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Abstract

This thesis discusses two topics in cosmology that resulted in two independent pub-

lications. The first topic concerns persistent anisotropy during inflation [1] and the

second topic concerns a model of baryophillic dark matter [2].

The motivation for the project contained within chapter 1 came from indications

in the cosmic microwave background data that seemed to suggest that there may

be a cosmologically preferred direction. Moira Gresham and I derived quantitative

predictions about the signals one would observe in Cosmic Microwave Background

data if isotropy is not assumed during inflation. We considered a particular example

of a dynamical theory of anisotropic inflation that is characterized by a scalar field

which is nonminimally coupled to an isotropy breaking abelian gauge field, thereby

slowing the decay of the gauge field energy density.

The motivation for the project contained within chapter 2 came from the obser-

vation that the global symmetries B (baryon number) and L (lepton number) of the

standard model Lagrangian must be broken by higher-dimensional operators at a

very high scale. Pavel F. Perez, Mark B. Wise and I analyzed a model that explained

the protection of these accidental global symmetries by promoting B and L to gauge

symmetries. This model has a natural dark matter, candidate and we discuss the

experimental constraints on the parameters in the theory.

Unexpected results are found in each chapter. For example, in chapter 2, we

find that the anisotropic contribution to the tensor power spectrum is suppressed

with respect to that of the scalar power spectrum and, in chapter 3, we show that a

baryon asymmetry can be generated even within a model that has baryon number as

a gauge symmetry.
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Chapter 1

Introduction

1.1 This Thesis within a Larger Context

As cosmologists, we study the origin and evolution of our Universe (or universes in

general). General relativity teaches us that it is the matter content of our Universe

that tells us not only the structure and geometry of the space-time, but also how that

space-time is evolving. This is concisely stated mathematically through the Einstein

field equations,

Gµν =

(
8πGN

c4

)
Tµν , (1.1)

where Gµν is the Einstein tensor (describing the dynamical structure of space-time)

and Tµν is the stress-energy tensor (which encodes the matter content of our Uni-

verse).1

Consistent with other scientists, cosmologists rely on observations and experi-

ments to make headway in our quest to uncover the details of our cosmic history. On

the other hand, most other scientists can perform experiments in terrestrial labora-

tories. Since we have only one Universe, it is not possible for cosmologists to conduct

such experiments since the phenomena we are studying is inherently non-local. Cos-

mologists look out into our Universe to observe signatures of important events in

1 GN is Newton’s constant and c is the speed of light (the latter will be set to unity

for the remainder of this thesis).
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our Universe’s distant past. By compiling a diverse set of observables, we can have

confidence in our understanding of the origin and evolution of our Universe.

Figure 1.1: An artist’s conception of the history of our Universe (Credit:
NASA/WMAP Science Team).

The most commonly accepted view by cosmologists of our cosmic history is the

following (a cartoon picture can be found in figure 1.1). A cosmic event2 occurred of

which we have little understanding. We know the temperature was very high T > 1027

eV and the density was high3. Immediately following this event, the Universe expe-

rienced a period of rapid exponential expansion, known as inflation. After inflation,

the field responsible for the exponential expansion decays and fills the Universe with

electromagnetic radiation. As the Universe cools, quarks become confined into nuclei,

2 This is commonly known as the big bang, but more exotic theories proliferate the

literature.

3 Throughout this thesis, temperature will be stated in units of energy and can

be converted back into the more familiar Kelvin (K) by using Boltzmann’s constant

kB = 8.62× 10−5 eV/K.
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these nuclei begin to form atoms synthesizing the elements (this is commonly known

as nucleosynthesis). Once T ≈ 1 eV, the atoms could no longer absorb the thermal

radiation and the Universe became transparent. The photons freely streamed from

this recombination event. Over the next thirteen billion years or so, the temperature

continues to cool and local overdensities begin to coalesce into large scale structure

(like galaxies and cosmologists).

Today we live in a Universe that is fairly cool T ≈ 2.3×10−4 eV. Photons (quanta

of electromagnetic radiation) from the recombination event approach us from all di-

rections and make up what is known as the Cosmic Microwave Background (CMB)

radiation. From our point of view, these photons were emitted from a spherical surface

(called the surface of last-scattering) with us at the center. These photons, to a first

approximation, have streamed freely to us only changing their wavelength through

gravitational redshift4 due to the continued expansion of our Universe. Cosmologists

use these photons to look into our distant past and make observations about the

evolution of our Universe.

It is through analysis of CMB data in conjunction with data from galaxy surveys

that tell us a great deal about our Universe. For example, we know the energy density

of the Universe today comprises approximately 4.6% ordinary matter (like electrons,

protons, etc.), 23% dark matter and 72% dark energy. We do not know a great deal

about the latter two contributions to the energy density, except that the dark matter

is nonluminous, electrically neutral and nonbaryonic matter that interacts mainly

gravitationally. It is likely that the dark energy is simply a cosmological constant

whose value would naturally arise from a more complete theory of nature.

The second chapter, immediately following this introductory chapter, will focus

on a particular issue in inflationary cosmology. The third chapter focuses on a par-

ticular explanation of dark matter that naturally arrises in a model that solves some

technical issues with the Standard Model of particle physics. In what remains of

this introduction, I intend to give some background on the standard approach to the

4Redshift is a term used to describe the increase in a photon’s wavelength.
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topics of inflation and dark matter. These sections are to serve as introduction to the

technical aspects of the standard approach as well as an introduction to the notation

that will be used throughout the thesis.

While writing this introduction, I consulted many textbooks about cosmology and

the early Universe. I most heavily relied on Weinberg’s cosmology text [3] and Kolb

and Turner’s classic text on the early Universe [4]. I consulted my colleague Moira

Gresham’s thesis on ideas to implement the inflation portion of this chapter.

1.2 Inflation

1.2.1 CMB Observations

In 1965 the radio astronomers Robert Wilson and Arno Penzias observed a faint

background glow, almost exactly the same in all directions. This glow was identified

to be the CMB radiation and the two scientists were awarded the 1978 Nobel Prize

for their discovery. Ground-based experiments during the 1980s put limits on the

anisotropy that can exist in the CMB radiation, but it was not until the 1992 NASA

mission COBE (COsmic Background Explorer) were the theoretically predicted 10−5

deviations from isotropy observed. The COBE team was awarded the 2006 Nobel

Prize in Physics for their work on the precision measurement of the CMB radiation.

The COBE team observed a nearly uniform temperature across the sky and mea-

sured the spectrum of CMB radiation across the sky. They showed that the CMB

radiation has a thermal black body spectrum at a temperature of 2.73K as shown in

figure 1.2. COBE was also the first to observe the theoretically predicted deviations

from isotropy.

Today, the state of the art data is given by the Wilkinson Microwave Anisotropy

Probe (WMAP). This experiment has produced very precise sky-maps such as the

one in figure 1.3.
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Figure 1.2: COBE observation the CMB radiation thermal spectrum with a temper-
ature of approximately 2.73K.

Figure 1.3: WMAP observation of the CMB radiation. The average temperature is
2.725K, and the colors represent the tiny temperature fluctuations, as in a weather
map. Red regions are warmer and blue regions are colder by about 0.0002K. Credit:
NASA/WMAP Science Team.

1.2.2 CMB Temperature Correlations

The main observable from the early Universe is the Cosmic Microwave Background

(CMB). The sky that we see is one particular realization of a statistical ensemble
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of possible observations (if we could travel to a distant place in our Universe, we

would observe a different realization of the CMB). Since the realizations are position

dependent (and we cannot readily change our position on cosmological scales), we

study the statistical observables from our particular realization.

We cannot average over different vantage points (cosmic mean), but we can average

over realizations (or histories). The difference between these two averaging procedures

is known as cosmic variance and is a principle source of uncertainty at the largest of

angular scales.5

The main observable in CMB physics is the correlation between the deviation of

the temperature from the average at different points on our CMB sky (labelled by

angles θ ∈ [0, π] and φ ∈ [0, 2π]). Note that the average temperature, T̄ , is defined

formally as

T0 ≡
1

4π

∫
T (θ, φ)dΩ. (1.2)

Since the CMB comes to us from all directions, it is beneficial to expand the temper-

ature difference in spherical harmonics,

∆T (θ, φ)

T̄
=
T (θ, φ)− T̄

T̄
=
∞∑
l=0

l∑
m=−l

almY
m
l (θ, φ). (1.3)

Since the deviation of the temperature from the average is real, the coefficients (alm)

must satisfy condition a∗l,m = al,−m. The two-point temperature correlation function

is defined by

Cll′,mm′ ≡ 〈a∗l′m′alm〉 =

(
2l′ + 1

4π

)(
2l + 1

4π

)
×
∫
dΩ′

∫
dΩY m′

l′
∗(θ′, φ′)Y m

l (θ, φ)

〈
∆T (θ′, φ′)

T̄

∆T (θ, φ)

T̄

〉
, (1.4)

where the numerical factors in front are due to the normalization of the spherical

5 One can show that this accuracy limit decreases as 2/(2l+ 1) if the temperature

deviations are are governed by a Gaussian distribution.
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harmonics. If the fluctuations at the surface of last-scattering were Gaussian, then

all statistical properties about the CMB could be written in terms of this two-point

correlation function. The average in this equation refers to the cosmic mean.

A statistically isotropic power spectrum has the addition feature that the corre-

lations take the following form,

Cll′,mm′ = Clδll′δmm′ . (1.5)

The quantity we observe in CMB experiments is,

Cobs
l ≡ T̄ 2

2l + 1

∑
m

alma
∗
l,m =

1

4π

∫
d2n̂d2n̂′ Pl(n̂ · n̂′)∆T (n̂)∆T (n̂′). (1.6)

In figure 1.4, we show the angular power spectrum observed by the WMAP satellite

(normalized by l(l + 1)/2π) in units of µK2. There is a great deal of information

contained within this measurement. From analysis of this data, one can determine vir-
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Figure 1.4: This graph illustrates how much the temperature fluctuates on different
angular sizes in the map (from larger angles to smaller angular scales). WMAP was
the first experiment to clearly show the presence of the second and third acoustic
peaks (the harmonic overtones of the first peak). Credit: NASA/WMAP Science
Team.
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tually all the significant cosmological parameters (age of the Universe, energy density

of normal matter, energy density of dark matter and dark energy, etc.).

1.2.3 Primordial Perturbations

The purpose of this section is to connect the statistical observables of the previous

section with the predictions of theories of the very early Universe. The main pre-

diction of theories of inflation are power spectra (either of curvature fluctuations or

of gravitational wave fluctuations). Fluctuations in the energy density in the early

Universe led to patterns of the photons emanating from the surface of last scattering

and eventually to the CMB we observe today.

In particular, the deviation from the mean CMB temperature in our sky is

∆T (θ, φ)

T̄
=

∫
d3k

∑
l

(
2l + 1

4π

)
(−i)lδε(~k)Pl(k̂ · ê)Θl(k), (1.7)

where Pl are Legendre polynomials and ê = ê(θ, φ) is a unit-vector pointing in the

direction specified by the angular coordinates (θ, φ). In this equation, Θl is the trans-

fer function that encapsulates all of the physical effects (assumed to be statistically

isotropic) on the photons from the very Universe until today. Further details about

the transfer function are beyond the scope of this introduction. Finally, δε(~k) is the

Fourier transform of the fractional deviation of the energy density from the average

in the early Universe.

Given this form of the deviation from the mean CMB temperature (in terms of

transfer functions, etc.), we can work through the implications for Eq. (1.4). We
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have

Cll′,mm′ =

(
2l + 1

4π

)(
2l′ + 1

4π

)∫
d3kd3k′

∑
l1

∑
l2

(
2l1 + 1

4π

)(
2l2 + 1

4π

)
(−i)l1+l2

×
〈
δε(~k)δε(~k

′)
〉

Θl1(k)Θl2(k
′)

∫
dΩ

∫
dΩ′Y m

l
∗(θ, φ)Y m′

l′ (θ′, φ′)Pl1(k̂ · ê)Pl2(k̂ · ê′)

=

(
2l + 1

4π

)(
2l′ + 1

4π

)∫
d3kd3k′

∑
l1,m1

∑
l2,m2

(−i)l1+l2
〈
δε(~k)δε(~k

′)
〉

Θl1(k)Θl2(k
′)

×
(∫

dΩY m
l
∗(θ, φ)Y m1

l1
(θ, φ)

)(∫
dΩ′Y m′

l′ (θ′, φ′)Y m2
l2
∗(θ′, φ′)

)
Y m1
l1
∗(k̂)Y m2

l2
(k̂′)

=

(
2l + 1

4π

)(
2l′ + 1

4π

)∫
d3kd3k′

∑
l1,m1

∑
l2,m2

(−i)l1+l2
〈
δε(~k)δε(~k

′)
〉

Θl1(k)Θl2(k
′)

×
(

4π

2l + 1
δl,l1δm,m1

)(
4π

2l′ + 1
δl′,l2δm′,m2

)
Y m1
l1
∗(k̂)Y m2

l2
(k̂′)

=

∫
d3kd3k′(−i)l+l′

〈
δε(~k)δε(~k

′)
〉

Θl(k)Θl′(k
′)Y m

l
∗(k̂)Y m′

l′ (k̂′). (1.8)

During the simplification of this expression, we have used the normalization condition

of the spherical harmonics as well as the relationship between spherical harmonics and

the Legendre polynomials. In calculations of primordial perturbations, we calculate

the average
〈
δε(~k)δε(~k

′)
〉

as a quantum mechanical expectation value. We then use

the ergodic theorem to posit the equivalence of this averaging procedure with that of

the cosmic mean.

Throughout this thesis, we will assume that the expectation value in Eq. (1.8)

is translationally invariant. This means that there is no special position in the Uni-

verse and therefore the expectation value can only depend on differences in positions.
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Explicitly, if we have 〈δε(~x)δε(~y)〉 = f(~x−~y), then the Fourier transform is simplified,

〈
δε(~k)δε(~k

′)
〉

=

∫
d3x

∫
d3yf(~x− ~y)ei(~x·

~k+~y·~k′)

=

∫
d3x

∫
d3yf(~x− ~y)e

i
2

((~x+~y)·(~k+~k′)+(~x−~y)·(~k−~k′))

=

(∫
d3x−f(~x−)ei~x−·(

~k−~k′)
)(∫

d3x+e
i~x+·(~k+~k′)

)
= (2π)3δ(3)(~k + ~k′)

∫
d3x−f(~x−)ei~x−·(

~k−~k′) = (2π)3δ(3)(~k + ~k′)P (~k), (1.9)

where we defined ~x± = 1/2(~x ± ~y) in order to simplify the above expressions. This

serves to define the power spectrum of primordial energy density fluctuations, P (~k).

Plugging this expression into Eq. (1.8) we derive

Cll′,mm′ =

∫
d3k(−i)l+l′Θl(k)Θl′(k)(2π)3P (~k)Y m

l
∗(k̂)Y m′

l′ (−k̂)

=

∫
d3k(−i)l+l′(−i)−2l′Θl(k)Θl′(k)(2π)3P (~k)Y m

l
∗(k̂)Y m′

l′ (k̂)

=

∫
d3k(−i)l−l′Θl(k)Θl′(k)(2π)3P (~k)Y m

l
∗(k̂)Y m′

l′ (k̂). (1.10)

If the power spectrum is rotationally invariant, then P (~k) can only depend on the

magnitude of the photon’s momentum. In this case,

Cll′,mm′ =

∫
d3k(−i)l−l′Θl(k)Θl′(k)(2π)3P (k)Y m

l
∗(k̂)Y m′

l′ (k̂)

=

∫
dkk2(−i)l−l′Θl(k)Θl′(k)(2π)3P (k)

(∫
dΩkY

m
l
∗(k̂)Y m′

l′ (k̂)

)
=

∫
dkk2(−i)l−l′Θl(k)Θl′(k)(2π)3P (k)

(
4π

2l + 1
δl,l′δm,m′

)
= δl,l′δm,m′

(
1

2l + 1

∫
dk(4πk2)Θl(k)2(2π)3P (k)

)
. (1.11)

Note that this result has the diagonal form mentioned in Eq. (1.5).

One can work out what implications a small departure from statistical isotropy

during inflation would have on the measured correlation functions by considering a
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power spectrum of the form

P (~k) = P0(k)
(

1 + g(k)(n̂ · k̂)2
)

(1.12)

and then expanding to first non-trivial order in g(k). Here n̂ indicates the preferred

direction which must be extracted from the data. Sean Carroll, Mark Wise and Lotty

Ackerman proposed this form of the power spectrum and completed this calculation.

For the detailed form that the correlations take, consult their paper [5]. The authors

of this paper also gave physical arguments for the scale dependence of g(k) (the

quadrapolar modulation effect).

The next section of this chapter goes through the standard calculation of primor-

dial power spectra in the case of isotropic inflation, sourced by a potential energy

dominated scalar field. In the next chapter of this thesis, Moira Gresham and I cal-

culate the primordial power spectrum in a dynamical theory of anisotropic inflation.

This is the first time a complete calculation of primordial power spectra was con-

ducted in an anisotropic background. In particular, we calculate the leading order

effects of the anisotropy on the curvature power spectrum as well as the gravitational

wave power spectrum and show the logarithmic scale dependence of this quadrapolar

modulation effect.

1.2.4 Standard Slow-Roll Inflation

When studying standard slow-roll inflation, one typically considers a scalar field min-

imally coupled to gravity with the following action6

S =

∫
d4x
√
−g
(
R

2κ2
− 1

2
(∇µφ)(∇µφ)− V (φ)

)
, (1.13)

where R is the Ricci scalar, κ2 = 8πGN , V (φ) is the potential for the scalar field φ

and g is the determinant of the metric. By examining the background equations of

motions, we will show in the following sections that if the scalar field has a potential

6If an index is repeated, summation is implied. A greek index implies a summation µ ∈ {0, 1, 2, 3}
using the metric and a latin index implies a summation i ∈ {1, 2, 3} using the Kronecker-delta.
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dominated energy density then the Universe will begin to expand. Furthermore, we

will give criteria for the expansion to be exponential and nearly exponential. Finally,

we will give a detailed derivation of the primordial power spectrum of scalar and

tensor perturbations predicted by standard slow-roll inflation.

1.2.4.1 Background Equations

As in all cases in general relativity, we must begin by choosing a metric parameter-

ization that respects all of the (at least approximate) symmetries of the space-time

we are describing. Since we are describing the Universe at large scales (which we

observe to be approximately flat, isotropic and homogeneous) we use the following

parameterization

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
. (1.14)

The matter that gives rise to this metric must also exhibit these approximate sym-

metries and therefore the stress-energy tensor must take the form,

T µν =


−ρ(t) 0 0 0

0 p(t) 0 0

0 0 p(t) 0

0 0 0 p(t)

 , (1.15)

where ρ(t) is the energy density and p(t) is the pressure of the matter.

The background scalar field configuration is homogeneous and isotropic (φ = φ(t))

and leads to a stress-energy tensor of this form with

ρφ(t) =
1

2

(
dφ(t)

dt

)2

+ V (φ(t)), and pφ(t) =
1

2

(
dφ(t)

dt

)2

− V (φ(t)). (1.16)

Here we consider the equations derived from Einstein’s field equations in Eq. (1.1).

The time-time Einstein equation (G0
0 = κ2T 0

0 ) gives an equation for the Hubble
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parameter (H(t) = ȧ(t)/a(t)),7

3H2 = κ2

(
1

2
φ̇(t)2 + V (φ(t))

)
. (1.17)

An equation for the second derivative of the scale factor (ä(t)/a(t)) is found by taking

a linear combination of the space-space and time-time Einstein equations,

(
ä(t)

a(t)

)
= Ḣ +H2 = −κ

2

3

(
φ̇(t)2 − V (φ(t))

)
. (1.18)

For completeness, we should also include the scalar field equation of motion that

results from varying the action in Eq. (1.13) with respect to φ,8

φ̈ = −3Hφ̇− κ2a(t)2V ′(φ). (1.19)

One should also note that the content of this equation is not independent from Eq.

(1.17) and Eq. (1.18) and is just a statement of the conservation of stress-energy.

From Eq. (1.18), we can see that accelerated expansion occurs if V (φ(t)) > φ̇(t)2

since this will make the second derivative of the scale factor greater than zero. This

requirement demands that the energy density of the scalar field is potential dominated

for accelerated expansion to occur.

For nearly exponential expansion, we require the derivatives of the Hubble param-

eter to be small in order to approximate the scale factor with a(t) ≈ exp(H t). To

quantitatively analyze deviations from exponential expansion, we define the slow-roll

parameters,

ε = − Ḣ

H2
, and δ =

Ḧ

2HḢ
. (1.20)

Although there are actually an infinite set of slow-roll parameters (involving higher

derivatives of H), it is sufficient for our purposes to define these two. Note that the

7Here, and throughout this chapter, we will use the notation d/dt and ˙

interchangeably.

8Unless otherwise stated, a ′ indicated a derivative with respect to φ.
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following identity holds:

ε̇ = − Ḧ

H2
+ 2

Ḣ2

H3
= H

(
− Ḣ

H2

)(
Ḧ

HḢ
− 2

Ḣ

H2

)
= 2Hε(δ + ε). (1.21)

We now endeavor to write the background quantities in terms of these slow-roll

parameters, the Hubble parameter and κ2. Rearranging Eq. (1.17) and Eq. (1.18)

we have

H2 =
κ2

3

(
1

2
φ̇(t)2 + V (φ(t))

)
and H2(1− ε) =

κ2

3

(
V (φ(t))− φ̇(t)2

)
. (1.22)

These are two independent equations that allow us to determine φ̇ and V (φ) in terms

of H, κ and slow-roll parameters. Using this procedure, one derives

φ̇2 = H2

(
2ε

κ2

)
, and V (φ) =

H2

κ2
(3− ε). (1.23)

We see that the scalar field has a vanishing first derivative in the limit {ε, δ} →

0 (exponential expansion). Taking the first derivative of the former equation, one

derives

2φ̈φ̇ = 2HḢ

(
2ε

κ2

)
+H2

(
2ε̇

κ2

)
= H3 [−2ε+ 2ε+ 2δ]

(
2ε

κ2

)
⇒ φ̈

φ̇H
=

(
φ̈φ̇

φ̇2H

)
= δ. (1.24)

We see what one means by “slow-roll” inflation since the first and second derivative

of the scalar field must be small in order for the expansion to be nearly exponential.

One often states the conditions for slow-roll inflation in terms of flatness conditions

on the inflaton potential.9 For example, taking a derivative of the potential equation

9The field responsible for the exponential expansion is usually called the inflaton.
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gives

V ′(φ) = −(3 + δ)Hφ̇ ⇒
(
V ′(φ)

V (φ)

)2

=

(
κ4φ̇2

H2

)(
3 + δ

3− ε

)2

= 2κ2ε

(
3 + δ

3− ε

)2

. (1.25)

So the potential must be moderately flat in order for the expansion to be nearly

exponential.

Taking a derivative of the last equation leads to the following condition,[(
V ′′(φ)

V (φ)

)
−
(
V ′(φ)

V (φ

)2
](

2
V ′(φ)

V (φ)
φ̇

)
≈ 2κ2ε̇

⇒
[(

V ′′(φ)

V (φ)

)
− 2κ2ε

]
(−4Hε) ≈ 4κ2Hε(ε+ δ)

⇒
(
V ′′(φ)

V (φ)

)
≈ κ2 (ε− δ) . (1.26)

We see that the inflaton potential must be quite flat in order to seed nearly exponential

expansion. Now that we have determined the background dynamics in terms of H, κ2

and slow-roll parameters, we have the necessary information to move forward and talk

quantitatively about predictions of power spectra resulting from slow-roll inflation.

1.2.4.2 Power Spectra from Single-Field Slow-Roll Inflation

We begin our discussion by considering a universe that is expanding approximately

exponentially due to the dynamics of a scalar field in its potential as described in the

previous section. Dynamical fields are in their respective quantum mechanical ground

state. We will be computing the variance of quantum mechanical fluctuations about

this vacuum configuration to derive power spectra.

The standard approach is to canonically normalize the amplitude of these quantum-

mechanical fluctuations when physical wavelengths10 are too small to resolve space-

time curvature. As expansion continues, physically wavelengths increase and gravita-

10The physical wavelength is related to the wavelength of a mode by λphys = a(t)λ.
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tional dynamics become important. Once the fluctuations have physical wavelength

larger than the Hubble radius, the modes become essentially non-dynamical and their

statistics are frozen into curvature or gravitational wave perturbations. It is therefore

the combination of the initial quantum nature of the fluctuations and the gravitational

interactions during inflation that lead to the pattern of temperature correlations in

the CMB.

In the previous section, we defined the quantities in the background and derived

relationships of between these quantities and slow-roll parameters. It turns out to be

convenient for our purposes to work in conformal time.,

dt2 = a(η)2dη2. (1.27)

In this section, we denote all background quantities with an overbar (e.g. the back-

ground scalar field is φ(η) = φ̄).

We begin by defining the inhomogeneous fluctuations about the homogeneous

background. We define

φ(xµ) = φ̄(η) + δφ(xµ), and gαβ(xµ) = ḡαβ(η) + δgαβ(xµ), (1.28)

where ḡµν = a(η)2ηµν where ηµν is the usual Minkowski metric. In other words, all

departures from homogeneity are encapsulated in the perturbed fields δφ and δgαβ.

Since we are expanding about a spatially homogeneous background, and we will

be deriving a power spectrum, it is convenient to work in Fourier space (Φ is just

some linear combination of metric and scalar field perturbations):

δΦ(xµ) =

∫
d3k

(2π)3
δΦ(~k, η)ei

~k·~x. (1.29)

At very early times, we treat the perturbations as quantum excitations. The Fourier

transformed fields are written as Fourier amplitudes multiplied by creation (â†) and
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annihilation (â) operators as in

δΦ(~k, η) = f(~k, η)â~k + f ∗(~k, η)â†
−~k
. (1.30)

Note that the above relationship between the amplitudes for the creation and anni-

hilation operators is guaranteed by the fact that we are dealing with real fields in

position space.

The creation and annihilation operators satisfy the canonical commutation11 re-

lations, [
â~k, â

†
~q

]
= (2π)3δ3(~k − ~q) and

[
â~k, â~q

]
= 0. (1.31)

One finds the appropriate normalization of the amplitudes of the creation and an-

nihilation operators by expanding the action in Eq. (1.13) to second order in per-

turbations. One must remove constrained variables and construct an action of the

form

S(2) =

∫
d3k

(2π)3

∫
dη
∑
i

(1

2
δΦ′i(η,

~k)δΦ′i(η,−~k)

− 1

2

(
~k · ~k − fi(η)

)
δΦi(η,~k)δΦi(η,−~k)

)
. (1.32)

This process is straightforward (for the most part) and tedious.

The power spectrum is related to the two-point correlation function by the fol-

lowing definition,

〈δΦ(η, ~x)δΦ(η, ~y)〉 =

∫
d3k

(2π)3

∫
d3k′

(2π)3
δΦ(η,~k)δΦ∗(η, ~k′)ei(

~k·~x−~k′·~y)
[
a~k, a

†
~k′

]
=

∫
d3k

(2π)3

∣∣∣δΦ(η,~k)
∣∣∣2 ei~k·(~x−~y) ≡

∫
d3k

(2π)3
PδΦ(η,~k)ei

~k·(~x−~y). (1.33)

11 A commutator of two quantum operators Â and B̂ is defined to be
[
Â, B̂

]
≡

ÂB̂ − B̂Â.
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We see that all we need to find a power spectrum is the properly normalized solutions

to the differential equations for the dynamical variables in the quadratic action. The

power spectrum is then just the absolute square of the mode function.

The most general way to parameterize metric perturbations is the following,

ds2 = a(η)2
[
−(1 + 2A)dη2 + 2Bidx

idη + (δij + hij)dx
idxj

]
, (1.34)

where

Bi = ikiB + B̄i, and hij = 2C − 2kikjE + 2ik(iEj) + 2Eij. (1.35)

In order to not over-parameterize the perturbations, Eij, B̄i and Ej must be trans-

verse12 and Eij must be traceless.13

Under a local coordinate (gauge) transformation, the metric variables mix into

one another, and in this new coordinate system one can redefine the perturbations

in terms of the fluctuations defined above. Since physical measurements should have

no dependence on the particular coordinate system used, the variables we should

consider should be invariant under such transformations. These perturbations are

usually called gauge-invariant variables.

One can show that the following combinations of metric and scalar variables are

gauge invariant,

Φ(k) = A+
1

a
[a (B − E ′)]′ , (1.36)

Ψ(k) = −C − a′

a
[B − E ′] , (1.37)

Φi(k) = B̄i − (Ei)′, (1.38)

χ(k) = δφ+ φ̄′ [B − E ′] , (1.39)

12For example, ikiEi = 0.

13Eii = 0.
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as well as the transverse, traceless perturbation Eij. Here we have used ′ to denote

derivatives with respect to conformal time.

One derives the quadratic action by simply plugging in the above perturbed vari-

ables, then using constraint equations and integrating by parts. After this process

has taken place, the quadratic action takes the form

S(2) =

∫
d3k

(2π)3

∫
dη
(1

2
r′(η,~k)r′(η,−~k)− 1

2

(
k2 − z′′

z

)
r(η,~k)r(η,−~k)∑

s=+,×

1

2
ĥ′s(η,

~k)ĥ′s(η,−~k)− 1

2

(
k2 − a′′

a

)
ĥs(η,~k)ĥs(η,−~k)

)
, (1.40)

where z = a2φ̄′/a′ and the dynamical variables are the following linear combination

of the gauge-invariant variables listed above,

r = a

(
χ+ a

φ′

a′
Ψ

)
, (1.41)

ĥ+ =
a

κ

(
ei1e

j
1 − ei2e

j
2√

2
Eij

)
, (1.42)

ĥ× =
a

κ

(
ei1e

j
2 + ei2e

j
1√

2
Eij

)
, (1.43)

where ~ea · ~eb = δab, and ~ea · ~k = 0. This combination of unit vectors spanning the

space orthogonal to the wavevector ensures that the dynamical tensor amplitudes

correspond to spatial metric perturbations that are transverse and traceless.

To find approximate solutions to the equations of motion for the dynamical vari-

ables, it is convenient to use our previous analysis of the background to write the

functions of time in the action in terms of the conformal time coordinate η and the

slow-roll parameters ε and δ. Assuming ε and δ are small and almost constant, we

have the following,

a′′

a
=

2

η2

(
1 +

3

2
ε

)
, and

z′′

z
=

2

η2

(
1 +

3

2
δ + 3ε

)
. (1.44)

The solutions to the differential equations are now simply Henkel Functions (at least in
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the approximation that ε and δ are approximately constant). Explicitly, the solutions

take the form

ĥ+,× ≈
√

π

4aH̄
H(1)

3
2

+ε

(
k

aH̄

)
, (1.45)

r ≈
√

π

4aH̄
H(1)

3
2

+δ+2ε

(
k

aH̄

)
, (1.46)

where normalization of the mode functions was determined canonically,

Φ′Φ∗ − Φ(Φ′)∗ = −i. (1.47)

The physical gravitational wave amplitudes in Eq. (1.45) are related to these

normalized variables through

hs = 2κ

(
ĥs
a

)
. (1.48)

Similarly, the curvature perturbation, ζ, is related to the normalized scalar variable

in Eq. (1.46) through

ζ = −r
z
. (1.49)

In the long-wavelength limit (k � aH̄), the quantities ĥ+,×/a and r/z are approx-

imately conserved outside the horizon (meaning that these quantities are approxi-

mately non-dynamical when k � aH̄). Consider the solutions we have derived in the

long-wavelength limit,

ĥ+,× ≈
√

π

aH̄

(
Γ
(

3
2

+ ε
)

π

)(
2aH̄

k

)3/2+ε

≈
√

1

4aH̄

(
2aH̄

k

)3/2+ε

, (1.50)

r ≈
√

π

aH̄

(
Γ
(

3
2

+ δ + 2ε
)

π

)(
2aH̄

k

) 3
2

+δ+2ε

≈
√

1

4aH̄

(
2aH̄

k

)3/2+δ+2ε

.(1.51)

At this point, it is important to note that z =
√

2ε(a/κ). Computing the curvature
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power spectrum first (in the long-wavelength limit),

Pζ(k) =
Pr(k)

z2
≈ κ2

εa2

(
1

16aH̄

)(
2aH̄

k

)3(
k

2aH̄

)−2ε

=
κ2

2ε

(
H̄2

2k3

)(
k

aH̄

)−2ε

. (1.52)

Similarly, the gravitational wave power spectrum is given by

Ph(k) = 4κ2Pĥ(k)

a2
≈ 4κ2

a2

(
1

4aH̄

)(
2aH̄

k

)3(
k

2aH̄

)−2δ−4ε

= 4κ2

(
H̄2

2k3

)(
k

aH̄

)−2δ−4ε

. (1.53)

Ignoring the scale dependence14 at present, we see that the tensor to scalar ratio is

Ph+ + Ph×
Pζ

= 16ε. (1.54)

We also see that in single-field inflation the scale dependence of the curvature and

gravitational-wave power spectra is approximately that of the tensor to scalar ratio.

This is an important consistency relation of single-field inflation and is a prediction

that will be tested by future experiments. In chapter 2, we will derive a similar

consistency relation for the model of anisotropic inflation that we will introduce in

the next section.

1.2.5 A Model of Anisotropic Inflation

The second chapter of this thesis contains a quantitative analysis of the model of

anisotropic inflation introduced by Watanabe, Kanno and Soda in [6]. The common

lore in early universe cosmology is that the exponential expansion quickly washes out

14 The curvature and gravitational wave power spectra are approximately scale

invariant P (k) ≈ 1/k3. The fact that the curvature power spectrum is nearly scale

invariant is important since experiments prefer a nearly scale invariant spectrum.
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any initial anisotropy or inhomogeneity in the spacetime. Watanabe, Kanno and Soda

got around this commonly accepted idea by noticing that nearly exponential expan-

sion can allow for a persistent anisotropy. As we saw in the previous section, realistic

models of inflation exhibit expansion that is nearly (but not exactly) exponential.

When building a model of anisotropic inflation, one needs to add a field that can

break rotational invariance (another scalar will not work, but any higher-spin field

will do). The authors of this paper considered adding a massless vector field to their

theory of inflation. The last ingredient needed to make this a potentially workable

theory of anisotropic inflation is that one must engineer the anisotropic source of

energy density to persist. Usually vector fields have an energy density that decays

due to expansion of the Universe as a−4, where a is the scale factor. Watanabe, Kanno

and Soda altered this energy density decay rate by adding a coupling of the scalar

field to the vector field.

The action for their theory of anisotropic inflation takes the form,

S =

∫
d4x
√
−g
(
R

2κ2
− 1

2
(∇µφ)(∇µφ)− V (φ)− f(φ)2

4
FµνF

µν

)
, (1.55)

where Fµν = ∂µAν − ∂νAµ and Aµ is the vector field. In [6], the authors showed

that if the coupling function f(φ) took a particular form then the energy density in

the vector field would remain approximately constant during inflation (rather than

quickly decaying). In chapter 2 we analyze the background of the model in complete

generality and then we derive evolution equations for cosmological perturbations in

this anisotropic background. We finally derive the power spectra of curvature and

gravitational wave fluctuations.

1.3 Dark Matter

1.3.1 Introduction

The first evidence for dark matter (DM) came from Zwicky’s work at Caltech in 1933.

He observed the Coma cluster of galaxies and estimated the cluster’s total mass based
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on the motions of galaxies near its edge. Zwicky then compared that estimate to one

based on the number of galaxies within the cluster. The gravity of the visible galaxies

in the cluster would be far too small to support the fast orbits he observed at large

radii. Zwicky realized that there must be some non-luminous form of matter that is

providing the mass needed to hold the cluster together.

Based on observations of galactic rotation curves, gravitational lensing, precision

analysis of CMB data and supernova Type 1a distance measurements (to name a

few) dark matter has established a strong experimental footing. As mentioned pre-

viously, dark matter makes up roughly 23% of the energy density of the Universe

while ordinary matter makes up only about 4.6% of the energy density. Currently

we do not know much about DM except that it is non-luminous, electrically-neutral,

non-baryonic and that it interacts mainly gravitationally.

We will see in the next section that a theoretically well-motivated scenario for

dark matter is that it consists of weakly interacting massive particles (WIMPs). The-

oretically, we expect new physics particles to appear around the mass-scale of a TeV

(roughly 1000 times the proton mass). It turns out that if we have a dark mat-

ter mass around this scale and the dark matter interacts with ordinary matter with

a strength comparable to our weak interactions, then the dark matter will naturally

have approximately the correct abundance.15 This is commonly known as the “WIMP

Miracle.”

If the particle interpretation of dark matter is correct, then a large number of dark

matter particles are constantly passing through the Earth. Although these particles

must interact weakly with ordinary matter, there are experiments today that are

hoping to find evidence of these particles. Direct detection experiments (CDMS,

XENON, etc.) hope to observe dark matter interacting with atomic nuclei in their

detector. Indirect detection experiments (DAMA, EGRET, PAMELA, etc.) hope

15 Meaning that the amount of dark matter predicted in this scenario is roughly the

amount we observe today.
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to observe the products of dark matter annihilations that take place inside their

detectors. Finally, collider experiments (LHC, etc.) hope to produce dark matter

particles by scattering ordinary particles at high-enough energies. Each of these

experiments attack the same dark matter interaction from different angles and in

the next several years they will collectively rule out a large region of theoretically

motivated dark matter models.

1.3.2 Dark Matter as a Thermal Relic

In the early Universe, most of the particles species were in thermal equilibrium. This

basically means that particle interactions were rapid enough to evenly distribute

the energy density. As the Universe cools and expands, some interactions become

inefficient. For example, if the temperature drops below a certain particle’s mass, it

is unlikely that two other particles in thermal equilibrium will have enough energy to

annihilate into those particles. This section will go through the standard calculation

of relic abundances of particles species, following them from thermal equilibrium and

through “freeze-out” when their abundance has been fixed within a comoving volume.

For much of this section, I follow Kolb and Turner’s approach to thermodynamics in

the expanding Universe [4].

In order to properly treat the transition from thermal equilibrium to decoupling,

we must work with Boltzmann equations. A Boltzmann equation is an integral partial

differential equation for the microscopic evolution of a particle’s phase space distri-

bution function fi(x
µ, pµ). The covariant, relativisitic Boltzmann equation is

L̂[f ] =

(
pα

∂

∂xα
− Γαβγp

βpγ
∂

∂pα

)
fi(x

µ, pµ) = Ĉ[f ], (1.56)

where Ĉ is the collision operator, L̂ is the Liouville operator and Γ is the affine

connection. To a first approximation, the Universe is spatially homogeneous (and

flat) as well as isotropic. Therefore the metric takes the form,

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), (1.57)
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and fi = fi(E, t). In this case, the Liouville operator takes the simplified form,

L̂[f(E, t)] = E
∂f

∂t
− ȧ

a
|~p|2 ∂f

∂E
, (1.58)

where ˙ denotes a derivative with respect to the time coordinate in the Robertson-

Walker metric.

One usually has more physical intuition for the number density, which is defined

in terms of the phase space density as

n(t) =
g

(2π)3

∫
d3pf(E, t), (1.59)

where g is the number of internal degrees of freedom. From this definition, we have

the following equation for the number density as a function of time,16

ṅ+ 3Hn =
g

(2π)3

∫
Ĉ[f ]

d3p

E
, (1.60)

where the second term comes from integrating by parts as follows

∫
|~p|2

E

∂f

∂E
d3p =

∫
4π

(∫ ∞
0

|~p|4

E

∂f

∂E
d|~p|
)
dΩp =

∫
4π

(∫ ∞
m

(E2 −m2)3/2 ∂f

∂E
dE

)
dΩp

=

∫
4π

[
(E2 −m2)3/2f(E)

∣∣∣∞
m
−
∫ ∞
m

f(E)
∂

∂E
(E2 −m2)3/2dE

]
dΩp

= −
∫

4π

(∫ ∞
m

f(E)3(E2 −m2)1/2EdE

)
dΩp = −3n(t), (1.61)

where I twice used the fact that |~p|d|~p| = EdE as well as the fact that f(E) falls

off exponentially for large E (in both the Fermi-Dirac distribution and Bose-Einstein

Distribution).

The last term we need to address is the term on the right side of Eq. (1.60).

One can read about more general treatments of collision terms in [4], but for this

introduction we specialize to the case most relevant for the remainder of the thesis.

16Here I have defined the Hubble parameter H = ȧ/a.



26

Suppose we have a dark matter candidate, X, and we want to follow its number

density. First we label its four momentum pX . Suppose further that X has CP

(or T) invariant interactions with other particles and that it is stable. The first of

these conditions results in the simplification that the matrix-element for the process

X+a+ b+ · · · → i+ j+ . . . is the same as the matrix element for the inverse process.

The second condition implies that the only processes that can change the number of

X particles are the processes ψψ̄ ↔ XX̄. We can write the collision term for this

process as

∫
Ĉ[f ]

(
g

(2π)3

d3pX
EX

)
= −

∫
dΠXdΠX̄ΠψdΠψ̄(2π)4δ(4)(pX + pX̄ − pψ − pψ̄)

× |M|
2 (
fXfX̄(1± fψ)(1± fψ̄)− fψfψ̄(1± fX)(1± fX̄

)
, (1.62)

where (+)/(−)-sign should be taken if the species is bosonic/fermionic and

dΠi =
gi

(2π)3

d3pi
Ei

. (1.63)

In this equation, |M|
2

is the spin-averaged matrix element for the process ψψ̄ ↔ XX̄.

Since we are discussing thermodynamics in the early Universe (where temperatures

are high), we can simplify this expression by setting 1± fi = 1.17

Specializing to our situation, we have the Boltzmann equation

ṅ + 3Hn = −
∫ ∏

i

dΠi(2π)4δ(4)(pX + pX̄ − pψ − pψ̄)|M|
2 (
fXfX̄ − fψfψ̄

)
. (1.64)

In the absence of interactions we would have the solution for the number density

ṅ

n
= −3

ȧ

a
→ n(t) ≈ a−3. (1.65)

17 Departures from this simplification are the basis of the low-temperature phenom-

ena known as Bose condensation (+) and Fermi degeneracy (−).
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This solution is physically intuitive since, without interactions, we would expect the

number density to simply dilute as the Universe expands.

To consider a more physically meaningful quantity, we study the comoving num-

ber density. This is defined by Y = nX/s where s is the entropy density. Since

temperature is a much more physical variable then time for our study of comoving

number densities, we convert to the dimensionless variable x = mX/T and use the

relationship between time and temperature from the radiation dominated era.18 One

can derive this relationship as follows. During the radiation dominated era, we have

the Friedmann equation,

H2 =
8π

3m2
Pl

(ρR) =
8π

3m2
Pl

(
π2

30
g∗T

4

)
, (1.66)

where g∗ = g∗(T ) is the number of relativistic degrees of freedom at temperature T

and m2
Pl = 1/GN is the Planck mass. One can show from the Friedmann equations

that a(t) ∝ t1/2 and therefore H = 1/2t. Plugging all of this in, we find

1

2t
=

√
8π3

90

√
g∗
T 2

mPl

⇒ t =

√
90

32π3

√
g∗
mPl

T 2
≈ 0.301
√
g∗

mPl

T 2

⇒ t(x) =
0.301
√
g∗

mPl

m2
X

x2, and H(T ) ≈ 1.67
√
g∗T

2/mPl =
H(mX)

x2
. (1.67)

Changing variables, we have the following Boltzmann equation,

dY

dx
= − x

H(mX)s

∫ ∏
i

dΠi(2π)4δ(4)(pX+pX̄−pψ−pψ̄)|M|
2 (
fXfX̄ − fψfψ̄

)
, (1.68)

where ψ represents a particular species into which X can annihilate. Since ψ and ψ̄

18 It turns out that most weak-scale mass particles fall out of thermal equilibrium

during the radiation-dominated era.



28

are in thermal equilibrium, we have

fψfψ̄ = exp

(
−
Eψ + Eψ̄

T

)
= exp

(
−EX + EX̄

T

)
= fEQ

X fEQ

X̄
. (1.69)

where we have used the delta function to enforce the condition Eψ +Eψ̄ = EX +EX̄ .

One can now write Eq. (1.68) in the following form,

dY

dx
= −

x
〈
σXX̄→ψψ̄|v|

〉
s

H(mX)

(
Y 2 − Y 2

EQ

)
, (1.70)

where the thermally averaged annihilation cross section (times velocity) is defined by

〈
σXX̄→ψψ̄|v|

〉
≡
(
nEQ
X

)−2
∫ ∏

i

dΠi(2π)4δ(4)(pX + pX̄ − pψ − pψ̄)

× |M|
2

exp(−EX/T ) exp(−EX̄/T ). (1.71)

Above we have defined that actual comoving number density of X particles by Y =

nX/s and the equilibrium comoving number density of particles by YEQ = nEQ
X /s. The

final result simply comes from summing over all two-body final states and writing the

total annihilation cross section in place of the partial annihilation cross section,

dY

dx
= −x 〈σA|v|〉 s

H(mX)

(
Y 2 − Y 2

EQ

)
. (1.72)

One can derive the equilibrium comoving number density in the relativistic regime

(T � mX) by first calculating the normal number density,

n(T ) =
g

(2π)3

∫
f(p)(4π)p2dp =

g

2π2

∫ ∞
mX

√
E2 −m2

X

e−E/T ± 1
EdE =

ζ(3)

π2
geffT

3. (1.73)

where geff = g for bosons, geff = 3g/4 for fermions. The entropy density is dominated

by the contribution of relativistic particles, which can be written as

s =
2π2

45

( ∑
i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3
)
T 3 =

2π2

45
g∗,ST

3. (1.74)
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So in the ultrarelativisitic regime, when temperatures are high compared to the mass

of X (x� 3), we have

YEQ(x) =
45ζ(3)

2π4

geff
g∗,S

, for (x� 3). (1.75)

One can analogously derive the non-relativistic expression for the equilibrium comov-

ing number density of X particles given by

YEQ(x) =
45

4π4

(π
2

)1/2 g

g∗,S
x3/2e−x, for (x� 3). (1.76)

Given a thermally averaged annihilation cross section, one can simply numerically

integrate Eq. (1.72) to find the late-time abundance of dark matter.

To get a handle on the results that this numerical information would provide,

we consider a simplified example. In most cases, the annihilation cross section is

dominated by the lowest contributing partial wave so that σA|v| ≈ v2n and therefore

〈σA|v|〉 ≈ σ0/x
n where n = 0 refers to s-wave annihilation, n = 1 to p-wave anni-

hilation, etc. One can then show that the late-time comoving number density of X

particles is given by the approximate formula,

Y∞ =
3.79

(
g∗,S/g

1/2
∗

)
(n+ 1)xf

mPlmX 〈σA|v|〉
, (1.77)

where xf (the freeze-out temperature) can be estimated from Γ(xf ) ≈ H(xf ) where

Γ is the typical rate for the annihilation process.19 Note that the comoving number

density is inversely proportional to the annihilation cross section.

Once Y∞ is calculated (either numerically or semianalytically as above), one can

write the mass density today as

ρX = mXs0Y∞ ⇒ ΩX =
mXs0Y∞

Ωc

, (1.78)

19 The freeze-out temperature is usually around mX/20 (or xf ≈ 20).
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where s0 = 2889/cm3 is the present-day entropy density and Ωc = 1.05×10−5h2GeV/cm3

is the critical density. In the approximate formula, this results in

ΩXh
2 =

8.77× 10−11/GeV2

〈σA|v|〉

(
(n+ 1)xf

√
g∗

g∗,S

)
≈ 1.05× 10−27cm3/s

〈σA|v|〉

(
(n+ 1)xf

√
g∗

g∗,S

)
. (1.79)

The WMAP team recently gave a seven year fit [7] and found the present day dark

matter energy density to be ΩDMh
2 = 0.1109±0.0056. It turns out that a weak scale

annihilation cross section20 results in a dark matter abundance that is this order of

magnitude. A weakly interacting massive particle (WIMP) fits the bill. This is known

as the “WIMP Miracle.”

In chapter 3, we explicitly compute the annihilation cross section for a dark matter

candidate in a model with gauged baryon and lepton number. We use both the

approximate formula, mentioned above, and the more precise numerical solution of

the derived equation. We also compute the numerical solution and show important

implications this solution has on the viable parameter space within the model.

20 By this we mean a thermally averaged total annihilation cross section times

velocity of about 3× 10−26cm3/s.
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Chapter 2

Primordial Power Spectra from
Anisotropic Inflation

We examine cosmological perturbations in a dynamical theory of inflation in which

an Abelian gauge field couples directly to the inflaton, breaking conformal invariance.

When the coupling between the gauge field and the inflaton takes a specific form, in-

flation becomes anisotropic and anisotropy can persist throughout inflation, avoiding

Wald’s no-hair theorem. After discussing scenarios in which anisotropy can persist

during inflation, we calculate the dominant effects of a small persistent anisotropy

on the primordial gravitational wave and curvature perturbation power spectra us-

ing the “in-in” formalism of perturbation theory. We find that the primordial power

spectra of cosmological perturbations gain significant direction dependence and that

the fractional direction dependence of the tensor power spectrum is suppressed in

comparison to that of the scalar power spectrum.

The contents of this chapter were written in collaboration with Moira Gresham

and have been published in [1].

2.1 Introduction

Inflation gives a compelling explanation of the flatness, homogeneity, and isotropy

of our Universe on large scales. It also generically predicts a nearly scale-invariant

spectrum of density perturbations, which is consistent with our observations of the

cosmic microwave background (CMB) and of structure formation. Because of these
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successes, the inflationary paradigm has dominated very early Universe cosmology in

recent years.

In this paper we focus on the prediction of isotropy from inflation. The no-hair the-

orem of inflation states, roughly speaking, that an initially expanding, homogeneous

universe with positive cosmological constant, Λ, and matter satisfying the dominant

energy condition will become indistinguishable from a universe with de Sitter geome-

try on a timescale of
√

3/Λ [8]. Because of the no-hair theorem, isotropy is generally

taken as a prediction of inflation.

But there could be ways around the no-hair theorem. For example, models with

spacelike vector fields that get vacuum expectation values can lead to a preferred

direction during inflation, evading the no-hair theorem because the vector field stress-

energy tensor does not satisfy the dominant (or even the weak) energy condition [5].

However, such “aether” models have been shown to be unstable [9, 10, 11].

Recently, another model has been shown to support a persistent anisotropy during

inflation [6]. In this model, there is a nonminimal coupling between a U(1) gauge field

and the inflaton, essentially leading to a time-dependent U(1) charge during inflation:

S =

∫
d4x
√
−g
[
R

2κ2
− 1

2
(∂µφ)(∂µφ)− V (φ)− f 2(φ)

4
FµνF

µν

]
. (2.1)

Here, the U(1) field strength, Fµν , may or may not be the electromagnetic field

strength. When the coupling, f(φ), between the inflaton, φ, and the U(1) field

takes a particular form and there exists a nonzero homogeneous U(1) seed field, an

anisotropy persists throughout inflation even though the space-time is undergoing

nearly exponential expansion. More specifically, the “electric” field contributes non-

negligible extra negative pressure in the direction in which it points, which causes

space-time to expand more slowly in that direction.

The model avoids the no-hair theorem by having (1) expansion that is not purely

exponential and (2) a coupling between the inflaton and other matter. The mechanism

for evasion of the no-hair theorem shows up in our results in the following ways: (A)

all modifications to power spectra associated with the anisotropy go to zero when
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slow-roll parameters vanish and (B) isotropic dynamics is quickly restored if the

inflaton-dependent coupling that breaks conformal invariance goes to a constant (as

is the case at the end of inflation, when the inflaton field relaxes to the minimum of

its potential).

All of the standard energy conditions are satisfied in this model, which means

it should not be plagued by stability issues as in aether models. The model does,

however, suffer from the standard fine-tuning problems of single field inflation. Nev-

ertheless, to our knowledge this model could be the first consistent model of inflation

that evades the no-hair theorem and includes anisotropy at a significant level. It

is therefore interesting to investigate whether the model is truly consistent and to

investigate its potential astrophysical signatures.

To that end, in this chapter we consider gauge-invariant cosmological perturba-

tions in this anisotropic inflation model. We consider and discuss a model generalized

from that of [6], and extend their formula for the relation between the anisotropic

expansion parameter and the slow-roll parameter to include arbitrary forms of the

inflaton potential. We also present the dominant effect of the anisotropy on the power

spectra of tensor, vector and scalar perturbation correlations at the end of inflation.

Our main conclusions are

• The power spectra for gravitational wave and curvature perturbations can de-

velop dramatic direction dependence for very small values of the anisotropy

parameter1 if the parameter is nearly constant for a large period of inflation.

• The main cause of direction dependence of the power spectra is a coupling

between the U(1) vector degrees of freedom to both tensor and scalar degrees of

freedom through the anisotropic background. These interactions significantly

affect the power spectra of modes after horizon crossing.

1 The anisotropy parameter is basically the fractional difference between the rate

of expansion in the preferred direction and that of a perpendicular direction.
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• The ratio of the fractional direction-dependent change in the gravitational wave

power spectrum over that of the curvature perturbation power spectrum is

nearly equal to the tensor-to-scalar ratio. In particular, the curvature per-

turbation power spectrum has much stronger direction dependence than the

gravitational wave power spectrum.

• For a given scale, the tensor and scalar power in modes with wave vector per-

pendicular to the preferred direction is greater than the power in modes with

wave vector parallel to the preferred direction.2

• There is no indication that the anisotropic inflation model is unstable (e.g. there

are no ghosts). This should be unsurprising since the stress-energy tensor for

matter in the model satisfies the dominant energy condition.

Many have studied inflationary scenarios with actions similar to (2.1), interpreting

Fµν as the standard model electromagnetic field strength, in the context of explaining

the existence of large-scale magnetic fields in the Universe. Initially Parker [12] and

then Turner and Widrow [13] showed that magnetic fields produced in an inflation-

ary Universe are “uninterestingly small” (i.e., too small to possibly account for the

observed large-scale magnetic fields in the Universe) unless the conformal invariance

of the electromagnetic field is broken. The generation of seed magnetic fields starting

from the action in (2.1) and a particular f(φ) was considered in [14] and more recently

in [15]. Generic predictions for magnetic fields in a large class of models, of which

the model we consider here is an example, were presented by Bamba, et. al. [16]; the

particular realization of the model we consider in this paper is what these authors

refer to as the “weak coupling case.” Magnetogenesis, including the backreaction due

to electromagnetic fields, in the inflationary scenario we consider here was considered

in [17]. For a review of the generation of magnetic fields during inflation in a more

2 I.e., the parameter g∗ (see equation (2.39)), as defined in [5], that characterizes the

direction-dependence of the power spectrum due to a preferred direction is negative.
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general context see, for example, [18].

More recently, the effect of vector fields during inflation has been studied in the

context of their effects on the curvature perturbation power spectrum. A “vector

curvaton” scenario, in which a vector field with time-varying mass and Maxwell-

type kinetic coupling term contributes to the curvature power spectrum, was found

in [19] to allow significant anisotropic contributions to the curvature spectrum and

bispectrum if the vector field remains light until the end of inflation. A similar

massless vector curvaton scenario was considered in [20], and again the possibility

of significant anisotropic contributions was found.3 The anisotropic contribution of

vector field perturbations to primordial curvature perturbation correlations in various

inflationary scenarios was also considered in [21, 22, 23, 24, 25, 26]. Perturbations of

what correspond to our cross polarization gravitational wave degree of freedom were

studied in [27], but in a scenario in which a second scalar field, uncoupled to the U(1)

field and the scalar field that couples to the U(1) field, causes a transition back to

isotropic expansion before the end of inflation.

This chapter is organized as follows. In section 2.2, we introduce the model.

In section 2.3, we discuss our philosophy and methods for calculating and analyz-

ing primordial perturbation spectra. Finally, in sections 2.4 and 2.5 we calculate

the primordial perturbation spectra and briefly discuss stability. We summarize our

conclusions in section 2.6.

2.2 Model and Background Solution

We consider a space-time governed by the following action [6]:

S =

∫
d4x
√
−g
[
R

2κ2
− 1

2
(∂µφ)(∂µφ)− V (φ)− f 2(φ)

4
FµνF

µν

]
, (2.2)

3 Both studies employed the δN formalism in calculating the curvature perturbation

power spectra.
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where g = det(gµν), R is the Ricci scalar, φ is the inflaton, and Fµν = ∂µAν − ∂νAµ
is a U(1) gauge field strength. For convenience, we will refer to the U(1) field as the

“electromagnetic” (EM) field, even though it need not be the standard model EM

field. Here we have defined

κ2 ≡ 8πG = 1/M2
Planck. (2.3)

We assume that the background is homogeneous, and that there is a nonzero

homogeneous electric field.4 We orient coordinates such that Fij = Fηy = Fηz = 0

and Fηx6=0. One could just as easily have chosen to consider a homogeneous magnetic

field. This choice does not change the form of the background stress tensor, and we

expect the results of this chapter to apply in the magnetic field case as well. However,

allowing for both electric and magnetic fields of arbitrary relative alignment is beyond

the scope of this chapter.

The background space-time is Bianchi I, and the metric can be written in the

following form by appropriate choice of coordinate axes:5

ds2 = a(η)2
(
−dη2 + γij(η)dxidxj

)
, (2.4)

where6

γxx = e−4β(η), γyy = γzz = e2β(η), and γij = 0 for all i 6= j. (2.5)

4At least we assume that the “electric” field was aligned in our causal patch. We

will not consider the effects of regions with differing directions of alignment

of the electric field.

5The form is chosen so that the spatial metric has unit determinant (and therefore

scaling or translating β(η) does not affect the spatial volume element).

6 An equivalent ansatz would have been ds2 = −dt2 +a‖(t)
2dx2 +a⊥(t)2(dy2 +dz2).
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Since g is independent of β, the scale factor, a, completely characterizes the space-

time volume. For convenience we define α to be the logarithm of the scale factor,

so

a = eα. (2.6)

In parametrizing the metric, we have used the conventions of [28]. The solution to

the background electromagnetic field equation of motion is then [6],

Fηx = pA
e−4β(η)

f 2(φ̄)
, (2.7)

where pA is an integration constant of mass dimension two and a prime indicates a

derivative with respect to conformal time η. In these coordinates, Einstein’s equations

take the form [6],

α′2 = β′2 +
κ2

3

[
φ′2

2
+ e2αV (φ̄) +

p2
Ae
−2α−4β

2f 2(φ̄)

]
, (2.8)

α′′ = −2α′2 + κ2e2αV (φ̄) +
p2
Aκ

2e−2α−4β

6f 2(φ̄)
, (2.9)

β′′ = −2α′β′ +
p2
Aκ

2e−2α−4β

3f 2(φ̄)
. (2.10)

Given Einstein’s equations above, the equation of motion for φ is redundant.7

It was shown that inflation can occur for suitable initial conditions such that

the Universe is initially expanding, and that the energy density of the vector field

will remain almost constant with respect to the inflaton energy density if f(φ) ∝

e−2α [6]. Recall that if there is no inflaton-electromagnetic coupling, the ratio of

electromagnetic energy density to inflaton energy density decays as a−4. Let us briefly

show how this can occur.

If expansion is nearly exponential (in cosmic time), then the “slow-roll” parame-

7 Recall that Einstein’s equations and the matter-field equations are related through

the conservation equation, ∇µT
µ
ν = 0, where T µν is the matter stress-energy tensor.
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ters,

ε ≡ −∂tH
H2

=
α′2 − α′′

α′2
, (2.11)

δ ≡ ∂2
tH

2H∂tH
, (2.12)

are very small compared to one and as usual, H ≡ ∂ta
a

.8 Higher derivatives of H

must, of course, also be small if expansion is nearly exponential.

The field equations (2.8), (2.9) and (2.10), can be cast in the following form:

ρ̂A ≡
κ2p2

Ae
−4β

2a2f 2(φ̄)α′2
=

3

2

(
3Σ− εΣ +

Σ′

α′

)
, (2.14)

ρ̂φ ≡
a2κ2V (φ̄)

α′2
= 3− ε− 3

2
Σ +

ε

2
Σ− Σ′

2α′
= 3− ε− 1

3
ρ̂A, (2.15)

κ2φ̄′2

α′2
= 2ε− 6Σ + 2εΣ− 6Σ2 − 2

Σ′

α′
= 2ε− 4

3
ρ̂A − 6Σ2, (2.16)

where Σ ≡ β′/α′. (2.17)

The quantities ρ̂φ and ρ̂A are dimensionless energy densities, normalized by the Hubble

scale squared times the Planck mass squared.

In standard single field inflation with an inflaton potential V , for example, one

finds from the field equations that κφ′

α′
∼
√
ε, so that if expansion is nearly exponential,

then the inflaton must be slowly rolling. Taking derivatives of the above equations in

the isotropic case, one can find expressions for derivatives of V in terms of slow-roll

parameters—thus yielding requirements of a potential that can give rise to inflation.

8 Note that

ε′

α′
= 2ε(ε+ δ). (2.13)
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From (2.15) and (2.14) one finds

ρ̂′φ
ρ̂φα′

=
∂φV

κV

κφ̄′

α′
+ 2ε =

− ε′

α′
− 1

3

ρ̂′A
α′

3− ε− 1
3
ρ̂A
, (2.18)

ρ̂′A
ρ̂Aα′

= −4− 2
∂φf

κf

κφ̄′

α′
+ 2ε− 4Σ =

2Σ′

α′
+ . . .

3Σ− εΣ + Σ′

α′

, (2.19)

where . . . ∼ O(Σ ε′

α′
, εΣ′

α′
, Σ′′

α′2
).

We can glean a fair bit of information from equations (2.14) through (2.19) without

much effort. First, what if expansion were purely exponential so that δ = ε = 0? From

(2.16) we can immediately see that ρ̂A and Σ had better then also be zero based simply

on the fact that κ2φ̄′2

α′2
, ρ̂A, and Σ2 are positive. This could be seen as confirmation of

the no-hair theorem; anisotropy can exist only if expansion is not purely exponential.9

Similarly, if ε is small, then ρ̂A and Σ had also better be small. In particular, even in

small field models of inflation where typically ε� δ � 1, the anisotropy parameters

Σ and ρ̂A must be order ε or smaller. Second, from (2.18) we see that ρ̂φ is nearly

constant with respect to the Hubble parameter if ε and Σ are small. Also from (2.18)

we see that
∂φV

κV

κφ̄′

α′
= −2ε+O(ε′/α′) + . . . (2.21)

Third, from (2.19), if ε and Σ are small, we see that ρ̂A decreases rapidly with respect

9 A more direct confirmation of the no-hair theorem comes from supposing φ′ = 0

(and, for simplicity, ε << 1) so that V (φ) functions as a cosmological constant. Then

from (2.16) and (2.15)

d log ρ̂A
dt

≈ −4
d

dt
α ≈ −4κ

√
V (φ)

3
. (2.20)

So ρ̂A, and thus by (2.14) also ε and Σ, go to zero on the time scale promised by the

no-hair theorem.
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to the Hubble parameter unless
f ′

fα′
. −2, (2.22)

or equivalently unless
∂φf

κf
. −2/

(
κφ̄′

α′

)
. (2.23)

Now since

(
∂φV

κV

)−1

∼ ±
√

1/2ε
√

1− 3Σ/ε+ . . . ∼ −
(
κφ̄′

α′

)−1

, (2.24)

a ready choice for the coupling function, f , if one wants the energy density of the

electromagnetic field (and thus the anisotropy) not to decay rapidly with respect to

the inflaton energy density, is thus

f(φ) = exp

{
2cκ

∫ (
∂φV

κV

)−1

dφ

}
, (2.25)

where c is an order one constant. This is the coupling function motivated and exam-

ined in [6]. Let us suppose the coupling function is of this exact form, so

ρ̂′A
ρ̂Aα′

= −4− 4c

(
κφ̄′

α′

)2(
∂φV

κV

κφ̄′

α′

)−1

+ 2ε− 4Σ (2.26)

= −4− 4c(2ε− 6Σ + . . .)(−2ε+O(ε′/α′) + . . .)−1 + 2ε− 4Σ (2.27)

= (c− 1)4− 4(3c)
Σ

ε
+ . . . (2.28)

Suppose initially that Σ � ε. If c < 1 then ρ̂A decreases along with Σ as long as ε

is small. Anisotropy is wiped out (albeit much more slowly than in the case where

f(φ) = 1). If c > 1, then ρ̂A initially increases, as does Σ (see (2.14)). The derivative

of the electromagnetic field energy density will thus approach zero,
ρ̂′A
ρ̂Aα′
−→ 0, and so

ρ̂A and Σ will become nearly constant for a time. If Σ is initially greater than (c−1)
3c

ε,

then ρ̂A and Σ will initially decrease, φ will climb its potential, and then it will fall

back down (slowly) after Σ has approached a constant [6].

From (2.14) one can see that if Σ is approximately constant then Σ must be
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positive. So when the space-time undergoes anisotropic expansion in this model

(and Σ is nearly constant) the preferred direction expands more slowly than the

perpendicular directions.

When (2.25) holds, we can find an expression for Σ in terms of the slow-roll

parameter during the period in which it is nearly constant. Assuming

O(ε) ≈ O(δ), c− 1 > O(ε), Σ . O(ε),

Σ′

α′
. O(εΣ), and

(
Σ′

α′

)′
/α′ . O(ε2Σ), (2.29)

we can set the two different expressions for ∂φV/V derived from equations (2.18) and

(2.19) equal to each other. Using this method we find

Σ ≡ β′

α′
=
c− 1

3c
ε+

1 + c− 4c2

18c2
ε2 +

1− 2c− 4c2

18c2
εδ + . . . (2.30)

The authors of [6] derived this expression to first order in ε for the particular potential

V = 1
2
m2φ2 and argued that Σ generically tracks the slow-roll parameter for general

potentials. We find that the expression (2.30) actually holds for any potential V in a

slow-roll regime (ε, δ � 1).

As c → 1, the story is a bit different. For example, if c = 1, looking back to

equations (2.26) - (2.28) one finds that ρ̂A, if it is initially greater in magnitude than

O(ε2), decreases until its on the order of ε2, and then stays nearly constant. From

numerical studies it appears that if ρ̂A is initially much greater in magnitude than

O(ε2), then it will rapidly settle to a value much smaller than O(ε2). If the magnitude

of ρ̂A is initially on the order of ε2 or less, then it will stay very nearly constant until

the end of inflation. An example with c = 1 is provided in Fig. 2.1.

The trick of this model is to choose f(φ), given V (φ), such that the electromagnetic

field energy density does not decay rapidly with respect to the inflaton energy density

during inflation. We saw above that a choice guaranteed to work is

f(φ) ≈ exp

{
2κ

∫ (
∂φV

κV

)−1

dφ

}
. (2.31)
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Figure 2.1: Log plot of Σ and ε as a function of e-foldings (∆α = α − α0) during
inflation. The plot was generated with the potential V = 1

2
m2φ2 and coupling function

f(φ) = exp
[
κ2φ2

2

]
. The initial conditions were φ0 = 17.5/κ, φ′0 = 0, α0 = −75, β0 = 0

and β′0 = 0. The constants m and pA were chosen so that initially ρA/ρφ ≈ 10−6.
Notice that Σ very quickly settles to a value that is somewhat smaller than the square
of the slow-roll parameter ε.

For example, if V (φ) ∝ φn, then f(φ) ≈ exp[κ2φ2/n]. What if we were to choose

instead, say, f(φ) ≈ exp[λκφ]? Then we would have

ρ̂′A
ρ̂Aα′

= −4− 2λ
κφ̄′

α′
+ 2ε− 4Σ. (2.32)

If λ is order one, then the anisotropy will rapidly decay. However, if λ were large

enough in magnitude then the anisotropy could persist for a good portion of inflation.

In our analysis, we will use only the background equations of motion, leaving f(φ)

and V (φ) generic. We will then be interested in scenarios in which anisotropy can

persist over several e-folds—scenarios in which f ′

fα′
= −2+O(ε) and where ρ̂A ≈ 9Σ/2

is approximately constant. We saw that consistency of the background equations and

a slow-roll scenario dictates that ρ̂A must be order ε or smaller. We also discussed

specific examples of functions, f(φ), that can lead to such scenarios (assuming, oth-

erwise, a slow-roll scenario, ε, δ � 1). In order to calculate primordial power spectra,

we will use the “in-in” formalism of perturbation theory, assuming

• ε� 1, δ � 1,
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• ρ̂A ≈ 9Σ/2 . O(ε),

• ρ̂′A/(ρ̂Aα′) . O(ε).

2.3 Perturbations: Setup and Strategy

Our goal is to examine whether the background described in the previous section

(slightly generalized from the space-time of [6]) is perturbatively stable, and to ex-

amine its signature at the level of primordial perturbation spectra.

We have calculated the quadratic action for dynamical modes in terms of the

gauge-invariant variables defined in appendix A.1. We calculated the action to

quadratic order in perturbations starting with the form of the second-order Einstein-

Hilbert action given in appendix A.2, and a similar expression for the quadratic-

order matter action. We worked in Newtonian gauge and used a differential geometry

package in Mathematica to massage the quadratic action into the (relatively) simple,

manifestly gauge-invariant form presented in sections 2.4 and 2.5.

Regarding perturbative stability of the background, we find that there are no

ghosts (fields with wrong-sign kinetic terms), and no other indication of instability at

the quadratic level. Here, we take “perturbative stability” to mean that dimensionless

combinations of fields assumed to be much less than one in the perturbative expansion

of the action remain small. We find that such small quantities do indeed stay small.

In the remainder of this section we describe how we set up the calculation and

analysis of perturbation spectra; we describe the physical scenario, the expression for

expectation values in the “in-in” formalism, the definitions for the relevant degrees

of freedom, and, finally, the current bound on a preferred direction during inflation.

In sections 2.4 and 2.5 we calculate power spectra and briefly discuss stability.
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2.3.1 Physical Scenario

Perturbations from inflation are usually assumed to be generated in the following way

[29]:

• Quantum mechanical perturbative modes are in their ground state throughout

inflation. So the vacuum expectation value of individual modes is zero, though

the variance is generally nonzero.

• The normalization of the ground states is such that when the modes are well

within the horizon, the canonically normalized10 fields, φ, obey a simple har-

monic oscillator equation and satisfy the canonical commutation relations.11

• As modes cross the horizon, their correlations are “frozen in” and translate into

classical perturbations that lead to, for example, density perturbations that seed

the formation of structure in the Universe and lead to temperature anisotropies

of the cosmic microwave background radiation.

We shall assume the same, with one complication. We assume the quantity,

Σ ≡ β′/α′, which characterizes the deviation from isotropy, is nonzero so that ex-

pansion of the background space-time is slightly anisotropic, and modes that corre-

sponded to scalar, vector, and tensor degrees of freedom in the isotropic background

are now coupled. (Several scenarios in which this can occur were discussed in sec-

tion 2.2.) Because of the coupling of modes, the amplitudes of tensor, vector, and

scalar perturbations are not separately conserved outside the horizon. As the infla-

ton decays at the end of inflation, the dynamics becomes isotropic again, and tensor,

10In conformal time, the kinetic term for a canonically normalized field, φ, in the

quadratic action takes the form 1
2
φ′2.

11 Specifically,

[∂ηφ(η, ~x), φ(η, ~y)] = −i~δ3(~x− ~y), (2.33)

where η is conformal time.
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scalar, and vector modes decouple. At this point, superhorizon perturbations should

be frozen in. We are therefore interested in the correlations of perturbations at the

end of inflation. Especially if the U(1) field in our model were interpreted as the

electromagnetic field, the details of the reheating process at the end of inflation could

also be important in calculating the direction dependence of CMB power spectra. In

this chapter, however, we will only examine the effects of the gauge field on curvature

and gravitational wave power spectra until just before reheating.

2.3.2 Correlations Using “In-In” Formalism

Because in the context of cosmological perturbations as described above we know only

the quantum “in” states, and we are interested in expectation values evaluated at a

particular time, we use the “in-in” formalism of perturbation theory (see e.g. [30]).

We separate our Hamiltonian into a free portion H0 and an interacting portion HI .

The interaction-picture (free) fields’ evolution is determined by the free Hamiltonian.

The expectation value for a general operator X at (conformal) time η can be written

as

〈X(η)〉 =
〈
XI(η)

〉
+ i

∫ η

dη′
〈
[HI(η

′), XI(η)]
〉

+ (i)2

∫ η

dη′
∫ η′

dη′′
〈
[HI(η

′), [HI(η
′′), XI(η)]]

〉
+ . . . (2.34)

where the ellipsis denotes terms with more powers ofHI and whereXI is the interaction-

picture operator.

It should be noted that corrections of quadratic (or higher) order in the interaction

Hamiltonian can lead to ambiguities when the details of the contour integration are

not carefully considered [31]. We will work only to linear order in HI , and therefore

we need not worry about such ambiguities.
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2.3.3 Decomposition of Perturbations

Since the background space-time is homogeneous, we decompose our perturbations

into Fourier modes

δ(xi, η) =

∫
d3k

(2π)3
eikjx

j

δ(ki, η). (2.35)

We analyze perturbations about an anisotropic background. Since the background

is anisotropic and thus there is no SO(3) symmetry, perturbations cannot be decom-

posed into spin-0, spin-1, and spin-2 degrees of freedom and analyzed separately. We

instead decompose gauge-invariant perturbations according to their transformation

properties in the isotropic limit. (See appendix A.1.)

There are five dynamical degrees of freedom in our model, corresponding to

• one scalar degree of freedom, r (spin-0 in isotropic limit),12

• two electromagnetic vector degrees of freedom, δA+ and δA− (spin-1 in isotropic

limit),

• and two metric tensor degrees of freedom, E+ and E× (spin-2 in isotropic limit).

In order to analyze the relevant dynamical perturbative degrees of freedom in our

scenario, we derived the quadratic action in terms of the gauge-invariant variables of

appendix A.1. Then we eliminated the nondynamical degrees of freedom by using

constraint equations derived from the action. Finally, we canonically normalized

the degrees of freedom that correspond to the dynamical “free” fields in the limit

as β′/α′ −→ 0. Within the “in-in” formalism of perturbation theory, we take the

interaction-picture fields to be those governed by the dynamics in the β′/α′ = 0 limit.

The quadratic action separates into two uncoupled pieces according to a residual

symmetry under parity transformations. (See appendix A.1.) The “odd” sector has

two degrees of freedom, E× and δA−. The “even” sector has three degrees of freedom,

E+, δA+, and r. The fields E+, E×, and r correspond to fields that are conserved

12 See (A.22) in appendix A.1.
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outside the horizon during isotropic inflation. Here r is a Mukhanov-Sasaki variable,

equal to minus the curvature perturbation, −ζ, as defined in, e.g. [32], in a gauge

with spatially flat slicing. We will therefore refer to r as the curvature perturbation.

2.3.4 Canonically Normalized Variables

The canonically normalized fields in each sector (“even” and “odd,” respectively) are

given by

Â+ = f(φ̄) δA+,

ĥ+ = a(η)E+/κ,

r̂ = z(η) r,

and
Â− = f(φ̄) δA−,

ĥ× = a(η)E×/κ,
(2.36)

where

z(η) ≡ a(η)
φ̄′

α′
. (2.37)

The fields on the right-hand sides of equations (2.36) are defined in appendix A.1.

As mentioned above, in the isotropic limit E+, E− and r are conserved outside the

horizon. The other important fact about the fields above is that the perturbative

expansion of the action is valid when

E+, E×,
|~k|
F̄ηx

δA+,
|~k|
F̄ηx

δA−, r � 1. (2.38)

2.3.5 Comparison with Data

A formalism for finding signatures of a generic primordial preferred direction in the

CMB has been developed [5, 27]. In [5] a small direction-dependent contribution to

the primordial curvature power spectrum is parametrized by g∗, where

P (~k) = P0(k)(1 + g∗ (n̂ · k̂)2), (2.39)

and where n̂ is some preferred direction in the sky.

It is postulated that g∗ will be approximately independent of the scale for modes
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of astrophysical interest and that parity is still conserved. Parity conservation guar-

antees the absence of terms with odd powers of (n̂ · k̂). Contributions proportional

to higher powers of (n̂ · k̂)2 are assumed to be negligible.

Using this formalism, a nonzero value for g∗ was found using 5-year WMAP data

at the 9 sigma level [33]. The central value found for g∗ is 0.29 for a preferred

direction very close to the ecliptic pole. Since the WMAP scanning strategy is tied to

the ecliptic plane, this strongly suggests that the nonzero value of g∗ is due to some

systematic effect [34, 33]. Still, we may reasonably take from the analysis in [33] an

upper bound for g∗ of

|g∗| < 0.3. (2.40)

In [35] it is estimated that Planck will be sensitive to values of |g∗| as small as 0.02.

Obviously, the gravitational wave power spectrum has not yet been measured, so

there is no limit on the analogous parameter, g∗grav, for the gravitational wave power

spectrum.

2.4 Perturbations: Odd Sector

As described in section 2.3.3, the quadratic action separates into two uncoupled pieces

according to a residual symmetry under parity transformations. We’ll therefore ana-

lyze the two “sectors”—which we refer to as “odd” and “even” for reasons discussed

in appendix A.1—in different sections. We start in this section by analyzing the odd

sector13 because it is less complicated than the even sector, having only two coupled

degrees of freedom (a tensor and a vector degree of freedom) instead of three degrees

of freedom as in the even sector. The even sector, which includes the curvature per-

turbation, contains the most interesting physics; analyzing the odd sector is valuable

for extracting g∗grav and as a warm-up for the analysis of the even sector.

In this section we present the action for the odd sector to quadratic order in gauge-

13 Our odd sector corresponds to the 2d-vector sector analyzed numerically in [27].
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invariant perturbation variables. Then we argue that the form of the action implies

that the background is classically stable. Next we diagonalize the kinetic term in the

action by defining new perturbation variables in terms of which the kinetic term in

the action is canonically normalized. This diagonalization allows us to identify the

fields that should be quantized. The Hamiltonian derived from the diagonal form of

the action is then separated into a “free” part and an “interacting” part, and “in-in”

perturbation theory is used to find the autocorrelations (power spectra) and cross

correlations of the vector and tensor degrees of freedom (see (2.36)) in terms of the

preferred direction and the background quantities H and Σ. The most interesting

result in this section is the tensor perturbation power spectrum, given in (2.79).

In the odd sector, the action takes the form

Sodd =

∫
dη

∫
d3k

(2π)3

(1

2
ĥ×∗′ĥ×′ +

1

2
Â−∗′Â−′

− 1

2
ĥ×∗ĥ×

(
k2 − a′′

a
− 4ρ̂Aα

′2/3 +
1

2
∆~kα

′2
(

2ρ̂A/3 + 6Σ2 − 3

2
∆~kΣ

2

))
− 1

2
Â−∗Â−

(
k2 − f ′′

f
+ 2Σα′

f ′

f
+ α′2(2ρ̂A − 2Σ + 2∆~kρ̂A/3− Σ2)

)
+

(
iψ′~kĥ

×∗Â−
(
f ′

f
+ α′Σ + ∆~kα

′Σ

)
− iψ′~kĥ

×∗Â−′ + h.c.

))
, (2.41)

where

k2 ≡ γijkikj = k2
1e

4β + k2
2e
−2β, (2.42)

∆~k ≡
k2′

k2β′
=

4 k2
1e

4β − 2 k2
2e
−2β

k2
1e

4β + k2
2e
−2β

, (2.43)

ψ′~k
α′
≡ k2e

−β
√
k2

√
ρ̂A, (2.44)

and f ′ denotes the derivative of f(φ̄(η)) with respect to conformal time. Without

loss of generality we have set k3 = 0 and we have taken the preferred direction (the

direction along which the background electric field points) to be x̂1.

By inspection we can see that ĥ× and Â− decouple when the wave vector is parallel

to the preferred direction (so k2 = 0). This decoupling should be expected due to the

enhanced rotational symmetry about the wave vector in this case.
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2.4.1 Preliminary Look at Stability

By design, the kinetic terms are canonically normalized. And in the short wavelength

limit (k � aH), the action simplifies to that of two uncoupled harmonic oscillators;

there is no indication of instability in the short wavelength limit.

Let us consider the case where k2 = 0 so the wave vector corresponding to a mode

points in the preferred direction. In this case, ψ′~k = 0 and ∆~k = 4. By inspection,

one sees that the cross-terms vanish. More explicitly,

Sodd −→k2→0

∫
dη

∫
d3k

(2π)3

(1

2
ĥ×∗′ĥ×′ +

1

2
Â−∗′Â−′ − 1

2
ĥ×∗ĥ×

(
k2 − a′′

a

)
− 1

2
Â−∗Â−

(
k2 − f ′′

f
+ 2Σα′

f ′

f
+ α′2(14ρ̂A/3− 2Σ− Σ2)

))
. (2.45)

When k2 → 0 the action for ĥ× takes the same form as in the isotropic case.

Though the effective mass for ĥ× is not real for all time (so naively, there is a tachyon),

the important point is that ĥ×/a, which we assumed to be much less than one in our

perturbative expansion of the metric (see (2.38)), oscillates with decaying amplitude

before horizon crossing, and then remains constant or decays after horizon crossing.

In other words, ĥ× ∼ aE× never increases faster than a, which is consistent with the

perturbative expansion. Similarly, given that 2Σα′ f
′

f
+ α′2(14ρ̂A/3− 2Σ−Σ2)� f ′′

f
,

the long wavelength solution for Â− is approximately, Â− ≈ C1f + C2f
∫

dη
f2 . Now

given that f ≈ a−2 ≈ H2η2, one can see that |~k|
F̄ηx

δA− ∼ (C1 + C2

H
a3)a−4 (which is

decaying) in the long wavelength limit. So clearly the perturbative expansion of the

action remains valid when k2 = 0.

Now let us consider a wave vector that is antiparallel to the preferred direction,

so k1 = 0. In this case, ψ′~k =
√
ρ̂A α

′ and ∆~k = −2. Then the effective mass squared

for ĥ× becomes

m2
eff = k2 − a′′

a
− α′2(2ρ̂A + 9Σ2).

Compared to the isotropic case, the effective mass squared for ĥ× receives an addi-

tional negative contribution. This suggests that ĥ× will grow slightly faster than a
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outside the horizon. The situation is, of course, complicated by the coupling to Â−,

but all extra terms in the action when k1 = 0 compared to the terms present when

k2 = 0 are small. This suggests that any possible growth of the perturbative fields in

this case will be very moderate and does not represent an instability. This reasoning

will be checked by calculating the power spectra of perturbative fields; we can check

that the magnitudes of power spectra do not grow rapidly in time.

The same situation occurs in the even sector; perturbations clearly do not grow

when k2 = 0 and all extra terms in the action when k1 = 0 compared to the terms

present when k2 = 0 are small.

2.4.2 Diagonalized Action

In general, the canonical quantization of a theory can only proceed once the kinetic

interactions have been diagonalized. Usually the diagonalization is accomplished

by some constant field redefinition. In our case, we need a time-dependent field

redefinition because the “coefficients” in the kinetic portions of the action are not

constant. (See appendix A.3.)

The kinetic terms can be diagonalized by performing a time-dependent unitary

rotation,  ĥ×
Â−

 =

 cosψ~k(η) −i sinψ~k(η)

−i sinψ~k(η) cosψ~k(η)

U1

U2

 . (2.46)

In terms of the rotated fields, Ui, the odd-sector action takes the form,

Sodd =

∫
dη

∫
d3k

(2π)3

1

2

U ′1
U ′2

†U ′1
U ′2

− 1

2

U1

U2

†M
U1

U2


 , (2.47)



52

where the Hermitian matrix M is defined

M ≡
(
k2 − 1

2

(
a′′

a
+
f ′′

f

)
+ Σα′2

(
f ′

fα′
− 1− 1

2
Σ +

3

2
Σ∆~k −

3

8
Σ∆~k

2

)
+

1

3
ρ̂Aα

′2 (3 + ∆~k

) )
I

+
[
sin(2ψ~k)σ3 − cos(2ψ~k)σ2

](ψ′~k
α′

)
α′2
(

1− f ′

fα′
+ Σ− 3

2
Σ∆~k

)
(2.48)

+
[
cos(2ψ~k)σ3 + sin(2ψ~k)σ2

] (1

2

(
f ′′

f
− a′′

a

)
− Σα′2

(
f ′

fα′
− 1− 1

2
Σ− 3

2
Σ∆~k +

3

8
Σ∆~k

2

)
− 1

3
ρ̂Aα

′2
(

5 +
1

2
∆~k

))
,

and where I is the 2 × 2 identity matrix and we have used the following convention

for the Pauli matrices

σ2 =

0 −i

i 0

 , and σ3 =

1 0

0 −1

 . (2.49)

Physical quantities should not depend on the initial value of ψ~k. Indeed, we will

see that correlations of ĥ× and Â− at a time, η, calculated using the “in-in” formalism

of perturbation theory, depend only on the change in ψ~k after horizon crossing.

2.4.3 Correlations Using Perturbation Theory

In order to calculate correlations, we use the “in-in” formalism of perturbation theory,

taking the small parameters to be ε, δ, ρ̂A, and Σ. As discussed at the end of section

2.2 we take

ε =
α′2 − α′′

α′2
� 1, δ =

∂2
tH

2H∂tH
� 1,

ρ̂A ≈ 9Σ/2 . O(ε),
ρ̂′A
ρ̂Aα′

. O(ε). (2.50)

Given these assumptions and the background field equations (2.8) through (2.10),

f ′

fα′
= −2 +O(ε),

f ′′

fα′2
= 2 +O(ε) =

a′′

aα′2
, and α′ ≈ −1

η
. (2.51)



53

We choose as our free Hamiltonian

Hodd
0 ≡

∫
d3k

(2π)3

1

2

U ′1
U ′2

†U ′1
U ′2

+
1

2

U1

U2

†M (0)

U1

U2


 , (2.52)

where

M (0) ≡
(
γij(η0)kikj −

2

η2

)
I. (2.53)

The interaction-picture fields then obey the following equations:

d2U I
i

dη2
+

(
γij(η0)kikj −

2

η2

)
U I
i = 0. (2.54)

Each of these fields can be expanded in terms of time-independent creation and an-

nihilation operators as

U I
i (~x, η) =

∫
d3k

(2π)3
eikjx

j

U I
i (~k, η)

=

∫
d3k

(2π)3

(
eikix

i

χ(0)(kη0 , η)âi~k + e−ikix
i

χ(0)∗(kη0 , η)(âi~k)
†
)
, (2.55)

where the canonically normalized mode functions are

χ(0)(k, η) =
e−ikη√

2k

(
1− i

kη

)
, (2.56)

and where the commutation relations of the creation and annihilation operators are

[
âi~k, (â

j
~q)
†
]

= (2π)3δijδ(~k − ~q) and
[
âi~k, â

j
~q

]
= 0. (2.57)

Here,

kη0 ≡
√
γij(η0)kikj. (2.58)

If we choose β0 = 0 then γij(η0) = δij. But then if β changes during inflation,

the coordinates at the end of inflation will not be isotropic. On the other hand, if we

choose β0 so that β = 0 at the end of inflation (when the dynamics returns to being
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isotropic), then the coordinates at the end of inflation will be isotropic. The latter

choice is more convenient.

Using the results of the previous section and the form of the matrix M in (2.48),

the interaction-picture Hamiltonian takes the form

HI(η) =

∫
d3k

(2π)3

1

2

U I
1

U I
2

†M (1)

U I
1

U I
2


 , (2.59)

where,

M (1) = M −M (0) = f1(η,~k)I +
[
sin(2ψ~k)σ3 − cos(2ψ~k)σ2

]
f2(η, k̂)

+
[
cos(2ψ~k)σ3 + sin(2ψ~k)σ2

]
f3(η, k̂) (2.60)

and we have defined

f1(η,~k) ≡ (γij(η)− γij(η0))kikj −
1

2

(
a′′

a
+
f ′′

f
− 4

η2

)
+ Σα′2

(
f ′

fα′
− 1− 1

2
Σ +

3

2
Σ∆~k −

3

8
Σ∆~k

2

)
+

1

3
ρ̂Aα

′2 (3 + ∆~k

)
(2.61)

f2(η, k̂) ≡
(
ψ′~k
α′

)
α′2
(

1− f ′

fα′
+ Σ− 3

2
Σ∆~k

)
(2.62)

f3(η, k̂) ≡ 1

2

(
f ′′

f
− a′′

a

)
− Σα′2

(
f ′

fα′
− 1− 1

2
Σ− 3

2
Σ∆~k +

3

8
Σ∆~k

2

)
− 1

3
ρ̂Aα

′2
(

5 +
1

2
∆~k

)
. (2.63)

Our convention for the correlations of the fields will be

〈
Ui(~k, η)Uj(~q, η)

〉
= Cij(~k, η)(2π)3δ(~k + ~q), (2.64)

where the power spectra are the diagonal entries of the matrix Cij. Using (2.34), the
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correlations can be written as

〈Ui(~p, η)Uj(~q, η)〉 = 〈U I
i (~p, η)U I

j (~q, η)〉+ i

∫ η

dη′〈[HI(η
′), U I

i (~p, η)U I
j (~q, η)]〉+ . . .

(2.65)

More explicitly, the correlations take the form,

Cij(~p, η) = |χ(0)(pη0 , η)|2δij + i

∫ η

dη′M
(1)
ij (~p, η′)Ipη0 (η′, η) + . . . , (2.66)

where

Ip(η
′, η) =

(
(χ(0)(p, η′)χ(0)∗(p, η))2 − (χ(0)∗(p, η′)χ(0)(p, η))2

)
. (2.67)

It is clear from this formula that the zeroth-order power spectra of the fields Ui

are isotropic and scale invariant and that the cross-correlation vanishes. Here it is

convenient to define the function

Ĩ(pη′, pη) ≡ ip2Ip(η
′, η) (2.68)

where,

Ĩ(x, y) =

(
1

2x2y2
− 1

2x2
+

2

xy
− 1

2y2
+

1

2

)
sin(2x− 2y)

+

(
1

x2y
− 1

xy2
+

1

x
− 1

y

)
cos(2x− 2y). (2.69)

Solving for the correlations of the variables ĥ× and Â− in terms of the correlations

of the rotated variables Ui, we find

Pĥ×(~p) = cos2 ψ~pC11(~p) + sin2 ψ~pC22(~p) +
i

2
sin(2ψ~p)(C12(~p)− C21(~p)), (2.70)

PÂ−(~p) = sin2 ψ~pC11(~p) + cos2 ψ~pC22(~p)− i

2
sin(2ψ~p)(C12(~p)− C21(~p)), (2.71)

Cĥ×Â−(~p) = cos2 ψ~pC12(~p) + sin2 ψ~pC21(~p) +
i

2
sin(2ψ~p)(C11(~p)− C22(~p)) (2.72)

= −CÂ−ĥ×(~p),
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where we have used the fact that ψ−~k = −ψ~k. All of the above correlations, and ψ~p,

are functions of time. It is understood that these expressions are evaluated at the

end of inflation.

From here on, we will use the shorthand notation

p = pη0 . (2.73)

Using (2.66) and the expression for M (1), the power spectra and correlations are

given more explicitly by

Pĥ×(~p, η) = |χ(0)(p, η)|2 + p−2

{∫ η

f1(η′, ~p) Ĩ(pη′, pη)dη′

+

(∫ η

sin (2ψ~p(η
′)− 2ψ~p(η)) f2(η′, p̂) Ĩ(pη′, pη)dη′

)
(2.74)

+

(∫ η

cos (2ψ~p(η
′)− 2ψ~p(η)) f3(η′, p̂) Ĩ(pη′, pη)dη′

)}
+ . . . ,

PÂ−(~p, η) = |χ(0)(p, η)|2 + p−2

{∫ η

f1(η′, ~p) Ĩ(pη′, pη)dη′

−
(∫ η

sin (2ψ~p(η
′)− 2ψ~p(η)) f2(η′, p̂) Ĩ(pη′, pη)dη′

)
(2.75)

−
(∫ η

cos (2ψ~p(η
′)− 2ψ~p(η)) f3(η′, p̂) Ĩ(pη′, pη)dη′

)}
+ . . . ,

Cĥ×Â−(~p, η) = ip−2

{∫ η

cos (2ψ~p(η
′)− 2ψ~p(η)) f2(η′, p̂) Ĩ(pη′, pη)dη′ (2.76)

−
∫ η

sin (2ψ~p(η
′)− 2ψ~p(η)) f3(η′, p̂) Ĩ(pη′, pη)dη′

}
+ . . . .

It is clear from the expression above that the correlations are functions only of the

change in the angle ψ~p.

2.4.4 Discussion

We are interested primarily in direction-dependent modifications to the power spectra—

i.e., modifications of the power spectra that depend on the direction of the wave

vector, not just its magnitude. Non-direction-dependent effects will modify spectral
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indices, but such effects cannot be disentangled experimentally as due to primordial

anisotropy. In principle, one could use our method to calculate spectral indices and,

for example, relate them to the size of the direction-dependent effects.

The largest direction-dependent contribution comes from the piece involving f2.

The contribution is given by

p−2

(∫ η

sin (2ψ~p(η
′)− 2ψ~p(η)) f2(η′, p̂) Ĩ(pη′, pη)dη′

)
≈ −(aH)2

p3

(
cos[2

ψ′~p
α′

log(aH/p)]− 1

)
(2.77)

assuming
ψ′~p
α′

is approximately constant throughout inflation, where we have used

the fact that
(

1− f ′

fα′

)
≈ 3 and the relevant integral is calculated in appendix A.4.

Modes of astrophysical interest crossed the horizon about sixty e-folds before the end

of inflation, so for such modes, log(aH/p) ≈ 60.

When

f(φ) = exp

{
2cκ

∫ (
∂φV

κV

)−1

dφ

}
, (2.78)

for c−1 ∼ O(1) we found that ρ̂A ≈ 3(c−1)
2c

ε during the anisotropic period of expansion.

If the anisotropic period of expansion were to last all sixty e-folds before the end of

inflation, then we should expect order one direction-dependent corrections to the

gravitational wave power spectrum for inflationary scenarios in which
√
ε & 1

60
. Such

values of ε can easily be realized in large-field inflationary models. This analytic result

seems to confirm the numerical findings in [27].

Demanding the direction-dependent effect on the gravitational wave power spec-

trum for modes of astrophysical interest is less than, say, about 30% would mean

that the argument of the cosine function in (2.77) is small so that the cosine can be

expanded in a Taylor series. In this case the power spectrum for ĥ× is approximately

Pĥ×(~p, η) ≈ (aH)2

2p3
(1 +

(
2
ψ′~p
α′

log(aH/p)

)2

)

≈ (aH)2

2p3

(
1 + 4ρ̂A(log(aH/p))2(1− (n̂ · p̂)2)

)
. (2.79)
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where n̂ is the preferred direction. Thus we may identify

g∗grav ≈ −4ρ̂A(log(aH/p))2 ≈ −18Σ(log(aH/p))2. (2.80)

Note that g∗grav is nearly (though not exactly) scale invariant for modes of astrophys-

ical interest.

Imposing a limit like |g∗grav| < 0.3 for modes of astrophysical interest corresponds

to a limit on ρ̂A like

ρ̂A|average after horizon crossing . 10−4, when |g∗grav| < 0.3. (2.81)

2.5 Perturbations: Even Sector

The even-sector action is much more complicated than that of the odd sector. This

sector contains three dynamical degrees of freedom that, in the isotropic limit, trans-

form as a scalar, vector and tensor under rotations. This sector is further complicated

by additional nondynamical scalar variables.

As in the previous section, we begin in this section by diagonalizing the kinetic

part of the quadratic action. This process is more complicated for the three dynamical

degrees of freedom in this (even) sector than for the two of the odd sector, and the

smallness of certain background quantities must be exploited; we eventually work

in the limit ρ̂A � ε � 1, which is confirmed to be a sensible limit at the end

of the calculation. As in the odd-sector calculation, we quantize and use “in-in”

perturbation theory to calculate power spectra and cross correlations of the scalar,

vector, and tensor degrees of freedom. The most interesting results in this section

are the scalar perturbation power spectrum (2.110) and corresponding value for g∗

(2.111), and also the ratio of the direction-dependent correction to the scalar power

spectrum over that of the tensor power spectrum (2.115).

Instead of presenting the entire quadratic action (as we did in (2.41) for the odd

sector), here we present the action to lowest order in δ, ε, ρ̂A, and Σ. We expand the
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action assuming that ρ̂A, Σ, and ρ̂′A/ρ̂A are order ε or smaller. For simplicity, we first

present the action to lowest order before elimination of the auxiliary fields Φ and Ψ.

(See appendix A.1 for the definitions of Φ and Ψ.) The action can be written

Seven =

∫
dη

∫
d3k

(2π)3

[
H†M1H + Φ†QH + H†Q†Φ + Φ†M2Φ

]
, (2.82)

where the vectors H and Φ are defined by

H =



ĥ+′

Â+′

r̂′

ĥ+

Â+

r̂


, Φ =

Φ

Ψ

 , (2.83)

and the matrices M1, M2, and Q are given by

M1 =



1
2

0 0 0 0 0

0 1
2

0 0 0 0

0 0 1
2

0 0 0

0 0 0 α′2 − k2

2
0 0

0 0 0 0 α′2 − k2

2
0

0 0 0 0 0 1
2
z′′

z
− k2

2


(2.84)

+



0 0 0 0 0 0

0 0 0 −iψ′~k 0 −i2
√

2 a
κz
ψ′~k

0 0 0 0 0 0

0 iψ′~k 0 0 2iψ′~kα
′ 2

√
2 a
κz
ψ′~k

2

0 0 0 −2iψ′~kα
′ 0 −i4

√
2aα

′

κz
ψ′~k

0 i2
√

2 a
κz
ψ′~k 0 2

√
2 a
κz
ψ′~k

2 i4
√

2aα
′

κz
ψ′~k 16 a2

κ2z2
ψ′~k

2 − 8a
2α′2

κ2z2
ρ̂A


+O(ε),
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M2 =

 a2

κ2ψ
′
~k

2 −3a2

κ2 (ψ′~k
2 + 2

3
ρ̂Aα

′2)− 3
2
z2α′2

−3a2

κ2 (ψ′~k
2 + 2

3
ρ̂Aα

′2)− 3
2
z2α′2 9a2

κ2 (ψ′~k
2 + 2

3
ρ̂Aα

′2)− κ2z2

a2 + 3z2α′2

2
(1 + 2z′

α′z
)


+
a2k2

κ2

 0 −(1− ∆~k
Σ

4
)

−(1− ∆~k
Σ

4
) (1 +

∆~k
Σ

2
− κ2z2

2a2 )

+O(ε2), (2.85)

Q =

0 i a√
2κ
ψ′~k 0

√
2 a
κ
ψ′~k

2 −i a√
2κ
ψ′~kα

′ 4 a2

κ2z
ψ′~k

2

0 0 0 −3
√

2 a
κ
ψ′~k

2 + ak2Σ
4
√

2κ
(∆~k − 4) 0 1

2
k2z − 12 a2

κ2z
ψ′~k

2


+O(ε3/2), (2.86)

and ψ′~k is as in (2.44). Note here the identity

α′2(∆~k − 4)ρ̂A = −4ψ′~k
2
. (2.87)

Solving the (constraint) equations of motion derived by varying the action with

respect to Φ and Ψ and plugging the constraint equations back into the action leads

to the action in terms of the three dynamical fields:

Seven =

∫
dη

∫
d3k

(2π)3

[
H†
(
M1 −Q†M−1

2 Q
)

H
]
. (2.88)

Keep in mind that ψ′~k is a direction-dependent quantity that varies from zero to

plus or minus
√
ρ̂A, depending on the orientation of the wave vector with respect to

the preferred direction. The bottom right element of M1, representing (minus) the

effective mass for r̂, is 1
2
( z
′′

z
−k2) in the isotropic limit. So if, for example, ρ̂A is order

κ2z2

a2 = O(ε) then we should expect a very dramatic direction-dependent effect on the

curvature perturbation power spectrum, because the direction-dependent term would

be on the same order as the normal, isotropic term (at least in the long-wavelength
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limit). In fact, assuming that taking into account the Q†M−1
2 Q correction to M1 and

properly diagonalizing the kinetic term in the action would not weaken the direction-

dependent effect on the power spectrum, we can get a rough limit on the average

value of ρ̂A/(κ
2z2/a2) during inflation, after horizon crossing. Based on the argument

of section 2.3.5, we may take a 30% direction-dependent contribution to curvature

perturbation power spectrum to be an upper limit. Noting that z′′

z
= α′2(2+O(ε, δ)),

the 30% limit translates roughly to14

ρ̂Aa
2

κ2z2

∣∣∣
average

≈ ρ̂A
2ε

∣∣∣
average

< 10−2 (approximate). (2.89)

Given phenomenological constraints, it is therefore most interesting to consider

scenarios in which ρ̂A � ε. Taking

ρ̂A ∼ (9/2)Σ� ε, (2.90)

by inspection one can see that in the long-wavelength limit,

Q†M−1
2 Q = O(ρ̂A/ε), (2.91)

and

M1 =



1
2

0 0 0 0 0

0 1
2

0 0 0 −i2
√

2 a
κz
ψ′~k

0 0 1
2

0 0 0

0 0 0 α′2 − k2

2
0 0

0 0 0 0 α′2 − k2

2
−i4
√

2aα
′

κz
ψ′~k

0 i2
√

2 a
κz
ψ′~k 0 0 i4

√
2aα

′

κz
ψ′~k

1
2
z′′

z
− k2

2


+O(ε, ρ̂A/ε). (2.92)

14 The first equality can be seen from equations (2.16) and (2.37), given that ρ̂A

must be small compared to κ2z2/a2.
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We will find, with a careful analysis in the ρ̂A � ε limit, that the actual constraint

on ρ̂A is much stronger than the approximate constraint in (2.89). Thus the ρ̂A � ε

approximation is valid.

2.5.1 Diagonalizing the Action

Once again, the resulting kinetic terms are not diagonalized and canonical quantiza-

tion cannot proceed. In the ρ̂A � ε� 1 limit, the kinetic terms can be diagonalized

by performing a time-dependent unitary rotation r̂

Â+

 =

 cos θ~k(η) −i sin θ~k(η)

−i sin θ~k(η) cos θ~k(η)

U1

U2

 , (2.93)

where

θ′~k(η) ≡ −2
√

2
a

κz
ψ′~k = −2

√
2
a

κz

(
k2e
−β

√
k2

√
ρ̂Aα

′
)
, (2.94)

and where ψ′~k is the rotation angle in the odd sector, given by (2.44). The rotation of r̂

and Â+ occurs on a much faster timescale than that of ĥ× and Â− since ψ′~k = O(
√
ρ̂A)

and θ′~k = O(
√
ρ̂A/ε).

In terms of these rotated fields the even action takes the form

Seven =

∫
dη

∫
d3k

(2π)3

[1

2
ĥ+′ĥ+∗′ − 1

2

(
k2 − 2α′2

)
ĥ+ĥ+∗

+
1

2

U ′1
U ′2

†U ′1
U ′2

− 1

2

U1

U2

†M
U1

U2

+ . . .
]
, (2.95)

where the Hermitian matrix M is defined

M ≡
(
k2 − 2α′2

)
I +

[
sin(2θ~k)σ3 − cos(2θ~k)σ2

](
3
θ′~k
α′

)
α′2 (2.96)

up to corrections of order ε, δ, and ρ̂A/ε.
15 We have used the same convention for

Pauli matrices as in Eq. (2.49) and, again, I is the 2× 2 identity matrix.

15 Recall that, e.g., z′′/2z = α′2 +O(ε, δ) and z′/z = α′ +O(ε, δ).
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2.5.2 Correlations Using Perturbation Theory

The analysis of correlations of dynamical fields in this sector will be very similar

to that of the odd sector, up to minus signs and replacing ψ~k with θ~k. It should

be noted that the largest direction-dependent corrections to correlations in the odd

sector are order
√
ρ̂A, whereas here we are working to order

√
ρ̂A/ε assuming ρ̂A � ε.

It therefore should be unsurprising that the autocorrelation of the gravitational wave

amplitude, ĥ+, has no anisotropic contribution at O(
√
ρ̂A/ε). The same can be said

of the cross-correlation between ĥ+ and Â+.

Considering now only terms up to order
√
ρ̂A/ε given ρ̂A � ε, we choose as our

free Hamiltonian,

Heven
0 ≡

∫
d3k

(2π)3

[1

2
ĥ+′ĥ+∗′ +

1

2

(
γij(η0)kikj −

2

η2

)
ĥ+ĥ+∗

+
1

2

U ′1
U ′2

†U ′1
U ′2

+
1

2

U1

U2

†M (0)

U1

U2

], (2.97)

where

M (0) ≡
(
γij(η0)kikj −

2

η2

)
I. (2.98)

The interaction-picture fields then obey the following equations,

d2U I
i

dη2
+

(
γij(η0)kikj −

2

η2

)
U I
i = 0. (2.99)

As in section 2.4, the fields can be expanded into appropriately normalized mode

functions and time-independent creation and annihilation operators. Dropping terms

of order ε, ρ̂A/ε, δ or higher (including terms with coefficients (γij(η)− γij(η0))kikj)

the interaction-picture Hamiltonian takes the form

HI(η) =

∫
d3k

(2π)3

1

2

U I
1

U I
2

†M (1)

U I
1

U I
2


 , (2.100)
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where

M (1) = M −M (0) = 3
[
sin(2θ~k)σ3 − cos(2θ~k)σ2

](θ′~k
α′

)
α′2. (2.101)

After computing correlations of the rotated variables using the “in-in” formalism, we

can find the correlations of the unrotated variables using the equations analogous to

equations (2.70) through (2.72).

The correlations are approximately given by

Pr̂(~p, η) ≈ |χ(0)(p, η)|2 + p−2

(∫ η

sin (2θ~p(η
′)− 2θ~p(η)) 3

θ′~p(η
′)

α′(η′)
α′

2
(η′) Ĩ(pη′, pη)dη′

)
,

(2.102)

PÂ+(~p, η) ≈ |χ(0)(p, η)|2 − p−2

(∫ η

sin (2θ~p(η
′)− 2θ~p(η)) 3

θ′~p(η
′)

α′(η′)
α′

2
(η′) Ĩ(pη′, pη)dη′

)
,

(2.103)

Cr̂Â+(~p, η) ≈ ip−2

{∫ η

cos (2θ~p(η
′)− 2θ~p(η)) 3

θ′~p(η
′)

α′(η′)
α′

2
(η′) Ĩ(pη′, pη)dη′

}
(2.104)

= −CÂ+r̂(~p, η),

where Ĩ is defined in (2.69).

Assuming ρ̂A and κφ′

α′
= z

κa
are nearly constant during inflation, as in the scenarios

we described in section 2.2, then

θ~p(η) ≈
θ′~p
α′
α(η), (2.105)

and we may estimate the relevant integral as in appendix A.4. Then we see that

Pr̂(~p, η) ≈ (aH)2

2p3

(
1− 2

(
cos

((
2
θ′~p
α′

)
log(aH/p)

)
− 1

))
, (2.106)

PÂ+(~p, η) ≈ (aH)2

2p3

(
1 + 2

(
cos

((
2
θ′~p
α′

)
log(aH/p)

)
− 1

)
,

)
(2.107)

Cr̂Â+(~p, η) ≈ i
(aH)2

p3
sin

((
2
θ′~p
α′

)
log(aH/p)

)
= −CÂ+r̂(~p, η), (2.108)
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where
θ′~p
α′

should be taken as the average value after horizon crossing.

Now g∗, the parameter that characterizes the effect of a preferred direction on the

CMB power spectrum, is roughly given by

|g∗| ≈ −2

(
cos

((
2
θ′~p
α′

)
log(aH/p)

)
− 1

) ∣∣∣
max

. (2.109)

The maximal value of
θ′~p
α′

for a given wave vector is approximately 2
√

ρ̂A
ε

. So even

if ρ̂A/ε is, say, order 10−4, the argument of the cosine in (2.109) could be significant

for modes of astrophysical interest because for such modes log(aH/p) ≈ 60. It is then

clear that |g∗| could be order one even for very small values of Σ and ρ̂A.

Let us suppose that ρ̂A is small enough to satisfy the |g∗| < 0.3 bound of section

2.3.5. Then the cosine in (2.106) can be expanded in a Taylor series to give

Pr̂(~p, η) ≈ (aH)2

2p3

(
1 + 16

ρ̂A
ε

(log(aH/p))2(1− (n̂ · p̂)2)

)
, (2.110)

where n̂ is the preferred direction, and therefore

g∗ ≈ −16
ρ̂A
ε

(
log

(
aH

p

))2

≈ −72
Σ

ε

(
log

(
aH

p

))2

. (2.111)

Note that g∗ is negative, as is g∗grav (see equation (2.80)). A negative g∗ means

that, for a given scale, power is minimized in the preferred direction. We can un-

derstand this general feature in the following way: the pressure contributed by the

background electric field slows the expansion of the direction along which the electric

field points. In other words, expansion is slower along the preferred direction. Gener-

ically the power in primordial perturbations increases in proportion to the Hubble

parameter squared; the faster the expansion, the more quickly quantum fluctuations

are stretched into “classical” perturbations. Since the power of primordial pertur-

bations increases with the Hubble parameter, squared, and since in our scenario the

space-time is expanding most slowly in the preferred direction, we might expect that

the power of perturbations with wave vectors parallel to the preferred direction will
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be smaller than the power of perturbations with wave vectors in any other direction.

We predict that, generically, models in which a preferred direction expands more

rapidly/slowly than other directions will lead to positive/negative values of g∗.

The limit |g∗| < 0.3 translates into a limit on the average value of ρ̂A
ε

during

inflation (after horizon-crossing) for modes of astrophysical interest:

ρ̂A
ε

∣∣∣
average after horizon crossing

<
3

160 (60)2
. (2.112)

Since ρ̂A is assumed to be essentially constant during inflation (as is ρ̂φ), the limit

can be written,
ρ̂A
ρ̂φε

∣∣∣
average after horizon crossing

. 10−6. (2.113)

The measurement of g∗ puts a very stringent constraint on the ratio of vector field

energy density to the inflaton energy density. At the same time, we see that even a

very small U(1) gauge field energy density during inflation could lead to a significant

direction-dependent effect on the curvature perturbation power spectrum.

Supposing that ρ̂A � ε, as we’ve just seen must be the case in order to comply

with observation, the ratio of the gravitational wave power spectrum (PT ) to the

scalar power spectrum (PS) is approximately16,17

PT
PS

= 4
PE+ + PE×

Pr
≈

8Pĥ×

Pr̂

(
κ2z2

a2

)
≈ 16ε (2.114)

This fact, in conjuction with (2.80) and (2.111), leads to the prediction

g∗grav

g∗
≈ 1

64

PT
PS
. (2.115)

16In the last equality we used equations (2.16) and (2.37), given that ρ̂A must be

small compared to κ2z2/a2.

17What are identified as tensor perturbations are the amplitudes of the transverse,

traceless (TT) part of δgij/a
2. We defined δgij,TT/a

2 = 2Eij, thus the extra

factor of 4.
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The direction-dependent effects of a small persistent anisotropy during inflation on

the tensor power spectrum are suppressed with respect to the direction-dependent

effects on the scalar power spectrum by a number of order the tensor-to-scalar ratio.

This is a consistency condition for the model, given the constraint from observation,

ρ̂A � ε.

2.6 Conclusions

In this paper, we considered gauge-invariant perturbations in a class of models with

a persistent background anisotropy. After determining the quadratic action in terms

of the dynamical fields, we computed the dominant direction-dependent effects of the

background anisotropy on primordial power spectra.

We showed that even a very small persistent anisotropy (with the anisotropy

parameter much smaller than the slow-roll parameter ε) can give rise to a dramatic

direction-dependent effect on the primordial power spectra of dynamical fields. In an

anisotropic background, the coupling between what reduce to the spin-1 and the spin-0

and spin-2 degrees of freedom in the isotropic case is extremely important. We showed

that such couplings give rise to the dominant direction-dependent contributions to

the primordial power spectra of tensor and scalar perturbations.

There has been a fair amount of work on vector fields with time-dependent cou-

plings that are put in by hand, assuming exponential expansion. We found that the

amount of anisotropy in power spectra are quite sensitive to the details of how nonex-

ponential the expansion is, and how long the expansion lasts. Perhaps this sensitivity

is unsurprising in light of the no-hair theorem.

We found that for a given scale |~k|, the curvature power, P (~k), is minimized when

~k points along the preferred direction.18 We attribute this feature to the fact that, in

the class of models we considered, the preferred direction is expanding more slowly

18 In other words, we found that g∗ is negative.
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than other directions.

We showed that anisotropic effects are more pronounced in the scalar power

spectrum than in the tensor power spectra. In fact, we showed that the direction-

dependent effects on the tensor power spectrum are suppressed with respect to the

direction-dependent effects on the scalar power spectrum by a number of order the

tensor-to-scalar ratio. A priori one might have expected that the tensor power spectra

and the scalar power spectrum would develop fractional direction dependence of the

same magnitude. We find that this is not the case.

Finally, upon examination of the quadratic action for all dynamical degrees of

freedom, we find no indication of instabilities in this model. This should not be

surprising since the matter stress-energy satisfies the dominant energy condition.

We did not calculate the cross correlation between tensor and scalar perturba-

tions. But one can see from the form of the quadratic action19 that such a nonzero,

direction-dependent correlation should exist. The cross-correlation effect will be small

compared to the direction-dependent effect on the curvature power spectrum, but it

could be interesting.

19See equations (2.84) through (2.88).
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Chapter 3

Dark Matter, Baryon Asymmetry,
and Spontaneous B and L Breaking

We investigate the dark matter and the cosmological baryon asymmetry in a simple

theory where baryon (B) and lepton (L) number are local gauge symmetries that are

spontaneously broken. In this model, the cold dark matter candidate is the lightest

new field with baryon number, and its stability is an automatic consequence of the

gauge symmetry. Dark matter annihilation is either through a leptophobic gauge

boson whose mass must be below a TeV or through the Higgs boson. Since the mass

of the leptophobic gauge boson has to be below the TeV scale one finds that in the

first scenario there is a lower bound on the elastic cross section of about 5×10−46 cm2.

Even though baryon number is gauged and not spontaneously broken until the weak

scale, a cosmologically acceptable baryon excess is possible. There can be a tension

between achieving both the measured baryon excess and the dark matter density.

The contents of this chapter were written in collaboration with Pavel F. Perez and

Mark B. Wise and have been published in [2].

3.1 Introduction

In the LHC era, we hope to either verify the standard model or discover the theory

that describes the physics of the weak scale. One of the open issues in the standard

model (SM) is the origin of the accidental global symmetries, U(1)B and U(1)L,

where B stands for baryon number and L for the total lepton number. At the non-
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renormalizable level in the SM one can find operators that violate baryon number

and lepton number. For example, QQQl/Λ2
B and llHH/ΛL, where ΛB and ΛL are

the scales where B and L are respectively broken [36]. Since the QQQl/Λ2
B operator

gives rise to proton decay [37] the cutoff of the theory has to be very large, ΛB > 1015

GeV. There is no other reason that the cutoff of the SM has to be that large, and so it

is worth thinking about the possibility that both B and L are local gauge symmetries

that are spontaneously broken [38] at a much lower scale (e.g., the weak scale) and

it is these gauge symmetries that prevent proton decay.

Recently, two simple models (denoted model (1) and model (2)) where B and L

are local gauge symmetries have been proposed [38]. In these models all anomalies

are cancelled by adding a single new fermionic generation. One of the theories (model

(1)) has an interesting realization of the seesaw mechanism [39, 40, 41] for neutrino

masses and they both have a natural suppression of tree-level flavor changing neutral

currents in the quark and leptonic sectors due to the gauge symmetries and particle

content. In model (2), the neutrinos have Dirac masses. In addition, for model (2),

the lightest new field with baryon number is a candidate for the cold dark matter and

its stability is an automatic consequence of the gauge symmetry. It has been shown

in Ref. [38] that B and L can be broken at the weak scale and one does not generate

dangerous operators mediating proton decay. We show how a dark matter candidate

can arise in model (1).

In this chapter we investigate the properties of the cold dark matter candidates in

the models proposed in Ref. [38] and study the implications of spontaneous B and L

breaking at the weak scale for the baryon asymmetry in the Universe. In model (2),

the dark matter candidate, X, which has baryon number −2/3 can either annihilate

through the leptophobic ZB present in the theory or through the Higgs boson. We

study the constraints from the relic density and the predictions for the elastic cross

section relevant for direct detection experiments. We discuss the implications of the

gauging of B and L for baryogenesis. In model (2), there is a potential conflict

between the measured baryon excess and dark matter density.

For model (1), we discuss the generation of a baryon excess. We introduce a limit
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of the theory where L is broken at a high scale but B is spontaneously broken at

the weak scale. In this limit standard leptogenesis plus a primordial excess in the

field responsible for baryon number breaking can give rise to an acceptable baryon

excess and dark matter density even though the baryon number gauge symmetry is

not broken until the weak scale.

This chapter is organized as follows: In Section 3.2 we discuss the main features

of the model. In Section 3.3 we discuss, for model (2), the properties of the dark

matter candidate in the theory, constraints from the relic density and the predictions

for the elastic cross section relevant for direct detection experiments. The properties

of the dark matter candidate in model (1) are similar to cases already discussed in the

literature (see for example [42] and [43]). In Section 3.4 we discuss the implications

of the breaking of B and L at the weak scale for baryogenesis. We summarize the

main results in Section 3.5.

3.2 Spontaneous B and L Breaking

The theory proposed in Ref. [38] is based on the gauge group

SU(3)C
⊗

SU(2)L
⊗

U(1)Y
⊗

U(1)B
⊗

U(1)L.

To fix notation, the particle content of the SM is summarized in Table 3.1. The

superscript index (i) on standard model fermion fields labels the generation. We have

added three generations of right-handed neutrinos to the minimal standard model.

When gauging B and L, one can have two different scenarios:

3.2.1 Model (1)

In this model the baryonic anomalies are cancelled by adding the new quarks Q
′
L,

u
′
R and d

′
R that transform under the SM gauge group in the same way as the SM

quarks but have baryon number B = −1. At the same time the leptonic anomalies

are cancelled if one adds new leptons l
′
L, ν

′
R and e

′
R with lepton number, L = −3.
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Table 3.1: Standard model particle content
Field SU(3) SU(2) U(1)Y U(1)B U(1)L

Q
(i)
L =

(
u

(i)
L

d
(i)
L

)
3 2 1

6
1
3

0

u
(i)
R 3 1 2

3
1
3

0

d
(i)
R 3 1 −1

3
1
3

0

l
(i)
L =

(
ν

(i)
L

e
(i)
L

)
1 2 −1

2
0 1

ν
(i)
R 1 1 0 0 1

e
(i)
R 1 1 −1 0 1

H =

(
H+

H0

)
1 2 1

2
0 0

All anomalies in the SM gauge group are cancelled since we have added one full new

family. The particle content of model (1), beyond that of the SM, is summarized in

the Table 3.2.

Let us discuss the main features of this scenario.

• Quark Sector

In this model the masses for the new quarks are generated through the terms,

−∆L(1)
q′mass = Y

′

U Q
′
L H̃ u

′

R + Y
′

D Q
′
L H d

′

R + h.c.. (3.1)

Here H̃ = iσ2H
∗. In order to avoid a stable colored quark, the scalar doublet φ

has been added to mediate the decays of the fourth generation of quarks. The

following terms occur in the Lagrange density

−∆L(1)
DM = Y1 Q

′
L φ̃ uR + Y2 QL φ d

′
R + h.c.. (3.2)

Here flavor indices on the Yukawa couplings Yi, and the standard model quark
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Table 3.2: Particle content beyond the SM in model (1)
Field SU(3) SU(2) U(1)Y U(1)B U(1)L

Q′L =

(
u′L
d′L

)
3 2 1

6
−1 0

u′R 3 1 2
3

−1 0

d′R 3 1 −1
3

−1 0

l′L =

(
ν ′L
e′L

)
1 2 −1

2
0 −3

ν ′R 1 1 0 0 −3

e′R 1 1 −1 0 −3

SB 1 1 0 −8
3

0

SL 1 1 0 0 2

S 1 1 0 −4
3

0

φ =

(
φ+

φ0
R + iφ0

I

)
1 2 1

2
4
3

0

fields have been suppressed. The field φ does not get a vacuum expectation value

(VEV), and so there is no mass mixing between the new exotic generation of

quarks and their SM counterparts. When the real or imaginary component of

φ is the lightest new particle with baryon number, it is stable. The field φ has

flavor-changing couplings that cause transitions between quarks with baryon

number −1 and the usual quarks with baryon number 1/3. However, since

there is no mass mixing between these two types of quarks, integrating out

the φ does not generate any tree-level flavor changing neutral currents for the

ordinary quarks.

These effects first occur at one loop. For example, there are one loop box

diagrams (see Fig. 3.1) that give a contribution to K − K̄ mixing.
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Figure 3.1: Box diagram leading to a contribution to K − K̄ mixing.

We estimate this mixing to be of order

∆mK ∼
(
f 2
KmKY

4

16π2M2

)
, (3.3)

where Y 4 is a shorthand for something quartic in the Yukawa couplings Y1, Y2.

For M = 400 GeV and Yukawas of about 10−2, this mass difference is on the

order of 10−15 MeV which is much smaller than the measured value. A detailed

study of the model’s flavor sector is beyond the scope of this work and will be

reserved for a future publication.

• Leptonic Sector

The interactions that generate masses for the new charged leptons are

−∆L(1)
l = Y

′

E l
′
L H e

′

R + h.c., (3.4)

while for the neutrinos they are

−∆L(1)
ν = Yν lHν

C + Y
′

ν l
′
HN +

+
λa
2
νC SL ν

C + λb ν
C S†L N + h.c., (3.5)

where SL ∼ (1, 1, 0, 0, 2) is the Higgs that breaks U(1)L, generating masses for

the right-handed neutrinos and the quark-phobic Z
′
L. We introduce the notation

νC = (νR)C and N = (ν ′R)C . After symmetry breaking the mass matrix for

neutrinos in the left-handed basis, (ν, ν
′
, N, νC), is given by the eight by eight
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matrix,

MN =


0 0 0 MD

0 0 M
′
D 0

0 (M
′
D)T 0 Mb

MT
D 0 MT

b Ma

 . (3.6)

Here, MD = YνvH/
√

2 and Ma = λavL/
√

2 are 3×3 matrices, Mb = λbv
∗
L/
√

2 is

a 1× 3 matrix, M
′
D = Y

′
νvH/

√
2 is a number and 〈SL〉 = vL/

√
2. Let us assume

that the three right-handed neutrinos νC are the heaviest. Then, integrating

them out generates the following mass matrix for the three light neutrinos:

Mν = MD M−1
a MT

D. (3.7)

In addition, a Majorana mass M ′ for the fourth-generation right-handed neu-

trino N,

M
′
= MbM

−1
a MT

b , (3.8)

is generated. Furthermore, suppose that M
′
<< M

′
D, then the new fourth

generation neutrinos ν
′

and N are quasi-Dirac with a mass equal to M
′
D. Of

course we need this mass to be greater than MZ/2 to be consistent with the

measured Z-boson width. In this model we have a consistent mechanism for

neutrino masses which is a particular combination of Type I seesaw.

• Higgs Sector

The minimal Higgs sector needed to have a realistic theory where B and L

are both gauged, and have a DM candidate is composed of the SM Higgs, H,

SL, S ∼ (1, 1, 0,−4/3, 0), SB and φ. SB and SL are the scalars field whose

vacuum expectation values break U(1)B and U(1)L, respectively, generating

masses for the gauge bosons coupling to baryon number and lepton number.

Here one introduces the scalar field S in order to have a viable cold dark matter
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candidate. In this case the scalar potential of the model must contain the terms

µ1

(
H†φ

)
S + µ2 S

†
B S2 + h.c., (3.9)

in order to generate the effective interaction: c (H†φ)2SB + h.c., which breaks

the degeneration between the φ0
R and φ0

I . Here S does not get the VEV. Then,

one of them can be a dark matter candidate and the mass splitting is given by

M2
φ0
R
−M2

φ0
I

=
√

2
v2
HvBµ

2
1µ2

M4
S

. (3.10)

By adjusting the phases of the fields S and φ, the parameters µ1,2 can be made

real and positive. In this case, the imaginary part of the neutral component

of φ, denoted φ0
I is the dark matter candidate. Notice, that this DM scenario

is quite similar to the case of the Inert Higgs Doublet Model since we do not

have annihilation through the ZB in the non-degerate case. It is well-known

that if the real and imaginary parts are degenerate in mass one cannot satisfy

the bounds coming from direct detection, therefore one needs a mass splitting.

This dark matter candidate is very similar to that of the Inert Doublet Model

(see, for example, [42] and [43]).

Before concluding the discussion of model (1) one should mention that in this

model local U(1)B and U(1)L are broken by the Higgs mechanism, as explained before,

and one gets that in the quark sector a global symmetry (baryonic) is conserved, while

in the leptonic sector the total lepton number is broken.

3.2.2 Model (2)

In this model, the baryonic anomalies are cancelled by adding the new quarks Q′R, u′L

and d′L which transform under the SM gauge group the same way as the SM quarks

but have opposite chirality and baryon number B = 1. At the same time the leptonic

anomalies are cancelled if one adds new leptons l′R, ν ′L and e′L with opposite chirality

of their SM counterparts and with lepton number, L = 3. The particle content of
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model (2), beyond that of the SM, is summarized in the Table 3.3.

Table 3.3: Particle content beyond the SM in model (2)
Field SU(3) SU(2) U(1)Y U(1)B U(1)L

Q′R =

(
u′R
d′R

)
3 2 1

6
1 0

u′L 3 1 2
3

1 0

d′L 3 1 −1
3

1 0

l′R =

(
ν ′R
e′R

)
1 2 −1

2
0 3

ν ′L 1 1 0 0 3

e′L 1 1 −1 0 3

SB 1 1 0 nB 0

SL 1 1 0 0 2

S ′L 1 1 0 0 nL

X 1 1 0 −2
3

0

• Quark Sector

In this model the masses for the new quarks are generated through the terms,

−∆L(2)
q′mass = Y

′

U Q
′
R H̃ u

′

L + Y
′

D Q
′
R H d

′

L + h.c.. (3.11)

As in the previous model, one has to avoid a stable colored quark. For this

reason, we add the scalar field X to mediate the decays of the fourth generation

of quarks. The following terms occur in the Lagrange density

−∆L(2)
DM = λQ X QL Q

′

R + λU X uR u
′

L

+ λD X dR d
′

L + h.c.. (3.12)
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Here flavor indices on the Yukawa couplings Y , λ and the standard model quark

fields have been suppressed. The field X does not get a vacuum expectation

value (VEV) and so there is no mass mixing between the new exotic generation

of quarks and their SM counterparts. When X is the lightest new particle

with baryon number, it is stable. This occurs because the model has a global

U(1) symmetry where the Q′R, u′L, d′L and X get multiplied by a phase. This

U(1) symmetry is an automatic consequence of the gauge symmetry and the

particle content. Notice that the new fermions have V + A interactions with

the W-bosons.

The field X has flavor-changing couplings that cause transitions between quarks

with baryon number 1 and the usual quarks with baryon number 1/3. However,

since there is no mass mixing between these two types of quarks, integrating

out the X does not generate any tree-level flavor-changing neutral currents for

the ordinary quarks. Those first occur at the one loop level (see the discussion

concerning such flavor changing effects in model (1)).

• Leptonic Sector

The interactions for the new leptons are

−∆L(2)
l = Y

′

E l
′
R H e

′

L + λe ēR S
†
Le
′
L +

+ Yν lL H̃ νR + Y
′

ν l
′
R H̃ ν

′

L +
λa
2
νTR C S†L νR

+ λb νR S
†
L ν

′

L + λl l
′
R SL lL + h.c.. (3.13)

The neutrinos are Dirac fermions with masses proportional to the vacuum ex-

pectation value of the SM Higgs boson. Here SL must be introduced to evade

the experimental constraints on heavy stable Dirac neutrino from dark matter

direct detection and collider bounds. In order to avoid flavor violation in the

leptonic sector we assume that SL does not get a vacuum expectation value.
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• Higgs Sector

The minimal Higgs sector needed to have a realistic theory where B and L

are both gauged, and have a DM candidate is composed of the SM Higgs, H,

SL, S ′L, SB and X. SB and S ′L are the scalars field whose vacuum expectation

values break U(1)B and U(1)L, respectively, generating masses for the gauge

bosons coupling to baryon number and lepton number. The scalar potential of

the model is given by

V
(2)
BL =

∑
Φi=H,SL,S

′
L,SB ,X

M2
Φi

Φ†iΦi +
∑
ΦiΦj

λΦiΦj

(
Φ†iΦi

)(
Φ†jΦj

)
. (3.14)

In this theory one has five physical CP-even neutral Higgses {H0, S0
L, S

′
L

0, S0
B, X

0
R},

and two CP-odd neutral Higgses X0
I and S0

I . Here, X0
R and X0

I have the same

mass and they are cold dark matter candidates.

In this model one should notice that the local symmetries U(1)B and U(1)L are broken,

and after symmetry breaking one has a baryonic and leptonic global symmetries.

Therefore, the proton is stable and the neutrinos are Dirac fermions.

These are the main features of the two models that are needed to investigate the

implications and/or constraints coming from cosmological observations.

3.3 X as a Candidate for the Cold Dark Matter in

Model (2)

As we have mentioned before, the lightest new field with baryon number, X, is a

cold dark matter candidate in model (2). In this section we study in detail the

possible cosmological constraints and the predictions for elastic dark matter-nucleon

cross section relevant for direct searches of dark matter. Some of this material is

standard and has been discussed in the literature in the context of other dark matter

candidates; however, we include it for completeness.
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3.3.1 Constraints from the Relic Density

There are two main scenarios for the study of the relic density. In the first case

X annihilates through the leptophobic ZB gauge boson, while in the second case X

annihilates through the SM Higgs. The properties of a SM singlet scalar dark matter

candidate that annihilates through the Higgs have been investigated in many previous

studies [44, 45, 46, 47, 48]; however, the case of annihilation through the ZB is more

specific to the model we are currently examining.

• XX† → Z∗B → qq̄:

We begin by studying the case where X annihilation through the baryon number

gauge boson ZB, i.e., XX† → Z∗B → qq̄, dominates the annihilation cross

section. Here we include all the quarks that are kinematically allowed. Of

course the heavy fourth-generation quarks must be heavier than the X so that

they do not occur in the final state. This also limits the upper range of X

masses since the theory is not perturbatively unitary if the fourth-generation

Yukawa’s are too large.

The annihilation cross section through intermediate ZB in the non-relativistic

limit with a quark-antiquark pair in the final state is given by

σZBv =
2 g4

B

81π

M2
X

M4
ZB

v2(
1− 4

M2
X

M2
ZB

)2

+
Γ2
ZB

M2
ZB

×
∑
q

Θ

(
1− mq

MX

)(
1 +

(
m2
q

2M2
X

))√
1−

m2
q

M2
X

(3.15)

where Θ is the unit step function and ΓZB is the width of the ZB. The width

of the leptophobic gauge boson is given by

ΓZB =
∑
q

g2
BMZB

36π

(
1− 2

m2
q

M2
ZB

)(
1− 4

m2
q

M2
ZB

)1/2

Θ

(
1− 4

m2
q

M2
ZB

)
. (3.16)
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• XX† → H∗ → SMSM :

In the case where X annihilates into massive SM fields, through an intermediate

H, we find that the annihilation cross section (in the non-relativistic limit) is

σHv =
∑
f

(
λ2

1N
f
c

4πM2
H

)(
mf

MH

)2 Θ
(

1− mf
MX

)(
1−

(
mf
MX

)2
)3/2

(
1− 4

M2
X

M2
H

)2

+
Γ2
H

M2
H

+

(
λ2

1

64πM2
X

)(
1−

(
MH

MX

)2
)1/2

Θ

(
1− MH

MX

) ∣∣∣∣∣∣1 +
3(

4M2
X

M2
H
− 1
)

+ i ΓH
MH

∣∣∣∣∣∣
2

+

(
λ2

1

2πM2
H

) Θ
(

1− MW

MX

)(
1−

(
MW

MX

)2
)1/2

(
1− 4

M2
X

M2
H

)2

+
Γ2
H

M2
H

(
1 +

3M4
W

4M4
X

− M2
W

M2
X

)

+

(
λ2

1

4πM2
H

) Θ
(

1− MZ

MX

)(
1−

(
MZ

MX

)2
)1/2

(
1− 4

M2
X

M2
H

)2

+
Γ2
H

M2
H

(
1 +

3M4
Z

4M4
X

− M2
Z

M2
X

)
, (3.17)

where N f
c is the number of colors of the particular species of fermion, MW,Z

are the W and Z boson masses. Included in the width, where kinematically

allowed, is the invisible decay to dark matter. We have ignored corrections

to this formula that come from annihilation into two standard model massless

gauge bosons. For previous studies of this type of scenario see [44, 45, 46, 47, 48].

Using these results, we are ready to compute the approximate freeze-out temperature

xf = MX/Tf assuming that one of the two annihilation channels dominates the

annihilation of the dark matter. Writing the thermally averaged annihilation cross

section as 〈σv〉 = σ0(T/MX)n, then the freeze-out temperature is given by,

xf = ln

[
0.038(n+ 1)

(
g
√
g∗

)
MPlMXσ0

]
−

(
n+

1

2

)
ln

[
ln

[
0.038(n+ 1)

(
g
√
g∗

)
MPl MXσ0

]]
, (3.18)
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where MPl is the Planck mass, g is the number of internal degrees of freedom and g∗ is

the effective number of relativistic degrees of freedom evaluated around the freeze-out

temperature.1

The present day energy density of the relic dark matter particles X is given by

ΩXh
2 =

1.07× 109

GeV

(
(n+ 1)xn+1

f√
g∗σ0MPl

)
(3.19)

where we have used the fact that g∗,S(T ) = g∗(T ) in our case (all particle species have

a common temperature). The WMAP team recently gave a seven-year fit [7] and

found the present-day dark matter energy density to be ΩDMh
2 = 0.1109± 0.0056.

Using the experimental constraints on the relic density of the cold dark matter

and the annihilation cross sections calculated above, we plot in Figure 3.2 (left panel)

the allowed values for the gauge coupling gB and the mass of X when the annihilation

occurs through an intermediate ZB boson. Here we use as input parameter the mass of

ZB, MZB = 500 GeV. In order to understand the behavior of the numerical solutions

close to resonance, we show the results in Figure 3.2 (right panel), where the mass

region MX ≈ MZB/2 is focussed on. In the second scenario when the annihilation

takes place through the SM Higgs boson one can display similar results. Assuming

only annihilation at tree level into SM fermions and gauge bosons for simplicity, we

show in Figure 3.3 the allowed parameter space after imposing the constraints on the

relic density when MH = 120 GeV.

It is important to note that using the perturbative limit on the Yukawa couplings

for the new fermions, |Y ′ | < 2
√
π, the masses of the new quarks, Mq′ = Y

′
vH/
√

2, are

smaller than 500 GeV (since the VEV of the SM Higgs, vH , is 246 GeV). In order to

achieve the right value for the relic density, MX has to be close to the MZB/2. Hence,

in the first scenario MZB must be below a TeV if X annihilates primarily through the

ZB and is the dark matter. This is an acceptable kinematic range for discovery at the

LHC. Next, we study the constraints coming from the direct detection experiments

1See, for example, [4].
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Figure 3.2: In these figures, we plot the values of the (logarithm of the) coupling gB
and dark matter mass MX that lead to the value of the dark matter relic abundance
measured by WMAP assuming annihilation through intermediate ZB is dominant.
We use MZB = 500 GeV for these plots. The plot on the right is an enlarged version
of the left plot around the region near the resonance. For dark matter masses around
250 GeV, CDMS II excludes dark matter-nucleon elastic scattering cross sections
larger than 6 × 10−44cm2. The region below the dashed line is allowed by CDMS II
[49].

(which have already been used in the right panels of Figures 3.2 and 3.3).

A more precise calculation of the dark matter relic density is required when anni-

hilation proceeds near resonance. This is because the expansion of the annihilation

cross section in terms of a polynomial in the temperature breaks down near the reso-

nance [50]. Generalizing Eq. (3.15) and Eq. (3.17) for general relative velocities, we

determine the relic abundance near the resonance using the more precise calculation

described below. The freeze-out temperature can be determined iteratively from the

following equation,

xf = ln

[
0.038gMXMPl 〈σv〉√

g∗xf

]
, (3.20)

where the thermally averaged annihilation cross section is determined numerically by

〈σv〉 =
x3/2

2π1/2

∫ ∞
0

v2(σv)e−xv
2/4dv. (3.21)

The relic density is then given by

Ωh2 =
1.07× 109

GeV

(
1

J
√
g∗MPl

)
, (3.22)
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Figure 3.3: In these figures, we plot the values of the (logarithm of the) coupling λ1

and dark matter mass MX that lead to the value of the dark matter relic abundance
measured by WMAP assuming annihilation through intermediate Higgs is dominant.
We use MH = 120 GeV for this plots.

where

J =

∫ ∞
xf

〈σv〉
x2

dx, (3.23)

takes into account the annihilations that continue to occur, but become less effective,

after the freeze-out temperature.

In Fig. 3.4, we show the contour that leads to the observed relic abundance of dark

matter assuming annihilation through an intermediate ZB with mass of 500 GeV is

dominant. After comparing this plot to the right panel in Fig. 3.2, it is clear that one

needs to take into account the precise thermal averaging when annihilation proceeds

near resonance. The thermal averaging works to widen the contour and move the

minimum below MZB/2. This is because at finite temperatures the effective mass

of the dark matter candidate is higher and therefore the minimum of the contour is

shifted to lower dark matter masses.

Similarly, in Fig. 3.5, we show the contour that leads to the observed relic abun-

dance of dark matter assuming annihilation through an intermediate Higgs with mass

of 120 GeV is dominant.



85

CDMS II  Upper Limit

MZB
= 500 GeV

MX HGeVL

log10HgBL

230 235 240 245 250

-1.4

-1.3

-1.2

-1.1

-1.0

-0.9

-0.8

Figure 3.4: In this figure, we plot the results of the numerical relic abundance calcu-
lation with the correct thermal averaging around the resonance. The contour plotted
shows the values of the (logarithm of the) coupling gB and dark matter mass MX that
lead to the value of the dark matter relic abundance measured by WMAP assuming
annihilation through an intermediate ZB is dominant. We use MZB = 500 GeV for
this plot.
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Figure 3.5: In this figure, we plot the results of the numerical relic abundance calcu-
lation with the correct thermal averaging around the resonance. The contour plotted
shows the values of the (logarithm of the) coupling λ1 and dark matter mass MX that
lead to the value of the dark matter relic abundance measured by WMAP assuming
annihilation through an intermediate Higgs is dominant and taking MH = 120 GeV.
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3.3.2 Constraints from Direct Detection

In this section we present the cross sections for elastic scattering of our dark matter

candidate off of nucleons. These cross sections are very tightly constrained by the

Cryogenic Dark Matter Search (CDMS) for dark matter masses in above approxi-

mately 100 GeV and XENON100 for dark matter masses below approximately 100

GeV [49, 51].

In the first scenario discussed above we need the constraints coming from direct de-

tection when the scattering is through the U(1)B gauge boson. In the non-relativistic

limit, the cross section for elastic scattering of dark matter off of nucleons through

an intermediate ZB is given by

σBSI =
4g4

B

9π

(
µ2

M4
ZB

)
, (3.24)

where µ = MNMX/(MN +MX) is the reduced mass of the dark matter-nucleon final

state and MN is the nucleon mass. Putting in the numbers, this cross section can be

written as

σBSI = (8.8× 10−40cm2)g4
B

(
500 GeV

MZB

)4 ( µ

1 GeV

)2

. (3.25)

From the CDMS II upper limits on the spin-independent cross section in [49], one can

conclude that if we want the correct relic abundance then 235 GeV . MX . 250 GeV

and gB . 10−1, for MZB ≈ 500 GeV. For the relevant region of parameter space, see

Figure 3.4.

If MZB is near its 1 TeV upper bound, the direct detection limits on the coupling

gB are the weakest and the required range is 0.06 . gB . 0.2. Using the plot in Fig.

3.4 and Eq. (3.25), we set a lower limit on the dark matter-nucleon scattering cross

section of about σBSI & 5× 10−46 cm2.

For the second case when the elastic scattering of the dark matter off of nucleons

is via the Higgs exchange, we need the effective coupling of the Higgs to nucleons.

For this purpose, we follow [52] and we find this effective coupling appropriate for at
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rest nucleon matrix element to be

L = −h
v

(∑
l

mlq̄lql +
∑
h

mhq̄hqh

)
→ −h

v

(
10

27
+

17

27
χ̂+

)
MN (p̄p+ n̄n) . (3.26)

Using the leading order chiral perturbation theory result in the appendix of [52] and

the ΣπN term from [53] we obtain χ̂+ = 0.55± 0.18 where the errors are indicative of

a 30% violation of SU(3) flavor symmetry. This value of χ̂+ gives

L = −h
v

(0.72)MN (p̄p+ n̄n) . (3.27)

With the three generations of the SM, one would have expected a number 2/9 +

7/9(0.55) = 0.65 instead of 0.72. This is consistent with the 0.56 ± 0.11 number

quoted in references [54] and [55].

One can use this result to compute the elastic scattering cross section,

σHSI =
λ2

1

4π

(
10

27
+

17

27
χ̂+

)2(
µ2M2

N

M2
XM

4
H

)
. (3.28)

Plugging in the numbers, this cross section can be written as (using χ̂+ = 0.55)

σHSI = (3.0× 10−41cm2)λ2
1

(
120 GeV

MH

)4 ( µ

1 GeV

)2
(

50 GeV

MX

)2

. (3.29)

In order to satisfy the direct detection bounds from XENON100 [51] for elastic scat-

tering of dark matter off of nucleons, 51 GeV . MX . 63 GeV with λ1 . 10−1.5,

for a 120 GeV Higgs. This gives us a narrow region of parameter space that is not

yet ruled out by the XENON100 experiment and that also leads to the correct dark

matter relic abundance. See Figure 3.5 for a plot of the allowed region. For a 120

GeV Higgs, the dark matter-nucleon elastic cross section has a lower bound of about

σHSI & 10−48 cm2.

One can see from Figure 3.3 that if XENON100 reaches its projected sensitivity

without detecting DM, the scenario where annihilation proceeds through the Higgs

will be all but ruled out. The only region that will be allowed from this future
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experiment will be the region in Figure 3.5. For dark matter masses at the lower end

of this region, the decay of the SM Higgs is dominated by the invisible decay into

dark matter.

In a more generic context, this model is different from the literature in that the

dark matter mass has an upper bound (since it facilitates the decay of the fourth

generation quarks and these quarks should have mass below about 500 GeV if per-

turbative unitarity holds). Most models of scalar dark matter do not have an upper

limit on the dark matter mass, and therefore a wider region of masses are allowed at

the TeV scale.

We need to also consider the limits direct detection experiments place on dark

matter scattering off of nucleons from the interactions λXq̄q′. To fix notation, the

interactions in Eq. (3.12) are

−∆LDM = λ̃Q X ū

(
1 + γ5

2

)
u′ + λ̃U X ū

(
1− γ5

2

)
u′

+ λ′Q X d̄

(
1 + γ5

2

)
d′ + λ′d X d̄

(
1− γ5

2

)
d′ + h.c., (3.30)

where {u, d} ({u′, d′}) are the Dirac spinors corresponding to the standard model

(fourth-generation) quarks and (λ̃Q)i = U †(u, L)i
j(λQ)j and (λ′Q)i = U †(d, L)i

j(λQ)j

are the coefficients in Eq. (3.12) after rotating to the mass eigenstate basis. We

find the effective low energy interaction of the dark matter with the standard model

quarks by integrating out the heavy fourth generation quarks. Then, the effective

interactions for non-relativistic X is given by

−Leff =

(
X†XMX

2M2
u′

)(
|(λ̃Q)i|2 + |(λ̃u)i|2

)
(u†)iui

+

(
X†X

2Mu′

)(
(λ̃Q)i (λ̃∗u)

i + (λ̃∗Q)i (λ̃u)
i
)
ūiui

+

(
X†XMX

2M2
d′

)(
|(λ′Q)i|2 + |(λ′d)i|2

)
(d†)idi

+

(
X†X

2Md′

)(
(λ′Q)i (λ′d

∗)i + (λ′Q
∗)i (λ′d)

i
)
d̄idi, (3.31)
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where the flavor index i should be summed over. To get the effective interaction with

nucleons, we need the nucleon matrix elements < N |q†q|N > and < N |q̄q|N > when

q = u, d. We truncate the sum over flavors to the light up and down flavors. The

former simply counts the number of individual valence quarks in the nucleon, and the

latter matrix element is related by the coefficients fTq to the former matrix elements.

This gives the effective interactions appropriate for the nucleon matrix elements,

−Leff →
(
X†XMX

2M2
u′

)(
|(λ̃Q)1|2 + |(λ̃u)1|2

)
(2p̄p+ n̄n)

+

(
X†X

2Mu′

)(
(λ̃Q)1 (λ̃∗u)

1 + (λ̃∗Q)1 (λ̃u)
1
)
fTu(2p̄p+ n̄n)

+

(
X†XMX

2M2
d′

)(
|(λ′Q)1|2 + |(λ′d)1|2

)
(p̄p+ 2n̄n)

+

(
X†X

2Md′

)(
(λ′Q)1 (λ′d

∗)1 + (λ′Q
∗)1 (λ′d)

1
)
fTd(p̄p+ 2n̄n). (3.32)

To get an order of magnitude estimate of the size of the couplings involved, we

represent the various Yukawa couplings by λ assuming they are all the same order of

magnitude. The cross section for DM scattering off of nucleons will be small enough

to evade the direct detection bounds if the Yukawa couplings, λ are on the order of

10−1 assuming the masses of the fourth generation quarks are a few hundred GeV.

Similar constraints hold for Y1,2 in model (1) where φ0
I is the dark matter candidate.

3.4 Cosmological Baryon Number

It may be difficult to generate the observed cosmological baryon density since baryon

and lepton number are gauge symmetries in the model we are considering. Here we

study this issue following closely the approach of Harvey and Turner [56]. Assuming,

µ� T , one can write the excess of particle over antiparticle as

n+ − n−
s

=
15g

2π2g∗

µ

T
, (3.33)



90

for bosons and in the case of fermions one has

n+ − n−
s

=
15g

4π2g∗

µ

T
, (3.34)

where µ is the chemical potential of the particle species, g counts the internal degrees

of freedom, s = 2π2g∗T
3/45 is the entropy density, and g∗ counts the total number of

relativistic degree of freedom.

For each of the fields, we associate a chemical potential. Since the chemical po-

tential of the gluons vanishes, all colors of quarks have the same chemical potential.

Furthermore, we assume mixing between the quarks and amongst the leptons is ef-

ficient. This reduces the number of chemical potentials to a chemical potential for

each chirality of usual leptons {µeL , µeR , µνL , µνR} and quarks {µuL , µuR , µdL , µdR}

as well as the fourth-generation leptons {µe′L , µe′R , µν′L , µν′R} and fourth-generation

quarks {µu′L , µu′R , µd′L , µd′R}. We also have a chemical potential for each of the scalars

SL and SB (denoted as µSL and µSB , respectively), a chemical potential for µ− for the

charged field in the Higgs doublet, µ0 for the neutral Higgs field. At temperatures

above the electroweak phase transition (T & 300 GeV), we set the third component

of the gauged weak isospin to zero. This condition implies that the chemical potential

for the charged W bosons vanishes and leads to the conditions

µuL = µdL , and µeL = µνL , (3.35)

for the SM quark and lepton fields and

µu′
L(R)

= µd′
L(R)

, and µe′
L(R)

= µν′
L(R)

, (3.36)

in model 1 (2) for the fourth-generation quark and lepton fields.
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3.4.1 Model (1)

In model (1), we also need a chemical potential for the scalar S, denoted µS, a

chemical potential for the charged field in the doublet φ, denoted µφ+ , and a chemical

potential for the neutral component of the φ doublet, denoted µφ. Again, since the

chemical potential for the charged W bosons vanishes, µφ = µφ+ .

Before study the possibility to have a baryon asymmetry let us discuss the different

conditions we must satisfy. Using Eqs. (3.1), (3.4), (3.5) and (3.9) one obtains

µ0 = µu′R
− µu′L , µ0 = µd′L

− µd′R , (3.37)

µ0 = µνR − µνL , µ0 = µν′R
− µν′L , (3.38)

µSL = 2µνR , µ0 = µe′L
− µe′R

, (3.39)

µ0 = µφ + µS, µSB = 2µS, (3.40)

and

µSL = −µνR − µν′R . (3.41)

Yukawa interactions with the Higgs boson in the SM imply the following relations,

µ0 = µuR − µuL , − µ0 = µdR − µdL , (3.42)

−µ0 = µeR − µeL , µ0 = µνR − µνL . (3.43)

Now, we using these relations to write the baryon number density (B), lepton number

density (L) and electric charge density (Q). We find the following expressions for these



92

comoving number densities,

B(1) ≡ nB − nB̄
s

=
15

4π2g∗T

(
12µuL − 12µu′L

− 20

3
µSB +

16

3
µφ

)
, (3.44)

L(1) ≡ nL − nL̄
s

=
15

4π2g∗T

(
20µνL − 12µν′L

+ 8µφ + 4µSB

)
, (3.45)

Q(1) ≡
nQ − nQ̄

s
=

15

4π2g∗T

×
(

20µφ + 9µSB + 6µuL + 2µu′L
− 6µνL − 2 µν′L

)
. (3.46)

See Tables 3.1 and 3.2 for the leptonic and baryonic charges. At high temperatures,

each of the charge densities in Eqs. (3.44), (3.45) and (3.46) must vanish. These

three conditions, along with the sphaleron condition

3(2µuL + µdL + µeL) + (2µu′L + µd′L + µe′L) = 9µuL + 3µνL + 3µu′L
+ µν′L

= 0. (3.47)

give us four equations. Unfortunately, in the general case we do not have a symmetry

which guarantees the conservation of a given number density. We analyze the small

λb limit.2 In this limit, we have the following approximate global symmetries:

(B − L)1: (QL, uR, dR, φ) → eiα/3(QL, uR, dR, φ), (lL, eR, νR) → e−iα(lL, eR, νR),

SL → e−2iαSL, S → e−iα/3S, SB → e−2iα/3SB,

and

(B − L)2: (Q′L, u
′
R, d

′
R, S) → e−iα(Q′L, u

′
R, d

′
R, S), (l′L, e

′
R, ν

′
R) → ei3α(l′L, e

′
R, ν

′
R),

φ→ eiαφ, SB → e−2iαSB.

Both of these approximate global symmetries are anomaly free and not gauged.

2 λb must be small enough so that the mixing between the ordinary right-handed

neutrinos and the fourth generation right-handed neutrino can be neglected in the

early Universe, but large enough so that the fourth generation right-handed neutrino

can decay.
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The corresponding charge densities are given by

(B − L)1 =
15

4π2g∗T

(
12µuL +

4

3
µφ − 12µνL − 4µSL −

2

3
µS −

4

3
µSB

)
, (3.48)

and

(B − L)2 =
15

4π2g∗T

(
−12µu′L − 2µS + 12µν′L + 2µφ − 4µSB

)
. (3.49)

The baryon number density at late times will include the contribution of the ordinary

quarks and the contribution from the decay of the fourth generation quarks. In

ordinary quarks we have

1

3
(3)(3) (µuL + µuR + µdL + µdR) = 12µuL . (3.50)

The contribution from the fourth-generation quarks (Q′ → φ+uR and d′R → φ+QL)

gives
1

3
(3)
(
µu′L + µd′L + 2µd′R

)
= 4µu′L − 2µφ − µSB . (3.51)

Then,

B
(1)
f =

15

4π2g∗T

(
12µuL + 4µu′L − 2µφ − µSB

)
=

269

1143
(B − L)1 −

13

381
(B − L)2. (3.52)

Depending on the initial charge densities, it is possible to simultaneously explain

the DM relic density and the baryon asymmetry in this scenario. Notice that one can

have leptogenesis at the high scale if the symmetry breaking scale for U(1)L is much

larger than the electroweak scale.

3.4.2 Model (2)

In model (2), we must introduce a chemical potential for the scalar S ′L, denoted µS′L ,

and a chemical potential for the dark matter candidate X, denoted µX .

The action is invariant under the transformations SB → eiαBSB and S ′L → eiαLS ′L.
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These automatic U(1) symmetries are anomaly free, since no fermions transform

under them. The symmetries are spontaneously broken by the vacuum expectation

values of SB and S ′L, respectively; however, at high temperatures the symmetry is

restored. We begin by assuming that in the early Universe a non-zero SB and S ′L

asymmetry is generated. This could occur for example from the decay of the inflaton

after inflation. We examine if this can lead to the observed baryon excess.

We assume that lepton number and baryon number are spontaneously broken

at the weak scale. In this case we have the following relations, assuming that the

coupling constants {λa, λb, λl, λe} are large enough to preserve thermal equilibrium

when T & 300 GeV,

µSL = 2µνR , (3.53)

µSL = µν′L − µνR , (3.54)

µSL = µe′R − µeL , (3.55)

µSL = µe′L − µeR . (3.56)

Interactions with the Higgs boson imply the following relations,

µ0 = µu′L − µu′R , − µ0 = µd′L − µd′R , (3.57)

−µ0 = µe′L − µe′R , µ0 = µν′L − µν′R . (3.58)

We also have the following equations relating the chemical potentials of the fourth

generation quarks, ordinary quarks and the dark matter

µX = µuL − µu′R , µX = µuR − µu′L , (3.59)

µX = µdL − µd′R , µX = µdR − µd′L , (3.60)

assuming the couplings in Eq. (3.12) are large enough that these interactions are in

thermal equilibrium at high temperatures.

We use these relations to write the baryon number density (B), lepton number
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density (L) and electric charge density (Q) in terms of {µuL , µ0, µSL , µS′L , µSB , µX}.

We find the following expressions for these comoving number densities,

B(2) =
15

4π2g∗T

(
24µuL + 2nBµSB −

40

3
µX

)
, (3.61)

L(2) =
15

4π2g∗T

(
28µSL − 24µ0 + 2nLµS′L

)
, (3.62)

Q(2) =
15

4π2g∗T
( 8µuL + 26µ0 − 6µSL − 2µX) , (3.63)

see Tables 3.1 and 3.3 for the leptonic and baryonic charges. At high temperatures,

each of these charge densities in Eqs. ((3.61)), ((3.62)) and ((3.63)) must vanish.

These three conditions, along with the sphaleron condition,

3(2µuL + µdL + µeL)− (2µu′R + µd′R + µe′R) = 6µuL − 2µ0 + 3µX = 0, (3.64)

give us four equations and six unknowns. We solve this system of equations in terms

of the chemical potentials µSB and µS′L since these are the chemical potentials cor-

responding to the conserved charges in the transformation laws SB → eiαBSB and

S ′L → eiαLS ′L.

We find that in thermal equilibrium the following relations amongst the chemical

potentials,

µ0 =
9

8630

(
21nBµSB − 19nLµS′L

)
,

µSL =
1

8630

(
162nBµSB − 763nLµS′L

)
,

µX =
3

8630

(
247nBµSB − 18nLµS′L

)
,

µuL = − 3

3452

(
41nBµSB + 4nLµS′L

)
. (3.65)

Using these equilibrium relations, we find what is called the baryon number density

at late times. The baryon number density at late times will include the contribution

of the ordinary quarks and the contribution from the decay of the fourth-generation
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quarks. In ordinary quarks we have

1

3
(3)(3) (µuL + µuR + µdL + µdR) = 12µuL . (3.66)

The contribution from the fourth-generation quarks (Q′ → X† + q) gives

1

3
(3)
(
µu′L + µu′R + µd′L + µd′R

)
= 4 (µuL − µX) . (3.67)

The observed baryon excess is the sum of these two contributions and is given by

B
(2)
f =

15

4π2g∗T
(12µuL + 4 (µuL − µX)) (3.68)

=
15

4π2g∗T
(4 (4µuL − µX))

= −1971

4315

(
15nB
2π2g∗

(µSB
T

))
− 66

4315

(
15nL
2π2g∗

(µS′L
T

))
' −0.46

(
15nB
2π2g∗

(µSB
T

))
− 0.02

(
15nL
2π2g∗

(µS′L
T

))
. (3.69)

Since X is the cold dark matter candidate in the theory one has to check the prediction

for the ratio between the DM density and the baryon asymmetry. The DM asymmetry

is given by

nX − nX̄
s

=
15

2π2g∗T

(
µX −

3

2

(
µu′L

+ µd′L
+ µu′R

+ µd′R

))
=

15

2π2g∗T
(7µX − 6µuL) . (3.70)

Therefore, in this case using Eq. (3.65) one finds

nX − nX̄
s

=
15

2π2g∗T

(
3516

4315
nBµSB −

99

4315
nLµS′L

)
. (3.71)

One can find an upper bound on MX using the constraint |nX − nX̄ | ≤ nDM . This

gives the constraint
ΩDM/MX

ΩB/Mp

≥
∣∣3516∆SB − 99∆S ′L

∣∣
1971∆SB + 66∆S ′L

, (3.72)
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where Mp ' 1 GeV is the proton mass and the observed ratio ΩDM ' 5Ωb. So in this

scenario the dark matter mass must be in the range,

MX ≤Mp

(
ΩDM

ΩB

)
1971∆SB + 66∆S ′L∣∣3516∆SB − 99∆S ′L

∣∣ . (3.73)

The work in Section 3.3 shows that the dark matter mass must be at least 50 GeV

to obtain the correct dark matter relic density while evading direct detection limits.

Depending on the initial charge densities, it is possible to simultaneously explain the

DM relic density and the baryon asymmetry in this scenario. Eq. (3.73) shows that

this requires a somewhat awkward fine-tuning between the initial charge densities of

the global symmetries SB → eiαBSB and S ′L → eiαLS ′L.

In model (2) one can have a non-zero baryon asymmetry (even if B and L are

broken at the low scale) if there is a primordial asymmetry in the scalar sector;

however, we need physics beyond what is in model (2) to explain how this primordial

asymmetry is generated.

3.5 Summary

We have investigated the cosmological aspects of two simple models, denoted (1) and

(2), in which baryon number (B) and lepton number (L) are local gauge symmetries

that are spontaneously broken around the weak scale. In these models, the stability

of our scalar dark matter candidate is a consequence of the gauge symmetry.

In model (2), we studied the possible dark matter annihilation channels and found

what values of the masses and couplings lead to the observed relic abundance of dark

matter. In the case where the s-wave annihilation through an intermediate Higgs

dominates, we find that, for MH = 120 GeV, in order to evade the direct detection

bounds the coupling between the Higgs and the dark matter must be less than 10−1.5

and 51 GeV . MX . 63 GeV. In the case where the p-wave annihilation through an

intermediate leptophobic gauge boson dominates, we find that the coupling between

the leptophobic ZB and the dark matter must be less than 0.1 and 235 GeV .
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MX . 250 GeV when MZB = 500 GeV. In this case the leptophobic gauge boson

has to be below the TeV scale and one finds a lower bound on the elastic cross

section σBSI & 5 × 10−46 cm2. In both cases, direct detection experiments constrain

the annihilation to proceed close to resonance in order to evade direct detection and

to produce the observed relic abundance of dark matter. We have shown that even

though baryon number is gauged and spontaneously broken at the weak scale it is

possible to generate a cosmological baryon excess. A modest fine-tuning is needed to

achieve both the measured dark matter relic abundance and baryon excess.

In model (1), we introduced a simple mechanism to split the masses of the real

of the imaginary part of the neutral component of the new scalar doublet to evade

direct detection limits. We showed that one can simultaneously achieve both the

observed baryon asymmetry of the Universe and the dark matter relic abundance. In

particular, when L is broken at the high scale but B is spontaneously broken at the

weak scale, standard leptogenesis can be applied.
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Appendix A

Appendix

A.1 Parametrization of Perturbations

In the following we use many of the same conventions and notation as in [28]. Since

the background space-time is homogeneous, we decompose our perturbations into

Fourier modes,

δ(xi, η) =

∫
d3k

(2π)3
eikjx

j

δ(ki, η). (A.1)

For a given Fourier mode, characterized by the time-independent wave vector ki,

we form an orthonormal basis {e1
i , e

2
i } for the subspace perpendicular to the wave

vector such that

γijeai e
b
j = δab, and γijeai kj = 0. (A.2)

Here γij is the spatial metric defined in (2.4). Such an orthonormal basis for the

spatial hypersurfaces is uniquely defined up to a spatial rotation about the wave

vector ki. To remain properly normalized with the above normalization condition,

these basis vectors must be time dependent.

For definiteness, and without loss of generality, we will take wave vectors to be of

the form ki = (k1, k2, 0). The basis vectors can then be written as

e1
i =

(
−e
−3βk2√
k2

,
e3βk1√
k2
, 0

)
and e2

j =
(
0, 0, eβ

)
, (A.3)

where γijkikj = k2.
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It turns out that there always exists a choice of basis vectors e1
i and e2

j that results

in the basis vectors having definite sign under what we will call

k parity: ki → −ki. (A.4)

Our basis (A.3) is such that under k parity, eai → (−1)aeai . Such a choice of basis is

now unique up to discrete spatial rotations around the ki-axis by multiples of π/2.

We parametrize the most general perturbations about the background Bianchi I

metric (2.4) in the standard way,

ds2 = −a(η)2
[
(1 + 2A)dη2 + 2Bidx

idt+ (γij(η) + hij)dx
idxj

]
. (A.5)

Following [28],

Bi = ∂iB + B̄i, (A.6)

hij = 2C
(
γij +

σij
H

)
+ 2∂i∂jE + 2∂(iEj) + 2Eij, (A.7)

where σij = 1
2
γ′ij and H = α′ and also,

γij∂iB̄j = 0, γij∂iEj = 0, γij∂iEjk = 0, and γijEij = 0. (A.8)

We parametrize perturbations of the inflaton field and the electromagnetic field by

δφ and δFµν , respectively.

One can show that the following are U(1) gauge and diffeomorphism-invariant
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variables,

Φ(k) = A+
1

a(η)

(
a

(
B − (k2E)′

k2

))′
, (A.9)

Ψ(k) = −C − a′(η)

a(η)

[
B − (k2E)′

k2

]
, (A.10)

Φi(k) = B̄i − (Ei)′, (A.11)

Eij, (A.12)

χ(k) = δφ+ φ′(η)

[
B − (k2E)′

k2

]
, (A.13)

ΦF
ij(k) = δFij + 2F̄η[iikj]

[
B − (k2E)′

k2

]
, (A.14)

ΦF
i (k) = δFηi − γjkF̄ηjiki(ikkE + Ek) +

(
F̄ηi

[
B − (k2E)′

k2

])′
. (A.15)

The perturbation in the gauge field can be decomposed along directions transverse

and parallel to the spatial wave vector:

δAi = (iδA(⊥,+)(k, η))e1
i + (δA(⊥,−)(k, η))e2

i + (iδA‖(k, η)))k̂i, (A.16)

where the amplitudes δA(⊥,±)(k, η) are U(1) gauge invariant.1 In A0 = E = B =

Bi = 0 gauge the electromagnetic gauge fields δA(⊥,±)(k, η) are simply related to the

gauge-invariant magnetic and electric field perturbations. In particular we may define

δA+(k, η) ≡
i(e1)ikjΦF

ij

k2
, and δA−(k, η) ≡ −

(e2)ikjΦF
ij

k2
, (A.17)

where γijkikj = k2 and where spatial indices are understood to be raised and lowered

with the spatial metric, γij. The dynamical, gauge-invariant dynamical electromag-

netic variables are δA±(k, η) as defined above and are equal to δA(⊥,±)(k, η) as defined

in (A.16) in A0 = E = B = Bi = 0 gauge (a modified Newtonian gauge).

The tensor perturbations, Eij are gauge-invariant by construction. We will further

decompose the tensor perturbations by constructing the two independent symmetric

1The factors of i accompanying some perturbations is to ensure that the relation δ∗(k, η) =
δ(−k, η) holds for all Fourier amplitudes.
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traceless tensors that are transverse to the wave vector ki. We again follow [28] and

define these tensors as

Eij = E+ε+ij + iE×ε×ij, (A.18)

ε+ij =
e1
i e

1
j − e2

i e
2
j√

2
, (A.19)

ε×ij =
e1
i e

2
j + e2

i e
1
j√

2
. (A.20)

We have chosen this normalization since,

γikγjlελijε
λ′

kl = δλλ
′
. (A.21)

Because we have chosen a basis with the property that, under k-parity, eai → (−1)aeai

these tensors have k-parity transformations ε+ij → +ε+ij and ε×ij → −ε×ij.

We will take the Mukhanov-Sasaki scalar variable (which is conserved outside the

horizon in the isotropic limit) to be

r ≡ α′

φ̄′
χ+ Ψ. (A.22)

In a gauge with spatially flat slicing, this variable corresponds to minus the curvature

perturbation, −ζ, as defined, e.g., in [32].

Some of the variables listed are not dynamical and must be removed from the

action using constraint equations. There are a total of five dynamical variables in

the theory. In the isotropic limit, these variables correspond to two electromagnetic

perturbations, two tensor perturbations and one scalar perturbation. Furthermore,

the action separates into uncoupled parts according to the transformation of fields

under k parity: a piece including E+, δA+ and r and one including E× and δA−.
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A.2 Quadratic Action and Einstein’s Equations

Given a metric gµν = ḡµν + δgµν , the Einstein-Hilbert action to quadratic order in

δgµν can be written as

δ(2)SEH =

∫
d4x
√
−ḡ
{ 1

4κ2
ḡµν(∇̄αδgβµ)(∇̄βδgαν)−

1

4κ2
ḡµν(∇̄αδgµν)(∇̄βδgαβ)

+
1

8κ2
ḡµν ḡρσ(∇̄αδgµν)(∇̄αδgρσ)− 1

8κ2
ḡµν ḡρσ(∇̄αδgµρ)(∇̄αδgνσ) (A.23)

+
1

2κ2
R̄µν ḡρσ(δgµρ)(δgνσ)− 1

4κ2
R̄µν ḡρσ(δgµν)(δgρσ)

+
1

8κ2
R̄ (ḡµνδgµν)

2 − 1

8κ2
R̄ ḡµν ḡρσ(δgµρδgνσ)

}
after dropping boundary terms. In the above equation, the covariant derivatives (∇̄)

are compatible with the background metric

∇̄αḡµν = 0. (A.24)

We used this form of the action and our parameterization to compute Einstein’s

equations. In particular, the first-order change in the components Einstein tensor can
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be written in the following way (in Newtonian gauge, where E = B = Bi = 0),

a2δGη
η = −2∆Ψ + 6HΨ′ −

(
Ψ

H

)′
σ2 +

σij

H
∂i∂jΨ− σij∂iΦj

+ (Ei
j)
′σji + (6H2 − σ2)Φ− 1

2
(σ2)′

Ψ

H
, (A.25)

a2δGη
i = −σ2∂iΨ

H
+ σji ∂j

(
Φ +

(
Ψ

H

)′)
− 2∂i(Ψ

′ +HΦ) +
1

2
∆γijΦ

j

− 2σjk∂jE
k
i + σkj ∂iE

j
k + 3σji ∂jΨ +

(σji )
′

H
∂jΨ, (A.26)

a2δGi
j = δij

[
2Ψ′′ + (2H2 + 4H′)Φ + ∆(Φ−Ψ) + 2HΦ′ + 4HΨ′

]
− ∂i∂j(Φ−Ψ)

− 2
σ

(i
k

H
∂j)∂

kΨ + σij

[
−H

(
Ψ′

H2

)′
+

(
H′

H2

)′
Ψ +

∆Ψ

H
− Φ′

]
+ δij

[
σ2(Φ + (Ψ/H)′) +

σkl

H
∂k∂lΨ

]
+ (Ei

j)
′′ −∆Ei

j + 2H(Ei
j)
′ − σlk(Ek

l )′δij

+ δij(σ
k
l ∂kΦ

l)− 2Hγik∂(kΦj) − γik
[
∂(kΦ

′
j) − 2σl(k∂|l|Φj)

]
+ (σij)

′
[
2
H′

H2
Ψ− 2

Ψ′

H
− 2(Φ + Ψ)

]
+ σij

[
2
H′

H
Ψ− 4HΦ

]
+

1

2
δij
σ2′

H
Ψ

−
(σij)

′′

H
Ψ + 4H

[
σikE

k
j − σkjEi

k

]
+ 2

[
σikE

k
j − σkjEi

k

]′ − 5σijΨ
′

+ 2H
[
σik∂jE

k − σkj ∂kEi
]

+
[
(σik)

′∂jE
k − (σkj )′∂kE

i
]
, (A.27)

where ′ denotes derivatives with respect to conformal time and

H =
a′

a
, σij =

1

2
γ′ij. (A.28)

In these equations, spatial indices are raised and lowered with γij.

Our expressions (A.25) through (A.27) match those of [28] up to factors of the

anisotropic stress, σij
′
+ 2Hσij, which in [28] was set to zero. Note that the Einstein

tensor is gauge covariant rather than gauge invariant.
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A.3 Diagonalizing a Kinetic Term

Suppose a kinetic term takes the form

K =
1

2
X†′X ′ +X†′MX +X†M †X ′, (A.29)

where X is a vector of fields and M is a time-dependent matrix. Diagonalizing the

kinetic term requires a change of variables,

X −→ V Y, (A.30)

where V is a time-dependent unitary matrix, such that

K −→ 1

2
Y †′Y ′ + total derivative + Y †QY, (A.31)

where Q is some Hermitian matrix. We can calculate directly that

K =
1

2
Y †′Y ′ + Y †

(
V †′V + V †(M † −M)V

)
Y ′ + total derivative + Y †QY. (A.32)

The kinetic term is diagonalized by a unitary matrix V that satisfies

V †′V = −V †(M † −M)V, or equivalently V V †′ = M −M †. (A.33)

If M were a time-independent matrix, then the kinetic term would be diagonalized

by a constant unitary matrix V such that

V †(M −M †)V = D, (A.34)

where D is a constant diagonal matrix.
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A.4 Estimates of Integrals

In order to get a quantitative estimate of the effect of the anisotropic background

on power spectra, we must estimate the integrals in (2.74) through (2.76). We may

take ρ̂A, Σ, and the slow-roll parameters to be nearly constant. Then the relevant

integrals are

p−2

∫ η

sin (2ψ~p(η
′)− 2ψ~p(η)) α′(η′)2 Ĩ(pη′, pη)dη′,

p−2

∫ η

cos (2ψ~p(η
′)− 2ψ~p(η)) α′(η′)2 Ĩ(pη′, pη)dη′, (A.35)∫ η

(e2nβ(η′) − e2nβ(η0)) Ĩ(pη′, pη)dη′,

and p−2

∫ η

α′(η′)2 Ĩ(pη′, pη)dη′ (A.36)

where Ĩ(x, y) was defined in (2.69) as

Ĩ(x, y) =

(
1

2x2y2
− 1

2x2
+

2

xy
− 1

2y2
+

1

2

)
sin(2x− 2y)

+

(
1

x2y
− 1

xy2
+

1

x
− 1

y

)
cos(2x− 2y). (A.37)

During slow-roll inflation,

α′(η) = eα(η)H(η) ≈ −1

η
(A.38)

ψ~p(η
′)− ψ~p(η) ≈ (α(η′)− α(η))

k2e
−β0

k0

√
ρ̂A (A.39)

(e2nβ(η′) − e2nβ(η0)) ≈ 2nΣ (α(η′)− α(η0)) . (A.40)

Let us define a new variable z by2

−pη = e−z. (A.41)

2This is just a convenient dimensionless variable and is not equal to aφ′/α′ as in (2.37).
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From (A.38) it is clear that

ez ≈ aH

p
and so z ≈ log(H/p) + α. (A.42)

We may thus rewrite the integrals (A.35) and (A.36) in terms of the variable z:

Is ≡ p−1

∫ z∗

sin

(
2
ψ′~p
α′

(z − z∗)
)
Ĩ(−e−z,−e−z∗)ezdz,

Ic ≡ p−1

∫ z∗

cos

(
2
ψ′~p
α′

(z − z∗)
)
Ĩ(−e−z,−e−z∗)ezdz, (A.43)

I1 ≡ p−1

∫ z∗

(z − z0) Ĩ(−e−z,−e−z∗)e−zdz,

and I2 ≡ p−1

∫ z∗

Ĩ(−e−z,−e−z∗)ezdz, (A.44)

where z∗ is the value of z at the end of inflation and

ψ′~p
α′
≡ p2e

−β0

p

√
ρ̂A. (A.45)

The function

Ĩ(−e−z,−e−z∗)ez (A.46)

oscillates rapidly with growing amplitude for z < 0. See Fig. A.1. For z > 0 and

values of z∗ on the order of tens, the function is well approximated by a constant

Ĩ(−e−z,−e−z∗)ez ≈ −2

3
e2z∗ , 0 < z < z∗. (A.47)

The constant can be found by expanding the function about z∗ =∞ and then about

z =∞.

The contribution of terms that go like I1 will be subdominant compared to con-

tributions from terms proportional to the other integrals,3 so we will not bother to

3 The contribution from I1 can be important if inflation lasts a very long time—on

the order of 103 e-folds.
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-
2

3
ã2 z*

z*

Figure A.1: The function ez Ĩ(−ez,−e−z∗) on a linear scale. The axes cross at the point
{0, 0}. For 0 < z < z∗ the function is well approximated by −2

3
e2z∗ . The frequency of

oscillation for z < 0 does not vary much as z∗ increases—only the amplitude changes.
The plot above was generated using z∗ = 15.

calculate I1. Since the dominant contribution to the other integrals will occur when

z > 0 (which corresponds to after horizon crossing) we may approximate the integrals

by

Is ≈ −2

3
e2z∗p−1

∫ z∗

0

sin

(
2
ψ′~p
α′

(z − z∗)
)
dz

= −2

3
e2z∗p−1

(
2ψ′~p
α′

)−1(
cos

(
2ψ′~p
α′

z∗

)
− 1

)
, (A.48)

Ic ≈ −2

3
e2z∗p−1

∫ z∗

0

cos

(
2
ψ′~p
α′

(z − z∗)
)
dz,

= −2

3
e2z∗p−1

(
2ψ′~p
α′

)−1(
− sin

(
2ψ′~p
α′

z∗

))
(A.49)

I2 = p−1

∫ z∗

Ĩ(−e−z,−e−z∗)ezdz ≈ −2

3
e2z∗p−1z∗. (A.50)

Modes of astrophysical interest crossed the horizon about 60 e-folds—plus or minus

a few—before the end of inflation. Such modes of astrophysical interest therefore

correspond to z∗ ≈ 60.
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