{W}=1

Dual 

relaxation

Figure 3.1: This diagram demonstrates how Optimizations 1–4 are interrelated and also
related to the OPF problem.

Optimization 4: This optimization is obtained from Optimization 3 by including the

additional constraint rank{W} = 1.

3.2.1 Previous Results

As illustrated in Figure 3.1 and proven in our recent work [63, 64] (see the previous chap-

ter for more details), Optimization 1 is naturally equivalent to the OPF problem, Opti-

mization 2 is the dual of Optimization 1, Optimization 3 is the dual of Optimization 2

(strongly duality holds), Optimization 4 is different from Optimization 3 by an extra rank

constraint, and finally Optimization 1 is equivalent to Optimization 4 via the change of

variable W = XXT . Due to the natural equivalence between Optimization 1 and the OPF

problem, the names OPF problem, dual of the OPF problem, and dual of the dual of the

OPF problem will be used interchangeably for Optimizations 1, 2, and 3, respectively. The

dual of the OPF problem is always feasible, but its optimal objective value can be: (i)

infinite or (ii) finite. In Case (i), the OPF problem must be infeasible. In Case (ii), since

the OPF problem is nonconvex, the optimal objective values of the OPF problem and its

dual might not be identical. Whenever Case (i) happens (which detects the infeasibility of
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the OPF problem) or the optimal objective values of the OPF problem and its dual are the

same, it is said that the duality gap is zero for the OPF problem. We proved the following

important result in the preceding chapter.

Theorem 1 The duality gap is zero for the OPF problem if its dual has a solution (λopt, λ̄opt,

µopt,Hopt) such that the matrix A(λopt, λ̄opt,µopt,Hopt) has rank at least 2n − 2. In this

case, two properties hold:

• The dual of the dual of the OPF problem has a rank-one solution Wopt.

• Given any nonzero vector
[
UT

1 UT
2

]T
in the null space of A(λopt, λ̄opt,µopt,Hopt),

there exist two scalars ζ1 and ζ2 such that Vopt = (ζ1 + ζ2i)(U1 +U2i) is a solution to

the OPF problem.

Consider a special case of the OPF problem formulated in (3.1) and (3.2) where Y is a real-

valued matrix, the constraints given in (3.2a), (3.2b), and (3.2d) are removed (by setting

the corresponding lower and upper bounds as −∞ and +∞), all reactive loads are zero,

and finally Vk,min = Vk,max for every k ∈ {1, 2, ..., n}. In this case, the feasibility region for

the real-valued vector (V1, ..., Vn) consists of 2n points in the form of (±V1,min, ...,±Vn,min).

This substantiates that the OPF problem may have a complicated feasibility region, which

can make it NP-complete for an arbitrary Y and hence create a nonzero duality gap [63].

However, the admittance matrix Y corresponding to a power system is structured in light

of the physical properties of transmission lines. Using this fact, we showed in the preceding

chapter that the zero-duality-gap condition stated in Theorem 1 is satisfied for all IEEE

test systems with 14, 30, 57, 118, and 300 buses and, moreover, this condition is likely to

hold for every practical power system.

3.2.2 Problem Statement

Define D as the set of every admittance matrix Y whose associated OPF problem has no du-

ality gap for all possible values of the limits Pk,min, Pk,max, Qk,min, Qk,max, Vk,min, Vk,max, Skl,max,

k, l ∈ {1, 2, ..., n}. The set D characterizes every network topology (including those corre-

sponding to practical power systems) for which a globally optimal solution of the OPF

problem can be found efficiently (by solving its dual). Recall that the classical OPF prob-

lem was non-convex partially due to the nonlinearity of active power, reactive power, and
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magnitude of voltage with respect to the state variable V. This source of non-convexity

appears in almost all fundamental optimization-based power problems. These problems are

often based on a single or a set of coupled classical OPF problems with more sources of non-

convexity, e.g., variable transformer ratios, variable shunt elements, stability constraints,

and security constraints. The objective of this chapter is to prove the following statement:

zero duality gap for the classical OPF problem implies zero duality gap for harder power

problems with more sources of non-convexity. In other words, it is intended to show that if

Y belongs to D, fundamental power problems (based on OPF) can be convexified naturally

via the duality theory.

3.3 Main Results

Different generalizations to the classical OPF problem will be studied in the sequel.

3.3.1 Security-Constrained Optimal Power Flow

As far as the steady-state operation of a power system is concerned, there are two types of

parameters: (i) a state vector X containing the real and imaginary parts of the bus voltages,

(ii) a control vector U containing the controllable parameters of the power system. Note that

every power system has certain controllable parameters (depending on its control strategy)

such as active powers and voltage magnitudes at generator buses, sizes of capacitor banks,

and transformer tap ratios. A general OPF-based problem can be formulated as:

min
X,U

f(X,U) (3.4a)

s.t. g(X,U) = 0 (3.4b)

h(X,U) ≥ 0, (3.4c)

where

• f(X,U) is an appropriate cost to be minimized (such as power loss or total generation

cost).

• The relation (3.4b) describes the set of all equality constraints resulting from the

power flow equations.
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• The relation (3.4c) describes the set of all inequality constraints resulting from the

physical limits imposed on the parameters of the system.

Assume that the power system is subject to c different contingencies, where each contin-

gency corresponds to a new configuration in which certain transmission lines and generators

are disconnected. The security-constrained optimal power flow (SCOPF) problem aims to

optimize the performance of the power system under the normal condition such that the

load and physical constraints are still satisfied after every pre-specified contingency. This

problem can be formulated as:

min
X(0),...,X(c),U(0),...,U(c)

f
(
X(0),U(0)

)
(3.5a)

s.t. gt

(
X(t),U(t)

)
= 0, t = 0, ..., c (3.5b)

ht

(
X(t),U(t)

)
≥ 0, t = 0, ..., c (3.5c)∣∣∣U(r) −U(0)

∣∣∣ ≤ ∆U(r)
max, r = 1, ..., c (3.5d)

where

• X(t) and U(t) denote the state and control vectors for the tth configuration (t = 0 is

the normal configuration and t > 0 is a contingency case).

• The equality and inequality constraints for the tth configuration are given by (3.5b)

and (3.5c).

• Given the constant vector ∆U(r)
max, the constraint (3.5d) accounts for the fact that

the controllable parameters of a power system may not be able to change arbitrarily

fast after a reconfiguration (this is partially due to physical ramp-up and ramp-down

constraints).

It is worth mentioning that if ∆U(r)
max is zero, the corresponding control strategy is said to

be preventive in light of taking no control action after a contingency; otherwise, it is said

to be corrective. Note that some of the entries of ∆U(r)
max can be infinity, implying that the

corresponding controllable parameters can change arbitrarily after a reconfiguration.

The objective of this part is to prove the following statement: zero duality gap for the

OPF problem implies zero duality gap for the SCOPF problem. To this end, for the sake of
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simplifying the presentation, assume that every controllable parameter can only be an active

power, a reactive power or a voltage magnitude. Using the techniques being developed in the

next subsections, the results can be generalized to incorporate loads, shunt elements, and

transformer ratios into the control vector U. Moreover, with no loss of generality, suppose

that the cost function f0(X(0),U(0)) is the total power generation. As before, we use the

superscript (t) for every parameter of the power system in the tth configuration, t = 0, 1, ..., c.

For instance, Y (0) is equal to Y , and Y (r), r = 1, 2, ..., c, is the admittance matrix of the

power system under the rth contingency. The SCOPF problem can be expressed as the

minimization of
m∑

l=1

P
(0)
Gl

(3.6)

subject to

P
(t)
k,min ≤ P

(t)
Gk
≤ P

(t)
k,max, k ∈ {1, ...,m} (3.7a)

Q
(t)
k,min ≤ Q

(t)
Gk
≤ Q

(t)
k,max, k ∈ {1, ...,m} (3.7b)

V
(t)
k,min ≤

∣∣∣V (t)
k

∣∣∣ ≤ V
(t)
k,max, k ∈ {1, ..., n} (3.7c)∣∣∣S(t)

kl

∣∣∣ ≤ S
(t)
kl,max, k, l ∈ {1, ..., n} (3.7d)∣∣∣P (r)

Gk
− P

(0)
Gk

∣∣∣ ≤ ∆P (r)
k,max, k ∈ {1, ...,m} (3.7e)∣∣∣Q(r)

Gk
−Q

(0)
Gk

∣∣∣ ≤ ∆Q(r)
k,max, k ∈ {1, ...,m} (3.7f)∣∣∣∣∣∣∣V (r)

k

∣∣∣2 − ∣∣∣V (0)
k

∣∣∣2∣∣∣∣ ≤ (∆V (r)
k,max

)2
, k ∈ {1, ..., n} (3.7g)

for every t ∈ {0, ..., c} and r ∈ {1, ..., c}, where ∆P (r)
k,max, ∆Q(r)

k,max, and ∆V (r)
k,max are some

given nonnegative numbers. Note that

• If ∆P (r)
k,max is zero, it implies that no corrective action is taken for the controllable

parameter PGk
. Furthermore, if ∆P (r)

k,max is infinity (so that the corresponding in-

equality can be removed from the SCOPF problem) implies that PGk
is either a

non-controllable parameter or a controllable parameter with no ramp constraint. A

similar remark can be made about QGk
and Vk.

• The formulation given in (3.6) and (3.7) is capable of modeling faults in both the

transmission network and the generators. For instance, Y (1) 6= Y implies that some
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of the transmission lines are disconnected under the first contingency, while Y (1) = Y

and P (1)
1,min = P

(1)
1,max = 0 imply that the generator of bus 1 is removed under the first

contingency.

The dual of the SCOPF problem can be derived based on the method presented in [63],

which turns out to be a semidefinite program similar to Optimization 2. A question arises

as whether a globally optimal solution of the non-convex SCOPF problem can be found by

solving this semidefinite program. This question is answered in the next theorem.

Theorem 2 Assume that the duality gap is zero for every classical OPF problem associated

with each of the configurations Y (0), Y (1), ..., Y (c) (i.e., Y (0), ..., Y (c) ∈ D). Then, the duality

gap is zero for the SCOPF problem as well so that a globally optimal solution of this problem

can be recovered from an optimal solution of its convex dual problem.

Proof: Consider the optimization problem of minimizing

m∑
l=1

(
trace

{
Y(0)

l W (0)
}

+ PDl

)
(3.8)

over the positive semidefinite matrices W (0),W (1), ...,W (c) subject to

P
(t)
k,min − PDk

≤ trace
{
Y(t)

k W (t)
}
≤ P

(t)
k,min − PDk

(3.9a)

Q
(t)
k,min −QDk

≤ trace
{
Ȳ(t)

k W (t)
}
≤ Q

(t)
k,min −QDk

(3.9b)

trace
{
Y(t)

kl W
(t)
}2

+ trace
{
Ȳ(t)

kl W
(t)
}2

≤
(
S

(t)
kl,max

)2
(3.9c)(

V
(t)
k,min

)2
≤ trace

{
MkW

(t)
}
≤
(
V

(t)
k,max

)2
(3.9d)∣∣∣trace

{
Y(r)

k W (r)
}
− trace

{
Y(0)

k W (0)
}∣∣∣ ≤ ∆P (r)

k,max (3.9e)∣∣∣trace
{
Ȳ(r)

k W (r)
}
− trace

{
Ȳ(0)

k W (0)
}∣∣∣ ≤ ∆Q(r)

k,max (3.9f)∣∣∣trace
{
MkW

(r)
}
− trace

{
MkW

(0)
}∣∣∣ ≤ (∆V (r)

k,max

)2
(3.9g)

for every k, l ∈ {1, 2, ..., n}, r ∈ {1, 2, ..., c}, and t ∈ {0, 1, ..., c} (as before, P (t)
k,min, P

(t)
k,max,

Q
(t)
k,min, and Q

(t)
k,max are set to zero by convention if k > m). A diagram similar to the one

despited in Figure 3.1 for the OPF problem can be derived to deduce the following two

properties:
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i) The convex optimization given in (3.8) and (3.9) is the dual of the dual of the SCOPF

problem specified in (3.6) and (3.7).

ii) The optimization given in (3.8) and (3.9) under the additional non-convex constraints

rank{W (0)} = · · · = rank{W (c)} = 1 can be equivalently converted to the SCOPF

problem via the change of variables W (t) = X(t)X(t)T , t = 0, 1, ..., c.

It can be concluded from Property (ii) that the SCOPF problem is infeasible if the optimiza-

tion problem (3.8) and (3.9) is infeasible. Therefore, assume that the latter optimization

problem is feasible. Using the above properties and in line with the argument made in [63],

one can infer that the duality gap between the SCOPF problem and its dual is zero, provided

the optimization problem given in (3.8) and (3.9) has a minimizer (W (0)
opt,W

(1)
opt...,W

(c)
opt) such

that

rank
{
W

(0)
opt

}
= rank

{
W

(1)
opt

}
= · · · = rank

{
W

(c)
opt

}
= 1.

To prove the existence of such a solution to the dual of the dual of the SCOPF problem,

let (W (0)
opt,W

(1)
opt...,W

(c)
opt) be an arbitrary minimizer of this optimization problem. Consider

a feasibility problem with the variable W (c) and the constraints (∀k, l ∈ {1, ..., n})

trace
{
Y(c)

k W (c)
}

= trace
{
Y(c)

k W
(c)
opt

}
(3.10a)

trace
{
Ȳ(c)

k W (c)
}

= trace
{
Ȳ(c)

k W
(c)
opt

}
(3.10b)

trace
{
Y(c)

kl W
(c)
}2

+ trace
{
Ȳ(c)

kl W
(c)
}2

≤
(
S

(c)
kl,max

)2
(3.10c)

trace
{
MkW

(c)
}

= trace
{
MkW

(c)
opt

}
. (3.10d)

Obviously, W (c) = W
(c)
opt is a solution to this feasibility problem (i.e., it satisfies the above

constraints). In addition, it can be shown that (W (0)
opt, ...,W

(c−1)
opt ,Wf ) is a solution to the

optimization given in (3.8) and (3.9) for some matrix Wf if W (c) = Wf is a solution to

the feasibility problem (3.10). Now, the goal is to show that this feasibility problem has

a rank-one solution Wf . To this end, convert this feasibility problem into an optimization

problem by minimizing
∑m

l=1(trace{Y(c)
l W (c)} + PDl

). The diagram given in Figure 3.1
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yields that this optimization problem is the dual of the dual of the following OPF problem:

min
m∑

l=1

P
(c)
Gl

s.t. P
(c)
k,inj = trace

{
Y(c)

k W
(c)
opt

}
, k ∈ {1, ..., n}

Q
(c)
k,inj = trace

{
Ȳ(c)

k W
(c)
opt

}
, k ∈ {1, ..., n}∣∣∣V (c)

k

∣∣∣2 = trace
{
MkW

(c)
opt

}
, k ∈ {1, ..., n}∣∣∣S(c)

kl

∣∣∣2 ≤ (S(c)
kl,max

)2
, k, l ∈ {1, ..., n}.

Since the duality gap is zero for this OPF problem (due to the assumption Y (c) ∈ D),

the dual of its dual has a rank-one solution (see Theorem 1 and the diagram given in

Figure 3.1). In other words, there exists a rank-one matrix Wf such that W (c) = Wf

satisfies the constraints given in (3.10). Following the discussion made earlier, this result

simply implies that W (c)
opt can be taken as the rank-one matrix Wf . The same argument

can be continued for other matrices W (0)
opt, ...,W

(c−1)
opt to conclude that the dual of the dual

of the SCOPF problem has a solution (W (0)
opt,W

(1)
opt...,W

(c)
opt), where each of the matrices

W
(0)
opt, ...,W

(c)
opt has rank one. This completes the proof. �

3.3.2 Optimization of Shunt Elements in Power Systems

A popular method towards a better steady-state control of a power system is to exploit vari-

able reactive/capacitive shunt elements (e.g., capacitor banks or static VAR compensators)

at some designated buses. To optimize these shunt parameters, they should be incorporated

into the classical OPF problem. In order to formulate the underlying problem, assume that

each bus k ∈ {1, 2, ..., n} is equipped with a variable shunt element with the admittance

bki, where bk must lie between two given lower and upper bounds bk,min and bk,max (these

bounds can take both positive and negative values). Note that if some bus k does not have

such a shunt element, the bounds bk,min and bk,max are set to zero. As before, with no loss of

generality, assume that the objective function to be minimized is the total generation. The

elements b1, ..., bn can be directly incorporated into the admittance matrix of the power sys-

tem, which makes some of the elements of this matrix unknown and therefore adds another

source of non-convexity to the OPF problem. Alternatively, one can use the fact that the

shunt element of bus k ∈ {1, 2, ..., n} injects no active power but the reactive power bk|Vk|2
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to its corresponding bus. Hence, the resulting OPF problem with variable shunt elements

can be obtained from the classical OPF problem by replacing the constraints

Qk,min −QDk
≤ Qk,inj ≤ Qk,max −QDk

, k = 1, ..., n

with the new constraints

Qk,min −QDk
+ bk|Vk|2 ≤ Qk,inj (3.11a)

Qk,inj ≤ Qk,max −QDk
+ bk|Vk|2 (3.11b)

bk,min ≤ bk ≤ bk,max (3.11c)

where b1, ..., bn are a part of the variables of the new optimization problem. Since |Vk| is a

nonnegative number, the change of variable Qk,b := bk|Vk|2 equivalently converts the OPF

problem with variable shunt elements into the following:

min
m∑

l=1

PGl

s.t. Pk,min − PDk
≤ Pk,inj

Pk,inj ≤ Pk,max − PDk

Qk,min −QDk
+Qk,b ≤ Qk,inj

Qk,inj ≤ Qk,max −QDk
+Qk,b

Vk,min ≤ |Vk| ≤ Vk,max

|Skl| ≤ Skl,max

bk,min|Vk|2 ≤ Qk,b ≤ bk,max|Vk|2

(3.12)

∀k, l ∈ {1, 2, ..., n}, where Q1,b, ..., Qn,b are the extra variables of the optimization problem.

In this subsection, we study this variant of the OPF problem with unknown shunt elements.

The dual of this problem can be expressed as a semidefinite program. The next theorem

proves that the solution of this dual problem can be used to find a solution to the original

primal problem.

Theorem 3 Assume that the duality gap is zero for every classical OPF problem associated

with the configuration Y (i.e., Y ∈ D). Then, the duality gap is zero for the OPF problem
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with variable shunt elements as well.

Sketch of Proof: The dual of the dual of the OPF problem with variable shunt elements

minimizes
∑m

l=1(trace{YlW}+PDl
) over the positive semidefinite matrix W and the scalars

Q1,b, ..., Qn,b subject to

Pk,min − PDk
≤ trace {YkW} ≤ Pk,min − PDk

Qk,min −QDk
+Qk,b ≤ trace

{
ȲkW

}
trace

{
ȲkW

}
≤ Qk,min −QDk

+Qk,b

trace {YklW}2 + trace
{
ȲklW

}2 ≤ (Skl,max)
2

(Vk,min)
2 ≤ trace {MkW} ≤ (Vk,max)

2

bk,mintrace {MkW} ≤ Qk,b ≤ bk,maxtrace {MkW}

∀k, l ∈ {1, 2, ..., n}. Similar to the technique used in the proof of Theorem 2, it suf-

fices to show that this optimization problem has a solution (Wopt, Q
opt
1,b , ..., Q

opt
n,b ) such that

rank{Wopt} = 1. To this end, given an arbitrary solution (Wopt, Q
opt
1,b , ..., Q

opt
n,b ) to the above

problem, consider the following optimization:

min
W

m∑
l=1

trace {YlW}

s.t. trace {YkW} = trace {YkWopt}

trace
{
ȲkW

}
= trace

{
ȲkWopt

}
trace {YklW}2 + trace

{
ȲklW

}2 ≤ (Skl,max)
2

trace {MkW} = trace {MkWopt}

(3.13)

∀k, l ∈ {1, 2, ..., n}. It can be observed that

i) W = Wopt is a solution to the optimization (3.13).

ii) The feasibility region of the optimization (3.13) is a subset of the feasibility region

of the dual of the dual of the OPF problem with variable shunt elements after fixing

Qk,b as Qopt
k,b , k = 1, ..., n.

These two properties imply that (Wf , Q
opt
1,b , ..., Q

opt
n,b ) is a solution to the dual of the dual

of the OPF problem with variable shunt elements for any arbitrary minimizer Wf of the



72

optimization (3.13). On the other hand, the optimization (3.13) is the dual of the dual of

some classical OPF problem with respect to the configuration Y . Hence, this optimization

problem has a rank-one solution Wf . As a result, the minimizer Wopt can be taken as Wf .

This completes the proof. �

3.3.3 Optimization of Transformer Ratios in Power Systems

Every practical power system is normally accompanied by a number of transformers whose

(tap) ratios are controllable within certain limits. To optimize the performance of a power

system, these ratios are often considered as some controllable parameters in the corre-

sponding OPF problem. This subsection aims to study how the OPF problem with variable

transformer ratios can be convexified using the duality theory. To this end, consider a trans-

former installed on some transmission line of the system. The most common method is to

replace the transformer with a two-port Π block in order to be able to have an equivalent

circuit model for the power system with only resistors, capacitors, and inductors. However,

if the transformer ratio is an unknown parameter, it appears in a nonlinear way in the

admittance matrix of the equivalent circuit model.

To bypass the foregoing issue, we exploit a different modeling method here. First, we

replace every transformer with an ideal transformer and some lumped elements (accounting

for the leakage reactance, series resistance, etc.). Then, we add some virtual buses to the set

of the real (existing) buses in such a way that every ideal transformer is connected directly

to two real/virtual buses (this may need defining a virtual bus for every transformer). For

the sake of simplifying the presentation, we present the ideas for the case when there is only

one tap-changing transformer in the system that connects bus 1 to bus 2. The generalization

to multi-transformer case is straightforward.

Assume that bus 1 is connected to bus 2 via an ideal transformer. Let P12 +Q12i denote

the power transferred from bus 1 to the rest of the network through the transformer and

η denote the transformer ratio bounded by the given nonnegative numbers ηmin and ηmax.

With a slight abuse of notation, define Y as the admittance matrix of the power system

after removing the transformer (i.e., after disconnecting the line (1, 2)). By virtue of having

no power loss in the transformer, one can write the power flow equations at buses 1 and 2
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as follows:
trace

{
Y1XXT

}
= P1,inj − P12

trace
{
Y2XXT

}
= P2,inj + P12

trace
{
Ȳ1XXT

}
= Q1,inj −Q12

trace
{
Ȳ2XXT

}
= Q2,inj +Q12.

(3.14)

On the other hand, the voltages at the two ports of the transformer are related as

Re{V1} = η × Re{V2} (3.15a)

Im{V1} = η × Im{V2} (3.15b)

ηmin ≤ η ≤ ηmax. (3.15c)

In order to remove the nonlinearity caused by the product of η and the components of V2,

we eliminate the variable η. For this purpose, consider the relations

η2
min|V2|2 ≤ |V1|2 ≤ η2

max|V2|2 (3.16a)

Re{V1} × Im{V2} = Re{V2} × Im{V1} (3.16b)

Re{V1} × Re{V2} ≥ 0 (3.16c)

Im{V1} × Im{V2} ≥ 0. (3.16d)

It can be shown that the relations in (3.16) are satisfied if and only if there exists a non-

negative number η satisfying the relations in (3.15). Notice that all of the constraints given

in (3.16) are quadratic in V, which is a useful property for studying the duality gap. To

formulate the OPF problem with the variable tap ratio η, the following actions should be

taken:

• Write the power flow equations and physical limit constraints for every bus k ∈

{3, 4, ..., n}.

• Write the line flow constraints for all lines except for the line (1, 2).

• Add the extra constraints given in (3.14) and (3.16), where P12 and Q12 are considered

as scalar variables.

• Add the condition P 2
12 + Q2

12 ≤ (S12,max)
2 associated with the flow constraint of the



74

line (1, 2).

It can be verified that the dual of this problem is a semidefinite program with the same

structure as the dual of the classical OPF problem (partially due to the quadratic nature

of the constraints in (3.16)). Now, one can write the dual of the dual of the OPF problem

with the variable tap ratio η in terms of the matrix variable W and the scalar variables

P12, Q12. In this optimization problem, the constraints corresponding to the ones given in

(3.16) are

η2
mintrace {M2W} ≤ trace {M1W}

trace {M1W} ≤ η2
maxtrace {M2W}

and
W1,n+2 = W2,n+1

W1,2 ≥ 0, Wn+1,n+2 ≥ 0
(3.17)

whereWi,j denotes the (i, j) entry ofW for every i, j ∈ {1, 2, ..., 2n}. Now, it can be observed

that the constraints corresponding to the unknown transformer ratio have appeared linearly

in terms of the entries of W . If the conditions in (3.17) are removed from the dual of the

dual of the OPF problem with the extra variable η, the technique used in the proof of

Theorem 3 can be simply applied to this problem to show the existence of no duality gap.

The removal of these two constraints corresponds to designing a complex-valued transformer

ratio η such that ηmin ≤ |η| ≤ ηmax. However, for the case when the ratio η is a real number

(as considered in this work), the above-mentioned technique is not sufficient and, indeed,

the long proof developed in [63] for the classical OPF problem should be followed closely.

The details are omitted here for brevity.

3.3.4 Further Generalizations

It was shown in the preceding subsections that zero duality gap for the OPF problem

implies zero duality gap for a general OPF-based problem with variable shunt elements,

variable transformer ratios and contingency constraints. The technique used in the proofs

of Theorems 2 and 3 can be exploited to extend the results to several other cases. Two of

these generalizations are given below:

• The aforementioned optimizations are all static, corresponding to the steady-state

operation of the power system. However, one can define a discrete-time dynamic
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OPF (associated with the optimal control of the power system), where an optimal

dynamic equation (rather than an optimal value) should be found for each controllable

parameter. This problem can be tackled similarly to the SCOPF problem to prove

the existence of no duality gap.

• Assume that a part of the power generated in the network is supplied by renewable

resources. Then, the power coming from these resources must not exceed a certain

portion of the total generated power in order to maintain the dynamic stability of the

system. Adding a stability constraint to guarantee this does not create a duality gap.

3.4 Simulation Results

Let the results of this chapter be applied to the IEEE test systems with 14 and 30 buses.

The specifications of these benchmark systems can be found in the library of the toolbox

[118] and the online database [109].

The IEEE 30-bus system has 6 generators at buses 1, 2, 13, 22, 23, and 27. Assume that

the controllable parameters of the system are the active powers supplied by the generators

and the voltage magnitudes at the generator buses. If the classical OPF problem is solved

to minimize the total generation (or equivalently the active power loss), the optimal values

of the controllable parameters will be obtained as

PG1 = 7.69, PG2 = 48.57, PG13 = 40.00,

PG22 = 32.17, PG23 = 16.66, PG27 = 45.99,

|V1| = 1.028, |V2| = 1.027, |V13| = 1.090,

|V22| = 1.032, |V23| = 1.048, |V27| = 1.069.

(3.18)

Suppose that while the controllable parameters of the power system are controlled contin-

uously in order to be kept at their optimal values, a fault happens in the transmission line

(2, 6) leading to its disconnection. It can be shown that some of the line flow constraints will

be violated in this case. To avoid this issue, one can solve an SCOPF problem to optimize

the controllable parameters in such a way that the total generation is minimized and that

the power flow and physical constraints are satisfied in the normal and contingency states.

Due to the non-convexity of the SCOPF problem, this work suggests solving the dual of the
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SCOPF problem, which is a semidefinite problem. The duality gap is zero for this problem

and, therefore, a globally optimal solution to the SCOPF problem can be obtained as

PG1 = 12.66, PG2 = 43.06, PG13 = 40.00,

PG22 = 31.16, PG23 = 18.89, PG27 = 45.50,

|V1| = 1.031, |V2| = 1.030, |V13| = 1.094,

|V22| = 1.021, |V23| = 1.048, |V27| = 1.068.

(3.19)

Now, consider the problem of the loss minimization for the IEEE 14-bus system, where

the tap ratios of the transformers in the lines (4, 7) and (4, 9) are to be optimized as well.

Assume that these unknown tap ratios must lie in the range (0.8, 1.2). The duality gap for

the OPF problem with these two variable tap ratios turns out to be zero, which makes it

possible to globally optimize the parameters of the system. The optimal tap ratios for the

transformers (4, 7) and (4, 9) are both equal to 0.9157. If the transformers are equipped

with phase shifters, the optimal complex ratios of these transformers will be obtained as

0.9158 + 0.0066i and 0.9157− 0.0146i.

As another example, assume that two reactive shunt elements are installed at buses 10

and 15 of the IEEE 30-bus system, where the reactance of each of them can change contin-

uously in the interval [−0.1, 0.1]. The duality gap is zero for the OPF problem with these

variable shunt elements. The globally optimal values of the shunt elements at buses 10 and

15 can be obtained as 0.0992 and 0.0701, which correspond to the reactive powers 10.5040

and 7.6369, respectively. Now, suppose that the sum of the reactive powers generated by

these shunt elements cannot be more than 10. The duality gap is again zero under this

new constraint. The new optimal values of the shunt elements are 0.0992 and −0.0046,

corresponding to the reactive powers 10.4944 and −0.4944, respectively.

3.5 Summary

The classical optimal power flow (OPF) problem is one of the most fundamental optimiza-

tion problems in power systems. This problem has been extensively studied in the past

several years to deal with its non-convexity. Although the dual of the OPF problem is a

semidefinite program that can be solved efficiently, the lack of strong duality might not
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allow recovery of a solution to the OPF problem. However, we showed in the previous

chapter that the duality gap is zero for IEEE test systems and, more importantly, this gap

is very likely to be zero for every practical power system due to the physical properties of a

power network. In this chapter, it is shown that this duality-gap result can be generalized

to a great extent. More precisely, it is proved that zero duality gap for the classical OPF

problem implies zero duality gap for more complicated power problems with other sources

of non-convexity, such as variable shunt elements, variable transformer ratios and security

constraints.
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Part II

Circuit and Systems
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Chapter 4

Synthesis of Large-Scale Linear
Circuits

Motivated by different applications in circuits, electromagnetics, and optics, this chapter

is concerned with the synthesis of a particular type of linear circuit, where the circuit

is associated with a control unit. The objective is to design a controller for this control

unit such that certain specifications on the parameters of the circuit are satisfied. It is

shown that designing a control unit in the form of a switching network is an NP-complete

problem that can be formulated as a rank-minimization problem. It is then proven that the

underlying design problem can be cast as a semidefinite optimization if a passive network is

designed instead of a switching network. Since the implementation of a passive network may

need too many components, the design of a decoupled (sparse) passive network is studied

subsequently. This chapter introduces a trade-off between the design simplicity and the

implementation complexity for an important class of linear circuits. The superiority of the

developed techniques is demonstrated by different simulations. In particular, for the first

time in the literature, a wavelength-size passive antenna is designed that has an excellent

beamforming capability and can make a null in at least 8 directions concurrently.

4.1 Introduction

Many important problems in circuits, electromagnetics, and optics can be reduced to the

analysis and synthesis of some linear systems in the frequency domain. These systems,

in the circuit theory, consist of passive elements including resistors, inductors, capacitors,

ideal transformers, and ideal gyrators [76]. Since the seminal work [15], there has been
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remarkable progress in characterizing such passive (dissipative) systems using the concept

of positive real functions. This notion plays a vital role not only in circuit design but also

in various control problems [76, 77, 5].

The application of control theory in circuit and communication areas evidently goes

beyond the passivity concept. Indeed, the emerging optimization tools developed by control

theorists, such as linear matrix inequalities (LMIs) [13] and sum-of-squares (SOS) [84], have

been successfully applied to a number of fundamental problems in these fields. The work

[110] is one of the earliest papers connecting the convex optimization theory to circuit

design, whose objective is to optimize the dominant time constant of a linear resistor-

capacitor circuit using semidefinite programming. The recent paper [36] proposes an LMI

optimization to check whether a given multi-port network can be realized using a pre-

specified set of linear time-invariant components (namely an inductor and small-signal model

of a transistor). Moreover, the work [38] formulates the pattern synthesis of large arrays

with bound constraints on the sidelobe and mainlobe levels as a semidefinite programming

problem.

Different problems in circuits, electromagnetics, and optics may be formulated as an

optimization over the parameters of a multi-port passive network that is obtained, for

instance, via an electromagnetic (EM) simulation. As an example, it is shown in [2] that

a strikingly efficient and practical way to deal with certain complex antenna problems is

to extract a circuit model and then search for appropriate values of its parameters. The

circuit model proposed in [2] is indeed a simple, general model that could be considered the

abstract model of different types of problems. A question arises as to whether there exists

a systematic method to study such circuit problems by means of efficient algorithms. This

chapter basically aims to address this question using the available techniques developed in

the control theory, especially the LMI and passivity concepts.

Motivated by the papers [2] and [3] on the design of on-chip antennas, a linear multi-

port network is considered in this chapter for which certain design specifications on its input

admittance and output voltages must be satisfied at a desired frequency. To achieve this,

some of the output ports of the network, referred to as controllable ports, are connected

to a control unit. It is shown that designing a control unit in the form of a switching

network that makes the circuit meet the design specifications is an NP-complete problem.

Instead, the design of a passive network for the control unit can be cast as a semidefinite
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Figure 4.1: This is an implementation of an important antenna configuration whose optimal
synthesis can be cast as the problem studied here (see [2] for more details on this chip
micrograph).

optimization. Since a passive network may require many components (elements) for its

implementation, the design of a sparse (decoupled) passive controller is also studied. To

this end, a rank-minimization problem is obtained that can be handled using the convex-

based heuristic method proposed in [27] (and further studied in [91]). This heuristic method

is able to solve the rank minimization problem correctly in some cases. Note that the

main assumption required in this work is the linearity of the given network at the desired

frequency, and hence the developed technique is not applicable to nonlinear circuits that

cannot be linearized satisfactorily at the frequency of interest.

The techniques developed here are applied to two antenna design problems to demon-

strate how optimal antenna configurations with a superior performance can be engineered.

In particular, an on-chip wavelength-size passive antenna is designed that can steer the

beam to an arbitrary direction and make a null in at least 8 directions simultaneously. This

is the first antenna system reported in the literature with such properties that has a signifi-

cant beamforming capability. Note that the type of the antenna designed here is practically

implementable; in particular, we have already implemented a non-optimal antenna with the

same structure in [2] leading to the chip micrograph given in Figure 4.1.
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Figure 4.2: Circuit 1 studied in this work.

4.2 Problem Formulation and Motivation

Given a natural number n, consider a linear passive (n+1)-port (reciprocal) network, where

ports 1, 2, ..., n play the role of the outputs of the network and port n+1 is the input of the

network that is connected to a voltage source with the fixed voltage vin. The output ports

of this network are divided into two groups, for a number z ∈ {1, 2, ..., n− 1}, as follows:

• Output ports 1, 2, ..., z: These ports are the output ports of interest, i.e., the ones

whose voltages must satisfy some design specifications (linear constraints).

• Output ports z+ 1, z+ 2, ..., n: These ports are the controllable output ports, i.e., the

ones that are connected to a control unit and must be controlled in such a way that

the output voltages at ports 1, 2..., z as well as the input admittance of the network

at port n+ 1 satisfy certain linear specifications.

Since the output ports 1, 2, ..., z will not be connected to any device/controller and are used

to only measure their voltages, the current through each of these ports must be zero.

The circuit corresponding to the above configuration is shown in Figure 4.2, which will

be referred to as Circuit 1 throughout this chapter. As shown in the figure, let vp and ip

denote the voltage and current of port p, respectively, for every p ∈ {1, 2, ..., n}; moreover,

let iin be the current at port n + 1 and yin be the input admittance of the linear network.

To be more specific about the objective of the present work, consider a desired frequency

ω0. The goal is to design a controller for the control unit so that the parameters of Circuit
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1 at the frequency ω0 satisfy the design specifications

∣∣∣Re
{
vj − vd

j

}∣∣∣ ≤ εj , ∀j ∈ {1, 2, ..., z}, (4.1a)∣∣∣Im{vj − vd
j

}∣∣∣ ≤ ε̄j , ∀j ∈ {1, 2, ..., z}, (4.1b)∣∣∣Re
{
yin − yd

in

}∣∣∣ ≤ ε, (4.1c)∣∣∣Im{yin − yd
in

}∣∣∣ ≤ ε̄, (4.1d)

ij = 0, ∀j ∈ {1, 2, ..., z}, (4.1e)

where the operators Re{·} and Im{·} return the real and imaginary parts of a complex

number and

• vd
1 , ..., v

d
z are the given desired voltages for output ports 1, ..., z, respectively.

• yd
in is the desired input admittance.

• εj , ε̄j , ∀j = 1, 2, ..., z, and ε, ε̄ are arbitrary nonnegative numbers.

The primary objective of this work is to study the design of different types of control

units—such as switching, passive, and decoupled passive controllers—for Circuit 1 and then

investigate the trade-off between the design simplicity and the implementation complexity

for each of these types.

Note that the circuit being studied here is assumed to be passive and connected to only

one voltage source. However, the results of this work can be generalized to the case when

there are more than one voltage (current) source and, besides, certain active elements exist

in the circuit.

4.2.1 Simple Illustrative Example

Although the main motivation of the present work is the synthesis of circuits derived from

electromagnetic structures, it is helpful to illustrate how some generic circuit problems may

be modeled as Circuit 1. To this end, consider the simple filter drawn in Figure 4.3. Assume

that the goal is to find the numerical values of the impedances Z1 to Z5 in such a way that

the input-output gain of the filter is maximized at a pre-specified frequency ω0. To this

end, one can re-organize the elements of this filter to obtain the equivalent model given in

Figure 4.4, where the known elements are clustered in the block “linear passive network”
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Figure 4.3: A distributed circuit with variable impedances

and the unknown components are grouped in the block “control unit”. Under this setting,

the objective reduces to designing the control unit in Figure 4.4 so that the magnitude of

the observed output of the circuit is maximized. Three points can be made here as follows:

• The control unit in Figure 4.4 is highly structured in the sense that its seven terminal

ports are connected to each other in a particular way by the elements Z1 to Z5. It

will be later explained in Section 4.3.6 how to design a control unit with a prescribed

structure.

• The linear passive network in Figure 4.4 has some distributed elements, namely trans-

mission lines. However, they can be replaced by their lumped models at the frequency

ω0.

• As a generalization to the feasibility problem defined earlier by (4.1), one can also

maximize some quantity of interest in addition to imposing the constraints given

in (4.1). For example, the magnitude of the observed output of the circuit can be

maximized (this is explained in Section 4.3.6).

4.2.2 Motivation

Numerical methods and efficient optimization techniques, enabled by increasing computa-

tional power, have been markedly instrumental in advancing the field of modern electrody-

namics. The progress in this field that was limited to the development of analytical models

for antenna characteristics such as pattern, efficiency, and impedance, has been greatly in-

fluenced by novel numerical techniques in time or frequency domains. Frequency domain

techniques such as finite element method [50] and method of moments [35], as well as time

domain algorithms such as finite difference technique [56], have been extensively used in

designing electromagnetic structures. These numerical methods combined with optimiza-

tion techniques such as genetic algorithm [90] and particle swarm optimization [93] provide
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Figure 4.4: The filter given in Figure 4.3 is redrawn in the from of Circuit 1.

a valuable, but inefficient, tool in designing large-scale electromagnetic structures where

thousands of passive elements are involved. Indeed, the available numerical techniques iter-

atively search for a sub-optimal solution. Since a new time-consuming EM simulation needs

to be run at each iteration, this approach could be really prohibitive, due to the exponential

number of iterations.

In the recent paper [2], this crucial issue is partially resolved by introducing a novel

method, which requires performing the EM simulation only once to extract the equivalent

circuit model of the system at a single frequency of interest. The electromagnetic problem

then reduces to solving a non-iterative optimization problem over the parameters of this

circuit model. It is noteworthy that this circuit model is in the form of Circuit 1, in which

ports 1, 2, ..., z correspond to receiving antennas at the far field, and ports z + 1, ..., n cor-

respond to the controllable ports on the transmitting antenna. Now, the ports z + 1, ..., n

on the transmitting antenna should be controlled in such a way that desired voltages are

received in the far field at the receiving antennas 1, 2, ..., z. Roughly speaking, many prob-

lems governed by Maxwell’s differential equations seeking optimal values of the termination

impedances/voltages can be converted to the circuit problem introduced above.
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4.2.3 Related Work

The work [110] studies a linear resistor-capacitor (RC) circuit described by the differential

equation

C
dv(t)
dt

= −G(v(t)− u(t)), (4.2)

where C ∈ Rn×n and G ∈ Rn×n are symmetric positive-definite capacitance and conduc-

tance matrices to be designed, v(t) ∈ Rn is a vector of node voltages and u(t) ∈ Rn is a

vector of independent voltage sources. Let x :=
[
x1 x2 · · · xn

]
be a vector of un-

known design parameters and assume that the matrices C and G being sought are required

to depend affinely on x, i.e.,

C = C0 + C1x2 + · · ·+ Cnxn,

G = G0 +G1x2 + · · ·+Gnxn,

where C0, ..., Cn, G0, .., Gn are some given matrices. It is shown in [110] that the problem

of finding the parameter vector x in such a way that the dominant time constant of the

circuit (4.2) is optimized can be cast as a semidefinite programming problem. The present

work deals with another type of circuit problem, which is more complicated than the one

tackled in [110]. The reason is that the control unit to be designed for Circuit 1 may

not be characterizable as an affine function of the design parameters v1, v2, ..., vz and yin.

However, it will be shown here that the underlying problem can also be cast as a semidefinite

programming problem.

4.3 Main Results

Different types of control units will be designed for Circuit 1 in the following subsections.

4.3.1 Switching Control Unit

Motivated by the antenna application [2] discussed earlier, the most desirable (and simplest)

type of control unit is likely a switching controller, which connects every port p ∈ {z +

1, ..., n} to an ideal switch that is either on or off (the switch connected to port p is called

switch p). This is shown in Figure 4.5 and the corresponding circuit is referred to as

Circuit 2. The problem being addressed here is formalized next.
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Figure 4.5: Circuit 2 obtained from Circuit 1 by using a switching control unit

Problem 1: Find whether it is possible to turn on a subset of switches z + 1, z + 2, ..., n

in Circuit 2 so that the design specifications given in (4.1) are all satisfied

To analyze Circuit 2, introduce the shorthand notations

i =
[
i1 i2 · · · in

]
,

v =
[
v1 v2 · · · vn

]
.

One can write a number of equations as

[
i iin

]
=
[

v vin

]
Ys, (4.3a)

iin = yinvin, (4.3b)

ij = 0, ∀j ∈ {1, 2, ..., z}, (4.3c)

where Ys denotes the admittance transfer function of the linear, passive (n+1)-port network

(the middle block in the circuit) at the given frequency ω0, or equivalently the Y -parameter

matrix of the network at the frequency ω0. Note that Ys is a complex-valued matrix whose

real and imaginary parts are both symmetric.

Denote the set of complex numbers with C. Define {e1, e2, ..., en} and {ẽ1, ẽ2, ..., ẽn+1}

to be the sets of standard basis vectors of Rn and Rn+1, respectively. Throughout this

chapter, the notation � is used to show matrix inequalities in the positive definite sense.

The symbol ”*” is also used to denote the conjugate transpose of a matrix. The following

theorem recasts Problem 1 as an optimization problem.
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Theorem 1 Minimize the rank of the matrix

 X

 u∗

vin


[

u vin

]
1

 (4.4)

for the variables X ∈ C(n+1)×(n+1) and u ∈ C1×n subject to the constraints

∣∣∣Re
{
uej − vd

j

}∣∣∣ ≤ εj , ∀j ∈ {1, 2, ..., z}, (4.5a)∣∣∣Im{uej − vd
j

}∣∣∣ ≤ ε̄j , ∀j ∈ {1, 2, ..., z}, (4.5b)∣∣∣Re
{[
v−1
in u 1

]
Ysẽn+1 − yd

in

}∣∣∣ ≤ ε, (4.5c)∣∣∣Im{[v−1
in u 1

]
Ysẽn+1 − yd

in

}∣∣∣ ≤ ε̄, (4.5d)[
u vin

]
Ysẽj = 0, ∀j ∈ {1, 2, ..., z}, (4.5e)

xjYsẽj = 0, ∀j ∈ {z + 1, ..., n}, (4.5f)

X = X∗, (4.5g)

where xj denotes the jth row of the matrix X. Problem 1 is feasible if and only if the value

of the minimum rank is equal to 1, in which case a feasible solution can be extracted as

follows: for every j ∈ {z+1, ..., n}, turn on switch j if and only if the jth entry of u is zero.

Proof of necessity: Assume that Problem 1 has a feasible solution. Let k denote the

number of switches whose connection makes the design specifications given in (4.1) be

satisfied. Denote the set of such switches with {p1, p2, ..., pk} ⊆ {z + 1, ..., n}. The goal is

to construct a matrix X ∈ C(n+1)×(n+1) and a vector u ∈ C1×n for which the rank of the

matrix (4.4) is 1 and, in addition, the constraints in (4.5) are all satisfied. To this end,

consider Circuit 2 with switches p1, p2, ..., pk turned on (and the remaining switches turned

off). One can write

vj = 0, ∀j ∈ {p1, p2, ..., pk},

ij = 0, ∀j ∈ {z + 1, z + 2, ..., n}\{p1, p2, ..., pk}.

This implies that

v∗j ij = 0, ∀j ∈ {z + 1, z + 2, ..., n}. (4.6)
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On the other hand, it follows from (4.3a) that

ij =
[

v vin

]
Ysẽj , ∀j ∈ {1, 2, ..., n}. (4.7)

The equation (4.7) can be substituted into (4.6) to obtain

v∗j

[
v vin

]
Ysẽj = 0, ∀j ∈ {z + 1, z + 2, ..., n}. (4.8)

Define

u := v, X :=

 v∗

vin

[ v vin

]
. (4.9)

The constraints given in (4.5) are all satisfied for this particular choice of X and u, because

of the following observations:

• In light of the relations

vj = vej , ∀j ∈ {1, 2, ..., z},

yin = v−1
in iin = v−1

in

[
v vin

]
Ysẽn+1,

the constraints (4.5a), (4.5b), (4.5c), and (4.5d) in Theorem 1 correspond to the

design specifications (4.1a), (4.1b), (4.1c), and (4.1d), respectively, which are already

assumed to hold when switches p1, p2, ..., pk are turned on.

• The constraint (4.5e) corresponds to the design specification (4.1e) (due to the equality

(4.7)).

• The constraint (4.5f) corresponds to the relation (4.8) on noting that

xj = v∗j

[
v vin

]
, ∀j ∈ {1, 2, ...n}.

• The condition X = X∗ given in (4.5g) holds due to the definition of the matrix X in

(4.9) as

X =

 v∗

vin

[ v vin

]
.

• The rank of the matrix provided in (4.4) is equal to 1 in light of the vector decompo-
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sition  X

 u∗

vin


[

u vin

]
1

 =


v∗

vin

1

[ v vin 1
]
.

Proof of sufficiency: Assume that there exist a matrix X ∈ C(n+1)×(n+1) and a vector

u ∈ C1×n such that the rank of the matrix (4.4) is equal to 1 and that the constraints in

(4.5) are all satisfied. Identify every index j ∈ {z + 1, ..., n} for which the jth entry of u is

zero, and denote the set of all such indices as {p1, p2, ..., pk}. The intent is to prove that

Problem 1 is feasible, and indeed the design specifications (4.1) are satisfied for Circuit 2

when switches p1, p2, ..., pk are turned on. To this end, consider the matrix

 X

 u∗

vin


[

u vin

]
1

 (4.10)

whose rank is assumed to be 1. Since X satisfies the constraint (4.5g), this matrix is

Hermitian. Due to the above matrix being both Hermitian and rank 1, one can apply

the singular-value-decomposition theorem to this matrix to infer that there exists a vector

α ∈ Cn+2 such that this matrix is equal to either αα∗ or −αα∗. However, the last diagonal

entry of the matrix (4.10) being equal to 1 does not allow this matrix to be equal to the

negative semidefinite matrix −αα∗. Hence

 X

 u∗

vin


[

u vin

]
1

 = αα∗.

This relation can be simplified to obtain

α∗ = ±
[

u vin 1
]
.

As a result, X satisfies the equation

X =

 u∗

vin

[ u vin

]
. (4.11)
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Define now

ũ :=
[

u vin

]
Ys (4.12)

and denote the jth entries of u and ũ with uj and ũj , respectively, for every j ∈ {1, 2, ..., n}.

The equality (4.5e) yields

ũj = 0, ∀j ∈ {1, 2, ..., z}.

Likewise, the equations (4.5f), (4.11), and (4.12) lead to

u∗j ũj = 0, ∀j ∈ {z + 1, z + 2, ..., n}

or

ũj = 0, ∀j ∈ {z + 1, z + 2, ..., n}\{p1, p2, ..., pk}

(because uj is assumed to be nonzero if j ∈ {z+ 1, z+ 2, ..., n}\{p1, p2, ..., pk}). So far, it is

shown that there are two vectors u ∈ C1×n and ũ ∈ C1×(n+1) such that

• The relation ũ =
[

u vin

]
Ys holds.

• ũj is equal to 0 for every j ∈ {1, 2, ..., z}.

• uj is equal to 0 for every j ∈ {p1, p2, ..., pk}.

• ũj is equal to 0 for every j ∈ {z + 1, z + 2, ..., n}\{p1, p2, ..., pk}.

It can be concluded from these properties and the set of equations in (4.3) that

u = v, ũ =
[

i iin

]
,

where v, i, and iin are the parameters of Circuit 2 when switches p1, p2, ..., pk are turned

on. Now, notice that the design specifications (4.1a), (4.1b), (4.1c), (4.1d), and (4.1e) are

equivalent to (4.5a), (4.5b), (4.5c), (4.5d), and (4.5e) in Theorem 1, respectively (see the

proof of necessity for an explanation of this equivalency). Hence, the design specifications

are satisfied for this particular switching in Circuit 2. �

Theorem 1 states that Problem 1 is tantamount to an optimization problem whose

constraints are all linear. However, the rank of a Hermitian matrix is to be minimized,

which makes the problem non-convex. Since a rank-minimization problem is NP-hard in
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Figure 4.6: Circuit 3 obtained from Circuit 1 by using a linear, passive control unit

general, there may not be an efficient algorithm to solve it exactly. The possibility of using

a heuristic method to solve this problem will be later discussed in Section 4.3.4.

A question arises as to whether it is possible to convert Problem 1 to another opti-

mization problem that can be solved efficiently using deterministic algorithms (rather than

randomized or heuristic algorithms). This question is tackled in the appendix, where it is

shown that Problem 1 is NP-complete, which makes it one of the hardest problems from the

computational point of view. An intuitive argument for the NP-completeness of Problem 1

is as follows: the constraint that each controllable port must be connected to an ideal switch

can be interpreted as the input power of each port must be exactly zero. Since the power

is a nonconvex fucntion of the voltage and current parameters, deciding whether there are

appropriate voltage and current values to make several power terms be precisely equal to

zero becomes a hard problem.

We wish to study how Problem 1 can be modified slightly so that it becomes convex.

This is the crux of the next subsection.

4.3.2 Passive Control Unit

The non-convexity of Problem 1 originates from the fact that the output ports z + 1, z +

2, ..., n are controlled by ideal switches. In this part, let the control unit in Circuit 1 be

a general linear, strictly passive network, as opposed to a switching network. This leads

to Circuit 3 shown in Figure 4.6. Henceforth, assume that the network corresponding to

the admittance Ys is strictly passive (rather than being only passive). The objective of this

subsection is formalized in the following.

Problem 2: Find whether it is possible to design a control unit in the form of a linear,

strictly passive (reciprocal) network such that the design specifications given in (4.1) are
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met for Circuit 3.

Let Y denote the admittance of the linear, strictly passive network being designed at

the given frequency ω0. Note that the reciprocity condition in the above problem can be

translated as the real and imaginary parts of Y are both symmetric. It is aimed to show

that Problem 2 can be turned into a convex optimization problem with a simple form. In

what follows, a lemma is presented that will be used later to prove this important result.

Lemma 1 Given symmetric matrices M,N ∈ Rn×n, if M is nonsingular, then the follow-

ing statements are equivalent:

i) M is a positive definite matrix.

ii) M +NM−1N is a positive definite matrix.

Proof: First, assume that M is a positive define matrix. Thus, M−1 is positive definite

and so is NM−1N . This implies that M +NM−1N is a positive definite matrix. So far, it

is shown that (i) implies (ii). To complete the proof, it remains to show that the converse

statement is also true. To this end, assume that M +NM−1N is a positive definite matrix.

Define the matrices

P :=

 M N

N −M

 ,
T :=

 I −NM−1

0 I

 ,
Q :=

 M +NM−1N 0

0 −M

 .
(4.13)

It is easy to verify that P = TQT ∗. Denote the number of positive, negative, and zero

eigenvalues of the symmetric matrix P with η1, η2, η3, respectively. Analogously, denote

the same quantities of the matrix Q with the triple (η̄1, η̄2, η̄3). Since the matrix T is

nonsingular, applying Sylvester’s Law of Inertia to the relation P = TQT ∗ yields

(η1, η2, η3) = (η̄1, η̄2, η̄3). (4.14)

On the other hand, it can be concluded from the Hamiltonian structure of the matrix P

that

η1 = η2. (4.15)
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Furthermore, since every eigenvalue ofM+NM−1N is an eigenvalue ofQ and all eigenvalues

of M+NM−1N are positive, the quantity η̄1 is at least equal to n. In light of the equalities

(4.14) and (4.15), the relation η̄1 ≥ n is possible only if η1 = η2 = η̄1 = η̄2 = n. Thus, the

matrix Q has n negative eigenvalues. Nonetheless, the negative eigenvalues of this matrix

are the same as those of the matrix −M ; hence, −M ∈ Rn×n has the maximum number of

negative eigenvalues. This simply proves that the eigenvalues of M are all positive, which

completes the proof. �

Decompose the matrix Ys in a block form as

Ys =


W11 W12 W13

W21 W22 W23

W31 W32 W33

 ,

where W11 ∈ Cz×z, W22 ∈ C(n−z)×(n−z) and W33 ∈ C. For given symmetric square matrices

A and B of the same dimension with det(A) 6= 0, it can be verified that

(A+Bi)−1 = (A+BA−1B)−1 − (A+BA−1B)−1BA−1i, (4.16)

where “i” stands for the imaginary unit. This identity will be exploited in the next theorem.

Theorem 2 Problem 2 is feasible if and only if there exist symmetric matrices M,N ∈

R(n−z)×(n−z) and vectors u1 ∈ C1×z, u2 ∈ C1×(n−z) such that

 (Re
{
W22 −W21W

−1
11 W12

})−1
−M N

N M

 � 0 (4.17)
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and that

∣∣∣Re
{[

u1 u2

]
ej − vd

j

}∣∣∣ ≤ εj , ∀j ∈ {1, 2, ..., z}, (4.18a)∣∣∣Im{[ u1 u2

]
ej − vd

j

}∣∣∣ ≤ ε̄j , ∀j ∈ {1, 2, ..., z}, (4.18b)∣∣∣Re
{
v−1
in u1W13 + v−1

in u2W23 +W33 − yd
in

}∣∣∣ ≤ ε, (4.18c)∣∣∣Im{v−1
in u1W13 + v−1

in u2W23 +W33 − yd
in

}∣∣∣ ≤ ε̄, (4.18d)

u1 = −u2W21W
−1
11 − vinW31W

−1
11 , (4.18e)

u2 = vin(W31W
−1
11 W12 −W32)(M +N i). (4.18f)

Moreover, if there exist such matrices M,N satisfying the above constraints, then one can-

didate for the admittance matrix Y is

Y = (M +N i)−1 −W22 +W21W
−1
11 W12. (4.19)

Proof of necessity: Assume that there exists a linear, passive controller (control unit)

with an admittance Y at the frequency ω0 such that the design specifications listed in (4.1)

are satisfied for Circuit 3 under this controller. The objective is to prove that there exist

symmetric matrices M,N ∈ R(n−z)×(n−z) and vectors u1 ∈ C1×z, u2 ∈ C1×(n−z) for which

the constraints given in (4.17) and (4.18) are satisfied. For this purpose, consider Circuit 3

under the passive network Y and define the vectors

v1 =
[
v1 v2 · · · vz

]
,

v2 =
[
vz+1 vz+2 · · · vn

]
.

Two equations can be written for Circuit 3 as follows:

[
i iin

]
=
[

v1 v2 vin

]
Ys,

[
i iin

]
= −

[
v1 v2 vin

]
0 0 0

0 Y 0

0 0 −yin

 . (4.20)
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These equations can be combined to obtain

v1W11 + v2W21 + vinW31 = 0,

v1W12 + v2(W22 + Y ) + vinW32 = 0,

v1W13 + v2W23 + vin(W33 − yin) = 0.

The above relations can be manipulated to arrive at

v1 = −v2W21W
−1
11 − vinW31W

−1
11 , (4.21a)

v2 = vin
(
W31W

−1
11 W12 −W32

)
Ỹ , (4.21b)

yin = v−1
in v1W13 + v−1

in v2W23 +W33, (4.21c)

where

Ỹ :=
(
W22 −W21W

−1
11 W12 + Y

)−1
. (4.22)

Note that the invertibility of the termW22−W21W
−1
11 W12+Y follows from the strict passivity

of Y and Ys. It is desired to show that the constraints (4.17) and (4.18) in Theorem 2 hold

if M , N , u1, and u2 are defined as

M := Re{Ỹ }, N := Im{Ỹ }, u1 := v1, u2 := v2.

To this end, first observe that M and N are symmetric matrices due to the reciprocity of

Y and Ys. Besides, it can be concluded from the above definitions and (4.21c) that the con-

straints (4.18a), (4.18b), (4.18c), and (4.18d) correspond to the design specifications (4.1a),

(4.1b), (4.1c), and (4.1d), respectively, which are assumed to hold for Circuit 3. The con-

straints (4.18e) and (4.18f), on the other hand, are satisfied in light of the relations (4.21a)

and (4.21b). The only challenging part is to show that the inequality (4.17) in Theorem 2

holds. For this purpose, notice that the strict passivity of the network associated with Y

implies the relation Re{Y } � 0 [76]. On applying the identity (4.16) to the equation (4.22)
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and using this fact, one can write

Re{Y } = Re
{
Ỹ −1 −W22 +W21W

−1
11 W12

}
=
(
M +NM−1N

)−1

− Re
{
W22 −W21W

−1
11 W12

}
� 0.

(4.23)

Since the term (W22−W21W
−1
11 W12)−1 is the (1, 1) block entry of the inverse of the matrix

 W11 W12

W21 W22


that is a principal submatrix of Ys, it follows from the strictly passivity of the admittance

matrix Ys that

Re
{
W22 −W21W

−1
11 W12

}
� 0. (4.24)

The inequalities (4.23) and (4.24) lead to

(
M +NM−1N

)−1 � Re
{
W22 −W21W

−1
11 W12

}
� 0. (4.25)

Two properties can be deduced from this relation as follows:

• First, Lemma 1 yields

M � 0. (4.26)

• Second, the inequality (4.25) can be re-arranged to obtain

(
Re
{
W22 −W21W

−1
11 W12

})−1
�M +NM−1N

or equivalently

(
Re
{
W22 −W21W

−1
11 W12

}−1
−M

)
−NM−1N � 0. (4.27)

Schur’s complement formula can be used to conclude that the inequalities (4.26) and (4.27)

are equivalent to (4.17). This completes the proof of necessity.

Proof of sufficiency: Since the proof can be carried out in line with the approach taken
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at the proof of necessity, only a sketch of the proof will be provided here. Assume that

the constraints given in (4.17) and (4.18) are satisfied for some symmetric matrices M,N ∈

R(n−z)×(n−z) and vectors u1 ∈ C1×z, u2 ∈ C1×(n−z). The goal is to show that the design

specifications listed in (4.1) are met for Circuit 3 if the admittance Y of the passive controller

(at the frequency ω0) is considered as

Y = (M +N i)−1 −W22 +W21W
−1
11 W12.

For this choice of the matrix Y , it follows from (4.18f) and (4.21b) that u2 is equal to v2.

Then, it can be concluded from (4.18e) and (4.21a) that u1 = v1. Now, one can easily

verify that the design specifications (4.1a), (4.1b), (4.1c), and (4.1d) correspond to the

inequalities (4.18a), (4.18b), (4.18c), and (4.18d), respectively, which are assumed to hold.

On the other hand, the design specification (4.1e) is satisfied in light of the relation (4.18e)

and the equality [
i1 i2 · · · iz

]
= v1W11 + v2W21 + vinW31

(see (4.20)). Hence, it only remains to show that the matrix Y introduced above corresponds

to a strictly passive network. This can be shown using Lemma 1 and Schur’s complement

formula in line with the argument pursued in the proof of necessity. The details are omitted

for brevity. �

Regarding the optimization problem proposed in Theorem 2, it is easy to observe that

the constraints are all linear. Therefore, Theorem 2 states that Problem 2 is equivalent to a

linear matrix inequality (LMI) feasibility problem, which can be handled efficiently using a

proper software tool such as YALMIP or SOSTOOLS [68, 88]. This signifies that replacing

switches with a passive network facilitates the circuit design, at the cost of complicating its

implementation in practice. In the case when it is strictly required to design a collection

of switches, Theorem 2 is still useful. Indeed, since Circuit 2 is a special form of Circuit 3,

the infeasibility of Problem 2 implies the infeasibility of Problem 1. As a result, one can

regard the LMI problem proposed in Theorem 2 as a sanity test for checking the feasibility

of Problem 1.

Assume that Problem 2 is feasible and, therefore, an admittance matrix Y (at the

frequency ω0) can be obtained by solving the feasibility problem given in Theorem 2. The

next step is to design a reciprocal passive network whose corresponding admittance transfer
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function at the frequency ω0 is equal to Y . To find such a network, note that the real part

of Y is a positive definite matrix and that its imaginary part is symmetric. As a result, the

matrix Y can be expressed as

Y = T1 + T2i,

where T1, T2 ∈ R(n−z)×(n−z) are both symmetric and T1 is positive definite. Define an

admittance transfer function Y (s) as

Y (s) = T1 +
1
ω0
T2s, ∀s ∈ C.

It is evident that Y (iω0) = Y . On the other hand, Y (s) can be implemented by the parallel

connection of two (n − z)-port networks: (i) a resistive network with the conductance

matrix T1 and (ii) a reactive network with the susceptance matrix 1
ω0
T2. Note that some

ideal transformers might also be needed to realize Y (s) due to the multi-port nature of the

network. One can refer to [76] and [15] for detailed discussions on the realization of a given

admittance matrix by passive elements.

4.3.3 Decoupled Passive Control Unit

The main issue with the admittance matrix Y obtained in Theorem 2 is that its correspond-

ing passive network could potentially have several components (electrical elements), which

may complicate its implementation. To circumvent this drawback, one can impose a spar-

sity constraint on Y to make it diagonal. Note that Circuit 3 under a passive control unit

with a diagonal admittance transfer function is equivalent to Circuit 4 depicted in Figure

4.7. Alternatively, one can reason that Circuit 4 is obtained from Circuit 2 (as opposed to

Circuit 3) by replacing ideal switches with varactors. Define Problem 3 to be the same as

Problem 2, but under the additional constraint of the diagonality of Y . It will be shown in

the sequel that Problem 3 is non-convex; however, there is a good heuristic method for this

problem, as tested on several practical examples.

Theorem 3 Minimize the rank of the matrix

 P̄ I

I P

 (4.28)
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Figure 4.7: Circuit 4 obtained from Circuit 1 by using a decoupled, linear, passive control
unit.

for vectors u1 ∈ C1×z, u2 ∈ C1×(n−z), symmetric matrices M,N ∈ R(n−z)×(n−z), and

diagonal matrices D1, D2 ∈ R(n−z)×(n−z) subject to the constraints given in (4.18) and

D1 > 0,

M � 0,

where P is provided in (4.13) and

P̄ :=

 D1 + Re{W22 −W21W
−1
11 W12} −D2 − Im{W22 −W21W

−1
11 W12}

−D2 − Im{W22 −W21W
−1
11 W12} −D1 − Re{W22 −W21W

−1
11 W12}

 . (4.29)

Problem 3 is feasible if and only if the value of the minimum rank is less than or equal

to 2(n − z), in which case a feasible solution for the diagonal admittance matrix Y is as

follows:

Y = D1 +D2i.

Proof: When there is no diagonality constraint on the matrix Y , a necessary and suf-

ficient condition for the existence of a desirable network is provided in Theorem 2. Hence,

it suffices to incorporate this extra constraint into the above-mentioned condition. To this

end, write Y as D1 +D2i, where D1 and D2 are required to be diagonal. It results from the

equation (4.19) that

D1 +D2i +W22 −W21W
−1
11 W12 = (M +N i)−1. (4.30)
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Applying the identity (4.16) to the above equation yields

D1 + Re
{
W22 −W21W

−1
11 W12

}
=
(
M +NM−1N

)−1

and

D2 + Im
{
W22 −W21W

−1
11 W12

}
= −

(
M +NM−1N

)−1
NM−1.

These equations can be written as follows:

 D1 + Re{W22 −W21W
−1
11 W12} −D2 − Im{W22 −W21W

−1
11 W12}

−D2 − Im{W22 −W21W
−1
11 W12} −D1 − Re{W22 −W21W

−1
11 W12}

 =

 M N

N −M

−1

(4.31)

or equivalently P̄ = P−1. On the other hand

 P̄ I

I P

 =

 I P−1

0 I

 P̄ − P−1 0

0 P

 I 0

P−1 I

 . (4.32)

In light of the equality P̄ −P−1 = 0 and the non-singularity of P , it follows from the above

equation that the rank of the matrix given in (4.28) is exactly equal to 2(n− z). So far, it

is shown that the diagonality of the matrix Y implies the afore-mentioned rank constraint.

To prove the converse statement, notice that the condition M � 0 makes the Hamiltonian

matrix P nonsingular (see the proof of Lemma 1). This, together with the identity (4.32),

implies that if the rank of the matrix in (4.28) is less than or equal to 2(n − z), then the

matrix P − P̄−1 must be zero. This result leads to the equation (4.30), which is indeed

a diagonality constraint on the matrix Y . Moreover, one can easily replace the passivity

constraint (4.17) given in Theorem 2 with the condition D1 > 0, because the real part of

the matrix Y is equal to D1. �

Remark 1: Unlike Problem 2 that had a convex formulation, Problem 3 turned out to

be a rank-minimization problem that is not convex. A question arises as to what makes

Problem 3 hard. To answer this question, consider the special case when the circuit is

resistive and the controller to be designed needs to be resistive as well. This particular

case makes all complex variables real-valued, which will later reveal the design difficulties.

Notice that since each controllable port must be connected to a resistor, the following power
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constraints should be satisfied:

vjij ≤ 0, ∀j ∈ {z + 1, ..., n}. (4.33)

Given j ∈ {z+1, ..., n}, this means that one of the cases vj ≤ 0, ij ≥ 0 or vj ≥ 0, ij ≤ 0 must

occur, which implies that there are two possibilities for the parameters (vj , ij). Hence, it fol-

lows from (4.33) that there are 2n−z possibilities for the parameters (vz+1, ..., vn, iz+1, ..., in).

As a result, the above power constraints correspond to a non-convex feasibility region that

is composed of an exponential number (2n−z) of convex parts attached to each other at

the origin. This highly non-convex feasibility region is the source of difficulty in tackling

Problem 3.

4.3.4 Heuristic Method for Rank Minimization

Since the optimization problems given in Theorems 1 and 3 are associated with rank con-

straints, the objective of this part is to study rank-minimization problems. Consider a

standard rank optimization problem in the form of

minimize Rank(X)

subject to A(X) = b,
(4.34)

where

• X is an n1 × n2 matrix decision variable (n1 and n2 are given numbers).

• A : Rn1×n2 → Rm is a known linear map.

• b is a given vector in Rm.

It is known that the optimization problem (4.34) is NP-hard, in general. However, several

heuristic methods have been proposed in the literature to relax the problem to a convex

one, whose solution may be identical or near to that of the original problem [27, 34]. The

heuristic method developed in the papers [27] and [91] has been widely used in the literature.

This method suggests solving the following optimization problem instead of (4.34):

minimize ‖X‖∗

subject to A(X) = b,
(4.35)
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where ‖X‖∗ denotes the nuclear norm of the matrix X (defined as the sum of the singular

values of X). The main advantage of this heuristic method is that the optimization problem

(4.35) is convex and, thus, its global solution can be found efficiently.

An important question arises as to when the solutions of optimizations (4.34) and (4.35)

coincide. To answer the raised question probabilistically, represent the linear map A(X)

in the matrix form as A × vec(X) where A ∈ Rm×n1n2 is a matrix and vec(X) is a vector

obtained from X by stacking up the columns of X. It is shown in [92] that as m goes to

infinity, the probability that the optimizations (4.34) and (4.35) have the same solution tends

to 1 if the entries of the matrix A are sampled independently from a zero-mean, unit-variance

Gaussian distribution. In other words, the above-mentioned heuristic method works almost

always correctly for a standard rank-minimization problem whose linear constraints are

randomly generated using a Gaussian probability distribution.

The rank-minimization problems given in Theorems 1 and 3 can be handled using the

heuristic method discussed above. As a result, the nuclear norm of the matrices (4.4) and

(4.28) should be minimized in the related optimization problems instead of their ranks. In

the case when this heuristic method leads to a rank greater than 1 for the optimization

problem in Theorem 1 or 2(n−z) for the optimization problem in Theorem 3, there are two

possibilities: (i) Problem 1 (or Problem 3) is infeasible, (ii) the heuristic method fails to

find a solution with the minimum rank. One can use the necessary and sufficient condition

derived in [92] to see if case (i) takes place, although this may be complicated. Note

that since the optimization problems in Theorems 1 and 3 are highly structured (partially

due to the presence of fixed elements 1 and I as well as a Hamiltonian matrix in the

constraints), these optimizations may be far from being a Gaussian random instance of

a rank-minimization problem. Therefore, they may not lie into the category of problems

for which the above-mentioned heuristic method almost always works correctly (note that

the results developed in [92] are applicable to these optimizations, because they can be

transformed into the standard form (4.34) using the technique delineated therein).

We did an extensive simulation to test the efficiency of the nuclear norm heuristic method

on different antenna problems, and made some important observations as follows:

i) The heuristic method works correctly all the time for the optimization problem in

Theorem 3 if there are no constraints on v1, v2, ..., vz, i.e., if all constraints are on yin.
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ii) Some of the design specifications may be violated a little if the heuristic method is

applied to the optimization problem of Theorem 3 with some constraints on the output

voltages v1, v2, ..., vz. For example, given an index j ∈ {1, 2, ..., z}, the real part of the

obtained voltage vj that is required to belong to the interval [Re{vd
j }−εj ,Re{vd

j }+εj ]

might lie a bit off this range.

iii) The nuclear norm heuristic method often fails to obtain a satisfactory result when

applied to Theorem 1.

It is shown in the appendix that Problem 1 is NP-complete and since an NP-complete

problem is well-understood to be very hard to solve, it is commonly believed that a convex

heuristic method (such as the above-mentioned one) often fails to find a satisfactory solution.

This might be the reason for observation (iii).

4.3.5 Design Simplicity Versus Implementation Complexity

It is desired to compare Circuits 2, 3, and 4 in terms of their design and implementation.

To this end, the main properties of these circuits can be summarized as follows:

• The implementation of a control unit for Circuit 2 requires only n − z switches, but

finding the on/off status of every switch to satisfy the design specifications is an NP-

complete problem. As a result, the synthesis of such a circuit can be extremely difficult

when the number of switches, i.e., n−z, is greater than 30 (because the discrete space

of all switching combinations has 2n−z elements that is a very large set if n− z > 30).

• The implementation of a control unit for Circuit 3 requires about 0.5(n − z)2 com-

ponents (e.g., resistors, capacitors, inductors). This may make the implementation

of such a controller difficult for some applications. Nonetheless, the synthesis of a

passive control unit can be converted to a linear matrix inequality feasibility problem,

which can be handled efficiently even when n− z is of the order of several thousands.

• The implementation of a control unit for Circuit 4 requires only n − z components.

Hence, the number of components in the controller grows linearly with respect to

the number of controllable ports (i.e., n − z), which is a useful property for large-

scale systems. Even though the synthesis of such a controller is tantamount to a
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rank-minimization problem, it may be solved using a heuristic method (as mentioned

earlier) particularly when there are not many constraints on output voltages.

The above discussion leads to the conclusion that since the synthesis of Circuit 2 is

very difficult even for moderate-sized systems, it is preferable to deploy either Circuit 3 or

Circuit 4. In the case when it is desired to design a control unit online (as demanded in

antenna applications due to the periodic change of the design specifications), Circuit 3 is a

more suitable choice compared to Circuit 4. However, the implementation of Circuit 4 is

much simpler than that of Circuit 3 for large-scale systems.

Remark 2: To reduce the implementation complexity of Circuit 3, it is preferable to

use a small subset of the n − z controllable ports, if possible. More specifically, it might

be possible to satisfy the design specifications by only controlling a few of the controllable

ports. Hence, one can take the following strategy: check whether a passive control unit can

be designed for port z + 1 to satisfy the design objectives (4.1); if not, verify the existence

of a controller for ports z+1 and z+2; continue this procedure up to the point that enough

number of controllable ports are found whose passive control meets the design specifications.

This heuristic method can significantly reduce the implementation complexity.

4.3.6 Generalizations

Problems 1, 2, and 3 studied in this chapter target a circuit synthesis with the design

specifications given in (4.1). However, the techniques developed here can be generalized

to incorporate other types of design specifications. For example, assume that an output

voltage vp, p ∈ {1, 2, ..., z}, is required to be sufficiently weak, as demanded by antenna

applications. This constraint can be formalized as ‖vp‖ ≤ ε̃, where ‖ · ‖ denotes the 2-norm

and ε̃ is a given positive number. To account for this new design specification, the constraint

‖uep‖ ≤ ε

should be added to the optimization problem of Theorem 1; likewise, the constraint

∥∥∥[ u1 u2

]
ep

∥∥∥ ≤ ε
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should be included in the optimization problems of Theorems 2 and 3. As another example,

if one needs to design a control unit for Circuit 1 in the form of a decoupled lossless network,

it suffices to replace the constraint D1 > 0 with D1 = 0 in the optimization problem of

Theorem 3.

Unlike Theorems 1 and 3 that propose minimization problems, Theorem 2 offers a

feasibility problem. In other words, there is no specific quantity in the feasibility problem

of Theorem 2 that must be minimized (or maximized). This provides a degree of freedom

in the underlying circuit synthesis. To be more precise, Theorem 2 can be employed to

simultaneously solve Problem 2 and minimize (maximize) some quantity of interest such as

the consumed power at a specific port. This point will be illustrated in the next section

through some simulations.

As another generalization, assume that the goal is to design a passive control unit with

a pre-specified structure. An example of this case is the filter given in Figure 4.4 whose

control unit is structured in terms of the impedances Z1 to Z5. To handle this problem, it

suffices to employ Theorem 3 after the following slight modifications:

• Replace the diagonality requirement of the matrix variables D1 and D2 with a desired

pattern condition on these matrices, say certain entries of these matrices must be zero

according to the desired structure of the control unit being designed.

• Replace the condition D1 > 0 with the general passivity constraint (4.17).

4.4 Simulation Results

To illustrate the efficacy of the present work in the context of antenna design, note that most

of the practical antenna problems deal with the optimization of the input impedance and/or

the antenna gain via changing the geometry of the antenna. This is achieved in reality

by means of inefficient heuristic algorithms. For instance, a particle swarm optimization

technique (PSO) is deployed in [51] to optimize the antenna input impedance by varying

its length, width, and feeding point. That algorithm was applied to a simple impedance

matching problem with only 3 variables, which consumed more than 25 hours to obtain the

solution. This clearly shows that such algorithms are dramatically time-consuming even

for very small-sized antenna problems. Two important practical examples will be studied
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in the sequel to demonstrate that more complicated antenna design problems with 12 and

90 variables can be solved in the order of seconds rather than hours using the method

developed here.

Example 1: Consider the antenna configuration depicted in Figure 4.8, which consists

of a transmitting dipole antenna (blue bar), a 3x3 array of metal plates (antenna parasitic

elements), and a receiving dipole antenna located at the far field (green bar). There are 14

ports in this figure as follows:

• Port 1 acts as a receiving antenna sampling the radiation pattern of the transmitting

antenna at a specific angle in the far field.

• Ports 2 to 13 are intended to change the boundary condition of the transmitting

antenna.

• Port 14 corresponds to the transmitting antenna.

The objective is to find optimum impedance values for the parasitic elements such that the

received power and the antenna input impedance satisfy a specific set of constraints. For

this purpose, the circuit model of the antenna system is extracted at the desired frequency

3.5 GHz (using localized differential lumped ports) by means of the electromagnetic software

IE3D [41]. This model can be any of the circuits given in Figures 4.5, 4.6, 4.7, depending

on how the impedances of the parasitic elements are designed. Note that n and z are equal

to 13 and 1, respectively, in this example, and that vn+1 = v14 = 1.

Three important goals in a typical antenna problem are (i) received power maximiza-

tion, (ii) received power maximization under an input admittance constraint, (iii) input

impedance matching. Tackling these problems is central to this example, which is carried

out in the sequel.

Considering the complex number v1 as a real vector in R2, one can notice that the power

at the receiving antenna is proportional to the 2-norm of v1 raised to the second power. Since

the maximization of the 2-norm of a quantity is normally a non-convex problem, it is desired

to maximize the 1-norm of v1, i.e., |Re{v1}|+ |Im{v1}|. This suggestion is motivated by the

close affinity between these two norms. Observe that the direct maximization of |Re{v1}|+

|Im{v1}| is again a non-convex optimization problem. Nevertheless, one can alternatively

perform four (convex) optimizations maximizing the quantities Re{v1}+Im{v1}, Re{v1}−
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Figure 4.8: The antenna problem studied in Example 1.

Im{v1}, −Re{v1} + Im{v1}, and −Re{v1} − Im{v1}, and then determine the maximum

of the obtained solutions. Problem 2 is adopted to solve these optimization problems.

The outcome of these convex optimization problems is summarized in Table 4.1, which

demonstrates that the optimal value of |Re{v1}|+ |Im{v1}| is equal to 0.2833 corresponding

to the antenna directivity of 8.17dBi and the radiation efficiency of 89.15%. It is interesting

to note that this result is obtained by solving four convex optimization problems, each of

which is handled by the software CVX [33] in a fraction of second (the simulation was run

on a computer with a Pentium IV 3.0 GHz and 3.62 GB of memory).

Now, assume that the objective is to maximize the power at the receiving antenna

subject to the constraint that the antenna input impedance is equal to the standard value

50Ω. As before, this power is proportional to the 2-norm of the output voltage v1 raised

to the second power. The non-convexity of the underlying problem suggests maximizing

the closely related term |Re{v1}| + |Im{v1}|. Similar to the previous case, four convex

optimization problems are solved, and the results are summarized accordingly in Table 4.2.

As the last scenario, the goal is to find a diagonal matrix Y such that the antenna

input impedance is matched with the value 50Ω. The heuristic method given in [91] was

applied to Problem 3 to find proper values for the diagonal matrices D1 and D2 (recall that
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Table 4.1: Maximizing the received power (Example 1)

Objective function Optimal value Voltage at port 1 Directivity Radiation efficiency CPU time

Re{v1}+Im{v1} 0.0491 −0.0126− 0.0365i 7.62dBi 84.72% 0.34sec

Re{v1}−Im{v1} 0.1423 −0.0126 + 0.1297i 6.81dBi 93.4% 0.55sec

−Re{v1}+Im{v1} 0.1902 0.1536− 0.0365i 7.97dBi 85.41% 0.56sec

−Re{v1}−Im{v1} 0.2833 0.1536 + 0.1297i 8.17dBi 89.15% 0.63sec

Table 4.2: Maximizing the received power after imposing a constraint on the input
impedance of the antenna (Example 1)

Objective function Optimal value Voltage at port 1 Directivity Radiation efficiency CPU time

Re{v1}+Im{v1} 0.0432 −0.0192− 0.0240i 7.34dBi 86.472% 0.78sec

Re{v1}−Im{v1} 0.0579 −0.0192 + 0.0387i 6.30dBi 90.15% 0.87sec

−Re{v1}+Im{v1} 0.0674 0.0434− 0.0240i 6.56dBi 85.58% 0.86sec

−Re{v1}−Im{v1} 0.0821 0.0434 + 0.0387i 7.75dBi 89.3% 0.82sec

Y = D1 +D2i). An appropriate solution was found as

D1 = diag[0, 0.0026, 0.0026, 0.0070, 0.0070, 0.0026, 0.0026,

0.0138, 0.0134, 0.3252, 0.4268, 0.0136, 0.0123],

D2 = diag[0,−0.0106,−0.0105,−0.0064,−0.0064,−0.0106,

− 0.0105, 0.0215, 0.0217,−0.0050,−0.0036, 0.0227, 0.0205],

which corresponds to the antenna directivity of 3.55dBi.

Example 2: A general consensus in the field of antenna design is that a satisfactory

beamforming with making nulls at an arbitrary number of directions is possible only when

a sufficient number of (antenna) active elements are exploited in such a way that the size

of the antenna array becomes several multiples of the wavelength. Many papers in the

past decade, e.g., [79, 97], have concentrated on designing passive array antennas that are

capable of making a null only at one direction. For instance, the paper [97] presents such

a design based on a genetic algorithm whose running time is reported more than 4 weeks.

Using the techniques developed here, the goal of this example is to disprove the foregoing

belief. To be more precise, for the first time in the literature, we wish to design an on-chip

antenna system with only one active element (antenna element) of the size equal to one

wavelength such that the radiation pattern makes nulls at many undesired directions. This
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Figure 4.9: The antenna system studied in Example 2

antenna design is accomplished in a few seconds.

Consider the 2mm × 2mm antenna system depicted in Figure 4.9, consisting of a patch

array with 90 controllable ports (shown by small squares) which is used for data trans-

mission in the directions 15◦, 30◦, ..., 150◦, 165◦. To study the programming capability of

this antenna, a receiving antenna is placed at each of these directions in the far field (at

the distance of 20 multiples of the wavelength from this transmitting antenna) with the

length of 140 µm and the fixed terminal impedance 50 Ω. The equivalent circuit model of

this antenna configuration is extracted using the electromagnetic software IE3D [41], which

consists of 102 ports as follows:

• Receiving or sensing ports (ports 1 to 11): These ports are located in the far-field to

capture the radiated power at the angles 15◦, 30◦, ..., 150◦, 165◦.

• Variable ports (ports 12 to 101): Every two adjacent patches in the X-direction are

connected with a port resulting in a total number of 90 ports, which are numbered

from 12 to 101.

• Transmitting port (port 102): The transmitting port is located at the center of the

transmitting antenna and is driven by a 300 GHz sinusoidal signal with a fixed am-

plitude of 1V.
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Three objectives will be pursued in this example as follows. Assume that the first

objective is to transmit data at the direction 90◦ with the maximum power using a passive

control of the antenna. This problem reduces to finding a passive controller for the antenna

configuration that generates the maximum power for the output port 6. Using Theorem 2,

this leads to the voltage v6 = 0.00303− 0.002274i. The corresponding radiation pattern of

the antenna system is plotted in Figure 4.10(a). This figure shows that the antenna has an

excellent beamforming capability; indeed, while the goal was to maximize the power in one

direction, the radiating power was greatly minimized in most of the remaining directions.

As the second objective, the intent is to steer the beam towards the direction 45◦. Similar

to the previous case, the point v3 = −0.00234−0.0030i is obtained with the radiation pattern

drawn in Figure 4.10(b). The last objective is more interesting. We wish to transmit data

to the direction 90◦ with the maximum power subject to the constraint that a zero signal

is sent to all of the directions 15◦, 30◦, 45◦, 60◦, 120◦, 135◦, 150◦, 165◦. Theorem 2 can be

exploited to show that this highly constrained pattern shaping is possible. The optimal

value v6 = −0.000866 + 0.000589i is attained and the corresponding radiation pattern is

depicted in Figure 4.10(c). An implication of this pattern is that the technique developed in

this chapter has made it possible to design a wavelength-size antenna system with only one

active element so that its proper control makes a null at many undesired directions while

maximizing the power at a desired direction. The reader can contrast the patterns derived

here with similar ones in the literature (such as the ones reported in [79, 97]), which radiate

a high power in almost all directions and make a null in at most one direction. Note that

despite the fact that the controllers designed in this example are not decoupled, one can

verify that many elements of the obtained controllers are negligible, which facilitate their

implementations.

4.5 Summary

This chapter studies a class of linear systems that appear in circuits, electromagnetics,

optics, etc. Given such a linear system, the objective is to design a controller for the circuit

(system) such that some prescribed linear constraints on the input admittance and output

voltages of the circuit are satisfied. It is shown that designing a switching controller for this

circuit amounts to a rank-minimization problem, and is indeed an NP-complete problem.
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Figure 4.10: (a): The radiation pattern obtained by maximizing the received power at the
direction 90◦; (b): the radiation pattern obtained by maximizing the received power at the
direction 45◦; (c): the radiation pattern obtained by maximizing the received power at the
direction 90◦ subject to the constraints v1 = v2 = v3 = v4 = v8 = v9 = v10 = v11 = 0
(Example 2)
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Later on, the design of a passive controller is studied using the convex optimization theory.

Since the implementation of a passive controller may be unacceptably more complicated

than a switching controller, the design of a simpler type of controller, named decoupled

passive controller, is also investigated. It is shown that this problem amounts to a rank-

minimization one, which can be solved satisfactorily using a celebrated heuristic method.

The results of the current work are developed based on available techniques in the control

theory. As an important application, this work is exploited to design novel antenna systems

with an outstanding performance.

4.6 Appendix

Consider an algorithm for a given decision problem that aims to find out whether the an-

swer to this problem is “yes” or “no”. The notion of time complexity was introduced in

the literature to evaluate the efficiency of such an algorithm. Informally speaking, the time

complexity measures the number of machine instructions executed during the running time

of the algorithm as a function of the size of the input. An efficient algorithm must run in

polynomial time; for instance, if an algorithm needs an exponential number of iterations,

then as the size of the problem increases, the running time of the algorithm grows astro-

nomically. The class of NP-complete problems categorizes those problems that are believed

to be extremely difficult to solve. Indeed, there is no known polynomial-time algorithm to

solve an NP-complete problem, and moreover if an algorithm is discovered to solve an NP-

complete problem in polynomial time, then the algorithm can be adapted to solve all NP

problems in polynomial time [37]. It is desired to prove that the circuit switching problem

posed in this chapter (i.e., Problem 1) is an NP-complete problem. This is accomplished in

the sequel.

Theorem 4 Problem 1 is NP-complete.

Proof: Assume that n can be written as 3m+ 2, for some natural number m, and that

z = m+2 (the technique being developed in the following can be adopted for other values of

n). Recall that the present work considers output ports {1, 2, ..., z} as the ports of interest

used for specifying the design objectives and ports {z + 1, ..., n} as the controllable ports

connected to a control unit. To simplify the argument of the proof, assume with no loss
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of generality that ports {3k − 2, 3k|k = 1, 2, ...,m} are the controllable ports and the rest

are the ports whose voltages are used for defining design specifications (a re-numbering of

the output ports converts the problem to the conventional one considered here). Let the

matrix Ys have the particular form

Ys =

266666666666666666666666666666666666664

266666666666666666666666664

26664
1 −1 0

−1 0 1

0 1 −1

37775 0 · · · 0

0

26664
1 −1 0

−1 0 1

0 1 −1

37775 · · · 0

...
...

. . .
...

0 0 · · ·

26664
1 −1 0

−1 0 1

0 1 −1

37775

377777777777777777777777775

266666666666666666666666664

26664
α1 α1 0

0 0 0

0 0 0

37775
26664

α2 α2 0

0 0 0

0 0 0

37775
...26664

αm αm 0

0 0 0

0 0 0

37775

377777777777777777777777775
26664

26664
α1 0 0

α1 0 0

0 0 0

37775
26664

α2 0 0

α2 0 0

0 0 0

37775 · · ·

26664
αm 0 0

αm 0 0

0 0 0

37775
37775

26664
0 0 0

0 0 0

0 0 1

37775

377777777777777777777777777777777777775

i

where α1, α2, ..., αm are some arbitrary integers. It is worth mentioning that this type of Ys

corresponds to a lossless network. Impose the constraints

v3k−1 = vin ∀k ∈ {1, 2, ...,m},

v3m+1 = vin, v3m+2 = −vin
(4.36)

on the output voltages. The goal is to show that Problem 1 is NP-complete even for the

special networks of the form introduced earlier under the above constraints. Given a natural

number k ∈ {1, 2, ...,m}, the conditions in (4.36) lead to the equations

i3k−2 = (v3k−2 − vin)i,

i3k−1 = (−v3k−2 + v3k)i,

i3k = (−v3k + vin)i.

Since port 3k − 1 is not a controllable port, it follows from the design specifications in (4.1)

that its current must be zero. In other words, i3k−1 = 0 or equivalently v3k−2 = v3k. On
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the other hand, the above equations yield that the switching condition v3k−2i3k−2 = 0 is

tantamount to the relation v3k−2 ∈ {0, vin}. Thus, it can be concluded that

v3k−2 = v3k ∈ {0, vin} ∀k ∈ {1, 2, ...,m}. (4.37)

Moreover, since ports 3m+ 1 and 3m+ 2 are not controllable ports, their current must be

zero, which gives rise to

0 = i3m+1 =
m∑

j=1

αjv3j−2.

Note that the equality i3m+2 = 0 also leads to the above constraint. On using (4.37) and

by letting vin be equal to 1, the above equation can be interpreted as follows: given the

integers α1, α2, ..., αm, is it possible to find a subset of these numbers with the zero sum?

This problem is referred to as subset sum problem and is known to be NP-complete [37].

This completes the proof. �
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Chapter 5

Passively Controllable Smart
Antennas

This work deals with devising a secure, power-efficient, beam-steerable and on-chip trans-

mission system for wireless sensor networks. A passively controllable smart (PCS) antenna

system is introduced, which can be programmed to generate different radiation patterns

at the far field by adjusting its variable passive controller at every signal transmission. In

particular, the PCS antenna is able to transmit data to a desired direction in such a way

that no signal is sent in many undesired directions. To study the capabilities of a PCS

antenna system, a number of sensor nodes are placed around a PCS antenna, where the

nodes are all equipped with (short) sensing dipole antennas for signal reception. It is shown

that a pre-specified set of voltages can be induced on the receiving antennas if and only if

a linear matrix inequality (LMI) problem is feasible. Later on, this LMI problem is fur-

ther simplified and its feasibility region is proved to be ellipsoidal. This feasibility region

completely characterizes not only the values of the voltages received by different nodes but

also the correlation among these voltages. Based on this ellipsoid, a transmitting node can

adjust its variable passive controller to transmit data to any intended node in such a way

that many of the unintended nodes all receive a zero signal (no data). Unlike the existing

smart antennas whose programming leads to an NP-hard problem or are made of many

active elements, the PCS antenna proposed in the present work has a low-complex pro-

gramming capability and consists of only one active element. These two properties make it

possible to implement a PCS antenna on a single small-sized silicon chip together with an

on-chip low-power processor to satisfy the strict size and power limitations associated with

the wireless sensor nodes.
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5.1 Introduction

A wireless sensor network (WSN) is composed of several geographically distributed tiny

sensors, where each sensor device is equipped with sensing, data processing, and commu-

nication elements. WSNs have been extensively studied for many years due to their broad

range of civil and military applications such as security surveillance, object detection, target

tracking, home automation, environmental monitoring, and health monitoring [18, 102, 1].

Since wireless senor nodes are small in size and have very limited computation and commu-

nication capabilities, most of the existing theories developed for a general wireless network

cannot be directly applied to WSNs. Among many problems that have been investigated

specifically for WSNs, one can name routing [58], localization [59, 85], security [119], joint

routing and power control [86], and resource optimization [99].

Conventional antennas for wireless transmission, e.g., omni-directional antennas, radiate

in almost all directions. To avoid co-channel interference and unnecessary power consump-

tion in undesired directions, it is preferable not to deploy conventional wireless transmission

systems. A great amount of effort has been made in the past several decades to design smart

transmitting/receiving antenna systems, which are able to increase the capacity of wireless

networks [66]. Two main types of smart antennas are switched beam and adaptive array.

A switched beam smart antenna has several pre-designed fixed beam patterns, whereas an

adaptive array smart antenna adaptively steers the beam to any direction of interest while

simultaneously nulling interfering signals [30, 120]. Note that an array system comprises

multiple active (antenna) elements for varying the relative phases and amplitudes of the

respective signals in order to generate a desired radiation pattern. Other types of smart

antenna systems employ only one active element surrounded by a number of passive para-

sitic elements, with the disadvantage that they are either non-programmable or their online

programming leads to an NP-hard problem [79, 2, 3].

Different types of smart antennas, such as directional, beamforming/array, and multiple-

input-multiple-output antennas, have been studied and applied to ad-hoc networks [104, 42].

The deployment of smart antennas is more crucial in WSNs than general ad-hoc networks,

due to very limited resources available in WSNs. A number of papers have explored the

effects of smart antennas in WSNs, e.g., the necessity to change the existing medium ac-

cess control (MAC) protocols [9, 95] or the maximum flow problem under switched-beam
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directional antennas [39]. Nonetheless, the aforementioned smart antenna systems cannot

be exploited in WSNs by virtue of the fact that these systems either need heavy computa-

tions for their programming or are very large in size due to using several active elements

(antenna array) with a mutual element-to-element distance in the order of the signal wave-

length. This chapter aims to build on the results developed in [2], [3] and the previous

chapter to propose a new type of smart antenna system, referred to as passively controllable

smart (PCS) antenna, which has a low-complex programming and utilizes only one active

element. This PCS antenna system can be implemented on a cheap, small-sized, low-power

silicon chip to comply with the strict size and power limitations in WSNs.

The PCS antenna system proposed in this chapter is composed of a main dipole (trans-

mitting) antenna, a number of reflectors (or a patch array), and a variable (tunable) passive

controller. Since changing the parameters of the passive controller modifies the radiation

pattern generated at the far field, this act is regarded as programming of the PCS antenna.

To study the programming capabilities of a PCS antenna, a number of receiving nodes

are placed around the PCS antenna, which are all equipped with short dipole antennas

for signal reception. It is shown that a pre-determined set of voltages can be sent to the

receiving nodes if and only if the vector of voltages satisfies a linear matrix inequality (LMI)

problem. Using this result, it is proved that a pre-specified radiation pattern can be gen-

erated for the receiving antennas if and only if the associated vector of voltages belongs

to an ellipsoidal region. This region characterizes both the individual signals that can be

sent to different antennas and the correlation among these signals. Based on the obtained

properties, it is shown how the PCS antenna can be programmed to transmit data to an

intended node in such a way that many of the unintended nodes receive a zero signal (no

signal) simultaneously.

5.2 Problem Statement and Preliminaries

Given a natural number z, consider a wireless network with z+1 nodes, labeled as 0, 1, 2, ..., z.

Assume that these nodes are geographically distributed so that none of the two nodes in the

set {1, 2, ..., z} are co-linear with node 0. This assumption is made to ensure an angle diver-

sity among nodes 1, 2, ..., z with respect to node 0. It is desired to devise a smart antenna

system for node 0 that can be programmed to transmit data to any node j ∈ {1, 2, ..., z} in



119

such a way that many of the remaining nodes 1, ..., j − 1, j + 1, ..., z receive a zero signal.

The smart antenna being contrived in this work relies on the notion of near-field direct

antenna modulation, which has been recently introduced in the papers [2] and [3]. Let some

preliminaries be provided on this notion before developing the main results of the present

work.

5.2.1 Preliminaries

In a conventional wireless transmission scheme, the information is generated before the

antenna and the role of the antenna is to efficiently transmit the signal. Different methods

are developed to add information to a carrier signal (e.g., a sinusoidal waveform). The act

of adding information to a carrier signal is referred to as modulation, and can be achieved

by altering some properties of the carrier signal such as its frequency, amplitude, or phase.

In a broad range of wireless communication systems, the information is generated in low

frequencies (base-band frequency region), and then up-converted to a carrier frequency

(RF) via a mixer that acts as a multiplier. The base-band data forms a series of complex

numbers that can be separated into real and imaginary parts. The first set is called the

in-phase signal (I) that is the real part of the complex signal, and the second set is called

the quadrature-phase signal (Q) that is the imaginary part of the complex signal. A simple

constellation diagram can be used to represent this complex signal, where each point of the

diagram corresponds to some information symbol.

After modulating an incoming signal, a conventional antenna propagates the modulated

signal in many directions. For example, consider the conventional transmitting antenna

depicted in Figure 5.1, which is used to transmit four symbols A,B,C,D to a receiving

antenna #1 in an environment where there exists an unwanted receiving antenna #2. As

shown in the figure, assume that antenna #1 receives four points 1, 2, 3, 4 corresponding

to these symbols, whereas antenna #2 receives four other points 1′, 2′, 3′, 4′. It is easy to

argue that the constellation diagram corresponding to antenna #2 can be obtained from

the constellation diagram for antenna #1 using an appropriate rotation and re-scaling.

Hence, the unintended antenna #2 can discover what symbols antenna #1 receive. This

undesirable property is due to the fact that the signal being transmitted by a conventional

antenna can ideally be received in different directions after some time delay and power

attenuation. Therefore, a conventional antenna is associated with a number of problems as
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Figure 5.1: This figure illustrates the weakness of a conventional antenna in secure wireless
transmission.

follows:

• In a hostile environment, the antenna does not guarantee a secure data transmission.

• The antenna causes co-channel interference in a wireless network and hence reduces

the network throughput.

• The antenna wastes the transmitting power in undesired directions.

The recent papers [2] and [3] have introduced the new notion of near-field direct antenna

modulation to design a novel type of antenna system for secure wireless transmission, which

is on-chip, small-sized, and low-power consuming (due to using only one active element).

The antenna system proposed therein has a main dipole transmitting antenna driven by

a voltage source, a number of reflectors and several switches mounted on the reflectors.

Since each switch can be turned on or off, there exist different switching strategies. Each

switching combination creates a possibly unique near-field boundary condition around the

antenna, which results in different radiation patterns at the far field. Therefore, each

switching combination could possibly generate a new point in the constellation diagram.

Figure 5.2(a) exemplifies the antenna system suggested in [2], which consists of 4 reflectors

and 12 switches (shown by arrows). It can be observed that there exist 212 switching

combinations, which create a constellation diagram with numerous points. The antenna

system introduced in [2] has not only a modulation capability, but also a direction-dependent



121

transmission ability. Indeed, since the reflectors affect the electromagnetic field around the

antenna in a non-uniform way, the constellation diagrams seen in different directions are

not necessarily correlated. Figure 5.2(b) illustrates this property via an antenna system

with 4 switches, which makes a 16-QAM constellation diagram in the vertical direction and

a totally scrambled one in an undesired direction. Figure 5.3 shows a prototype of the

antenna system suggested in [3] with 90 switches and 10 reflectors that is implemented on

a silicon-based chip of the size 1.5mm × 1.3mm.

The switch-based antenna system proposed in [2] and [3] has some useful capabilities,

such as secure and direction-dependent wireless transmission. However, the identification of

the switching combinations that generate proper radiation patterns at the far field amounts

to an NP-complete problem (because the swtiching problem can be reduced to the subset

sum problem). As an alternative to the switch-based strategy, the work [2] also suggests

using varactors (variable impedances) instead of switches. This chapter aims to build on

this new type of antenna system to contrive a programmable smart antenna system for

wireless sensor networks.

Before proceeding with the main results, let some necessary notations and definitions

be made in the sequel.

Notation 1 Introduce the following notations:

• i : the imaginary unit;

• N, R and C: the sets of natural, real and complex numbers, respectively;

• Sk×k: the set of all symmetric matrices in Rk×k (where k ∈ N);

• Re{·} and Im{·}: the operators returning the real and imaginary parts of a complex

matrix;

• ∗ : the matrix operator taking the conjugate transpose of a complex-valued matrix;

• � : the matrix inequality sign in the positive definite sense.

Notation 2 For convenience and with a slight abuse of notation, the terms circle, ellipse

and ellipsoid in this chapter will refer to the interiors of the conventional circle, ellipse

and ellipsoid, respectively. For instance, the unit circle here refers to the set {(x, y) ∈

R2 | x2 + y2 < 1}, as opposed to {(x, y) ∈ R2 | x2 + y2 = 1}
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(a)

(b)

Figure 5.2: (a): This figure illustrates the modulation capability of the switch-based antenna
system proposed in [2]. (b): This figure illustrates the direction-dependent transmission
capability of the switch-based antenna system proposed in [2].
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(Fig.3),  an  unmodulated  carrier  signal  drives  an  on‐chip  dipole  antenna  and  a  set  of  switches  and 

reflectors are used to vary the characteristics of the antenna (the near‐field boundary conditions around 

the antenna). Antennas with time varying boundary conditions are able to transmit independent signals 

to different directions simultaneously. The systems based on  this concept are called Near‐Field Direct 

Antenna Modulation (NFDAM) transmitters. 
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Fig.2 Modulation after the antenna [XXX] 

 

 

Fig.3 The first implemented NFDAM transmitter [XXX] 

 

The  system  implemented  in  [XXX]  uses  10  reflectors  and  90  switches  to  generate  independent 

information in different directions in space. In this paper we will focus on a similar problem and intend 

to find a map of the points that can be generated on the signal constellation diagram. We will construct 

a region that these constellation points fall in. We will also study the variation of the input impedance of 

the antenna and derive a region that the antenna input impedance construct. 
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Figure 5.3: A prototype of the antenna system developed in [3]

Definition 1 For every real-valued column vectors x1 and x2 of the same dimension, define

the 2-norm ‖x1 + x2i‖ as
√

x∗1x1 + x∗2x2.

Definition 2 Given a scalar k ∈ N and a set H ⊆ C1×k, define the real-valued represen-

tation of the set H as the set of all real vectors in the form of
[
Re{α} Im{α}

]
such that α

is an element of H. The operator R(·) will be used henceforth to represent the real-valued

representation of a set; for instance, the real-valued representation of H is denoted by R(H).

5.3 Passively Controllable Smart Antenna

Assume for now that nodes 0, 1, 2, ..., z are all fixed. The case when these nodes are mobile

will be later discussed in Remark 4. Define a passively controllable smart (PCS) antenna

system as a system with the following components:

• A dipole transmitting antenna: This dipole antenna is the only active element of the

PCS antenna system, which is driven by a sinusoidal voltage source.

• A number of reflectors: These reflectors surround the dipole antenna to shape the

electromagnetic field in the space.

• A number of controllable ports: These controllable ports are mounted on the reflectors

which should be controlled for every signal transmission to form a desired radiation

pattern at the far field.

• An adjustable passive network (controller): This passive network consists of resistors,

capacitors and inductors, and is connected to the controllable ports of the reflectors

to control the antenna system for every signal transmission.
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Note that a PCS antenna system resembles the antenna system proposed in [2] and [3],

with the main difference that the switches/varactors are replaced by controllable ports that

must be controlled by passive elements for every signal transmission. For simplicity, the

term PCS antenna system will be abbreviated as PCS antenna. Since a PCS antenna

has only one active element and its controller solely includes (variable) passive elements, it

can be implemented as a low-power integrated on-chip programmable antenna. Hence, it is

pragmatic to deploy PCS antennas in a wireless sensor network.

Recall the main problem of interest posed in this chapter regarding the cluster of sensor

nodes 0, 1, 2, ..., z, i.e., devising a means of wireless transmission from node 0 to a node

j ∈ {1, 2, ..., z}, in such a way that each of the remaining nodes 1, 2, ..., j − 1, j + 1, ..., z

receives a zero signal if possible. To address this problem, let nodes 1, 2, ..., z employ short

dipole receiving antennas and node 0 exploit a PCS transmitting antenna, where each signal

transmission is performed by applying an appropriate passive controller to this antenna

system. For every k ∈ {1, 2, ..., z}, let vk denote the voltage that the PCS transmitting

antenna of node 0 induces on the receiving antenna of node j. Note that every passive

controller that is applied to the controllable ports of the PCS antenna of node 0 generates a

specific voltage vector (v1, v2, ..., vz) at the far field. The goal is to study a series of problems

in the sequel, which are outlined below:

i) Given j ∈ {1, 2, ..., z}, what is the set of all possible voltages vj that can be generated

by the PCS antenna of node 0 (under every possible passive controller)?

ii) What is the set of all possible voltage vectors (v1, v2, ..., vz) that can be generated by

the PCS antenna of node 0?

iii) Given j ∈ {1, 2, ..., z}, is it possible to passively control the PCS antenna of node

0 to transmit data to node j in such a way that many of the unintended nodes

1, 2, ..., j − 1, j + 1, ..., z receive a zero signal (voltage)?

Notice that problem (i) aims to find the constellation diagram seen at node j, problem (ii)

investigates the correlation of the voltages received at different nodes, and problem (iii)

studies the possibility of transmitting data mainly to one intended node. In the rest of this

chapter, the act of designing and applying a passive controller to a PCS antenna will be

referred to as programming the PCS antenna.



125

Let f0 and vin denote the frequency and magnitude of the sinusoidal voltage driving

the dipole transmitting antenna of the PCS antenna system, respectively. Assume that

nodes 1, 2, ..., z all lie in the far field of node 0, meaning that the distance of each of nodes

1, 2, .., z from node 0 is noticeably greater than the wavelength 3×108

f0
. For example, this

assumption at the operating frequency f0 = 2 GHz can be translated as all nodes 1, 2, ..., z

are distant from node 0 by at least 0.150 meter. One can observe that this assumption

normally holds in practice. To tackle problems (i), (ii), and (iii) stated earlier, one can

extract the equivalent circuit model of the entire antenna configuration that consists of the

transmitting antenna of node 0 and the receiving antennas of nodes 1, 2, ..., z. This circuit

model, referred to as Circuit 1, is given in Figure 5.4(a), where

• The block “Linear Passive Network” corresponds to the Y -parameter matrix of the

antenna configuration (calculated from scattering parameters), which can be found

using an electromagnetic simulation.

• vz+1, vz+2, ..., vn denote the voltages on the controllable ports of the PCS antenna of

node 0 (it is assumed that there are n− z controllable ports).

• The block “Passive Network” represents the adjustable passive controller applied to

the controllable ports of the PCS antenna of node 0.

Note that the equivalent circuit model of the antenna system proposed in [3] can be derived

from the circuit given in Figure 5.4(a) by replacing its passive network with a switching

network, as depicted in Figure 5.4(b). With no loss of generality, assume that vin = 1 (this

can be achieved using an appropriate re-scaling). Denote the Y -parameter matrix of the

antenna configuration at the given frequency f0 with Ys. Moreover, let yin represent the

input admittance of the PCS antenna of node 0. From now on, suppose that the adjustable

passive controller of the PCS antenna must be linear and strictly passive because the goal

is to implement this controller by an interconnection of a number of variable resistors and

possibly some variable capacitors and inductors.

Decompose the complex-valued matrix Ys in a block form as

Ys =


W11 W12 W13

W21 W22 W23

W31 W32 W33

 ,
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(a)

(b)

Figure 5.4: (a): Equivalent circuit model of the passively controllable smart antenna system
proposed in the present work (named Circuit 1). (b): Equivalent circuit model of the switch-
based antenna system proposed in [2] and [3] (named Circuit 2)
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where W11 ∈ Cz×z, W22 ∈ C(n−z)×(n−z), and W33 ∈ C. Let yd
in denote the admittance of

the source delivering power to the dipole antenna of the PCS antenna system of node 0

(the standard value of yd
in is 1

50 Ω−1). Given a complex vector α ∈ C1×z, it is desired to

investigate whether the PCS antenna of node 0 can be programmed so that it generates

the voltage vector (v1, v2, ..., vz) = α and concurrently the relation yin = yd
in is satisfied.

It is worth mentioning that the constraint yin = yd
in is said to be the impedance matching

constraint, whose role is to minimize the power reflected by the antenna in order to save

power consumption.

Theorem 1 Given α ∈ C1×z, the PCS antenna of node 0 can be programmed to make the

voltages v1, v2, ..., vz and the antenna input admittance yin satisfy the relations

(v1, v2, ..., vz) = α, yin = yd
in (5.1)

if and only if there exist symmetric matrices M,N ∈ R(n−z)×(n−z) such that

 (Re
{
W22 −W21W

−1
11 W12

})−1 −M N

N M

 � 0, (5.2)

and

− (W31W
−1
11 W12 −W32)(M +N i)W21W

−1
11 −W31W

−1
11 = α, (5.3a)

− (W31W
−1
11 W12 −W32)(M +N i)(W21W

−1
11 W13 −W23) +W33 −W31W

−1
11 W13 = yd

in.

(5.3b)

Moreover, if there exist such matrices M,N satisfying the above constraints, then one can-

didate for the admittance of the passive controller at the frequency f0, denoted by Y0, is

Y0 = (M +N i)−1 −W22 +W21W
−1
11 W12. (5.4)

Proof: The proof is a direct consequence of Theorem 2 in Chapter 4. �

Theorem 1 states that the PCS antenna of node 0 can generate a specific radiation

pattern at the far field subject to an impedance matching constraint if and only if a linear

matrix inequality (LMI) problem is feasible (see [13] for the definition of LMI). Since the
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feasibility region of an LMI problem is convex, the set of all possible voltages (v1, v2, ..., vz)

has a convex real-valued representation (see Definition 2). The objective is to further

simplify the LMI conditions derived in Theorem 1.

Remark 1 Assume that the aim is to only check whether the PCS antenna of node 0 can

generate a voltage vector (v1, v2, ..., vz) equal to a pre-specified vector α and the impedance

matching constraint yin = yd
in need not be satisfied. Theorem 1 can be easily adapted to tackle

this problem by removing the constraint yin = yd
in from the equation (5.1) and eliminating

the equation (5.3b).

Definition 3 Define D to be the set of all complex-valued z-tuples (v1, v2, ..., vz) that can

be generated by the programmable PCS antenna of node 0. Likewise, define D̃ to be the set

of all complex-valued (z + 1)-tuples (v1, v2, ..., vz, yin) that can be produced by the antenna

of node 0.

The complex-valued set D captures the correlation among the individual signals that

nodes 1, 2, ..., z receive. Besides, the set D̃ relates the individual signals v1, ..., vz not only

to each other but also to the input admittance of the transmitting antenna. Hence, the

complex-valued sets D and D̃ contain important information about the spatial distribution

of the signal transmitted by the PCS antenna of node 0. To characterize these sets, two

lemmas are required, in addition to Theorem 1, which will be provided in the sequel.

Lemma 1 Given a scalar m ∈ N and vectors x1,x2 ∈ R1×m with the property ‖[ x1 x2 ]‖ =

1, consider the set of all vectors α ∈ R1×2m for which there exist symmetric matrices

M,N ∈ Rm×m such that

α =
[

x1 x2

] M N

N −M

 (5.5)

and  M N

N −M

 ≺ I. (5.6)

This set is identical to the open unit ball {γ ∈ R1×2m | ‖γ‖ < 1}.

Proof: The proof is provided in the appendix. �
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Lemma 2 Given scalars m, k ∈ N, vectors x1,x2 ∈ R1×m, and matrices G1, G2 ∈ Rm×k,

consider the set of all complex vectors α ∈ C1×k that can be written as

α = (x1 + x2i)(M +N i)(G1 +G2i) (5.7)

for some symmetric matrices M,N ∈ Rm×m with the property

 M N

N −M

 ≺ I. (5.8)

The real-valued representation of this complex set is identical to the ellipsoidh ∈ R1×2k

∣∣∣∣∣h
 G∗1 −G∗2

G∗2 G∗1

 G1 G2

−G2 G1

−1

h∗ < ‖x1‖2 + ‖x2‖2

 , (5.9)

provided the matrix G1 +G2i has full column rank over the field of complex numbers.

Proof: Observe that the equation (5.7) is tantamount to

[
Re{α} Im{α}

]
=
[

x1 −x2

] M N

N −M

 G1 G2

−G2 G1

 . (5.10)

On the other hand, it follows from Lemma 1 that the set[ x1 −x2

] M N

N −M

 ∣∣∣∣∣∣ M,N ∈ Sm×m,

 M N

N −M

 ≺ I


is an open ball centered at the origin with radius

√
‖x1‖2 + ‖x2‖2. It can be inferred from

this result that the set[ x1 −x2

] M N

N −M

 G1 G2

−G2 G1

 ∣∣∣∣∣∣ M,N ∈ Sm×m,

 M N

N −M

 ≺ I


is equal to the ellipsoid given in (5.9), provided the matrix

 G∗1 −G∗2
G∗2 G∗1

 G1 G2

−G2 G1
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is nonsingular or equivalently G1 + G2i has full column rank. The proof is an immediate

consequence of this property and the fact that the equation (5.7) is the same as (5.10). �

Define some matrices as follows:

K1 := W31W
−1
11 W12 −W32, K2 := W21W

−1
11 W13 −W23, K3 := W31W

−1
11 W13 −W33,

K4 := W21W
−1
11 , K5 := W31W

−1
11 , K6 :=

[
K4 K2

]
, K7 :=

[
K5 K3

]
,

Q :=
(
Re
{
W22 −W21W

−1
11 W12

})−1
,

o := −
[

Re
{

1
2K1QK4 +K5

}
Im
{

1
2K1QK4 +K5

} ]
,

õ := −
[

Re
{

1
2K1QK6 +K7

}
Im
{

1
2K1QK6 +K7

} ]
.

Since the matrix Q introduced above is positive definite, one can define Q
1
2 as the unique

symmetric positive definite matrix whose square is equal to Q. The next theorem presents

one of the main results of this work, which exploits Lemma 2 and Theorem 1 to characterize

the feasibility regions D and D̃.

Theorem 2 The following statements hold:

i) If the matrix K4 has full column rank over the field of complex numbers, then the

real-valued representation of the complex set D, i.e., R(D), is equal to the ellipsoidh ∈ R1×2z

∣∣∣∣∣(h− o)

 Re{K∗
4QK4} Im{K∗

4QK4}

−Im{K∗
4QK4} Re{K∗

4QK4}

−1

(h− o)∗ <
1
4
‖K1Q

1
2 ‖2

 .

(5.11)

ii) If the matrix K6 has full column rank over the field of complex numbers, then the

real-valued representation of the complex set D̃, i.e., R(D̃), is equal to the ellipsoidh ∈ R1×2(z+1)

∣∣∣∣∣(h− õ)

 Re{K∗
6QK6} Im{K∗

6QK6}

−Im{K∗
6QK6} Re{K∗

6QK6}

−1

(h− õ)∗ <
1
4
‖K1Q

1
2 ‖2

 .

(5.12)

Proof of Part (i): It can be concluded from Theorem 1 and Remark 1 that a complex

vector α belongs to D if and only if there exist symmetric matrices M,N ∈ R(n−z)×(n−z)
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such that  Q−M N

N M

 � 0 (5.13)

and
α =− (W31W

−1
11 W12 −W32)(M +N i)W21W

−1
11 −W31W

−1
11

=−K1(M +N i)K4 −K5.
(5.14)

The constraint (5.13) can be re-arranged as

 M̃ Ñ

Ñ −M̃

 ≺ I, (5.15)

where

M̃ := 2Q−
1
2MQ−

1
2 − I, Ñ := 2Q−

1
2NQ−

1
2 . (5.16)

Moreover, the constraint (5.14) can be expressed in terms of M̃ and Ñ as follows:

α = −K1(M +N i)K4 −K5

= −1
2
K1

(
Q

1
2 M̃Q

1
2 +Q+Q

1
2 ÑQ

1
2 i
)
K4 −K5

= −1
2
K1Q

1
2 (M̃ + Ñ i)Q

1
2K4 −

(
1
2
K1QK4 +K5

)
.

(5.17)

By applying Lemma 2 to the constraints (5.15) and (5.17) and using the relation

 Re{K∗
4Q

1
2 } −Im{K∗

4Q
1
2 }

Im{K∗
4Q

1
2 } Re{K∗

4Q
1
2 }

×
 Re{Q

1
2K4} Im{Q

1
2K4}

−Im{Q
1
2K4} Re{Q

1
2K4}


=

 Re{K∗
4QK4} Im{K∗

4QK4}

−Im{K∗
4QK4} Re{K∗

4QK4}

 ,
it can be deduced that R(D) is the same as the ellipsoid given in (5.11) (note that the

matrices Q
1
2K4 and K4 have the same column rank).

Proof of Part (ii): To prove that R(D̃) is identical to the ellipsoid given in (5.12), one

can adopt the line of arguments made in the proof of Part (i) and take advantage of the

fact that a complex vector α belongs to D̃ if and only if there exist symmetric matrices
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M,N ∈ R(n−z)×(n−z) such that

 Q−M N

N M

 � 0 (5.18)

and

α =− (W31W
−1
11 W12 −W32)(M +N i)

[
W21W

−1
11 W21W

−1
11 W13 −W23

]
−
[
W31W

−1
11 W31W

−1
11 W13 −W33

]
=−K1(M +N i)K6 −K7.

(5.19)

The details are omitted for brevity. �

So far, it is shown that the PCS antenna of node 0 can be programmed to generate

a specific voltage vector (v1, v2, ..., vz) if and only if the real-valued representation of this

vector belongs to a particular open ellipsoid. This important result completely characterizes

the correlation among the voltages received by different nodes of the network. Note that

the eigenvalues and eigenvectors of the describing matrix of the ellipsoid R(D) determines

the strength of this correlation in diverse directions. It is worth mentioning that even

though “voltage” and “admittance” are disparate quantities, the set of all possible vectors

(v1, v2, ..., vz, yin) is again associated with an ellipsoidal feasibility region R(D̃). Due to the

fundamental similarities between the regions D and D̃, the focus of this chapter will be only

on the region D.

Remark 2 Theorem 2 states that R(D) is an ellipsoid in the case when the matrix K4

has full column rank. A question arises as to how the region R(D) looks if this condition

is violated. To answer this question, notice that a set of feasible voltages (v1, v2, ..., vz)

generated by the PCS antenna of node 0 can be represented as

[
v1 v2 · · · vz

]
= −K1(M +N i)K4 −K5, (5.20)

for some symmetric matrices M and N (see the equation (5.14)). The above relation simply

implies that if K4 loses column rank, some of the far-field voltages v1, v2, ..., vz can always

be expressed in term of the remaining ones (for every arbitrary matrices M and N). As

a result, in the case when K4 loses column rank, some of the far-field voltages create an
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ellipsoidal feasibility region and the remaining far-field voltages can be linearly written in

terms of these voltages. Note that the matrix K4 losses column rank if n− z is less than z,

which signifies that the number of controllable ports of the antenna determines the maximum

number of directions towards which independent data can be sent.

Definition 4 Given l ∈ N and distinct indices j, k ∈ {1, 2, ..., l}, define P l
jk to be the plane

consisting of all vectors in Rl whose elements with the indices in the set {1, 2, ..., l}\{j, k}

are equal to zero.

Theorem 2 can be used to study whether the PCS antenna of node 0 is capable of

transmitting data to an intended node in such a way that unintended nodes all receive a

zero signal. This is carried out next.

Corollary 1 Let node 0 in the wireless network employ a PCS antenna to generate a

radiation pattern at the far field. The following statements hold for every j ∈ {1, 2, ..., z}:

i) The real-valued representation of the set of all possible complex voltages vj that can

be induced on the antenna of node j is an ellipse (circle) obtained by projecting the

ellipsoid R(D) (given in (5.11)) on the plane P2z
j(z+j).

ii) The real-valued representation of the set of all possible complex voltages vj that can be

induced on the antenna of node j in such a way that other nodes 1, ..., j− 1, j+1, .., z

receive a zero signal is an ellipse (circle) obtained by intersecting the ellipsoid R(D)

(given in (5.11)) with the plane P2z
j(z+j).

Proof: Due to the analogy between the two parts of this corollary, only Part (i) will be

proved here. Recall from Theorem 2 that a voltage vector (v1, ..., vz) can be generated at the

far field by a PCS antenna if and only if the vector (Re{v1}, ...,Re{vz}, Im{v1}, ..., Im{vz})

belongs to the ellipsoid R(D). Since the plane P2z
j(z+j) corresponds to the vector (Re{vj},

Im{vj}), one can argue that the set of all possible vectors (Re{vj}, Im{vj}) is equal to the

projection of the ellipsoid R(D) on the plane P2z
j(z+j). The proof of Part (i) is completed by

noting that this projection leads to a circle. �

Given j ∈ {1, 2, ..., z}, the phrase “real-valued representation of the set of all possible

complex voltages vj” in Corollary 1 indeed refers to a constellation digram for vj . Hence,

Corollary 1 characterizes different constellation diagrams that are associated with node j.
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Although the projection of the ellipsoid R(D) on the plane P2z
j(z+j) is a non-empty set, the

intersection of these ellipsoid and plane might be a null set. As a result, the PCS antenna

of node 0 may not be able to transmit data only to node j so that other nodes all receive a

zero signal. However, the feasibility region R(D) can be used to find a maximum number

of nodes that can simultaneously receive a zero signal.

5.3.1 Online Passive Controller Design

So far, different constellation diagrams associated with every node j ∈ {1, 2, ..., z} are ob-

tained and shown to be elliptic (see Corollary 1). Assume that based on these of constellation

diagrams, node 0 has decided to generate the far-field voltage vector (v1, v2, ..., vz) = α for

some α ∈ D. Note that α can, for instance, be a vector with only one non-zero entry corre-

sponding to a directional data transmission. A question arises as to what passive controller

should be applied to the PCS antenna of node 0 to make it generate the voltage vector

(v1, v2, ..., vz) = α. To address this question, let a procedure be introduced.

Procedure 1:

Step 1: Define a vector u as

u :=
([

Re{α} Im{α}
]
− o
) Re{K∗

4QK4} Im{K∗
4QK4}

−Im{K∗
4QK4} Re{K∗

4QK4}

−1

×

 Re{K∗
4Q

1
2 } −Im{K∗

4Q
1
2 }

Im{K∗
4Q

1
2 } Re{K∗

4Q
1
2 }

 .
Step 2: By using the procedure presented in the proof of Lemma 1, compute two

symmetric matrices M̃, Ñ ∈ R(n−z)×(n−z) such that

u =
[
−1

2K1Q
1
2

1
2K1Q

1
2

] M̃ Ñ

Ñ −M̃


and  M̃ Ñ

Ñ −M̃

 ≺ I.

Step 3: One candidate for the admittance of the passive controller at the frequency
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f0, denoted by Y0, is

Y0 = 2
(
Q

1
2 M̃Q

1
2 +Q+Q

1
2 ÑQ

1
2 i
)−1

−W22 +W21W
−1
11 W12.

The proofs of Lemma 1, Lemma 2, Theorem 1, and Theorem 2 can all be combined in

a clear way to deduce why Procedure 1 described above produces a correct admittance Y0.

After obtaining the matrix Y0, the next question would be how to design a passive controller

(circuit) with the admittance Y0 at the frequency f0. This can be carried out using the next

procedure.

Procedure 2:

Step 1: Decompose Y as

Y = T1 + T2i,

where T1, T2 ∈ R(n−z)×(n−z) are both symmetric and T1 is positive definite.

Step 2: Define an admittance transfer function Y (s) as

Y (s) = T1 +
1
ω0
T2s, ∀s ∈ C.

Step 3: Implement Y (s) by the parallel connection of two (n− z)-port networks: (i)

a resistive network with the conductance matrix T1 and (ii) a reactive network with

the susceptance matrix 1
ω0
T2.

Step 4: Since Y (2πf0i) = Y0, the obtained parallel connection of these two separate

networks is a candidate for the passive controller being sought.

Hence, Procedures 1 and 2 should be taken to find a passive controller under which the

PCS antenna of node 0 generates a desired far-field voltage vector.

5.3.2 Real-Time Data Transmission via a PCS Antenna

How can a real-time data transmission be performed using a PCS Antenna? As before,

assume that node 0 is equipped with a PCS Antenna for transmitting possibly distinct

pieces of data to the individual nodes 1, 2, ..., z. Given an index j ∈ {1, 2, .., z}, some pre-

processing needs to be carried out to find how many different symbols can be sent from
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node 0 to node j in such a way that many of the remaining nodes receive a zero signal

concurrently. To this end, one can exploit Corollary 1 or the ellipsoidal feasibility region

R(D) directly to find some nodes j1, j2, ..., jk that can all receive a zero signal in the course

of data transmission to node j. Now, obtain the associated elliptic constellation diagram

for node j and pick a maximum number of points inside this constellation diagram such

that every point has a certain minimum distance from the origin (or a minimum power) and

every two points have a minimum point-to-point distance d, where d is a positive number

whose value depends on the noise level of the communication channel. Each of these points

in the constellation diagram corresponds to a symbol that can be transmitted to node j

using the smart antenna of node 0 in such a way that nodes j1, j2, ..., jk all receive a zero

signal. Utilize Procedures 1 and 2 to design controllers corresponding to all these different

symbols and then store the values of the controllers’ parameters in a look-up table. Note

that since Procedures 1 and 2 have low computational complexities, this table can be formed

at a very high speed by means of a low-power processor. Now, at every time slot that any

of these symbols needs to be transmitted from node 0 to node j, node 0 selects a suitable

passive controller (resistive-capacitive-inductive network) from the table and applies it to

its PCS antenna to make node j receive the underlying symbol while nodes j1, j2, ..., jk all

get a zero signal.

Remark 3 The real-time data transmission scheme spelled out above is contingent upon

the availability of the matrix Ys to node 0. Unlike Procedures 1 and 2, computing the matrix

Ys is time-consuming and cannot be accomplished in a fraction of second. However, the

configuration-dependent matrix Ys is easily computable (approximately) from a normalized

Y -parameter matrix that can be computed offline and stored on the memory of the sensor

device. This normalized Y -parameter matrix, denoted by Yn, is defined as follows:

• Discretize the continuous angle interval [0◦, 360◦) by some quantization level, say 1

degree, and assume that any receiving antenna around the PCS antenna system lies

on a discretized direction.

• Visualize a configuration where a receiving antenna is placed in every discretized di-

rection at the distance of 1 unit from the PCS antenna. This unit is arbitrary as long

as it is larger than a few multiples of the signal wavelength.
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• Let Yn be defined as the Y -parameter matrix of this visualized antenna configuration.

To find an online approximation of Ys associated with nodes 0, 1, 2, ..., z in terms of the

normalized matrix Yn, the following steps should be taken:

• For every j ∈ {1, 2, ..., z}, map the direction from node j to node 0 to the closest

quantized direction.

• After identifying the mapped quantized directions, eliminate the unnecessary rows and

columns of the matrix Yn (associated with the unmapped directions).

• The resulting matrix corresponds to the case when nodes 1, 2, ..., z were placed at the

distance of 1 unit from node 0. To consider the real distances of node 1, 2, .., z to

node 0, it is enough to note that changing the distance between nodes 0 and j (without

changing the direction) only rotates and re-scales the constellation digram (due to

power attenuation/amplification and delay). Hence, Ys can be easily estimated from

the obtained matrix by taking the real node-to-node distances into account.

Remark 4 Assume that nodes 1, 2, ..., z are not static relative to the reference node 0 and

all nodes are allowed to be mobile. In this case, it is no longer true that the passive con-

trollers can be designed only one time so that their parameters are stored in a look-up table.

Instead, real-time online computation is required to find a proper controller for every signal

transmission. The allowable mobility rate of each node mainly depends on how fast the

proposed procedures can be completed to design a passive controller, which in turn relies on

the speed/power of the node’s processor.

5.3.3 Simultaneous Data Transmission via a PCS Antenna

To describe the idea of simultaneous data transmission using a PCS antenna, consider a

simple scenario where node 0 intends to send a symbol A1 corresponding to the complex

voltage α1 to node 1 and another symbol A2 corresponding to the complex voltage α2 to

node 2. Assume that (αj , 0, 0, ..., 0) is inside the ellipsoid D, for j = 1, 2. One strategy

for this data transmission is that the PCS Antenna of node 0 transmits A1 and A2 at two

different time slots. However, for the sake of saving time and energy, it is really preferable to

somehow transmit these symbols in a single time slot and by only a one-time programming

of the smart antenna. To do so, note that if (α1, α2, 0, ..., 0) belongs to the ellipsoid D,
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Figure 5.5: (a): The PCS antenna system studied in Example 1; (b): The constellation
diagram R(Du); (c): The admittance feasibility region R(Qu)

then it is possible to program the PCS antenna of node 0 so that it generates the far-field

voltages v1 = α1, v2 = α2 and v3 = · · · = vz = 0. In other words, it could be possible to

simultaneously transmit data to nodes 1 and 2 in such a way that other nodes receive a

zero signal. This idea of simultaneous data transmission can be easily generalized to more

than two nodes.

5.4 Simulation Results

Two examples will be presented in this section, where Example 1 illustrates the modulation

capability of a PCS antenna in a single direction and Example 2 demonstrates the efficacy

of a PCS antenna in a wireless sensor network. For the sake of brevity, the detailed specifi-

cations of a PCS antenna required for its implementation on a silicon chip is outlined only

in Example 2.

Example 1: Consider the PCS antenna system depicted in Figure 5.5(a), which consists

of a transmitting dipole antenna and 10 metal reflectors each with 5 ports (antenna parasitic

elements). The objective is to transmit data from this PCS antenna to a receiving dipole

antenna located at the far field in the upward direction. Assume that the PCS antenna

system is driven by a sinusoidal voltage source with the frequency 60 GHz and the amplitude

of 1 volt. The circuit model of the antenna system can be extracted at the desired frequency

60 GHz (using localized differential lumped ports) by means of the electromagnetic software



139

IE3D [41]. This circuit model is in the form of the circuit given in Figure 5.4(a) with 51

output ports, where

• Port 1 is aimed to sample the radiation pattern of the transmitting antenna on the

receiving antenna.

• Ports 2 to 51 are the controllable ports of the PCS antenna and are intended to change

the boundary condition of the transmitting antenna.

The two parameters of interest in this problem are the voltage induced on the receiving

antenna, i.e., v1, and the input admittance of the PCS antenna, i.e., yin. The goal is to

understand what values can be generated for v1 and yin via a passive control of the PCS

antenna and, moreover, how these two parameters are related to one another. To this end,

Theorem 2 can be employed to deduce that a complex pair (v1, yin) can be produced by

programming the PCS antenna if and only if

∥∥∥[ Re{v1} Re{yin} Im{v1} Im{yin}
]
Φ
∥∥∥ < 0.0427, (5.21)

where

Φ =


10.2871 −1.0002 0.0000 2.6625

−1.0002 12.9429 −2.6625 −0.0000

0.0000 −2.6625 10.2871 −1.0002

2.6625 −0.0000 −1.0002 12.9429

 .

In other words, the real-valued representation of all possible complex vectors (v1, yin) forms

an ellipsoid given by (5.21). Note that the eigenvalues and eigenvectors of the positive-

definite matrix Φ completely specify the correlation between v1 and yin. In what follows,

different problems will be studied.

The first goal is to identify two feasibility regions Du and Qu, defined as:

• Du (unconstrained constellation diagram): the set of all complex voltages v1 that can

be generated via the underlying PCS antenna;

• Qu (admittance feasibility region): the set of all complex input admittances yin that

can be generated via the underlying PCS antenna.

One can argue that R(Du) and R(Qu) are indeed the projection of the ellipsoid given in

(5.21) on the planes P4
13 and P4

24, respectively. These two regions turn out to be both
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circular, as depicted in Figures 5.5(b) and 5.5(c). It is noteworthy that in light of the

circular shape of R(Du), it is easy to find an optimal number of modulation points in the

unconstrained constellation diagram R(Du) so that every point-to-point distance is greater

than a prescribed number.

Recall that if the passive controller of the PCS antenna is confined to be only a decoupled

switching network, then the resulting PCS antenna reduces to the antenna system proposed

in [2] and [3]. It is desired to compare the achievable performances of the PCS antenna given

here and the switch-based antenna suggested in the aforementioned papers. To this end,

let Ds denote the set of all values of v1 that can be generated by the PCS antenna subject

to the constraint that each of its controllable ports is connected to an ideal on/off switch.

Finding the exact shape of R(Ds) requires computing v1 for 250 switching combinations,

which is almost impossible. However, a number of switching combinations are generated

at random and the corresponding values of v1 are plotted in Figure 5.6(a). It can be seen

that even though a passive network has far more free parameters than a switching network,

the discrete set R(Ds) is fairly dense in a big part of the continuous set R(Du). This

observation is no longer valid if the number of receiving antennas is not as small as 1, in

which case the discrete set R(Ds) will become sparse in the high-dimensional set R(Du).

As mentioned earlier, the programming of the PCS antenna under a switching controller is

an NP-complete problem, whereas its programming under an arbitrary passive controller

can be cast as a simple convex optimization problem whose solution is known analytically.

As shown in Figure 5.5(c), the admittance feasibility region is a circle. Assume that

the input admittance of the PCS antenna is required to be matched with the admittance

corresponding to the center of this circle. Since this matching constraint enforces yin to be

fixed, one may speculate that the corresponding constrained constellation diagram for v1,

denoted by D1, is noticeably smaller than Du. However, it is interesting to note that the

set D1 is only a little smaller than Du, as illustrated in Figure 5.6(b). This demonstrates

one of the advantages of deploying a passively controllable smart antenna.

As the last scenario, assume that the impedance of the input voltage source of the PCS

antenna is equal to the standard value 50Ω. Since 1
50 is outside the admittance feasibility

region given in Figure 5.5(c), the objective is to find an optimal antenna input admittance

minimizing the reflection factor ‖T‖. Based on the circular region R(Qu), it can be shown

that the optimal input admittance of the PCS antenna is equal to 0.008 + 0.012i, which is
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Figure 5.6: (a): The constellation diagrams R(Ds) and R(Du); (b): The constellation
diagrams R(D1) and R(Du); (c): The admittance feasibility region associated with the
constraint that the antenna input admittance belongs to a circle centered at 0.008 + 0.012i
with radius

√
2× 10−3 (colored area); (d): The constellation diagrams R(D2) and R(Du)
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not attainable due to lying on the boundary of the open region R(Qu). In order to have

a near-optimal antenna input admittance, suppose that yin is permitted to deviate from

0.008 + 0.012i by at most
√

2× 10−3. The corresponding constrained admittance feasibility

region is shown in Figure 5.6(c) (see the colored area). The set of all possible voltages v1

generated by the PCS antenna under this admittance matching constraint, denoted by D2,

can be obtained using the ellipsoid given in (5.21), which is plotted in Figure 5.6(d). It can

be seen that R(D2) covers a big part of R(Du) and that R(D2) is a non-circular region.

Example 2: The goal of this example is to demonstrate the efficacy of PCS antennas

on a cluster of 12 wireless sensor nodes, labeled as 0, 1, ..., 11. Let the configuration of the

sensor nodes in the x-y plane be as follows:

• Node 0 lies at the origin of the x-y plane.

• Nodes 1, 2, ..., 11 are all located at the distance of 20 units from node 0 with the

angular directions 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦, 165◦ (with respect

to the x-axis).

The configuration associated with the above-mentioned scenario is depicted in Figure 5.7(a).

It is desired to transmit data from node 0 to node 6 (i.e., in the vertical direction) in such

a way that some of the remaining nodes {1, ..., 5, 7, ..., 11} receive a zero signal, if possible.

To this end, equip node 0 with the PCS antenna system given in Figure 5.7(b), which has

the following specifications:

• It consists of a 500 µm on-chip transmitting dipole antenna located at 20 µm above

a 1mm × 1mm on-chip patch array.

• The patch array is located on the x-z plane and comprises 100 metal squares, each

with a dimension of 95 µm by 95 µm.

• Every two adjacent patches in the z-direction are connected with a controllable port

resulting in a total number of 90 ports.

• The ground plane is located at z = 0, and a 250 µm 10 Ω-cm silicon substrate is

located right above the ground layer.

• A 20 µm silicon-dioxide (SiO2) layer is placed on top of the silicon substrate as shown

in Figure 5.7(b).
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• The transmitting dipole antenna is placed just above the SiO2 layer.

Note that although the theory developed in the present work relies on reflectors to shape

the electromagnetic field around the PCS antenna, a patch array can alternatively be used

instead of reflectors, as done in this example. Let the transmitting dipole antenna of the

PCS antenna system be driven by a 300 GHz sinusoidal signal with a fixed amplitude of 1

volt. Notice that since the PCS antenna is designed to be very small, the operating frequency

of the antenna is chosen very high to make its size comparable to the wavelength of the

transmitted signal. Assume that each of the nodes 1, 2, ..., 11 has a receiving dipole antenna

perpendicular to the x-y place with the length of 0.44 mm and the fixed terminal impedance

50 Ω. If node 0 knows the locations of the other nodes (practically, their directions), then

the equivalent circuit model of the described wireless network can be extracted at node 0.

This leads to the circuit given in Figure 5.4(a) with 101 output ports, where

• For every j ∈ {1, 2, ..., 11}, output port j measures the voltage induced by the smart

antenna of node 0 on the center of the receiving dipole antenna of node j.

• Output ports 12 to 101 are the 90 controllable ports on the smart antenna of node 0

that are to be controlled by a passive controller for every signal transmission.

The real-valued representation of the set of all possible voltages (v1, v2, ..., v11) that can

be generated by the PCS antenna of node 0 is an ellipsoid denoted by R(D), which can be

obtained using Theorem 2. Based on this ellipsoid, a number of problems are addressed in

the sequel.

First, consider the problem of maximizing the power of the signal received by node 6,

which amounts to the maximization of the scalar ‖v6‖. Although the maximization of the 2-

norm of a signal is normally a non-convex problem, it will be shown here that the underlying

power optimization problem will be convex. Indeed, the real-valued representation of the

set of all possible complex voltages v6 that can be generated by the PCS antenna of node

0 is a circle obtained by projecting the ellipsoid R(D) on the plane P22
6,17. This circle is

centered at
(
−0.53× 10−3, 0.87× 10−3

)
with radius 4.96 × 10−3. Hence, the problem of

maximizing the power received by node 6 reduces to finding the farthest point of this circle

from the origin. This yields the point
(
−3.11× 10−3, 5.10× 10−3

)
or, equivalently, the

complex voltage v6 = (−3.11 + 5.10i)× 10−3.
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Table 5.1: Maximizing the power of the signal received by node 6 while forcing one of the
nodes {1, 2, ..., 11}\{6} to receive a zero signal (Example 2)

Constraints Circular Constellation Diagram for v6 Optimal value of v6

Case 1 No constraint Center:
`
−0.53× 10−3, 0.87× 10−3

´
, Radius: 4.96× 10−3 v6 = (−3.11 + 5.10i)× 10−3

Case 2 v1 = 0 Empty None

Case 3 v2 = 0 Empty None

Case 4 v3 = 0 Center:
`
−1.49× 10−3, 1.04× 10−3

´
, Radius: 2.96× 10−3 v6 = (−3.92 + 2.74i)× 10−3

Case 5 v4 = 0 Center:
`
−1.53× 10−3, 0.60× 10−3

´
, Radius: 3.91× 10−3 v6 = (−5.17 + 2.03i)× 10−3

Case 6 v5 = 0 Center:
`
−0.14× 10−3, 0.60× 10−3

´
, Radius: 2.91× 10−3 v6 = (−0.81 + 3.43i)× 10−3

Case 7 v7 = 0 Center:
`
−0.14× 10−3, 0.60× 10−3

´
, Radius: 2.91× 10−3 v6 = (−0.81 + 3.43i)× 10−3

Case 8 v8 = 0 Center:
`
−1.53× 10−3, 0.60× 10−3

´
, Radius: 3.91× 10−3 v6 = (−5.17 + 2.03i)× 10−3

Case 9 v9 = 0 Center:
`
−1.49× 10−3, 1.04× 10−3

´
, Radius: 2.96× 10−3 v6 = (−3.92 + 2.74i)× 10−3

Case 10 v10 = 0 Empty None

Case 11 v11 = 0 Empty None

Given a node j ∈ {1, 2, ..., 11}\{6}, the goal of the second problem is to maximize the

power of the signal received by node 6 subject to the constraint that node j receives a zero

signal. Similar to the previous problem, one needs to find the intersection of the ellipsoid

R(D) with the plane P22
6,17 and then search for the farthest point of the resultant circular

region from the origin. The results obtained for this problem (for different values of j)

together with that of the previous problem are summarized in Table 5.1. It can be observed

that the circular constellation diagrams corresponding to Cases 2, 3, 10, 11 are all empty,

meaning that it is not possible to program the antenna of node 0 to send data to node

6 so that any of the nodes 1, 2, 10, 11 receives a zero signal. In contrast, it is possible to

send a zero signal to each of the nodes 3, 4, 5, 7, 8, 9. Comparing Case 1 with Cases 4–9 in

Table 5.1, one can draw the interesting conclusion that imposing an extra constraint vj = 0,

j ∈ {3, 4, 5, 7, 8, 9}, does not shrink the constellation diagram noticeably (i.e., the radius of

the circle corresponding to each of Cases 4–10 is not far smaller than that for Case 1).

Due to the symmetry of the locations of nodes 1, 2, ..., 11 with respect to the reference

node 0, it was not possible to simultaneously transmit data to node 6 and send a zero

signal to some of the unintended nodes {1, 2, ..., 11}\{6}. Now, let the configuration of

the sensor nodes be distorted by moving node 0 to the coordinate (0, 5). The problem of

transmitting data to node 6 while sending a zero signal to one of the nodes {1, 2, ..., 11}\{6}

is investigated for the new configuration and the results are summarized in Table 5.2. Two

observations can be made here as follows:
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Table 5.2: Studying the possibility of transmitting data to node 6 while forcing one of the
nodes {1, 2, ..., 11}\{6} to receive a zero signal (corresponding to the second configuration
in Example 2)

Constraints Circular Constellation Diagram for v6

Case 1 No constraint Center:
`
1.02× 10−3,−1.73× 10−3

´
, Radius: 4.97× 10−3

Case 2 v1 = 0 Center:
`
1.06× 10−3,−1.93× 10−3

´
, Radius: 4.69× 10−3

Case 3 v2 = 0 Center:
`
1.16× 10−3,−1.82× 10−3

´
, Radius: 4.71× 10−3

Case 4 v3 = 0 Center:
`
1.27× 10−3,−1.52× 10−3

´
, Radius: 4.64× 10−3

Case 5 v4 = 0 Center:
`
0.56× 10−3,−1.58× 10−3

´
, Radius: 3.81× 10−3

Case 6 v5 = 0 Center:
`
2.80× 10−3, +0.35× 10−3

´
, Radius: 2.21× 10−3

Case 7 v7 = 0 Center:
`
1.60× 10−3,−0.95× 10−3

´
, Radius: 2.78× 10−3

Case 8 v8 = 0 Center:
`
1.08× 10−3,−1.10× 10−3

´
, Radius: 3.62× 10−3

Case 9 v9 = 0 Center:
`
−0.32× 10−3, 0.16× 10−3

´
, Radius: 1.18× 10−3

Case 10 v10 = 0 Center:
`
0.83× 10−3,−1.26× 10−3

´
, Radius: 4.40× 10−3

Case 11 v11 = 0 Center:
`
0.95× 10−3,−1.12× 10−3

´
, Radius: 4.36× 10−3

• It is always possible to transmit data to node 6 in such a way that any of the remaining

nodes 1, ..., 5, 7, ..., 11 receives a zero signal.

• The radius of the constellation diagram corresponding to the set of all possible values

of v6 (Case 1) is not remarkably larger than the radius of the constellation diagram

corresponding to each of Cases 2-11 in which a node j ∈ {1, ..., 5, 7, ..., 11} is required

to receive a zero signal.

It can be shown that it is not possible to send data to node 6 such that all of the remaining

nodes receive a zero signal concurrently. However, as an example, the smart antenna of

node 0 can be programmed so that nodes 1, 2, 3, 7, 8 all receive a zero signal simultaneously.

More precisely, the real-valued representation of the set of all possible values of v6 subject to

the constraint v1 = v2 = v3 = v7 = v8 = 0 is a circle centered at (1.13×10−3,−0.83×10−3)

with radius 0.70 × 10−3. Now, one can select some points in this circular constellation

diagram corresponding to the number of symbols to be sent from node 0 to node 6. For

transmitting each of these symbols, it is enough to apply a proper passive controller to the

smart antenna of node 0 to make node 6 receive the correct symbol while nodes 1, 2, 3, 7, 8

all receive a zero signal. Detailed discussions are provided in Sections 5.3.1 and 5.3.2 to

shed light on the design of this passive controller and the real-time data transmission via a

PCS antenna.
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5.5 Summary

This work proposes a new type of smart antenna system, referred to as passively controllable

smart (PCS) antenna, which can be used as an efficient transmission device in wireless

sensor networks. A PCS antenna system is accompanied by a tunable passive controller

whose adjustment at every signal transmission generates a possibly unique radiation pattern.

To reduce co-channel interference and optimize the transmitted power, this antenna can

be programmed to transmit data in a desired direction in such a way that no signal is

transmitted (to the far field) at many pre-specified undesired directions. In particular, it is

shown that a set of voltage signals can be sent to different directions if and only if a linear

matrix inequality problem is feasible. Later on, this result is exploited to prove that a set

of voltages can be generated at the far field if and only if the associated vector of voltages

belongs to an ellipsoidal region. This region can be computed at a very high speed online by

the transmitting sensor node in order to program its PCS antenna for sending data towards

an intended node in such a way that a zero signal is sent in several undesired directions.

The PCS antenna proposed here is made of only one active element and its programming

has a low complexity. These two properties differentiate a PCS antenna from the existing

smart antennas, and make it possible to implement a PCS antenna on a cheap, small-sized,

low-power silicon chip.

5.6 Appendix

Proof of Lemma 1: Denote the open unit ball {γ ∈ R1×2m | ‖γ‖ < 1} with B2m. In order to

show that the set of every vector α representable in the form (5.5) subject to the constraint

(5.6) is equal to B2m, it suffices to prove that every point in this set belongs to B2m and vice

versa. This will be performed in two phases. First, consider an arbitrary vector α ∈ R1×2m

for which there exist symmetric matrices M,N ∈ Rm×m such that the relations (5.5) and

(5.6) both hold. The goal of this step is to prove that α is in the open ball B2m. Notice

that since the matrix  M N

N −M

 (5.22)

is Hamiltonian, its eigenvalues are all symmetric with respect to the imaginary axis in the

complex plane. This property, together with the inequality (5.6), yields that the eigenvalues
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of this Hamiltonian (and Hermitian) matrix all lie in the interval (−1, 1). As a result,

 M N

N −M

2

≺ I.

Therefore,

αα∗ =
[

x1 x2

] M N

N −M

2  x∗1

x∗2

 < [ x1 x2

] x∗1

x∗2

 = 1.

This proves that α belongs to B2m. As the second step of the proof, assume that β ∈ R1×2m

is an arbitrary vector in the ball B2m. The objective is to show that there exist two

symmetric matrices M,N ∈ Rm×m satisfying the relation (5.6) such that

β =
[

x1 x2

] M N

N −M

 . (5.23)

A constructive proof will be provided here. Decompose the vector β as [ β1 β2 ], where

β1,β2 ∈ R1×m. Since the symmetric matrix ‖β‖2x∗1x1 + ‖β‖2x∗2x2 − β∗1β1 − β∗2β2 is

the sum of four rank-one matrices, it has at most four nonzero eigenvalues. Denote the

eigenvalues of this matrix with γ1, γ2, ...., γm, where γ5 = · · · = γm = 0. Let qj represent

the unit right eigenvector of the above matrix corresponding to the eigenvalue γj , for every

j ∈ {1, 2, ...,m}. To simplify the proof by avoiding special cases, assume that m ≥ 4. Define

p1 :=
1
2
(−q1 + q2 + q3 + q4), p2 :=

1
2
(+q1 − q2 + q3 + q4),

p3 :=
1
2
(+q1 + q2 − q3 + q4), p4 :=

1
2
(+q1 + q2 + q3 − q4),

pj := qj , ∀j ∈ {5, ...,m}.

(5.24)

It is straightforward to verify that

p∗jpj = 1, p∗jpk = 0, ∀j, k ∈ {1, 2, ...,m}, j 6= k. (5.25)



149

Define the matrix P as [ p1 p2 · · · pm ]. It can be concluded from (5.25) that PP ∗ = I.

Let λ1, ..., λm, λ̄1, ..., λm be some scalars given by the equation

 λj

λ̄j

 =
1
‖β‖

 x1pj x2pj

−x2pj x1pj

−1  β1pj

β2pj

 , ∀j ∈ {1, 2, ...,m}. (5.26)

It is desired to show that the relations (5.6) and (5.23) are satisfied if M and N are taken

as follows:

M = ‖β‖P × diag(λ1, λ2, ..., λm)× P ∗, N = ‖β‖P × diag(λ̄1, λ̄2, ..., λ̄m)× P ∗. (5.27)

For this purpose, it results from the equation (5.26) that

λ2
j + λ̄2

j =
‖β1pj‖2 + ‖β2pj‖2

‖β‖2 (‖x1pj‖2 + ‖x2pj‖2)
, ∀j ∈ {1, 2, ...,m}. (5.28)

On the other hand, one can write

p∗j
(
‖β‖2x∗1x1 + ‖β‖2x∗2x2 − β∗1β1 − β∗2β2

)
pj = 0, ∀j ∈ {5, ...,m}, (5.29)

due to the equalities pj = qj and γj = 0. Given an index j ∈ {1, 2, 3, 4}, it can be verified

that

p∗j
(
‖β‖2x∗1x1 + ‖β‖2x∗2x2 − β∗1β1 − β∗2β2

)
pj =

4∑
k=1

γk =
m∑

k=1

γk

= trace
(
‖β‖2x∗1x1 + ‖β‖2x∗2x2 − β∗1β1 − β∗2β2

)
= ‖β‖2‖x1‖2 + ‖β‖2‖x2‖2 − ‖β1‖2 − ‖β2‖2

= ‖β‖2 − ‖β1‖2 − ‖β2‖2 = 0.

(5.30)

Hence, it can be concluded from (5.29) and (5.30) that

‖β‖2
(
‖x1pj‖2 + ‖x2pj‖2

)
= ‖β1pj‖2 + ‖β2pj‖2, ∀j ∈ {1, 2, ...,m}. (5.31)

Combining (5.28) and (5.31) yields

λ2
j + λ̄2

j = 1, ∀j ∈ {1, 2, ...,m}.
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The above equation, along with the relation PP ∗, leads to the fact that the matrices M

and N introduced earlier satisfy the equality

 M N

N −M

2

= ‖β‖2I,

which implies that the Hamiltonian matrix (5.22) has m eigenvalues at ‖β‖ and m eigen-

values at −‖β‖. Since ‖β‖ is strictly less than 1, it can be inferred that the inequality (5.6)

holds for this choice of M and N . Now, it remains to show that the equation (5.23) is also

satisfied. To this end, simplify the equation (5.26) to obtain

‖β‖λjx1pj + ‖β‖λ̄jx2pj = β1pj , ∀j ∈ {1, ...,m}, (5.32a)

‖β‖λ̄jx1pj − ‖β‖λjx2pj = β2pj , ∀j ∈ {1, ...,m}, (5.32b)

or equivalently

x1M + x2N = β1, x1N − x2M = β2. (5.33a)

The above equations show the validity of (5.23), which completes the proof. �
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Part III

Distributed Computation
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Chapter 6

Quantized Consensus by Means of
Gossip Algorithm

This chapter deals with the distributed averaging problem over a connected network of

agents, subject to a quantization constraint. It is assumed that at each time update, only a

pair of agents can update their own states in terms of the quantized data being exchanged.

The agents are also required to communicate with one another in a stochastic fashion. It

is shown that a quantized consensus is reached for an arbitrary quantizer by means of the

stochastic gossip algorithm proposed in a recent paper. The expected value of the time at

which a quantized consensus is reached is lower and upper bounded in terms of the topology

of the graph for a uniform quantizer. In particular, it is shown that these bounds are related

to the principal submatrices of the weighted Laplacian matrix. A convex optimization is

also proposed to determine a set of probabilities used to pick a pair of agents that leads to

a fast convergence of the gossip algorithm.

6.1 Introduction

During the past few decades, there has been a particular interest in the area of distributed

computation, which aims to compute some quantity over a network of processors in a de-

centralized fashion [107, 108, 69, 105]. The distributed averaging problem, as a particular

case, is concerned with computing the average of numbers owned by the agents of a group

[82, 81]. This problem has been investigated through the notion of consensus in several

papers, motivated by different applications [57, 103, 8, 89, 96, 80]. For instance, the syn-

chronization of coupled oscillators, arising in biophysics, neurobiology, and systems biology,
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is studied in [57] and [103] to explore how to reach a consensus on the frequencies of some

agents. Moreover, the problem of aligning the heading angles of a group of mobile agents

(e.g., a flock of birds) is treated in [47]. Given a sensor network comprising a set of sensors

measuring the same quantity in a noisy environment, the problem of consensus on state

estimates is discussed in [100]. The consensus problem for networks of dynamic agents with

fixed and switching topologies is tackled in [82], where it is shown that the convergence

rate is related to the algebraic connectivity of the network. The work [20] elaborates the

relationship between the amount of information exchanged by the agents and the rate of

convergence to a consensus. A more complete survey on this topic is given in the recent

paper [81].

Consider the distributed average consensus problem in which the values associated with

a set of agents are to be averaged in a distributed fashion. Since it may turn out in some

applications that all agents cannot update their numbers synchronously, gossip algorithms

have been widely exploited by researchers to handle the averaging problem asynchronously

[107, 11]. This type of algorithm selects a pair of agents at each time instant and updates

their values based on some averaging policy. The consensus problem in the context of gossip

algorithms has been thoroughly investigated in the literature [12, 7, 52, 28]. For instance,

the work [12] studies the convergence of a general randomized gossip algorithm, and derives

conditions under which the algorithm converges. That paper also shows that the averaging

time of a gossip algorithm depends on the second largest eigenvalue of a doubly stochastic

matrix characterizing the algorithm.

In light of communication constraints, the data being exchanged between a pair of agents

is normally quantized. This has given rise to the emergence of quantized gossip algorithms.

The notion of quantized consensus is introduced in [52] for the case when quantized values

(integers) are to be averaged over a connected network with digital communication channels.

That paper shows that a quantized gossip algorithm leads to reaching a quantized consensus.

This result is extended in [28] to the case when the quantization is uniform, and the initial

values of the agents are reals (as opposed to being integers). The paper [28] shows that

the quantized gossip algorithm works for a particular choice of the updating parameter,

although it conjectures that this result is true for a wide range of updating parameters.

A related paper on quantized consensus gives a synchronous algorithm in order to reach a

consensus with arbitrary precision, at the cost of not preserving the average of the initial
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numbers [22].

In this chapter, a weighted connected graph is considered together with a set of scalars

sitting on its vertices. The weight of each edge represents the probability of establishing a

communication between its corresponding vertices through the updating procedure. First,

it is shown that a quantized consensus is reached under the stochastic gossip algorithm

proposed in [28], for a wide range of updating parameters and an arbitrary quantizer.

The convergence time of the gossip algorithm is then studied. More precisely, consider the

expected value of the time at which a quantized consensus is reached, and take its maximum

over all possible initial states belonging to a given hypercube. Lower and upper bounds

on this quantity are provided for a uniform quantizer, which turn out to be related to the

Laplacian of the weighted graph. The upper bound is then minimized in order to obtain

the best weights resulting in a small convergence time. To do so, a convex optimization

problem is proposed, which can be solved by a semidefinite program.

6.2 Problem Formulation

Consider an undirected connected graph G = (V, E) with the set of vertices V := {1, 2, ..., n}

and the set of edges E ⊆ {(i, j)| i, j ∈ V}. Suppose that every edge (i, j) ∈ E of the graph

is associated with a strictly positive number p(i,j) such that

∑
(i,j)∈E, i<j

p(i,j) = 1

(note that since G is undirected, if (i, j) ∈ E , then (j, i) ∈ E). These numbers induce a

discrete probability distribution P := {p(i,j)| (i, j) ∈ E , i < j} on the edges of the graph G,

which can be used to specify by what probability an edge can be chosen at random from

the set E . Assume that a real number xi has been assigned to vertex i of G, for every

i ∈ V. Define X0 as
[
x1 x2 · · · xn

]
. In this chapter, the sets of natural, integer and

real numbers are denoted by N, Z and R, respectively. Let q(x) : R → R be a general

quantization operator characterized as

q(x) =

 Li if x ∈ [Li, L̄i]

Li+1 if x ∈ (L̄i, Li+1]
∀i ∈ Z, (6.1)
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where {Li}∞−∞ is a monotonically increasing sequence of integers representing the quanti-

zation levels (that is unbounded from both below and above) and

L̄i :=
Li + Li+1

2
, ∀i ∈ Z.

The scalar quantities Li and L̄i will be referred to as level and splitting level, respectively.

Assume that the numbers on the vertices of G are updated at each discrete time instant

according to some rule. For every time k ∈ {0}∪N, let xi[k] denote the number associated

with vertex i at time k and X[k] :=
[
x1[k] x2[k] · · · xn[k]

]
denote the state of the

graph system at time k.

Given a fixed parameter ε, define an action function A : Rn × E → Rn on the graph G

as follows: for every arbitrary vector α =
[
α1 α2 · · · αn

]
∈ Rn and edge (i, j) ∈ E ,

the quantity A(α, (i, j)) is an n-tuple whose pth entry is equal to αp for every p ∈ V\{i, j},

and whose ith and jth entries are equal to αi + ε(q(αj)− q(αi)) and αj + ε(q(αi)− q(αj)),

respectively. The action function A is intended to operate on the graph G to update the

state of the graph system at each time instant such that only two numbers are updated

at each discrete time in terms of the quantized data of each other. Note that this action

function is average preserving, i.e., the average of the entries of α is the same as that of

A(α, (i, j)) for every α ∈ Rn and (i, j) ∈ E . The action function A is employed in the

gossip algorithm introduced in the sequel.

Stochastic Gossip (SG) Algorithm:

Step 1 : Set k = 0 and X[0] = X0.

Step 2 : Pick an edge (i, j) ∈ E of G at random from the probability distribution P

(i.e., with probability p(i,j)). Define X[k + 1] to be A(X[k], (i, j)).

Step 3 : Increase k by 1 and jump to step 2.

It is said that a quantized consensus is reached almost surely (with probability 1) for the

graph G with the initial state X[0] = X0 under the SG algorithm if almost surely there exist

a natural number k̃ and an integer p such that either

xi[k] ∈ [Lp, Lp+1], ∀ k ≥ k̃, i ∈ V (6.2)
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or

xi[k] ∈ (L̄p, L̄p+1], ∀ k ≥ k̃, i ∈ V (6.3)

holds. Roughly speaking, a quantized consensus is reached if all numbers on the vertices of

the graph G ultimately lie between two consecutive levels or splitting levels.

As a special case, let q(x) be a uniform quantizer that rounds every number x ∈ R to

its nearest integer (by convention, assume that q(p + 0.5) = p for every integer p). Relax

the above-mentioned definition of quantized consensus by replacing the inequalities (6.2)

and (6.3) with

xi[k] ∈ (xave − 1, xave + 1), ∀ k ≥ k̃, i ∈ V, (6.4)

where xave := x1+x2+···+xn
n . It is shown in [28] that if the quantizer q(x) is uniform, a

quantized consensus in the relaxed sense given above is reached almost surely for the graph

G under the SG algorithm, provided ε = 0.5. That paper also conjectures that the same

result holds true for every positive number ε < 0.5, while it may not be true for ε > 0.5

(as simulation confirms). The primary objective of the present work is to prove reaching a

quantized consensus with probability 1 for every general quantizer q(x) in the form of (6.1)

and every fixed parameter ε ∈ (0, 0.5]. Another goal is to bound the expected value of the

convergence time, i.e., the time at which a quantized consensus is reached.

6.3 Convergence Proof

Assume for now that q(x) is a uniform quantizer, as defined above. The results will be later

extended to the general case. Consider a tuning factor ε ∈ (0, 0.5], and define xmax and

xmin as

xmax := max
i∈V

dxie, xmin := min
i∈V

bxic,

where d·e and b·c denote the ceiling and floor operators, respectively. If X[0] is taken as

X0, then two simple observations can be made about xi[k] (i ∈ V, k ∈ N) as follows:

• The scalar xi[k] belongs to the interval [xmin, xmax].

• The difference xi[k]− xi is an integer multiple of ε (in light of the action function A

used in step 2 of the SG algorithm).
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These facts imply that if X[0] = X0, then the state X[k], ∀k ∈ N, belongs to a finite-

dimensional set S that can be defined as the collection of all n-tuple (α1, α2, ..., αn) such

that αi ∈ [xmin, xmax] and that αi−xi is an integer multiple of ε for every i ∈ V. To present

the main results, it is necessary to define two more sets:

C :=
{

(α1, α2, ..., αn) ∈ S
∣∣∣ αi ∈ (q(xave)− 0.5, q(xave) + 0.5], ∀i ∈ V

}
,

C(µ) :=
{

(α1, α2, ..., αn) ∈ S
∣∣∣ αi ∈ (µ− ε, µ+ ε], ∀i ∈ V

}
, ∀µ ∈ R.

(6.5)

Using the definition of quantized consensus provided earlier, one can easily verify that if

X[k] belongs to each of the sets C, C(q(xave)− 0.5) or C(q(xave)+0.5) for some time instant

k = k̃ ∈ N, then a quantized consensus is reached for the graph G with the initial state

X0 under the SG algorithm. Hence, to prove reaching a quantized consensus under the SG

algorithm with probability 1, it suffices to show that almost surely there exists a time instant

k̃ such that X[k̃] is contained in one of the sets C, C(q(xave)− 0.5) or C(q(xave) + 0.5). The

existence of such a time k̃ with probability 1 is studied in the sequel. Finding appropriate

lower and upper bounds on the expected value of k̃ will be addressed in the next section.

A Lyapunov-type argument will be used to prove the convergence to a quantized con-

sensus. For every µ ∈ R, let d(·, C(µ)) : S → Z be a distance function defined as

d(α, C(µ)) := min
β∈C(µ)

‖α− β‖1

ε
, ∀α ∈ S,

where ‖·‖1 denotes the L1 norm. Note that the number d(α, C(µ)) quantifies the distance of

the vector α ∈ S from the discrete set C(µ). A Lyapunov function will be later introduced

in terms of d(·, C(q(xave)− 0.5)) and d(·, C(q(xave) + 0.5)) to prove the convergence. Define

Q to be the set {k + 0.5| k ∈ Z}.

Lemma 1 Given µ ∈ Q, the inequality

d(A(α, (i, j)), C(µ)) ≤ d(α, C(µ)) (6.6)

holds for every vector α ∈ S and edge (i, j) ∈ E.

Proof: Let the short-hand notation β be used for d(A(α, (i, j)). Denote the pth entries

of α and β with αp and βp, respectively, for every p ∈ V. To simplify the proof, suppose
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that neither αi − µ nor αj − µ is an integer multiple of ε. If α belongs to C(µ), then

d(β, C(µ)) = d(α, C(µ)) = 0.

Hence, with no loss of generality we assume that α 6∈ C(µ) and αj ≤ αi. If αi, αj > µ or

αi, αj < µ, then

d(β, C(µ)) = d(α, C(µ)).

For the remaining case αi > µ and αj < µ, it suffices to prove the inequality

d(α, C(µ))− d(β, C(µ)) ≥min
{

2
(
q(αi)− q(αj)

)
, 2
⌊
αi − µ

ε

⌋
+ 1, 2

⌊
µ− αj

ε

⌋
+ 1
}
.

(6.7)

To this end, a number of possibilities can be considered as follows:

i) βi > µ and βj < µ: Given a vector γ =
[
γ1 γ2 · · · γn

]
∈ S, if none of the

numbers γ1−µ, γ2−µ, ..., γn−µ is an integer multiple of ε, then it can be shown that

d(γ, C(µ)) =
n∑

i=1

⌊
|γi − µ|

ε

⌋
. (6.8)

Use the above equality twice for γ = α and γ = β to obtain

d(α, C(µ))− d(β, C(µ)) =
⌊
αi − µ

ε

⌋
+
⌊
µ− αj

ε

⌋
−
⌊
αi + ε(q(αj)− q(αi))− µ

ε

⌋
−
⌊
µ− αj − ε(q(αi)− q(αj))

ε

⌋
= 2
(
q(αi)− q(αj)

)
.

(6.9)

ii) βi > µ and βj > µ: The equality (6.8) yields

d(α, C(µ))− d(β, C(µ)) =
⌊
αi − µ

ε

⌋
+
⌊
µ− αj

ε

⌋
−
⌊
αi + ε(q(αj)− q(αi))− µ

ε

⌋
−
⌊
αj + ε(q(αi)− q(αj))− µ

ε

⌋
=
⌊
µ− αj

ε

⌋
−
⌊
αj − µ

ε

⌋
= 2

⌊
µ− αj

ε

⌋
+ 1

(6.10)
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(the assumption that αj − µ is not an integer multiple of ε is used to derive the last

line of the above inequality).

iii) βi < µ and βj < µ: Similar to the previous case, one can write

d(α, C(µ))− d(β, C(µ)) = 2
⌊
αi − µ

ε

⌋
+ 1. (6.11)

iv) βi < µ and βj > µ: This case is possible only if α ∈ C(µ), which is in contradiction

to the assumption made earlier.

The proof is completed by noting that the inequality (6.7) follows immediately from

(6.9), (6.10), and (6.11). �

Remark 1 Suppose we run the SG algorithm on the graph G with the initial state X[0] = X0

to obtain an infinite sequence of states X[0],X[1],X[2], .... Given µ ∈ Q, it follows from

Lemma 1 that

d(X[0], C(µ)) ≥ d(X[1], C(µ)) ≥ d(X[2], C(µ)) ≥ · · ·

In other words, as time elapses, the state of the graph system can never become farther from

the discrete set C(µ).

The single-action function A was already defined. For a vector α ∈ S and a sequence of

edges (i1, j1), (i2, j2), (i3, j3), ..., the multi-action functions A2, A2, A4, ... can also be defined

analogously as

A2(α, (i1, j1), (i2, j2)) : = A(A(α, (i1, j1)), (i2, j2)),

A3(α, (i1, j1), (i2, j2), (i3, j3)) : = A(A2(α, (i1, j1), (i2, j2)), (i3, j3)),

...

(6.12)

Let r denote the cardinality of the set E . For every µ ∈ Q, define a deterministic gossip

algorithm as follows for an initial state X[0] ∈ S.

µ-Deterministic Gossip (µ-DG) Algorithm:

Step 1 : Set k = 0.

Step 2 : Find a sequence of r edges (i1, j1), (i2, j2), ...., (ir, jr) ∈ E (not necessarily
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distinct) such that d(Ar(X[k], (i1, j1), ..., (ir, jr)), C(µ)) has the least possible value.

Define X[k + 1] to be A(X[k], (i1, j1)).

Step 3 : Increase k by 1 and jump to step 2.

Note that although the SG algorithm picks an edge at random from the probability

distribution P at each time update, an optimal edge is selected by the µ-DG algorithm at

each iteration in such a way that if the next r − 1 time updates were taken in an optimal

way, then the resulting state of the graph system would be as closely as possible to the set

C(µ). As a result, this deterministic algorithm takes an optimal strategy relative to the set

C(µ).

Lemma 2 Given µ ∈ Q, apply the µ-DG algorithm to the graph G with an initial state

X[0] ∈ S. There exists a natural number k0 for which either of the following cases occurs:

i) X[k] belongs to set C(µ), for every k ≥ k0.

ii) x1[k]−µ, x2[k]−µ, ..., xn[k]−µ are either all negative or all strictly positive, for every

k ≥ k0.

Proof: The proof is provided in Appendix 1. �

For notational simplicity, let η1 and η2 denote q(xave)−0.5 and q(xave)+0.5, respectively.

The next theorem presents a key result that will be later used to prove the almost sure

convergence to a quantized consensus under the SG algorithm.

Theorem 1 Apply the η1-DG algorithm to the graph G with an initial state x[0] ∈ S. Stop

the algorithm at some iteration k = k0 where the integer-valued non-increasing (nonnega-

tive) function d(X[k], C(η1)) attains its minimum. Then, run the η2-DG algorithm on the

graph G (by starting from the current state X[k0]) until the function d(X[k], C(η2)) reaches

its minimum at some iteration k = k1. One of the following cases takes place:

i) X[k] belongs to the set C, for every k ≥ k1.

ii) X[k] belongs to the set C(η1), for every k ≥ k1.

iii) X[k] belongs to the set C(η2), for every k ≥ k1.
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Proof: Since the η1-DG algorithm makes d(X[k], C(η1)) reach its minimum at k = k0, it

can be concluded from (the proof of) Lemma 2 that one of the following cases happens:

i) X[k] belongs to the set C(η1) for every k ≥ k0: This corresponds to case (ii) of the

theorem.

ii) x1[k]− η1, x2[k]− η1, ..., xn[k]− η1 are all negative for every k ≥ k0: One can write

η1 ≥
1
n

n∑
i=1

xi[k] = xave > q(xave)− 0.5 = η1.

The above contradiction does not allow this case to take place.

iii) x1[k] − η1, x2[k] − η1, ..., xn[k] − η1 are all strictly positive for every k ≥ k0: Using

Lemma 2 for the η2-DG algorithm, it can be concluded that one of the following cases

occurs:

– x[k] belongs to the set C(η2) for every k ≥ k1: If this is the case, the proof is

complete.

– x1[k] − η2, x2[k] − η2, ..., xn[k] − η2 are all negative for every k ≥ k1: This case

simply implies that X[k] belongs to the set C, which corresponds to case (i) of

the theorem.

– x1[k]− η2, x2[k]− η2, ..., xn[k]− η2 are all strictly positive for every k ≥ k1: The

inequality

η2 <
1
n

n∑
i=1

xi[k] = xave ≤ q(xave) + 0.5 = η2

is a contradiction for this case, as before. �

The next theorem presents the main result of this section.

Theorem 2 Apply the SG algorithm to the graph G with the initial state x[0] = X0. With

probability 1, there exists a natural number k̃ such that one of the following cases occurs:

i) x[k] belongs to the set C, for all k ≥ k̃.

ii) x[k] belongs to the set C(q(xave)− 0.5), for all k ≥ k̃.

iii) x[k] belongs to the set C(q(xave) + 0.5), for all k ≥ k̃.
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Proof: Construct a transition graph G̃ as follows:

• Put |S| vertices corresponding to the elements of the set S (where |S| denotes the

cardinality of the set S).

• For every α ∈ S and (i, j) ∈ E such that i < j, draw a directed edge from vertex α

to vertex A(α, (i, j)) in G̃, and assign the weight p(i,j) to this edge.

It is easy to verify that every run of the SG algorithm on the graph G with the initial state

X[0] = X0 is equivalent to a random walk on the graph G̃ starting from vertex X0, where the

weight of every edge shows its probability of being chosen through the walk. Let G̃0 denote

an induced subgraph of G̃ with the set of vertices C ∪ C(q(xave) − 0.5) ∪ C(q(xave) + 0.5).

The problem now reduces to proving that every random walk in G̃ starting from vertex

X0 almost surely ends in the subgraph G̃0. To prove this statement, two observations are

needed. First, note that if a walk enters the subgraph G̃0, it can never leave this subgraph

(due to its vertices forming a quantized set, as discussed earlier). Second, it can be deduced

from Theorem 1 that there is a directed path from every vertex of G̃ to (some vertex

of) the subgraph G̃0 (this path can, for instance, be obtained using the η1-DG and η2-DG

algorithms). These properties imply that the subgraph G̃0 is an absorbing set and, therefore,

it follows from a well-known theorem in the Markov chain theory that every infinite random

walk almost surely ends up in this absorbing set [65]. This completes the proof. �

Define the diameter of a discrete set M as the supremum of the infinity norm of the

difference between every two points in M, i.e.,

sup
α,β∈M

‖α− β‖∞

where ‖ · ‖∞ denotes the L∞ norm. Moreover, for every natural number p ∈ N, define Mp

to be the product set M×M× · · · ×M︸ ︷︷ ︸
p times

.

Remark 2 The relaxed definition of quantized consensus provided in [28] for a uniform

quantizer is less precise than the one introduced in this work. Indeed, the work [28] states

that if a quantized consensus is reached at time k̃, then the state X[k] belongs to the box

(xave − 1, xave + 1)n for every k ≥ k̃. In contrast, Theorem 2 proves that there exists a
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positive integer k̃ such that X[k], ∀k ≥ k̃, belongs to one of the sets C, C(η1) or C(η2). In

this regard, two points can be made as follows:

• The diameter of the set (xave − 1, xave + 1)n is equal to 2, whereas the diameter of

each of the sets C, C(η1), or C(η2) is at most 1.

• If X[k] in the steady state (for large enough k’s) is not constant and oscillates (with

probability 1), it should then belong to either C(η1) or C(η2), which are both of diameter

ε. Since the diameters of these sets can become arbitrarily small by rendering an

appropriate ε, running the SG algorithm for a small ε either makes the steady state

constant or permits it to oscillate in a set with a small diameter (ε). In the latter

case, each number xi[k] can oscillate between only two numbers of difference ε (due

to the definition of C(µ), µ ∈ R).

To clarify Remark 2, consider the nominal values xave = 10.6 and ε = 0.2. The definition

of consensus borrowed from [28] states that there exists a positive integer k̃ such that

9.6 < x1[k], ..., xn[k] < 11.6, ∀k ≥ k̃.

In contrast, Theorem 2 asserts that there exists a number k̃ so that

10.3 < x1[k], ..., xn[k] ≤ 10.7, ∀k ≥ k̃ (6.13)

or

10.5 < x1[k], ..., xn[k] ≤ 11.5, ∀k ≥ k̃ (6.14)

(note that case (iii) in Theorem 2 is ruled out in this example, as the average of the entries

of X[k] cannot be smaller than all entries of X[k]). Comparing (6.13) with (6.13) and (6.14),

one can simply observe that a more informative description of the steady-state values on

the vertices of G is delineated by (6.13) and (6.14).

6.3.1 Generalization to Arbitrary Quantizers

To prove reaching a quantized consensus with probability 1 under the SG algorithm for a

general quantizer q(x) given by (6.1), the definitions of η1, η2, C, and C(µ) (where µ ∈ R)

should be revised. This is carried out in the sequel.
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Let η1 and η2 be equal to

η1 = max
{
L̄i

∣∣ i ∈ Z, L̄i ≤ xave

}
,

η2 = min
{
L̄j

∣∣ j ∈ Z, L̄j ≥ xave

}
.

As before, define S to be the set of all n-tuple (α1, α2, ..., αn) such that αi ∈ [xmin, xmax]

and that αi − xi is an integer multiple of ε for every i ∈ V. Moreover

C :=
{

(α1, α2, ..., αn) ∈ S
∣∣∣ αi ∈ (η1, η2], ∀i ∈ V

}
,

C(L̄j) :=
{

(α1, α2, ..., αn) ∈ S
∣∣∣ αi ∈

(
L̄j − ε(Lj+1 − Lj), L̄j + ε(Lj+1 − Lj)

]
, ∀i ∈ V

}
, ∀j ∈ Z.

One can adopt an approach similar to the one proposed earlier to prove all lemmas

and theorems given so far for a general quantizer q(x). This leads to the conclusion that a

quantized consensus is reached almost surely for the graph G under the SG algorithm with

the initial state X[0] = X0 and, more specifically, X[k] belongs to one of the quantized sets

C, C(η1) or C(η2) for large enough k’s.

6.4 Convergence Time

Let E{·} and E{·|·} denote the expectation and conditional expectation operators, respec-

tively. For simplicity, assume that q(x) is a uniform quantizer (the results can be extended

to the general case similarly to what was done earlier). Suppose that X0 is an unknown ini-

tial state that belongs to the given hyperrectangle [xmin, xmax]n. Since the time k̃ at which

the state of the graph system belongs to one of the quantized sets C, C(η1), or C(η2) is a

random variable by virtue of the stochastic nature of the SG algorithm, the goal is to find

the expected value of k̃ corresponding to the worst initial state X0 in the hyperrectangle

[xmin, xmax]n. In other words, the objective is to study the quantity tc, where

tc := max
{

E
{
k̃
∣∣X[0] = X0

} ∣∣∣ X0 ∈ [xmin, xmax]n
}
. (6.15)

Recall that the sets C and C(µ) (where µ ∈ Q) defined earlier both depend on the initial

state X0. To show this dependency explicitly (as required later in this work), let Cα and

Cα(µ) be defined similarly to C and C(µ), respectively, but for an arbitrary initial state

X[0] = α ∈ [xmin, xmax]n.
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Given a number µ ∈ Q, consider a run of the SG algorithm on the graph G with an

initial state X[0] = α ∈ [xmin, xmax]n, where an edge (i, j) ∈ E is chosen at the kth update

(k ∈ N). If X[k] defined as A(X[k − 1], (i, j)) has the property that

d(X[k], Cα(µ)) ≤ d(X[k − 1], Cα(µ))− 1,

then the action taken at the kth update is said to be a positive action with respect to the

set Cα(µ), otherwise it is called a trivial action meaning that

d(X[k], Cα(µ)) = d(X[k − 1], Cα(µ))

(see Remark 1). It can be deduced from the proof of Lemma 1 (particularly the inequality

(6.7)) that a positive action takes place at the kth update with respect to the set Cα(µ) if

and only if none of the following sets of relations holds:

xi[k − 1], xj [k − 1] ≤ µ, (6.16a)

xi[k − 1], xj [k − 1] > µ, (6.16b)

xi[k − 1], xj [k − 1] ∈ (µ− ε, µ+ ε]. (6.16c)

This motivates the introduction of a set C̃(µ) defined as the collection of all vectors α =[
α1 α2 · · · αn

]
∈ [xmin, xmax]n for which there are two indices i, j ∈ V such that none

of the sets of relations

αi, αj ≤ µ, (6.17a)

αi, αj > µ, (6.17b)

αi, αj ∈ (µ− ε, µ+ ε] (6.17c)

holds. Given µ ∈ Q, let T (µ) denote the first time instant at which a positive action occurs

with respect to the set CX[0](µ) under running the SG algorithm on the graph G. Note

that T (µ) is a random variable that depends on the initial state X[0] and the probability

distribution P. Define now

Φ(µ) := max
{

E
{
T (µ)

∣∣X[0] = α
} ∣∣∣ α ∈ C̃(µ)

}
, ∀µ ∈ Q. (6.18)
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Roughly speaking, Φ(µ) characterizes the maximum of the expected number of time

updates that are required for the SG algorithm to take a possible action on the graph G

with respect to the set Cα(µ) by starting from every state α for which a positive action can

be taken in the future (this is guaranteed by the condition α ∈ C̃(µ) in the above definition).

The quantity Φ(µ) and its relevance to the desired term tc are investigated in the sequel.

Theorem 3 Given µ ∈ Q, the number Φ(µ) is equal to

max
{

E
{
T (µ)

∣∣X[0] = α
}}
,

where the maximum is taken over all n-tuple α =
[
α1 α2 · · · αn

]
satisfying the rela-

tion {α1, α2, ..., αn} = {µ− ε, µ, ...., µ, µ+ ε} in which the value µ appears n− 2 times.

Proof: The proof is provided in Appendix 2. �

The following definition and notation will be later used to express Φ(µ) in terms of the

topology of the graph and the probability set P:

• Let P denote the Laplacian of the weighted graph G, i.e.,

pij =


−p(i,j) if (i, j) ∈ E∑

(i,u)∈E p(i,u) if i = j

0 otherwise

where pij represents the (i, j) entry of the matrix P for every i, j ∈ V.

• For every i ∈ V and M ∈ Rn×n, define M∼i to be a matrix obtained from M by

removing its ith row and ith column.

Theorem 4 Given µ ∈ Q, the quantity Φ(µ) can be obtained as

Φ(µ) = max
j∈V

∥∥(P∼j)−1E
∥∥
∞,

where E ∈ Rn−1 is a vector of 1’s.

Proof: For every i, j ∈ V, i 6= j, let βij denote an n-dimensional vector whose elements

are all equal to µ, except for its ith and jth entries that are µ+ ε and µ− ε, respectively. It
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follows from Theorem 3 that

Φ(µ) = max
i,j∈V, i 6=j

E
{
T (µ)

∣∣X[0] = βij

}
. (6.19)

It is useful to contrive a recursive equation for E{T (µ)|X[0] = βij}. To this end, run the SG

algorithm on the graph G with the initial state βij . The expected value of the time at which

the first positive action is taken with respect to the set Cβij
(µ) is E{T (µ)|X[0] = βij}. To

count this number in another way, run the algorithm only one iteration. Assume that the

edge e ∈ E is chosen in the first update. There are a number of possibilities as given below:

• e is equal to the edge (i, u), for some u ∈ V\{j}: In this case, due to the equality

X[0] = βij , the vector X[1] can be obtained as βuj . Hence, it is expected to take the

first positive action after E{T (µ)|X[0] = βuj} time updates (in addition to the first

time update taken at the beginning).

• e is equal to the edge (i, j): This means that a positive action is already taken at the

first time update.

• e is equal to the edge (u, l), for some u, l ∈ V\{i}: In this case, it is easy to show that

X[1] = X[0] = βij . This implies that it is expected to take the first positive action

after E{T (µ)|X[0] = βij} time updates (other than the first one already taken).

The above reasoning yields the recursive equation

E
{
T (µ)

∣∣X[0] = βij

}
=1 +

∑
(i,u)∈E

p(i,u)E
{
T (µ)

∣∣X[0] = βuj

}
+
(
1−

∑
(i,u)∈E

p(i,u)

)
E
{
T (µ)

∣∣X[0] = βij

}
, ∀i ∈ V\{j}.

(6.20)

This equation can be arranged in a matrix form to obtain

max
i∈V\{j}

E
{
T (µ)

∣∣X[0] = βij

}
=
∥∥(P∼j)−1E

∥∥
∞ , ∀j ∈ V. (6.21)

The proof follows immediately from (6.19) and (6.21). �

An important implication of Theorem 4 is that the quantity Φ(µ) does not depend on µ

or ε. Hence, the notation Φ will be used henceforth for Φ(µ). Given α =
[
α1 α2 · · · αn

]
,
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define V (α) as

V (α) :=
n∑

i=1

(αi − xave)2.

Apply the SG algorithm to the graph G with the initial state X[0] = X0 ∈ [xmin, xmax]n. In

line with the method developed in [28], it is easy to show that

E
{
V (X[k])

}
≤
(
1− ελ2(P )

)k
V (X0) +

ε

λ2(P )
, ∀k ∈ N, (6.22)

where λ2(P ) denotes the second smallest eigenvalue of the positive semidefinite matrix P .

As discussed in [28] for the special case ε = 0.5, the right side of the above inequality is

composed of two terms that can be interpreted as follows:

• The first term is
(
1− ελ2(P )

)k
V (X0), which depends on the initial state. Since λ2(p)

is always less than 2 (if n ≥ 3) and ε ∈ (0, 0.5], the number 1 − ελ2(P ) belongs

to the interval (0, 1). This means that the term
(
1 − ελ2(P )

)k
V (X0) goes to zero

exponentially fast.

• The second term is ε
λ2(P ) , which does not depend on the initial state.

The inequality (6.22) implies that the effect of the initial state X0 disappears in the quantity

E
{
V (X[k])

}
exponentially fast so that the state of the graph system becomes close to a

quantized set at an exponential rate and then the convergence rate begins to slow down

until a quantized consensus is reached. The bias term ε
λ2(P ) in (6.22) makes it impossible to

find tc directly. However, the parameter Φ(µ) introduced earlier will be used in the sequel

to bypass this issue.

Theorem 5 The number tc can be lower and upper bounded as

tc ≥ max
j∈V

‖(P∼j)−1E‖∞, (6.23a)

tc ≤

⌈
−

log
(
n(xmax − xmin)2

)
log(1− ελ2(P ))

⌉
+

2
ε

(
n+

√
n

(
1 +

ε

λ2(P )

))
max
j∈V

‖(P∼j)−1E‖∞.

(6.23b)

Proof: It can be concluded from (6.15) and (6.18) that Φ is a lower bound for tc. The in-

equality (6.23a) follows from this fact and Theorem 4 that relates Φ to the Laplacian matrix



169

P . To prove the inequality (6.23b), consider an arbitrary initial state X[0] ∈ [xmin, xmax]n.

Define k̄ as

k̄ :=

⌈
−

log
(
n(xmax − xmin)2

)
log(1− ελ2(P ))

⌉
. (6.24)

Notice that (
1− ελ2(P )

)k̄
V (X0) ≤

(
1− ελ2(P )

)k̄
n(xmax − xmin)2 ≤ 1.

This inequality implies that the effect of the initial state on E
{
V (X[k])

}
mainly diminishes

by the time k = k̄; more specifically, the relation (6.22) yields

E
{
V (X[k̄])

}
≤ 1 +

ε

λ2(P )
. (6.25)

On the other hand, one can write

d(X[k̄], C(η1)) + d(X[k̄], C(η2)) ≤
n∑

i=1

|xi[k̄]− η1|+ |xi[k̄]− η2|
ε

≤ 2
n∑

i=1

|xi[k̄]− xave|+ 1
ε

≤ 2
ε

(
n+

√
nV (X[k̄])

)
.

(6.26)

It follows from (6.25), (6.26) and the concavity of the function
√
x that

E
{
d(X[k̄], C(η1)) + d(X[k̄], C(η2))

}
≤ 2
ε
E
{
n+

√
nV (X[k̄])

}
≤ 2
ε

(
n+

√
nE
{
V (X[k̄])

})
≤ 2
ε

(
n+

√
n

(
1 +

ε

λ2(P )

))
.

(6.27)

Consider the state X[k] at the time instant k = k̄. It can be inferred from Theorem 1

that if sufficient positive actions are taken by the SG algorithm by starting from the state

X[k̄] so that d(X[k], C(η1)) reaches its minimum at some time instant k = k̃0 and then more

positive actions are taken to make d(X[k], C(η2)) attain its minimum at some time k = k̃,

then a quantized consensus is reached at the time instant k̃. This property together with

the fact that at most Φ iterations (in expectation) are required to take a positive action
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leads to

tc ≤ k̄ + E
{
d(X[k̄], C(η1)) + d(X[k̄], C(η2))

}
Φ. (6.28)

The inequality (6.23b) follows immediately from (6.24), (6.27), (6.28), and Theorem 4. �

Note that the upper bound on tc provided in Theorem 5 is composed of two terms. The

first one depends on xmax and xmin, and is indeed identical to the available upper bound

on tc in the case when the standard unquantized gossip algorithm is applied to the graph.

The second term in the upper bound does not depend on the geometry of the initial state

and is only contingent upon the topology of the graph. This term is due to the quantized

nature of the SG algorithm and corresponds to the number of iterations required to reach a

quantized consensus once the state of the graph system is already close to a quantized set.

The next theorem relates the upper bound on tc to the spectral of the principal submatrices

of the Laplacian P .

Theorem 6 The scalar tc satisfies the inequality

tc ≤

⌈
−

log
(
n(xmax − xmin)2

)
log(1− ελ2(P ))

⌉
+

2
√
n− 1
ε

(
n+

√
n

(
1 +

ε

λ2(P )

))(
max
j∈V

1
λmin {P∼j}

)
,

(6.29)

where λmin(·) represents the smallest eigenvalue of a matrix.

Proof: Given j ∈ V, One can write

‖(P∼j)−1E‖∞ ≤ ‖(P∼j)−1‖∞‖E‖∞ = ‖(P∼j)−1‖∞ ≤
√
n− 1‖(P∼j)−1‖2,

where ‖·‖2 stands for the L2 norm. Since the graph G is connected, the principal submatrix

P∼j is positive definite. As a result, it can be deduced from the above inequality that

‖(P∼j)−1E‖∞ ≤
√
n− 1

1
λmin{P∼j}

. (6.30)

The proof is completed by combining the inequalities (6.23b) and (6.30). �

Remark 3 Theorem 6 states that the expected value of the convergence time in the worst

case (i.e., tc) is related to the (n− 1)th order submatrices of the Laplacian of the graph, in

addition to the Laplacian itself. Since the graph G is connected, λ2(P ) is strictly positive.
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The interlacing theorem yields

0 < λmin{P∼j} ≤ λ2(P ). (6.31)

This means that unlike the unquantized consensus whose convergence mainly depends on

λ2(P ), a more subtle dependency on λ2(P ) is governed for the quantized case. To be more

precise, the convergence time depends on the minimum of λmin{P∼j} (in addition to λ2(P )),

which is not directly related to λ2(P ).

6.4.1 Special Graphs

This subsection aims to obtain lower and upper bounds on the quantity tc for both complete

and path graphs in the case when all edges have the same weight. In this regard, assume

that every edge is associated with the same weight p.

Corollary 1 For a complete graph G with equally weighted edges, the quantity tc satisfies

the inequalities (6.23a) and (6.23b), where

λ2(P ) =
2

n− 1
,

max
j∈V

‖(P∼j)−1E‖∞ =
n(n− 1)

2
.

(6.32)

Proof: It is easy to verify that λ2(P ) and maxj∈V ‖(P∼j)−1E‖∞ satisfy the equalities

given in (6.32) in the case when G is a complete graph. The proof is completed by using

Theorem 5. �

Corollary 2 Let G be a path graph with equally weighted edges such that vertex i is con-

nected to vertex i+ 1 for every i ∈ {1, 2, ..., n − 1} (these are the only edges of the graph).

The quantity tc satisfies the inequalities (6.23a) and (6.23b), where

λ2(P ) =
2
n

(
1− cos

2π
n

)
,

max
j∈V

‖(P∼j)−1E‖∞ =
n(n− 1)2

2
.

(6.33)

Proof: The proof is a consequence of Theorem 5 after showing that the quantities λ2(P )

and maxj∈V ‖(P∼j)−1E‖∞ satisfy the relations given in (6.33). The computation of λ2(P )
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for a path graph is straightforward. To find maxj∈V ‖(P∼j)−1E‖∞, first notice that the

weight p is equal to 1
n−1 . On the other hand, it is evident that

max
j∈V

‖(P∼j)−1E‖∞ = Φ = E
{
T (µ)

∣∣X[0] = β1n

}
,

where βij is introduced in Theorem 4 for every i, j ∈ V such that i 6= j. The set of equations

given in (6.20) gives rise to

pE
{
T (µ)

∣∣X[0] = β1n

}
− pE

{
T (µ)

∣∣X[0] = β2n

}
= 1, (6.34a)

− pE
{
T (µ)

∣∣X[0] = β(i−1)n

}
+ 2pE

{
T (µ)

∣∣X[0] = βin

}
− pE

{
T (µ)

∣∣X[0] = β(i+1)n

}
= 1,

(6.34b)

− pE
{
T (µ)

∣∣X[0] = β(n−2)n

}
+ 2pE

{
T (µ)

∣∣X[0] = β(n−1)n

}
= 1, (6.34c)

where the argument i in the equation (6.34b) belongs to the set {2, 3, ..., n− 2}. Adding up

these equalities results in the relation

pE
{
T (µ)

∣∣X[0] = β(n−1)n

}
= n− 1. (6.35)

The (backward) recursive equation (6.34b) can be solved using conventional techniques to

conclude that there exist two constants a and b such that

pE
{
T (µ)

∣∣X[0] = βin

}
= a+ bi− i2

2
, i = n− 1, n− 2, ..., 1.

One can employ the final conditions given by (6.34c) and (6.35) to arrive at

a =
n2 − n

2
, b =

1
2
.

This implies that

Φ = E
{
T (µ)

∣∣X[0] = β1n

}
=
n2 − n

2p
=
n(n− 1)2

2
,

which completes the proof. �
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6.4.2 Optimal Edge Weights

In this subsection, it is desired to find out what probabilities the edges of G should possess

so that the consensus is reached quickly. For this purpose, observe that the quantity tc has

been related to the spectral of the submatrices of the Laplacian in (6.29). Letting xmin,

xmax and ε be fixed, it follows from the upper bound on tc provided in Theorem 6 and

the inequality (6.31) that in order to minimize the convergence time in the worst case, a

heuristic method is to minimize the term

max
i∈V

1
λmin {P∼i}

. (6.36)

Hence, the goal is to minimize the function (6.36) over all possible (discrete) probability

distributions captured by P for the sake of finding a sub-optimal edge-selection probability

distribution. This is accomplished in the sequel.

Problem 1: Minimize the scalar variable −µ subject to the constraints

λmin{P∼i} ≥ µ, i = 1, 2, ..., n,

where P is a matrix variable representing the Laplacian of the weighted graph G. Denote

the global minimizer of this optimization with (µ∗, P ∗) (note that there are some implicit

constraints stating that the weights on the edges are positive and sum up to 1).

Since the operator λmin(·) is concave with respect to its symmetric argument, it is easy

to show that Problem 1 is convex. More precisely, the constraint λmin{P∼i} ≥ µ can be

expressed as P∼i � µI, which is a semidefinite constraint. Hence, the solution P ∗ can be

found efficiently. On the other hand, one can verify that

µ∗ = max
P

min
i
λmin{P∼i}

or equivalently
1
µ∗

= min
P

max
i

1
λmin{P∼i}

.

This implies that the solution P ∗ corresponds to a sub-optimal edge-selection probability

distribution (resulting in a fast convergence of the SG algorithm), because of minimizing the

term given in (6.36). Note that solving Problem 1 needs the entire information of the graph
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G, which means that a standard algorithm for solving this problem will be a centralized one

whose implementation in practice might be impossible. However, in line with the method

discussed in [12], one can devise a distributed algorithm for finding P ∗.

Remark 4 The stochastic gossip algorithm studied in this work requires that an edge be

selected at each time instant according to a pre-specified probability. Thus, one may spec-

ulate that a global coordinator is needed to be responsible for the edge-selection task, which

makes the SG algorithm not really distributed. To address this issue, consider the distributed

randomized gossip algorithm investigated in [12]: provide every vertex of the graph with a

clock that ticks at the times of a rate 1 Poisson process such that whenever its clock ticks,

it contacts one of its neighboring vertices using some pre-specified (local) probabilities to

exchange quantized data. In other words, the distributed stochastic gossip algorithm given

in [12] chooses first a vertex and then an edge connected to that vertex, instead of selecting

an edge directly. Nonetheless, it is easy to show that every such distributed gossip algorithm

corresponds to the stochastic gossip algorithm given here with some specific probability dis-

tribution P on the edges. Thus, the analysis provided in the present work is applicable to

the distributed stochastic gossip algorithm discussed in [12].

6.5 Simulation Results

Example 1: Consider a complete graph G with n = 40. Assume that all edges possess

the same weight equal to 2
n(n−1) and that the initial values sitting on the vertices of G are

uniformly distributed in the box [0, 100]n. The intent is to understand how these values

evolve under the SG algorithm. For this purpose, let q(x) be a uniform quantizer and

ε = 0.2. Two sets of initial states have been randomly generated, which are analyzed in the

sequel:

• As the first trial, the initial values randomly generated are depicted in Figure 6.1a.

Note that the x-axis of this plot shows the index i changing from 1 to 40, and the y-

axis shows the corresponding value of xi[0]. The average number xave and time instant

k̃ introduced in Theorem 2 turned out to be equal to 45.98 and 658, respectively, for

one particular run of the SG algorithm. The final values at the time k̃ are plotted in

Figure 6.1b. Since these numbers are spread in the interval [45.5, 46.5], the point X[k̃]
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belongs to the set C. This implies that the steady state of the vector X[k] is fixed,

i.e., X[k] = X[k̃], for every k ≥ k̃. The distance function d(X[k], C) is sketched in

Figure 6.3a to illustrate how it attenuates to zero in a (non-strictly) decreasing way.

• As the second trial, the initial values randomly generated are shown in Figure 6.2a.

The corresponding final values at time k̃ = 959 are depicted in Figure 6.2b. This

plot demonstrates that X[k̃] belongs to the set C(η1), rather than C (note that xave =

42.57). Therefore, the steady-state behavior of the vector X[k] is oscillatory with

probability 1. However, xi[k] (i ∈ V and k ≥ k̃) can take only two possible values

with the difference ε = 0.2, in light of the definition of C(η1). The distance function

d(X[k], C(η1)) is plotted in Figure 6.3b to illustrate the convergence rate of the SG

algorithm.

Example 2: Consider the graph G drawn in Figure 6.4. The objective is to find out

what probabilities should be assigned to the edges of G so that the consensus is reached

quickly under the SG algorithm with q(x) being a uniform quantizer. To this end, let the

convex optimization provided in Problem 1 be solved. This yields the following probability

distribution:

p(1,2) = p(1,5) = 0.2087, p(2,3) = p(2,4) = p(4,5) = p(3,5) = 0.1146, p(3,4) = 0.1241.

The quantity Φ corresponding to this set of edge-selection probabilities is 14.1770. One can

make a comparison with two heuristic methods for designing the probability set P, which

are spelled out below:

• The most naive approach is to assume that the edges of the graph are equally weighted.

This leads to the probability p = 1
7 on each edge. The associated quantity Φ is

obtained as 17.5.

• Another technique is to devise the probability distribution P in such a way that all
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Figure 6.1: (a): The initial values on the vertices of the graph G for the first trial in Example
1; (b): the final values on the vertices of the graph G (at time k̃) for the first trial in Example
1
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Figure 6.2: (a): The initial values on the vertices of the graph G for the second trial in
Example 1; (b): the final values on the vertices of the graph G (at time k̃) for the second
trial in Example 1
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Figure 6.3: (a): The distance function d(X[k], C) for the first trial in Example 1; (b): the
distance function d(X[k], C(η1)) for the second trial in Example 1
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Figure 6.4: The graph G studied in Example 2

vertices have the same probability of being chosen at each time update, i.e.,

p(1,2) + p(1,5) = p(2,1) + p(2,3) + p(2,4)

= p(3,2) + p(3,4) + p(3,5)

= p(4,2) + p(4,3) + p(4,5)

= p(5,1) + p(5,3) + p(5,4).

Note that p(i,j) = p(j,i), ∀(i, j) ∈ E . The above set of equations has a unique symmetric

solution (complying with the symmetry of the graph G) as follows:

p(1,2) = p(1,5) = 0.2, p(2,3) = p(2,4) = p(4,5) = p(3,5) = 0.1, p(3,4) = 0.2.

The corresponding Φ is equal to 15.

Hence, the value of Φ for the sub-optimal solution is better from the ones obtained using

these two rudimentary techniques.

An interesting fact about the edge selection can be seen in this example. Remove the

edge (1, 5) from the graph G. In this case, Problem 1 leads to the solution

p(1,2) = 0.3781, p(2,3) = p(2,4) = 0.1757, p(3,4) = 0, p(5,3) = p(5,4) = 0.1352 (6.37)

for the new graph, associated with Φ = 23.1292. Notice that p(3,4) = 0, which indicates that

although a complete graph has the best convergence, if some edges do not exist (e.g., the

edge (1, 5)), it might be better to ignore some other edges too (e.g., the edge (3, 4)). This

is interesting as it reveals the fact that some communications are redundant. If all edges of
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this new graph are assumed to have the same weight, Φ will be obtained as 36. Therefore,

there is a noticeable improvement in the value of Φ via the solution of Problem 1.

For the purpose of simulation, the points

x1[0] = 20.1185, x2[0] = 13.6221, x3[0] = 97.8356, x4[0] = 45.5033, x5[0] = 45.9224

have been randomly generated in the interval [0, 100]. The stochastic gossip algorithm was

run 1000 times on the graph G with its edge (1,5) removed and the average of the random

variable k̃ was calculated accordingly. This value for the probability distribution (6.37)

was obtained as 48.5710, while this turned out to be 65.3580 for the identical probability

distribution (equal edge weights). This demonstrates that one can save significantly in the

convergence time if the solution of Problem 1 is deployed, which also obviates the usage of

the edge (3, 4).

6.6 Summary

This chapter deals with the distributed averaging problem over a connected weighted graph.

The governing policy is that an edge of the graph is chosen at each time update with the

probability equal to its weight, and then the values on its ending vertices are updated

in terms of the quantized data of each other. A quantized stochastic gossip algorithm

was proposed in a recent paper, which was shown to work in a particular case. In this

chapter, it is proved that a quantized consensus is reached in the general case using this

algorithm. Some steady-state properties of the numbers sitting on the vertices of the graph

are obtained. Lower and upper bounds on the expected value of the convergence time in

the worst case are also derived, which depend on the principal submatrices of the Laplacian

matrix of the weighted graph. These bounds are explicitly computed for equally weighted

complete and path graphs. Finally, a convex optimization is provided to obtain a set of

weights on the edges of the graph that results in a fast convergence of the gossip algorithm.

6.7 Appendix 1

Proof of Lemma 2: Since the distance function d(·, C(µ)) is always integer-valued and non-

negative, it follows from Lemma 1 that there exists a number k0 ∈ N with the property
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that d(X[k], C(µ)) = d(X[k0], C(µ)) for every natural number k ≥ k0 (see Remark 1). If

d(X[k0], C(µ)) = 0, then case (i) given in the statement of the lemma definitely occurs.

It remains to prove that if d(X[k0], C(µ)) 6= 0, then case (ii) takes place. To this end,

notice that if x1[k] − µ, ..., xn[k] − µ are negative (strictly positive) for some time k, then

x1[k + 1] − µ, ..., xn[k + 1] − µ are negative (strictly positive) as well. This implies that it

suffices to prove case (ii) only for k = k0.

By contradiction, assume that x1[k0] − µ, ..., xn[k0] − µ are neither all negative nor all

strictly positive. Thus, there are two indices i, j ∈ V such that xi[k0] > µ and xj [k0] ≤ µ.

Consider a path between vertices i and j in the connected graph G. There exists an edge

(i′, j′) ∈ E in this path such that xi′ [k0] > µ and xj′ [k0] ≤ µ. If xi′ [k0] > µ + ε or

xj′ [k0] ≤ µ − ε, then the optimality of the µ-DG algorithm together with Lemma 1 (on

using the inequality (6.7)) yields

d(X[k0 + r], C(µ)) ≤ d(Ar(X[k0], (i′, j′), ..., (i′, j′)), C(µ))

≤ d(A(X[k0], (i′, j′)), C(µ)) < d(X[k0], C(µ)).

This contradicts the assumption that d(X[k], C(µ)) = d(X[k0], C(µ)) for every k ≥ k0. As a

result, the only remaining possibility is the following:

µ− ε < xj′ [k0] ≤ µ < xi′ [k0] ≤ µ+ ε. (6.38)

Let j′1 be a vertex connected to vertex j′ in the graph G. It is desired to show that

µ− ε < xj′1
[k0] ≤ µ+ ε. (6.39)

To prove this by contradiction, consider the following scenarios:

• xj′1
[k0] is greater than µ+ ε: As before, this case leads to a contradiction, because

d(X[k0], C(µ)) = d(X[k0 + r], C(µ)) ≤ d(Ar(X[k0], (j′, j′1), ..., (j
′, j′1)), C(µ))

≤ d(A(X[k0], (j′, j′1)), C(µ)) < d(X[k0], C(µ)).
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• xj′1
[k0] is less than or equal to µ− ε: One can write

d(X[k0], C(µ)) = d(X[k0 + r], C(µ)) ≤ d(Ar(X[k0], (i′, j′), (j′, j′1), ..., (j
′, j′1)), C(µ))

≤ d(A2(X[k0], (i′, j′), (j′, j′1)), C(µ)) < d(X[k0], C(µ)).

This is a contradiction as well.

So far, the validity of the inequality (6.39) is shown. Since the graph G is connected, there

is a path from vertex j′ to every other vertex of G. Continuing the argument made above

about vertex j′1 for all vertices of such paths successively and using the fact that every

simple path has at most r edges give rise to

µ− ε < xp[k0] ≤ µ+ ε, ∀p ∈ V. (6.40)

This inequality implies that d(X[k0], C(µ)) is equal to zero, while d(X[k0], C(µ)) was earlier

assumed to be nonzero. This contradiction completes the proof. �

6.8 Appendix 2

This appendix derives a number of results to prove Theorem 3. Consider an arbitrary

infinite sequence of edges H ∈ E∞. Similar to the µ-DG algorithm, one can define an H-G

algorithm for every initial state X[0] ∈ [xmin, xmax]n as follows.

H-Gossip (H-G) Algorithm:

Step 1 : Set k = 0.

Step 2 : Define X[k+1] to be A(X[k], (i, j)), where (i, j) denotes the (k+1)th element

of H.

Step 3 : Increase k by 1 and jump to step 2.

Note that unlike the µ-DG algorithm that picks an optimal edge relative to the set C(µ)

at each time update, the H-G algorithm selects an edge from the sequence H in turn. For

every µ ∈ Q, α ∈ [xmin, xmax]n and H ∈ E∞, let Tµ(α,H) denote the first time update at

which a positive action occurs with respect to the set Cα(µ) if the H-G algorithm is applied

to the graph G with the initial state X[0] = α.
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For every µ ∈ Q, α =
[
α1 · · · αn

]
∈ [xmin, xmax]n and i ∈ V, define Rµ(α, i) as

Rµ(α, i) =


[
α1 · · · αi−1 αi − ε αi+1 · · · αn

]
if αi > µ+ ε[

α1 · · · αi−1 αi + ε αi+1 · · · αn

]
if αi ≤ µ− ε[

α1 · · · αi−1 αi αi+1 · · · αn

]
otherwise

The main idea behind the above definition is to convert a vector α into another vector

Rµ(α, i) that is closer to the set Cα(µ).

Lemma 3 Given µ ∈ Q, α ∈ C̃(µ) and H ∈ E∞, the inequality

Tµ

(
α,H

)
≤ Tµ

(
Rµ(α, i),H

)
(6.41)

holds for every i ∈ V.

Proof: Denote α as
[
α1 · · · αn

]
, and assume that αi > µ + ε. Moreover, let

W[k] :=
[
w1[k] w2[k] · · · wn[k]

]
and W̄[k] :=

[
w̄1[k] w̄2[k] · · · w̄n[k]

]
denote

the states of the graph system at time k ∈ {0} ∪ N under the H-G algorithm with the

initial states α and Rµ(α, i), respectively. For notational simplicity, define

m := Tµ

(
Rµ(α, i),H

)
. (6.42)

To prove the inequality (6.41) by contradiction, assume that Tµ

(
α,H

)
> m, which implies

d(W[0], Cα(µ)) = d(W[k], Cα(µ)), ∀k ∈ {0, 1, 2, ...,m}. (6.43)

In light of (6.42), (6.43), and the fact that α and Rµ(α, i) are identical in n−1 entries, two

properties can be proved by using an induction on the time instant k as follows:

i) wj [k] is always greater than or equal to w̄j [k], for every j ∈ V and k ∈ {1, ...,m}.

ii) The relation wj [k] = w̄j [k] holds if wj [k] ≤ µ or w̄j [k] ≤ µ, for every j ∈ V and

k ∈ {0, 1, ...,m− 1}.

Let (u, p) ∈ E denote the mth element of H such that w̄u[m − 1] ≥ w̄p[m − 1]. Since a

positive action occurs at time m with respect to the set Cα(µ) for the initial state Rµ(α, i)
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(due to the equation (6.42)), the proof of Lemma 1 (especially the inequality (6.7)) can be

used to conclude that either

w̄u[m− 1] > µ+ ε, w̄p[m− 1] ≤ µ (6.44)

or

w̄u[m− 1] > µ, w̄p[m− 1] ≤ µ− ε

must hold. Assume that the relations given in (6.44) hold (the other case is similar).

Properties (i) and (ii) mentioned above yield

wu[m− 1] ≥ w̄u[m− 1] > µ+ ε,

wp[m− 1] = w̄p[m− 1] ≤ µ.

Since the same edge (u, p) is chosen at the mth time update by the H-G algorithm for the

initial state α, it follows immediately from the above relations and the inequality (6.7) that

a positive action occurs at this time. This contradicts the assumption that Tµ

(
α,H

)
> m,

which completes the proof for the case when αi > µ+ ε. The proof is similar for the other

cases. �

Lemma 3 states that if an initial state α is replaced by Rµ(α, i) that is closer to the

set Cα(µ), then more iterations are required to take a positive action. Similar to the

multi-action function Ak that was defined in terms of the single-action function A in (6.12)

(where k ∈ N), one can define the multi-action function Rk
µ from Rµ. For every α =[

α1 · · · αn

]
∈ C̃(µ) and µ ∈ Q, let Rµ(α) be a vector obtained using the following

procedure:

Step 1: Identify the smallest index j ∈ V such that αj > µ+ ε or αj ≤ µ− ε (such an

index exists due to the definition of C̃(µ)).

Step 2: Set γ to be α.

Step 3: For every i ∈ V, find the smallest number r ∈ N such that

Rr
µ(γ, i, i, ..., i︸ ︷︷ ︸

r times

) = Rr−1
µ (γ, i, i, ..., i︸ ︷︷ ︸

r−1 times

).



185

Update the new value of γ as Rr
µ(γ, i, i, ..., i) if i ∈ V\{j}, and otherwise as Rr−1

µ (γ, i, i,

..., i) (by convection, assume that R0
µ(γ, i) = γ).

Step 4: Define Rµ(α) as γ.

Remark 5 The vector Rµ(α) is derived from α in such a way that all entries of Rµ(α) lie

in the interval (µ− ε, µ+ ε], except for only one entry that belongs to either (µ+ ε, µ+ 2ε]

or (µ− 2ε, µ− ε]. Note that Rµ(α) satisfies the inequality

Tµ

(
α,H

)
≤ Tµ

(
Rµ(α),H

)
(6.45)

for every H ∈ E∞, because of Lemma 3.

For every µ ∈ Q, α =
[
α1 · · · αn

]
∈ [xmin, xmax]n and i, j ∈ V, define R′µ(α, i; j)

as

R′µ(α, i; j) =


[
α1 · · · αi−1 αi + ε αi+1 · · · αn

]
if αi ≤ µ, αj > µ+ ε[

α1 · · · αi−1 αi − ε αi+1 · · · αn

]
if αi > µ, αj ≤ µ− ε[

α1 · · · αi−1 αi αi+1 · · · αn

]
otherwise.

The main idea behind the definition of R′µ(α, i; j) is to make the ith entry of α become

closer to its jth entry. The next lemma presents a useful relationship between the Rµ and

R′µ functions.

Lemma 4 Given µ ∈ Q, α ∈ C̃(µ) and H ∈ E∞, let j ∈ V denote the index of the unique

entry of Rµ(α) that does not lie in the interval (µ− ε, µ+ ε]. The inequality

Tµ

(
Rµ(α),H

)
≤ Tµ

(
R′µ(Rµ(α), i; j),H

)
(6.46)

holds for every i ∈ V.

Proof: let U[k] :=
[
w1[k] w2[k] · · · wn[k]

]
and Ū[k] :=

[
w̄1[k] w̄2[k] · · · w̄n[k]

]
denote the states of the graph system at time k ∈ {0} ∪N under the H-G algorithm with

the initial states Rµ(α) and R′µ(Rµ(α), i; j), respectively. Define also

g := Tµ

(
R′µ(Rµ(α), i; j),H

)
.
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To prove (6.46) by contradiction, assume that Tµ

(
α,H

)
> g. Let Rµ(α) be denoted as[

β1 .... βn

]
and with no loss of generality assume that βj ∈ (µ + ε, µ + 2ε]. Two

observations can be made as follows:

i) The relations

uj [k] = ūj [k] = βj ,

up[k], ūp[k] ∈ (µ− ε, µ+ ε], ∀p ∈ V\{j},

hold for every k ∈ {0, 1, ..., g − 1}.

ii) Using property (i) and by means of an induction on k, one can show that if ūp[k] ≤ µ

for some p ∈ V and k ∈ {0, 1, ..., g − 1}, then up[k] = ūp[k].

Let the gth element ofH be the edge (r1, r2), where r1 < r2. It results from the definition

of g and property (i) that r1 = j and ūr2 [g − 1] ≤ µ (this is the only way to generate a

positive action at time g for the initial state R′µ(Rµ(α), i; j)). Therefore, by properties (i)

and (ii), one can write

ur2 [g − 1] = ūr2 [g − 1] ≤ µ,

ur1 [g − 1] > µ+ ε.

The inequality (6.7) can be used to conclude that selecting the edge (r1, r2) at time g

results in a positive action for the graph G with the initial state Rµ(α), which implies that

Tµ

(
Rµ(α),H

)
= g. This contradicts the aforementioned assumption. �

For every α ∈ C̃(µ), let R′µ(Rµ(α)) be an n-dimensional vector that is obtained from

Rµ(α) using the following procedure:

Step 1: Identify the unique index j ∈ V such that the jth entry of Rµ(α) is not in the

range (µ− ε, µ+ ε].

Step 2: Identify the smallest index i ∈ V such that

– The ith entry of Rµ(α) is greater than µ if the jth entry of Rµ(α) is less than or

equal to µ.

– The ith entry of Rµ(α) is less than or equal to µ if the jth entry of Rµ(α) is

greater than µ.

Step 3: Set γ to be α.
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Step 4: For every p ∈ V\{i, j}, update the new value of γ as R′µ(Rµ(γ), p; j).

Step 4: Define R′µ(Rµ(α)) as γ.

Proposition 1 Given µ ∈ Q, α ∈ C̃(µ) and H ∈ E∞, the inequality

Tµ(α,H) ≤ Tµ(R′µ(Rµ(α)),H) (6.47)

holds.

Proof: The proof is a direct consequence of the inequality (6.45) and Lemma 4. �

Proposition 1 will be used in the sequel to present the main result of this appendix,

which is a proof for Theorem 3.

Proof of Theorem 3: It follows from the inequality (6.47) that

E
{
T (µ)

∣∣X[0] = α
}
≤ E

{
T (µ)

∣∣X[0] = R′µ(Rµ(α))
}
,

where α ∈ C̃(µ). Hence

Φ(µ) = max
{

E
{
T (µ)

∣∣X[0] = α
} ∣∣∣ α ∈ C̃(µ)

}
≤ max

{
E
{
T (µ)

∣∣X[0] = R′µ(Rµ(α))
} ∣∣∣ α ∈ C̃(µ)

}
.

(6.48)

On the other hand, the simple set inclusion property

{
R′µ(Rµ(α))

∣∣ α ∈ C̃(µ)
}
⊆ C̃(µ)

yields

max
{

E
{
T (µ)

∣∣X[0] = R′µ(Rµ(α))
} ∣∣∣ α ∈ C̃(µ)

}
≤ max

{
E
{
T (µ)

∣∣X[0] = α
} ∣∣∣ α ∈ C̃(µ)

}
= Φ(µ).

(6.49)

It can be concluded from (6.48) and (6.49) that

Φ(µ) = max
{

E
{
T (µ)

∣∣X[0] = R′µ(Rµ(α))
} ∣∣∣ α ∈ C̃(µ)

}
.

The rest of the proof replies on the above equality and the fact that for every α ∈ C̃(µ),

the vector R′µ(Rµ(α)) satisfies either of the following properties:
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• n− 2 entries of R′µ(Rµ(α)) are in the interval (µ, µ+ ε], and the two other entries are

in the intervals (µ+ ε, µ+ 2ε] and (µ− ε, µ].

• n− 2 entries of R′µ(Rµ(α)) are in the interval (µ− ε, µ], and the two other entries are

in the intervals (µ− 2ε, µ− ε] and (µ, µ+ ε].

The details are omitted for brevity. �
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Chapter 7

Congestion Control Algorithms
from Optimal Control Perspective

This chapter is concerned with understanding the connection between the existing Internet

congestion control algorithms and the optimal control theory. The available resource alloca-

tion controllers are mainly devised to derive the state of the system to a desired equilibrium

point and, therefore, they are oblivious to the transient behavior of the closed-loop sys-

tem. To take into account the real-time performance of the system, rather than merely its

steady-state performance, the congestion control problem should be solved by maximizing

a proper utility functional as opposed to a utility function. For this reason, this work aims

to investigate what utility functionals the existing congestion control algorithms maximize.

In particular, it is shown that there exist meaningful utility functionals whose maximization

leads to the celebrated primal, dual, and primal/dual algorithms. An implication of this

result is that a real network problem may be solved by regarding it as an optimal control

problem on which some practical constraints, such as a real-time link capacity constraint,

are imposed.

7.1 Introduction

There has been a growing interest in studying the Internet congestion control ever since

the first congestion collapse occurred [46]. Many algorithms have been proposed in the

literature to allocate the available network resources in a fair manner among the competing

users, without overloading the network. The main idea behind all these algorithms is more

or less the same: each user measures some feedback signal, such as packet loss or queueing
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delay, and accordingly adapts its transmission rate. Among the existing transmission control

protocols (TCP) for congestion control, one can name TCP-Tahoe, Reno, New Reno, and

Vegas [87, 14]. More complete surveys of this topic can be found in [98], [101] and [23].

The seminal papers [53] and [54] sparked remarkable process in mathematical modeling

and analysis of the Internet congestion control. This advancement is due to the convex

programming theory, which allows for solving a utility maximization problem by means of

the Lagrangian technique. The available resource allocation algorithms, such as the primal,

dual, and primal/dual algorithms, are particularly designed to solve the underlying problem

in a distributed way asymptotically. In other words, these algorithms guarantee that the

asymptotic transmission rate of each user is the fairest rate that can be utilized without

congesting the network. Having regarded the network as a system, this result implies that

the control system possesses a unique globally asymptotically stable equilibrium point that

corresponds to the solution of the static utility maximization problem. Nonetheless, it is

not clear how well the system operates during its transient time. As a result, the capacity

link constraints can, for instance, be violated in this period. Furthermore, these algorithms

have not been derived in such a way that they can be generalized systematically to include

real-time constraints such as a link capacity requirement. This work aims to revisit the

congestion control problem from the standpoint of the optimal control theory.

This chapter proves that the controllers proposed by the primal, dual, and primal/dual

algorithms all maximize some meaningful dynamical behaviors. More precisely, there exist

natural utility functionals whose maximization leads to these celebrated controllers. This re-

sult opens the possibility of tackling network problems directly as optimal control problems,

which not only take the dynamics into account, but which also allow to impose physical

constraints. Other applications of dealing with utility functionals directly are in deducing

the stability of the control system for free, gaining insight into how to perform joint routing

and congestion control, etc. It is noteworthy that the development of this work relies on

the inverse optimal control theory, which has a very ancient history [94, 75].

7.2 Preliminaries

Consider a network with the set of sources S and the set of links L, where each source is

identified by an origin and a destination between which data can be transferred. For every
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r ∈ S, let xr denote the transmission rate corresponding to source r and L(r) denote the

collection of links belonging to its fixed route. Assume that each link l ∈ L has a finite

capacity cl. Form a vector of transmission rates, denoted by x, where its rth element is

equal to xr for all r ∈ S. The resource allocation problem is concerned with solving the

optimization

max
x

∑
r∈S

Ur(xr)

subject to ∑
r: l∈L(r)

xr ≤ cl, ∀ l ∈ L

xr ≥ 0, ∀ r ∈ S,

where Ur : < → < is a strictly concave, increasing and twice differentiable utility function

associated with source r. Define R to be a routing matrix whose (l, r) entry (r ∈ S, l ∈ L)

is equal to 1 if l ∈ L(r), and is 0 otherwise. Define also the aggregate flow rate yl, the route

price qr and the Lagrangian L(x,p) as

yl :=
∑

r: l∈L(r)

xr, l ∈ L,

qr :=
∑

l∈L(r)

pl, r ∈ S,

L(x,p) :=
∑
r∈S

Ur(xr)−
∑
l∈L

pl (yl − cl) ,

(7.1)

where p is the vector of Lagrange multipliers pl, l ∈ L. The Karush-Kuhn-Tucker (KKT)

conditions for the utility maximization problem are

U ′(xr) = qr,

pl(yl − cl) = 0,

yl − cl ≤ 0,

xr, pl ≥ 0,

for all l ∈ L and r ∈ S. Having assumed that R has full row rank, the above KKT equations

have a unique solution (x∗,p∗) [101]. Since each user r ∈ S must obtain its optimal

transmission rate x∗r in terms of the available local information, a number of distributed
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algorithms have been proposed in the literature to enable every user to adaptively find its

optimal transmission rate. One of these algorithms is briefly outlined in the sequel.

7.2.1 Dual Algorithm

Assume that each link l ∈ L updates its associated price pl based on the rule

ṗl(t) = hl(pl(t))(yl(t)− cl)+pl(t)
, (7.2)

where hl : < → <+ is a given non-decreasing continuous function and

(yl(t)− cl)+pl(t)
=

 yl(t)− cl pl(t) > 0

max(yl(t)− cl, 0) pl(t) = 0.

Moreover, suppose that the user of each source r ∈ S is provided with the aggregate price

along its route to update its transmission rate as

xr(t) = U ′−1
r (qr(t)). (7.3)

It is well-known that the interconnected system specified by (7.2) and (7.3) is globally

asymptotically stable with the unique equilibrium point (x∗,p∗) [101].

7.3 Motivation and Problem Formulation

The main idea behind the existing congestion control algorithms is to contrive a distributed

control system which has a unique equilibrium point (x∗,p∗) that is globally asymptoti-

cally stable. However, this interesting technique is oblivious to the transient behavior of

the system and merely targets its steady-state behavior. As a result, the link capacity

constraints may be violated during the transient time. Moreover, these indirect congestion

control algorithms cannot be generalized systematically. For instance, it is pragmatic to

impose a buffer size constraint or to assume that each source has a certain amount of data to

transfer. These practical constraints, along with many other ones, cannot be incorporated

into the aforementioned algorithms in light of the fact that these algorithms essentially

rely on the static utility maximization problem to which these constraints cannot be ap-

plied. By regarding the network as a system with a specific topology, a question arises as
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to whether one can define an optimal control problem for this system whose solution leads

to a distributed controller solving the utility maximization problem. This chapter aims to

show that the answer to this fundamental question is affirmative, and that working directly

with the network problems in the context of optimal control theory allows the designer to

incorporate other physical constraints and deduce some properties for free such as stability.

The objective is to prove that the updating policies proposed by the primal, dual, and

primal/dual algorithms can all be obtained by maximizing appropriate utility functionals

which take the transient response of the system into account. Nevertheless, it is well-

understood that even though an optimal control problem normally has a unique solution,

there might be an infinite number of optimal control problems which all lead to the same

solution. For instance, consider the simple first-order system ṗ(t) = x(t), where p(t) and

x(t) are its state and input, respectively. Note that although x(t) is a standard notation

for representing the state of a system, this chapter needs to use this notation to denote

the input of a system (as it corresponds to the transmission rate that acts as an input).

Given positive numbers k and T , there exists a unique controller that maximizes the utility

functional

−
∫ T

0

(
x(t)2

k
+ kp(t)2

)
dt− p(T )2.

This controller turns out to be x(t) = −kp(t). However, there are other utility functionals

whose maximization leads to this controller. For example, the trivial term (x(t) + kp(t))2

can be added to the integrand of the above utility functional without altering the optimal

solution. It can be shown in this example that all such functionals can be characterized

systematically, provided the terminal utility is fixed as −p(T )2. To be more precise, assume

that the maximization of the utility functional

∫ T

0
g(p(t), x(t))dt− p(T )2 (7.4)

yields the controller x(t) = −kp(t), where g(p(t), x(t)) is some appropriate function. One

can verify that there exist a function ĝ(p(t), x(t)) and a constant number µ such that

g(p(t), x(t)) = µ+ ĝ(p(t), x(t))− x(t)2

k
− kp(t)2, (7.5)

where ĝ(p(t), x(t)) is equal to zero along all trajectories of the optimal closed-loop system.
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This simple toy example implies that there are an infinite number of utility functionals

which solve the inverse optimal problem; nevertheless, they all share some key part that

determines the trade-off between the state and the input which has caused the optimal

controller to be identical to the given one.

The above discussion signifies that there might be numerous utility functionals associ-

ated with the static utility maximization problem. The primary objective is to identify their

common part that has meaningful physical interpretations. It will be later shown that there

is a close parallel (term by term) between the functionals solving the utility maximization

problem and the ones characterized in (7.4) and (7.5).

7.4 Optimal Control for Dual Algorithm

Having provided each user r with its route price that is obtained based on some pre-

specified rule, assume that the user is required to find the best updating policy to adjust

its transmission rate xr. This hypothesis implies that the dynamical system

ṗl(t) = hl(pl(t))(yl(t)− cl)+pl(t)
, l ∈ L (7.6)

exists in the core of the network to generate link prices, where p(t) and x(t) are the state

and the input of the system, respectively. It is desired to find a utility functional whose

maximization leads to the local controllers

xr(t) = U ′−1
r (qr(t)), r ∈ S. (7.7)

7.4.1 Simple Illustrative Example

Before handling the problem in the general case, let the main ideas be elucidated in a very

simple example. As a trivial but illustrative case, assume that:

• The network has only one source and one link.

• The capacity of the link is equal to 1.

• The utility function U(x) is equal to −0.5(x− 4)2 if x ∈ [0, 3].

• The weighting function h(p) is identical to 1.
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Note that since S and L each have one element, the indices l and r are omitted. Moreover,

although the utility function U(x) is defined only on the interval of interest [0, 3], it can be

extended smoothly to the entire interval [0,∞). For simplicity, suppose that the value of

the initial price p(0) is chosen so that the transmission rate x(t) always stays in the interval

[0, 3], and that the price p(t) never hits zero. The problem now reduces to finding a utility

functional whose maximization leads to the controller

x(t) = −q(t) + 4

for the system

q̇(t) = x(t)− 1.

In order to eliminate the constant terms in the above equations, introduce the change of

variables
x̄(t) = x(t)− 1,

q̄(t) = q(t)− 3.

In the new coordinates, the system and the controller turn out to be ˙̄q(t) = x̄(t) and

x̄(t) = −q̄(t), respectively. This control system has been studied in the toy example of the

previous section (assuming k = 1), for which the utility functional

−
∫ T

0

(
x̄(t)2 + q̄(t)2

)
dt− q̄(T )2

was found. One can rewrite the above expression in terms of the original variables to obtain

−
∫ T

0

(
(x(t)− 1)2 + (q(t)− 3)2

)
dt− (q(T )− 3)2. (7.8)

To relate the terms in the above functional to the static utility maximization problem,

notice that
3− q(t) = U ′−1(q(t))− 1 = arg max

v
L(v, q(t))

(q(T )− 3)2 = 2max
v
L(v, q(T )) + 9.
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Substituting the above relations into (7.8), one can conclude that maximizing the utility

functional given below leads to the dual controller:

− 1
2

∫ T

0

(
(x(t)− c)2 +

(
arg max

v
L(v, q(t))− c

)2
)
dt−max

v
L(v, q(T )).

As can be inferred from the toy example in Section 7.3, every other utility functional that

is able to solve the underling inverse optimal problem includes the integrand of the above

functional, in addition to some trivial terms, provided its terminal utility is chosen as above.

This result will be generalized in the sequel, and the interpretation of the individual terms

appearing in this utility functional will then be discussed in detail.

7.4.2 General Case

The next theorem extends the above-mentioned results to the general case.

Theorem 1 Given T > 0, the decentralized controller given in (7.7) maximizes the utility

functional

max
x(t)

{
1
2

∫ T

0

∑
l∈L

{
Yl(yl(t), pl(t)) + Yl(ỹl(p(t)), pl(t))

}
dt−max

v(T )
L(v(T ),p(T ))

}
(7.9)

for the system (7.6), where

Yl(α, pl(t)) := −(α− cl)hl(pl(t))(α− cl)+pl(t)

for every α ∈ <, l ∈ L, and

ỹ(p(t)) := R× arg max
v(t)

L(v(t),p(t))

(ỹl(p(t)) is equal to the lth entry of ỹ(p(t))).

Proof: Define the optimal cost-to-go function J(p, t), t ∈ [0, T ], to be

J(p, t) := max
x(s)

{
1
2

∫ T

t

∑
l∈L

{
Yl(yl(s), pl(s))

+ Yl(ỹl(p(s)), pl(s))
}
ds−max

v(T )
L(v(T ),p(T ))

}
,
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where the system starts at time t with an initial state p whose entries are all nonnegative.

The Hamilton-Jacobi-Bellman (HJB) method [55] states that J(p, t) satisfies the partial

differential equation

0 =
∂J(p, t)
∂t

+ max
x

{
1
2

∑
l∈L

{
Yl(yl, pl) + Yl(ỹl(p), pl)

}
+
∑
l∈L

hl(pl)(yl − cl)+pl

∂J(p, t)
∂pl

} (7.10)

with the boundary condition

J(p, T ) = −max
v

L(v,p).

Solving the HJB differential equation is cumbersome in general. However, it is desired to

show that this equation takes the simple solution J(p, t) = J(p, T ), ∀t ∈ [0, T ] in this

problem. To this end, observe that

ỹl(p) =
∑

r: l∈L(r)

U ′−1
r (qr).

Since p is a nonnegative vector, the maximum of the Lagrangian L(v,p) (with respect to

v) is achieved when

vr = U ′−1
r (qr), r ∈ S,

where vr denotes the rth entry of v, for all r ∈ S. For the above-mentioned choice of J(p, t),

it can be verified that
∂J(p, t)
∂t

= 0,

∂J(p, t)
∂pl

= ỹl(p)− cl, ∀ l ∈ L.
(7.11)

Using these equalities, one can also check that the input x given by

xr = U ′−1
r (qr), r ∈ S (7.12)

maximizes the objective functional

1
2

∑
l∈L

{
Yl(yl, pl) + Yl(ỹl(p), pl)

}
+
∑
l∈L

hl(pl)(yl − cl)+pl

∂J(p, t)
∂pl
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with respect to x. By substituting the equations (7.11) and (7.12) into (7.10), it is straight-

forward to observe that the equation (7.10) is satisfied. Hence, the HJB method implies

that the controller given in (7.12) (after replacing (xr, qr) with (xr(t), qr(t))) is an optimal

controller for the underlying system. �

The utility functional given in Theorem 1 has several interesting features that will be

spelled out next. Consider the price vector p(t) at a time instant t ∈ [0, T ]. The best

transmission rates that the users may utilize at this time can be obtained by maximizing

the term L(v(t),p(t)) over all possible v(t)’s. In other words, arg maxv(t) L(v(t),p(t))

is indeed the optimal instantaneous transmission rates that the system can accept given

its current link prices. As a result, the terminal utility maxv(T ) L(v(T ),p(T )) resembles

the static Lagrangian at time T , but is maximized over all possible transmission rates to

evaluate the potential of the system given its final price p(T ). In other words, a variant

of the static utility maximization problem is mainly integrated into the final utility (and

partially incorporated into the integrand to take care of the transient behavior). On the

other hand, the integrand has two terms Yl(yl(t), pl(t)) and Yl(ỹl(p(t), pl(t)), each of which

has a physical interpretation. The term Yl(yl(t), pl(t)) can be regarded as the actual lth link

utility at time t, by virtue of the following observations:

• If pl(t) is nonzero, then Yl(yl(t), pl(t)) is proportional to the quadratic term −(yl(t)−

cl)2, which implies that in order not to over-utilize or under-utilize the network, the

best strategy is to maintain the flow rate yl(t) precisely at the capacity of the link.

• If pl(t) is zero, then Yl(yl(t), pl(t)) indicates that the optimal utilization of the link

corresponds to employing a flow rate below the link capacity.

Furthermore, Yl(ỹl(p(t), pl(t)) can be envisaged as the virtual lth link utility at time t due

to the fact that ỹl(p(t)) is the optimal transmission rate over the lth link given the current

price p(t). To summarize the ideas, the proposed utility functional is natural in the sense it

maximizes the sum of the actual and virtual link utilities over the time interval [0, T ) and

a variant of the static utility function at the final time T .
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Corollary 1 For every time instant T > 0, the following relation holds:

max
x(t)

{
1
2

∫ T

0

∑
l∈L

{
Yl(yl(t), pl(t)) + Yl(ỹl(p(t)), pl(t))

}
dt

−max
v(T )

L(v(T ),p(T ))
}

= −max
v(0)

L(v(0),p(0)).

(7.13)

Proof: It follows from the proof of Theorem 1 and the HJB equation that the expression

given in the left side of the equality (7.13) is identical to the optimal cost-to-go J(p(0), 0).

On the other hand, it is shown in the proof of Theorem 1 that J(p(0), 0) is equal to the

right side of the above equation. This completes the proof. �

Theorem 1 and corollary 1 assert that there exists a natural utility functional whose

maximization leads to the celebrated dual TCP controller, and that the maximum value

of this functional is equal to −maxv(0) L(v(0),p(0)). As pointed out earlier, this term

corresponds to the maximum source utility at time t = 0 under the given initial price p(0).

Evidently, there are some utility functionals that trivially solve the inverse optimal

problem under study. For instance, one candidate is

−
∫ ∞

0

∑
r∈S

(
xr(t)− U ′−1

r (qr(t))
)2
dt. (7.14)

Nevertheless, this utility functional has nothing to do with the static utility maximization

problem, and provides no extra information about the system such as its closed-loop sta-

bility. In contrast, Theorem 1 proposes a meaningful utility functional, which is somewhat

involved. A question arises as to whether there exists a simpler utility functional which

still conveys meaningful interpretations. To answer this question, notice that the termi-

nal utility given in (7.9) is a suitable counterpart of the original static utility function.

Therefore, it remains to show that the integrand of this functional is essentially required

and cannot be simplified. For this purpose, assume that the controller (7.7) maximizes the

utility functional

max
x(t)

{∫ T

0
g(p(t),x(t))dt−max

v(T )
L(v(T ),p(T ))

}

for the system (7.6), where T is a positive time and g(p(t),x(t)) is some function. Suppose

also that g(p,x) is continuously differentiable at every point (p,x) for which p is strictly
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positive. Define the optimal cost-to-go function J(p, t) as

J(p, t) :=
∫ T

t
g(p̃(s), x̃(s))ds−max

v(T )
L(v(T ), p̃(T )), (7.15)

where p̃(s) and x̃(s) denote the state and the input of the system (7.6) under the controller

(7.7) in the case when the system starts at time t with the initial state p. Finally, assume

that J(p, t) is continuously differentiable with respect to p and t.

Theorem 2 Under the assumptions made above, there exist a function ĝ(p(t),x(t)) and a

real number µ such that

g(p(t),x(t)) = µ+ ĝ(p(t),x(t)) +
1
2

∑
l∈L

{
Yl(yl(t), pl(t)) + Yl(ỹl(p(t)), pl(t))

}
, (7.16)

where the function ĝ(p(t),x(t)) is identically zero along all trajectories of the optimal closed-

loop system.

Proof: In light of the assumptions made right before Theorem 2, one can write the HJB

equation for this system as

0 =
∂J(p, t)
∂t

+ max
x

{
g(p,x) +

∑
l∈L

hl(pl)(yl − cl)+pl

∂J(p, t)
∂pl

}
, (7.17)

where J(p, t) is given in (7.15). Consider a strictly positive vector p. Taking the derivative

of the above expression with respect to xr, r ∈ S, yields

∑
l∈L(r)

hl(pl)
∂J(p, t)
∂pl

= −∂g(p,x)
∂xr

.

Since R has full row rank, the quantities ∂J(p,t)
∂pl

, l ∈ L, can be uniquely solved in terms of
∂g(p,x)

∂xr
, r ∈ S. This result, together with the memoryless property of the controller (7.7),

implies that ∂J(p,t)
∂pl

does not depend on time. Hence, it follows from the HJB equation that
∂J(p,t)

∂t does not depend on time either. As a result, there exist a scalar µ and a function

f(p) such that

J(p, t) = f(p)− µt.
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On the other hand, the boundary condition on the HJB equation states that

J(p, T ) = −max
v

L(v,p).

Thus, one can conclude that

J(p, t) = −max
v

L(v,p)− µ(t− T ), ∀ p > 0.

It follows from the continuity of J(p, t) that

J(p, t) = −max
v

L(v,p)− µ(t− T ), ∀ p ≥ 0.

Having written g(p,x) in the form of (7.16), substituting the above equation into the HJB

equation yields that the function ĝ(p(t),x(t)) is equal to zero along all trajectories of the

optimal closed-loop system. This completes the proof. �

Notice that the term ĝ(p(t),x(t)) in Theorem 2 is a trivial term, which provides no useful

information. This quantity can be, for instance, equal to the integrand of the trivial utility

functional (7.14). Ignoring the uninformative terms µ and ĝ(p(t),x(t)), the functional given

in Theorem 2 reduces to the one provided in Theorem 1.

It can be observed that the utility functionals characterized in Theorem 2 closely parallel

those provided in (7.4) and (7.5) for a simple toy example. More specifically:

• Yl(yl(t), pl(t)) corresponds to −x(t)2

k . This term depends much more weakly on the

state, but strongly on the input.

• Yl(ỹl(t), pl(t)) corresponds to −kp(t)2, which only penalizes the state.

• The constant term µ exists in both utility functionals.

• ĝ(p(t),x(t)) corresponds to ĝ(p(t), x(t)), which is an uninformative term and specifies

no trade-off between the state and the input.

7.4.3 Stability Proof

An application of the optimal control problem introduced in Theorem 1 is that the global

asymptotic stability of the system (7.6) under the static controller (7.7) can be concluded

automatically.
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Theorem 3 The controller (7.7) that maximizes the utility functional (7.9) for the system

(7.6) makes the pair (x(t),p(t)) converge to the fixed point (x∗,p∗).

Proof: The main idea behind the proof is to observe that

Yl(yl(t), pl(t)) ≤ 0, ∀t ∈ [0, T ], l ∈ L,

Yl(ỹl(p(t)), pl(t)) ≤ 0, ∀t ∈ [0, T ], l ∈ L,

−max
v(T )

L(v(T ),p(T )) ≤ −p∗,

(7.18)

and that the state and input of the closed-loop control system satisfy the equation (by

Corollary 1)
1
2

∫ T

0

∑
l∈L

{
Yl(yl(t), pl(t)) + Yl(ỹl(p(t)), pl(t))

}
dt

−max
v(T )

L(v(T ),p(T )) = −max
v(0)

L(v(0),p(0)).

(7.19)

By letting T go to infinity, the relations (7.18) and (7.19) can be combined to conclude that

Yl(yl(t), pl(t)) → 0 as t→∞,

Yl(ỹl(p(t)), pl(t)) → 0 as t→∞,
(7.20)

for every l ∈ L, in light of the fact that the left side of the equation (7.19) must remain

finite and cannot go to −∞ due to the finiteness of its right side. As a result

lim
t→∞

(yl(t)− cl)+pl(t)
= 0, ∀ l ∈ L. (7.21)

The proof follows immediately from the above equation. �

7.4.4 Joint Routing and Congestion Control

It is desired to accomplish both routing and resource allocation simultaneously. For this

purpose, assume that each source has a fixed origin and destination, but an undetermined

route. The objective is to find an optimal route for every source so that the utility of

the network is maximized. Note that since the Lagrangian introduced in (7.1) depends on

the unknown routing matrix R, it will be denoted by L(x,p;R) henceforth. As far as the

optimal routing with respect to the static utility function is concerned, one should solve the
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optimization problem

max
R

min
p

max
x

L(x,p;R) = max
R

L(x∗(R),p∗(R);R) (7.22)

to find R, where (x∗(R),p∗(R)) is the saddle point of the Lagrangian in the case when the

routing matrix of the network is R. Solving the above optimization problem in a distributed

way is formidable, because it is NP-hard even at the centralized level [111]. Aside from this

point, a static utility function may not be a good measure for optimal routing, as the

transient behavior of the system should also be taken into account. In what follows, the

problem of optimal routing with respect to the utility functional (7.9) is addressed.

Theorem 4 Given r ∈ S, find all possible simple paths in the network which starts from the

origin of source r and ends at the destination of this source. For each of these paths, compute

the initial route price, i.e., the route price based on the link price vector p(0). Among these

paths, each one with the minimum initial price is an optimal route for source r under the

problem of joint routing and congestion control with respect to the utility functional (7.9).

Proof: The joint routing and resource allocation with respect to the utility functional

(7.9) amounts to solving the optimization problem

max
R

min
x(t)

{
1
2

∫ T

0

∑
l∈L

{
− Yl(yl(t), pl(t))

− Yl(ỹl(p(t)), pl(t))
}
dt+ max

v(T )
L(v(T ),p(T );R)

}
,

which is tantamount to (by Corollary 1)

max
R

max
v(0)

L(v(0),p(0);R). (7.23)

Denote the optimal routing matrix with R∗. Besides, define qr(t;R), r ∈ S, as the route

price associated with source r at time t under the routing matrix R. It is evident that

max
v(0)

L(v(0),p(0);R) =
∑
r∈S

{
Ur

(
U ′−1

r (qr(0;R))
)
− qr(0;R)U ′−1

r (qr(0;R))
}

+
∑
l∈L

clpl(0).
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Note that the terms qr1(0;R) and qr2(0;R) are independent of each other for every r1, r2 ∈ S

such that r1 6= r2, due to the fact that they are contingent upon different columns of R.

Hence, in order to maximize the expression given in the above relation over all possible

routing matrices R, the following optimization problem can be solved alternatively:

max
R

{
Ur

(
U ′−1

r (qr(0;R))
)
− qr(0;R)U ′−1

r (qr(0;R))
}
. (7.24)

For a scalar variable q, one can write

∂
(
Ur

(
U ′−1

r (q)
)
− qU ′−1

r (q)
)

∂q
= U ′r

(
U ′−1

r (q)
) ∂U ′−1

r (q)
∂q

− U ′−1
r (q)− q

∂U ′−1
r (q)
∂q

= −U ′−1
r (q) ≤ 0.

This means that the function

Ur

(
U ′−1

r (q)
)
− qU ′−1

r (q)

is non-increasing in the variable q. As a result, it can be concluded from (7.24) that qr(0;R∗)

is equal to the minimum of qr(0;R) over all possible routing matrices R. This completes

the proof. �

Consider a network over which both routing and congestion control are to be performed.

If the users of network were fixed and remained online for a very long time, it could be

justified that an optimal route should be obtained based on the optimal equilibrium point

of the system. However, since users in a real network join and leave, and most of the

sources do not live long, it is reasonable to take the transient behavior of the system into

account for optimal routing. Under this circumstance, Theorem 4 proves that the optimal

routing is really simple and intuitive: each user who joins the network should find a route

to its destination whose initial price is minimum. Note that it is commonly accepted in

the literature that routing could be performed by assigning a cost to each link and then

minimizing the route cost. The present work shows that this simple idea indeed leads to an

optimal route taking care of the transient response of the system.
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7.4.5 Another Meaningful Utility Functional

Roughly speaking, the utility functional proposed in Theorem 1 treats a variant of the static

utility function as the terminal utility and defines dynamical utility functions on the links.

Another idea would be to define dynamical utility functions on the sources. This idea has

been exploited in the next theorem.

Theorem 5 Assume that the weighting functions hl(pl(t)), l ∈ L are all equal to 1. Given

T > 0, the decentralized controller (7.7) maximizes the utility functional

max
x(t)

{∫ T

0

(∑
r∈S

Ur(xr(t))−max
v(t)

L(v(t),p(t))

)
dt− 1

2
p(T )Tp(T )

}

for the system (7.6). Furthermore, the maximum of this utility functional is equal to

−1
2p(0)Tp(0).

Proof: The proof can be carried out in line with that of Theorem 1 after noticing that

the optimal cost-to-go function for this control problem is equal to J(p, t) = −1
2p

Tp. The

details are omitted here for brevity. �

The utility functional proposed in Theorem 5 has an interesting interpretation. The

quantity maxv(t) L(v(t),p(t)) is equal to the maximum instantaneous source utility that

the system can provide based on the price p(t). Hence, the integrand
∑

r∈S Ur(xr(t)) −

maxv(t) L(v(t),p(t)) can be regarded as the relative source utility function. Having assumed

hl(pl(t)) to be equal to 1, each price pl(t) can be visualized as the queue size at the buffer

of the lth router. Thus, the utility functional provided in the theorem aims to maximize

the relative utility function over the time interval [0, T ) and minimize the sum of routers’

queue sizes at the final time T . The maximum of the utility functional, which is equal to

the negative half of the sum of the squared queue sizes at t = 0, is independent of the route.

This property, together with the negative term inside the integrand, does not allow for

deducing the stability of the dual control system from this functional for free, or searching

for the optimal route.
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7.5 Optimal Control for Primal Algorithm

Let the utility maximization problem stated in Section 7.2 be modified as

max
x

{∑
r∈S

Ur(xr)−
∑
l∈L

∫ yl

0
fl(y)dy

}
,

where fl(y) is a barrier function that can be interpreted as the price for transferring data

at the rate y on link l. Assume that fl(·), l ∈ L, is a non-decreasing, continuous function

such that ∫ yl

0
fl(y)dy →∞ as yl →∞.

Furthermore, assume that Ur(xr), r ∈ S, goes to −∞ as xr approaches zero. Under these

assumptions, the above utility maximization problem has a unique solution x∗ at which the

gradient of V (x) vanishes, where

V (x) =
∑
r∈S

Ur(xr)−
∑
l∈L

∫ yl

0
fl(y)dy. (7.25)

To obtain the solution x∗ in a distributed way, consider the interconnected system given by

ẋr(t) = kr(xr(t))(U ′r(xr(t))− qr(t)), ∀ r ∈ S (7.26)

and

pl(t) = fl(yl(t)), ∀ l ∈ L, (7.27)

where kr : < → <+ is a non-decreasing continuous function. It is known that the point

(x∗,p∗) is the globally asymptotically stable fixed point of this interconnected system [101].

Thus, the above distributed system can be run to asymptotically solve the static utility

maximization problem. The objective is to find the optimal control counterpart of this

result. For this purpose, assume that the memoryless system (7.27) exists in the core of

the network to generate the link prices, and that each user deploys a simple integrator to

adjust its transmission rate as

ẋr(t) = ur(t), r ∈ S, (7.28)
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where ur(t) is some input signal that needs to be determined. It is noteworthy that pl(t) is

a measured output of this system. The goal is to derive a utility functional for the system

(7.28) whose maximization leads to the decentralized controller

ur(t) = kr(xr(t))
(
U ′r(xr(t))− qr(t)

)
, r ∈ S. (7.29)

Theorem 6 Given a time instant T > 0, the decentralized controller (7.29) maximizes the

utility functional

max
u(t)

{
− 1

2

∫ T

0

(
u(t)TK(x(t))−1u(t)

+∇V (x(t))TK(x(t))∇V (x(t))
)
dt+ V (x(T ))

}

for the system given by (7.27) and (7.28), where

• K(x(t)) is a diagonal matrix with the (r, r) diagonal entry kr(xr(t)) for all r ∈ S.

• u(t) is a vector with the rth entry ur(t) for all r ∈ S.

• The symbol ∇ denotes the gradient operator.

Moreover, the maximum of this utility functional is equal to V (x(0)).

Proof: One can adopt the technique used in Theorem 1 to prove this theorem, after

considering the optimal cost-to-go function J(x, t) as V (x). �

As before, the utility functional proposed in the above theorem has some plausible in-

trinsic properties. For instance, this functional treats the static utility function as a terminal

utility, and encompasses two terms accounting for the transient behavior of the system. The

term ∇V (x(t))TK(x(t))∇V (x(t)) penalizes the nonzero gradient of the objective function

V (x(t)) during the transient time (note that the optimal solution of the static utility maxi-

mization problem corresponds to the unique point at which the gradient of V (x) vanishes).

Besides, the term u(t)TK(x(t))−1u(t) or equivalently ẋ(t)TK(x(t))−1ẋ(t) is a measure of

users’ willingness to alter their transmission rates abruptly. Thus, K(x) is a weighting

function representing the trade-off between the above penalty terms.

In analogy with Theorem 3, the stability of the system (7.28) under the control (7.29)

is an immediate consequence of Theorem 6. More precisely, since the integrand of the
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proposed utility functional is always less than or equal to zero and its terminal utility is

bounded from above by V (x∗), letting T grow towards infinity yields

∇V (x(t))TK(x(t))∇V (x(t)) → 0 as t→∞

or equivalently

||∇V (x(t))|| → 0 as t→∞.

It results from the above relation that the state of the closed-loop system converges to the

unique maximizer of the function V (x).

7.5.1 Joint Routing and Congestion Control

It is desired to perform joint routing and congestion control for the primal controller similar

to what was carried out in Section 7.4.4 for the dual controller. To this end, since the utility

function V (x) depends on the routing matrix, it will be denoted by V (x;R) henceforth. An

optimal routing matrix with respect to the utility function (7.25) can be obtained by solving

the optimization problem

max
R

max
x

V (x;R), (7.30)

which may be a cumbersome distributed optimization problem. In contrast, an optimal

routing matrix with respect to the utility functional given in Theorem 6 can be found by

solving

max
R

V (x(0);R)

or equivalently

min
R

∑
l∈L

∫ Rlx(0)

0
fl(y)dy,

where Rl, l ∈ L, denotes the lth row of R. It is evident that the above optimization problem

is far simpler than the one given in (7.30). For instance, if fl(y) is equal to y for every

l ∈ L, then an optimal routing matrix R can be obtained by solving the optimization

problem minR ‖Rx(0)‖2, where ‖ · ‖2 denotes the 2-norm operator. Recall that the joint

routing and congestion control for the dual controller causes each source to take a minimum-

price route, which may not be a proper strategy as several sources could take the same route

and some possible routes may remain empty. In contrast, the joint routing and congestion
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control for the primal controller makes every effort that each link is not over-utilized at the

initial time.

7.5.2 Congestion Control and Multi-Path Routing

Assume that there could exist multiple routes between each source-destination pair. Denote

the source of route r ∈ S with s(r). The utility maximization problem in this case can be

regarded as the maximization of the utility function

V (x) =
∑
i∈S

Ui

( ∑
r:s(r)=i

xr

)
−
∑
l∈L

∫ yl

0
fl(y)dy. (7.31)

It is known that the maximization of the above function could give rise to more than one

solution [101]. In the case when there exists a unique maximizer, the optimal transmission

rates can be obtained asymptotically using the distributed controller

ẋr(t) = ur(t), ∀r ∈ S, (7.32)

where

ur(t) = kr

U ′s(r)( ∑
p:s(p)=s(r)

xp(t)
)
− qr(t)

 , (7.33)

and kr is an arbitrary positive number. The question arises as to what meaningful utility

functional the above primal controller maximizes. To answer this question, it can be shown

that one such a functional is the utility functional given in Theorem 6 for single-path

routing, but with V (x) provided in (7.31) as opposed to the one in (7.25). This shows

that the multi-path routing case is a simple extension of the single-path routing case. Now,

different properties, such as stability, can be deduced as before.

7.6 Optimal Control for Primal/Dual Algorithm

Consider an interconnected system consisting of the subsystem (7.6) in the core of the

network to generate prices and the subsystem (7.28) at the edge of the network to adjust

the transmission rates. The states of this system are x(t) and p(t), while its input (to be

found) is u(t). The goal of this part is to obtain a utility functional whose maximization

yields the distributed controller (7.29). The techniques developed earlier can be exploited
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to tackle this problem. It can be shown that one such optimal control problem can be

defined as

max
u(t)

{
− 1

2

∫ T

0

(
∇xL(x(t),p(t))TK(x(t))∇xL(x(t),p(t))

+ u(t)TK(x(t))−1u(t)− 2
∑
l∈L

Yl(yl(t), pl(t))
)
dt+ L(x(T ),p(T ))

}
,

where ∇x denotes the gradient operator with respect to the first argument x. The integrand

of this functional is the difference between those given for the primal and dual algorithms

(if ỹl(p(t)) is identified by yl(t)). However, physical intuition suggests that a good util-

ity functional for this case should be the sum of those obtained for the dual and primal

algorithms separately (as opposed to their difference). Indeed, the term
∑

l Yl(yl(t), pl(t))

in the above utility functional is a measure of link utility (as pointed out earlier) that is

minimized, instead of being maximized. This phenomenon can be justified by noticing that

the static utility maximization problem is a min-max optimization (as performed on the

Lagrangian), whereas the above utility functional is only a max optimization. It is worth

noting that the utility functional proposed in Theorem 1 is also a min-max optimization.

Obtaining a better utility functional for this case is left for future research.

7.7 Summary

This work relates the optimal control theory to the Internet congestion control algorithms.

The main motivation for investigating this relationship is that the existing algorithms solve

the utility maximization problem only at the equilibrium point and ignore the transient

behavior of the control system. Therefore, they cannot be modified systematically to incor-

porate other physical constraints, such as a real-time link capacity requirement. In order to

substantiate that the optimal control theory provides the right tools to solve a constrained

network utility problem in practice, it is shown that there exist natural, meaningful utility

functionals whose maximization yields the distributed controllers proposed by the primal,

dual, and primal/dual algorithms. These utility functionals provide useful insights into

the optimal closed-loop system; for instance, they automatically conclude the closed-loop

stability for free.
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Chapter 8

Conclusions and Future Work

This dissertation is concerned with the analysis and synthesis of large-scale complex systems

arising in different areas of electrical and computer engineering. The high-level objective

is to study how the physical properties of such systems can be deployed to simplify their

design. The systems of interest in this work are categorized into three groups: (i) power

networks, (ii) circuits and systems, and (iii) distributed computation. The results of this

dissertation are presented in three parts, where each part studies one of these groups of

systems. In what follows, the contributions made in each part are first summarized and

possible future directions are then outlined.

8.0.1 Part I: Power Networks

In this part, the operation planning of power networks is investigated. To this end, the

optimal power flow (OPF) problem is first considered. The OPF problem can be regarded

as a fundamental optimization in power systems, which aims to find an optimal operating

point for a power grid. This nonconvex problem is NP-hard in the worst case and has been

extensively studied for 50 years. Part I of this dissertation is motivated by the fact that

a practical OPF problem is highly structured and therefore its structure might make the

problem solvable in polynomial time. To study a given OPF problem, a convex optimization

problem is derived, which can solve the OPF problem globally in polynomial time if a

certain condition is satisfied. It is shown that this condition holds not only for IEEE

benchmark systems but also for a large class of power networks. The reason for the successful

convexification of practical OPF problems can be traced back to the natural properties of

transmission lines and transformers. To extend the applicability of this result, it is also
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shown that many energy-related optimization problems can be convexified similarly due to

the same reason. The results of Part I are useful for studying several long-standing open

problems. Some of these problems, which are left for future research, are as follows:

• What is the exact shape of the feasible set for an OPF problem?

• Given the fact that a power flow problem often has multiple solutions, how can all

those solutions be identified?

• How can a true pricing mechanism be designed based on which consumers are charged

and generators are paid in a fair and optimal way?

• In presence of integer decision variables, how can an energy-related optimization prob-

lem (e.g., unit commitment) be solved efficiently?

• To what extent can the results of Part I be generalized if the models of loads and

(renewable-based) generators are uncertain and stochastic?

8.0.2 Part II: Circuits and Systems

Motivated by a variety of applications in circuits, electromagnetics, optics, and power net-

works, the first objective of Part II is to optimize certain parameters of a linear circuit

in order to meet given design specifications. To this end, it is shown that this problem is

NP-hard, even in a very particular case. However, the problem can be solved efficiently as

long as the circuit is passive and there are enough number of unknown parameters to be

optimized. This result introduces a trade-off between the design simplicity and the imple-

mentation complexity for an important class of linear circuits. As future work, it would

be interesting to extend the synthesis result developed here to nonlinear circuits as well as

circuits with both passive and active components.

As an application of the aforementioned circuit design technique, the problem of op-

timizing the controllable parameters of a passive smart antenna is studied. To be more

precise, since the existing smart antennas are either hard to program or hard to implement,

a new type of smart antenna is designed in polynomial type which can be implemented

fairly easily. To show the efficacy of this result, a wavelength-size smart antenna is de-

signed as an example, which uses only one active radiating element but can make nulls in
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many directions by tuning its passive elements. There are two problems along this research

direction, which are worth studying:

• The smart antenna designed here was assumed to be in free space and therefore

communication issues such as multipath were ignored. For practical reasons, it is

important to study the antenna in a more realistic environment.

• In this work, it was assumed that the structure of the antenna was fixed, while some

of its elements were tunable and could be optimized. A more interesting problem is

to design the structure of the smart antenna as well.

8.0.3 Part III: Distributed Computation

This part deals with two important problems in the area of distributed computation: (i)

quantized consensus, and (ii) distributed network resource allocation. In the quantized

consensus problem, the goal is to find the average of a group of numbers in a distributed

way over digital communication channels. Due to the finite capacity of each communication

channel, the quantization effect comes into play and makes the problem hard. In this work,

it is shown that quantized consensus is reached by means of a stochastic gossip algorithm

recently proposed in the literature. The convergence time of this algorithm is also studied.

As a future research, it would be interesting to study the quantized consensus problem

for multi-agent systems, where the behavior of each agent is governed by some differential

equations. An application of this problem is in the coordination of a group of systems.

The second problem studied in Part III is the network resource allocation problem,

where the objective is to design a distributed algorithm by means of which every user

of a communication network can find its optimal transmission rate for efficiently utilizing

the network resources. From the mathematical standpoint, the existing resource allocation

algorithms, such as primal and dual algorithms, aim to optimize the operation of the network

only in the steady state. Since the real-time (transient) performance of the network is of a

great importance for avoiding packet drop and reducing the transmission delay, this work

shows how to exploit tools from optimal and inverse optimal control theories to design a

congestion control (resource allocation) protocol with a guaranteed real-time performance.

Possible future work would be to include routing into the design problem so that an optimal

joint routing and congestion control problem with a guaranteed real-time performance is
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devised. Moreover, it is useful to extend this design methodology to wireless communication

networks for which an optimal scheduling protocol should be found.
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