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Abstract 

Mathematically, a shock wave is treated as a discontinuity in a medium. In reality, however, a 

shock wave is always structured, i.e., its front takes a finite time to rise from an initial material 

state to the final shocked state. The structuring of a shock front is due to the competition between 

the nonlinearity of material behavior and the dissipation processes occurring during the wave 

propagation. There are many mechanisms which may be responsible for the dissipation and/or 

dispersion of shock wave energy. In homogeneous media, such as metals, one common 

interpretation for the structuring of a shock wave is that the viscoplasticity processes (dislocation, 

twinning, etc.) are responsible for the dissipation of energy. While in heterogeneous composites, 

besides the viscous dissipative processes existing in each of its constituents, due to the existence 

of internal interfaces, the scattering induced by the interface during shock compression could be 

another important mechanism. 

In this study, the interface scattering effects on shock wave propagation in heterogeneous 

media were investigated by subjecting periodically layered composites to planar impact loading 

with a flyer plate. The flyer plate was accelerated to a desired velocity using a powder gun 

loading system. In order to measure shock particle velocity time history at an internal or the free 

surface of the specimen, the so-called VISAR (Velocity Interferometry System for Any 

Reflector) diagnostic system was constructed and used during shock compression experiments. 

Manganin stress gages were embedded inside the specimen at selected internal interfaces to 

measure shock stress time history. To study the scattering mechanisms of the interface to waves, 

two-component composite specimens with different interface mechanical properties and 

heterogeneity were prepared and tested. Different types of composites were prepared with 

differing mechanical impedance. Specimens with different heterogeneity were obtained by 
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changing the geometrical configuration (length scale) of the layered stack. Two-dimensional 

numerical simulations were also carried out to understand the process of shock wave evolution in 

the layered composites. 

Experimental and numerical studies show that periodically layered composites support steady 

structured shock waves. The influence of internal interfaces on the shock wave propagation is 

through the scattering mechanism, i.e., multiple reflection of waves in the layers and their 

interaction with the shock wave. The interface scattering affects both the bulk and the deviatoric 

response of the composite to shock compression. The influence of scattering on the bulk 

behavior is to slow down the velocity of the shock wave in the composites, while its influence on 

the deviatoric response is to structure the shock wave profile. If all the dissipative and dispersive 

effects are collectively termed as viscosity, which causes the shock front structuring, i.e., the 

shock front rise-time increasing, then the effective shock viscosity increases with the increase of 

interface impedance mismatch and decreases with the increase of interface density (interface area 

per unit volume) and shock loading strength. The existing mixture model for constructing the 

constitutive relation for composites based on the known properties of its component materials can 

only, at best, reasonably predict the response of the composites under strong shock loading 

conditions. In order to fully describe the response of a heterogeneous composite to shock 

compression loading, accurate physics-based constitutive relations need to be formulated to take 

into account the scattering effects induced by the heterogeneous microstructure. 
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Chapter 1 

Introduction 

1.1 Motivation 

Shock wave propagation and its effects on solids have been extensively investigated in the past 

few decades[I-81• Progress in experimental measurement techniques and theoretical work makes it 

possible to develop insights regarding details of the compression process during shock wave 

propagation in solids. Mathematically, the front of a shock wave can be, and has been, treated as 

a discontinuity with zero rise time, but the real shock front always has a finite rise time (for 

metals, ranging from the order of several to hundreds of nanoseconds) corresponding to the 

compression of the material from its initial state to the final shocked state, and the slope of the 

shock front varies with shock amplitude. One common interpretation for the observed finite rise­

time in the steady structured shock waves propagating in homogeneous metals is that the 

underlying physics of time-dependent plasticity processes (dislocations, twinning, etc.) are 

responsible for dissipation and dispersion of the waves. Based on the formalisms of 

viscoplasticity, many descriptive constitutive models have been developed and have been 

reasonably successful in interpreting the experimental data[9- 121. 

Wave propagation in heterogeneous materials has received considerable attention and earlier 

efforts have resulted in a sound understanding of many of the fundamental issues. Nevertheless, 

most of the consequences of wave dispersion in composite materials were brought to light 

through investigations of the linear elastic analysis of ideal periodic composites[I3-15J. Relatively 

little is known regarding finite amplitude shock wave propagation in heterogeneous media. Much 
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of the attention of the earlier work has been paid to the geometric dispersion of elastic waves, but 

almost no insight exists on the role of interface scattering effects on the dispersion and dissipation 

of shock (finite amplitude) waves in heterogeneous solids. 

With high-performance heterogeneous materials such as fiber reinforced, woven composites 

and functionally graded materials finding increasing use in systems and structures designed to 

function in the severe shock environments, the assessment and evaluation of the response of those 

systems to complex loading conditions is essential. To do so, the advanced computational 

method relying on accurate physics-based material constitutive models is required, although such 

kinds of models can not be correctly formulated without fully understanding the physical 

mechanisms of dissipation and dispersion of shock waves propagating in heterogeneous solids. 

Small-scale heterogeneity, e.g., grain boundaries in polycrystalline metals, fiber or particle 

reinforcement in polymer and metallic composites, could lead to scattering of waves which may 

be reflected in the rise time of a shock wave. The relative importance of scattering increases with 

the severity of the heterogeneity. Therefore, in order to obtain an accurate physically based 

constitutive relation to properly describe the dynamic response of heterogeneous materials and 

assess the performance of the composite material structures and systems in the shock related 

environments, it is critical to evaluate the role played by scattering induced by the heterogeneous 

microstructure as a shock wave propagates in the composite materials. 

This provides the motivation to experimentally investigate the dispersion and attenuation of 

shock wave propagation in layered heterogeneous composites, and the influence of length scales 

associated with the heterogeneity (e.g., fiber diameter) and material properties on the wave 

propagation. Scattering as a mechanism for structured shock waves in metals, as well as in 

heterogeneous composite materials, has been recently proposed by Grady[16,171• Based on the 

quasi-harmonic representation of scattered acoustic energy in solids, he proposed a continuum 

constitutive model to describe finite-amplitude nonlinear wave propagation in heterogeneous 
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solids. The results of this investigation is expected to establish a basis for fonnulating a 

physically based constitutive model which accounts for the scattering effects of internal interfaces 

to the wave propagation. Such a model can then be implemented in computational code for 

simulating and assessing the perfonnance of heterogeneous systems and structures under impact 

shock environment. 

1.2 Review 

1 .2.1 Shock Compression of Homogeneous Solids 

Shock loading to a solid body is usually generated through high velocity planar impact or high 

energy explosive detonation[I.J,7]. The process of a shock wave compressing a solid from its 

initial state to the high pressure final state is completed in the time scale of shock front rise period 

which may range from several to hundreds of nanoseconds, though the shock pulse may be as 

long as up to tens of microseconds. The shock front rise time depends on the loading condition 

and the properties of material that is compressed. Roughly, the impulsive shock loading may be 

divided into three regimes: strong shock or high pressure, weak shock or intennediate pressure 

and elastic or low pressure; the corresponding behavior of solids are respectively hydrodynamic, 

fi . . 1 . d l' l' [2718] mIte-stram p ashc an mear e ashc " . 

In the strong shock loading regime, stress or pressure is many times larger than the yield 

stress of the material. Material strength effects may be neglected and solids may be treated as an 

inviscid compressible fluid, which is the so called hydrodynamic approximation for the response 

of solids to strong shock wave loading. The main feature of the shock compression phenomena 

in this regime is characterized by a single shock front that brings the material from its initial state 

to a new high pressure, high temperature state. The shock compressed state will sustain a time 
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period of shock pulse duration which is determined by the loading boundary condition and 

material properties, and follows by an isentropic unloading process which brings the material 

back to an ambient pressure, elevated temperature and zero kinetic energy state[2]. The 

constitutive description of material response in this regime is through the equation of state (EOS) 

which relates three state variables. Many theoretical and experimental studies on the EOS of 

solids have been carried out since the pioneering experimental measurement of shock wave 

velocity of steel and lead loaded by high explosives[19]. The theories on shock compression of 

solids have been studied extensively and the progress in various aspects have been reviewed[20.26]. 

Courant and Friedrichs' "Supersonic flow and shock waves" is a standard reference book for 

shock waves[27]. A thorough collection of Hugoniot data by Marsh[28], along with Steinberg's 

subset of EOS and material properties[29], serves as a valuable sources of experimental data on 

shock compression of solids. 

In the elastic regime, upon being loaded, material deforms in a completely reversible manner. 

The response of the material is described by a linearly elastic constitutive model, i.e., Hooke's 

law. Because of the linearity of both the governing equations and the constitutive relations, most 

dynamic problems in the elastic regime can be analytically solved, or can at least be much 

simplified. Comparatively, the theories on elastic wave propagation in solids are most fully 

developed[30.32]. 

The most complex phenomena happen at loading stresses ranging from the Hugoniot elastic 

limit to the stress value at which the elastic precursor wave is overtaken by the plastic wave. In 

this regime, material strength plays a dominant role during dynamic deformation. Elastic-plastic 

structured double wave front is one of the typical features observed in this stress regime. Phase 

transformation, strain hardening, and rate-dependent viscoplasticity add to the complication of 

wave propagation phenomena in solids, and the difficulty in modeling them. Since the 

deformation is large and strength effects dominate the process, one common way to describe 

response of solids to shock is that the bulk response and deviatoric response are considered 
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separately. The bulk response is modeled by EOS, while deviatoric response is described by a 

constitutive relation for the shear strength of material[33,341• Much effort and progress have been 

made in diagnostic techniques, experimental observations and theoretical analyses since the first 

experimental measurement of shock wave velocity by Pack et al.[191, the first measurement of 

elastic-plastic wave profile by Minshill[35], and the early continuum theoretical analysis by 

Wood[36]. Early pioneering work on the elastic-plastic wave propagation in the wire or thin rod 

was carried out by Rakhmatulin[67], Taylor[68], von Karman and Duwez[69], and others. Clifton[70] 

performed detailed analysis of plane wave propagation in plastic and elastic-plastic solids. The 

review papers by Herrmann[33], Murri et al. [37], Doran and Linde[38], Cristescu[39], Davison and 

Graham[l] summarized the progress in the field of plane shock compression of solids dated up to 

the end of 1970s. The most up-date and thorough review on the progress in this field was given 

by Graham[2]. In this book, besides the mechanics aspect of shock compression solids, the 

electrical, magnetic and optical properties of solids under high pressure shock compression, shock 

induced solid-state chemistry, shock modification, shock activation and shock chemical synthesis, 

as well as experimental methods, were also discussed. 

Historically, the shock wave study may be traced back at least 200 years to the work of 

Poisson who tried to solve the propagation of a finite-amplitude wave in fluidl40]. Stokes 

probably was the first person studying the motion of fluid with the concept of propagating 

discontinuity[41]. In the early 20th century the concept of shock wave propagating in fluid as a 

discontinuity and fluid dynamics theory had already been fully developed through the pioneering 

work of Riemann, Rankine, Hugoniot, Rayleigh, Taylor, and others[40]. 

Nevertheless, the study of shock wave propagation in solids did not start until at the middle of 

the 20th century when the needs for defense applications served as a driving force[33]. Since then, 

tremendous progress has continuously been made in theory, experimental measurements and 

techniques for shock-compression solids, and on the scientific and engineering applications. The 

papers marked as milestones in the study of shock compression science were outlined in a recent 
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reVIew paper by Johnson and Cheret[40]. The recently published senes of collections and 

b k [2-8] . d 11 
00 s summanze a aspects of the field of shock compression solids, including the 

fundamental concepts, theories, experimental methods, diagnostic techniques, observations, 

scientific and engineering applications and much more. 

1.2.2 Shock Propagation in Heterogeneous Media 

So far, only a limited number of experiments have been carried out that concern the finite-

amplitude wave propagation in composite materials for the loading stress in the intermediate 

regime. Barker et a1. [42] performed experiments on periodic laminates and found that below 

certain critical input amplitude, the stress wave amplitude decayed exponentially with distance 

and formed a structured shock wave above that critical amplitude. Lundergan and Drumhellarl431 

and Oved et a1.[44] also conducted limited shock wave experiments on layered stacks, which 

showed resonance phenomena due to layering. There has been a lack of systematic study of 

stress wave propagation in either layered systems or fiber reinforced composites, which would be 

valuable in development or validation of physically based models for transient (pulse) loading. 

In developing theoretical models for finite-amplitude shock wave propagation in composites, 

several approaches for calculating the high-pressure Hugoniot of composites have been 

proposed[24,45-48]. One approach is to consider the composite or mixture as a laminated structure 

and calculate an average shock velocity based on the shock transit time through the various 

layers. This method is straightforward, but the calculated velocity represents the fastest possible 

disturbance wave speed neglecting the delay effects due to the interactions between the interfaces 

and shock wave. The other approach is to interpolate the experimental shock velocity-particle 

velocity Hugoniot relations by mass averaging based on the assumption that the particle velocity 

of each component is the same[81. These two methods most likely overpredict the response of 

composite to shock compression. The additive approximation approach developed by Dremin 
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dK kh·~ '. an arpu m can more reasonably predIct the expenmentally measured Hugoniot relation. 

The basis of this approach is that the rule of additivity is assumed to be met sufficiently. The 

local pressure in each component is assumed to be the same as the mean pressure of the 

composite, and the volume of the shock-compressed mixture is equal to the sum of the volumes 

of its components under the same pressure in the homogeneous monolithic samples[49]. McQueen 

et al.[24] also used the additive approximation to formulate the EOS of composites, but in a 

different approach, in which 0 K isotherms of components are calculated first by Mie-Gruneisen 

equation from their shock Hugoniots to obtain the 0 K isotherm of the mixture on the additive 

basis of mass fraction, then the shock Hugoniot of the mixture is calculated from the 0 K mixture 

isotherm using the Mie-Gruneisen EOS. All these models deal with the bulk response of a 

composite compressed by shock wave. 

Theoretical models for predicting the structure of the profile of shock wave propagating in 

composites is not yet available. A few simplified models have been proposed[50-53J. Barker[50J 

proposed a viscous type EOS to describe the stress wave propagation in layered composites, in 

which the dispersive effects due to the interactions of wave with interfaces and reflected waves 

are accounted for by direct analogy with the viscosity effect existing in the viscoelastic materials. 

Chen and Gurtin's modell51J deals with the condition for an acceleration wave propagating in 

layered composites to grow into a shock or decay, and to calculate the effective moduli for the 

composites. Kanel et al. [52] proposed an empirical constitutive relation for describing the 

dispersive effects in composites. These models account for dispersion through a time-dependent 

relaxation process assuming the existence of a steady shock wave. In the model proposed by 

Johnson et al.[53J the dissipation and dispersion due to both the viscoplasticity and interface 

reflection are considered. Recently, based on nonequilibrium phonon energy induced by 

scattering of waves within heterogeneous microstructure, Grady et al. [54J proposed a continuum 

anelastic response model for finite amplitude wave propagation in the heterogeneous media. In 

this model the energy state of the matter behind the shock wave is decomposed into two parts: 
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one is the lattice strain energy and the other is the kinetic energy corresponding to a field of 

acoustic phonon energy caused by wave scattering within the heterogeneous microstructure. The 

acoustic phonon energy is modeled through a normal mode of representation of the 

heterogeneous solid which addresses the wave dispersion process. 

1.3 Structured Shock Profile 

Due to the nature of material properties and the existence of dissipative mechanisms during wave 

propagation, the profile of a shock, if it forms, is always structured. Rayleigh[55] discussed the 

nature of the shock profile and gave an analysis for the shock (permanent regime) solution. 

Lighthill[56] proposed a theory for the structure of shock in a compressible fluid, which treats the 

balance achieved between the effect of convection, which tends to steepen a compressive wave, 

and the effect of viscosity, which tends to smear out the steepness of wave front. Band[57] was 

probably the first one to discuss in detail the existence and structuring of a steady shock profile in 

viscoelastic shear yielding solids. The concept of steady shocks in solids were further treated by 

the later work of Band and Duvall[58], Bland[59], and Swan, Duvall and Thornhill[60], and others. 

1 .3.1 Shock Viscosity 

The structuring of shock wave profile is due to various dissipative phenomena which may be 

generally termed as viscosity of the medium. The action of viscosity is to produce a drag 

pressure exerting in opposition to the driving pressure of the wave, so that the momentum 

transportation in the wave propagation direction is slowed down. As a result, the particle velocity 

gradient is reduced and the shock front width increases. Experimental results show that in 

general the viscosity increases with shock pressure, or particle velocity gradient, and decreases 
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with temperature[61-631_ Therefore, with the increase in shock pressure, the drag pressure also 

lllcreases_ The balance between the drag pressure from the viscosity and the shock driving 

pressure from the boundary, results in the formation of a steady shock wave with a definite rise 

time. 

The shock front width or rise time can be related to the shock viscosity[58,59,621• By measuring 

the rise time of a shock profile the effective shock viscosity can be calculated, or at least, 

comparatively estimated. Through a set of experimental data that are systematically measured, 

the corresponding constitutive model can be formulated and used to predict the profile of a large­

amplitude shock-wave propagation[9,64]. 

There are many irreversible processes responsible for the formation of a steady shock profile. 

In solids, there exist various sources of viscosity, such as viscoelasticity, thermal diffusion, 

phonon scattering, and viscoplastic effects[57,64,65]. Gilman[65] investigated different dissipation in 

metals due to dislocation motion, electron-electron, electron-phonon, and phonon-phonon 

interactions and concluded that among all dissipation systems, dislocation motion is the most 

dissipative. This is because the motion of dislocations through solid medium changes its density 

and simultaneously relaxes the shear strain that would otherwise exist behind the front. Due to 

the dislocations that move with shock front, the viscosity associated with them is proportional to 

the shock velocity. The experimental measurements, theoretical interpretation of shock viscosity, 

and its applications in earth science have been thoroughly reviewed by Miller and Ahrens[66]. In 

heterogeneous solids (ceramics, composites, etc.), besides the dissipative mechanisms discussed 

above, due to the existence of a large amount of internal interfaces, the microstructure scattering 

of shock wave induced by them could be another dominant dissipative source, or dispersion, 

which will contribute to the structuring of shock wave propagation in heterogeneous media. 
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1 .3.2 Scattering as a Mechanism of Dissipation 

Scattering as a dissipative mechanism exists in many dynamic equilibrium and nonequilibrium 

processes such as scattering effects of atom-electron, atom-photon, atom-phonon, particle-waves, 

flaw-waves, etc., which lead the initial state to eventually transition to a steady state. When a 

finite amplitude shock wavc propagates through a heterogeneous solid, due to the mismatch in 

mechanical properties between matrix and inclusions or flaws, the wave will be partially reflected 

and partially transmitted. The directions of reflected and transmitted waves, which are 

determined by the geometric orientation of interface and wave reflection and transmission laws, 

are randomly oriented, and hence the process is known as scattering. 

Upon the arrival of the wave front, no matter whether scattering occurs or not, strong or 

weak, the material experiences a compression process, and would achieve some level of lattice 

strain energy. Therefore, as a shock wave passes through a heterogeneous solid, the energy state 

of the matter behind the shock wave will include a component due to the lattice strain energy and 

a kinetic component corresponding to a field of acoustic phonon energy caused by wave 

scattering within the heterogeneous microstructure. Such phonon energy can be characterized 

through a harmonic normal mode representation ofa solid[16,17l , 

The inducement of a kinetic component of acoustic phonon energy during the dynamics of 

the shock compression process results in unique consequences, During passage of a structured 

shock, dispersion due to wave scattering leads to the production of phonon energy within a 

limited spectrum of normal mode coordinates in the shock front. This non-equilibrium acoustic 

phonon energy accounts for the excess stress on the Rayleigh line above the Hugoniot during 

passage of the shock wave (see Fig. 2.4). Diffusion of this energy to an equilibrium configuration 

throughout the acoustic normal modes is achieved as the final shock state is approached. 

Ultimately, continued diffusion throughout the full thermal spectrum occurs until complete 

thermoelastic equilibrium is achieved. These processes account for entropy production within the 
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shock process in the heterogeneous solid. Details of the steady shock wave profile structure are 

determined by characteristic relaxation times associated with specifics in the acoustic energy 

diffusion processes. 

1.4 Objectives and Approach 

The objective of this work is to study the influence of scattering effects induced by internal 

interfaces on shock wave propagation in heterogeneous media. To do so, experiments are 

designed and conducted in order to evaluate the role of interface heterogeneity, i.e., impedance 

mismatch, multiple length scales, and the interface characteristics on stress wave dispersion and 

attenuation; numerical simulations are performed to understand the process of interface induced 

scattering and to study the response of heterogeneous solids to the shock compression. The 

ultimate goal is to develop physically based models accounting for the microstructure scattering 

effects on the wave propagation that can be implemented in computational codes for simulating 

and assessing the performance of heterogeneous systems and structures exposed to an impact 

related shock environment. 

An ideal model system to investigate the effect of heterogeneous materials on wave 

propagation is to consider stress wave propagation through layered media made of isotropic 

materials. Such a system offers a unique opportunity for designing of interpretable experiments, 

as well as for providing insights into wave propagation in much more complicated 

microstructures, e.g., fiber reinforced, particulate and woven composites. In such a system the 

length scales, e.g., thickness of individual layers, and other measures of heterogeneity, e.g., 

impedance mismatch, are well defined. Such a heterogeneous material is amenable to the 

analysis of wave propagation and provides an ideal system for conducting experiments for which 

one-dimensional measurements would be sufficient. 
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The specimens used in the shock compression experiments are periodically layered two-

component composites. In order to study the influence of length scales and interface impedance 

mismatch on shock propagation, four different materials, polycarbonate, 6061-T6 aluminum 

alloy, 304 stainless steel and glass, are chosen as components, and two thicknesses of each 

component layer are used except aluminum for which only one thickness layer is available. The 

component layers are alternately bonded to form the specimen. Shock compression experiments 

were conducted by employing a powder gun loading system, which can accelerate a flat plate 

flyer to a velocity in range of 400 mls to about 2000 mls. In order to measure the particle 

velocity history on the specimen window surface, a velocity interferometry system for any 

reflector, the so called VISAR, is constructed, and to measure the shock stress history at selected 

internal interfaces, manganin stress technique is adopted. The details of shock wave experimental 

method and each experimental technique are described in Chapter 3. Relevant basic theories for 

describing shock wave propagation in solids is given in Chapter 2. The details of specimen 

structure, preparation, experiment and the results are described in Chapter 4. In Chapter 5 the 

numerical simulation methods are introduced and the results from the computation are compared 

with experiments. Finally, directions for future work are suggested in Chapter 6. 
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Chapter 2 

Shock Wave Phenomenon in Solids 

The characteristics of solids such as shear strength, polymorphic phase transfonnation, 

heterogeneous structure, anisotropy, and viscoplasticity, etc., which distinguish them from liquids 

and gases, make shock wave propagation in solids and the induced effects much more 

complicated and much more difficult to be fully described and modeled. Nevertheless, due to the 

sustained efforts of experimentalists, engineers and scientists in the past several decades, 

considerable progress has been made in experimental techniques, theories, numerical analyses 

and applications toward fully describing the complicated mechanical response of solids to shock 

compression and understanding physical effects (such as electric, magnetic and optical properties) 

in solids under shock loading[I-8J• 

In this chapter, for the purpose of conceptual completeness of the study of shock wave 

propagation in the layered heterogeneous composites, only some basic descriptions of mechanical 

response of solids to shock compression have briefly been cited, i.e., the equation of state for the 

bulk response and shear strength for deviatoric response. 

2.1 Jump Conditions 

When a shock propagates in a homogenous, isotropic solid (see Fig. 2.1), ignoring the influence 

of heat conduction, viscosity and material heterogeneity on the compression process of the shock 

front, treating the shock front as a mathematical discontinuity in density, pressure, energy and 

entropy, assuming that steady state condition exists and the initial and final states are equilibrium 
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states, the conservation laws of mass, momentum and energy across a shock front for one-

dimensional plane wave can be written as[L9-13] 

(2.1) 

(2.2) 

(2.3) 

where U is shock wave velocity; subscripts 0 and 1 represent the quantities in the initial and final 

states (ahead and behind the shock front); u, p, a, E are particle velocity, density, normal stress 

and internal energy, respectively; V = 1/ P is the specific volume. Since there exists a 

discontinuity in density, stress (or pressure), energy, entropy, and as well as particle velocity, 

between the material states before and after shock wave, equations (2.1), (2.2) and (2.3) relating 

the final state to the initial state, are the so called shock jump conditions. The internal energy 

jump condition, equation (2.3) is also called as Rankine-Hugoniot equation. 

If the initial state of material is specified, i.e., U(l' PII' alP Eo are known, there remains five 

unknown variables, u, p, a, E and U, in the jump equations describing the shock. Upon specifying 

the boundary loading producing the shock, one more variable is reduced, so in order to determine 

the variables in the shocked state, an additional equation is needed. This additional equation, 

containing the information of material behavior, which distinguishes one from another, is called 

equation of state (EOS). 

2.2 Equation of State (EOS) 

For the sake of simplification, it is assumed that the stress range concerned here is high enough 

such that the shear stresses in the compressed material are small relative to the average value of 
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principal stress components, i.e., the equation of state for hydrodynamic approximation, and the 

shocked state is a single phase state. 

Among the variables in the shock jump equations, kinematic quantities, shock velocity U and 

particle velocity UI, are the two which can be easily measured through shock-wave experiments. 

Experimental measurements are normally made relative to coordinates chosen so that Ill) = 0, 

and U > o. The relation between U and UI can empirically be described by a polynomial 

equation[I),14l , 

where Co is the bulk sound speed at ambient pressure, and s, s[ are positive constants, This 

equation is often known as the Hugoniot curve[151, or shock-wave equation of state, which 

represents the locus of associated values of U and UI determined from a set of experiment 

involving shocks of varying strength. For most metals, sl = 0, and equation (2.4) reduces to a 

linear relationship[16l, 

(2.5) 

Combining equation (2.5) or (2.4) with shock jump equations, totally 10 pairs of Hugoniot 

relationships, in tum, 20 equations can be obtained between pairs of variables in the set 

{ U, U1, VI' (T] , E] }. One of them, in the pressure-volume form, is 

(2.6) 

(2.7) 

or, expressing specific volume in terms of Hugoniot pressure, 

(2.6') 

In obtaining the equations (2.6)-(2.7), the normal stress (J in jump conditions has been 

substituted by the Hugoniot pressure PH or PI in order to be consistent with hydrodynamic 
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assumption made at the beginning of this section. The Hugoniot curve depends on the initial state 

of the material into which the shock wave is propagating and is said to be centered on this initial 

state. If the Hugoniot curve centered at the state of rest under normal laboratory ambient 

conditions it is usually called the principal Hugoniot curve of the material. 

Shock compression progresses at a rapid pace. The compression of a material element by a 

shock wave is completed in the time scale of the rise time of a shock front, which is usually a few 

nanoseconds or less. In this short time period, heat conduction between the elements being 

compressed and the external environment is impossible, so the shock compression process is said 

to be adiabatic. 

Though both shock and isentropic compression processes are adiabatic, they are not the same 

thing. In an isentropic compression, it is possible to reach any state on the isentrope by following 

the actual isentropic curve as a thermodynamic path, in which the temperature will increase, but 

the process occurs at constant entropy with no heat flow. In the case of shock compression, a 

Hugoniot state, PH , VI is achieved via a thermodynamic path given by the straight line called 

Rayleigh line (see Fig. 2.2). Therefore, successive states along the Hugoniot curve can not be 

reached from one to another by a shock process. The Hugoniot curve itself just represents the 

locus of all possible final shocked state corresponding to a given initial state[141. The difference 

between the Hugoniot and the isentrope indicates that shock compression is not an isentropic 

process. Nevertheless, it can be shown that if the initial state is at ambient condition, the entropy 

increase along the Hugoniot is of third order, and the isentrope and Hugoniot have the same first 

and second pressure-volume derivatives, which means that the zero-pressure shock velocity is the 

same as the ultrasonic sound velocity[12.l7J• 

In order to relate the states on shock Hugoniot to the states off the Hugoniot, i.e., the states 

can be reached through some thermodynamic path such as the isentrope and isotherm, physics 

and thermodynamics based analytical EOS is needed. 
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There are many theoretical approaches addressing the formulation of EOSl I8

-
241. A thorough 

review of EOS of solids under strong compression was recently made by Holzapfel[251• Based on 

the fundamental consideration of interactions between atoms, these theories formulate selected 

function (e.g., Internal energy, Helmholtz free energy, Gibbs free energy) in the terms of state 

variables (e.g., volume, pressure, temperature). One common assumption of those theories is that 

the state functions are additive in terms of contributions representing the effect of several 

independent mechanisms. Mostly, the state functions are expressed in three terms, which 

represent the behavior of the solid at absolute-zero temperature, thermal vibration of lattice atoms 

at temperature above absolute zero and effects of thermally excited electrons at high 

temperature[211• Combining the state functions with thermodynamic laws, many different forms 

of EOS have been obtained. One of the most widely used EOS in the field of shock compression 

is the Mie-Gruneisen EOS, 

(2.8) 

where P and E are the pressure and internal energy of the state interested, and ~)J(' B()K are the 

pressure and the internal energy of the reference state, which can be the shock Hugoniot state or 

zero pressure isentrope state. r is the Gruneisen constant defined as 

(2.9) 

where // is the vibrational frequency of atoms at some thermodynamic state. Gruneisen constant 

can also be expressed in the terms of thermodynamic state variables or thermodynamic 

parameters as 

(2.9') 

where 0:, C
1
., K are the thermal expansion coefficient, specific heat at constant volume and 

isothermal bulk modulus, respectively. 
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One important approximation m the model for calculating the Gruneisen constants IS 

assuming that T is only the function of volume and the ratio T / V is a constant, i.e., 

~ = 12. = canst, 
V V;) 

(2.10) 

where TO and V;) are the Gruneisen constant and specific volume at zero pressure, respectively. 

And, furthermore, TO can be approximated by 

TO = 2s -1, (2.11 ) 

where s is the constant in equation (2.5) of the experimentally determined shock Hugoniot curve. 

Detailed discussion on the determination of Gruneisen constant can be found elsewhere[I,6,9,17,2IJ. 

2.3 Equation of State (EOS) for Mixture 

Several approaches have been developed to predict the mechanical behavior of composite 

materials by using the known properties of their components[26-34J. Among them is the additive 

approximation to obtain the EOS of mixture developed by Dremin[331• 

The basis of this mixture approach is that the rule of additivity is assumed to be sufficiently 

met. In the additive approximation, it is assumed that the volume of the shock-compressed 

mixture is equal to the sum of the volume of its components, obtained at the same pressure by 

separate shock compression in the form of homogeneous monolithic samples[33,371. Thus, the 

volume-pressure form of equation of state of the shock-compressed composite is expressed by the 

following equation, 

(2.12) 

where p is the pressure or stress, Vc is the specific volume of the mixture, aI, a2 are the mass 

fraction of components 1 and 2 (al + a2 =1), VI, V2 are the specific volumes of the components, 

which relates to the shock pressure on the Hugoniot through equation (2.6'). Some of the 
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theoretical basis of the mixture model have been considered by Nikolaevskii[351, and Duvall and 

Taylor[361. Based on the experimental Hugoniot relations of two types of paraffin/tungsten 

composites, light and heavy mixtures with 8.4% and 19.8% volume fraction of tungsten, 

Alekseev and his coworkers[37] calculated the shock Hugoniot curve of paraffin using equation 

(2.12) and compared their computed results with experimental data, indicating that the predictions 

by additive mixture theory agree reasonably well with the experimental results. AI'tshuler and 

Sharipdzhanov[38 J also used the additive approximation approach to calculate the equations of 

state of a large number of minerals and rocks on the basis of the oxide composition in the 

pressure range of 50 GPa to 150 GPa, and compared with experimental Hugoniot. They found 

out that the additivity principle works well. 

Knowing the equation of state of the mixture above, i.e., equation (2.12), the relation of shock 

wave velocity and particle velocity can be deduced by combining with the mass conservation 

equation (2.1) and momentum conservation equation (2.2), which was rewritten with respect to 

initial state of zero particle velocity and zero pressure as follows: 

\1;. U,. = v,.o(l/,. - 1/,,.) , (2.13) 

P = u,J/,. / v'o ' (2.14) 

where VeO is the specific volume of mixture at initial state (i.e., zero pressure), Ue and Ue are the 

shock velocity and particle velocity of shock compressed mixture, respectively. 

Also, using the bulk sound speed of each component, the bulk sound velocity of the mixture 

at a desired pressure can be fonnally calculated through the relation[34] 

(2.15) 

where C, C/, C2 are respectively the bulk sound speed of mixture, component 1 and 2 at the shock 

pressure. 

Meyers proposed a simple rruxmg approach to estimate the shock Hugoniot relation of 

mixturel32] 
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(2.16) 

where Uc and Uc are the shock velocity and particle velocity of mixture, respectively, aj, a2 are 

the mass fraction of two components 1 and 2, Cr)J, CO2 are the bulk sound speed of component 1 

and 2 at zero pressure, and s J, S2 are the slope of U-UI curve of components. This approximation 

is also an additive method, but based on the assumption that the local particle velocity in 

components 1 and 2 are the same as the mean particle velocities in the mixture, rather than the 

assumption in the Dremin's model above where the local pressure in the components is the same 

as the mean pressure in the mixture. 

2.4 Constitutive Models 

Under high pressure shock wave loading, where the shear strength is small compared with the 

shock pressure, the hydrodynamic approximation is accurate enough to describe the shock 

response behavior of solids. At low and medium loading regimes, shear strength, heterogeneous 

structure, anisotropy, polymorphic phase transformations, rate effects, etc., properties of solids 

come into playing important roles, then, EOS alone can not properly describe the response of 

solids to shock loading. To address the significant features of solids, much effort has been made 

in constructing proper constitutive models. Many empirical or semi-empirical models[39-44l, 

physically based modelsl45-47l and continuum theory of inelastic materials[48l have been developed 

to address different aspects of problems encountered in the study of shock compression solids, 

such as dynamic strain hardening, thermal softening, rate effects, material memory, etc.[I1,49-52l 

Among these models, perhaps the most popular used in numerical computations is the elastic­

plastic-hydrodynamic model[53l. In this model, it is assumed that the stress response of a material 

can be decomposed into hydrodynamic pressure, which accounts for the uniform part of all 

normal stresses, and shear stress, which is associated with the resistance of the material to shear 
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distortion, and an increment in the total strain is the sum of the elastic and the plastic incremental 

strains. The shear stress and/or the elastic strain increment are calculated through Hooke's law. 

The yield condition is determined by the von Mises criterion. It is also assumed that plastic 

deformation, i.e., the deviatoric strain, causes no volume change. With these assumptions, for the 

one-dimensional deformation induced by plane shock waves, Wilkins derived the elastic-plastic-

hydrodynamic constitutive relations[53J: 

The normal stress (T/ of shocked state in the direction of shock wave propagation is 

(2.17) 

Normal deviatoric stress s< in the direction of shock propagation and lateral deviatoric stress s) are 

given by 

S,,; 

. 2/-l VI 
8'1 = ~3V' 

I 

The yield condition can be expressed as 

2 . 2) 2 2 (sr + 2sy ::; '3 Y , 

(2.18) 

(2.19) 

(2.20) 

where Y = Y(Wp) is the yield stress in simple tension, and Wp is the plastic work defined in plane 

strain condition by 

d ~~i = s,de!! . (2.21 ) 

No volume change due to plastic deformation requires 

(2.22) 

The hydrodynamic pressure is calculated from EOS, 

for elastic regime (2.23) 

for plastic regime (2.23) 
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Here A, B, and C are constants such that ~ (V;) + 2Y / 3 reproduces the Hugoniot for shock above 

the elastic limit. The minimum pressure at which yield occurs under tension is 

~'lllill = -Y(O)j:3 = _yll /3, (2.24) 

where yO is the initial value of the yield stress. dcf in equation (2.21) denote the plastic strain 

increment. If there is no work hardening Y in equation (2.20) will be a constant equal to yo. 

2.5 Constitutive Models for Heterogeneous CompOSites 

Viscoplasticity processes in macroscopically homogeneous media have generally been accepted 

as the underlying physics responsible for the dissipation and wave dispersion leading to observed 

structured shock waves, based on which many descriptive constitutive models have been 

developed[J J, 4}-491• For the shock wave propagation in heterogeneous media, relatively little effort 

has been made, and only a few simplified models have been proposed to phenomenologically 

describe the response of heterogeneous solids to shock 10ading[29-31,341• Due to the existence of 

internal interfaces inside heterogeneous media, the scattering of wave energy induced by 

microstructure during shock propagation could be an alternative to viscoplasticity as the physics 

underlying the formation of structured steady waves in heterogeneous composites[541• Wave 

dispersion in heterogeneous solids due to scattering induced by microstructure has been examined 

and constitutive models based on the mechanism of acoustic scattering of wave energy for solids 

have proposed by Grady and his coworkers[54-561• The theory and the formulation of a model for 

shock wave propagation in heterogeneous media is briefly described in this section. 

As a finite amplitude shock wave passes through a heterogeneous solid, an incoherent 

acoustic wave motion due to scattering of the principal wave by the heterogeneous microstructure 

is induced (Fig. 2.3). The energy state of the matter behind the shock wave will include a 

component due to the lattice strain energy and a kinetic component corresponding to a field of 
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acoustic phonon energy caused by wave scattering within the heterogeneous microstructure[541, 

i.e., 

(2.25) 

where (JO(E) is the lattice strain energy at the current nominal axial state, and Uk = L, 1/,hl/, is 

the acoustic phonon energy induced by the microstructure. n, is the number of phonons with 

energy Iw,. I', and h are the normal mode frequency and Planck's constant, respectively. 

The inducement of kinetic component of acoustic phonon energy during the dynamics of the 

shock compression process induces unique consequences. During passage of a structured shock, 

dispersion due to wave scattering leads to the production of phonon energy within a limited 

spectrum of normal mode coordinates in the shock front. Diffusion of this phonon energy to an 

equilibrium configuration throughout the acoustic normal modes is achieved as the final shock 

state is approached. Ultimately, continued diffusion throughout the full thermal spectrum occurs 

until complete thermoelastic equilibrium is achieved. These processes account for entropy 

production within the elastic shock process in the heterogeneous solid. Details of the steady 

shock wave profile structure are determined by characteristic relaxation times associated with 

specifics in the acoustic energy diffusion processes. 

Since the real compression path of a material particle from its initial state to the final shocked 

state by a shock wave is along the Rayleigh line, the dynamic stress experienced by an element 

during the compression can be decomposed into equilibrium and nonequilibrium parts (see Fig. 

2.4), 

This decomposition is not an assumption. It IS a recognition of the fact that the most 

fundamental level forces of interaction in the condensed matter are a composition of strain (lattice 

potential) and kinetic (momentum exchange) terms. The first term (cr eq ) on the right hand side 



B-12 

of equation (2.26) will determine the equilibrium thermoelastic response of the heterogeneous 

solid. The second term (0-n ) on the right hand side of equation (2.26) accounts for stress brought 

about by the nonequilibrium acoustic phonon energy induced in the heterogeneous microstructure 

by the transient wave. Equation (2.26) can be obtained through the strain and time derivative of 

equation (2.25) and the nonequilibrium term of the stress can be formally expressed as[54,55], 

2: I 2: 1 
I 

(Tn = shv. - -(n - n o)hu 
. z Z . T Z Z Z , 
Z Z Z 

(2.27) 

where Si are phonon stimulation terms, T.,. are characteristic relaxation constants, n.,o are 

equilibrium phonon population numbers and v; are strain derivatives of normal mode 

frequencies. 

Single-mode Approximation 

Under the assumption of a single relaxation time T; = T, equation (2.27) reduces to, 

(2.28) 

or 

(J'n = S + R, (2.29) 

where S = S(.) represents a phonon stimulation function dependent on the dynamics of the wave 

interaction with the heterogeneous microstructure and R = (0" ~ O"eq) / T is the relaxation of 

nonequilibrium phonon energy. The modeling framework identified by equations (2.26) and 

(2.29) and the specific models to be considered presently, which fall within this framework, will 

be recognized as continuum inelastic representations of the stress versus strain response of 

heterogeneous solids. 

Among the early models, a general nonlinear Maxwell model (viscoelastic) proposed by 

Barker[29] is of the form, 
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0- - q;( c)e = - -.!. «(}' - (}' eq ) , 
T 

(2.30) 

and describes finite amplitude wave propagation in composite solids, where T is the associated 

relaxation time constant. This model predictions compared favorably with both experimental 

data and numerical solutions of wave propagation in layered composites, and the stress 

decomposition of equations (2.26) and (2.29) is readily produced, 

0-n = M(c)e--.!.(}'Il ' 
T 

0-eq = zJ(c)£ . 

(2.31) 

(2.32) 

Equation (2.31) explicitly displays the stimulation (S) and relaxation (R) terms in the model 

of Barker identified for the non-equilibrium stress in equation (2.30). Stimulation of 

nonequilibrium stress is accomplished through a modulus M (c) = q;( c) - zJ( c). A linear relation 

proportional to the non-equilibrium stress governs relaxation. 

More recently Kanel et al. [34] have proposed an alternative continuum anelasticity model to 

describe wave propagation in solid composites. In the same framework the model can be written, 

o k om 1 
(In= E: --(In, 

T 
(2.33) 

0-eq = zJ(c)e . (2.34) 

Although quite similar to the Barker's model (the models differ only in the stimulation term, 

S) the physical implications in the stimulation term for m > 1 are profoundly differentI55
,S6]. 

Rather than modeling a dichotomous (instantaneous and equilibrium) response of the material, 

the stimulation term implies a continuously increasing scattered energy (and hence 

nonequilibrium stress) with increasing strain rate within the shock wave. 

Multimode Theory 
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The theory outlined at the beginning of this section can be expanded to model more complex 

substructure processes brought about by wave propagation in heterogeneous media. The 

evolution of nonequilibrium phonon population constitutive model as was done above in the 

single mode theory is not pursued here. In this multimode theory, the stress in the composite 

body is written as(56J, 

(2.35) 

where the first term on the right hand side represents the stress rate supported by the lattice strain 

while the last two terms are transient stresses brought about by nonequilibrium acoustic energy 

within the lower frequency and higher frequency normal mode spectra, respectively. 

As in the earlier single mode theory, the nonequilibrium phonon stresses, (jnl' and (jn2' are 

expected to be stimulated during the passage of shock wave and relax toward zero when 

stimulation is removed. Accordingly, it is reasonable to assume the following expression for the 

time dependence of the nonequilibrium phonon stress (due to acoustic scattering), 

(2.36) 

The physics described by equation (2.36) is readily apparent. The terms s] and s2 determine 

stress wave stimulation of the lower frequency and higher frequency modes, respectively, while 

the matrix a .. accounts for a coupling and transfer of energy between modes as well as relaxation 
I} 

ofthe nonequilibrium phonon (acoustic) energy to statistical mechanical equilibrium. 

Equation (2.36), when stimulation functions and relaxation coefficients are specified, and 

when incorporated into equation (2.35), constitutes a viable constitutive relation for the transient 

stress versus strain behavior of the heterogeneous composite under the dynamic conditions of 

interest. When combined with the appropriate conservation laws, the system of equations is 

capable of describing nonlinear one-dimensional wave propagation in the media described. 

When combined with the appropriated conservation laws, general computational solutions could, 



B-15 

in principle, be pursued for modeling events such as hypervelocity impact of heterogeneous 

structures. 
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Figure 2.1 Schematic of a steady plane shock wave compresses a solid from the ambient state to a 
high pressure state. Solid and dashed lines represent real and ideal shock fronts, respectively. 

T S H 

-------~ 

T --Isotherm 
s--Isentrope 
H--Hugoniot 
R--Rayleigh 

Ve Vo 

Figure 2.2 Illustration of the Hugoniot, isentrope, isotherm and Rayleigh lines. 
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Figure 2.3 Illustration of acoustic phonon scattering of a shock wave front due to a heterogeneity, 
(a) before scattering and (b) showing the scattered acoustic field from the heterogeneity from the 
passage of the shock wave exciting internal degrees of freedom. 

H 
H--Hugoniot 
R--Rayleigh 

Figure 2.4 Schematic illustrating the decomposition of stress in to thermoelastic equilibrium 
(Hugoniot) and nonequilibrium (scattered acoustic phonon) components. 
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Chapter 3 

Experimental Systems for Shock Compression of Solids 

3.1 High Velocity Planar Impact Loading System 

The loading system for shock compression of solids experiments is a powder gun which is housed 

in the Solid Mechanics Laboratories, GALCIT. The gun is 3 meters long (10 feet) and has a bore 

of about 36 mm (1.428"). The flyer velocity achieved by this gun ranges from 400 mls to about 

2,000 mls. Upon the planar impact of a flyer onto a specimen, a shock wave is generated and 

propagates in the specimen. 

The schematic of the powder gun loading system is shown in Fig. 3.1. When the circuit for 

powering the solenoid is closed, the solenoid shaft moves quickly and pushes against the trigger 

pin, which moves forward and penetrates into the primer. Upon the trigger pin's penetrating into 

the primer, the volume of the primer is reduced and the powder starts burning, thereby producing 

high-temperature, high-pressure gas, which is referred to as the "flame." The flame ignites the 

more powerful powder in the bullet case (more often called the "shell;" while some times it is 

also referred to as the "brass"). Then, an even hotter flame produced in the shell rushes into the 

flame "splitter," which is a hollow cylinder with 16 holes distributed evenly in a 45° spiral on the 

wall. The powder charge in the breech is ignited by the high-temperature, high-pressure flame 

from the flame splitter and produces very high-pressure gas in the breech. As this high-pressure 

gas exerts considerable transient force on the end of the sabot, the stop ring of the sabot is broken, 

and the sabot is continuously pushed forward and accelerated along the gun barrel. When it exits 

the muzzle of the barrel it has reached a very high velocity. The velocity of the sabot, i.e., the 
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flyer velocity, can be predetennined very accurately by controlling the mass of the powder in the 

breech. 

The flyer velocity is measured by a light interruption system, which measures the time 

interval for the flyer passing two points along the gun barrel separated by a known distance. Near 

the gun muzzle, two pairs of fibers are mounted on the gun barrel and separated by 40.35 mm. 

The light beams are directed in and out of the vacuum chamber by two fiber optic cables. Before 

firing, both the receivers of the two cables are illuminated, and the photodiodes connected to 

them are in the "on" state. Once the light in the cable is blocked by the sabot, the photodiode 

immediately switches into "off' state. When the sabot passes the first fiber cable, the light in the 

fiber is blocked, and the timer starts. As soon as the timer receives the "off' signal due to the 

light in the second fiber being blocked, the timer stops and gives the time interval taken by the 

sabot to travel the distance between the fibers. More detailed information on the gun system and 

measurement of flyer velocity is available elsewhere[23 l . 

The specimen, the fiber optic probe for VISAR system and the electrical pins (see next 

section) for triggering the oscilloscope and/or the tilt measurement of planar impact are 

assembled on a specimen holder. Then, the whole assembly is positioned in front of the gun 

muzzle. To ensure or increase the accuracy of planar impact, or in other words, to reduce the 

impact tilt, the specimen assembly in front of the gun muzzle is properly positioned such that 

when the flyer impacts the surface of the target, a small portion of the sabot is still inside the gun 

barrel. This reduces, or at least is well controlled, the impact tilt considerably. Also the possible 

disturbance to the specimen from the blow-off of the high pressure gas is reduced or avoided. 

The sabot carries and supports the flyer. The sabot may be designed to be of different shapes 

to serve different experimental purposes. One of the versions that was used in shock compression 

experiments to carry the flat flyer plates is shown in Fig. 3.2. The specimen, as well as the 

backing plate of the specimen, if it is needed, is glued on the sabot and thoroughly dried before 

the experiment. The material used to make the sabot is an engineering plastic, Nylatron. 
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Nylatron is not the only material good for making the sabot; other polymer materials like 

polycarbonate (Lexan ) are also good candidate materials. 

The solenoid used in the firing system of the powder gun is a short stroke laminated solenoid 

with push style and intermittent duty, procured from the McMaster-Carr Supply Company. The 

solenoid is powered by 120 V AC power and can provide a force of up to 9.6 kg (336 oz). The 

trigger pin consists of a 4340 steel tapered cylindrical rod and a gauge steel pin. A circular hole 

of diameter 1.8 mm (0.070") is drilled 19 mm (3/4") deep at the center of the smaller end of the 

rod so that the gauge pin can be fitted into it (see schematic of gun system in Fig. 3.1). The 

proper length of the pin should be such that the end of the pin indents into the primer about 0.6 

mm to 0.8 mm deep. If the penetration is not deep enough, the primer may not be triggered. 

Over-penetration will result in punching a hole in the primer, and the primer will fail to seal the 

high pressure gas, causing it to jet out backward. Both the primer and the brass used are those for 

the large rifle, which can be bought from any gun store. The hole for fitting the brass was 

machined by a special set of reamers (30-06 reamer set) which includes two pieces. One is a 

rough reamer, the other is a fine reamer. The powder used to charge the brass is the Hercules 

smokeless powder (3 grams). The flame splitter is made of Vascomax C-300 maraging steel 

which was machined first, and then heat treated. 

The shock compression experiment is conducted under vacuum conditions. The vacuum 

chamber is evacuated to a reasonably high degree of vacuum condition (~1O-2Torr) before the 

experiment. 

3.2 Experimental Techniques: Diagnostic Systems 

The diagnostic systems for shock compression experiments consist of an arrival time detector, a 

VISAR system, stress gages and oscilloscope recording instruments. The arrival time detector 

consists of charged electrical pins which are discharged by the arrival of a grounding surfacel1.
21 • 
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The VISAR (the abbreviation of Velocity Interferometer System for Any Surface)l3] is used to 

measure the particle velocity time history of a free or internal surface of a specimen subjected to 

impact. Stress gages are used for measuring the stress history of shock compression and are 

made of either piezoresistive material (e.g., manganin, a copper alloy containing manganese and 

nickel) or piezoelectric materials (e.g., x-cut quartz and lithium-niobate crystals, polyvinylidene 

fluoride polymeric film-PVF2). These are the common measurement techniques used in the field 

of shock compression of solids. There are many review papers available on shock wave 

d · . hn' [124-9] lagnostlc tec lques" . 

3.2.1 Arrival Time Detector: Electric Shortening Pins 

For the experiments of shock compression of solids it is necessary and important to measure the 

impactor velocity and the impact tilt of the flyer on the specimen. One of the earliest, and still the 

most popular technique, is charged electric pins or probes, which are sometimes called position 

transducers. The pin is a small coaxial probe that produces an electrical signal when impacted at 

its sensing end by a fast moving object, or by either an ionization or shock front. 

Two types of pins are commonly used. One is the switch type, and the other is the 

piezoelectric type. The switch type pins can be divided into ionization and self-shorting type 

pins. The former is used in conjunction with conductive flyers such as metals, while the latter is 

used with non-metallic flyers. The advantage of using the pins is that they can be accurately 

positioned in space or within a material, thus providing a simple technique for measuring material 

and shock velocities, or impact planarity, or for use as a triggering source. 

The arrangement of pins on the target is shown in Fig. 3.3. Pins # 1 and # 2 are used to 

measure the flyer velocity. They are installed such that the end of the pin # 1 is protruding at a 

known height, normally around several hundred micrometers to 1 millimeter, out of the impacted 

surface of the target, and pin # 2 is flush mounted. By measuring the difference in the discharged 
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time between the two pins, the velocity of the impactor or the flyer just prior to impact is 

obtained. Pins # 3, # 4 and # 5 are flush mounted and provide the impact times at specific 

locations on the specimen for measuring the impact tilt of the flyer with respect to the specimen. 

The pins used for PMMA specimens are the model CA-I038 self-shorting pins from Dynasen, 

Inc. The CA-I038 pins are the most immune to gas blow-by, which certainly exists when the 

sabot is accelerated using a powder gun. 

In order to record the arrival time signals of the flyer impacting the specimen, a circuit to 

charge the pin and to tum the mechanical contact signal into an electrical signal is needed, which 

is called the "pin mixer" here. The circuit diagram of the pin mixer is shown in Fig. 3.4. The 

voltage of the power supply is E = 24 V DC. All cables used are 50 Q impedance cables (i.e., 

RG58 type cables). In the circuit, R=50 Q (W/4), C=O.OO I .u F (l00 V, Mylar, 230B 1B 102K, 

Electro-cube), D is IN914B diode (PIV=75, If =75 rnA, trr=4 ns), RI=200Q (5W), 

R2=400Q (5W), R3=500Q (8W), R4=750Q (lW), and R5=1.2IKQ (lW). This is a pre-

charged open circuit when all pins are open to be shortened by the shock wave or impactor. The 

designed time resolution of the circuit is about 50 ns. As soon as a pin is closed, the sub-

circuit, in which the pin is connected and the input terminal of the oscilloscope which is used as 

load of the circuit, forms a closed circuit, causing current flow through the sub-circuit, and the 

oscilloscope detects the corresponding voltage increase. Upon closing of each sub-circuit, there 

is an increment in the voltage at the input of the oscilloscope. For the parameters shown, the 

output of each sub-circuit designated to be about 4.80V, 2.70V, 2.20V, 1.50V and 1.0V, 

respectively, corresponding to pins # 1, # 2, # 3, # 4 and # 5. The power supply for the circuit is a 

24 V DC linear power supply (International Series # HN24-3.6-A). The input of the power 

supply is 110 V AC with a current limit of 2 A. 
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3.2.2 Velocity Interferometry System for Any Reflector (VISAR) 

3.2.2.1 Optical Principle of Velocity Interferometer 

The basis of a velocity interferometer is the Michelson Interferometer (MI) and the Doppler 

effect. The setup and the principle of MI can be found in any optics text book[lol. Prior to a 

description of the optical principle of the VISAR system, it is useful to briefly introduce the 

Doppler shift effect. 

The Doppler effect is the increase or decrease in the measured frequency of a wave 

depending on whether the source of light (or observer) is moving toward or away from the 

observer (or source). Let A be the wavelength of laser light used in the interferometer and c be 

the velocity of light, then the frequency of the laser light is 

c 
V=-· 

A 
(3.1) 

If the laser light is impinged on an object moving with velocity u, the frequency of the 

reflected light, by Doppler effect, is 

. v 
v=---

1 ±u / c 
(3.2) 

where the minus (-) sign is for the case of the object moving towards the observer while the plus 

(+) sign is for the case of the object moving away from the observer. 

The change in the wavelength of the reflected laser light is 

, A 
llA = A - A = ±-U . 

c 
(3.3) 

Since the light transverses a round trip distance in the MI, the image velocity detected by the MI 

is twice that ofthe moving object[IOl, and the wavelength change from the MI should be 

, 2A 
llA=A -A=±-U. 

c 
(3.4) 
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The path of light in the MI shown in Fig. 3.5 is examined. A beam splitter, BS, is placed 45° 

with respect to the axis of the incident laser beam which contains the Doppler shift, such as the 

light reflected from the free surface or the internal interface of the specimen subjected to shock 

loading. The incident beam is split evenly into two beams. One beam is directed to mirror M I 

and returned to BS, and the other (the transmitted part) goes to M2 and is reflected back to BS. 

The two returned beams are split again by BS. The transmitted part of the beam from M I and the 

reflected part of the beam from M2 are recombined as they come out from the BS and interfere 

with each other forming interferometry fringes that can be observed at any point along the 

combined beam leaving BS. 

Suppose the two beams from mirrors MI and M2 have different frequencies, VI and v2 ' 

respectively, the sum of the fields of these two beams at a given point can be written as 

E, = AI cos(2nv; t + ¢I) + A2 cos(2nv; t + ¢J2)' (3.5) 

where Es is the total electric vector, A I and A2 are the amplitudes of the electric vector of the two 

beams, and ¢J I and ¢J 2 are the initial phase angles. The intensity of the light will be 

1 1
2 2 2' 2 2 ( , 

1= E, =AI cos (2nvl t+¢I)+A2 cos 2nv2 t+¢J2) 

+AIA2 cos[2n(v; +V;)t+¢I-¢J2]+AIA2cos[2n(v; -V;)t+¢I-¢2]' (3.6) 

The first three terms are the intensity that oscillates at frequencies equal to or greater than 

frequency of laser light, which is normally on the order of 1014 to 10 15 Hz. This is out of the 

response range of the recording instruments such as oscilloscopes and is very hard to detect, 

hence, only a time average intensity, which is essentially a constant, can be seen on an 

oscilloscope. The fourth term gives an output that is proportional to the so-called beat frequency, 

i.e., the difference between frequencies 

(3.7) 
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For ~ V = 0, according to equation (3.6), the observed fringes are always static. If the two 

mirrors, Ml and M2, are equally positioned away from the beam splitter, BS, no matter how the 

frequency of the incident laser light changes with time, the frequency difference of the two beams 

reflected back from M I and M2 are always zero, then the fringes will always be static. If M I and 

M2 are positioned at different distances away from the BS (strictly, non-equal-Iength-Iegs 

configuration is not a setup in the classic MI, but hereafter it is still referred as MI for the sake of 

convenience), there exists a path length difference between two beams after they recombine. In 

case the object reflecting the laser light moves with a constant velocity, then, again, ~ V = 0 

though the incident laser light contains Doppler shift effects according to equation (3.2), the 

interferometry fringes are static. However, if the moving object is experiencing an acceleration 

or deceleration, the Doppler shift or the frequency change of the incident light of MI is a function 

of time. Due to the path length difference between the two legs of the MI, the light travelling in 

the longer leg takes more time to return to the BS, i.e., there exists a delay for the light traveling 

the long leg. In this case, ~ V 7:- 0, according to equation (3.6), we can observe the fringes 

moving with time. Therefore, in order for the velocity interferometer to be effective, the Doppler 

shift of incident light is a necessary condition, while the path length difference between two legs 

is a sufficient condition. 

The delay leg is defined as the one with mirror M2, which is geometrically longer, then the 

other leg is known as the reference leg. Assume Llx is the length difference between the two 

legs, then, the delay time for the light to transverse the delay leg with respect to the reference leg 

is 

2 
T=-~. 

C 

(3.S) 

Here the refraction index difference between the vacuum and the air is neglected. When the two 

beams recombine at some time instance, t, the frequency difference of the two light beams is 

~ V = V; (t) - V~ (t - r). Therefore, provided the moving object is experiencing a velocity change 
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(either acceleration or deceleration), one can always observe the change of the pattern of 

interferometry fringes with time at a fixed point in space. 

For constant A , if the path length difference satisfies the condition, N A = 2fu: , where N is 

an integer, the delayed beam will arrive at BS with the same phase angle as that of the reference 

beam, thus the interferometry fringe pattern will be the same as that in the case where there is no 

path length difference between the two legs and thus reinforces the light at the observing point 

(bright fringe) . If the length of the delay leg is held constant, i.e., fu: is fixed, but A is changed 

slightly so that N increases (or decreases) by Y2, the two beams arriving at BS are out of phase, 

and no light can be detected (extinction resulting in a dark fringe). By extension of this 

reasoning, one can conclude that if the delay is constant and the wavelength of reflected laser 

light is continuously changing due to the motion of the specimen under shock wave loading, the 

change of N will be continuous, then the light intensity detected will also vary continuously from 

bright to dark or vice versa, and as a result, the VISAR signals recorded on the oscilloscope will 

vary sinusoidally. 

The length of the delay leg can be written in terms of the wavelength as follows : 

NA=cr. (3.9) 

Differentiating equation (3.9) results in 

N cr 
!1N(t) = --~A,(t) = --~A,(t) . 

A, A,2 
(3 .10) 

Substituting for ~A in equation (3 .9) from equation (3.4), and solving for the free (or 

internal) surface velocity, 

A, 
u(t) = (-)!1N(t) . 

2r 
(3 . II) 

When a window is used behind the rear surface of the specimen to protect the reflecting 

surface from being damaged by the interaction between the arriving shock wave and the reflected 

release wave at the free surface, a correction for the refraction index of the window material is 
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necessary since its refraction index changes as a stress wave passes through it (see references 

[3, 11,12] for details). Thus, the relation between the fringe count F(t) and the specimen velocity 

u(t - r 12) can be written as 

u(t-r/2)= AF(t), 
2r(1 +8) 

(3.12) 

where the velocity time instance is shifted by r 12 to be consistent with impact time; !1N(t) has 

been replaced by F(t) since one can always choose the instance of the arrival of the shock wave at 

the surface as a reference for the starting point when the fringe starts to change; 0 is an index-of-

refraction correction factor for the window which is determined by experiment and equal to zero 

if no window is used in the experiment. Strictly speaking, A in equation (3.12) should be the 

wavelength of laser light at time instance (t - r 12), but, since the change in wavelength for the 

Doppler shifted laser light is very small (~A 1 Au "" 1 0-6 for the particle velocity on the order of 

I ,OOOm/s), normally, the difference between the current A( t) and the original Au is neglected. 

3.2.2.2 Optical Principle of VISAR System 

In both displacement interferometer[l1] and velocity interferometer!l2,l4], a good mirror finish on 

the specimen surface is required so that spatial coherence of the laser beam can be maintained on 

reflection. Nevertheless, upon loading of a strong shock wave, the damage to the reflecting 

surface can not be avoided since the severe non-uniform deformation can always result in the 

generation of micro-jets on the shocked surface due to the interaction of defects in solids with a 

shock wave. The surface condition of a good mirror finish is hard, or even impossible, to be 

maintained in the whole process of shock compression. Therefore, in practice, a surface initially 

in good mirror finish may not remain a spectrally reflecting surface with the progress of shock 
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loading, thus the contrast of interferometry fringes will deteriorate, which will eventually make 

the shock velocity measurement ineffective. 

Since the MI is not sensitive to the spatial incoherence of light, there is no problem for MI to 

give very good contrast fringes if the incident light is from a diffused reflecting surface, provided 

that the lengths of the two legs of the interferometer are nearly the same. But, as discussed in the 

last section, if the two legs of MI are of equal length, there is no time delay in one of the two legs, 

then, no fringe movement would be detected. If the lengths of the two legs are not strictly equal, 

there exists some difference. In principle, a good contrast fringe may still be generated, but the 

velocity resolution of the interferometer will be very low. If a long leg is used, high velocity 

resolution can be obtained, but fringe contrast may be lost. 

Is there a way to obtain high velocity resolution without losing the fringe contrast? These 

seemingly contradictory requirements are met with a modification to the configuration of MI, the 

so-called wide-angle Michelson interferometer (W AMI)[3.15,161, shown in Fig. 3.6. The 

differences between the MI and the W AMI are the insertion of a piece of glass rod, the so-called 

etalon, between the mirror M2 and the splitter BS and the reposition of the mirror M2. M2 is 

placed so that its virtual image coincides with M 1', the image of mirror M 1 with respect to the 

beam splitter. In this way, when viewed by the detector, the apparent positions of the two mirrors 

are the same and the light beams from the two legs emerge collinearly; therefore, a good contrast 

of fringes can be obtained and at the same time the path lengths in the two legs are different, 

which satisfies the sufficient condition of the velocity interferometer. The optical principle of the 

W AMI and the detailed interpretation of VISAR system can be found elsewhere (see references 

15, 16 and 3). Upon the insertion of the etalon (Fig. 3.6), the path length difference, half of the 

light path difference, of two legs is[16] 

1 
t...T = h(l- -), 

n 
(3.13) 
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where h is the length of the etalon and n is the refractive index of the etalon. If the apparent 

position of mirror M2 is placed at the same distance from the beam splitter BS as mirror M I, then 

the spatial coherence of the light is not required, and very good fringe contrast can be obtained 

even with the light reflected from a diffuse surface. The light in the leg containing the etalon is 

delayed since it travels longer path. The time delayed in the delay leg isi J6JI 

2h I 
r=-(n--), 

c n 

where c is the velocity of light in vacuum. 

(3.14) 

For a fixed set-up of VISAR system, the velocity-fringe equation (3.12) can be rewritten as 

u(t - r /2) = C F(t) , (3.15) 

where coefficient C is a constant, called thefringe velocity constant, 

A c= , 
2r(1 + 8)(1 + a) 

(3.16) 

which is determined by the laser light wavelength, A, delay time of light in the delay leg, T, the 

correction due to the change of the refraction index of the window material with stress, 8, if 

window is used in the shock experiment, and a correction due to the wavelength dependence of 

the refraction index of the etalon material, cr, if it is not negligible i J 7J. 

3.2.2.3 VISAR System 

The arrangement of the VISAR diagnostic system is schematically shown in Fig. 3.7. The optical 

parts inside the dashed rectangle are part of the configuration of the W AMI (VISAR optical 

system). Through a laser-fiber coupler (8), the laser light from an Argon ion laser (9) (,\.=514.5 

nm) is coupled into an optical fiber of diameter 125 f..U11, which directs the laser light onto the 

mirror surface of the specimen. By an optical assembly called "optical fiber probe" (7), the 

reflected light is collected and coupled into an out-going fiber which has diameter of 300 11m. 
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The laser light from the out-going fiber, which contains the Doppler shift effect due to the motion 

of the surface under shock loading, is collimated through a collimator (I) before being directed 

into the VISAR Optical System to extract the interferometry information of particle velocity. 

Mirror M3 guides the collimated laser beam into the VISAR optical system. In order to 

monitor any intensity change of the reflected laser beam resulting from self illumination due to 

shock compression, part of the light is sampled by a beam sampler SI and directed through M4 to 

a photomultiplier tube (4), which converts the light signal into an electric signal to be recorded by 

the oscilloscope. The SOISO beam splitter S2 evenly splits the light from the main beam into two; 

one is sent to mirror Ml of the interferometer which is 28S.S mm away from S2 in this setup, 

while the other passes through a 118 wave-plate (2), etalon (3) and then is returned by mirror M2, 

which is positioned at 28S.S+Axmm from S2 (Ax= 10.12,32.32, S4.S3, 76.73, 98.93,121.14, 

143.34, 16S.SS mm, for etalon length ofO, SO, 100, ISO, 200, 2S0, 300, 3S0 mm, respectively). 

The length of Ax is determined by the length of the etalon required to satisfy the apparent equal 

length of the two legs of the Wide Angle Michelson Interferometer. One half of the returned light 

from M 1 passing through S2 is combined with the reflected part of the returned beam from M2 to 

form interference fringes. The interference fringes may be monitored through the bull's eye 

pattern after the laser beam exits from S2. S3 is a polarizing beam splitter separating the Sand P 

components of the laser light, which have 900 phase angle difference due to the retardation of a 

118 wave plate to the phase angle of the P component of the light. The Sand P components of the 

interferometry fringes are separately directed into two photomultiplier tubes. The electrical 

signals from the photomultipliers are amplified by 1.2 GHz bandwidth amplifiers (S) before being 

sent to the I GHz 4 channel digital oscilloscope for recording. 

All of the surfaces of the optical parts in the interferometer are flat to AJ20. Mirrors M I and 

M2 are Stock Mirrors purchased from Newport Corporation. The ISO mm (6") diameter splitter 

S2 is a Broadband SOISO dielectric beam splitter obtained from Newport Corporation. It is made 

ofBK7 glass with a refractive index of I.S20S at a wavelength of SI4.S nm. The thickness of S2 
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is 23.50 mm at the center. The reflecting surface is placed to face the incident laser beam from 

the collimator. 

An etalon is actually a piece of glass rod or disc. The purpose for inserting the etalon into 

one of the legs of VISAR optic system is to delay the light in that leg while minimizing the 

difference of apparent path length in the two legs as much as possible. Therefore, glass with as 

large a refractive index possible is preferred. The glass used for the etalon in this system is SF 11 

glass, which is a product of Schott Glass Technologies, Inc. The etalon was specially ordered 

from Harold Johnson Optical Lab. According to the manufacturer of the etalon, the nominal 

refractive index of the SFll glass is 1.7812. While, based on the index parameters of SF 1 1 glass 

provided by Schott Glass Technologies, which was procured from Harold Johnson Optical Lab, 

the calculated value is 1.7988 at wavelength of 514.5 nm, which is exactly the value given in the 

catalog book of Melles Griot Company[241• Therefore, the refractive index of SF 1 1 glass used for 

calculating the fringe-velocity constant of this VISAR system was 1.7988. The diameter of the 

etalons used in the VISAR system is 30 mm. Totally, four pieces of etalons were ordered. One 

piece is 50 mm long along the axis, while the other three are 100 mm long. In order to eliminate 

fringe patterns and cavity feedback, a precise 30 arcmin wedge between optical faces was 

machined by tilting one surface 30 arcmin with respect to the other which is perpendicular to the 

axis of the glass rod. 

The function of inserting a 1/8 wave plate into one of two legs of the interferometer is to 

retard the phase angle of the P component of the laser light by 90°. The 118 wave plate was from 

Valyn International. It is made of Quartz glass with a thickness of 3.556 mm (0.14 inch). 

According to the manufacturer, the refractive index is nx= 1.5473 along the x direction and 

ny=1.5565 along the y direction at the wavelength of 525 nm. While the values are n,=1.54787 

and ny= 1.55 711 at 514.5 nm. Barker suggested using the average of the two, so the refractive 

index used in the present calculation is 1.55249 at 514.5 nm, which is the average of the values 

given by Newport Corporation. 
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The laser used in this VISAR system is an Innova 304 water-cooled Argon ion laser, which is 

a product of Coherent Laser Group Company. The output power of this laser is 4.0 Watts on 

multiline visible mode, while the output is 1.7 Wand 1.3 Wat 514.5 nm and 488.0 nm single line 

mode, respectively. The beam diameter is 1.5 mm at the II e2 point. The divergence in full angle 

is 0.5 mrad. The beam pointing stability is less than 5.0 ~rad3. The beam offset is less than 5.0 

~m. For the long-term power stability, the maximum peak variation after a 15 minutes warm-up 

period is ± 0.5% in the operation mode of Light Regulation with PowerTrack, while it is ± 1.0% 

in the operation mode of Current Regulation with PowerTrack. The optical noise (rms) with 

PowerTrack operation mode is 0.2%. According to the manufacturer, the spatial coherence of the 

laser light (coherence length) is about 60 m. Normally, several hundred milliwatts output power 

is enough for a shock experiment. 

Almost everything in the vacuum chamber will be damaged, or completely destroyed, during 

the shock compression experiments. The part of fibers inside the vacuum chamber are damaged 

during the experiment and can not be reused. Therefore, both the in-going fiber and the out-going 

fiber of the VISAR are split into two right before they enter the chamber. The portion of fibers 

outside the chamber can be repeatedly used, so it is called the permanent fiber, whose length is 15 

m in this system; the other portion of the fibers extending inside the chamber are integrated with 

other optical parts to form a fiber optic probe, which directs laser light to the reflecting surface of 

specimen, collects the reflected light and then directs it out of the chamber. The connection 

between the fiber optic probe and the permanent fiber is through an optical coupler called the 

fiber optic splice board. Therefore, only the fiber optic probe needs to be replaced in each 

experiment. 

The fiber optic probe assembly consists of an 1.5 m long ingoing fiber, a 1.5 m long outgoing 

fiber, a small lens for focusing the ingoing laser light onto the reflecting surface, a larger lens 

with a central hole (in which the small lens is incorporated) for collecting the reflected light from 

the reflecting surface and a holder for these parts. The probe should be mounted 30 mm away 
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from the reflecting surface if no window is used. In case a transparent window is used behind the 

reflecting surface, the distance from the probe to the reflecting surface should be approximately 

30 + (l-lIn)h mm, where h is the window thickness in millimeter and the n is its index of 

refraction. 

The photomultipliers used in this VISAR system are low-noise POD-4 Photomultiplier Units 

(PMU) produced by Valyn International Company. This PMU has a typical rise time of 1.0 ns. 

The photocathode response at 532 nm is 34 mA/W, and the maximum average anode current is 

700!lA. The maximum required voltage and current of the power supply is 1,000 V DC and 10 

rnA, respectively. The electrical signal from the photomultiplier is amplified first, before being 

sent to the oscilloscope. The differential amplifier has a gain of lO and bandwidth of 1.2 GHz to 

DC signal. The differential amplifier is powered by a ± 15 V DC power supplier. The input 

signal to the amplifier should be no more than 30 mY; otherwise, it may be damaged or ruined 

due to overload. 

The laser-fiber coupler, fiber optic splice board, fiber optic probe and collimator are all the 

products of Valyn International Company. For the details on the function, configuration and use 

of these parts, one should refer to the corresponding product literature. 

The oscilloscopes used to record the VISAR signals are a Tektronix TDS7lO4 digital 

phosphor oscilloscope with a bandwidth of 1 GHz, sampling rate up to lO GS/s and recording 

length up to 2 Mb, or a Tektronix TDS3054 digital oscilloscope with a bandwidth of 500 MHz, 

maximum sampling rate on single channel mode of up to 5.0 GS/s and maximum record length of 

10 K points. 
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3.2.2.4 Data Deduction of VISAR Signals 

Fringe-Velocity Constant 

For the current setup of the VISAR system, the Argon laser used is in continuous and single line 

mode with the wavelength Ao = 514.5 nm. The various combinations of the four pieces of optical 

SFll glass rods, one 50 mm and three 100 mm long, makes up eight different lengths of etalons 

in the delay leg of the W AMI. Besides the glass rod etalon itself, any optical part in the delay 

leg, which has different refraction index from air and causes the delay of light, should be 

considered to be part of the etalon. Therefore, the 118 wave plate and the big splitter S2 are all 

treated as part of the etalon. For the 118 wave plate, the laser light is incident and transmitted 

through it in the direction of its surface normal, and the path length of light is determined by its 

thickness and the refraction index. While for the beam splitter the light is incident in the direction 

of 45° angle with respect to its surface normal, the path length of light is determined by the 

geometry, h' = h /(1- (sin 45° / n)2 )112 , where hand n are thickness and refraction index of the 

splitter, respectively. The length of the reference leg is nominally 285.5 mm. The length 

difference between the reference leg and the delay leg, the delay time of light in the longer leg 

and the fringe-velocity constants of the VISAR system for the different lengths of etalons are 

calculated using equations (3.13), (3.14) and (3.16) and listed in Table 3.1. The fringe-velocity 

constants given in Table 3.1 are obtained regardless of the corrections due to the change of the 

refractive index of the window, if it is used and the wavelength dependence of the refractive 

index of the etalon material, i.e., taking a=O and 8=0 in equation (3.16). If in practice, for the 

given loading conditions, those effects are not negligible, then the corresponding corrections have 

to be madell2 . 17J. 
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Data Deduction of VISAR Signals 

It is fairly straightforward to deduce the shock velocity particle history from the recorded VISAR 

signals. The VISAR signals are sinusoidal-like oscillating curves as a function of time. Two 

signals that are 90° out of phase can be obtained for each experiment; if one is sine, the other 

must be cosine. Fig. 3.8 shows typical VISAR signals recorded during an experiment of shock 

compression of solids. The sine and cosine curves, if necessary, are smoothed, then their 

amplitudes are scaled to be the same, and the tangent curve of the signal is determined by 

dividing the sine curve by the cosine. Finally, the fringe number is calculated as a function of 

time through the value of the tangent. By using the VISAR fringe velocity formula, equation 

(3.15), the shock particle velocity time history is obtained, which is also shown in Fig. 3.8. For 

the peak particle velocity of 100 mls to 500 mis, the measurement accuracy of this system should 

be better than 2%. 

3.2.3 Stress Gages: Piezoresistive Manganin 

Many materials have the property that their resistivity changes as a function of pressure, P, and 

temperature, T[I,8,17J• Generally, the resistivity is a decreasing function of pressure and increases 

with temperature, i.e., 

P = Po (1- 1( P + aT) , (3.17) 

where p and Po are the current resistivity and the resistivity at room temperature and 

atmospheric pressure, and K and a are the stress coefficient and the thermal expansion 

coefficient, respectively. 

Manganin, a copper/manganese/nickel alloy (e.g., Cu-84/Mn-12INi-4), is a unique 

piezoresistive material. The change of its resistance is not sensitive to temperature, but increases 

with pressure. Therefore, its resistivity may be expressed as[18] 
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P = Po (1 + "P). (3.18) 

Let I and A be the length and the cross-sectional area of a manganin wire, its resistance R is 

determined by resistance law, 

R=£!.... 
A 

(3.19) 

Under the condition of one-dimensional plane strain shock wave loading, the change in the 

length of the shocked wire can be neglected; therefore, besides the change in the resistivity, there 

is change in its cross-sectional area. Hence, 

A V (3.20) -=-, 

where V, Vo and Ao are the current volume of the shocked wire, initial volume and initial cross-

sectional area of the wire. 

Using equations (3.19) and (3.20), 

(3.21 ) 

where M = R - Ro is the change in resistance of the shocked wire. Combining equations (3.18) 

and (3.19), 

fiR = (1 + K P)V _ 1 . (3.22) 
R Vo 

According to the shock Hugoniot curve of manganin, the ratio of volume of the shocked state 

to its initial volume is also just a function of stress (or pressure); therefore, 

M 
-=K(a)a. 
R 

(3.23) 

In general, besides depending on stress[191, K is dependent on the composition of the 

material[61, and the gage shape, i.e., foil or wire[6.201. Experimental results show that the manganin 

gage is useful up to 100 GPa and is the most widely used piezoresistive gage at high stresses (or 

pressure)l211, and the relation between the resistance change and stress can be approximated by a 
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linear function for the shock pressure higher than several GPa, say 4 or 5 GPa. At lower stress 

ranges a polynomial relation is more accurate. Fig. 3.9 shows the calibration curves of manganin 

gages used in this experimental study of the shock wave propagation in the heterogeneous 

composites, which is a product of Dynasen, Inc. 

A power supply is needed to convert the resistance change signal from the manganin gage 

into an electric signal. This is analogous to the power supply used in a strain gage circuit 

(Wheatstone bridge). The difference is that a constant voltage power supply is used for the strain 

gage, while for the stress gage a pulse power supply is used since a very large current is needed to 

obtain a signal with high enough amplitude. The pulse supply used is Dynasen's Piezoresistive 

Pulse Power Supply Model CK2-50/0.05-300. It is a self-contained pulse bridge arrangement and 

can be used for the excitation of both 50 .0. and 0.050 .0. stress gages. It can provide a constant 

voltage from 30 V to 300 V with the pulse length adjustable from 5 JlS to 1500 JlS. The detailed 

specification, operation and data deduction of the pulse power supply can be found elsewhere[22J. 
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Table 3.1 The parameters ofVISAR system 

Item material n h(mm) Llx(mm) x(mm) 't (ns) C(m/s) 

118 wave plate Quartz 1.5525 3.81 1.36 

Beam splitter BK7 glass 1.5205 (h')25.60 8.76 

0.00 10.12 295.66 0.170 1508.9 

50.00 32.32 317.86 0.585 439.6 

100.00 54.53 340.07 0.999 257.3 

Etalon SF11 glass 1.7988 150.00 76.73 362.27 1.413 181.9 

200.00 98.93 384.47 1.827 140.6 

250.00 121.14 406.68 2.242 114.6 

300.00 143.34 428.89 2.656 96.8 

350.00 165.55 451.09 3.070 83.7 
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experiment of solids. 
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Figure 3.3 Arrangement of the electric shorting pins on the target. 
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Figure 3.4 The schematic of the electric circuit for pin mixer. E is power supply, R, Rt, R2, R3, 

~ and Rs are resistors , C is capacitor, D is diode and S is oscilloscope. 
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Figure 3.5 Schematic of Michelson Interferometer (MI) . MI and M2 are mirrors and BS is beam 
splitter. 
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Figure 3.6 Schematic of Wide Angle Michelson Interferometer (WAMI). MI and M2 are mirrors. 
BS is laser beam splitter, and MI' is the image ofMI with respect to the beam splitter. 
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Figure 3.8 Typical VISAR signals and the deduced particle velocity profile of layered composites 
loaded by shock wave generated by planar impact. Here, the specimen is layered composite 
obtained by alternatively layering 5 pieces of 0.74mm polycarbonate and 0.37mm 6061 
aluminum alloy; the velocity of poly carbonate flyer was 589m1s. 

ISO . . ~_J _L ~L _LI. -l - -l. -- - I - - f- 1- -
14{) - ~ ", 5 .0(6 A/Rol -O. 052(" R/Ro)-'2+0.0002(.1.A/Aol"4. - l- i-
130 I-- I 0 < "x < t 25.kbJ 

""" r-
120 

n- \10 
Co. 

~ IOU 

" 

-I- - l- I- 1- ~ V 
~ V - - ---- I- - !- 1-. 1- - - ~ 
~ LL r- ... - -- r--. ~ 

I' 
.0 eX) .,. 
e- SO 

;if 70 
~ 

, 
'" ~ .... V -

f- - 1- - -- '-- k:: .- I- .- f--- - - - '-' ,;.OJ 
.~ . -

vi 60 

'" 
/: 

I-
_. 

..., so 
~ 
r.o <10 
~ 

b ) () 

k" 
V 0 

- f- .-. - - - ---V 6:. - '- - - - - r- !·r 0 DYNASENS DATA f- .... 
-'--

"20 
-J; - -

+ - I.,.)' 

10 

0 

IJIJf 

16' ~ t--- -. - .-
o s 10 25 3U 

6RJRo • RELATJVE CIIANGE OF RIl:SJSTANCt:, +(CA.) 
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manganin (adapted from data sheet provided by Dynasen, Inc.). 
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Chapter 4 

Experiments on Shock Wave Propagation in Periodically 

Layered Composites 

4.1 Specimen Configuration 

The structure of a periodically layered composite specimen is shown in Fig. 4.1. It consists of 

two components in the form of thin disks that are alternatively stacked together. Hereafter, the 

component with larger mechanical impedance is called "hard" layer, while the other with lower 

mechanical impedance is called "soft" layer, and the combination of a soft layer and a hard layer 

will be referred to as a composite "unit" or a "unit cell." The layered composite specimen for the 

shock compression experiment is prepared by repeating the composite unit as many times as 

necessary to form a specimen with desired thickness. In this study, except when stated otherwise, 

the composite layers are ordered in such a way that the first layer is always soft layer in a unit 

cell, i.e., the soft layer will be the first to experience the planar impact loading. There is no 

special physical or mechanical consideration as to why the soft layer should be placed first, 

except that the specimens were consistently prepared this way. A buffer layer of the same 

material as the soft component of the specimen was used after the specimen. In order to prevent 

the free surface from serious damage due to unloading from shock wave reflection at the free 

surface, a window in contact with the buffer layer was used. The rear surface of the buffer layer 

or the front surface of the window was mirrorized to provide good reflectivity for VISAR optical 

measurements. The window behind the composite specimen thus insures a good reflectivity of 

the mirror surface during shock compression. The window is typically 12.7 mm (0.5") in 
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thickness and it is made of PMMA. The thickness of the buffer layer is typically 0.74 mm 

(0.03"). 

4.2 Materials 

This investigation is not meant to be an exhaustive study of all possible homogeneous 

components of a typical composite system. Instead, attention is focused on understanding the 

role of different parameters that define heterogeneity (e.g., internal interfaces, impedance 

mismatch, length scale, etc.) of a composite on the evolution of a shock wave during its 

propagation in heterogeneous media. Therefore, the materials selected to form each individual 

layer of composites are those whose dynamic response to shock wave loading have been 

extensively studied and well described in the terms of their constitutive behavior. Four of these 

materials representing different types of dynamic mechanical response are used in this study to 

form layered heterogeneous composites of different properties in order to address various aspects 

of the influence of material heterogeneity on shock wave propagation in solids. The composite 

units used in the experiments consisted of a "soft" layer that was made of a polymeric material, 

polycarbonate (PC), and a "hard" layer that was made of one of the following materials: glass, 

stainless steel or aluminum. These materials provide a range of combinations of shock wave 

speeds, acoustic impedances and strength levels to develop a fundamental understanding of shock 

wave propagation through heterogeneous solids. The polymers serve as excellent model materials 

for matrices of composite solids of technological importance such as polymeric composites 

including continuously fiber-reinforced materials and have low shock wave speed, acoustic 

impedance and strength. The metallic materials (steel, aluminum) and glass serve as model 

materials for reinforcements (particle, fiber) of composite solids and have relatively high shock 

wave speed, acoustic impedance and strength. 
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Polycarbonate (PC) and polymethyl methacrylate (PMMA) are two representatives in the 

polymer family of viscoelastic materials. Both materials have many technological applications 

and have been extensively studied. Comparatively, PMMA is stronger, but much more brittle, 

and hence it is more difficult to manufacture it in the form of a very thin sheet. Initially, it was 

intended to use PMMA sheets as material for the soft layers of composites, but it is hard to obtain 

commercially available PMMA sheets with thickness less than 0.80 mm. Therefore, it was 

decided to use PC, instead of PMMA, as the soft layer of composites. The PC sheets used in this 

study were obtained from McMaster-Carr in two thicknesses, nominally, 0.37 mm (0.015") 

(shorted as PC37), and 0.74 mm (0.030") (PC74). The window material used was 12.7 mm 

(0.50") thick commercial PMMA plate. 

Due to their excellent optical transparency and other special physical and mechanical 

properties, glass materials have been widely used in industry and scientific studies. The 

mechanical and shock response properties of glass have been studied thoroughly. For instance, 

according to the experimental studies conducted by Wackerle[IJ, Fraser[2J, Barker [3J, et aI., fused 

silica glass behaves under dynamic compression as a nonlinear elastic solid up to its phase 

transformation at about 9.8 GPa. It has been found to be a very good window material for shock 

compression experiments. It has been determined that fused silica glass has the property of 

causing a shock front to become a ramp-wave front as a shock wave propagates through it. 

Therefore, it could be used as a ramp wave generator for studying the acceleration wave 

phenomena. 

Two kinds of glass disk plates supplied by Erie Scientific Company were used in this study. 

One is 0.20 mm D-263 glass (GS20), and the other is 0.55 mm float glass (GS55). D-263 is a 

borosilicate glass, which is produced by melting the purest raw materials. Some of the relevant 

physical and mechanical properties of the two glasses are listed in Table 4.1. 

For metal components that form the hard layer ofthe composite unit, 0.37 mm thick 6061-T6 

aluminum sheet (AI37), 0.19 mm or 0.37 mm thick 304 stainless steel sheets (SSI9 and SS37) 
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were used. The 6061-T6 aluminum alloy was a commercial grade material and the parameters 

listed in Table 4.1 were obtained from handbook[4 l . The 304 stainless steel sheets are products of 

Allegheny Rodney Strip, the service center division of Allegheny Ludlum Corporation. The 

mechanical properties of all the five component materials of specimens and the PMMA window 

material are shown in Table 4.1. 

4.3 Specimen Preparation 

The as received piece of metal sheet was first cut into square plates of about 50 mm each side 

using sharp shear machine and several of these pieces were sandwiched between two thick (about 

6.3 mm) aluminum plates. This sandwich was then clumped on a lathe and machined into 38.1 

mm (1.50") diameter disks. In this way, the deformation or curvature of the disks could be well 

controlled and the flatness of disks can be satisfactorily guaranteed. The PC disks of 38.1 mm 

(1.5 ") diameter were machined in the same way from the as received sheets. As received PMMA 

plate of 12.7 mm thickness was machined into the window piece of 38.1 mm in diameter. Four 

holes of about 1 mm in diameter were drilled evenly on a circle of 30 mm diameter on the disks 

(except for the glass disks) in order to install electrical shorting pins used for triggering purpose. 

In most applications of layered composites, especially where the tensile loading dominates 

the deformation processes of composites or structures, the main concern is the bonding strength 

between the layers. In order to achieve higher bonding strength of interface, it is customary to 

roughen the surfaces by sandblasting before they are bonded together. 

The disk surfaces were not sandblasted during the preparation of specimens for shock 

compression experiments for the following two reasons: First, since the thickness of the disks is 

only in the range of 0.17 mm to 0.80 mm (0.008" to 0.030"), it very easy for such a thin disk to be 

deformed when they are subjected to the high speed impact sand particles used in sandblasting. 
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Even when the thin disk is backed with a flat plate on the other side, the blasted piece still could 

suffer pennanent defonnation. Second, in the present shock compression experiments, the 

compression response of composites is of primary interest, rather than the tensile defonnation, 

which occurs much later when the shock wave is reflected back from the free surface or interface 

adjacent to a lower mechanical impedance medium. According to recent measurementsl51, the 

strenf:,Tth of aluminumlPMMA (or steellPMMA) interface is about 14-15 MPa if the surfaces were 

roughened by sandblasting, while the strength is 8-9 MPa if the surfaces were not sandblasted 

prior to bonding. Though roughening of mating surfaces helps increasing the tensile bonding 

strength, the surface finish between interfaces does not make much difference on wave 

propagation when compressive defonnation is of primary concern. The important thing here is to 

bond the layers together avoiding an air gap between layers, which could affect the wave 

propagation significantly. Therefore, except for the first several specimens, the specimens used 

in this study were prepared by directly bonding layers together in the as received condition 

without any roughening treatment. The procedure of preparing a composite specimen is 

described next. 

The machined disks were first washed with detergent and rinsed with tap water to remove the 

dirt and any oily residues. Then, the disks were put into a container of tap water and placed in an 

ultrasonic cleaner for 15 minutes. Next, they were ultrasonically cleaned with distilled water for 

15 minutes. Finally, the metal and polymer disks were ultrasonically cleaned for 15 minutes in 

acetone and alcohol, respectively. Then, they were dried using compressed air or air duster. The 

surfaces of the PMMA window were cleaned with isopropyl alcohol and dried with compressed 

air. One of the window surfaces was aluminized to a mirror surface by sputtering aluminum in a 

vacuum chamber. 

The cleaned disks were bonded together using epoxy adhesive to fonn periodically layered 

composite specimens. The epoxy adhesive used was Hysol 0151, clear two-component epoxy, 

manufactured by Dexter Corporation. The epoxy has 60 minutes pot-life and complete cure time 
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of three days at room temperature. The tensile lap shear strength of this epoxy, tested on etched 

aluminum per ASTM D 1002, is about 13 MPa after 3 days of cure at room temperature. The 

shock impedance of this adhesive is very similar to that of Polycarbonate (PC). 

The bonding of polymer and metal/glass disks with epoxy was made in a specially designed 

and manufactured jig to maintain planarity. The procedure is as follows: First, one or two drops 

of the mixed epoxy are applied at the center of the first soft disk which is placed on a hard, 

optically flat metal plate at the bottom of the jig. Then a hard disk is placed on top with the four 

pin holes alib'11ed with those of the soft disk, forming a unit of the composite specimen. This 

process is repeated as many times as necessary to form a specimen with the desired thickness. 

The composite specimen is then topped with a 0.74 mm buffer disk, which is made of the same 

polymeric material as that of the soft layer component. After the buffer layer a PMMA window 

was glued on the buffer with the mirror surface facing the buffer. Finally, four electrical shorting 

pins are carefully inserted into the holes making sure that the end of the pin is flush mounted with 

the impact surface of the specimen. In order to uniformly spread the epoxy and reduce the 

thickness of the glue layer as much as possible, a weight was placed on the assembled specimen 

to produce a stress of 50 MPa in the specimen. The applied stress guaranteed the composite 

specimen thus prepared has a very good planarity. The average thickness of the epoxy layer bond 

is about 20 flm. For the PC/Glass composites, the bonding layer can be as thin as 10 f.lm. In 

order to obtain a well-bonded specimen it is important to keep the environment clean during the 

whole process of preparing the specimens. Ideally, this specimen preparation should be 

performed in a clean room. 
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4.4 Experiments 

The detail of the powder gun loading system, the arrival time detector, the VISAR system and the 

stress gage have been described in Chapter 3. For completeness, a brief introduction of the 

experimental system will be given first, followed by an outline of experiments to be conducted on 

the layered composites. 

The experiments of shock compression of layered composites were conducted using a powder 

gun system located in the experimental Solid Mechanics facilities, Graduate Aeronautical 

Laboratories at Caltech (GALCIT). The bore of the gun is 36 mm, and flyer velocity achieved by 

this gun ranges from 400 mls to about 2000 mls. The flyer velocity is measured within 1% 

uncertainty by using a light interruption fiber optic system. More detailed information on the 

powder gun system is available elsewhere[27l . The tilt of the flyer with respect to the specimen 

during impact is measured by a method called "projectile's shorting of charged electrical probes" 

(or pins). Since most flyers used in this experiment were polymeric materials, it is not reliable, 

especially at relatively low impact velocities, to short the pins directly by the flyer plate upon its 

impacting the face of the target, i.e., composite specimen. Therefore, instead of using ionization 

type pins, self-shorting electric pins were flush mounted on the impacted surface of the specimen, 

so that the arrival times of flyer at four positions where pins are installed can be accurately 

detected. Upon impact and due to shock compression, the pin is shortened, which causes the 

circuit in a "Pin Mixer" to close and generate an electric signal recorded by an oscilloscope. Four 

pins provide arrival (or impacting) time of shock wave at four positions on the impacted surface, 

by which the tilt of the flyer with respect to the specimen can be deduced. The average tilt 

divided by the impact velocity in this study was generally much less than 0.005 rad/mm/j.ls. 

The particle velocity history on the interface between the window and the buffer layer (Fig. 

4.2) was measured by the so called VISAR system[6l . As shock wave propagates in the layered 
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composites, due to the multiple reflections from internal interfaces, it is expected that the resonant 

oscillation wavelets will appear in the shock pulse. In order to understand the process of how the 

shock wave energy is transported, dissipated or dispersed, and evaluate the role of interface in 

shock compression process, it is of paramount importance to capture the fine details of shock 

velocity profile, to the extent possible. To meet this need, a VISAR system with very high 

velocity resolution was constructed. The velocity fringe constant of this VISAR system is 

adjustable from 85 mis/fringe up to 1,500 mis/fringe (for the details, see Chapter 3). The 

interferometer fringes from VISAR are sensed by fast response photomultipliers with bandwidth 

of 1 GHz. The electric signals from photomultipliers were amplified through amplifiers with a 

bandwidth of 1.2 GHz and gain of 10 and then recorded using an oscilloscope. The oscilloscope 

used is a Tektronix TDS 7104 digital phosphor oscilloscope with bandwidth of IGHz, sampling 

rate up to 10 GS/s and recording length up to 2 Mb. 

Typical VISAR signals recorded by the oscilloscope for a shock compression experiment on 

a layered composite are shown in Fig. 4.2. The two sinusoidal signals with phase angle 

difference of 90° are from the VISAR for the same experiment, which makes it easy to deduce 

whether the observed interface is experiencing acceleration or deceleration. Based on the 

measured VISAR fringe signals, the particle velocity history of an element on the buffer/window 

interface can be reduced through the VISAR velocity-fringe formula. Let F(t) be the fringe count 

as a function oftime t, then the normal particle velocity u(t - r /2) can be calculated by 

u(t - r /2) = (_A )_F_(.;...;.t)_ 
2r (1 + 6.v/vo) 

(4.1 ) 

where A, is the wavelength of the laser light, T is the delay time of light making a round trip in 

the delay leg of the VISAR, and ~ V / va is an experimentally determined function which 

accounts for the change of index of refraction of the window material due to the compression of 

shock wave when it propagates in the window. The laser used in this VISAR system is an Argon 

laser with a wavelength A, =514.5 llill. The length of etalon, the glass rod added into the delay leg 
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ofVISAR, is adjustable, which results in the delay time, 'f, of the delay leg ranging from 0.577 to 

3.016 ns. The corresponding velocity fringe constant ranges from 85.3 mis/fringe to 1500 

mis/fringe. For most experiments in this study the velocity fringe constant was set at 85.3 

mis/fringe. 

For the PMMA window, according to experimental results from Barker[31, the refraction 

index parameter L1 V / Vo decreases at first, reaching its minimum value of -0.0117 for particle 

velocity of around 300 mis, and then increases; and for the particle velocity of about 550 mis, the 

correction is zero. For the maximum particle velocity of about 800 mls in the experiments, it is 

estimated that index refraction correction, L1 V / vo' is about 0.01. Therefore, the maximum 

velocity correction due to the change of the refraction index of the window material (PMMA) 

will be at most 1 %. The correction due to the wavelength dependence of the refraction index of 

the etalon material, a, in equation (3.16), is ignored since the refraction index of etalon used to 

calculate the delay time is the value at the wavelength of 514.5 nm. 

The typical particle velocity profile of shock pulse reduced from the measured VISAR signals 

is also shown in Fig. 4.2, which is the shock compression experimental results on a layered 

composite specimen with 5 units ofPC37 (0.37 mm thick polycarbonate)/SSI9 (0.19 mm thick 

304 stainless steel) impacted by a 2.78 mm PC flyer at a velocity of 548 mls. The resonant 

oscillations induced by the multiple reflection at interfaces to the shock wave is clearly observed, 

which is made possible by the high velocity resolution (low velocity fringe constant) of the 

VISAR system. 

In order to extract as much information as possible during experiments, besides the 

measurements of particle velocity profiles by the VISAR system, mangamn gages were also 

embedded between layers of some specimens to measure the stress history at selected internal 

points as shown in Fig. 4.1. Since the shock stress level in experiments is expected to be in the 

range of 1 to 10 GPa, manganin gages with a resistance of 50 Ohms were used. Some of the 
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gages were produced by Oynasen, Inc., and others by Micro Measurements (MM) Group. The 

pulse power supply for the manganin gages is model CK2-5010.050-300 from Oynasen, Inc., 

which can provide power pulses up to several milliseconds in duration and voltages up to 300 V. 

The signals from the manganin gages were recorded using a Tektronix TOS3054 digital phosphor 

oscilloscope with bandwidth of 500 MHz, sampling rate up to 5 GS/s and recording lenbrth of 10 

kb. 

In order to investigate the attenuation and dispersion of shock waves in periodic layered 

heterogeneous solids as well as the length scales associated with the heterogeneity and material 

properties, various specimen configurations were chosen. In particular, three types of specimens 

with five different thicknesses were prepared following the procedure described in the previous 

section. The first type is a periodically layered polycarbonate (PC)/6061-T6 aluminum alloy (AI) 

composite. The thickness of PC and Al are 0.74 mm and 0.37 mm, respectively, and the 

composite of this type is referred to as PC74/A137. For the sake of convenience, the two numbers 

following the abbreviation of the material name of a composite component are the individual 

layer thickness in hundredths of a millimeter. For instance, 0.74 mm polycarbonate layer is 

abbreviated as PC74. The second type of composite is formed by Polycarbonate (PC) and 304 

stainless steel (SS). Two thicknesses of each component were used, forming two kinds of 

structures of this type, PC74/SS37 and PC37/SS 19. The third type composite is made of 

polycarbonate (PC) and glass (GS) layers. Again, specimens with two different thickness 

combinations were prepared, PC741GS55 and PC37/GS20. The different specimen thickness and 

the corresponding loading conditions for the three types of composites are summarized in Table 

4.2. Note that the specimen thickness shown in the table is the total thickness of the composite 

and the 0.74 mm buffer. From now on, unless otherwise stated, the specimen thickness refers to 

the total thickness of the layered composite and the 0.74 mm thick buffer, and the t1yer is always 

a PC plate of thickness 2.87 mm. The diameters of specimen and t1yer are 38.1 mm (lS') and 34 

mm (1.335"), respectively. 
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4.5 Results 

4.5.1 Influence of Loading on Shock Profile 

The influence of shock loading on the dynamic response of composites was investigated by 

impacting specimens with flyers at different velocities. Fig. 4.3 shows the measured VISAR 

particle velocity profiles at the buffer/window interface of PC74/A137, PC74/SS37, PC37 ISS 19, 

PC74/GS55 and PC37/GS20 composites. Vrand Vp in the legend of plots are the flyer velocity 

and shock particle velocity, respectively; h is specimen thickness and w is the flyer thickness. All 

flyers used in the experiments are 2.78 mm thick Pc. For the purpose of comparison, the particle 

velocity V p in the plots is normalized by a dimensional factor, V t!2, one half of the flyer velocity 

of the corresponding experiment. Some composites were impacted at three different flyer 

velocities, while some were impacted only at two different flyer velocities. It was found out that 

when a flyer is accelerated to a velocity higher than about 1200 mis, the sealing of the sabot to the 

high-pressure gas (powder explosion products) is not very good. The blow-off of high pressure 

gas before the flyer impacts on the specimen could lead to erroneous results. In other words, 

there exists a possibility that the specimen may be disturbed by the high pressure gas as it blows 

off from gun muzzle before the flyer impacts on the specimen, since the high pressure gas moves 

faster than the sabot if leakage happens. Operating the gun at lower flyer velocity is a way to 

avoid the possible disturbance from the blow-off of high pressure gas. Therefore, in order to 

achieve higher shock pressure while operating the gun at relatively low flyer velocities, the flyer 

was changed from 2.87 mm PC plate to 5.55 mm 606I-T6 aluminum alloy flyer plate which 

produces about the same shock pulse length as the former. The aluminum flyer at a velocity of 

about 1100 mls generates the same pressure as a PC flyer at a velocity of about 1600 mls. 

For PC74/A137, PC74/GS55 and PC37/GS20 composites, specimens with only one thickness 

were used. The nominal thicknesses (including buffer layer) of the three composites are 6.60 
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mm, 9.95 mm and lO.45 mm, respectively. The corresponding shock particle velocity profiles 

measured by VISAR at different flyer velocities for each of the composites are shown in (a), (g) 

and (h) of Fig. 4.3, respectively. For PC74/SS37 composite, specimens of two different 

thickness, nominally 6.45 mm and 9.90 mm, were impacted at flyer velocities of about 570 mls 

and 1060 mis, and the results are shown in (b) and (c) of Fig. 4.3, respectively. While for 

PC37/SSl9 type composite, specimens with three different thicknesses, 3.77 mm, 7.00 mm and 

10.40 mm, were impacted at flyer velocities of about 550 mis, lO40 mls and/or 1590 mls. The 

corresponding measured VISAR particle velocity profiles are shown in Cd), (e) and (f) of Fig. 4.3, 

respectively. 

It can be observed that for all composites investigated in this work, a common feature of 

those shock velocity profiles is that the rise time of the shock front decreases with increasing flyer 

velocity, or in other words, the shock front steepens with the increase of shock loading strength. 

This indicates that the shock viscosity of the composites decreases with shock strength, which is 

similar to observations of shock wave propagation in homogeneous materials!71. 

When a single phase homogeneous material is compressed by a shock wave, the particle 

velocity profile typically reaches a plateau following the initial jump, i.e., the shock front, 

indicating the attainment of equilibrium, and is later followed by release wave which 

decompresses the shocked high pressure state into a low pressure state. The length of shock pulse 

(the plateau) is determined by the boundary conditions (flyer thickness and velocity) of the shock 

loading. However, when a layered heterogeneous composite is compressed by a shock wave, due 

to the interaction of the multiple reflections between the hard and soft layers, a level plateau on 

the wave profile is generally not observable. Instead, oscillations superposed on the top of a 

nominal plateau is typically observed. The duration and magnitude of the oscillations depend on 

the geometrical length scale and the mechanical properties of each component layer, as well as 

the loading strength of the shock wave. It is noticed that for all kinds of composites studied here, 

the magnitude of oscillation of the shock profile, especially that of the first peak, increases as the 



D-13 

shock strength increases, while at the same time, the period of oscillation becomes shorter. 

Furthermore, the effect of multiple reflections of internal interfaces is not only affecting the shock 

compression process, but also affecting the unloading process, which can be easily observed from 

the shock velocity profile of decompression process in which release progresses by multiple step­

like unloading. 

The influence of multiple reflections of internal interfaces on shock wave propagation in the 

layered composites is more clearly illustrated by the shock stress time history profiles measured 

by manganin gages. The manganin gages are embedded between the soft and hard layers where 

the stress profiles are to be measured. Fig. 4.4 shows the comparison of shock stress profiles for 

PC74/SS37, PC37/SS 19, PC74/GS55 and PC37/GS20 composites loaded by planar impact at 

different flyer velocities. The parameter x shown in the legend of the plots is the distance of the 

manganin gage from the impact surface of the specimen. Since manganin gages are very thin, 

only about 20-30 /-Lm thick, they can be embedded anywhere inside the composite without 

seriously disturbing the propagation of the shock wave in the composite. The shock stress profile 

measured by the manganin gage is the actual shock compression process, while the particle 

velocity time history measured by VISAR at buffer/window interface includes the decompression 

effect of the release wave from the interface due to the impedance mismatch between composite 

and window (PMMA) materials. Comparing the stress profiles measured using manganin gages 

inside the composite (e.g., Fig. 4.4 (d)) with the particle velocity profiles measured by VISAR at 

the buffer/window interface (e.g., Fig. 4.3 (h)), it is evident that the magnitude of oscillation at 

the particle velocity profiles has been largely reduced due to the partial release at the 

buffer/window interface. Again, from the stress profiles in Fig. 4.4, it is observed that the shock 

profile is affected significantly by the shock loading strength, as well as the geometrical length 

scale and mechanical properties of each component layer, which will be discussed in more detail 

in the later sections. 
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One more thing worth noticing is that for a given loading strength the shock front rise time of 

a layered composite is much longer than that of either homogeneous component material of 

which the composite is made. For instance, according to Fig. 4.3, for particle velocity about 300 

mis, the rise time of the shock front in PC74/A137 composite is about 0.80 J..ls, while at similar 

loading condition, the shock front rise time of 6061-T6 aluminum alloy, estimated based on the 

experimcntal results by Johnson and Barker[8], is about 20 to 30 ns if only the time of plastic wave 

front is considered. For PMMA, the major (initial) portion of shock front rises very rapidly and is 

followed by a slower compression processl3
,9]. It appears reasonable to take the rise time in 

PMMA to be 0.3 fls at particle velocity of 300 m/s. Since the shock compression behavior of PC 

should not be too different from that of PMMA, it is reasonable to believe that the corresponding 

rise time in PC should not be longer than 0.4 J..ls. The much longer rise time of shock front 

observed in the composite indicates that the presence of the internal interfaces in heterogeneous 

materials enhances the dispersion effects, which affects the shock response of the composite in a 

way similar to the viscosity effects in viscoelastic materials. 

4.5.2 Effects of Interface Impedance Mismatch 

When a plane elastic wave propagating in a homogenous material meets an interface or boundary, 

it will be partially reflected and partially transmitted. The ratios of reflected wave and 

transmitted wave to the incident wave depend on the mechanical impedance mismatch between 

the materials on either side of the interface. Generally, the larger the impedance mismatch, the 

larger the portion of the wave that will be reflected back into the first medium, and the smaller the 

portion that will be transmitted into the second medium. 

In order to study the influence of impedance mismatch of interface on shock wave 

propagation in heterogeneous media, layered composite specimens having the same geometrical 
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structure, but different combinations of layer component materials, were prepared using the 

procedure described in the previous section and were subjected to planar impact loading at 

different flyer velocities. The corresponding of experimental results are shown in Fig. 4.5 and 

Fig. 4.6. Plots (a) and (b) in Fig. 4.5 show the shock particle velocity profiles for 6.5 mm 

PC74/Al37 and PC74/SS37 composites impacted by flyers at nominal velocities of 588 mls and 

1060 mis, respectively. Similarly, plots (c) and (d) in Fig. 4.5 show the experimental results for 

9.9 mm PC74/SS37 and PC74/GS55 specimens sUbjected to impact loading of flyers at velocities 

of 560 mls and 1060 mls. The plots (e) and (f) of Fig. 4.5 show the results of 10.3 mm 

PC37/SS19 and PC37/GS20 composites impacted by PC flyers at velocity of 560 mls and Al 

flyers at velocity of 1160 mls. For PC37/SS19 and PC37/GS20 composites, besides the particle 

velocity profiles at buffer/window interface measured using VISAR, the stress time histories of 

shock wave at internal interfaces were also measured by manganin gages, which are shown in the 

Fig. 4.6 (again, x in the legend of the plots is the distance of manganin gage from the impact 

surface of the specimen). 

The ratios of mechanical impedance of the "hard" layer to the "soft" layer in PC/SS, PC/AI 

and PCIGS are approximately 23/1, 7.5/1 and 8/1, respectively, which are estimated based on 

one-dimensional elastic compression wave speed and initial density of the materials. From Fig. 

4.5 and Fig. 4.6, it is apparent that the interface impedance mismatch has very large effect on the 

structure of the shock front. For the PC74/SS37 composite, subjected to impact loading by a PC 

flyer at a velocity of 588 mis, the rise time ofthe shock wave after propagating 6.45 mm distance 

away from the impact surface is about 0.88 f!s, while for the PC74/AL37 composite, which has 

less interface mechanical impedance mismatch, under similar loading condition, the shock front 

rise time is about 0.47 Ils (see Fig. 4.5 (a)). When the flyer velocity is increased to about 1050 

mis, the shock front rise times for PC74/SS37 and PC74/AL37 are 0.38 IlS and 0.16 ~LS, 

respectively (see Fig. 4.5 (b)). Therefore, the larger the impedance mismatch between the 

components of layered composite, the longer the time that is needed for a shock front to reach its 
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final shocked steady state. Besides affecting the shock front rise time, plots (a) and (b) in Fig. 4.6 

show that impedance mismatch also affects the magnitude and duration of the resonant 

oscillations of the shock profiles, and the degree of influence depends on the shock loading 

strength. When the flyer velocity is about 560 mis, the larger the impedance mismatch, the larger 

the magnitude and duration of oscillations on the stress profiles. As the flyer velocity increases to 

1050 mis, the amplitudes of oscillations of the stress profiles for both PC37/SS19 and 

PC37/GS20 are about the same, though the oscillation duration in the former is still larger than 

that in the later. The interface impedance mismatch also affects the unloading process from the 

shocked state, which can be seen from the release processes of the shock particle velocity profiles 

in Fig. 4.5. The PC/SS composite has larger interface impedance mismatch, its unloading process 

is slower than that of PCI Al or PCIGS composite and the final released state also has a higher 

residual particle velocity. 

4.5.3 Influence of Interface Number on Shock Profile 

In the previous two sections the influence of shock loading strength and interface impedance 

mismatch on shock profiles have been presented. In this section the experimental results 

illustrating the influence of interface number density on shock profiles will be presented. To 

investigate the effect of interface number on shock profile, specimens of PC/SS and PCIGS 

composites were prepared in two types of geometrical structures. For PC/SS type composite, 

PC37/SS19 specimens with two different thickness, 7 mm and lOA mm, and PC74!SS37 

specimens with two thicknesses, 6.45 mm and 9.90 mm, were prepared. For PCIGS type 

composite, only nominally 10 mm thick PC74/GS55 and PC37/GS20 specimens were prepared 

and manganin gages were embedded in them to measure the shock stress history. 
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The comparison of shock particle velocity profiles and the stress profiles for composite 

specimens with different interface number density is shown in Fig. 4.7 and Fig. 4.8, respectively. 

It can be observed that for both PC/SS and PC/GS composites the shock front steepens as the 

number of interfaces (density) doubles, which implies that the nonlinearity of composite increases 

with increasing number of interfaces. At first glance, this change in property very much 

resembles that of the effect of reduction in interface impedance mismatch on the shock profile, 

since in both cases the shock front rise time and the duration of resonant oscillations superposed 

on the shock profiles are decreased. But, in more detail, some differences can be easily seen by 

comparing the shock velocity profiles in Fig. 4.7 with those in Fig. 4.5. In the case where the 

shock front steepens due to reduction of interface impedance mismatch between components, the 

magnitude of the shock particle velocity profile remains the same or increases. For almost all the 

experiments shown in Fig. 4.5, the final released state of composites with lesser impedance 

mismatch has lower particle velocity. But, in the case where the interface numbers is doubled, 

the magnitude of the wave profiles tends to decrease and the particle velocity in the final released 

state is not significantly different from the previous two cases. Furthermore, by comparing plot 

(a) with plot (b), and plot (c) with plot (d) in Fig. 4.7, it can also be observed that the peak of the 

shock profile of composites with smaller density of interfaces attenuates faster with the 

propagation distance at lower flyer velocity than that at higher flyer velocity. This indicates that 

the dispersion of shock energy due to the interface has a more dominant effect than the material 

nonlinearity at low shock pressures. With increasing shock pressure, the nonlinearity of the 

material increases. It is expected that the difference between the shock profiles of two 

composites, which contain different densities of interfaces, will become smaller at higher impact 

velocities. This is confirmed by the experimental results shown in Figs. 4.7 (c) and (d). 

Figures 4.7 (e) and (f) illustrate the effect of interface number density on shock profiles in 

PC/GS type composites at two different loading conditions. One is due to a PC flyer impacting at 

a velocity of 565 mis, the other is by an Al flyer impacting at velocity of about I, I 00 mls. Again, 



D-IS 

increasing the interface density steepens the shock front, or in other words, the nonlinearity of 

composites is an increasing function of the interface density. Therefore, both the shock loading 

strength and the interface density influence the nonlinearity response of composites, but these 

effects become less important as the shock loading increases to sufficiently high level where the 

intrinsic material nonlinearity becomes more dominant. 

Figures 4.S (a), (b) and (c) show the comparisons of shock stress profiles of PCIGS 

composites, which clearly indicate that besides the influence on the shock compression process 

(rise time of the shock front), the interface density of composites also affects the dynamic steady 

shocked state, i.e., details of the structure of the shock profile. When the interface density 

doubles, the frequency of resonant oscillations due to the multiple reflections between interfaces 

is also doubled. It is also noted that as the shock loading strength increases, the magnitude also 

increases. Hence, it may be concluded that the duration of oscillation in the shock profile is 

determined by interface density, while the amplitude is dominated by the shock strength. It is 

interesting to note that for the PC flyer impacting at a velocity of about 560 mis, the ratio of 

amplitude of oscillations of the stress profile for PC74/GS55 to that of PC37/GS55 is about 1. 

However, this ratio is apparently less than I as the flyer velocity is increased to 1060 mis, but, 

when the loading pressure increasing further, achieved by the impact of Al flyer at the velocity of 

1,100 mis, this ratio becomes larger than one. 

4.5.4 Evolution of Shock Profile with Propagation Distance 

Figure 4.9 shows the evolution of shock particle velocity profiles with propagation distance of 

shock wave in the different types of composites. For the purpose of comparison, the profiles 

measured at different distances away from the impact surface, corresponding to different initial 

wave arrival times, are shifted along the time axis to the same starting point. Figs. 4.9(a) and (b) 
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show the comparison of measured shock particle velocity profiles at buffer/window interface of 

6.45 mm and 9.9 mm thick PC74/SS37 specimens loaded by 2.87 mm PC flyers at velocities of 

550 mls and 1060 mis, respectively. Figs. 4.9(c), (d) and (e) show the comparison of velocity 

profiles for the 3.7 mm, 7.1 mm and 10.5 mm thick PC37/SS19 composite specimens loaded by 

the 2.87 mm PC flyers at velocities of 550 mls and 1040 mls and by a 5.63 mm PC flyer at a 

velocity of l060 mis, respectively. 

Figures 4.1O(a) and (b) are the shock stress profiles at interfaces at 3.44 mm and 6.5 mm 

away from impact surface of 10.2 mm and 10.6 mm thick PC37/SSl9 specimens impacted by 

2.87 mm flyers at velocities of 564 mls and 1043 mis, respectively. Shown in Fig. 4.1 O( c) is the 

comparison of shock stress profiles at 3.44 mm and 9.88 mm away from the impacted surface for 

a 10.61 mm thick PC37/SS19 composite, impacted at 1045 mls. In this case, the initial shock 

fronts and the first oscillation resemble each other. However, there are substantial differences in 

the rest of the shock profile. This is because the stress state at the interface, which is the last 

internal interface surface formed by the last hard (SS) layer of composite and the buffer layer 

(PC), is affected by the release wave originating from the interface between the buffer and the 

window. The evolution of shock stress profiles inside the PC37/GS20 and PC74/GS55 

composites, impacted by 2.87 mm PC flyers at velocities of 560 mls and 1,070 mis, is shown in 

Figs. 4.1O(d), (e), (i) and (g), respectively. 

From the comparisons of shock profiles discussed above, a common feature emerges. The 

initial compression process of shock waves (or the shock front) is independent of the propagation 

distance in the composites. This indicates that a structured steady wave, or a quasi-steady wave if 

not strictly steady, can be achieved and propagated in layered composites. For all cases 

considered here, the difference between the shock profiles becomes important only after the 

initial compression. Two mechanisms may be responsible for this difference. One is due to the 

dispersion resulting from the multiple reflections of interface to the shock wave, or the scattering 

of the shock wave by the internal interface (e.g., Figs. 1O(i) and (g». The other is due to the 
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release wave originating from the rear (free) surface of the flyer (see Figs. 4.10(a), (b), (d) and 

(e» and its interaction with the propagating shock wave in the composite. 

Comparing the shock particle velocity profiles in Fig. 4.8 (which includes the partial 

decompression influence from the window) with the shock stress profiles in Fig. 4.l0 (which is 

essentially structured steady wave propagating inside the composites without being disturbed by 

any release wave except the unloading), it may be concluded that the effect of the scattering of 

interface to the decompression (release) wave is even more pronounced since the difference 

between particle velocity profiles for different thickness of specimens at same loading condition 

is apparent (see Fig. 4.9). By comparing plots (d) and (e) with (f) and (g) in Fig. 4.10, as well as 

plots (a) and (b) with (c) and (d) in Fig. 4.9, it is worth noting that the dispersion due to interface 

scattering is more pronounced in the composite with smaller density of interfaces than in the 

composite with higher interface density, since the peak attenuation of shock profiles in the former 

(Figs 4.9(a), (b), 4.1O(f) and (g» is larger than those in the latter (Figs. 4.9(c) and (d), 4.l Oed) and 

( e». 

4.5.5 Influence of Pulse Duration on Propagation of Shock Waves 

To investigate how the pulse duration affects the shock wave propagation in layered composites, 

shock compression experiments were carried out by impacting flyers of different thickness, at the 

same velocity, onto specimens of the same thickness. The shock profiles were either measured 

by the VISAR at buffer/window interface or sensed by manganin gages embedded inside the 

composites. Fig. 4.11 shows the shock particle velocity profiles for 3.7 mm, 7.0 mm and 10.6 

mm thick PC37/SS19 specimens loaded by flyers of thickness 2.87 mm and 5.63 mm at velocity 

of about 1,050 mls. The corresponding shock stress profiles for the 10.6 mm thick PC3 7 ISS 19 

composites are shown in Fig. 4.12. The initial pulse duration generated by the 5.63 mm and 2.87 
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mm PC flyers at velocity of 1,050 mls is about 3.6 /-1s and l.8 /-1s, respectively. To obtain shorter 

pulse duration, say 0.5 /-1s, in principle, it can be achieved by reducing the thickness of the PC 

flyer to about 0.8 mm. But, in practice, if the polymeric flyer is thinner than 1.0 mm, it will most 

likely bow out backwards when it is accelerated in the barrel of the powder gun. The impact of a 

specimen by a curved flyer will result in a non-planar shock front in the specimen. To obtain a 

shorter shock pulse and avoid the problem of bowing out, a 1.20 mm aluminum flyer is 

accelerated to a velocity of 657 mls impacting a PC37/SS 19 specimen. The shock pulse duration 

generated by this AI flyer is about 0.4 /-1s and the shock pressure is about the same as that 

achieved by impacting of a PC flyer at velocity of 1,050 mls. The corresponding shock particle 

velocity at buffer/window interface is compared with others in Fig. 4.11 ( c). 

It can be seen from Fig. 4.12 (also in Fig. 4.11) that as a shock wave propagates in the layered 

PC37/SS 19 composites, the structure of the shock front does not depend on its pulse duration. 

Even in the case of a specimen loaded by a very short pulse (0.4 J1.S duration), when its front is 

overtaken by the release wave from the rear (free) surface of the flyer, it affects the attenuation of 

the shock amplitude, but not the slope of the front (Fig. 4.11(c)). This indicates that the layered 

composite does indeed support steady shock waves. 

4.5.6 Influence of Release Wave from Window on Shock Profile 

It is possible to measure the particle velocity history by VISAR at an internal interface of PC/GS 

type composite without using a window since both the components, PC and GS, are transparent. 

A PC74/GS55 specimen of total thickness 20.54 mm (15 units plus a buffer layer) was prepared 

in the same way as described in the section on specimen preparation. Before bonding the layers, 

one surface of a 0.55 mm glass plate was aluminized to a mirror surface in the same way as 

aluminizing the PMMA windows. This mirror surface was located 9.92 mm away from the 
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impact surface, which is the exact position of the buffer/window interface of a PC74/GS55 

specimen with window. The VISAR laser beam was focused on the internal mirror surface. The 

specimen was loaded by a 2.87 mm thick PC flyer at a velocity of 568 mls. In this case, the 

measured particle velocity time history is the shock profile at an interior location of specimen 

without being affected by the release wave from the buffer/window interface. The shock profile 

obtained in this experiment is compared with that obtained for the specimen with the window 

under nominally the same conditions in Fig. 4.13. 

It can be seen that the release wave from buffer/window interface does affect the shock 

profile. The influence is evident not only on the oscillatory portion of the shock profile, but also 

in the slope of the shock front. When a shock wave is partially released by a tensile wave 

traveling in the opposite direction, the shock front rises faster since the tensile wave accelerates a 

particle in the direction opposite to its own travelling direction. Therefore, the front of the shock 

wave in the specimen with window is steeper than in the transparent specimen with internal 

mirror. This is due to the release wave that originated from the buffer/window interface because 

of the mechanical impedance mismatch. Also, this release wave from the window tends to 

subdue the oscillations resulting from the scattering of the shock wave by internal interfaces. The 

magnitude of the oscillation in the shock profile of the specimen with window is much smaller 

than that of the specimen without window. It is expected that the shock particle velocity profile 

at the internal interface should resemble the shock stress profile measured by manganin gages at 

the interface. This is verified by plotting the stress profile and velocity profile together (Fig. 

4.14). The stress and velocity profiles are normalized by their own maxima for comparison. The 

difference in the slope of the shock front between the stress and velocity profiles is attributed to 

the phase shift between the shock velocity profile and shock stress profile, which is caused by the 

interaction of multiple reflected waves with the shock wave and will be discussed in more detail 

in relation to the numerical simulation analysis in the next chapter. 
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4.6 Discussion and Conclusions 

By the experimental results shown in the previous sections, it can be seen that the layered 

polymer/metal composites do support structured steady shock wave propagation. The interface 

density (i.e., measure of the length scale associated with heterogeneity), component material 

properties (dominating the mechanical properties of interface) and loading strength have 

pronounced effects on the dissipation and dispersion processes of shock wave propagation in 

heterogeneous media. The apparent effect on the shock front by increasing shock loading 

pressure, increasing the interface number density, or decreasing the interface impedance 

mismatch are similar since all of them lead to steepening of the shock front. However, the 

underlying physics of each case may be very different. In fact, at medium loading stress range, 

even the dynamic behavior of homogeneous media is very complicated. The scattering effects 

due to heterogeneity add the complex in analysis of the mechanisms of dynamic response of 

composite materials. Analogous to the analysis of shock compression homogeneous solids, the 

response behavior of composites can be separated into two parts, bulk and deviatoric. The 

propagation or transport property, i.e., the speed of the shock wave in the composites, is 

dominated by the bulk properties, while the deviatoric properties are responsible for the structure 

of the shock wave. 

4.6.1 Influence of Interface Scattering on Bulk Response of Composites and 
Shock Hugoniot 

The determination of the bulk response behavior of a material to shock compression relies on the 

experimental measurement of the relation between shock velocity and particle velocity, the so-

called Hugoniot curve. The particle velocity history of a free surface or an internal interface, as 

well as the shock wave velocity, can be measured using the VISAR systeml6J and wave arrival 
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time detectors such as electronic charged pins and flash gaps[IO-13]. In the present experimental 

study, electric charged pins, manganin stress gages and VISAR system were used to determine 

the shock velocity and particle velocity. The measured shock and particle velocity data for 

PC/GS and PC/SS composites are shown in the Fig. 4.15 and Fig. 4.16, respectively. 

One may expect that the shock velocity of a mixture (composite) should fall in the range 

bounded by the Hugoniots of its two components. The experimental results show, however, that 

the shock velocity of composites could be between the shock Hugoniots of its two components 

(e.g., PC/GS composites shown in Fig. 4.15), or be lower than the Hugoniot curves of both 

components (e.g., PC/SS composite shown in Fig. 4.16). The physical mechanism for the 

slowing down of a shock wave in the composites is due to the interaction of multiple reflected 

waves from the internal interface with the shock wave, i.e., the scattering effects of internal 

interface on the shock wave. The details of the processes of interaction of reflected waves with 

incident shock wave will be found in next chapter on numerical analysis of shock wave 

propagation in layered composites. 

Theoretical models have also been developed to predict the bulk response behavior of the 

composite in terms of the properties of its components, which are called mixture models. One of 

the mixture models, developed by Dremin and Karpukhin [14], hereafter referred to as Dremin's 

model, is an additive approach, in which the volume of the shock-compressed mixture is assumed 

equal to the sum of volumes of its components, obtained at the same pressure by separate shock 

compression in the form of homogeneous monolithic samples. The details of Dremin's model 

were described in Chapter 2. 

The shock wave velocities, predicted by the Dremin's additive approach of mixture, as a 

function of volume (or mass) fraction of hard layer component for three layered composites, 

PC/GS, PC/SS and PC/W, are shown in Fig. 4.17. The unit length of the composite considered 

here is 1.12 mm. It can be seen that the shock velocity of the mixture depends on both the bulk 

volume ratio and bulk response behavior of the components. If the ratio of mechanical 
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impedance of the two components is small, the shock velocity of the mixture will most likely be 

between those of the two components. With the increase in volume ratio of the "hard" (heavy) 

component, the shock velocity of the mixture will eventually become less than the velocity of 

either component. The shock velocity varies with the change of the volume ratio of two 

components (see Fig. 4.17). The upward concave shape of the shock velocity-volume fraction 

curve implies that there is a minimum shock velocity for some value of the volume ratio. The 

value of this minimum volume ratio depends on the mechanical and physical properties of 

component materials. The shock velocity ofthe mixture as a function of the mass fraction of the 

"hard" component is also shown in Fig. 4.17. Knowing that the mass or the density of a material 

is an important parameter that enters all of the governing equations of conservation laws, and 

noticing the difference between the shapes of the shock velocity-volume fraction (D-a,) and 

shock velocity-mass fraction (D-~,) curves, it is concluded that the geometric structure (volume 

ratio) of the mixture does affect its dynamic behavior, but in a different way from the mass of a 

components. 

Figure 4.18 shows the mixture model predictions for the shock velocity of PC/SS composite 

under different equilibrium pressures as a function of volume fraction of steel. This illustrates the 

dependence of the shock velocity of mixture on the bulk geometric structure since the value of the 

minimum velocity of the shock wave in the composite at a constant shock pressure varies with the 

change of shock pressure. Similar dependence of the bulk sound speed, on the mixture volume 

fraction, calculated using equation (2.15), as well as the pressure of shocked state, is also shown 

in Fig. 4.18. 

The shock velocity of the mixture predicted by Meyers' modell'S] is also compared with that 

predicted by the Dremin's model in Fig. 4.18. Meyers' model is also based on the additive 

approximation, but it is assumed that the local particle velocity in each component is the same as 

the mean particle velocity in the mixture, rather than Dremin's model where the local pressure in 

each component is assumed to be the same as the mean pressure in the mixture (see Chapter 2). 
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The shock velocity of mixture predicted by Meyers' model could be higher than that of either or 

both components and always higher than that predicted by Dremin's model. The Meyers' model 

overpredicts the shock velocity of the mixture because it neglects the scattering effects of 

interface to the shock wave propagation. 

The shock-particle velocity relations of PCIGS and PC/SS composites predicted by additive 

methods of Dremin and Meyers are compared with the experimental data, as well as the shock 

Hugoniots of their components, in Figs. 4.15 and 4.16, respectively. For the PCIGS composites, 

the shock velocities predicted by both models fall into the range bounded by the Hugoniot curves 

of its components, and the difference between the curves predicted by the two models becomes 

smaller with the increase of the shock pressure. But, for the PC/SS composite which has larger 

interface mechanical impedance difference, the Hugoniot curve predicted by Meyers' model falls 

within the range bounded by the Hugoniots of the two components, while the curve calculated 

using Dremin's model falls out of the range bounded by the Hugoniots of the two components for 

the loading conditions of the experiments. It can be seen that Dremin' s model agrees better with 

experimental data, which means that the constant pressure assumption is more valid. It will be 

shown in the next chapter, however, that by numerical simulations the constant pressure 

assumption is not strictly satisfied. 

There are two groups of data shown in Figs. 4.15 and 4.16. One set is represented as hollow 

symbols (square or triangle) captioned "experimental," which are the shock Hugoniot data 

obtained experimentally. The shock velocity was obtained through the measurement of the 

arrival time of the shock wave by manganin gages embedded in the specimen at positions 

separated by a known distance. The corresponding particle velocity was determined from the 

particle velocity profile detected using VISAR. The second set is denoted by the solid symbols, 

which are the calculated Hugoniot ofthe homogenized mixture using Dremin's model. The shock 

velocities of the homogenized mixture are those obtained experimentally by stress gages, while 

the corresponding particle velocities were calculated through pressure and velocity continuity 
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conditions at the impacting interface of homogeneous plates. The layered composites are treated 

the same as mixture with the same volume ratio, neglecting any possible difference of bulk 

response between the layered composite and the mixture. The initial density of the homogenized 

mixture is calculated by the additive approach as in Dremin's mixture model. The computed 

results are compared with experimental data in Figs. 4.15 and 4.16. The calculated data are more 

consistent with Dremin's model than the experimental data. It is noted that the experimental 

Hugoniot curve is generally lower by up to 10 percent in comparison to the prediction of 

Dremin's model and the corrected experimental curve (the solid data points). The reason for the 

difference between the experimental data and the model prediction may be due to the fact that the 

scattering effect considered in Dremin's model is based on the geometrical volumetric average, 

while for layered composites the scattering is due to only the normal scattering. 

In fact, for any given pair of components, the additive approximation of Dremin's model is 

more predictive at lower shock pressures and becomes less accurate at large amplitudes when 

shock compression depends considerably on the entropy[16]. Using Dremin's additive method, 

based on the experimentally measured Hugoniot adiabatic curves of paraffin, tungsten and their 

mixtures, Alekseev et al. [16] calculated the Hugoniot curve of paraffin. Their results show that 

over the entire experimentally investigated region of pressures up to 200 GPa, the calculated 

Hugoniot curve for paraffin coincides very well with the experimental data. The pressure range 

of the present experimental investigation is much lower than that of the experiments performed 

by Alekseev, et al. The predictions using the additive method here should not have any larger 

error than their study since the thermal effects in this range are very small. Therefore, by 

comparing the shock adiabatic Hugoniot curves of the calculated, which only partially accounts 

for the interface scattering effects, and experimentally measured curve, it is clear that the 

influence of geometric scattering of interface on the bulk response of composite can not be 

neglected and is more important at lower shock loading pressures. 
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4.6.2 Influence of Interface Scattering on Deviatoric Response of Composites 
and Shock Viscosity 

From the particle velocity profile measured by VISAR, the mean value (amplitude of the coherent 

part) of the particle velocity profile and the slope of the fastest rising portion of the shock front 

can be determined. By combining the additive equation of the specific volume of composite 

(Dremin's mixture model) with the conservation laws of continuity and momentum, the 

corresponding shock velocity and the stress (or pressure) at the shocked state can be calculated. 

The calculated shock velocity is generally slightly higher than the experimentally measured (see 

Figs 4.15 and 4.16), while the calculated stress value falls in the region between the maximum 

and the minimum of the oscillations in the stress profile measured by the manganin gages. The 

strain rate was obtained by dividing the slope of the shock front by the calculated shock velocity. 

The plot of shock stress against the strain rate at the shock front is shown in Fig. 4.19. In the 

calculation of the shock front strain rate, the error due to the slightly overestimated shock wave 

velocity by the mixture theory is canceled by the small amount of steepening of the shock front 

due to the release wave reflected back into the composite at buffer/window interface. The 

steepening of shock front occurs due to the mechanical impedance mismatch between the window 

material (PMMA) and the buffer, and can be observed from the comparison of velocity profiles 

for specimens with and without window (Fig. 4.l3). The estimated error of calculated data in 

Fig. 4.19 is within 4%. 

The shock stress ((J )-strain rate (E: ) data can be fitted by a linear relation when plotted on 

logarithmic scale. The slope of segment for each composite is slightly different from the other, 

but on the whole, the strain rate increases roughly as a square of the shock stress, or may be 

expressed as E: ~ a" , where n '" 1.8-2.4. While for many common metals such as AI, Fe, Be, Bi, 

Cu and U, n '" 4, even for fused silica and MgO n '" 4 seems also truer?], in the stress range of one 

to tens of GPa (Fig. 4.20). For polymeric materials (PC, PMMA) under the shock loading range 
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of interest in this study, their response to shock loading may be best described by a nonlinear 

viscoelastic model. Based on the available shock particle velocity profiles of PMMA[3,9], the 

stress-strain rate relation of PMMA, or Polycarbonate, which are considered to be homogeneous 

materials under shock compression, appears to be similar to the one for the metals, i,e" n "" 4. 

Based on the empirical description of the Hugoniot stress-strain rate relation for metals, 

Swegle and Grady[7] developed a constitutive model for the shock viscosity process during large­

amplitude compressive steady stress wave propagation in solids. They successfully reproduced 

the experimentally observed structure of shock fronts for steady shock waves in metals. The 

model was developed under the assumption that there is no bulk viscosity and the viscous stress is 

a purely deviatoric. Regardless of how close this assumption is to reality, the success of the 

model in reproducing the structure of shock front shows us that, at least, a phenomenological 

description of shock deformation process is possible, if for some reason, the underlying physics 

of the process or the phenomenon has not been understood yet, or the physical mechanisms are 

clear but too complicated to be accurately modeled. According to this model, the larger the 

viscous stress, the longer the time the shock front takes to reach its maximum (steady state) 

amplitude, which means that the deformation process is slower, and the strain rate of the shock 

front is smaller. 

Roughly, each homogeneous component of the layered composites studied here has an 

exponent of about 4 (n) (see Fig. 4.20) in the relation of shock stress-strain rate, E ~ a". While 

for the composites, as discussed above and shown in Fig. 4.19, the exponent is only about 2. This 

means the shock front in the composite will take much longer time to reach its maximum stress 

under the same loading strength. The interpretation of this observation may be associated with 

the microscopic processes of shock wave propagation in the solids. 

In metals, the underlying physics responsible for the observed structured shock front is the 

time-dependent plasticity processes due to the energy dissipation and wave dispersion induced by 
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the dislocation multiplication and motion, twinning, vacancy production, precipitate alternation, 

etc., based on which many constitutive models have been developed[7,17-19]. In composite 

materials, besides the above viscoplastic processes existing in each homogeneous component, the 

microstructure induced scattering during shock compression could be also an important wave 

dispersion mechanism. Based on the physics of acoustic wave scattering, Grady[20,21] proposed a 

continuum constitutive model to address shock viscosity in metals, in which he attributed the 

viscous stress to the generation and redistribution of nonequilibrium acoustic phonons induced by 

the scattering of microstructures to the shock wave. Later, the theory was generalized to address 

the finite-amplitude nonlinear wave propagation in heterogeneous medial22l . 

In composites, especially the layered composites used in this investigation, which consist of 

homogeneous components, due to the existence of internal interfaces, acoustic scattering could be 

also a dominant physical mechanism responsible for structured shock waves besides the 

dissipation and dispersion due to viscoplasticity or viscoelasticity, which dominates the 

deformation processes of the component materials. This provides a reasonable explanation of 

why strain rate associated with the shock front in a composite is smaller than that of its 

homogeneous component materials. 

4.6.3 Summary and Conclusions 

In this experimental investigation of shock wave propagation m the periodically layered 

composites, three types of composite specimens with five geometric configurations were prepared 

and subjected to shock loading generated by planar impact of a flyer. The composites that were 

studied include PC74/A137, PC74/SS37, PC37/SS19, PC74/GS55 and PC37/GS20. The 

specimen thickness is nominally 3.7 mm, 7 mm and 10 mm. Most flyers are made of PC with 

2.87 mm in thickness, and the typical flyer velocities are about 600 mls and 1,060 mls. Several 
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5.63 mm thick flyers were also used to generate shock waves with longer pulse duration. To 

generate higher shock loading Al flyers were also used. 

In each of the experiments conducted, the VISAR system was used to obtain the shock 

particle velocity profiles at the buffer/window interface. In addition, in some of specimens 

manganin stress gages were also embedded at selected interfaces where the shock stress history 

and shock arrival times were of interest. 

The results of this systematic experimental investigation lead to the following conclusions: 

1) Periodically layered composites such as the ones used in this investigation can support steady 

structured shock waves. 

2) The influence of internal interface on the shock wave propagation is through scattering 

mechanism. The interface scattering affects both bulk and deviatoric response of the 

composites to shock compression loading. The influence of scattering on the bulk response is 

to reduce the propagation velocity of shock wave, while the influence of the deviatoric 

response is in structuring the shock front, or in the other words, increasing the shock 

viscosity, which increases the shock front rise time similar to the effect of viscous material 

behavior in homogenous solids. In homogeneous media such as metals, the strain rate of the 

shock front increases by the fourth power of the shock stress, while the results of this 

investigation show that for layered composites, the strain rate at the shock front increases by 

about the square power of the shock stress, indicating much larger shock viscosity than the 

former. 

3) With the increase of shock loading strength, the slope of the shock front increases very 

rapidly. At the same time the amplitude of oscillations in the wave profile also increases, 

which could be considered to be one of the dissipation mechanisms of the shock wave. 

4) Keeping the total mass of each component unchanged, an increase in the number of interfaces 

(or the density of interfaces) results in (a) steepening of the shock front slope, which indicates 

that the nonlinearity of the composite increases, and (b) an increase in the amplitude of 
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oscillations in the shock profile, which implies that more of the kinetic energy has been 

transformed to internal energy and the dissipation of shock energy increases. From Fig. 4.15 

it is seen that the shock Hugoniot curve of the composite is not sensitive to the density of 

interfaces, so it can be postulated that interface density plays a dominant role for the 

structuring of the shock front. 

5) Impedance mismatch between constituents at the interface also contributes to the dissipation 

and dispersion of the shock energy during propagation. The larger the impedance mismatch 

between the components, the smaller the slope of the shock front, which means the larger the 

dispersion. From Fig. 4.17 it is seen that the impedance mismatch has very strong influence 

on the shock wave velocity of the composite. Therefore, it may be postulated that the 

interface mechanical impedance mismatch contributes to both the bulk and the deviatoric 

responses of the composite to shock compression. 

6) The existing mixture theories can reasonably predict the bulk response behavior of the 

mixtures to shock compression, but, not the deviatoric response, or the shock viscosity. In 

order to properly describe the shock wave propagation in heterogeneous media, a physically 

based constitutive model which takes into account the scattering effects of internal interfaces 

to shock compression must be formulated. 
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Table 4.1 Mechanical properties of components of layered composites and window materials 

Material 

PC 

PMMA 

6061AI 

304 SS 

D 263 

+ 

Float 

Mangani 
gauges 

~ 

p(glcm3
) 

1.19 

1.18 

2.71 

7.89 

2.51 

2.50 

Flyer Soft layer 

G (GPa) 

0.94 

1.20 

30.0 

77.0 

30.1 

28.2 

Hard layer 

crv (GPa) Ep (GPa) 

0.00 

0.00 

0.32 

0.33 

1.60 

1.60 

0.69 

1.70 

Self-shorting 
Electric pins 

Mirror 

Window 

u 
0.37 

0.34 

0.33 

0.29 

0.208 

0.24 

• 
• 

Reflected light 
To VISAR 

Figure 4.1 Specimen configuration and schematic of shock compression experiment for 
periodically layered composite. 
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Table 4.2 Specimen parameters and the corresponding loading conditions 

Expffiment 
number 
072701 
0727(J2 
112902 
080301 
0803(J2 
112501 
1125(J2 
111601 
110501 
082201 
0822(J2 
(1)1001 
091()(J2 
103()(J2 
1(J25(J2 
1(J25()1 
1l05(J2 
1207(J2 
111901 
1123(J2 
112301 
12(J201 
12(J2(J2 
120701 
121001 

Note 1: 

Note 2: 

Note 3: 
Note 4: 

Specimen I Units Thidme;sl F1yervelocity F1yerfuidme;s 3 Gage 14 Gage24 

softlhard mm mls mm mm mm 
PC741Al37 5 659 1<ffl 2.'ir7 (PC) I I 
PC741Al37 5 6.62 589 2.'ir7 (PC) I I 
PC741Al37 5 654 1826 2.'ir7 (PC) I I 
PC741SS37 5 6.45 588 2.'ir7 (PC) I I 
PC741SS37 5 6.46 1056 2.'ir7 (PC) I I 
PC741SS37 8 9.84 561 2'ir7 (PC) 0.76 I 
PC741SS37 8 9.97 1~2 2.'ir7 (PC) 0.76 I 
PC37/SS19 16 10.20 564 2.'ir7(PC) 3.44 650 
PC37/SS19 16 10.60 1043 2'ir7(PC) 3.44 650 
PC37/SS19 10 6.91 542 2.'ir7 (PC) I I 
PC37/SS19 10 7.10 1035 2.'ir7(PC) I I 
PC37/SS19 5 3.72 548 2.'ir7 (PC) I I 
PC37/SS19 5 3.70 1043 2.'ir7 (PC) I I 
PC37/SS19 5 3.77 1589 2.'ir7 (PC) I I 
PC37/SS19 5 3.70 I~ 5.63 (PC) I I 
PC37/SS19 10 6.94 1076 5.63 (PC) I I 
PC37/SS19 16 10.61 1045 5.63 (PC) 3.44 9.88 
PC37/SS19 16 1023 657 120(Al) I I 
PC37/GS20 16 10.43 567 2.'ir7 (PC) 3.41 6.44 
PC37/GS20 16 1050 1160 559(Al) 355 355 
PC37/GS20 16 10.62 1079 2.'ir7(PC) 3.41 6.44 
PC741GS55 7 9.95 563 2.'ir7 (PC) 337 6.07 
PC741GS55 7 9.88 1056 2'ir7 (PC) 335 5.97 
PC741GS55 7 10.07 1070 555(Al) 3.41 6.07 
PC741GS55 7 9.92 568 2'ir7(PC) 0.74 I 

PC--polycarbonate, AI--6061-T6 aluminum alloy, SS--304 stainless steel; the number 
following abbreviation of component material represents the layer thickness in 
hundredths of a millimeter. 
Specimen thickness includes the 0.74mm PC buffer; the mirror for reflecting laser 
light to VISAR is located at back surface of the buffer. 
Material in parentheses is the flyer material. 
The distance of manganin stress gage away from the impact surface. 



D-37 

0 .3 r---------------------------------------------------~ 

0 .2 

.i!' 0 .1 
'0 
o 

~ 
0.0 t----'1 

-0 .1 

2.0 3 .0 4 .0 

--VISARsin 
- VISARcos 
- Particle \.elocity 

5.0 6 .0 7 .0 8.0 9 .0 

Time t ().l.s) 

Figure 4.2 Typical oscillograms of VISAR signals and the deduced particle velocity profile at 
buffer/window interface obtained in a shock compression experiment. The specimen is 7 nun 
thick PC37/SS19 layered composite specimen and was impacted by 2.87 nun thick PC flyer at a 
velocity of 542 mls. 
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Figure 4.14 Comparison of stress profile with 
velocity profile at an internal interface. 
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Chapter 5 

Numerical Analysis on Shock Wave Propagation in Periodically 

Layered Composites 

5.1 Constitutive Models 

In principle, stress wave propagation can be predicted by solving the equations of conservation of 

mass, momentum and energy subject to the appropriate initial and boundary conditions. 

However, the conservation equations are the general laws describing the motion of matter. They 

are not sufficient in themselves and must be supplemented by another equation that contains the 

information of the specific material behavior[ll. This equation is the so called constitutive relation 

or constitutive model, which specifies the relationship between stress, strain, particle velocity (or 

strain rate) and time. Since most of the constitutive models are phenomenological in nature, their 

specific form may be very different for materials with different physical and mechanical 

properties, or even for the same material under different loading conditions, e.g., stress state, 

loading rate, ambient temperature, etc. 

For the purpose of simulating the shock compression process m periodically layered 

composite specimens with geometric structure described in Section 4.1, the constitutive 

description of the composites can be formulated in two ways. The first is to treat each component 

layer individually as a homogeneous material. The geometric structure of the simulated specimen 

reflects the difference between the components. The constitutive model of each component is 

exactly the same as the one used in modeling the dynamic response of the component material 

when it alone is subjected to shock loading. The simulations performed based on this model will 
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be referred to as the Full Structure (FS) Simulations. An alternative approach is to homogenize 

the mechanical properties of the composite over its entire geometrical structure using the mixture 

theory described in Chapter 2 and treat the composite as a homogeneous body. The simulations 

of the composite response to shock loading through homogenization of its properties are referred 

to as Composite Homogenization (CH) Simulations. The models for each of the homogeneous 

components and homogenized mixture used in this numerical simulation analysis are briefly 

described below. 

5.1.1 Models for Homogeneous Components 

The component materials of layered composites are polycarbonate (PC), 6061-T6 aluminum alloy 

(AI), 304 stainless steel (SS), D 263 glass and float glass (GS). The window material used in the 

shock compression experiments was polymethyl methacrylate (PMMA). The physical and 

mechanical properties of these materials are summarized in Table 5.1. For the purpose of 

simplification, the difference in the properties of two types of glasses was neglected and D 263 

glass and float glass were treated in the same manner in this study. 

5.1.1.1 Elastic Model for Glass (GS) 

Glasses are typically brittle at room temperature. According to experimental studies conducted 

by Wackerle[2J, and Barker and Hollembach[3J, fused silica glass behaves as a nonlinear elastic 

solid up to the phase transformation at about 9.8 GPa. Its behavior is well approximated by 

treating it as a linear solid as seen in Fig. 5.1. Considering that the shock loading level in this 

study is in the range of 1 to 10 GPa, the D 263 and float glasses will be treated as linear elastic 

solids and their constitutive property is described by the Hooke's law[41• 
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5.1.1.2 Isotropic-Elastic-Plastic-Hydrodynamic (IEPH) Model 

Metals are typically elastic-plastic materials. When they are subjected to a plane shock wave 

loading, the deformation occurs only in the direction of wave propagation, while the lateral 

motion is confined, i.e., state of uniaxial strain. Therefore, there is a stress exerted laterally on 

the material during the shock compression process as a shock wave propagates through it. If one 

invokes the Tresca yield criterion, the material yields only when the difference of stress in the 

wave direction from that in the lateral direction is equal to or larger than the yield stress. 

In the simulation of shock compression in solids, it is customary to decompose the stress state 

into two parts: the average stress, which is associated with a uniform hydrodynamic pressure, 

and the deviatoric stress, which is associated with the resistance of the material to shear 

distortion[5l . The hydrodynamic pressure is responsible for the volumetric or bulk deformation, 

while the deviatoric stress responsible for the shear deformation or plastic flow. 

In describing yielding and plastic flow, only the stress contribution from the shear distortion 

is considered. The deviatoric deformation is decomposed into elastic and plastic components. 

The deviatoric stress is calculated using the elastic strain and Hooke's law, and the yield surface is 

determined by the von Mises yield criterion (J2 plasticity). Isotropic hardening is considered in 

the model and the influence of the hydrodynamic pressure on the hardening is also taken into 

account. The flow strength of a metal takes the form l41 

a!l=ao+E"EJi
, (5.1) 

where ao is the initial yield strength, E" is the plastic hardening modulus and "Ell is 

effective plastic strain. 

The bulk behavior of the material is described by the Gruneisen equation of state (EOS). In 

order to use this EOS to calculate the pressure, an experimentally determined Hugoniot equation 



E-4 

must be provided, which is nonnally expressed in tenns of shock wave velocity as a function of 

particle velocity. For most metals, a linear function is good enough, while for polymeric 

materials, higher order tenns of the function need to be included to more accurately describe the 

response behavior. A particular fonn of the third order Hugoniot equation is 

(5.2) 

where U" UII are shock velocity and particle velocity, respectively, Co is the bulk sound speed 

and S, Sl and S2 are experimentally detennined coefficients. For most metals, 81 and S2 are 

taken to be zero. 

Considering the fact that the shock pressure range achieved in this study of shock 

compression of solids is not extremely high, but much higher than the yield strength of each 

component, the constitutive behaviors of AI, SS and PC are all described by this IEPH model. 

The elastic parameters of each material are listed in Table 5.1, and the EOS parameters are listed 

in Table 5.2. Some of the mechanical properties were provided by the suppliers[6] and the rest are 

from other sources. The parameters for EOS were either taken from or obtained by fitting the 

data from the handbooks edited by Marsh[7] and Steinberg[81• 

5.1.2 Model for Homogenized Mixtures 

For the same reasons mentioned in the section above, the homogenized mixture of periodically 

layered composites needs to be modeled by an equivalent IEPH constitutive relation when it is 

subjected to a loading of plane shock wave generated by impact. 

The bulk response of the homogenized composites to shock compression is described by the 

EOS of the mixture, which is obtained by a so called volume additive approach as described in 

Chapter 2. The description of this approach is not repeated here. The EOS parameters of PC/SS 

and PC/GS mixtures are listed in Table 5.2. The difference between the two types of geometric 
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structures (stacking) of PC/SS composites is neglected in this homogenization treatment, and only 

the homogenization of PC74/G55 composite will be discussed later. 

To describe the distortion response of the mixture to shock compression by the IEPH model, 

three basic quantities, the shear strength, yield stress and plastic modulus, need to be specified. 

Again, the additive approximation method is employed here to determine these parameters for the 

elastic-plastic model of mixtures. Under the plane strain deformation induced by one-

dimensional shock wave loading, it is assumed that (I) the strain in the direction of wave 

propagation is additive, (2) the force or stress in the lateral direction is additive, and (3) in the 

wave propagation direction, the local stresses in each component are equal to the mean stress of 

the mixture[9, I01. It will be seen later, based on the results of FS simulation analysis, that the 

assumption (3) may not be strictly true. However, by no means is it necessary for us to pursue a 

precise homogenization since some of the physical processes and their effects on the constitutive 

behavior of the composite, e.g., the role of scattering of the interface on viscosity, are still not 

clearly understood. The study of physical mechanisms of dissipation and dispersion due to 

scattering induced by microstructure and how to formulate a model taking into account its effects 

needs to be pursued further both experimentally and theoretically. The purpose of the present 

analysis is to approximately model the response of the composite through a homogenization 

approach and thus verify and validate the usefulness of existing models. 

For plane strain deformation, the stress a and strain E: in the wave propagation direction are 

related through Hooke's law, 

(1 - 2,1 ) 
c, = 'a 

2/1,(1 - /1,) , 
i = rn, 1, 2, (5.3) 

and the lateral stress (Jl can be determined by 

1/ 
(Jl = --'- (J 

, 1 - 1/ ' 
1 

i = m,l, 2, (5.4) 
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where 1) is Poisson's ratio, and subscripts m, 1 and 2 represent the corresponding variables in 

the mixture, and component I and 2 of the composite, respectively. 

By additive approximation of strain in the wave propagation direction, and the assumptions 

(I) and (3) above, 

1 - 2//.11/, 

ILI1I (1 - I/m.) 

By additive approximation of lateral stress, 

(5.5) 

(5.6) 

where (1:1,°2 in equations (5.5) and (5.6) are the volume friction of components I and 2, 

respectively. 

Similarly, the yield strength a'l and the plastic hardening modulus, E", of the mixture are 

also estimated by the additive approximation as follows: 

(5.7) 

and 

(5.8) 

where the superscripts m, 1 and 2 have the same meaning as the subscripts in the previous 

equations. 

The parameters of the IEPH constitutive model, initial density and the parameters of EOS for 

the mixtures calculated by the additive approximation described above are listed in Tables 5.1 

and 5.2, respectively. 
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5.2 Computational Tools 

5.2.1 DYNA2D Code 

The finite element code used in the numerical simulation of shock compression on layered 

composites is DYNA2D, which is a nonlinear, explicit, Lagrangian code, developed by Lawrence 

Livermore National Laboratory, for analyzing the transient dynamic response of two-dimensional 

solids[4J. This code features 4-noded isoparametric elements with several types of viscous and 

stiffness hourglass control. It incorporates many constitutive models that are available for 

simulating a wide range of material behavior including elasticity, plasticity, thermal effects, rate­

dependence, and different types of EOS for accurate modeling of the hydrodynamic response of 

materials. In addition, it is capable of modeling contact interfaces including frictionless sliding, 

frictional sliding, tied interface and single interface contact. The options of rezoning and 

remeshing allow for analyzing problems which involve very large distortion and shape change. 

The initial mesh of the DYNA2D is generated by MAZE, a preprocessor ofDYNA2D1111 , and 

the binary plot files output by DYNA2D are processed by ORION, a postprocessor of 

DYNA2DII21. 

5.2.2 Geometry Definition and Initial Conditions 

The DYNA2D code is used to carry out axisymmetric two-dimensional analysis of the shock 

compression of periodically layered composites impacted by a planar flyer. The specimen 

configuration is shown in Fig. 4.1 (Chapter 4). The soft and hard layers ofthe layered composite 

are repeated as many times as necessary to form a composite specimen with the desired thickness. 

Three different thicknesses, nominally 3.70 mm, 6.70 mm and 10.0 mm, of specimens were 

prepared and investigated experimentally to study the evolution of shock propagation in the 



E-8 

layered heterogeneous composites. For all specimens studied, the soft layer is PC of thickness 

0.74 mm or 0.37 mm; the hard layer is one of the following: 0.37 mm AI, 0.37 mm SS, 0.19 mm 

SS, 0.55 mm GS and 0.20mm GS disks. By using a different hard layer material, a different type 

of composite is generated, and by varying the thickness of component layers, a specimen with 

different geometrical structure is obtained. In this study, three different types of composites with 

five geometrical structures were prepared, experimentally investigated and were numerically 

analyzed using DYNA2D. From the experimental results shown in the Chapter 4, and the 

numerical analysis results to be shown later, it is evident that both the mechanical properties and 

geometrical structure (or configuration) of the composite affect its response to the shock wave. 

The detailed configuration and dimensions of each composite specimen tested, which is to be 

numerically analyzed, were listed in Table 4.2. Again, following the convention used in Chapter 

4, in naming the composites, the number following the abbreviation of the component material 

represents the component thickness in hundredths of a millimeter. For example, PC74/SS37 

means that a 0.74 mm PC layer and a 0.37 mm SS layer forms a unit of the composite specimen 

(which is 38.1 mm in diameter). 

In most experiments the flyer is a 2.87 mm thick and 32 mm in diameter PC disk. Since 

shock compression induced by the planar plate impact is uniaxial strain, the quantities of interest 

are mainly along the axis of the specimen, while the state of deformation near the periphery of the 

specimen, where it is affected by lateral release waves, is relatively not important. In order to 

save time involved in rezoning and/or remeshing due to the severe distortion of the mesh 

resulting from the interaction between the release wave at the comer of the flyer's lateral surface 

and the specimen's outer edge, the diameter of the specimen for simulation is taken to be the same 

as that of the flyer, i.e., 32 mm. The reduction of the specimen diameter does not result in any 

loss of generality and will not affect the results or conclusions of numerical analysis since the part 

of the specimen that is ignored is in the outer edge where it is dominated by the release wave 
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phenomena. PC flyer of thickness 5.63 mm was also used to achieve longer pulse of shock 

loading, and an Al flyer with thickness of 1.2 mm was used to produce a shorter loading pulse. 

For most specimens, the shock compression experiment was performed with different flyer 

velocities, nominally, 600 mJs and 1,060 mJs. A few of specimens were loaded by a higher 

velocity PC flyer or the Al flyer at a velocity of about 1,100 mJs. 

For the purposes of comparison, numerical simulations were also carried out for shock wave 

propagation in 9.97 mm thick homogeneous PC, SS and GS component materials. The flyer was 

a 2.87 mm PC disk and its velocity was 1,062mJs. These three specimens have exactly the same 

geometrical configuration as that in the experiment of9.97 mm PC74/SS37 specimen; a 0.74 mm 

thick PC buffer layer and a 12.70 mm thick PMMA window plate are included. 

The size of the 4-node elements in the direction of wave propagation is about 130 ~m and the 

aspect ratio of the elements was chosen to be as close to 1 as possible. In some cases where the 

distortion may be much larger, the size of the elements was doubled. The interface between 

layers was treated as a frictionless slide line. In the numerical simulations, the increase in 

thickness of the specimen due to the adhesive bonding between layers was treated as increasing 

the thickness of the PC layer to include the bond thickness since the physical and mechanical 

properties of the epoxy adhesive are very close to those of PC. 

In simulating the process of shock compression solids, it is necessary to introduce artificial 

viscosity. In the present simulation, the standard DYNA2D artificial viscosity was used for all 

materials except in one case where the 2.87 mm PC flyer impacts the 9.97 mm GS specimen, in 

which the linear shock viscosity coefficient was taken to be 10 times larger than the standard 

value and the quadratic shock viscosity coefficient about twice the standard value in order to 

reduce the initial overshoot of the shock profiles. The increase in artificial viscosity results in a 

much slower rise in the shock front for elements far away from the impacting surface (see Fig. 

5.4). 
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5.3 Two-Dimensional Simulations 

In this section, the numerical results of shock wave propagation in homogeneous component 

materials and heterogeneous composites are presented first. The deformation process of 

composites under impact loading is presented next and is followed by a critical comparison of the 

shock particle velocity and stress profiles between numerical simulations and experimental 

measurements. Finally, the results of the numerically predicted shock Hugoniot are compared 

with the mixture model. All numerical results presented here are the quantities on the symmetry 

axis, i.e., along the central axis of the disk. In all the simulations, the x-axis denotes the direction 

of the shock wave propagation and the y and z axes correspond to the lateral (transverse) 

directions. In some figures, y and z are also used to denote the time and pressure or velocity. 

With regard to the comparison of shock stresses between simulations and experiments, 

theoretically, the shock pressure and the shock stress in the direction of wave propagation are 

different and can be distinguished. Nevertheless, the measurement of shock stress in the wave 

direction obtained using the manganin stress gage is only an assumption. It is difficult to tell 

whether the stress gage measures the real shock stress in the wave direction or the shock pressure. 

Fortunately, the difference between the two becomes smaller as shock strength increases. For the 

shock loading level of interest in this investigation, shear strength of materials may not be 

ignored, but it is not a large quantity in most cases; therefore, in use of the terms, stress and 

pressure will not be strictly distinguished in the rest sections of this chapter. 
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5.3.1 Shock Wave Propagation 

5.3.1.1 Homogeneous Solids 

The shock particle velocity and stress time histories of all axial elements for the PC, SS and GS 

planar specimens impacted by a PC flyer at a velocity of 1062 m/s are shown in Figs. 5.2, 5.3 and 

5.4, respectively. The thickness of the specimen and the flyer are 9.97 mm and 2.87 mm, 

respectively. It can be seen that upon the impact of flyer on the specimen, two shock waves 

originate at the impact surface, one propagates into the specimen and the other propagates into the 

flyer. When the shock wave in the flyer, which travels in the negative x direction, meets the free 

surface, it is reflected and a release wave is formed, which eventually propagates into specimen. 

The release wave is partially reflected and partially transmitted at the impact surface. The release 

wave propagates supersonically in the specimen, so it will eventually overtake the shock wave 

ahead provided the specimen is thick enough. The particle velocity and stress histories of the 

buffer and window elements are also shown in the plots. 

For symmetric impact of a PC flyer on a PC specimen (Fig. 5.2), the particle velocity in the 

shocked state is one half of the flyer's velocity, and, as expected, both stress and particle velocity 

of shocked state are brought back to zero by the release wave. In the case of PC impacting onto 

SS or GS, the particle velocity in the equilibrium shocked state is less than half of the flyer's 

velocity, and the elements are in a tensile state of loading after the passage of the release wave. 

For the case of PC impacting SS (Fig. 5.3), due to the elastic-plastic behavior of steel, the wave 

front is two-wave structured during both shock loading and unloading processes. An elastic 

loading or unloading wave (precursor) propagates ahead and is followed by a plastic loading or 

unloading (shock) wave. When the waves reach the SS/buffer interface, and the buffer/PMMA 

interface, both waves are reflected and transmitted partially. The unloading waves reflected from 

the interfaces of SS/buffer interact with those coming from the free surface of the flyer, and a 
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tensile state is built up at the region where they meet. The elastic-plastic loading and unloading 

waves, as well as their interactions, can be clearly seen in Fig. 5.3. In the case of PC impacting 

GS, since GS is treated as an ideally elastic material, no two-wave structure is observed. Other 

features of wave propagation and interaction are similar to the case of PC impacting SS. 

The initial overshoots on both particle velocity and stress profiles of SS and GS specimens 

are due to the inertial effect of sudden boundary loading by planar impact, which, in principle, 

can be reduced or eliminated by increasing artificial viscosity during simulation. However, in 

doing so, the slope of the shock front will also be reduced dramatically. The effects of increasing 

artificial viscosity on the wave profile can be seen in the plots in Fig. 5.4, where the linear 

artificial viscosity coefficient is 10 times larger than that of the standard value used in DYNA2D, 

while the standard DYNA2D viscosity were used in all other cases. If the artificial viscosity 

coefficients are increased in order to eliminate the initial overshoot of the shock profiles, the 

shock front at locations far away from impact will be unreasonably smoothed down. 

According to the experimental observations in Chapter 4, and the work by BarkerlDJ , Oved et 

aIY4], Lundergan and Drumheller[15], and Kanel et al.[16], the influence of scattering effects of 

interfaces (or dispersion) on the shock wave propagation in the composites is similar to that of the 

viscous effects of the material on the shock front structure. Since the nonlinear functional 

dependence of dispersion, or viscosity, on the heterogeneity properties and shock loading strength 

have not been systematically understood yet, detailed numerical investigation of the influence of 

'shock viscosity' (due to dispersion or interface scattering) on the structure of the shock front will 

not be pursued here. Without loss of generality, as will be seen in the following sections, the use 

of standard DYNA2D artificial viscosity still makes it possible for us to qualitatively study the 

influence of viscosity on the structure of shock front when comparing the numerical results with 

experimental observations presented in Chapter 4 and also to shed light on the influence of 

interface scattering on apparent viscosity of the composite. 
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5.3.1.2 Periodically Layered Heterogeneous Composites 

Numerical simulations were carried for the shock compression of PCI AI, PC/SS and PC/GS 

composite specimens under planar plate impact. Figs. 5.5 and 5.6 show the plots of shock 

particle velocity and stress time histories of all axial elements of a 9.97 mm thick PC74/SS37 

specimen and a 9.95 mm thick PC74/GS55 specimen impacted by a 2.87 mm thick PC flyer at a 

velocity of 1,062 mls and 563 mis, respectively. One of the notable features is that the stress in 

the soft layer is generally higher than that in the hard layer, while the particle velocity distribution 

has the opposite sense, i.e., the velocity is higher in the hard layer in comparison to the soft layer, 

which indicates that the hard layer material contains relatively larger kinetic energy while the soft 

layer material experiences larger hydrodynamic compression during the shock compression 

process of composites. In the sense of geometric distribution average, the composite does not, 

and may possibly never, reach an equilibrium state in the conventional sense, though a steady 

state does exist since the shock time histories of corresponding elements in each unit, which is 

located several units away from the impact surface, correspond very well. 

From Figs. 5.5 and 5.6, it is seen that the difference in stress and/or particle velocity between 

hard and soft layers is determined by the difference in mechanical properties between them. 

Generally, the larger the mechanical impedance mismatch between the layers, the larger the 

difference in stress and particle velocity between the layers. Also, notice from Fig. 5.6a that for 

the PCIGS composite, there exists a large stress gradient at the interface, but it is not the case for 

the PC/SS composite. It will be seen later (Figs. 5.26 and 5.27) that for PC/SS composites, the 

time average of stress profiles is the same for the elements at both sides of the interface though 

their oscillation amplitudes are quite different, while for PCIGS composites, both the oscillation 

amplitude and the average of the stress profile are different for the two materials across an 

interface. 
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The spatial profiles of a shock wave in PC/SS composite are shown in Figs. 5.7 and 5.8 for 

different time instants after impact loading. The results are the same as shown in Fig. 5.5, but 

plotted in a different way. Fig. 5.7 shows the profiles in the early stage of impact loading, and 

Fig. 5.8 shows the steady state profiles when the shock is about to be reflected by the PMMA 

window. The time interval between the curves is 30 ns. It can be seen that the stress in the soft 

(PC) layer is much more uniformly distributed within each layer during the whole process of 

shock compression. But, in the hard (SS) layer there exists a very large spatial stress gradient 

during most of the period of shock compression. As far as the spatial distribution of particle 

velocity is concerned, the behavior in the hard and soft layers is interchanged, i.e., the velocity in 

the hard layer is uniformly distributed and monotonically increases with time, while a very large 

velocity gradient exists in the soft layer. 

These features of wave propagation in layered composites are attributed to the interactions of 

multiple reflections of the incident wave. The incident waves in both hard and soft layers are 

compression waves. But the reflected wave in the hard layer is different from the one in the soft 

layer. Reflected waves in the soft layer are compressive, while in the hard layer they are tensile. 

The reflected tensile wave decreases the stress or pressure in the hard layer, but increases particle 

velocity in the initial shock direction. Conversely, reflected compressive wave in the soft layer 

increases the stress or pressure and decreases the particle velocity in the direction of propagation 

of the initial shock. 

Briefly going through the process of propagation and interaction of waves in the first two 

units of the composite may be helpful in understanding many of the features illustrated through 

the simulations. For the case of a PC flyer impacting the PC/SS composite, the surface layer is 

PC, labeled as PCI in Fig. 5.5 and unlabeled in Figs. 5.7 and 5.8. Note, in this section, the one 

number following the name of layer material represents unit number of the layer component, 

rather than the thickness of the layer. Due to the symmetric nature of impact, a steady shock 

wave with particle velocity equal to half of the flyer velocity is generated and propagates into 
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PC 1. Upon reaching the interface of PC lISS 1, the shock wave is partially reflected and partially 

transmitted. Both the reflected wave and the transmitted wave are compressive. Due to further 

compression of the reflected wave, the pressure in the PC 1 layer increases, while, at the same 

time, the motion of the particle in the initial shocked direction is slowed down, since the reflected 

wave in PC 1 moves backward with respect to the initial shock wave. When the transmitted shock 

wave from PClISSl interface propagates in the SSI layer and meets the interface SSlIPC2, it is 

again partially reflected and partially transmitted. This transmitted wave is still a compressive 

wave, but, the reflected wave at this interface is not compressive any more. Instead, it is a 

rarefaction wave, which speeds up the motion of the particles in the initial shock wave direction 

and relieves the compression of the particles inside the layer (SS 1). The interaction of the 

incident compressive wave and the reflected rarefaction wave, as well as the multiple reflection 

of waves at later time, results in a large stress gradient and an almost uniform particle velocity 

distribution in the SS layer. In the PC2 layer, both the incident wave from the SS lIPC2 interface 

and the reflected wave from PC2/SS2 are compressive; the resultant state is that of almost 

uniform stress and a large velocity gradient during most of the period of shock compression. This 

pattern of pressure and particle velocity distribution and the evolution with time repeat in the later 

units of the composite. From Figs. 5.7 and 5.8, it can also be seen that due to the interaction 

between the shock wave and multiple reflection of waves, the phases of velocity and stress of the 

resultant wave are not synchronous, as they were for a shock wave propagating in a homogeneous 

medium. 

For a shock wave with particle velocity of 500 m/s propagating through a 2.22 rum thick 

homogeneous PC layer and then a 1.11 rum thick homogeneous SS layer, it takes about 0.95 llS. 

But, according to the results of numerical simulations shown in Figs. 5.7 and 5.8, it takes about 

1.5 llS for a shock wave with equivalent strength to propagate through three units of PC74/SS37 

composite with an equivalent thickness of 3.33 rum. Besides, it can also be observed that the 

maximum stress of the shock front is far from being reached in the third SS layer at 1.5 llS after 
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impact, and though the maximum stress is reached in the third PC layer, the maximum velocity 

has not yet been achieved. 

Based on the numerical simulation results, as well as experimental measurements presented 

in Chapter 4, and the analysis above, it can be concluded that it is due to the interaction of 

multiple reflection (compressive and/or rarefaction) waves with the incident shock wave, that the 

effective propagation velocity of shock wave in the layered composites is slowed. 

Figure 5.9 shows the maximum stress and maximum velocity experienced by each of the 

axial elements during the propagation of a shock wave in a PC74/SS37 specimen impacted by a 

PC flyer at a velocity of 1,062 mls. On one hand, it is seen that the maximum stress in the PC 

layer increases with the propagation distance and reaches a steady state around the end of the fifth 

unit, i.e., about 5.55 mm away from the impact surface. The maximum stress is almost 

unchanged in all SS layers, though there is a small drop observed at the third and fourth layers. 

On the other hand, the maximum velocity in the SS layer increases with propagation distance, 

while in PC layers it is almost a constant except in the first layer. 

It is generally expected that the transient distance for a shock wave to reach a steady state 

after being generated by impact varies with the loading level. For shock wave propagation in the 

PC74/SS37 and PC74/GS55 composites, the transient distances (number of units) as a function of 

loading strength, i.e., the velocity of a PC flyer, are numerically obtained and listed in Table 5.3. 

Also, shown in the Table 5.3 are the average maximum pressure experienced by the hard layer, 

the upper and the lower limits of the maximum pressure experienced by the PC layers, and the 

ratios between them. It is seen that for PC74/SS37 composites, the longest transient distance for 

a shock wave to reach steady state corresponds to the loading condition of lowest flyer velocity. 

However, the lowest ratio between the maximum pressures experienced by the SS and PC layer 

does not correspond to the lowest loading strength. The lowest flyer velocity simulated is 140 

mis, while the longest shock transient distance and the lowest Ph IPu occur at a flyer velocity 

between 280 mls and 560 mls. For flyer velocities beyond this point, the transient distance to 
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reach a steady shocked state decreases and the ratio of the maximum pressures increases with 

increasing flyer velocity. For the PC74/GS55 composites, the shock transient distance decreases 

with increasing loading, but the ratio of the maximum pressure seems not to be sensitive to the 

change of loading strength. The reason for the tendency of the change in transient distance with 

shock loading for the PC/SS composite may be intimately related to the properties of the 

components, the interaction between waves and the length scale associated with the 

heterogeneity. It may also be postulated from the results listed in Table 5.3 that the dependence 

of transient distance of shock wave on loading level in layered composites becomes stronger for 

flyer velocities higher than about 1,000 mls for PC/SS composites and 800 mls for PClGS 

composites, respectively. 

5.3.2 Deformation of Layered Composite Under Planar Impact 

Figure 5.10 illustrates the deformation process of a 9.97 mm thick PC74/SS37 layered composite 

impacted by a 2.87 mm thick PC flyer at a velocity of 1,062 mls at 0, 2, 4 and 6 J1S after impact. 

The plots consist of two parts: the left half is the distortion of the finite element mesh, and the 

right half is the vector field of particle velocity. The largest distortion occurs in the area around 

the comer of the lateral surface crossing the impact surface where the edge release wave 

originates. The lateral release wave propagates radically inwards. Due to this release wave, the 

particles in its affected area gain lateral velocity. With shock propagation, the distortion area 

becomes larger, while at the same time, the area dominated by uniaxial strain becomes smaller. 

This occurs even though the shock state in the area around the axis of the disk is still in one­

dimensional plane strain compression even at 6 ~s after impact, as can be seen from the velocity 

vector field. It takes more than 4 ~s for the shock wave to propagate through the PC74/SS37 

composite of thickness 10 mm (with buffer), indicating that the shock velocity in the composite is 
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slow in comparison with homogeneous solids. Indeed, it is even slower than shock speed in 

either of its components. The reasons for this were discussed in the previous section. 

Numerical simulation results shown in Fig. 5.10 indicate that the PC layers have much larger 

lateral deformation (extrusion) than SS layers. It may be interpreted that, as shown in the last 

section, the pressure in the PC layers is larger than that in the SS layers, and hence larger lateral 

release waves are developed in the PC layers. Therefore, the lateral outward motion of the PC 

elements is faster. On the other hand, the SS particles are heavier (higher density), so even when 

they are subjected to the same force, they will move slower than the PC particles. As a result, the 

lateral displacement of PC is much larger. In this numerical simulation, the interface between PC 

and SS layers was treated as a frictionless slide line. Considering the large difference in strength 

between the two materials and the high level of loading, this is not a bad approximation. 

5.3.3 Comparison of Shock Particle Velocity Profiles Between 
Simulations and Experiments 

In this section, the shock particle velocity profiles obtained from the numerical simulations will 

be compared with those measured experimentally by VISAR (see Chapter 4). Since the mirror 

reflecting laser light back to the VISAR was located at the interface between the PC buffer layer 

and PMMA window, the numerical particle velocity profile to be compared is taken from the 

velocity time history of the element located at the window side of the buffer/window interface. 

Due to the delay of the response of the capped electric shorting pins or possibly the earlier trigger 

due to the blowoff of high pressure gas from the gun muzzle, the trigger time of the oscilloscope 

in the experiments may not be exactly the instant when the flyer arrives at the specimen surface. 

Therefore, the recorded arrival time of the shock particle velocity profile by VISAR is not a good 

measure of propagation time of the shock wave in the specimen. Similarly, the starting time of 

shock profiles shown in the plots does not represent the exact propagation time of the shock 
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wave. It is obtained by randomly shifting either experimental profiles or simulated profiles for 

the purpose of comparison. The shock wave speeds predicted by numerical simulation are 

obtained by checking the time difference of shock propagation though two points inside the 

specimen. The numerical results are compared with experimental measurements for three types 

and five geometric structures of layered composites in the following sections. 

5.3.3.1 PC7 41 AI37 Composite 

Three 6.60 mm thick PC74/A137 specimens that were studied experimentally were simulated 

under planar impact loading conditions. The PC flyer thickness is 2.S7 mm and flyer velocity is, 

nominally, 600 mis, 1,060 mls and 1,SOOmis for each of the three specimens, respectively. The 

numerical results are compared with experimentally measured shock velocity profiles in Fig. 

5.11. On the whole, the computed profiles are consistent with the experimental results, but the 

differences in the detail of the profiles are obvious. In the case oflowest flyer velocity (600 mls), 

the shock fronts of experimental and computed profiles happen to be coincident with each other 

when the standard artificial viscosity of DYNA2D is used in the simulation. With the increasing 

flyer velocity, the difference of shock front slope between the two becomes larger. For the 

resonant oscillations on the top of the shock profiles, which is attributed to the interaction of 

shock wave with multiple reflections within the layers, the predicted amplitude decreases with the 

increase in flyer velocity, while in experimentally measured profiles, the amplitude increases with 

increasing flyer velocity. The duration of oscillation in the experimental profiles is slightly 

shorter than that predicted by computation. Furthermore, as a whole, the measured shock pulse 

length is shorter than the numerically predicted one, which implies that the actual sound velocity 

in the shocked state of the composite is larger than that predicted by simulation. Another 

difference between experiments and simulations is the decompression process, especially in the 
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later stages. The simulation predicts a much lower residual particle velocity state than the 

experimental observation shown for the lowest released state. This will be more clearly seen in 

the cases of other composites in the subsequent sections. 

5.3.3.2 PC74/GS55 Composite 

Figure 5.12 shows the comparisons between experiments and simulations for the nominal 10 mm 

thick PC74/GSSS composites impacted by PC flyers at velocities of nominally 600 mis, and 

1,060 mis, and Al flyers at velocities of 1,070 mls. The analysis techniques in the section above 

for studying the shock compression of PC74/A137 composites are also applied here. Shown in 

Fig. S.12d is the case where the velocity profile has reached the steady state inside the composite 

without disturbance from the release process originating from the buffer/window interface as in 

all other experiments. For this experiment, as described in Chapter 4, the specimen was prepared 

in the same way as others, but, instead of bonding a buffer and a window after the seventh unit, 

eight more composite units were used. Since both PC and GS layers are transparent, the function 

of the later eight units is the same as the PMMA window. The first seven units made up the 

specimen. The front surface (facing the arriving shock wave) of the eighth unit was a mirror 

surface. In the specimen prepared in this way, the shock wave would not be disturbed by the 

release wave originating from the buffer/window interface. Comparing plot d with a in Fig. 5.12, 

it is seen that the oscillation amplitude is larger for the profile of the corresponding internal point, 

which implies that the disturbance in the shock profile due to the release process reduces the 

effects of interface scattering on wave propagation. Apart from this, the differences between the 

computation and experiment are similar to those discussed in the previous section. 
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5.3.3.3 PC37/GS20 Composite 

Two specimens of 10.50 mm thickness were studied experimentally and simulated numerically. 

One was loaded by a 2.87 mm thick PC flyer at a velocity of 567 mis, and the other was impacted 

by a 5.59 mm thick Al flyer at a velocity of 1,160 mls. The Al flyer produces a shock pulse 

length equivalent to that produced by a 2.87 mm thick PC flyer under the same loading condition. 

In this type of specimen, since the thickness of layers was reduced to about half of the thickness 

of layers used in the PC74/GS55 type composite, the interface density (interface area per unit 

volume) increased, while the volume ratio of two components is about the same as that of 

PC74/GS55. The simulation results are compared with the experimental results in Fig. 5.l3. For 

the case where the specimen was loaded by a 2.87 mm thick PC flyer at a velocity of 567 mis, it 

appears that the only difference between experiment and simulation is the resonant oscillation 

part of the profile, while the mean amplitude of the oscillations are in good agreement. At the 

higher loading level achieved by the Al flyer, the differences are large in both loading and 

unloading processes. In principle, the slower rising slope of the simulated shock front can be 

fixed by reducing the artificial viscosity and the size of the elements, but it was not pursued here. 

The detailed study of the structure of the shock front requires the formulation of new types of 

constitutive models, which can take into account not only the dissipation processes (e.g., 

dislocation, twinning, defects, etc.) in the homogeneous components, but also dispersion and 

dissipation due to microstructure (e.g., the grain boundaries, particle/matrix interfaces, 

fiber/matrix, etc.) scattering effects to the waves. 

5.3.3.4 PC74/SS37 Composite 

The comparisons of numerical results with the experiments are shown in Fig. 5.14 for PC74/SS37 

layered composites. Two types of specimens, with thickness nominally 6.50 mm and 10.0 mm, 
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were shock loaded by planar impact at two different flyer velocities, nominally, 600 mls and 

1,060 mis, respectively. In general, the simulation results agree well with the experimental 

measurements except at the later unloading stage. At this stage, the numerical analysis predicts a 

much faster unloading process and indicates that the specimen can be unloaded to a tensile state, 

which has not been observed in any of the experimental measurements. Comparing Figs. S .14a 

with S .14b, and S .14c with S .l4d, it is seen that the attenuation of shock peak predicted by the 

numerical simulation is smaller than that measured experimentally, which may be due to the 

interface scattering effects that are not taken into account in the models used in the present 

simulations. 

5.3.3.5 PC37/SS19 CompOSite 

For this type of composite, three different thicknesses of specimens, nominally 3.70 mm, 7.00 

mm and 10.20 mm, were studied experimentally and analyzed numerically. Figs. S.lSa and S.lSb 

show the experimental and computational results for the 3.70 mm thick specimens impacted by 

2.87 mm PC flyers at velocities of about 600 mls and 1,060 mis, respectively. Figs. S.lSc and 

S.lSd are the results for the 7.00 mm thick specimens under similar loading conditions. Figs. 

S.lSe and S.lSfare the results for 10.20 mm thick specimens. The general pattern of the profiles 

is similar to those discussed in the previous sections. At the low flyer velocity, the simulated 

shock fronts agree reasonably well with experimental measurements for all three thicknesses, 

while the differences become evident for the loading at flyer velocity of 1,060 mls. Again, the 

unloading at later stages predicted by numerical simulations is much faster than that observed 

experimentally. The attenuation of the shock peak observed experimentally is faster than the 

numerical prediction. Since the duration of the experimentally measured shock pulses are 

generally shorter than numerical predictions, it is postulated that the actual sound speed of 
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shocked state is larger than the numerical prediction. Comparing Fig. 5 .15a with 5 .15c and 5.l5e, 

as well as Fig. 5.l5b with 5.l5d and 5.l5f, it is seen that the amplitude of resonant oscillation 

predicted by simulation increases with the propagation distance. However, the experimental 

results show that the amplitude of oscillations decreases with propagation distance, which may be 

attributed to neglecting the interface viscosity in the numerical model. 

The influence of loading duration on the shock profiles was also investigated both 

experimentally and numerically. For the shorter pulse case, a 1.2 mm Al flyer was accelerated to 

a velocity of 660 mls and impacted a 10.20 mm thick specimen. The loading strength generated 

by this is equivalent to that of a PC flyer at a velocity of 1,060 mls. The experimental and 

numerical results are compared in Fig. 5.15g. For the longer pulse loading, a 5.63 mm thick PC 

flyer was used at a velocity of 1,060 mls. The corresponding results are shown in Figs. 5.15h, 

5.l5i and 5.15j for the specimens of thickness 10.60 mm, 7.0 mm and 3.70 mm, respectively. It 

appears that the longer the shock pulse, the larger the difference of the unloading process between 

the experiments and simulations. 

5.3.4 Comparison of Shock Stress (Pressure) Profiles Between 
Simulations and Experiments 

As described in Chapter 4, stress gages were embedded in some specimens to measure the stress 

histories at internal points in order to extract more information and get a better understanding of 

the compression processes. The stress gages were embedded between soft and hard layers where 

the stress profile was to be measured. 

The full structure (FS) simulations of experiments were also carried out. Considering that the 

matrix of the stress gage is a polymer, it is natural to think that the stress history of the element at 

the side of PC layer of the interface will be closer to the environment of the stress gage during the 
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shock compression. Therefore, the stress profile compared with experimental measurement is the 

stress history of the interface element of the corresponding PC layer in the numerical simulations. 

5.3.4.1 PC/SS Type Composite 

For two types of geometrical structure specimens, PC74/SS37 and PC37/SS19, the stress profiles 

of simulation are compared with experimental measurements in Figs. 5.16 and 5.17, respectively. 

In each 10 mm thick PC74/SS37 specimen, only one gage was embedded 0.76 mm (one PC layer) 

from the impact surface. The experiments and simulations were performed with a 2.78 mm thick 

flyer impacting at velocities of 560 mls and 1,062 mls. From Figs.5.16 and 5.17 it can be seen 

that the difference between the experiment and simulation is large at low loading strength (flyer 

velocity of 561 mls), while with the increase ofloading, the difference becomes smaller. 

This phenomenon may be interpreted if the scattering effects, i.e., the dispersion, of the 

interface on the shock wave are taken into account, since the scattering or dispersion is important 

only when the material strength is important (at low strength of loading). At higher loading 

levels, the hydrodynamic pressure is high and dominates the shock process and the effect of 

material strength becomes less important or even negligible. Therefore, the models, which 

neglect the scattering effects, become more accurate and predict better results under strong 

loading conditions. 

In each of the PC3 7 ISS 19 specimens, two gages were embedded at interfaces, which are 3.4 

mm and 6.50 mm from the impact surface, respectively. The results of experiments and 

simulations are shown in Fig. 5.17. Again, the difference of stress profiles between experiment 

and simulation is large at lower loading strength and becomes smaller with the increase in loading 

strength. For a flyer velocity of 1,043 mis, the comparison between experiment and simulation 

here is not as good as that in the case ofPC74/SS37 composite loaded at the same condition. The 
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only difference between the two experiments is that the interface number in PC37/SS19 

composite is doubled. It appears that the larger the interface density, the higher the loading that is 

needed to reduce the discrepancy between experiments and predictions using homogeneous 

material properties. In other words, the interface scattering effects existing in composites has to 

be taken into account if a more accurate constitutive model is to be formulated. 

The difference in the duration and amplitude of resonant oscillations, as well as the difference 

m the unloading processes, discussed in Section 5.3.3 are also observed here and the 

corresponding discussion is not repeated. 

Figure 5.l8 is the comparison between experiment and simulation for a 10.60 mm thick 

PC37/SS19 specimen impacted by a 5.63 mm flyer at a velocity of 1,045 mls. The profiles look 

similar to those in Fig. 5.17. One thing worth noting is the difference in stress profiles between 

experiment and simulation for the gage located at 9.88 mm away from the impact surface. At this 

position, the stress state is affected by the release wave from the window. The simulation 

predicts much larger amplitude of the resonant oscillation than that observed experimentally. 

5.3.4.2 PC/GS Type Composite 

Figures. 5.19 and 5.20 show the comparison of stress profiles between experiments and 

simulations for nominally 10 mm thick PC37/GS20 and PC74/GS37 composites, respectively. 

The number of gages and the positions where the gages are embedded in each specimen, as well 

as the material, thickness and velocity of flyer, are indicated in the legend of the plots. The same 

analysis for the PC/SS type composites in the last section is not repeated here for PC/GS type 

composites. For each kind of composite, the experiments were conducted at three different 

loading levels. The results show that, in general, at low loading level, the difference between the 

experiments and simulations is large and the difference becomes smaller with the increase of the 



E-26 

loading strength. For all loading conditions, the duration of oscillations predicted numerically is 

larger than that of the experimental measurements, and the predicted amplitude is larger, too. 

5.3.5 Numerical Predictions Using Mixture Model 

The mixture model outlined at the beginning of this chapter was used in this numerical analysis to 

model the response of layered composites by treating them as homogenized solids. The method 

and procedures of simulation were exactly the same as used in the full structure (FS) simulations. 

Everything, including element size, element number, input parameters, etc., was the same as the 

ones used in the FS simulation. The only difference was that both PC and SS (PC/SS specimen) 

and GS (PCIGS specimen) layers of the composite were replaced by the corresponding equivalent 

homogenized solids. The PC buffer layer and PMMA window were treated in the same manner 

as before. The elements for which the stress or particle velocity profiles were plotted and 

compared with others were also the same as those used in the FS simulations. The predictions 

obtained using the mixture model are compared with both experimental results and the FS 

simulation predictions. 

Figure 5.21 shows the comparison of numerical results using mixture model with the results 

of experiments and FS simulations for PC74/SS37 composites under PC flyer impact at velocities 

of 561 mls and 1,062 mls. The thickness of specimen and flyer are nominally 10 mm and 2.S7 

mm, respectively. Fig. 5.22 shows the same kind of results for PC37/SS19 composites under 

similar loading conditions. In general, the prediction of the mixture model is approximately the 

mean of the resonant oscillations for the shock profile predicted from the FS simulation. For the 

PC37/GS20 composite loaded at a flyer velocity of 1,062 mis, where the FS simulation agrees 

best with the experiment, the prediction of mixture model is at the upper limit of stress on the 

profile. The high frequency oscillations in profiles obtained using mixture model (Figs. 5.21, 
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5.22 and 5.23) were due to the slide lines representing the PC/SS interfaces. The slide lines used 

in the FS simulations were not removed since the simulation meshes for the homogenized 

mixtures were kept the same as those for the corresponding layered composites. These slide lines 

should be removed during the computations using the mixture model, but they were kept for two 

reasons: (1) they would not produce any apparent effect on the simulation results, and (2) for 

convenience in forming the mesh based on the previous FS simulation. 

Since the mixture model does not take into account the dispersion due to scattering effects, it 

is not surprising that when the loading level is low, the mixture model overpredicts the response 

of the composite and when loading level is increased, the agreement between the predictions and 

experiments becomes better (see Figs. 5.21 and 5.22). Furthermore, it can be observed from Fig. 

5.22 that for flyer velocity of 563 mis, the shock velocity predicted using FS simulation agrees 

very well with the experiment, but the mixture model overpredicts the shock velocity since the 

predicted arrival time at the location of the second gage comes earlier than in the experiment. As 

the flyer velocity is increased up to 1,043 mis, the mixture model prediction agrees well with 

experiment, while the FS simulation underpredicts the shock velocity. It should be noted that 

though the reference or the origin of the time axis may be not accurately defined for comparison 

purposes, the time interval between any two points is accurate. 

One thing worth noting is the slope variation of the shock profiles. At a flyer velocity of 

about 1,060 mis, for both PC74/SS37 and PC37/SS19 composites, the slopes of both the velocity 

and stress profiles predicted by both the FS model and mixture model agree reasonably well with 

the experimental measurements. However, it is not the case for the lower flyer velocities. At a 

flyer velocity of 560 mis, for the PC74/SS37 composite, the slopes of the stress profiles agree 

with each other, while the slope of the velocity profile predicted by the mixture model is steeper 

than the others. For the PC37/SS19 composite, the slopes of the velocity profiles agree 

reasonably well, but the slope of the stress profile predicted by the mixture model is steeper than 
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the other two. This phenomenon is intimately related to the number density of interfaces and is 

due to the influence of interface scattering on wave propagation. 

Figure 5.23 shows the comparison of the profiles between numerical analysis and experiment 

for the PC74/GS55 composite impacted by a 2.87 mm thick PC flyer at a velocity of 563 mls. 

For the particle velocity profile, the prediction of the mixture model is the mean of the 

oscillations on the profiles of the FS simulation and the experimental measurement. But, for the 

stress profile, the prediction of the mixture model is between the FS simulation and the 

experimental result. It can also be observed that the mixture model over predicts the shock speed 

of the composite in comparison to the experiment. 

5.4 Results from One-Dimensional Simulations 

For the purpose of comparison, one-dimensional (lD) simulations were also carried out using 

DYNA2D. The ID simulations also provide validation of the uniaxial strain assumption used in 

interpreting the experimental results. The simulations were carried out for two experiments, # 

111901 and # 11050 I in Table 4.2. One-dimensional plane strain analysis of shock compression 

using a two-dimensional finite element code can be realized in the following way. The number of 

finite elements of the specimen discretized in the wave propagation direction is the same as that 

in the FS simulation, while there is only one element in the lateral direction. The motion of nodal 

points in the lateral direction is constrained, i.e., the displacement of nodal points is always zero 

in the lateral direction. The aspect ratio of elements is taken as close to one as possible. All other 

procedures are the same as in the FS simulation. In this way the one-dimensional plane strain 

problem is solved using a two-dimensional (2D) finite element code. 

The comparisons between the ID and 2D simulations are shown in Figs. 5.24 and 5.25. Fig. 

5.24 is for the 10.43 mm thick PC37/GS20 composite specimen impacted by a 2.87 mm thick PC 
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flyer with a velocity of 567 mls. It can be seen that profiles of ID and 2D simulations are almost 

identical except the shock speed predicted by ID is larger than that by 2D. In Fig. 5.24 the stress 

and particle velocity profiles of ID were shifted 0.08 I1S and 0.12 I1S, respectively, along the time 

axis. The reason for the faster shock velocity predicted by ID simulation is because the lateral 

relaxation of motion was completely constrained, even for the Poisson's effects in the elastic 

region. The conclusion remains the same for the higher shock loading level for a flyer velocity of 

1,079 mls. 

Figure 5.25 shows the results for the 10.60 mm thick PC37 ISS 19 composite under 

compression of the shock wave generated by the PC flyer. Again, the 1 D stress profiles and the 

ID particle velocity profile have been shifted along the time axis by 0.06 I1S and 0.16 I1S, 

respectively. Here, not only was there the difference of shock speeds between the I D and 2D 

simulations, but also in the structure of the profiles, especially at the later stage of the unloading 

process. At the longer propagation distances, the difference between the two increases. This 

implies that the influence of lateral constraint on the shock wave propagation in the layered 

composite is also related to the compatibility of mechanical properties of components and the 

propagation distance. The difference in the unloading part can be attributed to the influence of 

release wave from the boundary in 2D simulations. 

It can be concluded that in general the ID approximation of plane strain problem is a very 

good approximation of the 2D simulation. The accuracy of I D approximation depends on both 

the geometric size and the mechanical properties of the components of the composite. If the 

detailed structure of the shock profile and accuracy of the simulation are desired, then 2D 

simulations are preferred. 
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5.5 Discussion and Conclusions 

In the section on shock wave propagation of periodically layered heterogeneous composite (see 

Figs. 5.5 to 5.9), the numerical simulations indicate that when a layered composite is compressed 

by a shock wave, due to the interactions between the multiple reflection waves within the 

individual layers and the shock wave, the stress in soft layer is higher than that in the hard layer, 

while the particle velocity in the hard layer is higher than that in the soft layer. The resonant 

oscillations are formed and observed on the shock profiles. Physically, the stresses and the 

particle velocities across any interface should continue. It should not make any difference 

whether the shock profile at the interface is taken from element in the soft layer or the hard layer. 

But, according to the simulation results presented in the previous sections, it seems there are 

some differences between the shock profiles of elements at each side of an interface. 

It is constructive to look in more detail at the shock profiles of the elements at both sides of 

the interfaces. Figs. 5.26 and 5.27 show the shock stress and particle velocity profiles of interface 

elements at three interfaces inside the PC74/GS37 (experiment # 120201, see Table 4.2) and 

PC37/SS19 (experiment # 110501, see Table 4.2) composites, respectively. It is seen that for the 

PC/GS composites the stress histories experienced by the elements on either side of an internal 

interface are not the same, not even close to each other (Figs. 5.26a and 5.26c). There exists a 

very large stress gradient, or even being considered to be discontinuity, at the internal interface. 

The stress of GS elements is much lower than that of PC elements. But, strangely enough, the 

particle velocity histories experienced by the interface elements are almost the same the 

difference is negligible (Figs. 5.26b and 5.26d). The third pair of curves shown is the stress or 

particle velocity profiles of the elements bordering the buffer/window (PC/PMMA) interface, 

which are identical to each other even as loading conditions change. 

For PC/SS composites (Fig. 5.27), the amplitudes of resonant oscillations on stress profiles of 

interface elements are different, but the mean of the oscillations are the same. Therefore, in the 
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sense of mean stress, the stress is continuous at the internal interfaces of PClSS composites, 

which is different from that in the PClGS composites. The particle velocity histories are almost 

the same for the elements on either side of the interfaces. Both the stress and particle velocity 

profiles are continuous at the buffer/window interface. 

Based on the numerical analysis, it is clear that these features of stress and particle velocity 

field and history are controlled by the length scale of heterogeneity and the mechanical properties 

of the components in the composite. From the point of view of experimental investigation, it is 

hard to properly interpret the results of stress gage measurements. Physically, there should not 

exist a stress discontinuity at interface though the stresses in the soft layers and hard layers may 

be very different. But, if the difference of material properties at each side of interface is large, 

then, the stress gradient around the interface could be very large. If so, the question arises as to 

whether the stress gage measured stress profile should be compared with the simulated stress 

histories of an element in the soft layer or in the hard layer? Comparing Fig. 5.26a with 5.20b, 

and Fig. 5.26c with 5.20c, it appears that the experimental measurement is closer to the predicted 

stress profiles in GS (hard layer) for flyer velocity at 563 mls. But, at flyer velocity of 1,056 mis, 

the experimental results is closer to the average of the stress profiles of the two adjacent interface 

elements. Up to this point, it seems that the physical and mechanical processes of shock wave 

interaction with the interface is still not clearly understood, and need further experimental 

investigations, as well as numerical simulation analysis, on the stress distribution and evolution 

inside composite during shock compression process. It is suggested that the stress distribution 

inside the layers, or at least the stress history at the central point, be experimentally measured. In 

numerical analysis, more accurate constitutive models for the homogeneous components are 

needed to take into account material viscosity, the interface viscosity, etc., and much finer 

element size should be used to address the structuring of the shock front. 

The influence of element size on the accuracy of numerical simulation was checked by 

increasing the element size from 130 11m to 390 11m for the experiment # 112501. The results 
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show that with the increase of the element size, the peak value of the shock profile decreases and 

the pulse width (of bottom) increases by about 3 or 4%. 

The influence of the yield stress of the elastic-plastic material on the shock profile was also 

investigated for the experiment # 080301. The yield stress of annealed 304 stainless steel used in 

this analysis is 0.34GPa[81. The Hugoniot elastic limit (about one and one-half times the yield 

stress) of 304 stainless steel used by Lundergan is 0.83GPa[151. This analysis was carried out 

using the ID simulation described in the Section 5.4. The results show that the profiles obtained 

by varying yield stress from 0.34 GPa to 0.83 GPa are almost identical except that the shock 

wave speed decreases by about 3% for the larger yield stress, which implies that the shock profile 

of layered composites may not be sensitive to the yield stress of its components, but the shock 

speed may be affected. 

In the experimental study of shock compression of composites as described in Chapter 4, 

besides the shock stress and particle velocity profiles that were obtained, the shock Hugoniots of 

the composites were also calculated. Similarly, based on results of this numerical simulation 

analysis, the shock wave velocity were also calculated for each specimen in which manganin 

stress gages were embedded and the shock velocities were experimentally measured. The results 

of numerical predictions and the experimental measurements are compared in Figs. 5.28 and 5.29 

for PC/SS and PCIGS composites, respectively. It is seen that the predictions of shock speed 

from simulations are consistent and agree reasonably well with experimental results. The 

predictions of Dremin's mixture model, which somewhat overpredicts the bulk response of 

mixtures, are also compared. The Hugoniot curves of mixture predicted by Meyers' model are 

much higher than experiment results since it corresponds to an ideal situation that the mechanical 

impedance of each component is perfectly matched with the other, and hence there is no wave 

reflection at any interface; or in other words, the Meyers' model does not take account for the 

scattering effects of interface to shock wave propagation in the composites. 
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In Dremin's model it is assumed that the pressure in each component, the local pressure, is 

equal to the pressure of the mixture, i.e., the mean pressure, and the volumes of components are 

additive. But, from the numerical analysis of shock wave propagation in the layered composites 

presented in this chapter, it is clear that these assumptions are not satisfied, or at least not well 

satisfied. It may not be possible to know how close the assumption is to the real situation, or how 

much deviation from the real process exists, if the assumption breaks down. The difference 

between the prediction of Dremin's model and the results of numerical simulation and 

experimental data is most likely due to the fact that the model neglects the effects of dynamic 

process of interface scattering the waves. 

The influence of interface scattering on the bulk behavior is to slow down the propagation 

velocity of waves. This fact is generally assumed though it is hard to precisely formulate the 

physic and mechanics of the associated phenomena. Based on the experimental observation, it is 

obvious, but comparatively less known, that the interface scattering also contributes to the 

structuring of shock profile. In this numerical analysis, the quantitative study of the influence of 

geometric dispersion was not carried out, which needs further investigation. Should the 

quantitative study on the structure of wave profile be pursued later on, a new constitutive model 

will need to be formulated to account for the effect of interface, or microstructure, scattering on 

the dissipation and dispersion processes during shock compression of heterogeneous solids. 

Grady recently addressed the issue by proposing scattering as a mechanism for structured steady 

shock waves in metals, as well as in heterogeneous composite materials[17,181, and presented a 

physics-based approach to model the finite-amplitudc nonlincar wave propagation in the 

heterogeneous media. It was based on nonequilibrium phonon energy induced within the media 

substructure by microstructure scattering[191• The study of shock structuring in homogeneous 

solids like metals have been investigated by Swegle and Grady[201, Johnson and Barker[2IJ. 

Through this numerical analysis on shock wave propagation in periodically layered 

composites, several conclusions can be made and summarized as follows: 
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I) Numerical analysis reveals that due to the interaction of multiple reflection of waves within 

the layers and the incident shock wave, or the scattering of interface to the shock wave, the 

pressure and particle velocity in the layered composites during the shock compression are not 

uniformly distributed even if the steady shocked state is achieved. The pressure in hard layer 

is lower, while the particle velocity is higher, in comparison to their corresponding values in 

the adjacent soft layer. The difference of pressures and particle velocities between the hard 

and soft layers and the amplitude of the resonant oscillations on the shock profiles, and as 

well as the oscillation duration, are influenced by both the mismatch of their mechanical 

impedance and the geometric structure of the composite. Furthermore, the phases of velocity 

and pressure profiles of steady wave are not synchronous as they are in the homogeneous 

media. 

2) The influence of interface scattering effects on the bulk response of composites is to slow 

down the propagation velocity of the shock wave. The two-dimensional numerical 

simulation analyses carried out by using DYNA2D finite element code show that 

computations can predict the shock speed very well, but not the structure of the shock 

profiles. 

3) At low loading level, where the strength of material is still playing an important role, the full 

structure (FS) numerical simulation is mostly over predicting the response of the composites, 

such as larger duration and amplitude of resonant oscillations than those in the experimental 

observations, higher mean of the stress profiles, etc. With the increase in the level of loading, 

the difference between the numerical predictions and experiments becomes smaller. This 

indicates that the dispersion induced by microstructure scattering and the dissipation related 

to the viscous processes due to the interactions between interface and waves is not negligible 

when the loading is comparable with the strength of component materials. In order to 

precisely model the response of composite, it is necessary to take wave scattering effects into 

account in the constitutive model of heterogeneous media. 
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4) The existing mixture constitutive models, such as Dremin's, are proposed mostly based on the 

volumetric average under certain assumptions, which can predict the response of composites 

reasonably under strong loading conditions. With the decrease in loading, i.e., the role of the 

strength of material becomes important, the error in the models' prediction increases. This is 

because of the fact that the scattering effects of interface is neglected in those mixture 

models. 

5) The simulation of the structure of shock front relies on the accurate modeling of the 

constitutive relation. In order to obtain an accurate physics-based constitutive relation for the 

modeling of shock compression processes in heterogeneous media, the interface scattering 

induced by the heterogeneous microstructure has to be taken into account. 
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Table 5.1 Mechanical properties of Poly carbonate, PMMA, 6061-T6 Aluminum alloy, 304 

Stainless steel, D263 glass and Float glass 

Material p (g/cm3
) G (Gpa) cry (GPa) Eh (Gpa) '\) 

PC 1.192 0.94 0.00 1.60 0.34 
PMMA 1.18 1.20 0.00 1.60 0.35 
6061A1 2.71 30.0 0.32 0.69 0.33 
304 SS 7.89 77.0 0.33 1.70 0.29 
D 263 2.51 30.1 I I 0.20S 
Float 2.50 28.2 I I 0.24 

PC/SS 3.343 3.358 0.109 0.546 0.325 
PC/GS 1.754 4.147 0.80 0.00 0.29 

Table 5.2 Parameters ofEOS for Polycarbonate, PMMA, 6061 Aluminum alloy, 304 Stainless 

steel 

Material Co (krnls) S SI S2 Y 
PC 2.042 2.195 -0.335 0.047 0.61 

PMMA 2.815 1.973 -2.280 1.527 0.85 
6061Al 5.24 lAO 0.00 0.00 1.97 
304 SS 4.58 1.49 0.00 0.00 1.93 
PC/SS 1.722 2.047 0.00 0.00 1.16 
PC/GS 20473 1.S53 0.00 0.00 1.00 

Table 5.3 The transient distance D f of shock wave before steady state is reaching; the maximum 
pressure experienced by hard layer element (P h), upper limit (P u), lower limit (P I) of 
maximum pressure experienced by soft layer element during shock compression 

Spocimn Vf D t P u PI Ph Ph/P u PtiPu 

(ms) (tmits) (GPa) (GPa) (GPa) 
140 5--6 0.33 0.30 0.l9 0.55 0.91 
280 6 0.79 0.67 0.28 0.35 0.85 

PC741SS37 560 6-7 2.0S 1.60 0.90 0.43 0.77 
1060 6 5.00 3.70 3.00 0.60 0.74 
1500 3 7.00 6.05 4.70 0.67 0.S6 
140 5--6 0.30 0.28 0.l5 0.50 0.93 
280 5--6 0.69 0.62 0.32 0.46 0.90 

PC741GS55 560 5 1.70 1.40 0.75 0.44 0.S2 
1060 4 4.00 3.60 1.60 0.40 0.90 
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Figure 4.1 Configuration of a periodically layered composite and the schematic of shock 
compression experiment (for the sake of convenience, the figure is repeated here). 
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Figure 5.1 Experimental stress-strain relation, stress-particle velocity relation and the linear 
elastic approximation for fused silica [22] . 
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Figure 5.2 Numerically obtained pressure (top) and particle velocity (bottom) time histories of 
axial elements for 9.97 mm thick PC specimen impacted by 2.87 mm thick PC flyer at a velocity 
of 1,062 m/s. 
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Figure 5.3 Numerically obtained pressure (top) and particle velocity (bottom) time histories of 
axial elements for 9.97 mm thick 304 steel specimen impacted by 2.87 mm thick PC flyer at a 
velocity of 1,062 mls. 
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Figure 5.4 Nwnerically obtained pressure (top) and particle velocity (bottom) time histories of 
axial elements for 9.97 mm thick glass specimen impacted by 2.87 mm thick PC flyer at a 
velocity of 1,062 m/s. 
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Figure 5.5 Nwnerically obtained pressure (top) and particle velocity (bottom) time histories of 
axial elements for 9.97 mm PC74/SS37 specimen impacted by 2.87 mm thick PC flyer at a 
velocity of 1,062 mls . 
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Figure 5.6 Numerically obtained pressure (top) and particle velocity (bottom) time histories of 
axial elements for 9.95 mm thick PC74/GS55 composite specimen impacted by 2.87 mm thick 
PC flyer at a velocity of 563 mls. 



-co 
Q.. 
(!) -

~ 
CJ 
o 
Q; 
> 0.2 

E-45 

2 
Distance (mm) 

Figure 5.7 Numerically obtained evolution of pressure (top) and particle velocity (bottom) spatial 
profiles of shock wave propagation for 9.97 mm thick PC74/SS37 composite specimen impacted 
by a 2.87 mm thick PC flyer at a velocity of 1,062 mls. 
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Figure 5.8 Numerically obtained evolution of pressure (top) and particle velocity (bottom) spatial 
profiles of shock wave propagation for 9.97 mm thick PC74/SS37 composite specimen impacted 
by 2.87 mm PC flyer at a velocity of 1,062 mls. 
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Figure 5.9 The maximum pressure (top) and maximum particle velocity (bottom) experienced by 
axial elements under shock compression for 9.97 mm thick PC74/SS37 composite specimen 
impacted by 2.87 mm thick PC flyer at a velocity of 1,062 mls. 
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Figure 5.l0 Material distortion (left half) and velocity vector field (right half) at (a) t=O.O j.lS, (b) 
t=2.0 j.lS after impact during deformation of 8 units of PC (0.74 mm)/SS (0.37 mm) layered 
composite under planar impact of2.87 mm thick PC flyer at a velocity of 1,062 m/s. 
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Figure 5.10 Material distortion (left half) and velocity vector field (right half) at (c) t=4.0 J1.S and 
(d) t=6.0 J1.s after impact during deformation of 8 units of PC (0.74 mm)/SS (0.37 mm) layered 
composite under planar impact of2.87 mm thick PC flyer at a velocity of 1,062 mls. 
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Figure 5.11 Comparison of shock particle velocity profiles between numerical simulations and 
experimental measurements for the PC74/A1371ayered composites impacted by PC flyers ; hand 
ware specimen and flyer thickness, respectively; Vf is the flyer velocity. 
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Figure 5.12 Comparisons of shock particle velocity profiles between numerical simulations and 
experimental measurements for the PC74/GS55 layered composites impacted by PC (AI) flyers; h 
and ware specimen and flyer thickness, respectively; Vr is the flyer velocity. 
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and w are specimen and flyer thickness, respectively; Vr is the flyer velocity. 
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Figure 5.14 Comparisons of shock particle velocity profiles between numerical simulations and 
experimental measurements for the PC74/SS37 layered composites impacted by PC flyers ; hand 
ware specimen and flyer thickness respectively; Vr is the flyer velocity. 
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Figure 5.15 Comparisons of shock particle velocity profiles between numerical simulations and 
experimental measurements for the PC37/SS19 layered composites impacted by PC (AI) flyers ; h 
and ware specimen and flyer thickness respectively; Vr is the flyer velocity. 
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Figure 5.15 Comparisons of shock particle velocity profiles between numerical simulations and 
experimental measurements for the PC37/SS19 layered composites impacted by PC (AI) flyers ; h 
and ware specimen and flyer thickness, respectively; Vr is the flyer velocity. 
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Figure 5.15 Comparisons of shock particle velocity profiles between numerical simulations and 
experimental measurements for the PC37/SS19 layered composites impacted by PC (AI) flyers ; h 
and w are specimen and flyer thickness, respectively; Vr is flyer velocity. 
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Figure 5.16 (b) PC74/SS37, PC flyer 
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Comparisons of shock stress profiles between simulations and experiments; h and w are specimen 
and flyer thickness, respectively; Vf is the flyer velocity and x is the distance from the impact face. 
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Comparisons of shock stress profiles between simulations and experiments; h and w are specimen 
and flyer thickness, respectively; Vr is the flyer velocity and x is the distance from the impact face. 
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Chapter 6 

Suggested Future Work 

6.1 Experimental Measurements 

6.1 .1 Stress Distribution in Each Component 

The experimental data (Chapter 4) and numerical simulation results (Chapter 5) indicate that the 

layered composites can support steady structured shock waves. Nevertheless, the pattem of the 

steady state behind shock in layered composites is different from that in homogeneous solids. For 

a steady shock wave propagating in a layered composite, the stress or velocity profiles repeat 

periodically from unit to unit, but the profiles of stress or velocity within each layer are not 

uniformly distributed. There exists a maximum or minimum shock profile in each component 

layer. Furthermore, there may exist a steep stress gradient at the interface between the hard layer 

and soft layer depending on the mismatch of material properties of the components. As was 

pointed out, the reason for the resonant oscillations in the stress profile or particle velocity profile 

of the shock wave in the composite material is due to the interaction of the shock wave with 

multiple reflection waves in the layers. It will be very helpful to understand the scattering 

process if the detailed distribution of stress inside each layer can be experimentally measured. 

One way to do this is to embed several stress gages inside each layer of interest and measure the 

stress distribution of the layer (see Chapter 4). This is possible since the stress gage is very thin 
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(normally several tens of micrometers). Extreme care must be taken in bonding stress gage inside 

the metal or hard layer so that glue layer is as thin as possible. 

6.1 .2 Lateral Stress Measurement 

Because of the inherent scattering effects existing III the composite material, the dynamic 

response of a composite to shock compression could be very different from that of a 

homogeneous material. It is very important to experimentally measure the shock velocity and 

shock stress history or particle velocity history so that appropriate constitutive model can be 

formulated for the composite. If the stress deviators in shocked composite materials can also be 

measured experimentally, it will be very helpful to understand the shock compression process in 

heterogeneous composites and to formulate a physically based, accurate constitutive model. 

Again, the manganin stress gage may be used for this purpose[I-5J. 

6.1.3 Stress-Strain Measurement 

One of the most interesting stress regimes is the intermediate regime where the elastic-plastic 

properties dominate the compression process in the individual component material; it will be very 

useful to obtain the nominal stress-strain curve of layered composites at different strain rates to 

understand the 'strain hardening' effect and strain rate dependence. These experiments can be 

carried out using servo hydraulic testing machines and Kolsky (split Hopkinson) bars. 
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6.2 Theoretical Analysis 

6.2.1 Interpretation of Stress Gage Measurements 

In experiments, the stress gages are embedded at the interface between the hard layer and the soft 

layer. According to the numerical simulation results, the stresses in the hard layer and soft layer 

are not uniform and are different, and also, that steep gradients may exist at the interface. This 

raises following important questions which need to be investigated further. Whether the stress 

history measured by the stress gage represents the stress inside the soft layer or hard layer? If it 

represents the stress neither in the hard layer nor in the soft layer, does the stress history 

correspond to that of the adhesive used in bonding? If so, how can we understand the stress 

histories in components based on the experimental data? Can the problem be solved through 

numerical simulation by using finer size mesh? 

6.2.2 Interface Viscosity 

As discussed in Chapters I and 2, the widening of a shock front implies an increase in shock 

viscosity of the material under shock compression. Experimental results shown in Chapter 4 

indicate that due to the interface scattering, the velocity of shock propagation in the composite 

slows down and, in general, the slope of the shock front decreases with the increase of interface 

impedance mismatch and the length scale of the heterogeneity of the components. Interface 

scattering affects both the shock velocity, the bulk response, and the structure of the shock 

profile, i.e., the deviatoric response of the composite. The existing EOS model for mixture can 

roughly, but not accurately, predict the experimental data. The future work in this area should 

address interface viscosity by relating the characteristic parameters associated with the 

heterogeneity, such as the component length scales and impedance mismatch, etc., to shock 



F-4 

viscosity, nonequilibrium stress relaxation time, so as to be able to develop a satisfactory model 

for describing the response of heterogeneous materials to shock compression. One way to 

proceed is to treat the interface scattering effects as an equivalent dissipative "viscous" process, 

and describe the interface by a spring and dashpot model, and the constituents by linear springs, 

and construct an effective medium model for composite subjected to impact loading. 

6.2.3 Dispersion and Dissipation Mechanisms of Shock Energy 

It is important to study how the shock energy is transported during shock compression of 

composites in order to understand the dispersion and dissipation of wave energy. Through 

computation, one can study the evolution of internal and kinetic energy of a shock wave, and to 

try to obtain the relation between the dissipation energy and dispersion energy. One needs to 

analyze the evolution of the frequency spectrum of internal energy as a function of distance for 

composites having different heterogeneity properties. This frequency spectrum needs to be 

connected with the normal modes of acoustic phonon energy induced by microstructure 

scattering. Controlled experiments are also needed for support and confirmation of such 

analyses. 

6.3 Constitutive Modeling 

Several of the existing phenomenological models for shock wave propagation in heterogeneous 

composites need to be evaluated by incorporating them into a finite element code and comparing 

the predicted results with experiment. They are Barker's nonlinear Maxwell model f61 , lohnson's 

modified Barker model[71, and Kanel's empirical continuum anelasticity model[81• Major effort 

should also be devoted to the verification and validation of Grady's physically based nonlinear 
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anelasticity model of wave propagation in heterogeneous media[9- 'Ol, and the exploration of the 

underlying physics and mechanisms of energy dispersion and momentum transport. The 

equilibrium response may be formulated based on the existing mixture model and experimental 

measurements of shock velocity in composites. Nonequilibrium stress may be determined based 

on the multimode theory and the understanding of dispersion and dissipation effects induced by 

microstructures. 

6.4 Computational Modeling 

In future computational modeling, several aspects need to be improved. The first is to consider 

the influence of friction on the interface between the hard and soft layers on the deformation 

process of composite materials under shock loading. The second is to further check the influence 

of finite mesh size on the accuracy of simulation results. Investigate the influence of the 

orientation of interfaces on scattering effects, so as to the shock wave propagation. Finally, three­

dimensional simulations should be performed. 

6.5 Optimal Composite 

The problem of optimization of composites depends on which point of view one wants to pursue, 

i.e., in the sense of efficiently transporting shock energy/momentum from one point to another 

inside the composite, or efficiently dispersing or damping energy/momentum. It is clear that the 

dispersion of shock energy through a composite depends on the heterogeneity (geometric length 

scale) and the mechanical properties of its components. It is necessary to investigate the shock 

energy/momentum efficiency and/or distribution as a function of component length scale and the 

degree of interface impedance mismatch. 
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The composites are not necessary to be only two components system. For multiple 

component systems, the impedance mismatch can be described by some distribution function in 

the terms of distance from the external surface of the composite. Experiments can be designed to 

test some functionally layered specimens to address the energy transportation and damping 

issues. In this way, it may be possible to find a way to optimize the properties of composite for 

the desired function. 
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