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Abstract

Spontaneous slip on frictional interfaces involves both short-lived inertially-driven events and long-

term quasi-static sliding. An example of considerable practical importance is the response of faults

in the Earth’s crust to tectonic loading. The response combines earthquakes that cause destructive

ground motions and aseismic slip. Numerical models are needed to study the physics and mechanics

of such complex behavior. In part, the models can help understand the observed slip patterns and

interpret them in terms of constitutive properties of rocks determined in the lab.

This thesis contains two main contributions. The first one is the development and implemen-

tation of a 3D methodology for simulations of spontaneous long-term interface slip punctuated by

rapid inertially driven ruptures. Our approach is the first one to combine long-term deformation

histories and the resulting stress redistribution on faults with full inclusion of inertial effects during

simulated earthquakes in the context of 3D models. It reproduces all stages of earthquake cycles,

from accelerating slip before dynamic instability, to rapid inertially driven propagation of earthquake

rupture, to post-seismic slip, and to interseismic creep, including aseismic transients. The second

main contribution is the discovery of the potentially dominating effect of favorable heterogeneity on

intersonic transition in earthquakes, in both 2D models of single dynamic ruptures and 3D models

of long-term fault slip. Studies of intersonic ruptures are practically important as they have the

potential to cause strong ground motion farther from the fault than subsonic ruptures. Our con-

clusion that rheological boundaries promote transition to intersonic speeds in 3D rupture models

is completely unexpected, as the neighboring stably slipping regions inhibit fast, inertially driven

slip. The result could not be established in earlier studies, as it requires the computational method-

ology developed here that combines inertial effects, long-term slip histories, and 3D fault models.
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The thesis also develops test problems for dynamic rupture propagation and evaluates simplified

quasi-dynamic approaches.

The obtained results emphasize that dynamic ruptures should be considered in the context of

the entire slip history of the fault, as such approach allows dynamic ruptures to occur under stress

conditions established by prior slip, which leads to characteristic stress distributions that are not

considered in single-event simulations. The developed 3D methodology can be applied to a number

of problems in earthquake physics and mechanics that involve interaction of seismic and aseismic

slip.
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Chapter 1

Introduction

Frictional interfaces respond to loading with both stick-slip behavior and steady sliding. An example

of considerable practical importance is the relative displacement or slip on faults in the Earth’s crust.

Driven by slow tectonic motion equivalent to centimeters of slip per year, fault processes involve

both seismic events or earthquakes and complex patterns of quasi-static aseismic slip (Figure 1.1).

Understanding the physics and mechanics of this behavior is a fascinating scientific problem. In this

thesis, we first develop computational tools for three-dimensional (3D) modeling of dynamic rupture

and long-term fault slip. Then the tools are applied to the fundamentally and practically important

phenomenon of intersonic transition and propagation of dynamic rupture.

In Chapter 2, we present a 3D spectral boundary-integral (BI) numerical algorithm for modeling

dynamic rupture processes on a frictional interface, and compare it with a finite difference method

(DFM) developed by Day and Dalguer (Day et al., 2005). BI methods have been widely used to

investigate spontaneous propagation of cracks in elastic media (Das, 1980; Andrews, 1985; Das and

Kostrov, 1988; Cochard and Madariaga, 1994; Perrin et al., 1995; Geubelle and Rice, 1995; Ben-

Zion and Rice, 1997; Kame and Yamashita, 1999; Aochi et al., 2000; Lapusta et al., 2000; Lapusta

and Rice, 2003). The main idea of BI methods is to confine the numerical consideration to the

crack path, by expressing the elastodynamic response of the surrounding elastic media in terms

of integral relationships between displacement discontinuities and tractions along the path. These

relationships involve convolutions in space and time of either displacement discontinuities and their

histories or tractions and their histories. Such an approach eliminates the necessity to simulate
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wave propagation through elastic media, because that wave propagation is accounted for through

the convolutions. The challenge is then to determine the appropriate convolution kernels, which

is possible to do analytically only for relatively simple situations such as crack propagation in an

infinite, uniform elastic solid. It may be possible to consider more complex problems (such as a

layered elastic medium) by precalculating convolution kernels numerically as briefly discussed in

Lapusta et al. (2000), but to our knowledge this has not yet been implemented. This makes BI

methods more restrictive than finite-element or finite-difference methods. However, BI methods are

more efficient (Chapter 2) and allow extensions to simulations of long-term deformation histories

punctured by rapid dynamic events (Lapusta et al., 2000, Chapter 3).

Since spontaneous rupture problems are highly nonlinear and do not have analytical solutions,

it is necessary to compare our implementation of the boundary integral methodology and finite

difference algorithms. The nonlinearity is attributable to the fact that rupture evolution and arrest

are not specified a priori, and they are determined as part of the problem solution. That is, the

problem is a mixed-boundary value problem in which the respective (time-dependent) domains of the

kinematic and dynamic boundary conditions have to be determined as part of the problem solution

itself. In the absence of a strict mathematical proof that either method converges to an exact

solution for spontaneous rupture problems, the comparison provides validation for both numerical

approaches, because these numerical methods have a high degree of independence. The boundary

integral method may be called a semi-analytical method, because it discretizes only the fault surface

points; the reaction of the continuum to slip at those points is represented exactly, through a closed-

form Green’s function. In contrast, the finite difference method uses a volume discretization to

approximate the differential equations of motion throughout the 3D problem domain.

The 3D dynamic rupture methodology of Chapter 2 allows us to simulate one instance of earth-

quake rupture. However, even if the goal is to understand only the behavior of large destructive

dynamic events, it is still important to consider the entire earthquake cycle, since slow aseismic

slip may determine where earthquakes would nucleate as well as modify stress and other initial

conditions before dynamic rupture (Figure 1.1). Modeling long-term slip histories of faults is quite
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challenging because of the variety of temporal and spatial scales involved. Slow loading requires

hundreds to thousands of years in simulated time and fault zone dimensions are in tens to hundreds

of kilometers. At the same time, rapid changes in stress and slip rate at the propagating dynamic

rupture tip occur over distances on the order of meters and times on the order of a small fraction of

a second.

Several approaches to modeling long-term histories of fault slip have been proposed (e.g., Shibazaki

and Mastsu’ura, 1992; Cochard and Madariaga, 1996; Kato, 2004; Duan and Oglesby, 2005; Liu and

Rice, 2005; Hillers et al., 2006; Ziv and Cochard, 2006; Aagaard and Heaton, 2008) but all of them

adopted simplified treatments of either slow tectonic loading and hence aseismic slip, or inertial

effects during dynamic rupture, or transition between interseismic periods and dynamic rupture.

Lapusta et al. (2000), based on prior studies (Tse and Rice, 1986; Rice and Ben-Zion, 1996; Ben-

Zion and Rice, 1997), developed a methodology capable of capturing both seismic and aseismic slip

and the gradual process of earthquake nucleation. However, the model of Lapusta et al. (2000)

is two-dimensional (2D) and neglects variations in the along-strike fault dimension. Therefore it

cannot be directly compared to observations and cannot be used to study a number of important

problems such as interaction of fault slip with compact fault heterogeneities. In 2D models, the

fault is simplified to a line, and any heterogeneity in stress or friction properties blocks the entire

fault. In 3D models, the fault is represented as a surface that can include local heterogeneities and

complex patterns of frictional and other properties.

In Chapter 3, we develop 3D methodology for simulating long-term history of spontaneous seismic

and aseismic slip on a vertical planar strike-slip fault subjected to laboratory-derived rate and state

friction and slow tectonic loading. The algorithm is able to resolve all stages of earthquake cycle in

detail, including gradual nucleation processes, dynamic rupture propagation, postseismic slip, and

aseismic processes throughout the loading period. Our approach builds on the studies of Lapusta et

al. (2000), with a number of modifications required in 3D such as a different truncation procedure.

The potential of the methodology is illustrated by simulations of long-term slip on a fault segment

with relatively simple distributions of fault properties. The slip response of the fault model combines
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Figure 1.1: An example of interaction between earthquakes and aseismic quasi-static slip. Earth-
quakes redistribute stress on faults, causing slow postseismic slip or afterslip in surrounding areas,
as shown here on the example of 2005 Nias-Simeulue earthquake in Sumatra (from Hsu et al., 2006).
The postseismic slip, in turn, redistributes stress and may trigger other seismic events. The figure
shows compilation of inferred seismic and postseismic slip, illustrating the approximately compli-
mentary nature of seismogenic and aseismic regions. Distribution of seismic slip is indicated by white
contours at intervals of 2 m; color indicates cumulative postseismic slip during the 9 months after
the earthquake. Black and red vectors indicate GPS observations and their match using the inferred
postseismic slip, respectively. White and red stars are epicenters of 2004 Aceh-Andaman and 2005
Nias-Simeulue earthquakes, respectively. Pink and green dots denote earthquakes with body wave
magnitude mb > 4.5 before and after the 2005 event. The regions of high seismicity correspond to
the transition between regions of seismic and aseismic slip. The question mark indicates the region
where afterslip may have occurred but it is not detectable by the existing GPS network. White tick
marks on the northern and southern boundaries of the postseismic slip model indicate depths along
the megathrust.
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a range of seismic and aseismic phenomena. The model is used to explore the effect of several physical

and numerical parameters.

We then consider two application examples that demonstrate (i) the importance of conducting

long-term simulations even if the main emphasis is on the behavior of dynamic rupture and (ii)

the necessity of including inertial effects in long-term simulations of slip. In the first example,

we study how fault slip interacts with compact heterogeneity in the form of a patch of higher

normal stress over many earthquake cycles. This kind of problem cannot be addressed with a

2D fault model. Such patches can result on natural faults from slight local non-planarity of the

fault surface. 3D simulations of single dynamic events suggest that such fault heterogeneities can

strongly influence the development of dynamic ruptures, in part, inducing intersonic rupture speeds

(e.g., Dunham et al., 2003). However, in simulations of single dynamic events, specified initial

conditions, such as initial shear stress, have a determining effect on the resulting dynamic rupture.

Our methodology for earthquake cycle modeling allows us to simulate the interaction of slip with

heterogeneity under conditions that naturally develop in the model due to prior seismic and aseismic

slip, and to compare that evolved behavior with the one due to arbitrarily chosen initial conditions.

We do find significant differences between dynamic rupture behavior in the first and subsequent

events, demonstrating the importance of simulating long-term slip histories. In the second example,

the fully dynamic formulation developed in this work is compared with quasi-dynamic approaches,

which have been widely used in earthquake studies (e.g., Rice, 1993; Cochard and Madariaga, 1994;

Ben-Zion and Rice, 1995; Rice and Ben-Zion, 1996; Hori et al., 2004; Kato, 2004; Hillers et al.,

2006; Ziv and Cochard, 2006). Quasi-dynamic approaches significantly simplify the treatment of

inertial effects during simulated earthquakes by ignoring wave-mediated stress transfers. Results

of our comparison underscore the importance of including full inertial effects. We also explore

the possibility of improving the standard quasi-dynamic formulation by decreasing the radiation

damping term, as suggested by Lapusta et al. (2000).

In Chapter 4 and 5, we apply the developed computational tools to the phenomenon of intersonic

transition. Understanding sub-Rayleigh-to-intersonic transition of shear cracks is a fundamental
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5.3 km/s

Figure 1.2: An example of inferred intersonic propagation in a large strike-slip earthquake. The
2002 Denali (Alaska) earthquake produced a surface rupture of about 340 km (dark blue line).
Modeling of near-fault acceleometer records suggests that the rupture in a segment of about 40 km
(red line) may have propagated with intersonic speeds, with an average speed of 5.3 km/s (Ellsworth
et al., 2004).

problem in fracture mechanics with important practical implications for earthquake dynamics and

seismic radiation. The word “intersonic” refers to speeds between the shear wave speed cs and the

dilatational wave speed cp, the range which is often called “supershea” in the geophysical literature.

Although average rupture speeds for earthquakes are often subsonic in general, seismic data for

several earthquakes points to intersonic propagation. Examples are 1979 Imperial Valley earthquake

(Archuleta, 1984; Spudich and Cranswick, 1984), 1992 Landers earthquake (Olsen et al., 1997), 1999

Izmit earthquake (Bouchon et al., 2001), 2001 Kunlun earthquake (Bouchon and Vallée, 2003), and

2002 Denali earthquake (Ellsworth et al., 2004, Figure 1.2). While this evidence is indirect, as it is

obtained through analysis of seismic data, it presents a compelling case that intersonic propagation

and hence sub-Rayleigh-to- intersonic rupture transition can occur during earthquakes.

Direct evidence for the possibility of spontaneous intersonic transition and propagation has been

obtained in the laboratory. Intersonic crack propagation of mode II cracks was observed on weak

interfaces under impact loading conditions (Rosakis et al., 1999; Rosakis, 2002). Needleman and

Rosakis (1999) numerically modeled those experiments and qualitatively reproduced their crack
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speed histories. Xia et al. (2004) reported experimental observations of spontaneous sub-Rayleigh-

to-intersonic transition of mode II cracks propagating along a frictionally held homogeneous interface.

Xia et al. (2005) experimentally observed a change in rupture speed from sub-Rayleigh to intersonic

along a bimaterial interface.

Studies of sub-Rayleigh-to-intersonic transition have important practical implications. On the

one hand, understanding which parameters and conditions do, and do not, lead to intersonic rupture

propagation in models can help constrain properties and stress conditions on natural faults where

rupture speeds of large earthquakes have been inferred. On the other hand, it is important to know

which conditions can lead to intersonic propagation on faults and how likely intersonic ruptures are

to occur. This is because intersonic ruptures can cause much stronger shaking far from the fault

than subsonic ruptures can, as Mach fronts generated by intersonic ruptures carry large stresses and

particle velocities far from the fault (Bernard and Baumont, 2005; Dunham and Archuleta, 2005;

Bhat et al., 2007).

Theoretical and numerical studies of sub-Rayleigh-to-intersonic transition date back to Burridge

(1973) and Andrews (1976). Large strike-slip earthquakes are dominated by in-plane sliding and

some of their dynamics can be understood by considering them as mode II cracks. Burridge (1973)

considered a self-similar mode II crack and found that a shear stress peak propagates with the shear

wave speed cs in front of the crack. Andrews (1976) performed numerical simulations of spontaneous

crack propagation on a uniformly prestressed interface governed by a linear slip-weakening law, and

demonstrated that a growing shear stress peak nucleates a daughter crack in front of the main

rupture. The daughter crack propagates with intersonic speeds from its very beginning. This

processes of intersonic transition is often called the Burridge-Andrews mechanism. Since the work of

Burridge (1973) and Andrews (1976), a number of theoretical and numerical studies have addressed

the issue of sub-Rayleigh-to-intersonic transition and/or intersonic propagation, as discussed in

Chapter 4.

In Chapter 4, we take a broader look at the Burridge-Andrews mechanism and find, through

numerical simulations of spontaneous mode II crack propagation, that sub-Rayleigh-to- intersonic
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transition occurs in a number of models where a crack is subjected to an intersonic loading stress

field. The Burridge-Andrews mechanism falls under that category, as a daughter crack initiates at the

location of the shear stress peak and finds itself under the influence of the stress field of the advancing

main crack. The stress field creates intersonic loading in front of the shear stress peak. We consider

interaction of an advancing mode II crack (main crack) with a location susceptible to nucleation

of a secondary dynamic crack, such as a pre-existing subcritical crack, a patch of higher prestress,

or a patch of lower peak friction strength. Such locations are called collectively by “favorable

heterogeneity” in this thesis. For a range of parameters, a secondary dynamic crack initiates at the

location before the shear stress peak arrives, acquires intersonic speeds, and maintains intersonic

propagation for large distances. We call the crack secondary to reserve the term “daughter” for

cracks that initiate at the location of the shear stress peak in front of the main crack in the absence

of pre-existing heterogeneity. Our results show, in part, that nucleating a daughter crack at the shear

wave peak, a feature that propagates with the shear wave speed, is not essential for the subsequent

intersonic propagation of the daughter crack. In our models, intersonic rupture transition can be

achieved and subsequent intersonic crack propagation can be maintained under background prestress

levels that are lower than the ones predicted by the Burridge-Andrews mechanism, and transition

lengths depend on the position of favorable heterogeneities. Observations of transition lengths in

earthquakes are sometimes interpreted using the Burridge-Andrews mechanism to infer parameters of

fault friction (e.g., Xia et al., 2004). If intersonic transition is governed by presence of heterogeneities

as presented in Chapter 4, such inferences may be misleading.

The results of Chapter 4 suggest that heterogeneity can have significant effect on intersonic

transition and propagation. However, the 2D in-plane model of Chapter 4 contains a number of

simplifications that can affect its applicability to natural earthquakes. First, Chapter 4 considers

2D models of in-plane sliding to make comparison with earlier studies (Burridge, 1973; Andrews,

1976) and develop intuition about the role of favorable heterogeneity. However, large strike-slip

earthquakes occur on faults that have long strike lengths (hundreds of km) but limited depth extent

(15–20 km or so). Hence their dynamics, while dominated by in-plane sliding, are also influenced
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by 3D aspects, especially the finite fault width, which have been shown to have adverse effects on

intersonic transition (Day, 1982a; Madariaga and Olsen, 2000; Fukuyama and Olsen, 2002; Dunham,

2006). Second, stress and strength distributions on faults in the Earth’s crust can be much more

complicated than assumed in Chapter 4. Certain types of heterogeneous stress distributions result in

slower rupture speeds than the speeds that would correspond to mean values of stress (Day, 1982b).

While one can assume any prestress distribution for a simulation of one instance of dynamic rupture,

stress distribution on faults before a large earthquake is the result of a complicated history of seismic

and aseismic sliding. That history would tend to redistribute stress and may exclude some prestress

distributions before a large earthquake and hence certain rupture behaviors, as demonstrated in

Chapter 3. Hence it is important to simulate long deformation histories of faults, to be able to study

simulated earthquakes and intersonic transition under prestress distributions that naturally arise as

the result of prior sliding history. Third, we find that the initiation procedure of the main crack

significantly affects intersonic transition at the heterogeneity and subsequent propagation. Hence it

is important to consider ruptures nucleating in a realistic model under slow tectonic loading.

We remove these simplifications in Chapter 5 by using the methodology developed in Chapter

3 to study intersonic transition and rupture propagation in the context of a 3D fault model and

long-term fault slip. The adopted rate-and-state fault model is similar to that of Chapter 3, with

a potentially seismogenic region of steady-state velocity-weakening properties surrounded by stable

regions of steady-state velocity-strengthening properties. However, the fault is longer along its strike

to allow for larger events, as intersonic transition is typically observed for relatively large earthquakes.

We simulate long-term slip history in this fault model for a range of friction parameters and find

that the rheological boundary between regions of velocity-weakening and velocity-strengthening

properties acts as favorable heterogeneity, promoting intersonic transition of dynamic ruptures.

During interseismic periods (i.e., periods between two large earthquakes), velocity-strengthening

regions stably move with slip velocity comparable to the plate loading rate, while the velocity-

weakening region is almost locked, with slip velocity several orders of magnitude smaller than the

plate loading rate. The disparity in slip concentrates stress next to rheological boundaries and causes
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continuing “creep-in” of the stable slip into the locked region, creating areas of high fault stress.

Once earthquake rupture nucleates, it propagates faster over these areas of higher stress than over

the rest of the seismogenic region, transitioning to intersonic speeds in some cases. The occurrence

of intersonic transition in our 3D model depends on the combination of friction properties and fault

stress that develops in the model before large earthquakes. It can be explained by considering the

seismic ratio (Andrews, 1976) on the fault before large events, as discussed in Chapter 5. Since

the presence of rheological boundaries on natural faults can be inferred from laboratory studies and

fault observations (e.g., Blanpied et al., 1991; Marone et al., 1991; Blanpied et al., 1995; Ellsworth

et al., 2000; Marone, 1998; Lyons and Sandwell, 2002; Schaff et al., 2002; Waldhauser et al., 2004;

Shearer et al., 2005) as further discussed in Chapter 5, this factor can significantly contribute to

intersonic transition on natural faults.

We then consider whether intersonic transition in 3D models of long-term slip can be further

promoted by favorable compact fault heterogeneity, as suggested by the 2D single-event study of

Chapter 4. We find a parameter regime in which there is no intersonic transition in the long-

term history of the 3D fault model without the compact heterogeneity, and then we add a patch

of lower effective peak frictional resistance to the model. Our simulations show that adding such

a patch indeed qualitatively modifies the behavior of the model, resulting in occasional intersonic

earthquakes. The transition distance is determined by the location of the patch, consistently with

conclusions in Chapter 4.

Note that the phenomenon of intersonic transition due to rheological boundaries discovered

in our work could not be established in prior studies, as those studies either considered single

dynamic events, or simulated long deformation histories without inclusion of full inertial effects

during simulated earthquakes, or studied 2D models. Single-event simulations do not include the

effect of stress concentration along rheological boundaries, since the stress concentration arises as a

result of prior long-term slip. Long-term simulations without the inclusion of inertial effects carried

by stress waves cannot simulate intersonic transition, as this is an inertially driven phenomenon.

Finally, 2D models simplify the fault plane to a line and cannot reproduce areas of higher stress at
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rheological boundaries parallel to the direction of rupture propagation.

The 3D elastodynamic computational methodology developed in this thesis can be used to study

a number of other problems that require 3D models and proper treatment of both long-term quasi-

static deformation and inertial effects during simulated earthquakes, as discussed in Chapter 6.
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Chapter 2

Modeling 3D spontaneous rupture
with boundary integral method

In this chapter, we develop a 3D spectral boundary integral algorithm to simulate spontaneous

rupture and assess its accuracy and efficiency by comparing simulated results with a finite difference

method (Day, 1982b; Dalguer and Day, 2004). This comparison is necessary as spontaneous rupture

problems are highly nonlinear and do not have analytic solutions. This comparison also provides

useful data for testing new numerical methods. At the end of this chapter, we expand the algorithm

to simulate spontaneous rupture on the fault separating solids with different elastic properties.

Sections 2.1–2.7 are based on Day, Dalguer, Lapusta and Liu (2005).

2.1 Problem formulation

We consider a problem of a planar surface Σ embedded in an isotropic, linearly elastic infinite space.

The linearized equations of motion for the space are

σ = μ

(
c2
p

c2
s

− 2

)
(	 · u)I + μ(	u + u	), (2.1)

ü =
c2
s

μ
(	 · σ), (2.2)
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where σ is the stress tensor, u is the displacement vector, cs and cp are the S and P wave speeds,

respectively, μ is the shear modulus, and I is the identity tensor.

The surface Σ has a (continuous) unit normal vector n. A discontinuity in the displacement

vector is permitted across the interface Σ. On Σ we define limiting values of the displacement

vector, u+ and u−, by

u±(x, t) = lim
ε→0

u(x ± εn, t). (2.3)

We denote the discontinuity of the vector of tangential displacement (slip) by δ ≡ (I − nn) ·

(u+ − u−) , its time derivative (slip rate) by δ̇, and their magnitudes by δ and δ̇, respectively. The

traction vector σ · n is continuous across Σ. The shear traction vector τ is given by (I− nn) ·σ · n

with the magnitude τ , bounded by a non-negative frictional strength τc.

We formulate the jump conditions at the interface as follows:

τc − τ ≥ 0, (2.4)

τcδ̇ − τ δ̇ = 0. (2.5)

Equation (2.4) stipulates that the shear traction be bounded by the (current value of) frictional

strength, and equation (2.5) stipulates that any nonzero velocity discontinuity be opposed by an

antiparallel traction (i.e., the negative side exerts traction −τ on the positive side) with magnitude

equal to the frictional strength τc. But note that (2.5) has been written in a form such that it

remains valid when δ̇ is zero. In fact, when equality does not pertain in (2.4), (2.5) can be satisfied

only with δ̇ equal to zero.

The frictional strength evolves according to some constitutive functional which may in principle

depend upon the history of the velocity discontinuity, and any number of other mechanical or thermal

quantities, but is here simplified to the well-known slip-weakening form, introduced by Ida (1972)

and Palmer and Rice (1973) by analogy to cohesive zone models of tensile fracture. In that form,

τc is the product of compressive normal stress −σn (as σn = n · σ is positive in tension) and a
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coefficient of friction f(l) that depends on the slip path length l given by
∫ t

0 δ̇(t′)dt′,

τc = −σnf(l). (2.6)

For this comparison, we use the linear slip-weakening friction (the same as in Chapter 4), where

f(l) is given by:

f(l) =

⎧⎪⎪⎨
⎪⎪⎩

fs − (fs − fd)l/d0, l < d0;

fd, l ≥ d0;
(2.7)

where fs and fd are coefficients of static and dynamic friction, respectively, and d0 is the critical

slip-weakening distance (e.g., Ida, 1972; Andrews, 1976; Day, 1982b; Madariaga et al., 1998; Dalguer

et al., 2001). In the event that the normal stress and frictional parameters are constant over the

entire fault, as will be the case in the test problem considered here, this idealized model results in

constant fracture energy Γ with Γ = |σn|(fs − fd)d0/2. This simple model provides an adequate

basis for testing the numerical methods, though it may have significant shortcomings as a model for

earthquakes, in which interface frictional properties may be better represented by more complicated

relationships that account for rate and state effects (e.g., Dieterich, 1979; Ruina, 1983) and thermal

phenomena such as flash heating and pore pressure evolution (e.g., Lachenbruch, 1980; Mase and

Smith, 1985, 1987; Rice, 2006). Moreover, the energy dissipation may not be confined mostly to

the fracture surface, but rather distributed in a damage zone of finite thickness around the surface

(Andrews, 1976, 2005; Dalguer et al., 2003a,b).

Jump conditions (2.4–2.5), combined with the friction law (2.6–2.7) and appropriate initial stress

conditions on Σ, provide a model of fault behavior which is complete in the sense that no memory

variables have to be specified to explicitly track the state of rupture at each point. That is, these

conditions alone can model initial rupture (when the initial transition from inequality to equality

occurs in 2.4), arrest of sliding (when 2.4 undergoes a transition from equality back to inequality),

and reactivation of slip (if condition 2.4 switches back again from inequality to equality).
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Figure 2.1: (a) A planar fault interface (y = 0) is embedded in an infinite uniform elastic medium.
(b) On the fault interface, the square in the center is the nucleation area. The triangles are the
receivers at which we compare time-histories of slip, slip rate, and shear stress. Relative to an origin
at the center of the fault, the receiver PI has z coordinate 0 km and x coordinate 7.5 km, and the
receiver PA has x coordinate 0 km and z coordinate 6.0 km. The stress parameters are specified in
Table 2.1.

2.2 3D boundary integral method

We employ the spectral formulation of the boundary integral method for planar interfaces pioneered

by Perrin et al. (1995) for 2D anti-plane problems and extended by Geubelle and Rice (1995) to

3D fracture problems. The 3D formulation allows for displacement discontinuities that are both

normal (opening) and tangential (slip) to the crack interface. Geubelle and Rice (1995) applied the

formulation to numerical simulations of tensile cracking. Here we adopt the formulation for the shear

case, with slip only and no opening. Hence the displacements normal to the interface are continuous

in our case.

The test problem we consider involves a planar interface in an infinite uniform elastic medium

(Figure 2.1). The tractions, τν(x, z; t) = σyν(x, 0, z; t), ν = x, y, z on the planar interface y = 0

are expressed as the sum of the “loading” tractions τ0
ν (x, z; t) that would act on the interface in

the absence of any displacement discontinuity on that interface plus additional terms due to time-

dependent relative slip (or tangential displacement discontinuities δν(x, z; t)) on the interface, in the
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form

τν(x, z; t) = τ0
ν (x, z; t) + fν(x, z; t) − μ

2cs
δ̇ν(x, z; t), ν = x, z (2.8)

τy(x, z; t) = σyy(x, 0, z; t) = τ0
y (x, z; t). (2.9)

In (2.8), fν(x, z; t) are functionals of tangential displacement discontinuities; these stress-transfer

functionals incorporate much of the elastodynamic response and involve convolution integrals. The

last term on the left of (2.8), −(μ/2cs)δ̇ν(x, z; t), is separated to reduce the singularity of the con-

volution integrals (Cochard and Madariaga, 1994). δ̇ν(x, z; t), as before, denote the time derivatives

of the tangential displacement discontinuities. Equation (2.8) reflects the elastodynamic fact that

tangential displacement discontinuities (or slips) on a planar interface between identical elastic solids

do not alter the stress normal to the interface, and hence the time dependence of normal stress in

the shear case can be imposed only externally (through dynamic loading, for example). The normal

stress would be altered by the displacement discontinuity normal to the interface, by nonplanarity

of the sliding surface, or by sliding on a planar interface between dissimilar elastic solids. However,

we do not consider any of those cases here.

The loading tractions τ0
ν (x, z; t) are the stresses that would result along the interface due to ex-

ternal loading if the interface were restricted against any slip. Hence they need to be computed from

the prescribed loading before the formulation (2.8–2.9) can be applied. In the test cases considered

here, the tractions before the sliding starts are given and there is no additional loading, and hence

τ0
ν (x, z; t) are just equal to the initial tractions prescribed. To study earthquake problems in general,

one can assume some (simplified) loading scenarios, for example, one in which, τ0
ν (x, z; t), ν = x, z,

grow with time in a prescribed manner.

The method is called “spectral” because it relates the functionals fν(x, z; t), ν = x, z, to dis-

placement discontinuities δν(x, z; t) in the Fourier domain. For our numerical implementation, we

represent the displacement discontinuities and stress-transfer functionals by their truncated Fourier

series. The interface is discretized into rectangular elements, with Nν (even) being the number of
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elements in the ν direction, and we write

δν(x, z; t) =
Nx/2∑

k=−Nx/2

Nz/2∑
m=−Nz/2

Dν(k, m; t) exp
(

2πi

(
kx

λx
+

mz

λz

))
,

fν(x, z; t) =
Nx/2∑

k=−Nx/2

Nz/2∑
m=−Nz/2

Fν(k, m; t) exp
(

2πi

(
kx

λx
+

mz

λz

))
, ν = x, z. (2.10)

In (2.10), λx and λz are the dimensions of the interface region simulated, replicated periodically.

The periods λx and λz have to be chosen larger than the domain over which the rupture propagation

takes place, to assure that the influence of waves arriving from the periodic replicates of the rupture

process is negligible. Let us denote the wave vectors of Fourier components by q̂ = (k̂, m̂) with

k̂ = 2πk/λx, m̂ = 2πm/λz, q̂ = |q̂| =
√

k̂2 + m̂2. (2.11)

The Fourier coefficients Fν(k, m; t) of the functionals and Dν(k, m; t) of the displacement disconti-

nuities are then related by:

⎧⎪⎪⎨
⎪⎪⎩

Fx(k, m; t)

Fz(k, m; t)

⎫⎪⎪⎬
⎪⎪⎭ = − μ

2q̂

⎡
⎢⎢⎣ k̂2 m̂k̂

m̂k̂ m̂2

⎤
⎥⎥⎦
∫ t

0

CII(q̂cs(t − t′))

⎛
⎜⎜⎝Dx(k, m; t′)

Dz(k, m; t′)

⎞
⎟⎟⎠ qcsdt′

− μ

2q̂

⎡
⎢⎢⎣ m̂2 −m̂k̂

−m̂k̂ k̂2

⎤
⎥⎥⎦
∫ t

0

CIII(q̂cs(t − t′))

⎛
⎜⎜⎝ Dx(k, m; t′)

Dz(k, m; t′)

⎞
⎟⎟⎠ qcsdt′, (2.12)

where CII(ρ) and CIII(ρ) are convolution kernels corresponding to mode II and III of the stan-

dard deformation decomposition in fracture mechanics. Equation (2.12) assumes that there are no

displacement discontinuities before t = 0. The convolution kernels are:

CII(ρ) =
J1(ρ)

ρ
+ 4ρ

[
W (

cp

cs
ρ) − W (ρ)

]
− 4

cs

cp
J0(

cp

cs
ρ) + 3J0(ρ), (2.13)

CIII(ρ) =
J1(ρ)

ρ
, (2.14)
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W (ρ) =
∫ ∞

ρ

J1(η)
η

dη = 1 −
∫ ρ

0

J1(η)
η

dη, (2.15)

where J0(ρ) and J1(ρ) denote Bessel functions.

The formulation that involves expression (2.12) is referred to as “displacement” formulation,

because the convolutions in (2.12) are done on the histories of Fourier coefficients of displacement

discontinuities. To separate the static (long-term) and transient dynamic responses, the integrals in

(2.12) can be integrated by parts to obtain

⎧⎪⎪⎨
⎪⎪⎩

Fx(k, m; t)

Fz(k, m; t)

⎫⎪⎪⎬
⎪⎪⎭=− μ

2q̂

⎡
⎢⎢⎣ k̂2 m̂k̂

m̂k̂ m̂2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩2
(

1 − c2
s

c2
p

)⎛⎜⎜⎝Dx(k, m; t)

Dz(k, m; t)

⎞
⎟⎟⎠−
∫ t

0

KII(q̂cs(t − t′))

⎛
⎜⎜⎝Ḋx(k, m; t′)

Ḋz(k, m; t′)

⎞
⎟⎟⎠ dt′

⎫⎪⎪⎬
⎪⎪⎭

− μ

2q̂

⎡
⎢⎢⎣ m̂2 −m̂k̂

−m̂k̂ k̂2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝Dx(k, m; t)

Dz(k, m; t)

⎞
⎟⎟⎠−
∫ t

0

KIII(q̂cs(t − t′))

⎛
⎜⎜⎝Ḋx(k, m; t′)

Ḋz(k, m; t′)

⎞
⎟⎟⎠ dt′

⎫⎪⎪⎬
⎪⎪⎭ , (2.16)

where

KII(ρ) =
∫ ∞

ρ

CII(η)dη = 2
(

1 − c2
s

c2
p

)
−
∫ ρ

0

CII(η)dη, (2.17)

KIII(ρ) =
∫ ∞

ρ

CIII(η)dη = 1 −
∫ ρ

0

CIII(η)dη. (2.18)

The spectral BI formulation has several advantages over the purely space-time formulation. In

the latter, stress-transfer functionals fν(x, z; t) are written as integrals on both space and time, be-

cause the tractions at a particular location on the interface depend on the slip information within

the relevant space-time cone determined by the speed of the propagation of elastic waves. Hence, in

the discretized space-time formulation, the value of the stress-transfer functional for each cell would

be determined by the histories of displacement discontinuities for all relevant cells. In the spectral

formulation, the Fourier coefficients of the functionals corresponding to the wave vector q̂ depend

only on the Fourier coefficients of the displacement discontinuity corresponding to the same vector

q̂, as can be seen in (2.12) or (2.16). Hence, the space-related integration is eliminated at the cost

of introducing Fourier transforms. However, Fourier transforms take less computational time than
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space integration, even when the necessity to simulate larger domains is taken into consideration, as

discussed in Lapusta et al. (2000) for a 2D case. Another advantage is having the transient elastody-

namic response separated into Fourier modes. The convolution kernels in (2.16) are oscillating with

decaying amplitude and hence at large enough times the convolutions can be truncated. In addition,

the arguments of the kernels contain the magnitude of the wave vector, which is larger for higher

modes. Hence, the convolution for the higher modes can be truncated sooner than for the lower

modes, and such mode-dependent truncation can save a lot of computational time, as discussed in

Lapusta et al. (2000) for a 2D case. Moreover, such mode-dependent truncation may serve as means

to suppress numerical high-frequency noise, although this has not yet been studied systematically.

Note that separation of the response into the static part (involving the current values of displacement

discontinuities) and the dynamic part (involving convolution integrals on velocity discontinuities)

as accomplished by (2.16) ensures that regardless of how the convolutions are truncated, the final

static stress response is fully accounted for. Even though justifiable truncation produces results very

close to those obtained with no truncation, we do not use truncation in this work, to ensure that

the comparison with other numerical methods (e.g., finite difference method) is not complicated by

the (minor) effects of the truncation.

The solution is obtained by making the tractions (2.8) on the interface agree with the jump

conditions (2.4–2.5) that involve the frictional strength (2.6–2.7). The shear traction vector τ and

the compressive normal stress σn that enter (2.4–2.7) are given in terms of tractions τν(x, z; t) by

τ = (τx, τz); τ =
√

τ2
x + τ2

z ; σn = τy. (2.19)

2.3 Test problem

To access the accuracy of our boundary integral method, we simulate a test problem and compare it

with a well-established finite element method (Day, 1982b; Dalguer and Day, 2004). The numerical

test entails solving the spontaneous rupture problem for a planar fault embedded in a uniform infinite
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elastic isotropic space. The formulation and parameters of the test case correspond to Version 3

of the Southern California Earthquake Center (SCEC) benchmark problem developed for the 2nd

SCEC Spontaneous Rupture Code-Validation Workshop of 2004 (Harris et al., 2004, 2008). The

problem geometry is shown in Figure 2.1(b). We take the fault plane to be the x − z plane. The

shear prestress is aligned with the x axis, and the origin of the coordinate system is located in the

middle of the fault, as shown in Figure 2.1(b). The fault and prestress geometries are such that the

x and z axes are axes of symmetry (or antisymmetry) for the fault slip and traction components.

As a result, the x− y plane undergoes purely in-plane motion, and the z− y plane purely anti-plane

motion.

Rupture is allowed within a fault area 30 km in the x direction and 15 km in the z direction.

A homogeneous medium is assumed, with a P wave velocity of 6000 km/s, S wave velocity of 3464

m/s, and density of 2670 kg/m3. The distributions of the initial stresses and frictional parameters

on the fault are specified in Table 2.1. The nucleation occurs in 3 km × 3 km square area that is

centered on the fault, as shown in Figure 2.1. The rupture initiates because the initial shear stress

in the nucleation patch is set to be slightly (0.44%) higher than the initial static yield stress in

that patch. Then the rupture propagates spontaneously through the fault area, following the linear

slip-weakening fracture criterion (2.6– 2.7). The rupture cannot propagate beyond the 30 km × 15

km region due to the high static frictional strength set outside the region, and the region boundaries

send arrest waves that ultimately stop the rupture. The duration of the simulation until the full

arrest of the slip is about 12 s.

We computed eight BI solutions and seven DFM solutions to the test problem, with grid intervals

and time steps shown in Table 2.2. All BI solutions use a uniform mesh. Grid intervals for the BI

solutions range from 0.1 km to 0.75 km. The smallest grid interval was x = 0.1 km (with time

step 0.00962 s), and the corresponding solution is denoted BI0.01. The other BI solutions are given

similar designations—for example, the case x = 0.75 km (with time step 0.07217 s) is denoted

BI0.75. DFM solutions use grid sizes x ranging from 0.05 km (with time step 0.005 s) to 0.3 km

(with time step 0.020 s), with a naming convention analogous to that used for the BI solutions.
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Table 2.1: Stress and frictional parameters for test problem

Parameters
Within Fault Area of 30 km × 15 km

Outside Fault Area
Nucleation Outside Nucleation

Initial shear stress τ0, MPa 81.6 70.0 70.0
Initial normal stress −σn, MPa 120.0 120.0 120.0
Static friction coefficient fs 0.677 0.677 +∞
Dynamic friction coefficient fd 0.525 0.525 0.525
Static yield stress τs = −fsσn 81.24 81.24 +∞
Static yield stress τd = −fdσn 63.0 63.0 63.0
Dynamic stress drop Δτ = τo − τd,MPa 18.6 7.0 7.0
Strength excess τs − τo, MPa -0.36 11.24 +∞
Critical slip distance d0,m 0.40 0.40 0.40

Although our principal objective is to compare the BI and DFM solutions, comparison of the

various BI (or DFM) solutions with each other is also informative, in that it helps establish the

degree to which grid-size invariance has been achieved in the numerical solutions. The BI and

DFM calculations were done independently, initially as a part of a blind test of spontaneous rupture

algorithms coordinated by SCEC (Harris et al., 2004).

Table 2.2: Test problem calculations

Calculation Spatial Step Time Step Median Resolution Minimum Resolution
Name Δx, km Δt, s N̄c Nmin

c

BI0.1 0.1 0.00962 4.4 3.3
BI0.15 0.15 0.01443 2.9 2.2
BI0.2 0.2 0.01924 2.2 1.6
BI0.25 0.25 0.02406 1.7 1.3
BI0.3 0.3 0.02887 1.5 1.1
BI0.5 0.5 0.04811 0.9 0.65
BI0.6 0.6 0.05774 0.7 0.54
BI0.75 0.75 0.07217 0.6 0.43

DFM0.05 0.05 0.005 8.7 6.5
DFM0.075 0.075 0.00625 5.8 4.3
DFM0.10 0.10 0.008 4.4 3.3
DFM0.15 0.15 0.0125 2.9 2.2
DFM0.20 0.20 0.016 2.2 1.6
DFM0.25 0.25 0.015 1.7 1.3
DFM0.30 0.30 0.020 1.5 1.1
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2.4 Cohesive zone and constraints on discretization

An important dimensionless measure of the resolution of numerical methods is the ratio Nc of the

size (also called width or length) Λ of the cohesive (or slip-weakening) zone to the grid spacing

Δx, i.e., the number of fault-plane node points (measured in the direction of rupture propagation)

defining the cohesive zone:

Nc = Λ/Δx. (2.20)

The cohesive zone is the portion of the fault plane behind the crack tip where the shear stress

decreases from its static value to its dynamic value and slip path-length l satisfies 0 < l < d0

(e.g., Ida, 1972). In the cohesive zone, shear stress and slip rate vary significantly, and proper

numerical resolution of those changes is crucial for capturing the maximum slip rates and the rupture

propagation speeds.

Here we review some concepts of linear fracture mechanics and simple estimates for the cohesive-

zone size in two-dimensional cases of Mode II and Mode III, following and combining results by

Palmer and Rice (1973), Andrews (1976), Andrews (2004), Rice (1980), and Freund (1990). Note

that while the rupture considered here is three-dimensional, it proceeds in Mode II or in-plane mode

along the x axis and in Mode III or anti-plane mode along the z axis of the fault plane. Following

standard treatment in fracture mechanics, we consider a planar semi-infinite crack with constant

shear traction τd = −σnfd everywhere on the crack surfaces except for the cohesive zone 0 < ξ < Λ

behind the crack tip (given by ξ = 0), where the shear traction τ(ξ) varies from the peak shear

stress τs = −σnfs to τd. While our crack is not semi-infinite, this is a good approximation for the

region near the crack tip. Let us assume that the cohesive-zone width is small enough relative to the

overall rupture size that we can employ the small-scale yielding limit of fracture mechanics (Rice,

1968). In that limit, the stress field that surrounds the cohesive zone is assumed to be dominated by

the singular part of the crack field, characterized by the stress intensity factor K, which is either KII

for Mode II or KIII for Mode III. Finally, we consider the crack propagation to be steady, with the

constant crack (or rupture) speed v. The results obtained with the assumptions of steady rupture
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should still be reasonably accurate for the unsteady case, provided that the crack speed does not

change significantly over propagation distances comparable to the cohesive zone length or several

times that (Freund, 1990). In the following, we use subscripts II or III to indicate that the quantity

is related to Mode II or III; the same quantities with no subscript participate in expressions valid

for both Mode II and III.

The balance of the energy release rate G and fracture energy Γ at the crack tip can be written

as (e.g., Freund, 1990):

G ≡ A(v)K2/(2μ∗) = Γ (2.21)

where μ∗
III = μ, μ∗

II = μ/(1 − ν), μ is the shear modulus, ν is the Poisson’s ratio, Γ is the fracture

energy, and functions A(v) are known dimensionless functions of crack tip speed v (Freund, 1990).

The fracture energy Γ is given by the cohesive zone law; in our case:

Γ = d0(τs − τd)/2. (2.22)

Since the cohesive zone presence eliminates the singularity at the crack tip, K and τ(ξ) must be

related by (e.g., Rice, 1980; Freund, 1990):

K =

√
2
π

∫ Λ

0

τ(ξ) − τd√
ξ

dξ. (2.23)

A useful estimate of the cohesive zone size can be derived from equation (2.21–2.23) if we assume

that the traction distribution within the cohesive zone is a function only of ξ/Λ, i.e.,

τ(ξ) = τs − (τs − τd)f(ξ/Λ), f(0) = 0, f(1) = 1. (2.24)

Then from (2.23), the cohesive zone width Λ can be expressed as

Λ = C1
K2

(τs − τd)2
, C1 =

√
2
π

∫ 1

0

1 − f(ς)√
ς

dς. (2.25)
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To estimate the constant C1, we assume that the traction distribution within the cohesive zone

is linear, i.e., τ(ξ) = τs − (τs − τd)ξ/Λ , in which case C1 = 9π/32 . Note that our cohesive relation

comes from friction laws (2.6–2.7), and the shear tractions are given as a linear function of slip-path

length l, not space variable ξ. However, simulations show that this is a good assumption, as shear

tractions within the cohesive zone are approximately linear with ξ . Determining K2 from equations

(2.21–2.23) and substituting into (2.25), we obtain:

Λ = Λ0A
−1(v), Λ0 = C1

μ∗d0

(τs − τd)
, (2.26)

where

μ∗
III = μ, μ∗

II = μ/(1 − ν), A−1
III = (1 − v2/c2

s )1/2,

A−1
II = (1 − ν)c2

sD

v2(1 − v2/c2
s )

1/2 , D = 4(1 − v2/c2
p)1/2(1 − v2/c2

s )1/2 − (2 − v2/c2
s)2;

C1 = 9π/32 for linearτ(ξ). (2.27)

In (2.26), since A−1(0+) = 1, Λ0 denotes the cohesive zone size that the crack has when its speed

is v = 0+ (the crack is barely moving). A−1(v) are decreasing functions of the rupture speed v,

and A−1(0+) → 0 as v → cR (Rayleigh wave speed) for Mode II or v → cs (shear wave speed) for

Mode III. Hence we see that as the crack velocity increases, the cohesive zone undergoes Lorentz

contraction in the direction of rupture propagation, its width collapsing as A−1(v) given in (2.27).

Λ0 provides a convenient upper bound for the cohesive zone size (it is an upper bound in the

sense that any nonzero rupture speed would shrink this zone even further as predicted by equation

(2.26)). The expression for Λ0 with C1 = 9π/32 was originally derived by Palmer and Rice (1973)

and then discussed in Rice (1980). In numerical simulations, one should definitely resolve Λ0 with

more than one spatial element, as we discuss further at the end of this section.

To come up with an estimate for the cohesive zone size Λ that accounts also for the effect of

rupture speeds and their change with the propagation distance, we need to make some reasonable
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assumptions about the development of the stress intensity factor K as the rupture propagates. We

can then use (2.21) to estimate the rupture speeds v, and corresponding contraction factor A−1(v),

that would result from such K. Under wide range of conditions (e.g., Freund, 1990; Broberg, 1999),

K can be factored as

K = k(v)Kref , (2.28)

where k(v) are known dimensionless functions of the rupture speed and Kref is the equilibrium stress

intensity factor that depends on the given applied loading and characteristic crack dimension but

is independent of the rupture speed. Note that equation (2.28) is derived for a semi-infinite crack

propagating in an infinite medium and does not account for effects of boundaries or finite crack size.

For example, in the case of a finite crack, the stress field of the opposite crack tip influences K, so its

precise value depends upon the past history of rupture. We neglect this memory and other potential

effects, and consider the case in which Kref is only determined by stress released on the fault, given

by the stress drop Δτ = τo − τd, and the length of the rupture 2L. The dimensional considerations

dictate the form

Kref = C2L
1/2Δτ, (2.29)

where C2 is a constant of order 1. For the case of a static Mode II or Mode III crack of length 2L

embedded in an infinite elastic medium, C2 =
√

π.

Now we can substitute the assumed stress intensity factor (2.28–2.29) into the crack tip balance

(2.21–2.22) and then solve the resulting equation for the crack speed v and hence the Lorentz

contraction factor A−1(v). This is possible to do analytically only for the Mode III case. The result

is

A−1
III = (1 − v2/c2

s )
1/2 =

2L0/L

1 + (L0/L)2
, (2.30)

where 2L0 is the size of the crack when v = 0+ or 2L0 is the critical crack length, given by

L0 =
μd0(τs − τd)
C2

2 (τo − τd)2
=

μd0(S + 1)
C2

2Δτ
. (2.31)
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In (2.31), S = (τs − τo)/(τo − τd) is the dimensionless seismic ratio (Andrews, 1976; Das and Aki,

1977), and, for a static Mode II or Mode III crack, C2
2 = π. For the parameters of the test problem,

2L0 = 3 km which motivates the 3-km choice for nucleation region size in the test problem. Note

that the nucleation region is overstressed which ensures that slip there starts right away.

We can combine these results in two ways. First, substituting the Lorentz factor (2.30) into the

cohesive zone expression (2.26), we obtain:

Λ = Λ0
2L0/L

1 + (L0/L)2
, (2.32)

which shows how the zero-speed cohesive zone size Λ0 decreases as the rupture lengthens (or prop-

agates). Additionally, by writing out explicitly Λ0 and L0 in the numerator of (2.32), we get

Λ =
C1

C2
2

(
μd0

Δτ

)2( 1
1 + L2

0/L2

)
L−1. (2.33)

In (2.33), the only dependence upon the seismic ratio S is contained in the critical crack half-length

L0. For crack sizes L large compared to the critical crack size L0, we get

Λ =
C1

C2
2

(
μd0

Δτ

2)
L−1, L � L0, (2.34)

where, based on the values of C1 and C2 introduced above, C1/C2
2 = 9/16 . Note that, under the

assumptions made, the cohesive zone size Λ is independent of (τs − τd) and hence, for a given Δτ , of

the relative strength factor S. Physically, the absence of strong dependence on (τs − τd) arises from

the following tradeoff: reducing (τs − τd) increases the zero-speed cohesive zone length Λ0 (equation

2.26), but it also increases the rupture velocity occurring at a given rupture distance L, producing a

compensating Lorentz contraction (equations 2.30 and 2.31). Note also that the cohesive zone size

is inversely proportional to the crack half-length L. For L � L0 , the crack half-length L would be

approximately equal to the propagation distance. The functional form (2.34) is identical to Andrews

(1976, 2004, 2005) estimate obtained by somewhat different considerations.
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Hence we have at least two ways to estimate the cohesive zone size and calibrate numerical

resolution: the zero-speed cohesive zone size Λ0 given by (2.26) and the approximate solution (2.34)

for Λ at large propagation distances. The two estimates are complementary. The Λ0 estimate shows

that, regardless of the background stress or rupture propagation distances, the numerical resolution

is already constrained by the choice of the frictional parameters and elastic bulk properties. For the

parameters used in our test problem and C1 = 9π/32, we find

ΛIIIo = 620 m, ΛIIo = 827 m (2.35)

where ΛIIIo and ΛIIo refer to the values for Mode II and Mode III, respectively. Since we need several

spatial nodes within Λ0 to accommodate the Lorentz contraction, these estimates already indicate

that good spatial resolution of our problem would involve grid sizes of order 100 meters or smaller.

The Λ estimate attempts to incorporate the background stress level (through the stress drop Δτ)

and the reduction of the cohesive zone due to the increasing crack speed v for large propagation

distances L. Using expression (2.34) with the maximum anti-plane propagation distance L = 7.5

km and C1/C2
2 = 9/16, we obtain

Λest
IIImin = 251 m. (2.36)

For Mode II, we cannot derive an analytical formula like equation (2.34), but we can perform the

procedure numerically. For a given L, we compute K from equation (2.28– 2.29) and substitute it

into the crack tip balance (2.21). This result in an equation with respect to the crack speed v which

can be solved numerically. Then we use that v to find from (2.26). Taking L = 15 km, the largest

propagation distance in the in-plane direction, we get

Λest
IImin = 190 m. (2.37)

Both the Λ0 estimate from (2.26) and the Λ estimate (2.34) should give good initial guidance as to

what kind of spatial resolution will be needed in dynamic rupture propagation problems. However,



28

0 5 10 15
0

1

2

3

4

5

6

Fault along inplane (km)

Ti
m

e(
se

c)

BI
DFM dx=0.1
DFM dx=0.05

0 1 2 3 4 5 6 7
Fault along Antiplane (km)

0

1

2

3

4

Ti
m

e(
se

c)

0 110

Figure 2.2: Cohesive zone during rupture, along both in-plane and anti-plane directions, for BI0.1
(dashed curve), DFM0.1 (dash-dotted curve), and DFM0.05 (solid curve) solutions

one should not expect a perfect quantitative agreement, as the estimates are derived with a number

of simplifying assumptions. For example, we use the small-scale yielding assumption, the validity

of which in any real situation would be only approximate. In addition, the most uncertain part

of the estimate Λ is the set of assumptions made about the stress intensity factor. Finally, crack

problems usually have features not considered in this analysis. For example, our test problem is

three-dimensional, and the crack is initiated rather abruptly, by overstressing a region in the middle

of the fault, which would certainly affect its development. Still, both estimates (2.36) and (2.37)

compare very well, in the qualitative sense, with the actual results of our computation. Figure 2.2

shows the cohesive zone development in both anti-plane and in-plane directions. For measuring Λ,

we define the leading edge of the cohesive zone as the spatial grid point at which the shear traction

reaches τs, and include in the cohesive zone the interval over which the shear traction decreases to

τd. The comparison between the estimates and the observed values make sense only well outside the

nucleation zone, which is artificially overstressed (τo < τs). We see that right outside the nucleation

zone, the cohesive zone abruptly narrows and then starts to expand. These features are clearly due

to the over-stressed nucleation. The smallest size of the cohesive zone right after nucleation is 300
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m and it is in the anti-plane direction (all values reported in this section are based on the BI0.1

solution). Some time later the maximum sizes ΛIIImin in the anti-plane direction and ΛIImin in the

in-plane direction are reached:

ΛIIImax = 460 m, ΛIImax = 560 m. (2.38)

After these nucleation-dominated effects, the cohesive zone progressively decreases, consistently with

the theoretical developments above, reaching its subsequent smallest values at the ends of the fault:

ΛIIImin = 350 m, ΛIImin = 325 m. (2.39)

Hence we see that the Λ0 estimate (2.35) gives a very close upper bound to all cohesive zone sizes

observed in our simulation. Moreover, the BI simulation with the spatial resolution Δx = 1 km,

which is just slightly larger than both ΛIIIo = 620m and ΛIIo = 827m, results in very oscillatory

behavior that makes the rupture arrest right after leaving the nucleation patch (that is why we do

not include this run in our comparison and Table 2.2) while the BI simulation with Δx = 0.75 km,

which resolves Λ0 with about one cell size, still results in the rupture spreading throughout the

fault, even though the results are not very accurate compared with our best-resolved and convergent

solutions. Hence resolving Λ0 is absolutely critical, and of course more than one cell is required

for good results as discussed in the next section. Notice also that ΛIIIo/ΛIIo = 3/4 = 1/(1 − ν)

(where ν = 0.25 is the Poisson’s ratio), which predicts that, for the same propagation distances,

the cohesive zone sizes in the anti-plane direction should be smaller than the cohesive zone sizes in

the in-plane direction, exactly what we observe. However, the in-plane direction has a longer extent

and ultimately results in a smaller cohesive zone at the end of the fault, as values (2.39) show. This

is predicted by the estimates of Λmin given in (2.36–2.37). The estimates of Λmin are smaller than

the actual values by a factor of about 1.5 (which is a constant of order 1), which we consider a very

good qualitative agreement.

We conclude that one can use estimates (2.26) and (2.34) very effectively to approximately
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determine cohesive zone sizes that would occur in a spontaneous rupture simulation. As we describe

further in the following sections, proper resolution of the cohesive zone sizes is crucial for obtaining

convergent numerical results.

To quantify our resolution, we need to report the number of spatial elements or grid points we

have within the cohesive zone, given by the parameter Nc = Λ/Δx defined in (2.20). However,

the cohesive zone size changes as the crack propagates, and hence Nc is not a single number but

rather a variable quantity. In the next section, where we calculate some global metrics of the

numerical solutions to characterize their differences, it will be convenient to have a corresponding

index characterizing globally the level of cohesive-zone resolution attained in a given numerical

solution. Hence we define a resolution index N̄c based on the median value of Nc obtained in the

BI0.1 solution in the in-plane direction (because the in-plane direction is longer and hence likely to

be representative of more points on the fault). We will also report Nmin
c , the minimum of Nc in the

in-plane direction, as that value represents the worst local resolution achieved. Taking the spatial

values in km consistently with the definition of grid sizes in Table 2.2, we get:

N̄c = Λ̄II/Δx Nmin
c = ΛIImin/Δx, (2.40)

where Λ̄II = 0.44 km and ΛIImin = 0.33 km are, respectively, the median and minimum cohesive zone

sizes we observe in our simulations in the in-plane direction. Values of N̄c and Nmin
c are reported in

Table 2.2.

2.5 Comparison of numerical results

We compare results in two stages. First, we quantify the differences in the DFM and BI solu-

tions, respectively, as the grid interval Δx is varied. Then we focus on quantitative and qualitative

comparisons of three relatively high-resolution solutions, DFM0.05, DFM0.1, and BI0.1.
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Figure 2.3: Differences in time of rupture, relative to reference solution, shown as a function of grid
interval Δx . Differences are RMS averages over the fault plane. Open circles are BI solutions,
relative to BI0.1 (the smallest grid-interval BI case). Solid circles are DFM solutions, relative to
DFM0.05 (the smallest grid-interval DFM case). The dashed lines show the (approximate) depen-
dence of time step Δt on Δx. The upper axis characterizes the calculations by their characteristic
N̄c values, where N̄c is median cohesive zone width in the in-plane direction divided by Δx . Note
the power-law convergence of both methods as the grid size is reduced. The 90% confidence intervals
on the power-law exponents suggested by the regression lines are: BI [2.44–3.04]; DFM [2.77–3.15],
indicating approximately equal convergence rates for the two methods.
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2.5.1 Grid dependence of solutions

For the spontaneous rupture problem, the rupture arrival time (referred to as “rupture time” in

the following) is a rather sensitive indicator of numerical precision. This sensitivity reflects the

nonlinearity of the problem: Since rupture can only occur after the shear stress reaches a threshold

value, relatively small inaccuracies in the calculated stress field can be expected to very significantly

affect the timing of rupture breakout from the nucleation zone as well as the subsequent rupture

velocity. If the rupture times are captured well, so is the rupture tip speed (or crack speed), and the

rupture speed is one of the factors that influence seismic signals most. Plus, higher rupture speeds

are linked to higher maximum slip rates, and hence accurate rupture times mean that the slip rates

are also captured reasonably well. Therefore, we have used rupture-time differences as a primary

means to quantify differences between solutions, with rupture time of a point on the interface defined

here as the time at which the slip rate at that point first exceeds 1.0 mm/s.

The rupture-time comparisons are summarized in Figure 2.3. Note that the abscissa is denoted

in two different ways on Figure 2.3. On the bottom, the grid size is given. On the top, we show the

corresponding median cohesive-zone resolution parameter given by N̄c given by equation (2.40).

Using BI0.1 as a reference, open circles in Figure 2.3 show rupture-time difference as a function of

grid interval for the BI calculations. The quantity plotted is the root mean square (RMS) difference

of rupture times relative to BI0.1, with the average taken over all fault-plane nodes outside the

nucleation patch; the result is then expressed as a percentage of the mean rupture time in BI0.1.

The RMS differences for BI calculations appear to follow a power law in the grid size, with estimated

exponent 2.74 (90% confidence interval 2.44 to 3.04). The dashed lines in Figure 2.3 show the

numerical time step sizes as a function of Δx. The rupture-time difference between BI0.15 and

BI0.1 closely approaches (within 20%) the one-time step threshold. Thus, we conclude that the

BI solution has achieved rupture-time stability, to within about one time step, for Δx ≤ 0.15 km,

corresponding to N̄c ≥ 2.9(Nmin
c ≥ 2.2).

Solid circles in Figure 2.3 show the rupture-time differences for DFM, using DFM0.05 as a

reference. As for DFM, the rupture time differences exhibit power law behavior in the grid size. The
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Figure 2.4: Differences in final slip (diamonds) and peak slip velocity (circles), relative to reference
solution, shown as a function of grid interval Δx . Differences are RMS averages over the x and z
axes of the fault plane. Open symbols are BI solutions, relative to BI0.1 (the smallest grid-interval BI
case). Solid symbols are DFM solutions, relative to DFM0.05 (the smallest grid-interval DFM case).
Note the power-law convergence of both methods as the grid size is reduced. The 90% confidence
intervals on the power-law exponents suggested by the regression lines are: BI displacement [1.07–
1.99]; DFM displacement [1.31–1.84]; BI velocity [1.04–1.33]; DFM velocity [1.02–1.33]. Outliers at
Δx = 0.2 km and 0.6 km were not used in estimating the BI displacement slope.

slope, 2.96 (90% confidence interval 2.77 to 3.15), is not significantly different from that for the DFM

case. The DFM solution achieves rupture-time stability to within about a time step with Δx ≤ 0.1

km, corresponding to N̄c ≥ 4.4(Nmin
c ≥ 3.3), which is an N̄c value about 3/2 the BI requirement

(i.e., BI achieves the same convergence with 50% larger Δx than DFM).

Figure 2.4 summarizes the behaviors of two additional measures of grid-size dependence: final slip

and maximum slip velocity. Each diamond (open for BI, solid for DFM) represents an RMS average

(taken over the points along the x and z axes) of the difference in final slip between the solution

for a given Δx value and a reference solution. The circles are the corresponding RMS averages for

peak slip velocity. As before, BI0.1 serves as the reference for all the BI calculations, and DFM0.05

serves as the reference for all the DFM calculations. As was the case for the rupture times, the

slip and slip velocity differences have roughly power-law behavior, with exponents between 1 and 2.
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The displacement differences have steeper slopes than the peak velocity slopes, but 90% confidence

intervals for the slopes overlap. The peak slip velocity difference falls to ∼ 7% or less for Δx ≤ 0.3

km (N̄c ≥ 1.5) for BI, and for Δx ≤ 0.1 km (N̄c ≥ 4.4) for DFM. The BI peak slip velocities and

final slips converge to within a given tolerance level with N̄c about 1/3 the DFM requirements for

the same tolerance level.

Note that BI slip comparisons in Figure 2.4 (open diamonds) contain two outliers, the computa-

tions with Δx = 0.2 km and Δx = 0.6 km. These runs have larger discrepancies in final slip because

the simulated domain in these runs is slightly asymmetric with respect to the central nucleation

zone. Consider the case with Δx = 0.2 km. The nucleation region (which is 3 km × 3 km) has

15 cells in the x direction, an odd number, while the fault domain (which is 30 km × 15 km) has

150 cells in the x direction, an even number. Hence, in the x direction, there have to be different

numbers of cells to the left and to the right of the nucleation zone (Figure 2.1); we choose 62 cells to

the left and 63 cells to the right. This makes the nucleation zone slightly asymmetric with respect

to the fault boundaries and the geometry slightly different from the runs that simulate the original

symmetric problem. The slight asymmetry does not affect the rupture times and peak velocities,

as these are reached before the rupture samples the boundaries of the fault zone, but the final slips

depend on the arrest waves from the boundaries and are affected.

In our calculations, the time step is proportional to the grid size, as reflected by the dashed lines

of Figure 2.3, and hence the resolution can be characterized by the grid spacing Δx only, or by

Nc as its nondimensional measure. However, the BI calculation for a given Δx can be somewhat

improved by taking smaller time steps. We do not attempt to quantify this here, but note that, as

a result, for a different proportionality factor between the grid size and the time step, or for a case

where lower spatial resolutions use smaller time steps, the convergence rates could be somewhat

different, and hence adequate performance could be reached for slightly larger Δx (or smaller Nc).

We conclude that both BI and DFM solutions have achieved numerical convergence with respect to

grid size reduction. Notably, the BI and DFM methods appear to have the same convergence rates,

as indicated by the near-equality of the corresponding BI and DFM slopes in Figures 2.3 and 2.4.
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Figure 2.5: Contour plot of the rupture front for the dynamic rupture test problem. Solid curves
are for DFM0.05 (grid size Δx = 0.05 km); dotted curves are for DFM0.1 (grid size Δx = 0.1 km);
dashed curves are for BI0.1 (grid size Δx = 0.1 km).

Note, however, that for each measure (rupture time, peak slip velocity, final slip), BI solutions, for a

given Δx, have smaller differences with the BI best-resolved solution, BI0.1, than the corresponding

DFM solutions have with their best-resolved solution, DFM0.05. For rupture time, BI achieves the

given tolerance level for N̄c about a factor of 1.5 lower than DFM; for peak slip velocity and final

slip, BI achieves the given tolerance level for N̄c about a factor of 3 lower than DFM.

2.6 Comparison of high-resolution solutions

Three relatively high-resolution solutions of the test problem are compared in Figures 2.5 to 2.6.

For this purpose, we use the highest-resolution solution for each method (BI0.1 and DFM0.05,

respectively), and also include DFM0.1 to provide a direct comparison between the two methods

when the same grid-interval is employed. Recall that BI0.1 and DFM0.1 represent the cohesive zone

with N̄c of 4.4 node points (and Nmin
c = 3.3), and that DFM0.05 represents the cohesive zone with

N̄c of 8.7 node points (and Nmin
c = 3.3). Figure 2.5 shows contours of rupture time for these three

solutions. The computed evolution of the rupture front is virtually identical for all three solutions.

The level of agreement appears to be good at all distances, from the nucleation patch to the outer



36

−1

0

1

2

3

4

Sl
ip

 (m
)

Time (sec)
0 2 4 6 8 10

60

65

70

75

80

85

Sh
ea

r S
tr

es
s 

(M
Pa

)

0 2 4 6 8 10
60

65

70

75

80

85

0 2 4 6 8 10 12
60

65

70

75

80

85
PI

−2

−1

0

1

2

3

Sh
ea

r S
tr

es
s 

(M
Pa

)

Time (sec)
0 2 4 6 8 10

60

70

80

Sl
ip

 (m
)

0 2 4 6 8 10
60

65

70

75

80

85

0 2 4 6 8 10 12
60

65

70

75

80

85
PA

PI

0 2 4 6 8 10 120

0.5

1

1.5

2

2.5

3

3.5

Sl
ip

 ra
te

 (m
/s

)

Time (sec)

PA

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

Sl
ip

 ra
te

 (m
/s

)

Time (sec)

2.9 3 3.1 3.2 3.30

0.5

1

1.5

2

2.5

3

3.5
Sl

ip
 ra

te
 (m

/s
)

Time (sec)

2.4 2.6 2.8 3 3.1

64

68

72

76

80

Sh
ea

r s
tr

es
s 

(M
Pa

)

Time (sec)

2.2 2.4 2.6 2.8 3

64

68

72

76

Sh
ea

r s
tr

es
s 

(M
Pa

)

Time (sec)

3 3.1 3.2 3.3
0

0.5

1

1.5

2

2.5

3

3.5

Sl
ip

 ra
te

 (m
/s

)

Time (sec)

DFM0.1
BI0.1
DFM0.05

DFM0.1
BI0.1
DFM0.05

DFM0.1
BI0.1
DFM0.05

DFM0.1
BI0.1
DFM0.05

Figure 2.6: Time histories at the two fault-plane points marked in Figure 2.1. PI is on the in-plane
(x) axis, and PA is on the anti-plane (z) axis. Shear stress, slip, and slip velocity are shown for
solutions DFM0.05, DFM0.1, and BI0.1. The time histories of BI0.1 and DFM0.05 are virtually
identical, with DFM0.1 also very close.
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edge of the rupture surface, and even details such as the sharp corners of the 0.5 s contour, as the

rupture breaks out of the nucleation patch, are virtually indistinguishable in the three solutions.

The maximum difference in rupture time between DFM0.1 and BI0.1 is 0.055 s, and the RMS value

(averaging over the fault plane) of the difference is 0.028 s. Based on the average rupture time on

the fault of 3.57 s, this RMS difference is about 0.8%. The maximum and RMS differences between

BI0.1 and DFM0.05 are 0.027 s (0.8%) and 0.045 s (1.3%), respectively.

Figure 2.6 shows the time histories at the two fault-plane points marked in Figure 2.1, one each

on the in-plane (point PI) and anti-plane (point PA) axes, respectively. The time histories presented

are the direct result of our simulations, with no additional filtering of any kind. In each case, the

shear-stress time histories are nearly identical among the three solutions. Arrival times of rupture

and several identifiable stopping phases are nearly indistinguishable in the three solutions, as are

the times of arrest of sliding. Even occurrence, timing, and duration of the small reactivation of slip,

at ∼ 8 s at PI and at ∼ 10.3 s at PA, are nearly identical in the three solutions. Note particularly

that, at the in-plane site, both the initial stress increase associated with the P wave (arriving at

∼ 1.5 s), and the subsequent shear decrease associated with the S wave (arriving at ∼ 2.2 s) are

replicated to high precision. Likewise, at the anti-plane site, the small stress decrease associated

with the near-field P wave is modeled nearly identically by the three solutions. The displacement

curves also agree very closely in all cases.

The only notable discrepancy is for slip velocity at PA. Even at this location, BI0.1 and DFM0.05

agree quite well. However, DFM0.1 oscillates about DFM0.05 and BI0.1, with fluctuation amplitude

of about 15% of the peak velocity at the onset of motion, decaying rapidly to amplitude less than

1% of peak velocity. BI0.1 and DFM0.05 are nearly free of oscillations. The region near PA is

representative of the worst case for DFM0.1 with respect to these rupture-front velocity fluctuations,

which is consistent with the fact that, in that region, the cohesive zone has contracted to near its

minimum (due to post-nucleation effects), with the local Nc only ∼ 3.5 for DFM0.1, and ∼ 7 for

DFM0.05 (see Figure 2.2). At the PI site, where the cohesive zone width corresponds to Nc ∼ 5

for DFM0.1 (and to ∼ 10 for DFM0.05) any velocity oscillations in DFM0.1 are at least an order
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of magnitude smaller: the two DFM solutions are smooth and virtually identical. All of these

observations are consistent with a criterion of Nc ∼ 5 for obtaining slip-velocity estimates accurate

to a few percent in DFM solutions, provided this criterion is satisfied locally, however, and not just

in an average sense. For BI solutions, the slip velocities for BI0.1 are nearly oscillation-free, which

confirms the rupture-time result that Nc ∼ 3 is sufficient resolution for BI.

2.7 Discussion

We interpret the agreement between the highest-resolution BI and DFM solutions presented above

as important evidence that both solutions are accurate approximations to the continuum solution

of the spontaneous rupture problem that we posed. This interpretation is further supported by the

level of grid-interval independence achieved in the DFM and BI solutions.

2.7.1 Resolution criterion

Based on the size of the cohesive zone observed in these solutions, we propose that Nc ∼ 3 or about

three cells within the cohesive zone is sufficient to ensure an accurate solution by the BI method,

and it is Nc ∼ 5 by the DFM method. Note that Nc represents a local, varying quantity, and the

cohesive zone resolution by about 3 cells for BI and 5 cells for DFM should be achieved everywhere

locally, i.e., that should be the resolution of the minimum cohesive zone size encountered.

The criterion for uniform adherence to Nc ∼ 3 for BI and Nc ∼ 5 for DFM can probably be

relaxed somewhat in many practical applications. The DFM0.1 velocity fluctuations have no effect

on rupture propagation or arrest; and they decay quickly, so they do not represent an instability.

Therefore, they do not interact nonlinearly with the solution. For most purposes, therefore, it would

be adequate to remove them by low-pass filtering to attenuate Fourier components with wavelength

shorter than the cohesive-zone width. The same applies to BI0.15 (the time histories for which

are not included in Figure 2.6 for clarity of plots). In that bandlimited sense, DFM0.1 or BI0.15,

although they do not quite satisfy the above criterion everywhere (since Nmin
c = 3.3 for DFM0.1 and

Nmin
c = 2.2 for BI0.15), still provide accurate and artifact-free solutions. On the other hand, velocity
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fluctuations at the level present in DFM0.1 or BI0.15 might not be acceptable when using friction

models with a sensitive dependence of stress on slip velocity. In the case of rate- and state-dependent

friction models (e.g., Dieterich, 1979; Ruina, 1983), for example, it might prove necessary to adhere

strictly to our proposed resolution criterion.

While it is reasonable to apply the obtained criterion for Nc to the class of problems considered

here, in which the cohesive zone width is the smallest physical length scale present, the results will

not extend to spontaneous rupture problems in which other, smaller characteristic length scales

emerge. An example of the latter is the problem of rupture at a bimaterial interface. In that

example, the coupling of shear and normal stress changes on the fault plane, combined with memory

effects in the dependence of friction on normal stress, introduces an additional length scale (Cochard

and Rice, 2000; Ranjith and Rice, 2001). We conjecture that, in such cases, our criterion of Nc ∼ 3

for BI and Nc ∼ 5 for DFM would still apply, provided, however, that Nc is redefined in terms of

the new minimum physical scale of the problem.

2.7.2 Scale collapse

The cohesive zone shrinks upon the approach of rupture speed to a terminal value (the shear wave

speed in the anti-plane direction, the Rayleigh wave speed in the in-plane direction) as follows from

(2.26). The cohesive-zone contraction could potentially make it difficult to maintain Nc sufficiently

large to ensure accuracy. In the anti-plane direction, the simplest case, the cohesive-zone width will

collapse as (1 − v2/c2
s )

1/2 , where v is the rupture velocity. In our test problem, v reaches ∼ 0.7cs

along the anti-plane axis direction. The Lorentz factor would be reduced by an additional factor of

about 2, for example, if the rupture accelerated to ∼ 0.9cs and by about a factor of 4 for ∼ 0.98cs,

reducing Nc in each simulation by these same factors. Thus, dealing with rupture very near terminal

speed is likely to be a significant challenge for rupture simulation.

The approximate analysis (2.21– 2.34) of the Lorentz contraction (in the context of the simple

slip-weakening parameterization of friction) shows, for the anti-plane direction, that the cohesive-

zone width scales with (μd0/Δτ)2L−1 and, for a given Δτ , it is nearly independent of the seismic
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ratio S, as long as the propagation distance L is large compared with the critical dimension for

crack instability. This is identical to the scaling that Andrews (1976, 2004) derived from a some-

what different (but essentially equivalent) line of reasoning. The stress drop Δτ used in our test

calculation, 7 MPa, is about twice the average stress drop for shallow crustal earthquakes, making

the test case modestly conservative in this respect (that is, had we used a more typical stress drop

value of 3 MPa, the cohesive zone sizes and hence Nc would have been larger). The influence of the

propagation-distance factor L on the cohesive zone size is limited by the fault width and the scale

of the largest asperities. Our cohesive-zone consideration (2.21– 2.34) is restricted to 2D cases but,

in 3D, the smaller dimension (width) of the fault will ultimately put a bound on the stress intensity

factor through which L enters the cohesive zone analysis. Our test problem has a fault width of

15 km, which is representative of the fault width for shallow crustal earthquakes. This fault-width

value is equal to the maximum along-strike propagation distance of 15 km in the test problem, and

the influence of the propagation-distance factor is therefore probably already at or near its limiting

value (Day, 1982a). That is, even a much longer fault would not lead to much further scale con-

traction, so the test problem is probably also conservative with respect to the propagation-distance

factor. The characteristic displacement d0, however, is very uncertain, and values much lower than

our test-problem value of 0.4 m are plausible. A d0 value of 0.1 m, for example, would have reduced

Nc in each of our test problem simulations by a factor 16, putting our BI criterion of Nc ∼ 3 and

DFM criterion of Nc ∼ 5 practically out of reach for a numerically tractable calculation.

Other factors, however, may limit the scale collapse associated with the approach to terminal

velocity, and thus work in favor of numerical resolution (i.e., increased Nc). Contraction of the

cohesive zone is accompanied by very high strains near the fault. In an elastic model, stresses

near the fault will grow inversely with the cohesive-zone dimension (Rice, 1980); and, in a more

realistic model, at some stage of the cohesive zone collapse additional energy losses will occur in the

form of inelastic work off the fault surface. These losses, if modeled, would limit the collapse of the

cohesive zone. Andrews (2004) demonstrates some methods that limit scale collapse, in the context of

perfect elasticity, by modifications to the friction law. Rupture simulations that incorporate off-fault
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inelastic losses (Dalguer et al., 2003a,b; Andrews, 2005) provide theoretical justification for these

procedures. In the simulations of Dalguer et al., for example, off-fault tension cracks open during

shear rupture. This off-fault dissipation mechanism results in a reduction of the rupture velocity.

Similarly, Andrews’ inelastic simulations show that when realistic off-fault inelastic energy losses

are considered, fracture energy is not a constant, but rather increases with propagation distance

(as does an equivalent slip-weakening displacement derived from an auxiliary elastic calculation),

mitigating the collapse of scale lengths at the rupture front. When nonlinear material behavior off

the fault plane dominates the energy dissipation, an appropriate length scale from which to define

Nc will likely be the characteristic length over which the inelastic dissipation rate is appreciable.

2.7.3 Computational resources required and associated parameter limi-

tations

The 3D spontaneous rupture calculations are quite challenging in terms of required memory and

processor power. Let us consider only the memory (RAM) requirements here, as this is often the

limiting factor. The memory required is 17.5 GB for BI0.1, 2.3 GB for DFM0.1, and 17.8 GB for

DFM0.05. Note that the memory requirement for BI0.1 can be significantly reduced, to 2–3 GB,

by using justifiable truncation of the dynamic response (e.g., as discussed by Lapusta et al. (2000)

for a 2D case), which was not used here to assure the most accurate BI solution. The amount

of memory needed scales with the inverse cube of the grid spacing Δx for both methods. Note

that high-resolution runs for both methods were done on multiple processors using message passing

(MPI).

Hence we immediately see the challenge in terms of computer resources one faces in studies

of spontaneous ruptures. For example, suppose we would like to keep the same fracture energy

in our problem, but study the effect of considering ξ times smaller critical slip d0 (and changing

the frictional properties accordingly). Then, for the same stress drop, the cohesive zone sizes we

would need to resolve would decrease ξ2 times according to (2.34). This means that we would need

to decrease Δx by a factor of ξ2, for a total increase in memory by a factor of ξ6. That means
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that just halving d0 would require 64 times as much memory, or about 150 GB for DFM and BI

with truncation, and 1.1 TB for BI without truncation, which is already the scale of the largest

supercomputers. Taking ten times smaller d0 would require 1,000,000 times more memory, and

would clearly be impossible with present-day computers.

2.7.4 Significance of BI/DFM agreement

Establishing the accuracy of numerical solution methods for the spontaneous rupture problem is

challenging principally because of the nonlinearity of the problem. That nonlinearity is attributable

mainly to the fact that rupture evolution and arrest are not specified a priori. In other words,

we have a mixed boundary value problem in which the respective (time dependent) domains of

displacement and traction boundary conditions are themselves dependent upon the displacement

and stress fields. Nonlinearity allows phenomena to arise that are absent in idealized tests on linear

problems, but pose significant challenges for a numerical method—the problem of scale contraction

discussed above being an important example.

No analytical solutions are known for 3D spontaneous rupture problems, apart from a few special

cases that reduce to linear problems (e.g., the nucleation-phase solution of Campillo and Ionescu

(1997)) and are thus inappropriate for our purpose. We are therefore forced to make inferences about

accuracy from comparison of numerical solutions. The BI method, however, could be legitimately

viewed as providing at least a semi-analytical characterization of the solution to the limited class

of problems to which it is applicable. The BI solution does represent the fault-plane traction and

velocity discontinuity discretely, and requires purely numerical manipulations to satisfy the jump

conditions. However, it represents the continuum response to a given velocity discontinuity exactly,

by means of a closed-form Green’s function. It is therefore not subject to the main form of error

present in volume-discretization methods such as the DFM method, which is numerical dispersion.

For this reason, we would argue that agreement between DFM and BI solutions is stronger evidence

of numerical accuracy (of both methods) than would be agreement between two different volume-

discretization codes alone.
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We note that both methods examined here are rather limited in the class of problems that

they can address. The BI method, at least in the implementation presented here, is limited to

uniform infinite space problems, and the DFM method, although it can address problems with a

free surface and complex material properties, is limited with respect to admissible fault geometry

(i.e., piecewise-planar segments, all parallel to a single coordinate plane). The numerical results

presented here have been shown to be independent of both grid size and solution method, to within

well-quantified tolerances, and may therefore provide a useful starting point for testing newer, more

capable numerical methods for spontaneous rupture.

2.8 Extension to bimaterial fault interface

In Sections 2.1–2.7, we assume that the solids separated by the fault have identical material proper-

ties. However, large crustal faults usually juxtapose rocks with different mechanical properties. One

example is the San Andreas Fault near Parkfield in Southern California, which separates mainly

Franciscan assemblage on the Northwest side and Salinian granitic rocks on the Southwest side

(Boatwright and Boore, 1982; Somerville et al., 1997). Geological observations along the San An-

dreas, Punchbowl, and San Jacinto faults show that the damage pattern of the fault zone rocks is

asymmetric, which may be caused by preferential rupture propagation direction along these faults

(Dor et al., 2005, 2006). For seismic hazard assessment, it would be important to understand whether

there is a preferred rupture propagation direction on faults with material contrast (which are typi-

cally called bimaterial faults, as shown in Figure 2.7). To make our methodology more flexible, we

expand it to be suitable for dynamic rupture simulations on bimaterial faults.

Breitenfeld and Geubelle (1998) presented a spectral boundary integral scheme for 2D and 3D

dynamic debonding problems. Motivated by that work, we implemented our bimaterial numerical

algorithm. Breitenfeld and Geubelle (1998) obtained kernels H12(T ) by performing Laplace inversion

numerically. We derived a closed-form expression for H12(T ) (Appendix 2.10) and computed all

kernels. In our simulations, a second-order Runge-Kutta procedure for updating field variables

is used, similar to the case of uniform bulk, as described in the appendix of Chapter 3. Our
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Figure 2.7: A planar fault separating materials of different elastic properties. Some theories and
numerical simulations suggest that there is a preferred rupture propagation direction along bimaterial
fault (Weertman, 1980; Adams, 1995; Shi and Ben-Zion, 2006).
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Figure 2.8: Contour plot of the rupture time on the bimaterial fault for the Southern California
Earthquake Center (SCEC) Code Validation Project Problem, Version 7. Red curves are for BI
method, and black curves are for DFM method. Contour lines are plotted every 0.5 seconds. Rupture
propagation along horizontal direction is asymmetric due to different material properties across the
fault.
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numerical algorithm for bimaterial faults has been validated in the Southern California Earthquake

Center (SCEC) Code Validation Project, Benchmark Problem Version 6–7. ( More information is

available at http://scecdata.usc.edu/cvws/cgi-bin/cvws.cgi in “Public Area” → “tpv6 (tpv7)” →

“liu”.) Figure 2.8 illustrates one of the test problems.

2.9 Conclusion

We have developed a spectral boundary integral method for simulating spontaneous rupture prop-

agation on a frictional fault interface, and compare it with a traction-at-split-node finite difference

method (DFM). The two methods give virtually indistinguishable solutions to a spontaneous-rupture

test problem when both methods adequately resolve the cohesive zone (i.e., with at least 3 cells for

BI and at least 5 node points for DFM). Quantitatively, we have assessed agreement between the

methods in terms of the RMS differences in rupture time, final slip, and peak slip-rate, and related

these to median (N̄c) and minimum (Nmin
c ) resolution measures. With N̄c=4.4 (and Nmin

c =3.3) for

both methods, the RMS time, slip, and slip-rate differences are 0.8%, 0.6%, and 9%, respectively.

With the same N̄c and Nmin
c for BI, but better resolution (N̄c= 8.7 and Nmin

c = 6.5) for DFM, these

metrics are 0.8%, 0.4%, and 3%, respectively.

Furthermore, calculations over approximately an order of magnitude range in N̄c demonstrate

a well-defined power-law asymptotic behavior of both BI and DFM solutions: for each method,

variations of predicted rupture time with respect to grid spacing follow a power law with exponent

∼ 3. We interpret this behavior, combined with the agreement between BI and DFM solutions,

as evidence of asymptotic convergence to the continuum solution. The final slip and peak slip-

rate metrics show similar power-law behavior, with exponents between 1 and 2 for both methods.

These numerical tests help fill a gap in our understanding of the accuracy of numerical solutions

to nonlinear spontaneous rupture problems. In addition, the solutions presented here, by virtue of

being demonstrably grid-independent and consistent between two very different numerical methods,

may prove useful for testing new numerical methods for spontaneous rupture.

In Section 2.8, we have expanded our spectral boundary integral algorithm to be suitable for the
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bimaterial fault interface, deriving analytical expressions for convolution kernels given in Appendix

2.10.

2.10 Appendix: closed-form expression for kernels used for

bimaterial faults

Elastodynamic response on a bimaterial fault involves four convolution kernels H11(T ), H22(T ),

H33(T ), and H12(T ). Breitenfeld and Geubelle (1998) only obtained the closed-form expressions for

the first three. To make it complete, we derive the closed-form expression for the last one.

As given by Breitenfeld and Geubelle (1998), the Laplace transform Ĥ12(s) of H12(T ) is:

Ĥ12(s) =
ηs2

η −
√

s2 + η2
√

s2 + 1
=

3∑
i=1

f̂i(s), (2.41)

where

f̂1(s) =
η − η2 + η3

s2 + 1 + η2
, (2.42)

f̂2(s) = − ηs

s2 + 1 + η2

1√
s2 + 1 + s

, (2.43)

f̂3(s) = −η3

√
s2 + 1

s2 + 1 + η2

1√
s2 + η2 + s

. (2.44)

In the above equations, η = cp/cs. f̂i(s) can be inverted to:

f1(T ) =
η − η2 + η3√

1 + η2
sin
(√

1 + η2T
)

, (2.45)

f2(T ) = −
∫ T

0

η cos
(√

1 + η2u
) J1(T − u)

T − u
du, (2.46)

f3(T ) =
∫ T

0

η2g(u)
J1 (ηT − ηu)

T − u
du, (2.47)
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where J1(T ) is the Bessel function of the first kind, and

g(T ) =
∫ T

0

cos
(
η
√

T 2 − u2
)

J1(u)du − cos(ηT ). (2.48)
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Chapter 3

3D modeling of spontaneous
earthquake sequences and aseismic
slip

In Chapter 2, we have developed a 3D spectral boundary integral algorithm for simulating one

instance of earthquake rupture. However, fault processes involve complex patterns of seismic events

(or earthquakes) and aseismic slip. Aseismic slip may determine where earthquakes would nucleate as

well as modify stress and other initial conditions before dynamic rupture. Therefore, it is important

to study long-term fault slip in the context of earthquake cycles. In this chapter, we develop

an algorithm for 3D modeling of spontaneous earthquake sequences and aseismic slip under slow

tectonic loading, and utilize it to study interaction of fault heterogeneity with dynamic ruptures

in long-term fault slip. We also compare the fully-dynamic simulations with a widely used quasi-

dynamic approach.

The chapter is based on Lapusta and Liu (2008).

3.1 Methodology

We continue to consider the model of two identical elastic spaces separated by a planar fault interface

y = 0. In the spectral boundary integral method, the tractions τyi(x, 0, z; t) ≡ τi(x, z; t), i = x, z on
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Figure 3.1: (a) A model of a planar interface embedded in an infinite and homogeneous elastic
medium. (b) A vertical strike-slip fault in an elastic half-space. The top part of the fault is governed
by rate and state friction, and the bottom part is steadily moving due to tectonic loading.

the interface y = 0 can be expressed as:

τi(x, z; t) = τo
i (x, z; t) + fi(x, z; t) − ηiVi(x, z; t). (3.1)

where ηx = ηz = μ/(2cs). The integral relationships between displacement discontinuities and

tractions on the fault interface embedded in an infinite elastic space are:

⎧⎪⎪⎨
⎪⎪⎩

Fx(k, m; t)

Fz(k, m; t)

⎫⎪⎪⎬
⎪⎪⎭=− μ

2q̂

⎡
⎢⎢⎣ k̂2 m̂k̂

m̂k̂ m̂2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩2
(

1 − c2
s

c2
p

)⎛⎜⎜⎝Dx(k, m; t)

Dz(k, m; t)

⎞
⎟⎟⎠−
∫ t

0

KII(q̂cs(t − t′))

⎛
⎜⎜⎝Ḋx(k, m; t′)

Ḋz(k, m; t′)

⎞
⎟⎟⎠ dt′

⎫⎪⎪⎬
⎪⎪⎭

− μ

2q̂

⎡
⎢⎢⎣ m̂2 −m̂k̂

−m̂k̂ k̂2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝Dx(k, m; t)

Dz(k, m; t)

⎞
⎟⎟⎠−
∫ t

0

KIII(q̂cs(t − t′))

⎛
⎜⎜⎝Ḋx(k, m; t′)

Ḋz(k, m; t′)

⎞
⎟⎟⎠ dt′

⎫⎪⎪⎬
⎪⎪⎭ , (3.2)

where Fi(k, m; t) and Di(k, m; t), i = x, z are the Fourier coefficients of stress functionals fi(x, z; t)

and displacement discontinuities δi(x, z; t), respectively. Elastodynamic response expressed by the

convolution integrals in (3.2) can be truncated for problems that involve long deformation histories

with short periods of fast slip. During slow, interseismic periods, the deformation process is quasi-

static and there is no need to keep track of inertial effects. Truncation procedures for anti-plane

(Mode III) problems were given by Ben-Zion and Rice (1997) and Lapusta et al. (2000). Here we

develop the appropriate modifications for our 3D model.
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3.1.1 Truncation of elastodynamic response

To implement the truncation, we compute the convolutions in (3.2) from t − Tw to t only, where

Tw is the truncation time window. Convolution kernels KII(ρ) and KIII(ρ) oscillate with decaying

amplitude for larger ρ (Appendix 3.7.1). Slip velocities, and hence their Fourier coefficients Ḋx and

Ḋz, are near-zero for most of the fault history, except during simulated earthquakes, which have

durations of the order of the time for the shear wave to propagate through the simulated domain.

Hence, following Lapusta et al. (2000), Tw is expressed in the form:

Tw = αλ/cs, (3.3)

where λ is the largest extent of the seismogenic zone and α is a truncation parameter of order 1.

We call this truncation scheme “frequency-independent”, as the truncation window does not depend

on the frequency of Fourier modes. Larger truncation windows make the problem closer to the one

without truncation but they also increase the computational expense. In our simulations, we find

that α = 1 gives results that do not change for larger truncation windows (Section 3.3.2).

The truncation procedure can be made more efficient by making the truncation window Tw

dependent on Fourier modes. Fourier coefficients for higher frequencies are generally smaller. Even

more importantly, the kernel argument ρ = q̂cs(t − t′) scales with the mode frequency q̂ and, for

larger q̂, the same time window corresponds to longer integration intervals in terms of the kernel

argument. Since the kernels oscillate with decaying amplitude for larger ρ, one can limit the length

of kernel windows, making the corresponding time windows shorter.

In Lapusta et al. (2000), the truncation procedure and parameters used resulted in approxi-

mately Tw(q̂) ∝ q̂−1. That scheme was efficient and accurate for 2D antiplane (mode III) problems

considered in Lapusta et al. (2000) but, in 3D problems, we find that it produces much lower slip

velocities and rupture speeds than frequency-independent truncation. This is because both mode III

and mode II kernels are involved in the 3D formulation, and the mode II kernel is more oscillatory

and decays slower than the mode III kernel. From Appendix 3.7.1, for ρ � 1, KII ∼ O(ρ−1/2) while
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KIII ∼ O(ρ−3/2).

We have developed a new scheme that truncates less at low frequencies than the scheme and

parameter choices of Lapusta et al. (2000). For low-frequency modes, the time windows are constant,

Tw(q̂) = αλ/cs, as in the frequency-independent truncation, with the kernel windows increasing for

those modes. However, the kernel windows can be no larger than a given value ρc, which becomes

a truncation parameter. Let us denote by q̂c the frequency at which the kernel windows reach the

length ρc. Then the frequency-dependent truncation windows expressed in terms of time are given

by:

Tw(q̂) =

⎧⎪⎪⎨
⎪⎪⎩

αλ/cs, q̂ ≤ q̂c,

αλ/cs q̂c/q̂, q̂ ≥ q̂c.

(3.4)

Hence Tw(q̂) ∼ q̂−1 for higher frequencies. Note that the lowest frequency mode q̂ = (0, 0) with

q̂ = 0 corresponds to the uniform slip over the fault interface and has no contribution to stress

transfers, so we set Tw(0) = 0. In equation (3.4), q̂ varies between the lowest nonzero frequency

q̂min = 2π/λx (assuming, without loss of generality, that λx ≥ λz) and the highest frequency

q̂max =
√

2π/Δx. In terms of the kernel argument ρ = q̂cs(t− t′), the time windows (3.4) correspond

to the following kernel windows ρw(q̂) = q̂csTw(q̂):

ρw(q̂) =

⎧⎪⎪⎨
⎪⎪⎩

αλq̂, q̂ ≤ q̂c,

ρc = αλq̂c, q̂ ≥ q̂c.

(3.5)

In our simulations, ρc ≥ 100 result in the same slip response as that with frequency-independent

truncation (Section 3.3.3). Such values of the kernel argument correspond to the kernel amplitudes

smaller than 0.0008 for mode III and 0.08 for mode II.

Let us estimate how much more efficient the frequency-dependent truncation is by comparing

the memory requirements for the two truncation procedures. Let us assume that Nx ∼ Nz. For

convolution computations, each time window Tw(q̂) is discretized with the time interval Δtmin(=

γΔx/cs), where γ is a constant parameter discussed in Appendix 3.7.2, resulting in NT (q̂) intervals.
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For the frequency-independent truncation, this number is given by:

NT (q̂) =
Tw(q̂)
Δtmin

=
αN

γ
, (3.6)

where N = λ/Δx ∼ Nx ∼ Nz. The total number of frequency modes are Nx × Nz. For each

frequency mode, we need four arrays of the size NT (q̂) to store kernels and Fourier coefficients of

slip velocities. The total size of the arrays are:

Ntot =
Nx/2∑

k=−Nx/2

Nz/2∑
m=−Nz/2

4NT (q̂) =
4α

γ
NNxNz ∼ O(N3). (3.7)

For the frequency-dependent truncation, the total size of the arrays storing convolution values

changes to:

Nmod
tot =

Nx/2∑
k=−Nx/2

Nz/2∑
m=−Nz/2

4NT (q̂) ≈
(

2
√

2ρc − ρ2
c

παN

)
NxNz

γ
∼ ρcO(N2). (3.8)

For small values of ρc � αλq̂max, the required memory is significantly smaller for the frequency-

dependent truncation.

3.1.2 Fault constitutive response: rate and state friction laws

The fault resistance to sliding is described by laboratory-derived rate and state friction laws which

have been widely used to model earthquake phenomena (Dieterich, 1979; Ruina, 1983; Dieterich,

2007, and references therein). A general form of rate and state friction laws is:

⎧⎪⎪⎨
⎪⎪⎩

τ = φ(V, θ, σ),

θ̇ = ϕ(V, θ, σ),
(3.9)

where τ =
√

τ2
x + τ2

z is the magnitude of shear traction vector τ = (τx, τz), V =
√

V 2
x + V 2

z is the

magnitude of the slip velocity vector V = (Vx, Vz), σ = −τy is the normal traction (positive in

compression), and θ is the state variable. It has been experimentally established that shear traction
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Figure 3.2: Properties of the simulated fault segment. (a) Rate and state friction acts on the top 24
km of the fault. A potentially seismogenic region of velocity-weakening properties (shown in white)
is surrounded by velocity-strengthening regions (shown in yellow). Below z = −24 km, steady
motion of 32 mm/year is imposed. (b) Depth dependence of friction parameters (a − b), a, and
L in the seismogenic region. The distributions are piecewise linear between the following points:
(a − b)|z|=0 = 0.008, (a − b)|z|=4 = −0.004, (a − b)|z|=13.5 = −0.004, (a − b)|z|=17.5 = 0.015, (a −
b)|z|=24 = 0.024, a|z|=0 = 0.019, a|z|=4 = 0.015, a|z|=17.5 = 0.015, a|z|=24 = 0.024, L|z|=0 = 24 mm,
L|z|=4 = 8 mm, L|z|=24 = 8 mm.

instantaneously increases (decreases) in response to a sudden increase (decrease) of slip velocity (e.g.,

Dieterich, 1979; Ruina, 1983; Marone, 1998), which implies φ(V, θ, σ)/∂V > 0, the feature commonly

referred to as the positive direct effect. As discussed in Lapusta et al. (2000), the presence of this

instantaneous positive response is essential for the numerical procedure to be able to adopt large

time steps during quasi-static deformation processes while yielding stable numerical results.

Several specific forms of rate and state friction laws have been proposed. Here we adopt the

aging law (Dieterich, 1979, 1981; Ruina, 1983) in the form appropriate for constant normal stress σ:

⎧⎪⎪⎨
⎪⎪⎩

τ = σ
(
fo + a ln V

Vo
+ b ln Voθ

L

)
,

θ̇ = 1 − V θ
L ,

(3.10)

where fo and Vo are reference friction coefficient and slip velocity, a > 0 and b > 0 are rate and

state parameters of order 0.01, and L is the characteristic slip distance. At constant slip velocity V ,

the state variable θ, and hence the shear traction τ , evolve toward steady-state values θss(V ) and

τss(V ), respectively, with θss(V ) = L/V and τss(V ) = σ [fo + (a − b) ln (V/Vo)]. The friction law is

said to exhibit steady-state velocity strengthening if a− b > 0, and steady-state velocity weakening
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if a − b < 0. The characteristic slip L can be interpreted as the slip necessary to renew surface

contacts, and the state variable θ (= L/V in steady state) can be interpreted as the average lifetime

of contact population. In equation (3.10), τ is not defined for V = 0. To remedy that, we use a

regularized version of the law (Rice and Ben-Zion, 1996; Ben-Zion and Rice, 1997; Lapusta et al.,

2000) described in Appendix 3.7.2.

Dynamic instability (i.e., an earthquake) is able to develop only if the steady-state velocity-

weakening region of the fault exceeds the nucleation size h∗ (e.g., Rice and Ruina, 1983; Rice, 1993;

Rubin and Ampuero, 2005). Two theoretical estimates of the earthquake nucleation size for 2D

problems are given by:

h∗
RR =

π

4
μ∗L

(b − a)σ
km, (3.11)

h∗
RA =

2
π

μ∗bL
(b − a)2σ

km, (3.12)

where μ∗ = μ for mode III and μ∗ = μ/(1 − ν) for mode II. The estimate h∗
RR was derived from

the linear stability analysis of steady sliding by Rice and Ruina (1983), while h∗
RA was obtained

for the parameter regime a/b > 0.5 by Rubin and Ampuero (2005) using the energy balance for a

quasi-statically extending crack. 3D estimates would be larger by a factor of two to three; h∗
RA needs

to be increased by a factor of π2/4 (A. Rubin, private communication). Chen and Lapusta (2008)

have found that the resulting estimate,

h∗ = (π2/4)h∗
RA, (3.13)

matches nucleation sizes in their 3D simulations quite well. Hence we adopt that estimate in our

study.

The rate and state friction laws (3.10) behave similarly to standard linear-slip weakening laws

during dynamic rupture propagation processes (e.g., Cocco and Bizzarri, 2002). As dynamic rupture

arrives at a point along the fault, slip velocity rapidly increases with negligible slip, leading to

V θ/L � 1. With that condition, equation (3.10b) can be approximately rewritten as dθ/dt =
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−V θ/L and integrated to express the state variable in terms of slip. From equation (3.10a), one

then gets:

dτ

dt
= σa

d(ln V )
dt

− σb

L

dδ

dt
. (3.14)

In (3.14), V is already in the seismic range and lnV does not change much, making the term

σa d(ln V )/dt much smaller than (σb/L)(dδ/dt). Hence equation (3.14) describes linear decrease of

shear stress with slip, with the slip-weakening rate W :

W = −dτ

dδ
≈ σb

L
. (3.15)

During this process, the state variable evolves with slip and the steady state is eventually reached,

with shear resistance that has logarithmic dependence on slip velocity and hence does not vary much

as long as slip velocity remains in the seismic range. That corresponds to the constant dynamic

resistance of linear slip-weakening formulations.

Note that alternative rate and state formulations have been proposed, with different equations

for the evolution of the state variable, such as the slip law (Dieterich, 1979, 1981; Ruina, 1983), the

combined law of Kato and Tullis (2003), and the law in Perrin et al. (1995). Recent experiments

by Bayart et al. (2006) suggest that the slip law is a better description of the friction response in

velocity-jump experiments. The methodology developed in this work can be easily adopted to the

alternative rate and state formulations, as well as to laws with variable normal stress (Dieterich,

2007) and modified formulations that include more significant weakening at seismic slip rates (Rice,

2006).

3.1.3 Criteria for spatial discretization

In numerical simulations, the spatial cell size Δx needs to be small enough to capture the model

response. A number of studies (Rice, 1993; Ben-Zion and Rice, 1997; Lapusta et al., 2000) proposed

that h∗
RR is the crucial length scale to resolve in 2D anti-plane earthquake cycle modeling, with

h∗
RR/Δx being an important parameter. The length scale h∗

RR gives the critical size of a cell that
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cannot become unstable on its own on a quasi-statically sliding interface (Rice and Ruina, 1983;

Lapusta et al., 2000), and hence it is an important length scale governing interseismic processes and,

in particular, earthquake nucleation.

However, earthquake cycle simulations also involve dynamic rupture, and that introduces another

resolution criterion, Λ/Δx, where Λ is the cohesive zone size (Palmer and Rice, 1973; Day et al.,

2005, and references therein). The cohesive zone size gives the spatial length scale over which the

shear stress drops from its peak to residual values at the propagating rupture front. This length

scale controls the numerical resolution during dynamic rupture. Let us denote by Λ0 the size of Λ at

the rupture speed c → 0+ (Λ decreases for larger rupture speeds). For the fault interface governed

by linear slip-weakening law, Λ0 can be expressed as (Palmer and Rice, 1973; Day et al., 2005):

Λ0 = C1
μ∗

W
, (3.16)

where W is the slip-weakening rate and C1 is a constant which is equal to 9π/32 if the stress traction

distribution within the cohesive zone is linear in space. For the rate-and-state friction laws we use,

W = bσ/L (Sections 3.1.2 and 3.2) and hence Λ0 is given by:

Λ0 = C1
μ∗L
bσ

. (3.17)

Through 3D dynamic rupture simulations, Day et al. (2005) established that Λ0/Δx of 3 to 5 are

required to resolve dynamic rupture.

Hence the cell size Δx has to be small enough to resolve both Λ0 and h∗
RR. How are the two

resolution criteria related? Ignoring the constants of order 1, the ratio of the two length scales for

the constitute law used in this work is:

Λ0/h∗
RR = (b − a)/b. (3.18)

The typical values are 0.015 to 0.02 for b and 0.002 to 0.004 for (b − a), making the ratio Λ0/h∗
RR
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vary from about 0.1 to 0.25. Hence the resolution criterion based on Λ0 dominates for these typical

parameters. In this work and in Lapusta et al. (2000), b = 0.019 and b − a = 0.004 are used that

give Λ0/h∗
RR ≈ 0.2. Hence resolving Λ0 with 3 to 5 spatial cells as suggested by Day et al. (2005)

corresponds to resolving h∗
RR with 15 to 25 cells. This explains why the fully dynamic simulations of

earthquake sequences by Lapusta et al. (2000) showed that h∗
RR needs to be discretized with about

20 cells in order to obtain resolution-independent results; that discretization was dictated by the

size of the cohesive zone.

Hence resolving the cohesive zone size Λ0 is the more stringent requirement for the aging for-

mulation of rate and state friction and typical rate and state parameters. This is true even for

quasi-dynamic simulations (Section 3.5), in which Λ0 needs to be resolved with at least one cell size.

For other fault constitutive relations, similar consideration should apply, in that the cell size Δx

should be small enough to resolve all the relevant lengthscales in the problem, including the length

scale governing the evolution of quasi-static deformation and nucleation of instability, as well as the

length scale governing the evolution of the rupture front. For different laws, different length scales

would dominate the resolution requirements. For example, in a law that combines rate and state

friction with a dynamic weakening mechanism, such as pore pressure evolution, either the nucleation

length scale or the rupture-front length scale may be the smallest one, depending on the values of

parameters chosen for the two mechanisms.

3.1.4 Computational procedure

The response of faults to tectonic loading is characterized by long periods of quasi-static deformation

combined with short bursts of fast slip. To simulate such response, we adopt the variable time

stepping of Lapusta et al. (2000), in which the time step is set to be inversely proportional to slip

velocity on the fault interface as described in Appendix 3.7.2. As the result, relatively large time

steps, a significant fraction of a year, are used in the interseismic period, while small time steps,

a fraction of a second, are used to simulate the evolution of each dynamic rupture. Note that the

stability of the stepping procedure relies on the presence of the positive direct effect in the rate and
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state formulation, the feature that has ample laboratory confirmation.

At each time step, we find updated values of the field variables by equating the elastodynamic

tractions on the fault interface represented by equations (3.1) and the frictional strength of the fault

given by equations (3.10). Appendix (3.7.2) describes the details of the updating procedure. Since

3D simulations are computationally expensive, parallel coding is an indispensable ingredient in our

computations. We use the message passing interface (MPI) techniques to spread the storage of field

variables into multiple processors. Calculation of the dynamic response, update of field variables,

and fast fourier transforms (FFTs) are also done in parallel.

3.1.5 Model of a strike-slip fault

The elastodynamic formulation (3.1–3.2) is valid for a planar interface y = 0 embedded in an infinite

elastic homogeneous medium. Due to the spectral representation, the finite domain of interest is

periodically replicated in both x and z directions. Hence the simulated domain needs to include

buffer zones that would prevent dynamic ruptures on each replication from interacting with each

other. An example is shown in Figure 3.1a, where a potentially seismogenic zone (shown in white)

is surrounded by the fault region (shown in grey) that can stop dynamic ruptures. Such region can

have steady-state velocity-strengthening properties and/or prescribed slip velocity (e.g., slip velocity

equal to the plate rate or to zero). The methodology developed in this work has been used in such

a model to study small repeating earthquakes (Chen and Lapusta, 2008).

Here, we would like to study the behavior of a strike-slip fault embedded in an elastic half -space,

with a free surface at z = 0, as shown in Figure 3.1b. To fit this model into the formulation (3.1–3.2),

we use the image method (e.g., Lapusta et al., 2000). The domain that we would like to study on the

fault interface is x ∈ [−λx/2, λx/2], z ∈ [−λz/2, 0], where z = 0 is the free surface. We add a mirror

image of that domain by imposing the following conditions in the region x ∈ [−λx/2, λx/2], z ∈

[0, λz/2] : ⎧⎪⎪⎨
⎪⎪⎩

δx(x,−z; t) = δx(x, z; t), Vx(x,−z; t) = Vx(x, z; t)

δz(x,−z; t) = −δz(x, z; t), Vz(x,−z; t) = −Vz(x, z; t).
(3.19)
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The resulting simulated domain becomes x ∈ [−λx/2, λx/z], z ∈ [−λz/2, λz/2], and it is that do-

main that is periodically repeated along both x and z directions to form an infinite interface in a

homogeneous elastic space, making the formulation (3.1–3.2) applicable.

The mirror-image method induces the boundary conditions on z = 0 as τzx = τzy = 0 and

uz = 0, which are not exactly the traction-free boundary conditions τzx = τzy = τzz = 0. However,

this approximation works quite well for strike-slip faults, which slip mostly in the along-strike di-

rection x. In the code comparison exercise organized by the Southern California Earthquake Center

(SCEC), simulations of dynamic rupture on a slip-weakening strike-slip fault in an elastic half-space

have been compared for different numerical methods (Harris et al., 2004, 2008). The comparison

of our approach with other methods that can represent the true traction-free surface showed that

this approximation captures most effects of the free surface and that the errors induced are rela-

tively small and restricted to the region right next to the free surface. Recently, Zhang and Chen

(2006a,b) derived a boundary-integral formulation with analytical kernels for a planar fault of an

arbitrary dipping orientation embedded in an elastic half-space. These kernels have more complex

representations and using them in the context of long-term calculations is a goal for future work.

To incorporate tectonic loading, we assume that the far-field plate motion results in the deeper

extension of the fault moving with constant slip rate equal to the plate rate Vpl (Tse and Rice, 1986),

as illustrated in Figure 3.1b. Hence we assign a constant slip rate Vpl in the corresponding part of

our domain, and solve for slip rate everywhere else on the fault.

3.2 Simulation example: fault with a homogeneous seismo-

genic region

3.2.1 Parameters of the fault model

Let us use the developed methodology to simulate long-term slip history of a strike-slip fault segment

which contains a potentially seismogenic region with steady-state velocity weakening properties

surrounded by steady-state velocity-strengthening region (Figure 3.2a). The seismogenic region
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Figure 3.3: Long-term histories of slip and slip velocity history at two representative fault locations,
P1 from the velocity-weakening region and P2 from the velocity-strengthening region. Slip velocity
is plotted on the logarithmic scale. (a),(c) Point P1 (9 km,-8 km) exhibits stick-slip behavior. It is
virtually locked for most of the time (with slip velocity three orders of magnitude below the plate
rate) but occasionally slips very fast, with maximum slip velocity on the order of 1 m/s. (b),(d)
Point P2 (-18 km,-8 km) moves throughout the simulated time. After each dynamic event, it has
postseismic slip, with maximum slip velocity on the order of 10−6 m/s.
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incorporates gradual variations of rate and state parameters at the top and bottom rheological

transitions but we call the region homogeneous in comparison to the model of Section 3.4 where

the seismogenic region incorporates a compact heterogeneity in the form of higher normal stress.

Model parameters are given in Figure 3.2 and Table 3.1. The fault segment is 60 km long and 30

km deep. With the mirror image, the simulated domain is λx = λz = 60 km. Rate and state friction

acts on the top 24 km of the fault, while the bottom fault segment, −30 < z < −24 km, slips with

the plate rate of Vpl = 10−9 m/s or 32 mm/year. The potentially seismogenic velocity-weakening

region is located at −15 < x < 15 km and −14.34 < z < −2.67 km and it is Lseis = 30 km long

and Wseis = 11.7 km wide. Within the seismogenic region, the depth distributions of rate and

state parameters a, (a − b), and L are given in Figure 3.2b. L linearly increases at shallow depths,

qualitatively modeling the plausible situation of larger frictional energy resisting sliding at shallow

depths due to wider gouge layers or multiple slip surfaces. Normal traction on the fault interface

is space- and time-independent, σ(x, z) = τy(x, z; t) = τo
y (x, z; t) = 50 MPa. The constant value of

σ close to the free surface is chosen for numerical tractability, to explore several issues unrelated

to the free surface such as interaction of rupture with heterogeneity over several earthquake cycles

(Section 3.4) and quasi-dynamic and other simplified formulations (Section 3.5). In Section 3.2.4,

we compare fault behavior with other distributions of L and σ, including smaller values of σ at

shallower depths and depth-independent L.

The characteristic slip L shown in Figure 3.2 is equal to 8 mm over most of the fault; we also

use the distribution with twice smaller values of L for comparison, resulting in L = 4 mm over most

of the fault. Such values of L result in much larger 3D estimates of nucleation sizes, h∗ = 9 km for

L = 8 mm and h∗ = 4.5 km for L = 4 mm, than what would be obtained based on laboratory values

of L = 10–100 μm. Such large values of h∗ may be realistic under some conditions, e.g., if effective

normal stress σ is very low due to fluid overpressure (e.g., Liu and Rice, 2005; Suppe and Yue, 2007)

or if steady-state velocity-weakening properties are close to velocity-neutral. We need such large

values of L to be able to resolve the dynamic propagation of seismic events that arise in the model.

As discussed in Section 3.1.3, h∗ should be smaller than the size of the velocity-weakening region
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in order for the model to produce dynamic events. Hence the parameter h∗/Wseis that relates the

estimated nucleation size to the width of the velocity-weakening region is an important indicator of

how unstable the behavior of the model would be (Liu and Rice, 2005; Rubin, 2008). h∗/Wseis ≥ 1

predicts quasi-static behavior, while smaller values point to unstable behavior. For L = 8 mm,

h∗/Wseis = 0.8, a value close to 1. For L = 4 mm, h∗/Wseis = 0.4, a value appreciably smaller than

1. Hence the two cases may exhibit qualitative differences.

The simulation starts with a dynamic event that initiates on the left edge of the fault and

propagates through the entire fault. This is achieved by setting higher initial shear stress τo
x =

1.02foσ for −15 km < x < −10 km than for the rest of the fault, where τo
x = 1.00foσ. The initial

values of field quantities affect only the first few events, as the model evolves towards behavior

dictated by the model geometry, loading, and friction properties. The fault is discretized into square

elements Δx = Δz = 100 m (Nx = Nz = 600) for simulations with L = 8 mm and Δx = Δz = 50

m (Nx = Nz = 1200) for simulations with L = 4 mm. The numerical resolution is discussed

in Section 3.3.1. The time step during dynamic events is Δtmin = 0.0112 for (L = 8 mm) and

Δtmin = 0.0056 s (L = 4 mm). Simulations have been done in parallel on 20 processors for L = 8

mm and 100 processors for L = 4 mm, each with the memory of 2 GB. About one billion data points

are manipulated at each time step, and each earthquake cycle requires on the order of ten thousand

variable time steps.

3.2.2 Fault response: dynamic events and aseismic slip, including tran-

sients

As expected from stability properties of rate-and-state interfaces, the velocity-strengthening region

steadily slips with velocities comparable to the plate rate, while the velocity-weakening region accu-

mulates most of its slip through earthquakes. Histories of slip velocity and slip for two representative

points are shown in Figure 3.3. At point P1 from the velocity-weakening region (x = 9 km, z = −8

km), slip velocity is three orders of magnitude smaller than the loading plate rate for most of the

simulated time, indicating that the fault is typically locked at this location (Figure 3.3a). Occasion-
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ally, slip velocity of P1 goes up to seismic values of the order of 1 m/s, indicating the occurrence of

seismic slip. Slip accumulation of P1 has the corresponding step-like nature (Figure 3.3c). In con-

trast, point P2 (x = 18 km, z = −8 km) from the velocity-strengthening region has slip velocity that

never deviates too much from the plate rate of 10−9 m/s (Figure 3.3b). Relatively small increases of

slip velocity at P2 after each earthquake correspond to postseismic slip. Slip at P2 increases steadily

in time, with faster accumulation after each dynamic event (Figure 3.3d).

Typical earthquake cycles are illustrated in Figures 3.4 and 3.5 through snapshots of slip-velocity

distribution on the fault at several times between two successive dynamic events. For the case of

L = 8 mm and h∗/Wseis = 0.8 (Figure 3.4), the ninth earthquake nucleates on the left side of

the seismogenic region, and propagates bilaterally first and then mostly to the right (panels A–

C). The seismic slip causes positive static stress changes in the surrounding velocity-strengthening

area, which responds with increased aseismic slip rates that decay over time (panels D–E). This is

postseismic slip. During the interseismic period (panel F), the velocity-weakening region is locked,

while the surrounding velocity-strengthening region moves with slip velocity of the order of the

plate rate. That aseismic slip creates stress concentration at the boundary between the locked and

slipping regions, causing slip there and hence continuously moving the boundary into the locked

region. For L = 8 mm, the locked region almost disappears (panel J), consistently with the large

estimate of the nucleation zone h∗ = 9 km which approximates how far slow slip can penetrate into

velocity-weakening region without nucleating a dynamic event. That interseismic slip contains a

slip episode faster than the plate rate, i.e., an aseismic transient, which is shown in Figure 3.6 on a

different slip-velocity scale. The transient develops on the left side of the locked region (panel G8)

and propagates around the locked region (panels G8–I8), decreasing the locked part in the process.

Maximum slip velocity during this aseismic transient is about 10−7 m/s, and its propagation speed is

about 8 km/year. Between the times of 480.43 and 481.52 years, the average slip of the seismogenic

region is 0.061 m and the corresponding moment is 6.4 × 1017 N · m, an equivalent of a Mw = 5.8

earthquake. These values are qualitatively consistent with some observations of aseismic transients

(e.g., Kawasaki, 2004). At the end of the transient, the next dynamic event nucleates on the right



64

side of the seismogenic region (panel K of Figure 3.4) and propagates bilaterally first (panel L) and

then mainly to the left.

For the smaller value of characteristic slip L = 4 mm and hence for the smaller h∗/Wseis = 0.4,

the seismogenic region is more unstable and experiences less aseismic slip in the interseismic period

(Figure 3.5). Events nucleate closer to the rheological transition (panel A) and propagate more

unilaterally (panels B–C). Right after postseismic slip (panels D–E), most of the seismogenic region

is locked and the fault behavior for both values of L is quite similar (panels F, Figures 3.4 and 3.5).

In the interseismic period, aseismic transients still occur for L = 4 (Figure 3.6, panels G4–I4), but

now it is clear that they are mostly confined to the areas of the velocity-weakening region close to

rheological transitions that experience slow-slip penetration from the nearby velocity-strengthening

region. Further discussion of aseismic transients is given in section 3.6. When the next dynamic

event nucleates (panels J–L, Figure 3.5), much of the velocity-weakening region remains locked.

To visualize slip accumulation on the fault through several earthquake cycles, we plot slip along

the horizontal line z = −8 km (Figure 3.7). The solid green lines are plotted every 5 years, rep-

resenting slip accumulations during interseismic periods. The dashed red lines are plotted every

2 seconds when the maximum slip velocity on the fault exceeds 1 mm/s, illustrating the end of

earthquake nucleation and seismic slip accumulation. Only a part of the fault, from x = −20 km to

x = 20 km, is shown. The spacing of the green lines indicates that the fault outside the velocity-

weakening region moves steadily for most of the time and experiences faster postseismic motion after

dynamic events. Densely spaced red lines correspond to the end of the nucleation phase, while more

sparse red lines illustrate dynamic rupture propagation. For L = 8 mm and h∗/Wseis = 0.8 (Figure

3.7a), this relatively homogeneous model produces a periodic two-event pattern. For L = 4 mm and

h∗/Wseis = 0.4 (Figure 3.7b), the model settles into periodic behavior, with all events starting on

the left side of the fault. This is because events have larger slip at the other end of the fault and

relieve more stress there, resulting in the nucleation of the next event on the same side of the fault.

The behavior is more complex for h∗/Wseis = 0.8 due to aseismic transients. The aseismic transients

also always start on the side of the fault that nucleated the previous dynamic event. However, they
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do not initiate dynamic slip but rather propagate towards the other side of the fault, initiating a

dynamic event there.
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Figure 3.4: Snapshots of spatial slip-velocity distribution during a typical earthquake cycle for L = 8
mm (h∗/Wseis = 0.8). Slip history between the 9th and 10th events is illustrated. Colors represent
slip velocity on the logarithmic scale. White and bright yellow correspond to seismic slip rates, orange
and red correspond to aseismic slip, and black corresponds to locked portions of the fault. Each
panel shows the time t of the snapshot in years (in the upper-right corner) and the corresponding
time step Δt in seconds (at the bottom of each panel). Panels A–C also show the time in seconds
elapsed since the time of panel A. The simulations reproduce dynamic events (panels A–C and K–L),
postseismic slip (panels D–E), and the interseismic period (panel F). Aseismic transient slip occurs
between panels F and J and it is shown in panels G8–I8 of Figure 3.6 on a different slip-velocity
scale.

3.2.3 Parameters of simulated earthquakes

The model produces realistic dynamic events, with maximum slip velocity over the fault exceeding

1 m/s and rupture speeds reaching 2.5 km/s. Let us define the seismic moment M0 of each event as

the moment released on the fault when maximum slip velocity exceeds 0.1 m/s:
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Figure 3.5: Snapshots of spatial slip-velocity distribution during a typical earthquake cycle for
L = 4 mm (h∗/Wseis = 0.4). Slip history between the 2nd and 3d events is illustrated. Colors and
time markings have the same meaning as in Figure 3.4. Compared with the case with L = 8 mm
(Figure 3.4), dynamic events in the case with L = 4 mm have smaller nucleation size, nucleate closer
to the rheological transition (panels A, L), have more unilateral propagation, and develop faster
rupture speeds (panels A–C). Consistent with the smaller value of h∗/Wseis, the velocity-weakening
region experiences less aseismic slip, with large portion of the region still locked when a seismic event
nucleates (panels A, J–L). Smaller aseismic transients still occur between panels F and J; they are
shown in panels G4–I4 of Figure 3.6.
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Figure 3.6: Snapshots of spatial slip-velocity distribution illustrating aseismic transients. White
dashed rectangles show the extent of the velocity-weakening region. Panels G8–I8 correspond to
the simulation with L = 8 mm. The aseismic transient travels around the locked portion of the
fault. The average rupture speed between panels G8 and I8 is about 10 km/s and the maximum slip
velocity is about 10−7 m/s. The aseismic slip accumulated in the seismogenic region is equivalent
to that of a Mw = 5.8 earthquake. Panels G4–I4 correspond to the simulation with L = 4 mm. The
spatial extent of the transients is smaller. Again, the transients travel around the locked portion
of the fault. Comparison of the two cases shows that the transients are confined to the band
of the velocity-weakening region next to rheological transition which experiences slow slip in the
interseismic period. The width of the band scales with the nucleation size and its estimate h∗. That
is why smaller values of h∗/Wseis lead to smaller and more localized aseismic transients.
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Table 3.1: Parameters of our simulations. For depth-dependent quantities marked with the asterisk
“∗”, the typical value over the velocity-weakening (potentially seismogenic) region is specified.

Parameter Symbol Value
Fault length along strike λx 60 km
Fault depth λz/2 30 km
Velocity-weakening region, length Lseis 30 km
Velocity-weakening region, width Wseis 11.7 km
Loading slip rate Vpl 32 mm/yr
Shear wave speed cs 3.0 km/s
Poisson’s ratio ν 0.25
Reference slip velocity Vo 10−6 m/s
and friction coefficient fo 0.6
Rate-and-state parameters∗ a 0.015
in the velocity-weakening region b 0.019
Effective normal stress∗ σ 50 MPa
Characteristic slip∗ L 8 mm 4 mm
Cell size Δx 100 m 50 m
Minimum time step Δtmin 0.0112 s 0.0056 s
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Figure 3.7: Slip accumulation along the line z = −8 km for the case of the homogeneous seismo-
genic region. Red dashed lines illustrate fast slip; they are plotted every 2 s when maximum slip
velocity over the fault exceeds 1 mm/s. Green solid lines are plotted every 5 years, representing slip
accumulation in interseismic periods. (a) The case with L = 8 mm settles into a periodic two-event
pattern. (b) The case with L = 4 mm results in periodic events. In the latter case, dynamic ruptures
propagate faster and are more pulse-like. In both cases, points at the nucleation zones accumulate
less slip seismically than points elsewhere on the fault.
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M0 =
∫ tend

tini

∫
Ω

μV (x, z; t′)dΩdt′, (3.20)

where Ω is the seismogenic (velocity-weakening) region with the area |Ω| = WseisLseis, and tini and

tend are times for each dynamic event, between which maximum slip velocity on the fault stays larger

than Vseis = 0.1 m/s. Similarly, we compute the static stress drop Δτ as:

Δτ = τ̄x(tini) − τ̄x(tend)

=
1
|Ω|
∫

Ω

τx(x, z; tini)dΩ − 1
|Ω|
∫

Ω

τx(x, z; tend)dΩ.

For L = 8 mm, M0 = 1.1 × 1019 N · m for each event, corresponding to the moment magnitude

Mw = 6.6, τ̄x(tini) = 31.2 MPa, τ̄x(tend) = 27.8 MPa, and Δτ = 3.4 MPa. For L = 4 mm,

M0 = 9.9 × 1018 N · m, Mw = 6.6, τ̄x(tini) = 31.2 MPa, τ̄x(tend) = 28.0 MPa, and Δτ = 3.2 MPa.

The average seismic slip on the seismogenic part of the fault per event is δ̄seis = Mseis/μ|Ω| = 1.01 m

for L = 8 mm and 0.94 m for L = 4 mm. Since the plate loading rate is Vpl = 32 mm/year and the

earthquake period is T = 52.4 years for L = 8 mm and 37.4 years for L = 4 mm, slip accumulation

per earthquake cycle is δ̄ = VplT = 1.65 m for L = 8 mm and 1.18 m for L = 4 mm. Therefore, 61%

and 80% of fault slip in the seismogenic region is accumulated seismically for L = 8 mm and L = 4

mm, respectively.

Each point ruptured dynamically exhibits effective stress-slip dependence that closely resembles

linear slip-weakening laws, as discussed in Section 3.1.2. This is illustrated in Figure 3.8, which

shows the behavior of three velocity-weakening points and one velocity-strengthening point. The

velocity-strengthening point is located close to rheological transition. For all curves, the weakening

slope is well-approximated by W = −σb/L. For L = 8 mm, we find that the effective slip-weakening

behavior is similar for different points but not identical, with the peak stress and effective slip-

weakening distance increasing with the rupture propagation. This is because the rupture accelerates

as it propagates along the fault. For L = 4 mm, the dependence of stress on slip is nearly identical

for the velocity-weakening points, because the rupture accelerates early in the event and, afterwards,



70

 26

 30

 34

 38

 42

 46

 0  0.2  0.4

(−3 km, −8 km)
(3 km, −8 km)
(9 km, −8 km)
(18 km, −8 km)

Slip (m)

S
h

e
a

r 
s
tr

e
s
s
 (

M
P

a
)

 30

 35

 40

 45

 50

 55

 0  0.2  0.4

(−3 km, −8 km)
(3 km, −8 km)
(9 km, −8 km)
(18 km, −8 km)

Slip (m)

S
h

e
a

r 
s
tr

e
s
s
 (

M
P

a
)

a b

Figure 3.8: Shear stress as a function of slip during a representative dynamic event (the 9th one
in the sequence) for four locations on the fault with (a) L = 8 mm and (b) L = 4 mm. In both
cases, dynamic rupture propagates from the left side of the fault to the right side, passing the
velocity-weakening locations (-3 km, -8 km), (3 km, -8 km), (9 km, -8 km), and then influencing the
velocity-strengthening location (18 km, -8 km) as the rupture arrests in the velocity-strengthening
region. Zero slip for each point is chosen as the slip when shear stress at the point reaches its peak
during the dynamic event. We see that the effective dependence of stress on slip is similar to linear
slip-weakening friction, with the slip-weakening rate W ≈ σb/L. The velocity-strengthening point
has a smaller values of b than the other three points and hence a smaller slope. In the case with
L = 8 mm, rupture accelerates while propagating through the points shown (Figure 3.7a), leading
to different effective peak strength and slip-weakening distances for the three velocity-weakening
points. In the case with L = 4 mm, the rupture has nearly reached its limiting speed and it is
almost steady (Figure 3.7b), leading to similar behavior of the velocity-weakening points.

the relatively homogeneous fault properties and conditions ensure that the rupture behavior does

not change much as the rupture propagates along the fault.

3.2.4 Effect of parameter distributions near the free surface

In the presented simulations, effective normal stress σ = 50 MPa is constant throughout the fault

and the characteristic slip L is depth-dependent near the free surface. Because of the relatively

large σ, and hence large velocity-strengthening effect σ(a− b), dynamic rupture arrests shortly upon

encountering the shallow velocity-strengthening region and does not reach the free surface (Figure

3.9a). While constant σ at depth can be motivated by fluid overpressure (Rice, 2006), σ should

decrease to near-zero values at the free surface. To investigate the effect of σ and L near the free

surface, we consider the case of Lapusta et al. (2000), in which normal stress is depth-dependent near

the free surface, σ = min[2.8+18|z|/km, 50] MPa, and the characteristic slip L is constant and equal

to the value at depth. In this case, the rupture propagates all the way to the free surface (Figure
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Figure 3.9: Accumulation of slip along the line x = 3 km, for the fault with the homogenous
seismogenic region and the case of L = 8 mm. Lines have the same meaning as in Figure 3.7.
Different near-surface parameter distributions are explored. (a) In the case of Section 3.2.1–3.2.2
and Figures 3.3–3.8 with constant normal stress and depth-dependent L, dynamic events do not
reach the free surface, arresting in the velocity-strengthening region. The free surface accumulates
large slip deficit, which is compensated by aseismic slip. (b) For depth-independent L and normal
stress decreasing towards the free surface (the same distributions as in the 2D model of Lapusta et
al. (2000)), dynamic ruptures propagate all the way to the free surface, consistently with the results
of Lapusta et al. (2000). (c) When distributions of parameters a and b in the case of panel (b) are
modified to match the distributions of σa and σb of the case in panel (a), the near-surface behavior
becomes very similar to the case of panel (a).

3.9b), as it did in the 2D simulations of Lapusta et al. (2000). However, even with the depth-variable

normal stress, we can prevent the rupture from reaching the free surface by modifying rate and state

parameters a and b so that aσ and bσ are the same as in our original example (Figure 3.9c). For

the problems considered in this work, it is not essential whether slip does or does not propagate to

the free surface, and we use the parameters of Section 3.1 in simulations presented in the following.

3.3 Parameter validation

3.3.1 Spatial discretization

For the model with L = 8 mm, we have h∗
RR = 1.26 km and Λ0 = 233 m for the mode II direction.

(This theoretical estimate of Λ0 is close to the value of 300 m obtained in our simulations.) Hence,

as discussed in Section 3.1.3, Λ0 = 233 m is the smaller length scale and the one we should aim

to resolve. To make sure our simulations produce resolution-independent results, we run a series

of simulations with cell sizes Δx = 50 m, 100 m, 200 m, and 400 m. Figure 3.10(a) and (b)

show slip accumulation along z = −8 m for Δx = 50 m and Δx = 400 m. Comparing with the
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Figure 3.10: Fully dynamic simulations with different cell sizes Δx. (a),(b) Slip accumulation along
the line z = −8 km for Δx = 50 m and 400 m, respectively. The results can be compared with
Figure 3.7a that shows slip accumulation for Δx = 100 m. (c) Slip-velocity history of the fault
location (9 km, −8 km) during the 5th event for Δx = 50 m, 100 m, 200 m, and 400 m. Zero in
time corresponds to rupture arrival at the location (6 km, −8 km). The values Δx = 50 m and 100
m are both several times smaller than the quasi-static cohesive zone size Λ0 = 300 m and produce
resolution-independent results. Δx = 200 m provides less adequate resolution and Δx = 400 m leads
to very different results. The numerical resolution in our simulations is dictated by the cohesive zone
size, as the nucleation size h∗, another important length scale, is several times larger.

results for Δx = 100 m in Figure 3.7, we find that Δx = 50 m and Δx = 100 m produce virtually

indistinguishable slip patterns over earthquake cycles. The value Δx = 400 m produces a completely

different slip pattern, indicating poor numerical resolution. The simulation with Δx = 200 m (not

shown) produces a slip pattern which is similar to that of Δx = 50 m and Δx = 100 m but has

notable differences, such as deeper nucleation regions and 2% smaller slip per cycle.

Figure 3.10c shows slip-velocity history of the fault location (9 km, -8 km) during the 5th event.

Zero time is chosen as the arrival time of rupture at the point (6 km, -8 km). Again, Δx = 100 m and

Δx = 50 m produce similar results during dynamic rupture propagation, although slip velocity has

some oscillations for Δx = 100. These oscillations are due to the kernel discretization, as discussed

in Appendix 3.7.1. For Δx = 200, rupture time is noticeably larger, slip velocities are smaller, and

the profile is more oscillatory. As the rupture propagates, the cohesive zone becomes smaller, making

Δx = 200 m inadequate. For Δx = 400 m (insert), the result is completely different, indicating

numerical problems. Hence we confirm the finding of Day et al. (2005) that the quasi-static cohesive

zone in 3D simulations needs to be resolved by about 3 cells.
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Figure 3.11: Fully dynamic simulations with different values of the truncation parameter α. (a),(b)
Slip accumulation along the line z = −8 km for α = 2 and 1/3, respectively. The results can be
compared with Figure 3.7a that shows slip accumulation for α = 3/2. (c) Slip-velocity history of
the fault location (12 km, −8 km) during the 5th event for α = 1/3, 1/2, 3/2, 1, and 2. Zero in time
corresponds to rupture arrival at the location (6 km, −8 km). Larger values of α lead to inclusion of
longer slip histories in the dynamic response calculation. α = 2, 3/2, and 1 produce similar results,
while α = 1/2 and 1/3 cause differences as discussed in the text.

3.3.2 Frequency-independent truncation

To determine the suitable value of parameter α in the frequency-independent truncation window

Tw = αλ/cs, we do a series of simulations with α = 2, 3/2, 1, 1/2, and 1/3. Simulations with

α = 2, 3/2, 1 all produce virtually indistinguishable results in terms of both earthquake patterns and

slip-velocity histories during individual events (Figures 3.11 and 3.7a), indicating that either of them

can be used in the truncation procedure. We use α = 3/2 in most of our simulations. Simulations

with α = 1/2 and 1/3 produce somewhat different behavior. For example, the rupture speed is 2%

smaller for α = 1/2 and 9% smaller for α = 1/3.

3.3.3 Frequency-dependent truncation

As discussed in Section 3.1.1, frequency-dependent truncation can save a lot of computational re-

sources, including memory. It has two parameters, α and ρc. We fix α = 3/2, a value that performs

well in the frequency-independent truncation, and compare results for several values of ρc. For

Nx = Nz = 600 and Δx = 100 m, frequency-independent truncation implies ρc = αλq̂max ≈ 2000.

To activate frequency dependence, we need to choose a smaller value of ρc. We try ρc = 250, 200,
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Figure 3.12: Slip-velocity history of the fault location (12 km, −8 km) during the first event in fully
dynamic simulations with different values of the truncation parameter ρc. Zero in time corresponds
to the rupture arrival at the location (3 km, −8 km). Larger values of ρc make the frequency-
dependent truncation closer to the frequency-independent one. Our frequency-dependent truncation
with ρc = 3π/2 approximately corresponds to the truncation parameters in Lapusta et al. (2000).
ρc ≥ 100 produce the same results as the frequency-independent truncation.

150, 100, 50, 25, and 3π/2. The last value approximately reproduces the truncation scheme used

in Lapusta et al. (2000). We find that simulations that use frequency-dependent truncation with

ρc ≥ 100 produce the same results as simulations with frequency-independent truncation. Figure

3.12 shows slip-velocity history of the fault location (12 km, -8 km) during the first event for different

values of ρc. The simulation with ρc = 100 has the same rupture time at this location as the sim-

ulation with frequency-independent truncation, and the difference in peak velocity between the two

simulations is less than 5%. Hence truncation with ρc = 100 gives adequate results while using only

9.7% of the memory required for frequency-independent truncation. The memory savings would be

more significant for smaller cell sizes or larger fault dimensions. The simulation with ρ = απ = 3π/2,

which worked well in 2D antiplane models (Lapusta et al., 2000), produces rather poor results, with

much more slowly rupture speeds and slip velocity. The difference between 2D anti-plane and 3D

problems arises due to properties of mode II kernel as discussed in Section 3.1.1.
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3.4 Long-term interaction of slip with compact heterogeneity

As an application example, let us investigate long-term behavior of a fault segment in the presence of

compact heterogeneity. This study requires the fully dynamic 3D approach for simulating long-term

slip developed in this work, as the existing 2D dynamic and 3D quasi-dynamic methodologies may

not be able to capture all features of the response as explained in Section 1. We use the model of

Section 3.2.1 with a stronger circular patch of 20% larger effective normal stress σ. The patch is

centered at the location (x = 3 km, z = −8 km) and has the radius of 1 km. The other model

parameters are the same as in Section 3.2.1, including L = 8 mm, with the exception of initial

shear stress outside the strip −15 km < x < −10 km. The value 1.00foσ of section 3.2 results in

the first event that is slower than subsequent events (Figure 3.7a). Since we would like to compare

interaction of dynamic rupture with the stronger patch in the first event with the interaction in

subsequent events, it is important for the first event to be more dynamic. To achieve that, we use

initial shear stress of 1.01foσ outside the strip −15 km < x < −10 km.

3.4.1 Supershear burst in the first event

The first event nucleates in the region of higher initial shear stress on the left side of the seismogenic

region and propagates towards the location of the patch. Since the patch is stronger than the

surrounding fault but the initial shear stress is uniform, the front of dynamic rupture is delayed

at the asperity during the first event (Figure 3.13, top row, left panel). Note that the slip-velocity

scale in Figure 3.13 is different than in previous figures with slip-velocity snapshots; the scale in

Figure 3.13 is chosen to illuminate the rupture front. Slip in the surrounding areas concentrates

shear stress at the patch, breaking it and creating a supershear burst over a part of the rupture

front (Figure 3.13, top row, middle and right panels). Along the horizontal line z = −8 km, the

rupture front advances 3.4 km in 0.84 s, with the average rupture speed of c = 4.0 km/s, which is

larger than the shear wave speed cs = 3 km/s. Such supershear bursts were studied by Dunham et

al. (2003) in simulations of single earthquakes on faults governed by linear slip-weakening friction.

In our simulation, the supershear part of the front transitions back to sub-Rayleigh speed shortly
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Figure 3.13: Snapshots of slip-velocity distribution during the first (top row) and second (bottom
row) events for the case with a stronger patch. The slip-velocity range shown is different from
Figures 3.4–3.6 and chosen to emphasize the rupture front. The number in the upper-right corner of
each snapshot indicates the elapsed time (in seconds) since the first snapshot for each event. During
the first event, dynamic rupture interacts with the stronger patch and produces a supershear burst.
During the second event, no interaction or supershear propagation occurs; the stronger patch is
indicated by a red circle in this case. Rupture behavior of the first event does not repeat in the slip
history of the fault due to redistribution of shear stress.
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afterwards.

3.4.2 No supershear burst in subsequent events

The supershear burst observed in the first event is due to interaction of dynamic rupture with

the normal-stress heterogeneity. Will this interaction repeat in subsequent events? The second

earthquake also nucleates on the left side of the seismogenic region and propagates towards the

stronger patch. The bottom row of Figure 3.13 shows the snapshots of slip velocity distribution

during the second event as the rupture front passes through the patch. The snapshots show that

there is no interaction of the rupture front with the stronger patch. In the panels corresponding to the

first event (top row), the patch location is obvious; in the panels corresponding to the second event

(bottom row), we need to mark the patch with a red circle to indicate its location. The rupture

front smoothly propagates through the patch with sub-Rayleigh speeds. The average horizontal

rupture speed in the time period between the first and the third snapshot is c = 2.0 km/s or about

0.7 of the Rayleigh wave speed. Rupture continues to accelerate as it propagates further along the

fault interface. Note that the concave rupture-front profile in the bottom row of Figure 3.13 is also

present in the case without the patch during the second event, and it is not related to the presence

of the stronger patch. Rather, it is caused by higher rupture speeds close to the boundary between

creeping and locked regions due to shear stress concentration there.

Hence dynamic rupture does not “notice” the patch during the second event and, in fact, during

all subsequent events. This is due to redistribution of shear stress on the fault after the first event.

Figure 3.14 shows two shear stress distributions along the horizontal line z = −8 km, which passes

through the center of the patch, during the first and second events. The distributions correspond

to the time when the rupture front that propagates towards the patch is about 2 km away from the

patch. Before rupture propagates through the patch in the first event, shear stress inside the patch

is approximately equal to the initial shear stress of 30.3 MPa. The ratio of shear stress and effective

normal stress τ/σ is 0.505 inside the patch and 0.606 in the surrounding region. Therefore, the patch

delays the rupture and then produces a supershear burst. However, before rupture propagation over
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Figure 3.14: Distribution of shear stress along the line z = −8 km during the 1st and 2nd events, at
the time when the horizontal rupture front (at this depth) arrives approximately at the center of the
fault (x = 0 km). In the 1st event, the patch has similar shear stress τ as the surrounding area but
20% larger normal stress σ, resulting in smaller nondimensional prestress τ/σ than the rest of the
fault. However, in the second event, τ inside the patch is about 20% larger than in the surrounding
area, resulting in homogeneous nondimensional prestress τ/σ. This redistribution of shear stress
due to prior slip history eliminates the interaction of dynamic rupture with the patch observed in
the first event.

the patch in the second event, shear stress inside the patch is higher, about 37.2 MPa, and the ratio

τ/σ is 0.62 inside the patch and 0.63 outside of it. In other words, before the second event, shear

stress is proportionally higher at the patch, compensating for its higher strength.

This simple example illustrates the necessity of long-term simulations of fault behavior for un-

derstanding effects of fault heterogeneity, even if one is concerned with dynamic events only. While

any prestress can be assumed for simulations of a single dynamic rupture, stress distribution before

events in long-term simulations as well as on natural faults is the result of complicated history of

seismic and aseismic slip, which depends, in part, on the strength distribution. Our results suggest

that distributions of fault stress and strength are related and cannot be assumed independently.

3.4.3 Effect of heterogeneity on long-term behavior

The 20% stronger patch occupies less that 1% of the fault area, yet it changes the long-term behavior

of slip in this model. We compare the homogeneous-fault case of Section 3.2.2 and the case of one

small heterogeneity considered here using plots of slip accumulation along the horizontal line z = −8
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km (Figures 3.7a and 3.17a). We see that while the sequence of large events maintains its two-event

periodicity, the stronger patch destroys the symmetry in fault properties between the left and right

sides of the fault, resulting in asymmetric behavior. In the homogeneous case, aseismic transients

alternate the direction of their propagation, moving from left to right before one event and the other

way before the next one. In the case with the stronger patch, all aseismic slip propagates from left

to right. Once the slow slip reaches the stronger patch, an event nucleates. This is because larger

effective normal stress corresponds to a smaller nucleation size, favoring rupture nucleation there.

Correspondingly, the nucleation process at the right side of the fault is modified and shifted to occur

at the asperity.

3.4.4 Fault interaction with heterogeneity of higher normal stress

Let us denote the normal stress inside the heterogeneity as σh. In Section 3.2, σh = σ = 50 MPa,

and there is no heterogeneity. In Section 3.4, σh = 1.2σ = 60 MPa, the heterogeneity has 20% larger

effective normal stress than the surrounding area. In this section, we investigate the long-term fault

interaction with heterogeneity having higher effective normal stress σh = 1.4σ, 1.6σ, 1.8σ, and 2.0σ.

Simulations show that interaction of rupture with heterogeneity diminishes for events after the

first one, almost disappearing after the first three events (Figure 3.15). Interestingly, for σh =

2.0σ, rupture does not break the heterogeneity during the first event. After the first three events,

interaction of dynamic rupture with the patch is much reduced, even for twice stronger patch, as

shown in Figure 3.15.

The heterogeneity does influence the long-term behavior of the fault, increasing the complexity

of slip histories. Figure 3.16 shows the earthquake recurrence period T for different σh. For the

simulated values of σh, T reaches the maximum value at σh = 1.2σ, and then decreases for larger

σh. This behavior arises from the following two competing factors. On the one hand, higher normal

stress inside the heterogeneity results in larger shear stress drop in each dynamic event, and requires

longer interseismic time to restrengthen the fault, and hence favors larger T . On the other hand,

areas of larger normal stress have smaller earthquake nucleation sizes, which facilitates earthquake
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Figure 3.15: Snapshots of slip velocity during the first three events for σh = 1.4σ, 1.6σ, and 2.0σ.
Black circles are plotted to indicate the location of the heterogeneity. Due to redistribution of shear
stress with slip, the interaction of dynamic rupture with heterogeneity becomes insignificant after
the first three events.
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Figure 3.16: Earthquake recurrence period T for different heterogeneity strengths σh. Higher normal
stress inside the patch increases the shear stress drop in dynamic events, and thus tends to increase
T . On the other hand, higher normal stress decreases the earthquake nucleation size, and thus
facilitates earthquake occurrence.

nucleation, and leads to smaller T . Whether T increases or decreases with σh depends on the relative

importance of these two competing factors. For σh = 1.2, earthquakes nucleate outside the patch,

and the first factor wins. For higher σh, some earthquakes start to nucleate at the patch, and the

second factor dominates.

We also observe the models with σh ≤ 1.6σ always produce typical large events, however, the

models with σh ≥ 1.8σ have occasional small events, which occur around the heterogeneity. For

heterogeneity of high normal stress, failure of the heterogeneity can lead to either small or large

events, depending on the stress distribution outside the patch.

3.5 Comparison of fully dynamic and quasi-dynamic approaches

If the fully dynamic formulation is replaced with the quasi-dynamic one (e.g., Rice, 1993), simulations

become much simplified and computational resources needed are significantly reduced. The quasi-

dynamic formulation has been widely used in earthquake studies (e.g., Rice, 1993; Ben-Zion and Rice,
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1995; Rice and Ben-Zion, 1996; Hori et al., 2004; Kato, 2004; Hillers et al., 2006; Ziv and Cochard,

2006). It ignores wave-mediated stress transfers expressed through convolutions integrals in equation

(3.2) by setting Tw = 0 for all Fourier modes. Any increment of slip induces instantaneous static

stress changes everywhere on the fault. However, the quasi-dynamic formulation differs from the

quasi-static one in that it retains dynamic radiation terms ηiVi(x, z; t) in equation (3.1), capturing

some dynamic effects and allowing solution to exist during dynamic instabilities.

Here we compare the results of quasi-dynamic 3D calculations with the fully dynamic ones and

explore the suggestion of Lapusta et al. (2000) that smaller radiation damping terms in the quasi-

dynamic formulation can make the comparison more favorable. For this study, we use the model

with a stronger patch from Section 3.4.

3.5.1 Generalized quasi-dynamic formulation

Let us generalize the quasi-dynamic formulation to allow for smaller radiation damping coefficients.

Shear components of tractions can be written as

τi(x, z; t) = τo
i (x, z; t) + fi(x, z; t) − μ

2csβs
Vi(x, z; t), (3.21)

where i = x, z, βs is a constant, and the convolution integrals in fi(x, z; t) are ignored. For the

standard quasi-dynamic formulation, we have βs = 1, and we are interested in βs ≥ 1. Wave speeds

enter the quasi-static formulation through the radiation damping terms in (3.21) and through the

static stress transfers in (3.2) which use the ratio cp/cs. Therefore, the generalized quasi-dynamic

formulation (3.21) with βs > 1 corresponds to the standard quasi-dynamic approach with faster

wave speeds:

c̄s = βscs, c̄p = βscp. (3.22)

Because of the faster wave speeds, we need to use smaller time steps Δ̄tmin in calculations with

βs > 1:

Δtmin = γ
Δx

c̄s
= γ

Δx

βscs
=

Δtmin

βs
. (3.23)
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Figure 3.17: Accumulation of slip along the line z = −8 km for the case with a stronger patch.
Lines have the same meaning as in Figure 3.7. (a) Results for the fully dynamic simulation. The
slip pattern of the fault with a small stronger patch (which occupies less than 1% of the seismogenic
area) is different from the one with the homogeneous seismogenic region (Figure 3.7a). (b) The
standard quasi-dynamic formulation (βs = 1) results in a modified slip pattern, smaller slip velocity,
slower rupture speeds, and smaller slip per event. (c),(d) Larger values of βs = 1 or smaller radiation
terms in the quasi-dynamic formulation accelerate rupture speed and increase slip velocity. However,
all quasi-dynamic simulations produce similar slip patterns that are qualitatively different from the
fully-dynamic one.
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Figure 3.18: Comparison of fully dynamic and quasi-dynamic simulations of one dynamic event (the
first event in the sequence). (a),(b) Slip-velocity and slip histories of the fault location (9 km, -8
km). Zero time corresponds to the time of rupture arrival at the point (6 km, -8 km). Slip velocity
and slip per event in quasi-dynamic simulations is significantly smaller than in the fully-dynamic
one. Simulations with larger βs produce faster rupture speeds, larger slip velocity, and larger slip
per event. However, when scaled appropriately, the quasi-dynamic results all collapse onto the same
curves (insets in panels (a) and (b)). (c),(d) Rupture speed as a function of rupture tip location
along z = −8 km. The quasi-dynamic simulation with βs = 4 has larger rupture speeds than the
fully-dynamic simulation. All quasi-dynamic simulations have nearly identical scaled rupture speed
c/(βscs), as shown in panel (d).

We have confirmed conclusion (3.23) in our simulations. This means that simulating quasi-dynamic

problems with smaller radiation damping terms is more challenging, as it requires smaller time steps

and more computational time. This consideration is also consistent with the fact that the quasi-static

formulation cannot be used to model dynamic rupture. For the quasi-static formulation, βs = +∞

and, according to equation (3.23), the time steps should be infinitely small.
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3.5.2 Similarity of quasi-dynamic solutions and their differences with

fully dynamic results

Let us compare the fully dynamic simulation of Section 3.4 with several quasi-dynamic simulations

that use different values of βs. Figure 3.17 shows slip accumulation along the horizontal line z = −8

km for the fully-dynamic simulation and the quasi-dynamic simulations with βs = 1, 2, and 4. We

choose a part of slip history that already reflects the long-term behavior of the model. The first

observation is that the rupture speed and slip velocity, which are related to the horizontal and

vertical spacing of red dashed lines, respectively, are much lower for the standard quasi-dynamic

simulation (βs = 1) than for the fully dynamic one. However, the rupture speed and slip velocity

increase for larger βs and, for βs = 4, look comparable to that of the fully dynamic simulation.

Hence it is tempting to conclude that larger values of βs result in a better match. However,

further examination reveals a problem. All quasi-dynamic simulations share a qualitatively similar

periodic slip pattern: earthquakes nucleate in the middle of the fault and propagate bilaterally. The

fully-dynamic simulation has a different slip pattern that consists of two events, as discussed in

Section 3.4.3. Hence it seems that differences that accumulate during dynamic events are sufficient

to change long-term fault behavior even in this relatively simple model.

Comparison of individual events in Figure 3.18 further demonstrates the similarity among quasi-

dynamic simulations and their differences with the fully dynamic one. Slip and slip-velocity histories

of one point on the fault (x = 9 km and z = −8 km) during the first event are shown in Figure

3.18(a) and (b). Zero for each time history is chosen as the time of rupture arrival at the point

with x = 6 km and z = −8 km. From Figure 3.18a, we can get the average rupture speed between

locations x = 6 km and x = 9 km along the line z = −8 km, which is 0.96 km/s for quasi-dynamic

simulation with βs = 1, 1.92 km/s for βs = 2, 3.79 km/s for βs = 4, and 2.65 km/s for the fully

dynamic simulation. Hence the rupture speed in the quasi-dynamic simulation with βs = 4 is faster

than the fully-dynamic simulation. At the same time, slip velocity for βs = 4, while substantially

higher than that for βs = 1, is still much smaller than slip velocity of the fully dynamic calculation.

Furthermore, the final slip is smaller for all quasi-dynamic simulations (Figure 3.18b) than for the
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fully dynamic one; this is also true about average slip per event and static stress drop. Increasing

βs further is not a productive approach to increasing slip velocity and slip rates, as the rupture

speed would also increase, and the rupture speed for βs = 4 is already too high, as demonstrated in

Figure 3.18c. For points between x = 6 km and x = 15 km, the rupture speed of the quasi-dynamic

simulation with βs = 4 is higher than that of the fully dynamic run. Note that the standard quasi-

dynamic approach (with βs = 1) fails to reproduce the supershear burst during the first dynamic

event discussed in Section 3.4.1.

We find that quasi-dynamic simulations with different values of βs can be scaled to match each

other. The insets in Figure 3.18(a) and (b) show rescaled slip velocity V ∗ = V/βs and slip δ as

functions of the rescaled time t∗ = βst. Figure 3.18d plots rescaled rupture speeds c/(βscs), with

the fully dynamic result for comparison. We see that all quasi-dynamic curves fall almost on top of

each other in rescaled plots. Hence quasi-dynamic simulations with different βs are similar to each

other during dynamic rupture, provided we use rescaled time t∗ = βst, slip velocity V ∗ = V/βs, and

rupture speed c∗ = c/βs (with stress τ , slip δ, and spatial coordinates x, z unchanged).

3.5.3 Cohesive zone size and numerical resolution in quasi-dynamic sim-

ulations

From simulations, we find that the cohesive zone size in quasi-dynamic calculations is always equal

to the quasi-static cohesive zone size Λ0. It does not decrease as rupture propagates and it is

independent of βs. Figure 3.19 shows stress distribution along parts of the line z = −8 km during

the first event for the quasi-dynamic simulations with βs = 1 and βs = 4. The simulated events are

shown in the bottom row. Note that we use Δx = 50 m in these simulations, instead of 100 m,

to better capture the size of the cohesive zone. In Figure 3.19a of βs = 1, the rupture front is at

x = −7.9 km and the average rupture speed before that location is only 0.12 km/s, which is less

than 5% of the shear wave speed. The cohesive zone size in that situation, which is equal to 6 cell

sizes or 300 m, should be very close to the quasi-static cohesive zone size. The theoretical estimate

in Section 3.3.1 gives a similar value of 233 m. At the later stages of this rupture, the cohesive zone
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Figure 3.19: Cohesive zones in quasi-dynamic simulations. (a) Shear stress distribution along the
horizontal line z = −8 km at the time of rupture front arrival at point (−7.9 km, −8 km) during the
first event in the simulation with βs = 1. Crosses indicate locations of spatial cells (Δx = 50 m).
The rupture speed at that time is 0.12 km/s. The cohesive zone size is 0.3 km. The bottom panel
shows the accumulation of slip in that case, with the double arrow indicating the distance plotted
in the main panel. (b) Shear stress distribution along the horizontal line z = −8 km at the time of
rupture front arrival at (0.24 km, −8 km) km during the first event in the simulation with βs = 4.
The rupture speed at that time is 2.45 km/s. Despite the different value of βs and the different
rupture speed, the cohesive zone size is still 0.3 km. In quasi-dynamic simulations, the cohesive zone
size does not shrink during rupture propagation and its size is independent of the parameter βs.

size stays equal to 300 m. For the quasi-dynamic simulation with βs = 4, the cohesive zone size is

still 300 m (Figure 3.19b). At the time shown in Figure 3.19b, the rupture speed is 2.45 km/s, more

than 80% of the shear wave speed.

The fact that the cohesive zone does not change in quasi-dynamic simulations simplifies choosing

proper spatial discretization. In our study, any cell size below the quasi-static estimate of the cohesive

zone size has produced well-resolved quasi-dynamic calculations (we have tried Δx = 50 m, 100 m,

and 200 m; recall that Δx = 200 m was not adequate for the fully dynamic simulation). But larger

cell sizes lead to inaccurate solutions; for example, Δx = 400 m changes the results significantly,

just like in the fully dynamic case. How much more advantageous is the quasi-dynamic simulation

in terms of the spatial discretization depends on how much the cohesive zone shrinks during the

corresponding fully dynamic simulation.



88

3.6 Conclusions

We have developed, based on prior studies, a 3D methodology for simulating long-term history of

spontaneous seismic and aseismic slip on a vertical planar strike-slip fault subjected to slow tectonic

loading. Our approach reproduces all stages of earthquake cycles, from accelerating slip before dy-

namic instability, to rapid dynamic propagation of earthquake rupture, to post-seismic slip, and to

interseismic creep, including aseismic transients. We have extended the existing 2D methodology

(Lapusta et al., 2000) to 3D, proposed a numerical resolution criterion that combines findings for

long-term histories and dynamic rupture, developed a new frequency-dependent truncation proce-

dure, determined the values of numerical parameters that lead to results independent of numerical

procedures in 3D, developed a parallel implementation of the 3D code, and applied the developed

methodology to several examples.

In 2D studies of earthquake sequences (e.g., Rice, 1993; Lapusta et al., 2000), the numerical

discretization was based on the need to resolve the nucleation process and the associated spatial

scale h∗. However, in both fully dynamic and quasi-dynamic simulations, seismic events propagate

as dynamic ruptures with rapid variations of field variables at their tip. We have shown that the

resolution criterion based on the near-tip cohesive zone and quantified in our previous collaborative

work (Day et al., 2005) is more restrictive for the parameters typically used in earthquake-sequence

simulations. Once the cohesive zone size is resolved with several spatial cells, the nucleation-related

scale h∗ is resolved as well, since it is several times larger. This consideration explains the finding

of Lapusta et al. (2000) that h∗ needs to be resolved by 20 spatial cells, a relatively large number;

that level of discretization was actually required for resolving the much smaller size of the cohesive

zone.

We find that the frequency-dependent truncation procedure developed for 2D anti-plane problems

by Lapusta et al. (2000) is inadequate in 3D. This is because 3D problems involve elastodynamic

kernels for Mode II, and those kernels decay much slower than the Mode III kernels. We have

developed a new frequency-dependent truncation procedure that is based both on considerations of

Lapusta et al. (2000) and on the decay of the kernel amplitude.
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Slip response in the presented fault models, which have relatively simple distributions of friction

properties, involves aseismic transients, i.e., episodes of spontaneous aseismic fault slip faster than

the plate rate. These transients arise in the areas of velocity-weakening regions close to rheological

transitions and constitute propagating nucleation attempts. Their extent depends on the nucleation

size. In our simulations, we choose parameters that make nucleation sizes a significant fraction of

the fault width, to make the problems numerically tractable. Large nucleation sizes may be realistic

for certain fault conditions such as highly elevated pore pressure or velocity-weakening properties

close to velocity-neutral. In fact, Liu and Rice (2005) obtained aseismic transients in a subduction

model with occasional highly elevated pore pressure next to rheological transition. It is possible that

aseismic transients occur only under conditions that result in large nucleation sizes, in which case the

mechanism of aseismic transients presented in Liu and Rice (2005) and reproduced here is a viable

one. However, note that many areas on natural faults should have small nucleation sizes to produce

small events. Other mechanisms have been proposed to explain aseismic transients, such as inelastic

dilatancy and complex dependence of friction on slip velocity (e.g., Shibazaki and Shimamoto, 2007;

Segall and Rubin, 2007).

We have used the developed methodology to investigate interaction of slip with a stronger fault

patch of 20% higher normal stress over many earthquake cycles. The patch significantly affects the

dynamic rupture in the first event, causing rupture delay followed by a supershear burst. However,

the patch becomes “invisible” to dynamic rupture in subsequent events due to redistribution of

shear stress. While simulations of single dynamic events play an important role in exploring earth-

quake dynamics, our results show that long-term simulations are also important as they can help us

understand how assumptions about the distribution of fault strength influences the distribution of

fault stress before large events. Our results have consequences for studies that attempt to determine

parameters of strong ground motion by considering many potential scenarios of earthquake rup-

ture on a given fault, primarily by choosing different distributions of fault strength and fault initial

conditions. Our results suggest that the two distributions are related due to prior fault slip. Note

that the small stronger patch, which occupies only 1% of the fault areas, significantly influences the
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long-term behavior of the fault in our model, moving nucleation locations and causing asymmetric

behavior.

Comparison of the fully dynamic and the standard quasi-dynamic approaches shows that the

quasi-dynamic approach results in smaller slip per event and significantly smaller slip velocities

and rupture speeds, confirming the results of 2D comparisons (Lapusta et al., 2000). The new

observation in 3D models is that the long-term slip pattern of the model is also different between the

fully dynamic and quasi-dynamic simulations, even for the simple distributions of fault properties

considered. Hence the discrepancies between the fully dynamic and quasi-dynamic simulations

accumulated during inertially-controlled ruptures have long-term influences over earthquake cycles

in 3D. The quasi-dynamic approach also fails to reproduce the supershear burst in the first dynamic

event of the simulation with a stronger patch. We have explored the possibility of improving the

comparison by decreasing radiation damping terms of the quasi-dynamic formulation. We find that

such a change is equivalent to the standard formulation with higher wave speeds and it only rescales

the resulting solution without changing it qualitatively.

3.7 Appendix

3.7.1 Convolution kernels

The elastodynamic convolution kernels KII and KIII from equation (3.2) can be expressed as

(Geubelle and Rice, 1995):

KII(ρ) = 2
(
1 − c2

s/c2
p

)− ∫ ρ

0

CII(η)dη,

KIII(ρ) = 1 −
∫ ρ

0

CIII(η)dη,

(3.24)

where

CII =
J1(ρ)

ρ
+ 4ρ

[
W (

cp

cs
ρ) − W (ρ)

]
− 4

cs

cp
J0(

cp

cs
ρ) + 3J0(ρ), (3.25)

CIII =
J1(ρ)

ρ
, , (3.26)
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Figure 3.20: Elastodynamic kernels KIII(ρ) and KII(ρ). (a),(b) Values of the kernels for relatively
small kernel arguments. (c),(d) Comparison of kernels with the leading terms in their asymptotic
expansions. For ρ � 1, KIII(ρ) ∼ O(ρ−3/2) and KII(ρ) ∼ O(ρ−1/2). KII(ρ) decays much slower
than KII(ρ) as ρ increases.

W (ρ) =
∫ ∞

ρ

J1(η)
η

dη = 1 −
∫ ρ

0

J1(η)
η

dη, (3.27)

and J0(ρ) and J1(ρ) denote Bessel functions. Kernels KII(ρ) and KII(ρ) have the following property:

∫ ∞

0

KII(η)dη =
∫ ∞

0

KIII(η)dη = 1. (3.28)

Since the asymptotic form of Bessel functions Jn(ρ) for ρ � n is:

Jn(ρ) ∼
√

2
πρ

cos
(

ρ − 1
2
nπ − 1

4
π

)
, (3.29)

KIII(ρ) can be expanded for ρ � 1:

KIII(ρ) =
∫ ∞

ρ

J1(η)
η

dη ∼
√

2
π

{
cos(ρ − π/4)

ρ
3
2

+
3
2

sin(ρ − π/4)
ρ

5
2

+ O(ρ−
7
2 )
}

. (3.30)

The leading term of the expansion is given by:

Kapp
III (ρ) =

√
2
π

cos(ρ − π/4)
ρ

3
2

. (3.31)
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Similarly, the asymptotic expansion of KII(ρ) for ρ � 1 is:

KII(ρ) =

√
2
π

{
sin(ρ − π/4)

ρ
1
2

+
4(cs/cp)

7
2 cos(cpρ/cs − π/4) − 3 cos(ρ − π/4)

ρ
3
2

+ O(
1

ρ
5
2
)

}
, (3.32)

with the leading term:

Kapp
II (ρ) =

√
2
π

sin(ρ − π/4)
ρ

1
2

. (3.33)

The kernels and their comparison with the leading terms are shown in Figure 3.20. The slower

decay of KII(ρ) has important implications for the frequency-dependent truncation, as discussed in

Sections 3.1.1 and 3.3.3.

In our simulations, slip-velocity histories exhibit some small oscillations (e.g., Figure 3.12). For

both Δx = 100 m and Δx = 50 m, the oscillations have the period of 6 time steps, or 0.0672 s for

Δx = 100 m and 0.0336 s for Δx = 50 m. The amplitude of the oscillations gets smaller for Δx = 50

m. Hence the oscillations are not physical. We find that they are due to kernel discretization. As

shown above, kernels KII(ρ) and KII(ρ) have period of 2π for ρ � 1. In simulations, time t is

discretized with the minimum time step Δtmin = γΔx/cs and hence the kernel argument ρ is

discretized with the kernel interval given by:

Δρmin = q̂csΔtmin. (3.34)

Therefore, for each frequency mode q̂, the number of points resolving one period of the kernel is:

Nρ =
2π

Δρmin
=

2π

q̂γΔx
. (3.35)

Nρ is smaller for larger q̂.

For the highest frequency magnitude q̂max =
√

2π/Δx, we get Nρ =
√

2/γ = 4.2 for γ = 1/3

that we use in simulations. Therefore, one period of the kernel is resolved by only 4.2 points for

the highest frequency. However, only four modes (k = ±Nx/2, |m| = ±Nz/2) have such high

frequency. If one considers all the modes as a rectangular array, −π/Δx ≤ k̂ = 2πk/λx ≤ −π/Δx
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and −π/Δx ≤ m̂ = 2πz/λz ≤ −π/Δx with q̂ = k̂2 + m̂2, and draws a circular ring of unit

width centered at zero frequency, then the radius of the ring that can cover the largest area is π/Δx.

Hence the largest contribution to oscillations likely comes from modes with the frequency magnitude

q̂ = π/Δx. For these modes, Nρ = 2/γ = 6, which explains the observed period of the oscillations.

Smaller cell sizes Δx help reduce the amplitude of oscillations, as for smaller Δx frequencies π/Δx

become much higher and hence have smaller Fourier coefficients Ḋx(k, m; t′) and Ḋz(k, m; t′).

3.7.2 Updating field variables

Modeling of long deformation histories with periods of fast slip requires variable time stepping. We

employ the time stepping scheme developed by Lapusta et al. (2000) for 2D anti-plane problems.

The scheme works quite well in our 3D models. The variable time step Δt is chosen as:

Δt = max{Δtmin, Δtevol}, (3.36)

where Δtmin is the minimum time step chosen for good resolution of dynamic rupture propagation

and Δtevol varies with slip velocity as discussed below. The value of Δt is always adjusted to be

an integer multiple of Δtmin, as this simplifies computation of convolution integrals. The minimum

time step is given by:

Δtmin = γΔx/cs (3.37)

where γ is a constant. We use γ = 1/3, as this is the value suggested by our previous study of

dynamic rupture in 3D (Day et al., 2005). The time step Δtevol is set to be inversely proportional

to slip velocity:

Δtevol = min
i,j

[ξ(i, j)L(i, j)/V (i, j)], (3.38)

where L(i, j), V (i, j), and ξ(i, j) are the characteristic slip, slip velocity, and a prescribed parameter

for the cell (i, j), i = 1, 2, ..., Nx and j = 1, 2, ..., Nz. ξ(i, j) is a function of friction properties

from linear stability analysis (Lapusta et al., 2000). In addition, ξ(i, j) is constrained to satisfy
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ξ(i, j) ≤ ξc, where ξc is a constant, to ensure that slip at each time step does not exceed ξcL(i, j).

Lapusta et al. (2000) used ξc = 1/2. In our 3D models, we do a series of comparison with ξc = 1/2,

1/3, 1/4, and 1/5. We find that values ξc ≥ 1/3 produce virtually indistinguishable results, but

ξc = 1/2 results in small differences. In the simulations presented in this work, we use ξc = 1/5;

however, ξc = 1/3 would have produced the same results.

To update field variables, we extend to 3D the scheme developed by Lapusta et al. (2000) for

2D antiplane problems. Instead of updating state variable θ directly, we use the quantity φ =

log (Voθ/L). From equation (3.10), the evolution equation for φ is:

dφ

dt
=

Vo

L
e−φ − V

L
. (3.39)

Suppose that, at time t, the discretized values of tangential slips δν(i, j; t), slip velocities Vν(i, j; t),

ν = x, z, and state variable φ(i, j; t) are known for the cell (i, j),i = 1, 2, ..., Nx, j = 1, 2, ..., Nz. In

addition, we also have the Fourier coefficients of tangential slips Dν(k, m; t′), and the history of

Fourier coefficients of slip velocity Ḋν(k, m; t′), |k| ≤ Nx/2, |m| ≤ Nz/2 for the (discretized) prior

time t′, t − Tw < t′ < t, where t is the current time and Tw is the truncation time window. To

advance the field variables by one time step Δt and determine the quantities at the end of t + Δt,

we proceed in the spirit of a second-order Runge-Kutta procedure as follows (for compactness, all

explicit references to the indices (i, j) for physical space and (k, m) for Fourier space are suppressed):

1. Determine the evolution time step Δt using equation (3.36).

2. Make the first predictions of the values of the slips δ∗ν(t + Δt), their Fourier coefficients

D∗
ν(t + Δt) and the state variable φ∗(t + Δt) for each cell, assuming that slip velocities are constant

and equal to Vν(t) throughout the time step t. Hence we have:

δ∗ν(t + Δt) = δν(t) + ΔtVν(t) (3.40)

D∗
ν(t + Δt) = Dν(t) + ΔtḊν(t) (3.41)
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φ∗(t + Δt) =

⎧⎪⎪⎨
⎪⎪⎩

log
{
eφ(t)(1 − V dt/L) + V0dt/L

}
, V dt/L ≤ 10−6;

log
{
V0/V + (eφ(t) − V o/V )e−V dt/L

}
, V dt/L > 10−6.

, (3.42)

where V =
√

V 2
x (t) + V 2

z (t) is the resultant slip rate. The update of φ distinguishes between small

and large values of V dt/L for the following reason. For small V , (eφ(t) − V o/V ) .= −V o/V and

e−V dt/L .= 1 in the numerical sense, and then φ∗(t + Δt) .= log(0), which leads to an error in

computation. Using the Taylor expansions for small values of V dt/L avoids the problem. Then we

compute the first predictions of the Fourier coefficients of stress transfer functionals F ∗
ν (t + Δt),

using equation (3.2):

⎧⎪⎪⎨
⎪⎪⎩

F ∗
x (t + Δt)

F ∗
z (t + Δt)

⎫⎪⎪⎬
⎪⎪⎭ = − μ

2q̂

⎡
⎢⎢⎣ k̂2 m̂k̂

m̂k̂ m̂2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩2
(

1 − c2
s

c2
p

)⎛⎜⎜⎝D∗
x(t + Δt)

D∗
z(t + Δt)

⎞
⎟⎟⎠

−
∫ t

t+Δt−Tw

KII(q̂cs(t + Δt − t′))

⎛
⎜⎜⎝Ḋx(t′)

Ḋz(t′)

⎞
⎟⎟⎠ dt′−

∫ Δt

0
KII(q̂cst

′)dt′

⎛
⎜⎜⎝Ḋx(t)

Ḋz(t)

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

+ similarly rewritten second term of (3.2). (3.43)

For Δt ≥ Tw, the second term on the right-hand side of the above expression is set to be zero. For

Δt < Tw, the term can be computed because slip-velocity history is known. The third term is an

approximation of the convolution on the time interval corresponding to the current time step. We

then obtain the first prediction of stress functionals, f∗
ν (t + Δt) through the inverse Fast Fourier

Transform (FFT) of F ∗
ν (t + Δt).

3. Find the prediction of slip velocities V ∗
ν (t + Δt) corresponding to the predicted values of the

state variable φ∗(t + Δt) and stress functionals f∗
ν (t + Δt). The direction of the slip-velocity vector

V = (Vx, Vz) should coincide with the direction of the shear-traction vector τ = (τx, τz):

V ∗
z (t + Δt)

V ∗
x (t + Δt)

=
τ∗
z (t + Δt)

τ∗
x (t + Δt)

. (3.44)
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Combining the above equation with (3.1), we get:

V ∗
z (t + Δt)

V ∗
x (t + Δt)

=
Φ∗

z(t + Δt)
Φ∗

x(t + Δt)
, (3.45)

τ∗ = Φ∗ − μ

2cs
V ∗, (3.46)

where Φ∗
ν(t+Δt)=τo

ν (t+Δt)+f∗
ν (t+Δt), Φ∗=

√
Φ∗

x
2(t+Δt)+Φ∗

z
2(t+Δt), V ∗=

√
V ∗

x
2(t+Δt)+V ∗

z
2(t+Δt),

and τ∗=
√

τ∗
x

2(t+Δt)+τ∗
z

2(t+Δt). Equating the shear traction (3.46) to the strength given by the

regularized form of the rate and state friction law (e.g., Rice and Ben-Zion, 1996; Ben-Zion and Rice,

1997; Lapusta et al., 2000; Lapusta and Rice, 2003) results in:

Φ∗ − μ

2cs
V ∗ = aσarcsinh

[
V ∗

2Vo
exp
(

fo + bφ∗(t + Δt)
a

)]
. (3.47)

Newton-Rhapson search is used to solve the above equation for V ∗. Once V ∗ are obtained, V ∗
ν (t +

Δt), ν = x, z can be readily found from equation (3.45).

4. Make the second predictions of the values of the slips δ∗∗ν (t + Δt), their Fourier coefficients

D∗∗
ν (t + Δt), and the state variable φ∗∗(t + Δt) :

δ∗∗ν (t + Δt) = δν(t) + Δt[Vν(t) + V ∗
ν (t + Δt)]/2, (3.48)

D∗∗
ν (t + Δt) = Dν(t) + Δt[Ḋν(t) + Ḋ∗

ν(t + Δt)]/2 (3.49)

φ∗∗(t + Δt) =

⎧⎪⎪⎨
⎪⎪⎩

log
{
eφ(t)(1 − V ∗dt/L) + V0dt/L

}
, V ∗dt/L ≤ 10−6;

log
{
V0/V ∗ + (eφ(t) − V o/V ∗)e−V ∗dt/L

}
, V ∗dt/L > 10−6.

⎫⎪⎪⎬
⎪⎪⎭ , (3.50)

where Ḋ∗
ν(t + Δt) are Fourier coefficients of V ∗

ν (t + Δt), ν = x, z. Then we can find the corre-

sponding prediction of stress transfer functionals, f∗∗
ν (t + Δt), using δ∗∗ν (t + Δt) and assuming the

slip velocities are constant and equal to [Vν(t) + V ∗
ν (t + Δt)]/2 throughout the evolution time step.

The computational procedure is analogous to (3.2) in stage 2. Note that the second term on the

right-hand side of (3.2) stays the same in this stage, and hence we do not need to compute it again.
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6. Find the second prediction of slip velocities V ∗∗
ν (t+Δt) that corresponds to the predicted state

variables φ∗∗(t + Δt) and stress functionals f∗∗
ν (t + Δt). The computational procedure is analogous

to stage 3.

7. Declare the values of the second prediction as the values of field quantities at the time t + Δt.

Store the values of slips δν(t + Δt), their Fourier coefficients Dν(t + Δt), slip velocities δ̇ν(t + Δt),

and state variable φ(t + Δt) for use in the next time step. In addition, store Ḋν(t′) = [Ḋν(t) +

Ḋ∗
ν(t + Δt)]/2, ν = x, z as the Fourier coefficients of slip-velocity history for time t < t′ < t + Δt.

Go back to stage 1 to advance another time step.
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Chapter 4

Transition of mode II cracks from
sub-Rayleigh to intersonic speeds
in the presence of favorable
heterogeneity

Here, we use the methodology developed in Chapter 2 to study intersonic transition and prop-

agation of shear cracks in a 2D single-rupture model. Importance of this subject and relevant

observations have been discussed in Chapter 1. Intersonic transition in the context of a 3D fault

model and long-term fault slip is considered in Chapter 5.

This chapter is based on Liu and Lapusta (2008).

4.1 Burridge-Andrews mechanism on homogeneous fault

Theoretical and numerical studies of sub-Rayleigh-to-intersonic transition date back to Burridge

(1973) and Andrews (1976). Burridge (1973) considered a self-similar mode II crack and found

that a shear stress peak propagates with the shear wave speed cs in front of the crack. Andrews

(1976) performed numerical simulations of spontaneous crack propagation on a uniformly prestressed

interface governed by a linear slip-weakening law (Figure 4.1a) in which friction linearly decreases

from static friction strength τ s to constant dynamic friction strength τd over a characteristic slip

do. This law implies a finite fracture energy given by 1/2
(
τ s − τd

)
do. Andrews (1976) started with
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Figure 4.1: (a) Linear slip-weakening friction law. τc is the shear strength of the interface and δ
is slip (or relative displacement in shear) across the interface. (b) A prescribed crack interface is
embedded in an infinite, elastic, and homogeneous space. The main crack is initiated from a region
around x = 0. This work considers interaction of the main crack with a region of heterogeneity that
exists in front of the main crack and may initiate a secondary crack. Depending on the model, the
heterogeneity is a pre-existing subcritical crack, a patch with higher prestress, or a patch with lower
peak friction strength. When discussing crack tips and their speeds for both main and secondary
cracks, we always refer to crack tips that propagate in the direction of increasing x, or to the right
in all figures, unless specified otherwise.

shear stress and slip distributions appropriate for a critical static crack under a uniform far-field

shear loading τo and initiated a dynamic crack by slightly increasing shear stress along the critical

crack profile. The half length of the critical crack is given by (Andrews, 1976):

Lc =
1

π(1 − ν)
μ(τ s − τd)do

(τo − τd)2
, (4.1)

where ν is the Poisson’s ratio and μ is the shear modulus. Lc is used as a reference length scale in

this study, to facilitate comparison with Andrews (1976) and subsequent studies. Andrews (1976)

confirmed and supplemented the findings of Burridge (1973) by demonstrating that a growing shear

stress peak propagates with the shear wave speed cs in front of the initially sub-Rayleigh crack and

that the peak approaches the limiting value τmax = τo + Scrit(τo − τd), Scrit = 1.77, as the crack

approaches the Rayleigh wave speed cR. If τmax > τ s, the shear stress peak reaches static friction

strength during crack propagation, and a daughter crack is initiated in front of the main crack. The

daughter crack propagates with intersonic speeds from its very beginning. This process of intersonic

transition is often called the Burridge-Andrews mechanism. Figure 4.2 shows our simulation of this
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Figure 4.2: (a) Shear stress distribution for a mode II crack spontaneously propagating on an
interface governed by linear slip-weakening friction. A peak in shear stress travels with the shear
wave speed in front of the crack. The interface has uniform friction properties and uniform prestress
τo given by (τo − τd)/(τ s − τd) = 0.53. (b) Rupture time along the interface, i.e., the time at which
each point along the interface first acquires nonzero speeds. A daughter crack appears in front of the
main crack at the location x/Lc = 13.5 and propagates with intersonic speeds as described by the
Burridge-Andrews mechanism. Here and in the text the word “intersonic” refers to speeds between
the shear wave speed cs and the dilatational wave speed cp. For lower prestress, the daughter crack
would appear further along the interface or not at all.

transition mechanism; the methodology is described in Section 4.2.

The Burridge-Andrews mechanism has been observed in the laboratory (Xia et al., 2004) and

provides a plausible model for intersonic transition during earthquakes. The condition τmax > τ s

implies that, for given friction properties, shear prestress τo on the interface has to be large enough

for intersonic transition to occur, i.e., (τo − τd)/(τ s − τd) > 1/(1 + Scrit) = 0.36. Equivalently,

the seismic ratio S defined as S = (τ s − τo)/(τo − τd) has to be smaller than the critical value,

Scrit = 1.77. If, for given friction properties, shear prestress τo is not large enough, no daughter crack

nucleates, and the limiting rupture speed of the main crack is the Rayleigh wave speed cR. Note that

values of τo only slightly larger than the limiting value would imply transition to intersonic speeds at

very large propagation distances, and larger values of τo are needed for smaller transition distances.

For example, transition at the location x/Lc = 13.5 requires prestress (τo − τd)/(τ s − τd) = 0.53,

which is the case shown in Figure 4.2.

A number of other studies have addressed the issue of intersonic transition and/or intersonic
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propagation. Significant advances have been made in understanding various theoretical aspects of

crack propagation with speeds larger than cR (e.g., Burridge et al., 1979; Freund, 1979; Broberg,

1994, 1995; Huang and Gao, 2001; Samudrala et al., 2002; Antipov and Willis, 2003). In part, it has

been established that cracks cannot propagate with speeds in the interval [cR, cs] due to energetic

constraints, and that intersonic cracks in models with finite tractions, constant fracture energy, and

uniform prestress would tend to accelerate to the dilatational wave speed cp. Gao et al. (2001)

studied the transition of a sub-Rayleigh mode II crack to intersonic speeds using both continuum

and molecular dynamics simulations and showed that the two approaches agree. Geubelle and

Kubair (2001) analyzed numerically intersonic transition under mixed-mode conditions and pointed

out that transition from sub-Rayleigh to intersonic speeds can occur “through a sudden acceleration

of the tip of the main cohesive zone”. The study of Geubelle and Kubair (2001) considered relatively

high prestress levels that would result in intersonic transition by the Burridge-Andrews mechanism.

Recently, Festa and Vilotte (2006) and Shi et al. (2007) considered dependence of intersonic transition

and rupture mode on crack initiation; the former study used linear slip-weakening friction, while

the latter study used a law of a rate and state type. Dunham (2006) proposed that transition

distances for the Burridge-Andrews mechanism can be obtained from the self-similar crack model

by requiring that the daughter crack reaches a critical size. Intersonic transition in 3D models of

earthquake rupture, in some cases in the presence of heterogeneities, have been studied numerically

by a number of researchers (e.g., Day, 1982a,b; Madariaga and Olsen, 2000; Fukuyama and Olsen,

2002; Dunham et al., 2003). A number of studies addressed the issue of intersonic rupture speeds in

a bimaterial configuration, where the interface separates two different elastic materials (e.g., Harris

and Day, 1997; Cochard and Rice, 2000; Adams, 2001; Ranjith and Rice, 2001; Shi and Ben-Zion,

2006).

4.2 Methodology

Our goal is to study intersonic transition in the presence of fault heterogeneity, which is common on

natural faults (Section 4.5.6). We consider a mode II plane-strain shear crack propagating along a
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planar interface y = 0 embedded in an infinite, linear elastic, and homogeneous space (Figure 4.1).

The direction of crack propagation and slip (or relative displacement in shear) δ(x, t) is denoted by

x. The Poisson’s ratio ν is chosen to be 0.25, so that cR = 0.92cs and cp =
√

3cs. The crack interface

is governed by a linear slip-weakening friction law, in which its shear strength τc linearly decreases

from its static value τ s to its dynamic value τd over a characteristic slip do:

τc(δ) =

⎧⎪⎪⎨
⎪⎪⎩

τd + (τ s − τd) (1 − δ/do) , δ ≤ do;

τd, δ > do.

(4.2)

τ s and τd can be thought of as products of constant in time compressive normal stress σ(x) and static

and dynamic friction coefficients, respectively. τ s and τd are uniform in space for cases described

in this study. Section 4.5 contains a comment about models with a patch of lower static friction

strength τ s.

Rupture propagation is numerically calculated using the spectral boundary integral method (e.g.,

Perrin et al., 1995; Geubelle and Rice, 1995; Lapusta et al., 2000). In our 2D model, shear traction

τ(x, t) on the interface y = 0 can be expressed as the sum of “loading” traction τ l(x, t) that would

act on the interface in the absence of any displacement discontinuity (i.e., slip) plus additional terms

due to time-dependent slip δ(x, t) on the interface, in the form:

τ(x, t) = τ l(x, t) + f(x, t) − μ

2cs
V (x, t), (4.3)

where f(x, t) is a functional of slip history on the interface and V (x, t) = ∂δ(x, t)/∂t is slip velocity.

As f(x, t) is obtained analytically through a closed-form Green function, boundary integral methods

can be considered semi-analytical and tend to be more accurate than other numerical approaches

such as finite difference methods (e.g., Day et al., 2005). f(x, t) is related to δ(x, t) and history

of V (x, t) in the Fourier domain (Appendix 4.6.2), and hence the spatial extent of the simulated

interface is actually infinite with the domain of interest periodically replicated along the interface.

The size of the domain is chosen so that waves from its periodic replications do not reach spatial
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locations of interest during the simulated time. Note that slip does not affect normal tractions σ(x)

which remain constant in this model.

Spontaneous rupture of the interface is simulated by requiring, at each time step, that shear

traction (4.3) is equal to shear strength (4.2) for points along the interface that have nonzero slip

velocity, and that shear traction (4.3) is smaller than shear strength (4.2) for points along the

interface that have zero slip velocity. More details about the formulation and numerical procedure

are given in Appendix 4.6.2 and Day et al. (2005).

Loading is incorporated in the model by prescribing traction τ l(x, t) in equation (4.3) that would

act on the interface if it were constrained against any slip. τ l(x, t) is equal to a constant value,

τo, on most of the interface. We call τo “background prestress” and quantify it in two ways.

τ̄o = (τo − τd)/(τ s − τd) gives a nondimensional value of τo which increases with τo. The seismic

ratio S = (τ s − τo)/(τo − τd) (Andrews, 1976) is smaller for larger τo. In a region close to x = 0,

τ l(x, t) is such that a main crack spontaneously spreads from there starting at t = 0. τ l(x, t) is

elevated above τo in a region of favorable heterogeneity of the size 2Lh located at x = D (Figure

4.1). D is fixed and equal to 12Lc. Dependence of results on D is discussed in Section 4.4. Further

specification of τ l(x, t) and the process of initiating the main crack are discussed in Sections 4.3 and

4.4.

Uenishi and Rice (2003) considered a quasi-static mode II crack on a linearly slip-weakening

interface subjected to peaked loading. They demonstrated that the crack would become unstable

when its half length reaches the nucleation half length given by

Lnucl =
0.579
1 − ν

μdo

(τ s − τd)
= 0.579π

(τo − τd)2

(τ s − τd)2
Lc, (4.4)

assuming that the crack half length reaches Lnucl while slip inside the crack is still below do. In

other words, Lnucl is relevant for cracks developing in such a way that their half length reaches Lnucl

before their slip (or relative shear displacement) exceeds do. In that case, the entire crack length lies

within the cohesive zone up until unstable crack propagation, and the singular crack theory cannot
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be used. As demonstrated by Uenishi and Rice (2003) and confirmed in this study, this situation

is relevant for a wide range of loading conditions. We discuss the relation of Lnucl to our results

in the following sections. Note that Lnucl could be chosen as a characteristic length scale in our

models but we use the critical half length Lc in that capacity, to facilitate comparison with previous

studies. As a reminder, Lc = (2π(1− ν))−1μG/(τo − τd)2 gives the half length for a singular crack,

with fracture energy G and residual shear stress τd, which is in the critical state (such that, for an

infinitesimal crack advance, the energy released is exactly balanced by the energy absorbed) under

uniform far-field stress τo. Lc is relevant for cohesive-zone models of cracks in situations when the

cohesive zone sizes at the crack tips of quasi-static cracks are small compared to the overall crack

size, which means that cracks are still quasi-static when slip exceeds do over most of the crack

length. Note that Lnucl is independent of background prestress τo but the normalized ratio Lnucl/Lc

depends on τo (Table 4.1).

Rupture propagation is simulated on a uniform spatial grid with the cell size Δx = Lc/N c and

constant time step Δt = Δx/βcs, where N c is the number of cells in the length Lc, and β determines

the time step as a fraction (equal to 1/β) of the time for the shear wave to travel through Δx. An

important quantity to resolve is the cohesive zone length at the crack tip (Palmer and Rice, 1973;

Day et al., 2005). A useful upper bound for the cohesive zone length of a sub-Rayleigh crack is given

by the cohesive zone length Λo of a crack propagating at 0+ speeds (Palmer and Rice, 1973; Rice,

1980):

Λo =
9π

32(1 − ν)
μdo

(τ s − τd)
. (4.5)

Note that, for given friction properties, Lnucl and Λo differ only by a prefactor of order 1. Table 4.1

relates numerical resolution of Lc and Λ0 and gives values of Lnucl/Lc for different prestress levels

τo used in this study.

We use the following nondimensional variables: time t̄ = cst/Lc, length x̄ = x/Lc, slip velocity

V̄ = μV/cs(τo − τd), and stress τ̄ = (τ − τd)/(τ s − τd). All other variables and quantities are

nondimensionalized accordingly and their nondimensional names are denoted by adding a bar “¯”.

For example, τ̄o = (τo − τd)/(τ s − τd) and L̄nucl = Lnucl/Lc. Note that τ̄ s = 1, τ̄d = 0, and L̄c = 1.
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Table 4.1: Values of S, Lnucl/Lc, and numerical resolution of Lc and Λo for different prestress levels
τo. N c = 100 is the lowest resolution used. Numerical convergence has been verified by considering
N c equal to 200, 400, and, in some cases, 1200, which increases the resolution of the cohesive zone
by a factor of two, four, and twelve, respectively.

τ̄o = (τo − τd)/(τ s − τd) 0.33 0.25 0.20 0.08
S = (τ s − τo)/(τo − τd) 2 3 4 11.5
Lnucl/Lc 0.202 0.114 0.073 0.012
N c = Lc/Δx 100 100 100 800
Λo/Δx 30.8 17.4 11.1 14.2

For clarity, we sometimes specify nondimensional quantities in terms of their dimensional analogs.

Slip progression along the interface is tracked using the notion of rupture time. Nondimensional

rupture time is defined as the non-dimensional time t̄(x̄) when slip rate V̄ of point x̄ becomes nonzero

for the first time. Our implementation of that definition is to require that slip rate exceeds a given

small value, V̄c. The results do not depend on the value of V̄c as long as it is small enough to capture

slip initiation. We adopt V̄c = 10−6. Note that, for μ = 3 · 104 MPa and cs = 3 · 103 m/s typical for

rocks, and τo − τd = 10 MPa which is the order of magnitude for typical stress drops during large

earthquakes, V̄c = 10−6 corresponds to the dimensional value of 10−6 m/s. In all cases we checked,

we find that any spatial cell with non-zero slip rate has nondimensional slip rate larger than 10−6,

which means that this choice for V̄c appropriately captures initiation of slip.

4.3 Advancing main rupture towards a pre-existing subcriti-

cal crack: An example of abrupt sub-Rayleigh-to-intersonic

transition

To smoothly initiate a main crack and a subcritical secondary crack, we conduct a preliminary quasi-

dynamic calculation in which the part of the functional f(x, t) that accounts for wave mediated stress

transfers is ignored (Appendix 4.6.2). We prescribe loading traction τ̄ l(x̄, t̄′) which has two peaks,
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at x̄ = 0 and x̄ = D̄:

τ̄ l(x̄, t̄′) = τ̄o + (1 − τ̄o)(1 + Rt̄′)

{
exp
[
−
( x̄

L̄nucl

)2
]

+ exp

[
−
(

x̄ − D̄

L̄nucl/2

)2
]}

. (4.6)

In (4.6), R is the loading rate of the imposed peaks and τ̄o is (constant) background prestress outside

of the two peaks; τ̄o = 0.33 (i.e., S = 2) in this section. At t̄′ = 0, frictional sliding initiates at x̄ = 0

and x̄ = D̄. We let the sliding zone centered at x̄ = 0 expand until it reaches a certain half size L̄ini.

This happens at the time t̄′ = t̄′ini. We save the corresponding distributions of loading tractions τ̄ l,

shear tractions τ̄ , slip δ̄, and slip velocity V̄ along the interface, and use them as initial conditions

for a subsequent fully dynamic calculation, in which we reset the time by setting t̄ = t̄′ − t̄′ini. Note

that loading tractions τ̄ l(x̄, t̄) are unchanged thereafter (for all t̄ > 0).

We choose parameters of the initiation procedure that mimic tectonically driven slow nucleation

on faults in the Earth’s crust and result in smooth acceleration of the main crack. For that, we

first consider the initiation of the main crack separately, without the second exponential term in

(4.6). We consider progressively slower loading rates R = 0.63, 0.063, and 0.0063, and progressively

smaller initial half sizes L̄ini = L̄nucl, 0.9L̄nucl, and 0.8L̄nucl, and compare stress conditions that the

resulting main crack creates at the location x̄ = D̄ = 12 of the preexisting subcritical crack. For

L̄ini = L̄nucl, loading rates R = 0.063 and R = 0.0063 give virtually identical stressing conditions as

shown in Figure 4.3; we use R = 0.0063 in the simulations described in this work. For R = 0.0063,

L̄ini = 0.8L̄nucl does not initiate spontaneous crack propagation, while both L̄ini = 0.9L̄nucl and

L̄ini = L̄nucl create a spontaneously propagating main crack that smoothly accelerates from near-

zero tip speeds. L̄ini = 0.9L̄nucl and L̄ini = L̄nucl result in virtually indistinguishable stressing

conditions at the location of the subcritical crack. We choose L̄ini = L̄nucl because it results in

shorter computation time. The importance of the initiation procedure and related results of Festa

and Vilotte (2006), Shi et al. (2007), and Geubelle and Kubair (2001) are discussed in Section 4.5.4.

The shear stress distribution at the beginning of a dynamic simulation is shown in Figure 4.4.

At t̄ = 0, the secondary crack centered at x̄ = 12 is much smaller than the main crack (which has
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Figure 4.3: Stress distribution on the interface for different initiation procedures. To compare stress
fields created by the main crack, no heterogeneity at x̄ = 12 is imposed for these simulations. The
more abrupt initiation procedure that results in a higher shear stress peak is discussed in Section
4.4.
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Figure 4.4: Stress distribution around the main crack and pre-existing subcritical crack at t̄ = 0
(solid green line). The main crack centered at x̄ = 0 is poised to propagate spontaneously for t > 0,
while the secondary crack centered at x = 12Lc remains a subcritical crack. Prestress outside of
zones affected by cracks is equal to τ̄o = 0.33. τ̄BA = 0.53 (black dashed line) is the prestress level
required for intersonic transition at the location x̄ = 13.5 by the Burridge-Andrews mechanism.

length L̄nucl), constituting a subcritical crack. The background prestress level τ̄o = 0.33 is below

the critical value 0.36 of the Burridge-Andrews mechanism. τ̄o = 0.33 is even lower if compared to

the value τ̄BA = 0.53 needed for the Burridge-Andrews transition at the location x̄ = 13.5 which is

close to the location of the subcritical crack. Hence no intersonic transition would occur under such

prestress in the homogeneous case (with no preexisting subcritical crack).

For t̄ > 0, the spontaneously propagating main crack sends out dilatational and shear waves,

which impose an intersonic loading stress field (Appendix 4.6.1) on the secondary subcritical crack.

Figure 4.5 (left panel) shows rupture time on the interface. The secondary crack begins to spread at
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Figure 4.5: Left panel: Rupture time along the interface for the case with a preexisting subcritical
crack. Under the stress field of the advancing main crack, the secondary subcritical crack begins
to spread at t̄ = cst/Lc = 7.9 and eventually propagates with intersonic speeds. Note that the
results of simulations with two resolutions, N c = 200, β = 4 and N c = 1200, β = 4, are almost
indistinguishable on the scale of the plot. More resolution comparisons are shown in Figure 4.6.
Right panel: Rupture speed of the secondary crack. It approaches the Rayleigh-wave speed and
then abruptly jumps to intersonic speeds. Rupture speed is determined for the case with resolution
N c = 1200, β = 4 by dividing the interface into intervals of 24 cells each, computing average rupture
speed over each interval, and plotting the obtained value with respect to the middle of the interval.
Care is taken to make the location of the rupture speed jump correspond to a beginning or end of
an interval.
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the time t̄ = cst/Lc = 7.9 with rupture speeds close to zero. At that time, the main crack tip arrives

at the position 5.4Lc. As the main crack approaches, the secondary crack rapidly accelerates to the

Rayleigh wave speed cR and then jumps to an intersonic speed (Figure 4.5, right panel). The crack

tip speed of the secondary crack before the jump is numerically indistinguishable from cR, so it is

possible that the crack tip speed reaches cR momentarily before the jump. Note that while steady

crack propagation with cR would result in zero cohesive zone length and infinite slip velocities and

hence would be impossible, transient propagation with cR cannot be excluded.

To confirm the abrupt nature of the sub-Rayleigh-to-intersonic transition of the secondary crack,

we have done simulations with several levels of resolution, from N c = 200, β = 4 to N c = 1200, β = 4.

Figure 4.6 shows the space-time progression of the rupture front of the secondary crack close to the

location and time of the transition. The results have converged with respect to the discretization of

space and time. For example, the location of the transition is 12.862 for N c = 800 and 12.855 for

N c = 1200, a relative difference of less than 0.1%. As Figure 4.6 demonstrates, the sub-Rayleigh-to-

intersonic transition occurs within one spatial grid cell Δx and one time step Δt for all resolutions

we have considered. Hence, in the limit of Δx → 0 and Δt → 0, the crack tip should abruptly jump

from cR to an intersonic speed.

Figure 4.7 illustrates abrupt transition of the secondary crack tip to intersonic speeds by giving

snapshots of slip velocity and stress distributions at the crack tip. At time t̄ = cst/Lc = 15.02, the

tip of the secondary crack propagates with the speed numerically equal to cR. At t̄ = 15.04, sliding

initiates just one cell ahead of the crack tip and the sliding region propagates with intersonic speeds

immediately. This process is the same in simulations with different Δx and time step Δt. In the

limit of Δx → 0 and Δt → 0, intersonic sliding should be inseparable from the crack tip, and initiate

exactly at the tip.

Hence we conclude that the secondary crack transitions from sub-Rayleigh to intersonic speeds

by abruptly changing the speed of its tip. This transition mechanism is different from the Burridge-

Andrews mechanism, in which a daughter crack starts out as an intersonic crack. Note that once the

secondary crack transitions to intersonic speeds, it accelerates to speeds close to cp and maintains
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Figure 4.6: Propagation of the secondary crack in the region where sub-Rayleigh-to-intersonic tran-
sition occurs. Rupture time of each spatial cell is indicated using different symbols for different
resolution. For progressively finer resolution (i.e., larger N c), transition occurs within one cell size
Δx and one time step Δt, which means that, in the limit of Δx → 0 and Δt → 0, the rupture front
abruptly jumps from speeds numerically equal to cR = 0.92cs to an intersonic speed.
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Figure 4.7: Snapshots of slip velocity (left) and shear stress distributions (right) on the interface
during sub-Rayleigh-to-intersonic transition for the case N c = 1200, β = 4, zooming in on the crack
tip. Slip velocity is plotted on the logarithmic scale. For plotting convenience, slip velocity shown is
the actual slip velocity plus 10−6 and hence zero slip velocity appears as 10−6 on the plot. At time
t̄ = cst/Lc = 15.02, the crack tip propagates with the speed numerically equal to cR. At t̄ = 15.04,
sliding initiates just one cell ahead of the crack tip and propagates with intersonic speeds.

them for long propagation distances. Further discussion of this mechanism is given in Section

4.5.1 and Appendix 4.6.3. Whether the transition occurs or not should depend on the size of the

preexisting crack, background prestress τ̄o, and loading provided by the main crack. (The loading

significantly depends on the initiation procedure for the main crack, as explained in Sections 4.4,

4.5.4.) We explore these dependencies for a related case of a patch of higher prestress discussed in

the next section.
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Figure 4.8: Shear stress distribution around the main crack (left panel) and the patch of higher
prestress (right panel) at t̄ = 0 (τ̄o = 0.33). In the left panel, the solid green and dashed red lines
correspond to the smooth and more abrupt initiation procedures, respectively. τ̄BA = 0.53 is the
level of prestress required to achieve Burridge-Andrews intersonic transition at the location x̄ = 13.5
with the smooth initiation procedure.

4.4 Advancing main crack towards a patch of higher pre-

stress: dependence on patch size, prestress, and location

Instead of a preexisting crack (Section 4.3), let us consider higher prestress τ̄o
h = (τo

h − τd)/(τ s − τd)

in a small patch D̄ < x̄ < D̄ +2L̄h, where L̄h = Lh/Lc is the half size of the patch (Figure 4.8). We

select D̄ = 12. Sliding in the patch starts from its end x̄ = D̄ (closer to the main crack) at the same

time for all patch sizes, everything else being equal. We use two ways to initiate the main crack: (i)

the same smooth initiation as in Section 4.3, and (ii) a more abrupt initiation for which, at t̄ = 0,

prestress within |x̄| < 1 is set to be 1% larger than the static strength τ s of the interface. In the

case of (ii), the main crack initiates at once in the entire region |x̄| < 1. It accelerates and acquires

speeds close to cR much sooner than in the case of the smooth initiation procedure. This results in

a significantly higher shear stress peak as shown in Figure 4.3. For the smooth initiation, such a

shear stress peak would result only after much longer rupture propagation along the interface. As

in Section 4.3, background prestress τ̄o is chosen low compared to prestress required for intersonic

transition by the Burridge-Andrews mechanism. If there were no patch of higher prestress, no

intersonic transition and propagation would occur.

Spontaneous propagation of the main crack for times t̄ > 0 imposes an additional dynamic stress

field on the patch of higher prestress. For a range of patch sizes Lh/Lc and values of background

prestress τ̄o
h , as discussed in the following, shear stress in the patch overcomes the static friction
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strength τ s before the arrival of the shear stress peak, and secondary sliding (or crack) initiates at

the patch corner x̄ = 12 closest to the main crack. The secondary crack spreads along the patch

with intersonic speeds, driven by intersonic stress increase due to the advancing main crack. So far,

the behavior is intuitively obvious. However, it is not intuitively clear how this intersonic secondary

crack would behave after it enters the surrounding region of lower background prestress. While

intersonic propagation over the higher-stressed patch is an interesting phenomenon, we would like to

study whether the patch can induce sustained intersonic propagation for long distances beyond the

patch. Hence in the following we call “sub-Rayleigh” those scenarios that result in the eventual sub-

Rayleigh propagation of the crack, despite the fact that all scenarios include intersonic propagation

of the secondary crack over the higher-stressed patch.

Our simulations show that behavior of the secondary crack after it leaves the patch of higher

prestress is quite complicated. First, its tip speed momentarily reduces to zero, at least for small

patch sizes studied here. Its subsequent behavior depends on background prestress τ̄o, on the

additional loading provided by the main crack, on the level τ̄o
h of prestress in the patch, and on the

patch size L̄h = Lh/Lc. Loading provided to the patch by the main crack depends on background

prestress τ̄o, the position of heterogeneity D̄, and the procedure of main crack initiation. For each

initiation procedure, we fix D̄ = 12 and consider the dependence of results on the patch prestress

τ̄o
h and size L̄h for different values of τ̄o. Intuitively, the larger the patch and the higher prestress

it has, the more likely it is to cause transition to intersonic speeds. Yet the simulation results are

more complex.

We start by describing results for the more abrupt initiation (ii) of the main crack. Results of

our simulations in terms of intersonic vs. sub-Rayleigh propagation of rupture beyond the patch of

higher prestress are summarized in Figure 4.9. To determine the eventual crack speed, we simulate

rupture propagation until the location x̄ = x/Lc = 16 is ruptured. For cases that require further

clarification, and for selected conceptually important cases, we redo calculations until the location

x̄ = 25 is ruptured. Note that our methodology periodically repeats the simulated domain. Hence,

to simulate a bilateral main crack and to avoid waves arriving from periodic replications of the
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rupture process into the region of observation, we use domain lengths of 50 and 80 to determine the

crack speed at locations x̄ = 16 and x̄ = 25, respectively.

Figure 4.9 (top panel) shows results for τ̄o = 0.25 (S = 3). We find two regions of sub-Rayleigh

behavior, marked “Sub-Rayleigh I” and “Sub-Rayleigh II” in the figure, and one connected region

of intersonic behavior. Boundaries separating regions of intersonic and sub-Rayleigh behavior are

approximate in Figure 4.9, inferred based on simulated cases shown as dots. We have studied many

cases close to the boundaries, and that is why dots close to the boundaries overlap. Results for cases

τ̄o = 0.33 (S = 2) and τ̄o = 0.2 (S = 4) are shown in Figure 4.9, bottom panels. Comparison of

cases τ̄o = 0.25 and τ̄o = 0.33 shows that regions of sub-Rayleigh behavior shrink for the higher

background prestress τ̄o = 0.33, especially region “Sub-Rayleigh II”. Comparison of cases τ̄o = 0.25

and τ̄o = 0.2 shows that for the lower background prestress τ̄o = 0.2, regions of sub-Rayleigh

behavior expand and overlap, creating a single larger sub-Rayleigh region. Hence larger background

prestress favors intersonic propagation, as could be expected, and causes consistent motion of the

boundaries separating sub-Rayleigh and intersonic behavior.

Simulations for the smooth main crack initiation, which results in a smaller shear stress peak as

the main crack approaches the patch of higher prestress, are summarized in Figure 4.10. We see

qualitatively similar behavior in terms of where regions of sub-Rayleigh and intersonic propagation

are located. As could be expected, a smaller shear stress peak results in smaller regions of intersonic

propagation for the same values of background prestress.

To explain the existence and location of regions of sub-Rayleigh and intersonic behavior in Figures

4.9 and 4.10, let us consider some limiting cases. If there were no patch of higher prestress, the main

crack would stay sub-Rayleigh, as all background prestress values τ̄o considered here are lower than

prestress required for transition by the Burridge-Andrews mechanism. A very small patch should

have the same effect as no patch, and hence we should have sub-Rayleigh propagation for patch half

sizes L̄h = Lh/Lc close to zero, regardless of the patch prestress. This explains the existence of the

region marked “Sub-Rayleigh I” close to the L̄h = 0 line for any value of τ̄o
h . For most cases in

region “Sub-Rayleigh I”, the main crack overtakes secondary sliding, and continues its sub-Rayleigh
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propagation. An example of such case is shown in Figure 4.11 (left panel, L̄h = 0.055 = 0.48L̄nucl).

Only for cases close to the boundary with the intersonic region, the secondary crack either just

manages to propagate with sub-Rayleigh speed itself, or even transitions to intersonic speeds for a

brief time and then reverts back to sub-Rayleigh speeds (Figure 4.11, right panel).

If the prestress level in the patch is equal to the static strength, τ̄o
h = 1, then secondary sliding

starts in the patch at t̄ = 0, when the main crack is still far away. If the patch is large enough,

as approximately given by L̄h ≥ L̄nucl, then the secondary crack develops into a spontaneous sub-

Rayleigh crack and runs away with speeds close to cR before the main crack can approach and

interact with that process. Similar behavior occurs for τ̄o
h close to 1. Case L̄h = 0.2 = 1.75L̄nucl,

τ̄o
h = 0.85 in Figure 4.11 is an example of such behavior. This argument explains the existence of

the region marked “Sub-Rayleigh II” which includes a part of the line τ̄o
h = 1.

If the patch with τ̄o
h = 1 is small, as approximately given by L̄h ≤ L̄nucl, then it develops into a

subcritical crack and, similarly to the preexisting crack case of Section 4.3, such subcritical cracks
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can be driven, under the right conditions, to intersonic speeds by the stress field of the advancing

main crack. Such intersonic cases separate the two sub-Rayleigh regions for background prestress

values τ̄o = 0.25 and 0.33 in Figure 4.9 and τ̄o = 0.33 in Figure 4.10. An example of such intersonic

behavior is the case of L̄h = 0.075 = 0.66L̄nucl in Figure 4.11. However, regions “Sub-Rayleigh

I” and “Sub-Rayleigh II” merge for lower levels of background prestress and smaller shear stress

peaks, as Figures 4.9 and 4.10 show. The resulting connected sub-Rayleigh region consists of two

distinct areas, one in which the eventual sub-Rayleigh propagation is due to the main crack, and

the other in which the eventual sub-Rayleigh propagation is due to the secondary crack. Note that

large patches (i.e., larger than Lnucl) with uniform prestress τ̄o
h = 1 (or close to 1) are unlikely

to exist on the path of another crack in a realistic situation (i.e., on faults in the Earth’s crust).

Any small heterogeneities or perturbations would lead to development of unstable sliding in those

patches, effectively nucleating a main crack there. Such patches are considered in this study mostly

to have a better understanding of the parameter space.

If the shear stress peak traveling in front of the main crack does not initiate sliding in the patch,

lower shear stresses behind the peak cannot do that either, and sliding in the patch initiates only

due to high stresses very close to the main crack tip. In this situation, a small patch can no longer

create a preexisting subcritical crack that could be driven to intersonic speeds by the approaching

main crack. Hence small patches can only cause intersonic transition for large enough values of the

patch prestress, τ̄o
h > α, where α is the patch prestress which would be brought to the static strength

by the maximum of the shear stress peak. Prestress α satisfies 1 − α = τ̄peak − τ̄o, where τ̄peak

is the maximum of the shear stress peak when it arrives at the patch. The value of τ̄peak depends

on the history of the main crack; in our simulations, it is determined by the initiation procedure,

background prestress, and location of the patch (which is fixed at x̄ = 12). For τ̄o = 0.25 (S = 3)

and more abrupt initiation of the main crack, simulations show that τ̄peak = 0.665, which leads to

α = 0.585. The values of α for other values of τ̄o and for smooth initiation of the main crack are

determined analogously. Lines τ̄o
h = α are marked in Figures 4.9 and 4.10 as vertical black lines

with short dashes. Intersonic transition should be inhibited for τ̄o
h < α, at least for small patches,
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and that is what we observe in Figures 4.9 and 4.10.

For patches with τ̄o
h > α, intersonic loading stress provided by the main crack creates intersonic

secondary crack in the patch. When the intersonic secondary crack exits from the patch into the

region of lower background prestress, it slows down first but, for large enough patch sizes, accelerates

back at once and jumps abruptly to intersonic speeds (e.g., case L̄h = 0.34 = 2.98L̄nucl in Figure

4.11). That behavior can be understood as follows. Intersonic propagation in the patch radiates

stress waves and most of them are left behind by the intersonic secondary crack. When the secondary

crack exits the patch and slows down, the stress field radiated by sliding in the patch catches up

with the secondary crack and loads it. The duration of this loading depends on the patch size, and

hence it would be increasingly important for larger patches, causing acceleration of the secondary

crack and transition to intersonic speeds. Note that for patches with prestress lower than α but

close to it, sliding in the patch is still intersonic but it is separated from the main crack only by a

few cell sizes, and the behavior of the two cracks after exiting the patch cannot be well separated.

Subsequent sustained intersonic propagation occurs only for large enough patches, as it is driven

exclusively by stress radiation from the patch. For patch prestress levels much smaller than α, the

main crack and secondary sliding in the patch cannot be separated, and the only effect of the patch

is to increase the sub-Rayleigh propagation speed of the main crack.

More abrupt initiation of the main crack results in a larger shear stress peak and hence should

provide an approximate picture of the model behavior for a patch located much farther from the

initiation of the main crack (i.e., for larger D̄). Consider the case of τ̄o = 0.33. Through simulations

we find that the more abrupt initiation procedure results in the same maximum of the shear stress

peak at the location of x̄ = 12 as the smooth initiation procedure at the location of x̄ = 80. Given

the high resolution we would like to achieve in this study, such long propagation distances are hard to

study even in 2D. To check the correspondence between the smooth initiation procedure with D̄ = 80

and abrupt initiation procedure with D̄ = 12, we have done simulations with the smooth initiation

procedure where we put a patch of higher prestress τ̄o
h = 0.65 or 0.7 and size L̄h = 0.25 at the location

D̄ = 80, with background prestress τ̄o = 0.33 (S = 2). These cases are sub-Rayleigh for D̄ = 12 and
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smooth initiation (Figure 4.10, left panel, open black dots surrounded by red squares). However,

they are intersonic for D̄ = 12 and more abrupt initiation (Figure 4.9, bottom left panel). For

smooth initiation and D̄ = 80, these cases are also intersonic, indicating that more abrupt initiation

and its higher shear stress peak can indeed approximate long propagation distances for the smooth

initiation. The correspondence cannot be exact, however, since the shear stress distribution in front

of the main crack keeps extending in space for longer propagation distances; the height of the peak

may be the same, but its width would be different. Since the intersonic vs. sub-Rayleigh behavior

depends not just on the stress field ahead of the main crack but also on other factors such as, for

example, the patch size in relation to L̄nucl, this discrepancy cannot be resolved by simply scaling

the patch size in accordance with its location.

We have demonstrated that a small patch of higher prestress can completely change rupture

behavior. To illustrate the complexity of the response that results when the stress field of the main

crack interacts with the patch, let us consider the case of background prestress τ̄o = 0.25 (S = 3),

patch prestress τ̄o
h = 0.85, and more abrupt initiation of the main crack (Figure 4.9, top panel).

Rupture times for four values of the patch size L̄h = Lh/Lc are shown in Figure 4.11 (left panel)

but more cases (shown as dots in Figure 4.9 for τ̄o
h = 0.85) are enumerated in the following. Note

that L̄nucl = 0.11 in this case.

For L̄h ≤ 0.06, the main crack overtakes the secondary crack, and continues its sub-Rayleigh

propagation beyond the patch of higher stress (Figure 4.11, L̄h = 0.055). For L̄h = 0.065, the

secondary crack survives but stays sub-Rayleigh. For 0.07 ≤ L̄h ≤ 0.085, the secondary crack ac-

celerates after a pause and acquires sustained intersonic speeds by the abrupt transition mechanism

described in Section 4.3 (Figure 4.11, L̄h = 0.075). For 0.09 ≤ L̄h ≤ 0.105, the secondary crack

accelerates to sub-Rayleigh speeds and creates an intersonic daughter crack in front; the daugh-

ter crack subsequently dies and the secondary crack continues its propagation with sub-Rayleigh

speeds. For L̄h = 0.125, the secondary crack accelerates to sub-Rayleigh speeds and there is no

intersonic propagation beyond the patch. For 0.15 ≤ L̄h ≤ 0.25, the secondary crack accelerates

after its momentary stop and briefly acquires intersonic speeds but then continues its sub-Rayleigh
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Figure 4.11: Rupture time for different patch sizes, with τ̄o = 0.25 (S = 3) and more abrupt
initiation of the main crack. Left panel: Patch prestress τ̄o

h = 0.85. Rupture eventually propagates
with intersonic speeds for L̄h = Lh/Lc = 0.075 and 0.34 and sub-Rayleigh speeds for L̄h = 0.055
and 0.20. Behavior for these and other patch sizes is discussed in the text. Right panel: Patch
prestress τ̄o

h = 0.70, note a different scale of x̄. The behavior is much simpler than for τ̄o
h = 0.85.

Cases with different L̄h are marked by letters A–E at the location x̄ = 12+2L̄h where the secondary
crack for each case leaves the patch. L̄h = 0.08, line A: the secondary crack is overtaken by the main
crack for this and smaller L̄h. L̄h = 0.1, 0.105, 0.11, 0.115, 0.12, line B: for 0.1 ≤ L̄h ≤ 0.115, the
secondary crack accelerates to cR and abruptly transitions to intersonic speeds, but reverts back to
sub-Rayleigh speeds after short (but progressively longer) intersonic propagation; for L̄h = 0.12, the
crack manages to stay intersonic and results in eventual intersonic propagation. L̄h = 0.20, 0.30, 0.45,
lines C, D, E: same behavior as for L̄h = 0.12
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propagation (Figure 4.11, L̄h = 0.2). This seems contradictory with eventual intersonic propagation

of smaller patches, for example, L̄h = 0.075. Closer examination of these two cases shows that the

secondary rupture accelerates faster after leaving the patch in the case of L̄h = 0.20, as expected

for a larger patch and hence a larger secondary crack. However, this means that the secondary

crack in the case of L̄h = 0.20 reaches the same locations along the interface sooner than in the

case of L̄h = 0.075, and hence those locations are less stressed by the advancing main crack. For

0.3 ≤ L̄h ≤ 0.335, the secondary crack transitions to intersonic speeds, reverts back to sub-Rayleigh

speeds, nucleates an intersonic daughter crack in front which shortly dies, so that eventual propa-

gation is sub-Rayleigh; such complicated behavior results from complicated dynamic stressing that

combines the stress field of the main crack and the stress field released by intersonic sliding in the

patch. For 0.34 ≤ L̄h ≤ 0.6, the secondary crack only briefly pauses after leaving the patch, accel-

erating and transitioning abruptly to intersonic speeds while the main crack is still relatively far.

For these larger patches, stress release during intersonic propagation within the patch must play a

significant role in inducing the subsequent intersonic transition as already discussed. Figure 4.11

shows the case of L̄h = 0.34.

This rich response is consistent with our discussion of regions of intersonic vs. sub-Rayleigh

behavior in Figures 4.9 and 4.10. Note that the illustrated case of τ̄o
h = 0.85 is especially complicated

since, for increasing patch size, we cross three boundaries separating regions of sub-Rayleigh and

intersonic behavior (Figure 4.9, top panel, τ̄o
h = 0.85). The response in other cases can be much

simpler, as it is, for example, in the case of τ̄o
h = 0.70, where only one boundary is crossed (Figure

4.9, top panel, and Figure 4.11, right panel). This is because the patch prestress τ̄o
h = 0.70 is

relatively far from the nondimensional static strength of 1 and hence the region “Sub-Rayleigh II”

does not come into play.

To illustrate the behavior of the secondary crack, we show snapshots of stress and slip rate on

the interface close to the patch of higher prestress. Figure 4.12 compares two cases from the left

panel of Figure 4.11: the case of L̄h = 0.075 (which results in intersonic transition) and the case of

a larger patch, L̄h = 0.20 (for which the crack stays sub-Rayleigh). The case with no patch is also
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Figure 4.12: Snapshots of stress and slip velocity for the cases of L̄h = 0.075 (solid green line) and
L̄h = 0.20 (black dashed line with smaller dashes) with τ̄o = 0.25, τ̄o

h = 0.85, and more abrupt
initiation of the main crack. Propagation of the main crack with no patch of higher prestress is also
shown (red dashed line with larger dashes).

shown.

t̄ = 10.0: Stress and slip rate are the same for all three cases, with the only difference being

higher stress at the location of the patch. Stress at the left corner of the patch (x̄ = x/Lc = 12) has

just reached the static strength, due to the additional stress provided by the main crack. The front

of the main crack is located between x̄ = 9 and x̄ = 10.

t̄ = 11.0: The range of x̄ is shifted in this snapshot. The secondary crack is still subcritical and

close to the boundaries of the patch for L̄h = 0.075 but it is well-developed and propagates outside

the patch for L̄h = 0.20. This is not unexpected, since for L̄h = 0.20 the secondary crack is much

larger when it exits the patch. Note that L̄nucl = 0.114.

t̄ = 12.0: The front of the secondary crack for L̄h = 0.075 is already intersonic (it is located
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close to x̄ = 13). Note that the shear stress peak of the main rupture, plotted for the case with no

patch, has not yet reached this location. The secondary crack for L̄h = 0.20, located close to x̄ = 14,

continues its sub-Rayleigh propagation and a clear shear stress peak develops in front if it.

t̄ = 14.0: The range of x̄ is shifted in this snapshot. The intersonic secondary crack front for

L̄h = 0.075 has passed x̄ = 16, which means that its average speed since t̄ = 12.0 has been larger

than 1.5cs. The sub-Rayleigh front for L̄h = 0.20 is now behind, at about x̄ = 15.5. The shear wave

peak ahead of that front has increased, almost reaching the static strength, raising the possibility

of a Burridge-Andrews-type daughter crack. However, examination of further crack history (not

shown) reveals that this peak starts to decrease for subsequent times and does not reach the static

strength. (However, for similar situations with other parameters, a daughter crack does sometimes

nucleate and either dies or leads to sustained intersonic propagation.) The tip of the main crack is

at about x̄ = 13, but, at this time, all points behind the secondary crack tip have already slipped for

both cases, so we have one compound rupture with the tip that coincides with the secondary crack

tip.

Note that the patch makes prestress distribution on the interface discontinuous at the patch

edges (Figure 4.8). We have done several simulations in which prestress is smooth and differentiable

between the background level τ̄o and the patch level τ̄o
h . We find that simulation results with the

continuous prestress distribution around the patch are very similar to those with discontinuous

prestress distribution and reproduce all qualitative features, including abrupt intersonic transition

and rupture behavior beyond the location of the patch.

4.5 Conclusions and discussion

We find that sub-Rayleigh-to-intersonic transition of mode II cracks occurs in a number of models

that subject cracks to intersonic loading fields. A natural example of such stress field is stress

between the shear wave peak and earliest dilatational waves propagating in front of a spontaneously

expanding sub-Rayleigh Mode II crack (Appendix 4.6.1). If a secondary developing crack is subjected

to such stress field, it can transition to intersonic speeds and maintain that intersonic propagation



124

under a range of conditions. The Burridge-Andrews mechanism is a special case of such models.

We have demonstrated sub-Rayleigh-to-intersonic transition and sustained intersonic propagation

for two more models that contain “favorable heterogeneity”, i.e., places susceptible to nucleation

of secondary cracks. Models with a preexisting subcritical crack and with a small patch of higher

prestress have been considered. Similar behavior is expected in a model with a small patch of lower

static strength, and we confirm that in our simulations (not shown in this work).

In the models, a secondary crack nucleates at the location of the favorable heterogeneity and, for

a range of parameters, it is driven to intersonic speeds by the advancing main crack. In models with

a patch of higher prestress, interaction between the advancing stress field of the main crack and the

patch results in a complicated behavior which is described in Section 4.4 and can be understood

by considering limiting cases. We note that propagation of a secondary crack before the intersonic

transition is not only nonlinear (due to friction) but also highly unsteady dynamic process and its

analytical treatment, beyond qualitative arguments provided in this study, may be rather difficult.

However, once crack tips become intersonic, their behavior is consistent with analytical inferences

for intersonic cracks (e.g., Burridge et al., 1979; Freund, 1979; Broberg, 1994, 1995; Huang and Gao,

2001; Samudrala et al., 2002; Antipov and Willis, 2003).

In the following, we summarize and discuss other findings and their implications.

4.5.1 Abrupt change of crack tip speeds

In the presented models, tips of secondary cracks exhibit abrupt change of their speed from the value

numerically equal to the Rayleigh wave speed cR to an intersonic speed, and that change occurs right

at the crack tip. This is different from the Burridge-Andrews mechanism, in which the daughter

crack is intersonic from its very beginning. The abrupt change of a crack tip speed described in this

work is an alternative way of avoiding the forbidden speed regime [cR, cs].

Freund (1990) pointed out that, under some general assumptions, crack front speeds change in

phase with applied driving stress. That implies that smooth variations in applied driving stress

should result in smooth variations of the resulting crack speed. This is indeed the case in our
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simulations for crack speed changes within the sub-Rayleigh regime and within the intersonic regime.

However, in the preexisting subcritical crack case of Section 4.3, all stress-related fields are continuous

in time and space, but we still observe an abrupt front speed jump from speeds approaching cR to an

intersonic speed. These simulations imply that jumps from cR to intersonic speeds may be possible,

in highly unsteady situations, even if the driving stress is continuous. We emphasize that, for all

cases of abrupt intersonic transition presented in this study, (i) the corresponding crack tip has been

under action of an intersonic stress field of an advancing crack and, in some cases, an additional

intersonic stress field radiated during intersonic sliding in the patch of higher prestress, with the

latter field playing either minor or dominating role depending on the patch size, and (ii) the fronts

have been highly unsteady prior to transition, rapidly accelerating from near-zero speeds to cR.

Once the crack tip starts to propagate with intersonic speeds, the sliding process behind the tip

retains larger slip velocities at the place of the old crack tip propagating with cR and tends to create

a region of decreased slip velocities propagating with cs (which is a general feature of intersonic

mode II cracks which propagate faster than shear and Rayleigh waves). This creates an impression

of the old front (close to cR) falling behind and an intersonic daughter-like crack emerging from

the old front. In that sense, the abrupt transition resembles a daughter crack originating right

at the secondary crack front. The region of decreased slip velocities propagating with cs behind

the intersonic crack tip tends to separate the sliding region, further reinforcing the daughter-crack

analogy. (That separation also creates intersonic pulses.) Whether this is just a visual resemblance

or a useful way of thinking about this transition theoretically remains a question for future study.

In some cases, intersonic transition of the secondary crack beyond the patch of higher prestress is

followed by transition back to sub-Rayleigh speeds. Such intersonic-to-sub-Rayleigh transition is

only observed after short intersonic propagation distances, less than 1-2 Lc. When the “reverse”

transition happens, the crack reverts back to the old crack front. This further supports the notion of a

daughter crack originating right at the crack tip and expanding but then, in the case of the “reverse”

transition, shrinking and disappearing, presumably because the intersonic loading stress due to the

approaching main crack and, in some cases, due to stress waves released from the higher-stressed
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patch, has passed by without creating a large enough intersonic daughter crack. This consideration

supports the notion of a critical crack size for intersonic transition introduced in a different context

by Dunham (2006).

4.5.2 Prestress levels for intersonic transition and propagation

In models with favorable heterogeneities, intersonic transition and propagation can occur under

much lower background prestress levels than those required by the Burridge-Andrews mechanism.

This means that the level of prestress required by the Burridge-Andrews mechanism is only needed to

nucleate a daughter crack on a homogeneously prestressed interface, and not to drive the daughter

crack to intersonic speeds or to maintain that intersonic propagation. In Sections 4.3 and 4.4,

intersonic transition and propagation occur with background prestress τ̄o = (τo − τd)/(τ s − τd) =

0.33, 0.25, and 0.2, while the Burridge-Andrews mechanism has critical prestress of 0.36 and needs

prestress of 0.53 to achieve intersonic transition at a comparable transition length.

How low can prestress levels be and still allow intersonic transition and propagation? To inves-

tigate that question, we have considered progressively lower background prestress values τ̄o = 0.15,

0.10, and 0.08 in the model with a patch of higher prestress (Section 4.4). Intersonic transition

and sustained intersonic propagation beyond the patch occur for all these prestresses. (The other

parameters of the model are: patch location D/Lc = 12, patch size Lh/Lc = 0.25, patch prestress

τ̄o
h = 0.8, and more abrupt initiation of the main crack.) Note that the smaller τ̄o, the more chal-

lenging numerical simulations are if we would like to consider the same size of the simulated domain

in terms of Lc and ensure that the cohesive zone length is adequately resolved. Combining equations

(4.1), (4.5), and N c = Lc/Δx gives the following resolution estimate: Λo/Δx = (9π2/32)(τ̄o)2N c,

where Λo is the cohesive zone length for 0+ crack tip speeds. We use N c = 800 for low prestress

values which gives, for the lowest value τ̄o = 0.08, Λo/Δx = 14. For sub-Rayleigh crack speeds

higher than 0+, the cohesive zone length would decrease; we verify cohesive zone resolution by plot-

ting stress distributions on the interface for various stages of the crack development and observing

that there are several cell sizes within the cohesive zone, which means that the cohesive zone is
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adequately resolved (e.g., Day et al., 2005). In addition, there are virtually no cell-by-cell numerical

oscillations of slip velocities behind crack tips in our simulations; such oscillations are usually a sign

of inadequate numerical resolution. To the best of our knowledge, this is the first demonstration, in

a simulation of spontaneous propagation of cracks, that shear cracks can propagate with intersonic

speeds under such low prestress levels.

Based on our simulations, we hypothesize that, in the presence of a sufficiently large favorable

heterogeneity, intersonic transition and propagation of mode II cracks are possible for any back-

ground prestress τ̄o > 0 (or equivalently τo > τd). This would be analogous to sub-Rayleigh

cracks, for which any background prestress τo higher than dynamic strength τd would lead to sus-

tained crack propagation assuming that the initial crack is large enough (recall that the critical size

Lc ∼ 1/(τo − τd)2 and Lc increases rapidly as τo approaches τd).

4.5.3 Transition distance

Models with favorable heterogeneities have transition distances that depend on the position of het-

erogeneity. Transition lengths determined by Andrews (1976) for homogeneous stress and strength

provide an upper bound for transition lengths in models considered here.

Andrews (1976) numerically showed that nondimensional transition distance LBA/Lc on a homo-

geneously prestressed interface, with initial conditions appropriate for a quasi-static critical crack,

is a function of the seismic ratio S (or, equivalently, prestress τ̄o). For high enough prestress (i.e.,

S < Scrit), transition length LBA/Lc of the Burridge-Andrews mechanism is determined by the posi-

tion where the maximum of the shear stress peak reaches static strength. For smaller prestress (i.e.,

S ≥ Scrit), no intersonic transition is possible by the Burridge-Andrews mechanism, and LBA/Lc is

infinity. This study shows that if favorable heterogeneity is located closer to the main crack initi-

ation region than LBA/Lc, then intersonic transition may occur due to the heterogeneity, with the

transition length approximately given by the location of the heterogeneity. For example, all models

with sustained intersonic propagation in Sections 4.3 and 4.4 have transition lengths dictated by the

location of heterogeneity D/Lc = 12. If heterogeneities were not present in the models, transition
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lengths by the Burridge-Andrews mechanism would be infinite for the prestress values studied.

4.5.4 Importance of crack initiation procedure

The procedure of main crack initiation significantly affects subsequent crack propagation and hence

the loading provided by the main crack to the location of favorable heterogeneity. That, in turn,

affects the crack tip speed beyond the location of heterogeneity (Section 4.4, Figures 4.9 vs. 4.10).

In the smooth initiation procedure (described in Section 4.3), we stop the time-dependent loading

increase when the initial half size Lini of the main crack reaches the nucleation half size Lnucl

determined by Uenishi and Rice (2003). That, plus the slow loading we choose, ensures that the

initiation procedure mimics tectonically driven slow nucleation on faults in the Earth’s crust. Our

more abrupt crack initiation (Section 4.4) initiates the main crack by imposing prestress 1% larger

than static strength over length 2Lc, a procedure typical in modeling single earthquakes. For the

background prestress levels used in this study, 2Lc is appreciably larger than 2Lnucl (Table 4.1).

That creates larger initial crack sizes and faster acceleration of the main crack, by overstressing the

main crack initially in comparison with a slow, quasi-static nucleation process. The resulting higher

shear stresses ahead of the main crack promote intersonic transition. This more abrupt initiation

procedure can be considered a proxy for larger propagation distances as explained in Section 4.4.

Note that similar overstressing of the crack can be achieved with our smooth initiation procedure

by using faster time-dependent loading and continuing it until initial crack half sizes larger than

Lnucl would be created. Under slow tectonic loading characteristic for earthquakes, nucleation zones

should become unstable after reaching half lengths of Lnucl, as shown by Uenishi and Rice (2003)

and confirmed in this work, making subsequent tectonic loading irrelevant on the time scale of

the dynamic event. Hence nucleation half sizes larger than Lnucl cannot be obtained under slowly

increasing loading. In a model, any loading added to the nucleation zone after a developing nucleation

site reaches the half size Lnucl represents extra loading or overstressing. More abrupt initiation

procedure similarly provides the crack with extra loading. It is possible that such extra loading can

result on real faults for some dynamic triggering scenarios or rapid strength variations. However, it
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is important to keep in mind that nucleation procedures that are abrupt and/or overstress the crack

initially may not be the most common ones on tectonically loaded faults.

In Sections 4.3 and 4.4, we have considered relatively low background prestress levels, lower than

the ones needed for intersonic transition by the Burridge-Andrews mechanism. We have conducted

additional simulations that use the more abrupt initiation procedure with higher prestress levels in

the absence of heterogeneities. In those simulations, the main crack achieves intersonic speeds much

sooner than predicted by the Burridge-Andrews mechanism. If we load the nucleation region even

more, we can make the main crack transition to intersonic speeds right outside the nucleation zone.

In those cases, transition to intersonic speeds happens by either the abrupt transition mechanism

described in this work, or by the Burridge-Andrews daughter mechanism, or both (that is, in some

cases, the crack experiences abrupt speed changes twice, once by the abrupt mechanism described

in this study, and the second time by nucleating an intersonic Burridge-Andrews daughter crack in

front of the already intersonic crack).

These results for overstressed cracks are consistent with the studies of Festa and Vilotte (2006)

and Shi et al. (2007) who considered, in the absence of stress heterogeneity beyond the nucleation

region, the dependence of intersonic transition and rupture mode on the initiation procedure, and

with the study of Geubelle and Kubair (2001) and Shi and Ben-Zion (2006). In Shi et al. (2007), the

initiation procedure is similar to the more abrupt procedure of this work, in that a value of shear

stress about 3% above the static strength is used over a zone which is about three to six times larger

than 2Lnucl. That may explain the rapid transition of rupture to intersonic speeds in the model of

Shi et al. (2007) for high background prestress levels. (Note that their study uses a friction law of a

rate and state type.) In Festa and Vilotte (2006), a nucleation procedure with a peaked stress in the

nucleation zone is used. They find that intersonic transition is enhanced, and transition distances

are shorter, when peaked loading with widths progressively larger than 2Lnucl is used. Geubelle and

Kubair (2001), while concentrating on mixed-mode failure, considered, in part, intersonic transition

for a purely mode II crack. They found that the crack transitions to intersonic speeds by abruptly

changing the speed of its tip at distances very close to the crack initiation zone. The initiation
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procedure in Geubelle and Kubair (2001) is not described in detail but short transition distances

obtained in that work suggest that the initiation procedure provided some overstressing, in the sense

defined above.

4.5.5 Propagation speeds in the intersonic regime

Once a crack acquires intersonic speeds, it tends to accelerate, in our models, to speeds larger than

√
2cs and close to the dilatational wave speed cp. This is consistent with the theoretical study of

Burridge et al. (1979) who concluded that intersonic ruptures in models with finite tractions, constant

fracture energy, and homogeneous prestress would accelerate to cp (our models have homogeneous

prestress after the location of favorable heterogeneity). This result is also consistent with experiments

(e.g., Xia et al., 2004). Samudrala et al. (2002) found that, for velocity-weakening interfaces, the

open interval of speeds from
√

2cs to cp corresponds to stable rupture growth, so speeds larger than

√
2cs should be typical for velocity-weakening interfaces as well. Note that, for singular cracks,

√
2cs

is the only possible intersonic speed, as this is the only speed at which the energy release rate is

positive (Freund, 1990), but that is no longer the case for cohesive-zone models with finite tractions.

4.5.6 Implications for earthquake dynamics

Models for intersonic transition and propagation proposed here may have important consequences

for earthquake dynamics. Favorable heterogeneities considered in this work are likely to be present

on real faults. Earthquake models predict that seismic events are preceded by quasi-static slip in

so-called nucleation zones (e.g., Lapusta et al., 2000; Lapusta and Rice, 2003) that are analogous to

preexisting subcritical cracks considered in Section 4.3. Faults are likely to harbor multiple nucleation

zones. When one of these zones gives rise to an earthquake, the other developing nucleation zones

would find themselves under the stress field of an approaching dynamic crack, creating the scenario

considered in Section 4.3. How heterogeneous stress and strength are on faults and on what scales is

an active area of current research. Seismic inversions typically contain regions of high and low slip,

which likely indicate variations in fault prestress and/or strength. In particular, faults may contain
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patches of higher prestress considered in Section 4.4 or patches of lower strength. We do not present

results for patches of lower strength in this work but our simulations show that they are similar to

results for patches of higher prestress.

Our modeling indicates that intersonic transition may be dominated by those heterogeneities. In

that case, interpretation of inferred intersonic propagation using the Burridge-Andrews mechanism

for homogeneous prestress and strength could lead to misleading constraints on background prestress

levels or friction properties.

Note that even when sustained intersonic propagation does not occur in our models, the pres-

ence of favorable heterogeneity often mimics intersonic propagation locally by producing significant

advance in the crack tip location. For a preexisting subcritical crack or a patch of sufficiently high

prestress (higher than α defined in Section 4.4), the tip of combined rupture propagating beyond the

patch is that of the secondary crack for patches close to and larger than Lnucl (for smaller patches,

the secondary crack is overtaken by the main crack). Even if the secondary crack is sub-Rayleigh,

average rupture speed would appear to be intersonic in the region that surrounds the patch. Con-

sider, for example, the case with a patch of the size Lh/Lc = 0.20 from the left panel of Figure 4.11.

Eventual propagation is sub-Rayleigh in that case, but the secondary crack tip is about 2Lc ahead of

where the main crack front would have been if there were no patch. Hence the average crack speed

in the space interval shown in Figure 4.11 (from x̄ = 9 to x̄ = 16) is 1.4 cs. In addition, favorable

heterogeneity provides the main crack with additional stress release which temporarily increases

stresses in front of the crack. That makes intersonic transition due to another heterogeneity or due

to the Burridge-Andrews mechanism more likely.

In a broader context, this study shows the importance of incorporating heterogeneities into

models of rupture dynamics. This study indicates that a small preexisting crack or higher-stressed

patch can completely change the failure process on the interface, perturbing a sub-Rayleigh crack

into becoming intersonic. This emphasizes the need to systematically study effects of stress and

strength heterogeneities on rupture behavior.
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4.6 Appendix

4.6.1 Intersonic loading field due to an accelerating sub-Rayleigh mode

II crack

For a sufficiently smooth dynamic shear stress field τ(x, t), let us define its propagation speed c(x, t)

as

c(x, t) = − ∂τ(x, t)/∂t

∂τ(x, t)/∂x
. (4.7)

A stress field with c(x, t) > cs and ∂τ(x, t)/∂t > 0 represents stress increase that travels along

the interface with an intersonic speed. We call such stress fields “intersonic loading fields” in this

study. Intersonic loading fields should promote failure of the interface with intersonic speeds (and

they indeed do as this study demonstrates). Simulations show that a sub-Rayleigh mode II crack

spontaneously accelerating on a uniformly prestressed interface governed by linear slip-weakening

friction develops a shear stress peak ahead of its tip (e.g., Andrews (1976), Figures 4.2 and 4.3), and

stress in front of the peak represents an intersonic loading field.

This can be theoretically understood by considering a self-similar singular crack model, in which

the stress field takes a general form of τ(x, t) = τ̃(x/t). If a self-similar crack expands bilaterally

with rupture speed vr < cR under uniform prestress τo on an interface with dynamic resistance τd,

the stress field ahead of the crack between the dilatational and shear wave fronts can be expressed

as (e.g., Burridge, 1973; Freund, 1990):

τ(x, t) = τ̃ (c = x/t) = τo + (τo − τd)
F (h, ω)

I(h)
, (4.8)

h = 1/vr, a = 1/cp, b = 1/cs, ω = t/x = 1/c, (4.9)

F (h, ω) =
∫ ω

a

4ξ2
√

ξ2 − a2

(h2 − ξ2)3/2
√

b2 − ξ2
dξ, (4.10)

I(h) =
∫ ∞

0

(b2 + 2ξ2)2 − 4ξ2
√

a2 + ξ2
√

b2 + ξ2

(h2 + ξ2)3/2
√

b2 + ξ2
dξ. (4.11)
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The propagation speed of a self-similar stress field τ(x, t) is c(x, t) = x/t. For points located

between the dilatational and shear wave fronts cs < x/t < cp, stress propagates with intersonic

speeds and increases if vr < cR:

∂τ

∂t
= (τo − τd)

∂F

∂ω

∂ω

∂t
=

τo − τd

x

4ω2
√

ω2 − a2

(h2 − ω2)3/2
√

b2 − ω2
> 0. (4.12)

Therefore, the stress field between the dilatational and shear wave fronts of a sub-Rayleigh self-

similar crack represents an intersonic loading field.

Larger sub-Rayleigh crack front speeds vr correspond to larger stress between the dilatational

and shear wave fronts. To show that, let us define G(1/vr, 1/c) = (τ̃ (c) − τo)/(τo − τd), hence

G(h, ω) = F (h, ω)/I(h), and

∂G(h, ω)
∂h

=
I(h)∂F (h, ω)/∂h− F (h, ω)∂I(h)/∂h

I2(h)
=

∂F
∂h /F − ∂I

∂h/I

FI3
. (4.13)

Notice that F (h = 1/vr, ω = 1/c) > 0 and I(h = 1/vr) > 0 for any 0 < vr < cR and cs ≤ c < cp, and

∂F

∂h
= − 3

h

∫ ω

a

h2

h2 − ξ2

4ξ2
√

ξ2 − a2

(h2 − ξ2)3/2
√

b2 − ξ2
dξ < − 3

h
F, (4.14)

∂I

∂h
= − 3

h

∫ ∞

0

h2

h2 + ξ2

(b2 + 2ξ2)2 − 4ξ2
√

a2 + ξ2
√

b2 + ξ2

(h2 + ξ2)3/2
√

b2 + ξ2
dξ > − 3

h
I. (4.15)

Combining equations (4.13–4.15), we get:

∂G(h, ω)
∂h

< 0; h = 1/vr > 1/cR and 1/cp ≤ ω < 1/cs. (4.16)

One can also find that G(1/vr, 1/cs) → 1.775 as vr → cR, as shown in Figure 4.13a, which is

consistent with the value of Scrit computed by Andrews (1976).

The theoretical considerations above are based on a self-similar crack model, in which stress is

inverse square-root singular at the rupture tip for sub-Rayleigh propagation. However, as Andrews

(1976) pointed out, a crack governed by a linear slip-weakening law can be well approximated by
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Figure 4.13: Left: G(1/vr, 1/c) = (τ̃ (c) − τo)/(τo − τd) for different c > cs and rupture speed vr.
Right: Mode II kernel M(u) of the space-time representation of f(x, t)

the self-similar solution after it propagates through several critical lengths Lc.

4.6.2 Expressions for stress transfer functional in the spectral boundary

integral method

In simulations, we use a spectral boundary integral method (Section 4.2), in which Fourier coefficients

of the stress transfer functional f(x, t) are related to Fourier coefficients of slip δ(x, t) and its history

(Perrin et al., 1995; Geubelle and Rice, 1995; Lapusta et al., 2000). The simulated domain of length

L is discretized into N elements and we write:

δ(x, t) =
N/2∑

k=−N/2

δ̂(k, t) exp(i2πkx/L), (4.17)

f(x, t) =
N/2∑

k=−N/2

f̂(k, t) exp(i2πkx/L). (4.18)

The Fourier coefficients f̂(k, t) and δ̂(k, t) are related by:

f̂(k, t) = −μk̃

2

∫ t

0

CII(k̃cst
′)δ̂(k, t − t′)k̃csdt′, (4.19)

CII(T ) = J1(T )/T + 4T [W (cpT/cs) − W (T )] − 4
cp

cs
J0(cpT/cs) + 3J0(T ), (4.20)
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where k̃ = 2πk/L, CII(T ) is the mode II convolution kernel (Geubelle and Rice, 1995), J0(T ) and

J1(T ) are Bessel functions, and

W (T ) = 1 −
∫ T

0

J1(x)
x

dx. (4.21)

Integration of equation (4.19) by parts separates the stress functional into static (long-term) and

transient dynamic parts:

f̂(k, t) = −μk̃

(
1 − c2

s

c2
p

)
δ̂(k, t) +

μk̃

2

∫ t

0

KII(k̃cst
′)

∂δ̂(k, t − t′)
∂t

dt′, (4.22)

KII(T ) =
∫ ∞

T

CII(η)dη = 2(1 − c2
p

c2
s

) −
∫ T

0

CII(η)dη. (4.23)

The integral term on the right-hand side of equation (4.22) describes dynamic stress changes

due to waves. If it is neglected, the resulting formulation is referred to as “quasi-dynamic”. The

quasi-dynamic formulation differs from the quasi-static formulation in that it contains the radiation

damping term, μV/(2cs), which captures some dynamic effects. The quasi-dynamic formulation is

widely used in earthquake studies to simplify computations. We use the quasi-dynamic formulation

during slow and relatively long smooth initiation phases discussed in Section 4.3, to speed up com-

putations and to ensure that no stress waves from the initiation procedure exist in the model at later

times. After the initiation phase, we use fully dynamic formulation. Note that kernel CII(T ) oscil-

lates with decaying amplitude which allows to truncate the integral term (e.g., Lapusta et al., 2000;

Day et al., 2005). However, in this study we do not employ any truncation, to compute dynamic

stress fields as accurately as possible.

4.6.3 Some aspects of crack tip behavior during abrupt intersonic tran-

sition

As we show in Sections 4.3 and 4.4, if a secondary crack finds itself under the action of an intersonic

loading field generated by an approaching main crack, the tip of the secondary crack can rapidly

accelerate to values numerically indistinguishable from cR and then abruptly jump to an intersonic
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speed. While steady crack propagation with cR would result in zero cohesive zone length and infinite

slip velocities and hence it is impossible, our simulations show that transient propagation with cR

may be possible. The crack tip jumps to an intersonic speed by initiating sliding just one cell Δx

away from the crack tip (Figures 4.6, 4.7). At that moment, shear stress in the cell immediately in

front of the tip is below static strength, and shear stress in the next cell has reached static strength

(Figure 4.7). The same process is observed for smaller and smaller Δx, with the shear stress in

the intermediate cell closer and closer to static strength. Hence, in the limit Δx → 0, we expect

intersonic transition to occur right at the crack tip.

To understand why shear stress is lower immediately next to the crack tip than farther ahead,

let us consider a mode II crack tip that has propagated (for a short time) with the Rayleigh wave

speed cR. How does the wave radiation from that tip at time to influence the stress field in front of

the tip at the time t > to? To answer that question, let us consider the stress transfer functional

f(x, t) (equation 4.3) in the space-time domain (e.g., Cochard and Rice, 1997):

f(x, t) =
μcs

2π

∫ t

−∞

∫ +∞

−∞
M

(
x − ζ

cs(t − θ)

)
δ,ζζ(ζ, θ)
cs(t − θ)

dζdθ, (4.24)

M(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4
√

1−u2
√

1−(c2
s/c2

p)u2−(2−u2)2

u2
√

1−u2 if |u| < 1,

4
√

1−(c2
s/c2

p)u2

u2 if 1 < |u| < cp/cs,

0 if |u| > cp/cs

(4.25)

The integral kernel M(u) is plotted in Figure 4.13b. Note that M(u) < 0 for cR/cs < u < 1. Let us

denote the location of the crack tip at the time t by xr(t), where xr(t) = xr(to) + cR(t − to).

Numerical calculation approximates the above integral with discretized space and time, effectively

assuming constant δ,ζζ within the cell size Δx and time step Δt. Therefore rupture tip located at

xr(to) at the time to contributes to the stress functional f(x, t) by an amount Δf(xr(to), to):

Δf(xr(to), to) =
μcs

2π
M

(
x − xr(to)
cs(t − to)

)
δ,ζζ(xr(to), to)

cs(t − to)
ΔtΔx. (4.26)
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In (4.26), δ,ζζ(xr(to), to) is the value for the spatial cell located in the ruptured region (x < xr(to))

and, for sufficiently small cell size, its sign can be obtained by considering ζ → x−
r (to). Since

δ(ζ ≥ xr(to), to) = 0 and δ,ζ(x−
r (to), to) = δ,ζ(x+

r (to), to) = 2εxx(xr(to), to)) = 0, where εxx is the

normal strain in x direction, we find:

0 < δ(ζ < xr(to), to) =
1
2
δ,ζζ(x−

r (to), to)(ζ − xr(to))2 + o((ζ − xr(to))2), (4.27)

and hence δ,ζζ(x−
r (to), to) > 0. From properties of kernel M and equations (4.26) and (4.27), we

obtain for t > to:

⎧⎪⎪⎨
⎪⎪⎩

Δf(xr(to), to) < 0 xr(to) + cR(t − to) < x < xr(to) + cs(t − to),

Δf(xr(to), to) > 0 xr(to) + cs(t − to) < x < xr(to) + cp(t − to).
(4.28)

At time t, the crack tip is at xr(t) = xr(to) + cR(t − to). Therefore Δf(xr(to), to) < 0 for x ∈

[xr(t), xr(t)+ (cs − cR)(t− to)], and Δf(xr(to), to) > 0 for x ∈ [xr(t)+ (cs − cR)(t− to), xr(t)+ (cp −

cR)(t − to)]. This means that the crack tip traveling with cR at time to contributes negatively to

shear stress at the part of the interface immediately in front of the current rupture tip (at time t) and

positively to shear stress a little farther ahead. This relation holds for all times to < t for which the

crack has propagated with a speed at or close to cR. Piling up of these contributions from different

to < t may explain the observed stress distribution during intersonic transition in our simulations

(Figure 4.7), where shear stress is lower in the cell immediately in front of the crack tip and reaches

static strength in the next cell. In the continuum solution, the negative contribution of the crack

tip to location immediately ahead may be exactly balanced by contributions from other parts of

the crack, as our simulations suggest for decreasing cell sizes. But in a discretized calculation,

contributions from the crack front are evidently overemphasized, which is not surprising since one

would expect largest numerical errors to come from crack tips where slip velocity and stress vary

rapidly.
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Chapter 5

Intersonic rupture in 3D
simulations of earthquake
sequences and aseismic slip: effect
of rheological boundaries and
weaker patches

The results of Chapter 4 suggest that heterogeneity can have significant effect on intersonic

transition and propagation. The 2D in-plane model of Chapter 4 is a widely used tool to study

earthquake dynamics, yet it has a number of simplifications that can affect its applicability to natural

earthquakes, as discussed in Chapters 1 and 4. 2D models simplify the fault to one dimension, which

was shown to promote intersonic transition in comparison with more realistic 3D models (e.g., Day,

1982a,b; Fukuyama and Olsen, 2002; Dunham, 2006). Moreover, as demonstrated in Chapter 3, it

is important to model earthquakes under stress conditions that naturally develop in the model due

to prior slip, as artificially chosen initial conditions may never repeat in the long-term history of the

fault. The outcome of single-event simulations of Chapter 4 depends on the chosen initial conditions.

In this Chapter, we remove some of the simplifications of Chapter 4 by studying intersonic

transition and propagation in simulations of earthquake sequences and aseismic slip using the 3D

fault model developed in Chapter 3. Our goal is to verify the qualitative conclusion of Chapter 4

that fault heterogeneity favors intersonic transition and can, in fact, be the dominating factor.
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As reported in the following, we indeed find that intersonic transition is dominated by fault

heterogeneity in 3D models. In part, we discover that rheological boundaries play an important

role, favoring intersonic transition. The boundaries separate regions of different slip behavior in

the interseismic period, concentrating stress and hence promoting larger rupture speeds during oc-

casional earthquakes. This behavior was not captured by any of the prior studies in 3D models

(e.g., Day, 1982a; Madariaga and Olsen, 2000; Fukuyama and Olsen, 2002; Dunham, 2006), as they

considered a single instance of dynamic rupture in fault models that do not incorporate rheolog-

ical boundaries. Presence of such rheological boundaries on natural faults has ample laboratory

and observational evidence (e.g., Blanpied et al., 1991; Marone et al., 1991; Blanpied et al., 1995;

Ellsworth et al., 2000; Marone, 1998; Lyons and Sandwell, 2002; Schaff et al., 2002; Waldhauser et

al., 2004; Shearer et al., 2005). Seismogenic regions, which are locked during interseismic period, are

likely to have slowly moving, velocity-strengthening regions above (at shallow depths, 0–3 km) and

below (deeper than 15 km or so in Southern California). Existence of shallow velocity-strengthening

regions is supported by laboratory experiments, in which rock friction at low normal stress typically

exhibits velocity-strengthening behavior due to unconsolidated fault gouge (e.g., Marone et al., 1991;

Marone, 1998), observations of interseismic shallow creep (e.g., Lyons and Sandwell, 2002), shallow

afterslip of large earthquakes (e.g., Marone et al., 1991; Marone, 1998), and the deficit of seismicity

at shallow depths (e.g., Shearer et al., 2005). The deeper velocity-strengthening regions may be

caused by elevated temperatures, which are shown to favor such behavior in the lab (e.g., Blanpied

et al., 1991, 1995). Such regions are further supported by clustering of small earthquakes and limits

on the depth extent of seismicity (e.g., Ellsworth et al., 2000; Schaff et al., 2002; Waldhauser et

al., 2004) and deep postseismic slip (e.g., Reilinger et al., 2000). In single-event rupture models,

velocity-strengthening regions have been often approximated as unbreakable regions, with no special

stress distribution on their boundary. Further comparison between our and prior studies is given

in Section 5.5. In the cases when the rheological boundary does not cause the entire rupture to

transition to intersonic speeds, we find that compact heterogeneity of lower seismic ratio further

promotes intersonic transition.
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Figure 5.1: (a) A buried strike-slip fault model which is 180 km long and 36 km wide. The region
where friction acts is Lfric = 120 km long and Wfric = 24 km wide. It is separated into a potentially
seismogenic velocity-weakening region (white color, Lseis = 60 km, Wfric = 10 km), and a velocity-
strengthening region (yellow color). The outside region moves with the constant loading rate Vpl =
10−9 m/s = 32 mm/year. Figure (b) and (c) show distributions of friction parameters a and b along
horizontal line z = 0 km and vertical line x = 0 km in Cases I and II, respectively.

5.1 Fault model

We consider a buried strike-slip fault segment that contains a potentially seismogenic region with

steady-state velocity-weakening properties surrounded by steady-state velocity-strengthening region

(Figure 5.1). The fault segment is loaded by the constant tectonic loading rate Vpl = 10−9 m/s = 32

mm/year. The simulated fault domain is λx = 180 km long and λz = 36 km wide; it is periodically

repeated along x and z direction to form an infinite plane. The fault segment where friction acts is

Lfric = 120 km long and Wfric = 24 km wide, and the velocity-weakening (potentially seismogenic)

region is Lseis = 60 km by Wfric = 10 km. The seismogenic region in this Chapter is longer than

that of Chapter 3, and it has the potential to host larger strike-slip earthquakes.

The fault interface is governed by rate and state friction (3.10). The distributions of friction
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parameters a and b are:

a(x, z) = āvw + (āvs − āvw)B(x; Lseis; wx)B(z; Wseis; wz) (5.1)

b(x, y) = b̄ (5.2)

where

B(ξ; λ; w) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0; |ξ| ≤ (λ − w)/2

1
2

{
1 − tanh

(
w

|ξ|−(λ−w)/2 + w
|ξ|−(λ+w)/2

)}
; (λ − w)/2 < |ξ| < (λ + w)/2

1; |ξ| ≥ (λ + w)/2

. (5.3)

In equations (5.1–5.3), x and z are the horizontal and vertical coordinates of the fault, with the origin

(0, 0) located at the center of the fault, and āvw, āvs, and b̄ are constants that satisfy (āvw − b̄) < 0

and (āvs − b̄) > 0. The region of |x| < (Lseis − wx)/2 and |z| < (Wseis − wz)/2 is uniformly

velocity-weakening, with a(x, z) = āvw and b(x, z) = b̄; the region of |x| > (Lseis + wx)/2 or

|z| > (Wseis + wz)/2 is uniformly velocity-strengthening, with a(x, z) = āvs and b(x, z) = b̄; friction

properties smoothly transition from velocity-weakening to velocity-strengthening in between the

two regions. wx = 2 km and wz = 2 km are the horizontal and vertical sizes of the transition

region, which are a small fraction of Lseis and Wseis, respectively. Approximately (up to a fraction

of w), the region of |x| < Lseis/2 and |z| < Wseis/2 is velocity-weakening, and the outside region is

velocity-strengthening.

We show results for four simulated cases. For all cases, we use σ = 50 MPa, Vo = 10−6 m/s,

fo = 0.6, āvs = 0.018, and b̄ = 0.012 (Table 5.1). The parameters āvw and L are case-dependent, as

shown in Table 5.2. Cases I and II contain uniform velocity-weakening regions with properties given

by (5.1–5.3), with Case I favoring intersonic transition. Case IIh1 and IIh2 incorporate heterogeneity

favorable to intersonic transition. More details about the cases are given in Sections 5.3– 5.4.

Our choice of spatial resolution and numerical parameters is motivated by our studies in Chapter
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Table 5.1: Case-independent parameters

Parameter Symbol Value
Overall fault length λx 180 km
Overall fault width λz 36 km
Frictional fault, length Lfric 120 km
Frictional fault, width Wfric 24 km
Seismogenic region, length Lseis 60 km
Seismogenic region, width Wseis 10 km
Transition region, horizontal wx 2 km
Transition region, vertical wz 2 km
Loading slip rate Vpl 32 mm/yr
Shear modulus μ 30 GPa
Shear wave speed cs 3.0 km/s
Poisson’s ratio ν 0.25
Reference slip velocity Vo 10−6 m/s
Reference friction coefficient fo 0.6
Effective normal stress σ 50 MPa
Rate-and-state parameter b̄ 0.012
Rate-and-state parameter āvs 0.018

Table 5.2: Case-dependent parameters

Case Friction parameter Characteristic slip distance heterogeneity
āvw L (m) Δa Lh (km) xh (km)

I 0.002 0.02 None
II 0.004 0.016 None

IIh1 0.004 0.016 0.003 9 -5
IIh2 0.004 0.016 0.003 9 5
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3. For rate and state friction, the quasi-static cohesive zone size Λ0 is (Chapter 3):

Λ0 = C1
μ∗L
bσ

, (5.4)

where C1 is a constant equal to 9π/32 if the shear traction distribution within the cohesive zone

is linear in space, μ∗ = μ for a mode III crack and μ∗ = μ/(1 − ν) for a mode II crack. In all

simulations, we use L = 0.016 m to 0.02 m, leading to Λ0= 706 m to 882 m for mode III. Λ0 for

mode II is 1/(1 − ν) = 4/3 times larger. In all simulations, we use cell size Δx = 100 m, which

resolves the quasi-static cohesive zone size by at least seven points. According to Chapters 2 and 3,

such resolution is adequate to correctly resolve the evolution of rupture at its tip.

The horizontal length of the seismogenic zone is Lseis = 60 km, and the time window Tw for

computing stress-transfer convolutions and storing previous slip history is chosen as:

Tw = α
Lseis

cs
. (5.5)

In all simulations, we use α = 1, which is proven large enough to accurately capture the inertial

effects (Chapter 3). We do not adopt any mode-dependent truncation in simulations presented in

this chapter.

To start the first event, the initial shear stress τo is set to be larger in a circular region:

τo =

⎧⎪⎪⎨
⎪⎪⎩

foσ
[
1 + 1% exp

(
r2

r2−r2
0

)]
, r < r0

foσ, r ≥ r0

(5.6)

where r =
√

(x − x0)2 + (z − z0)2, x0 = −20 km, z0 = 0 km, and r0 = 3 km. The distribution of

initial shear stress has smooth variation over space. It peaks at r = 0 with the maximum value of

1.01foσ, smoothly decreases to foσ as r increases to r0, and then stays constant for r > r0, as shown

in Figure 5.2. The state variable θ is initially set to be L/Vo, steady state value for slip velocity Vo.

In Chapter 3, we have shown that the initial values of field quantities affect only the first few events,
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Figure 5.2: Distribution of shear stress at the beginning of each simulation along z = 0 km (left
panel) and x = 0 km (right panel)

as the model later evolves toward behavior dictated only by the model geometry, fault loading, and

friction properties.

5.2 Connection between rate and state friction and linear

slip-weakening friction during dynamic rupture

Most previous studies on intersonic transition have used linear-slip weakening friction, in which fric-

tion linearly decreases from a static peak value τp to a constant dynamic value τd over a characteristic

slip d0. The seismic ratio S defined by

S =
τp − τi

τi − τd
(5.7)

has been found to be an important parameter controlling rupture behavior in single-rupture models

(e.g., Andrews, 1976), where τi is the initial shear stress or the shear stress on the fault before

rupture propagates. Intersonic transition is favored by higher initial stress τi, and hence smaller

seismic ratio S (e.g., Burridge, 1973; Andrews, 1976).

In this study, we use rate and state friction, which behaves similarly to linear slip-weakening

friction during dynamic rupture (e.g., Cocco and Bizzarri, 2002, Chapter 3). The advantage of using

rate-and-state friction is that it enables us to simulate many earthquake cycles due to its property

of restrengthening during interseismic periods and due to its positive direct effect, which is essential

for the numerical algorithm to be able to adopt large time steps during quasi-static deformation

processers while yielding stable numerical results (Lapusta et al., 2000). Figure 5.3(a) shows shear
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stress vs. slip of the fault location (0 km, 0 km) during the third event in our simulated Case I.

The behavior is similar to linear slip-weakening friction: after shear stress reaches a peak value, it

linearly decreases to a residual level, with the slip weakening rate W = bσ/L and equivalent slip

weakening distance d0 ≈ 20L = 0.4 m (e.g., Cocco and Bizzarri, 2002; Lapusta and Liu, 2008).

However, for rate and state friction, the peak strength τp and the dynamic frictional resistance τd

are not known a priori. Instead, τp, τd, and hence S, depend on slip velocity and state variable.

We derive an approximate formula to relate the seismic ratio S to friction parameters a and b for a

fault governed by rate and state friction with a number of assumptions motivated by our simulations.

During dynamic processes before the arrival of the main rupture, the seismogenic velocity-weakening

region is essentially locked with slip velocity Vbg which is several orders of magnitude smaller than

the plate loading rate Vpl = 10−9 m/s. The value of the state variable θ is approximately equal to

the earthquake recurrence period T (Kaneko and Lapusta, 2008). Hence, the shear stress inside the

seismogenic region before an earthquake can be estimated as:

τi = σ

{
fo + a ln

Vbg

Vo
+ b ln

VoT

L

}
. (5.8)

As the rupture tip arrives, slip velocity increases to the seismic level Vdyn with negligible slip such

that the state variable θ = T cannot evolve, and the stress reaches its peak value τp:

τp = σ

{
fo + a ln

Vdyn

Vo
+ b ln

VoT

L

}
. (5.9)

After that, the state variable θ evolves to a steady-state value L/Vdyn for slip velocity Vdyn, and the

stress reaches its dynamic friction level τd:

τd = σ

{
fo + a ln

Vdyn

Vo
− b ln

Vdyn

Vo

}
. (5.10)

Slip velocity Vdyn varies during this process but its variation is within an order of magnitude and

has a small effect as Vdyn enters the expression (5.8-5.9) under the natural logarithm. The estimate
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of the seismic ratio S therefore is:

S =
τp − τi

τi − τd
=

a ln(Vdyn/Vbg)
(b − a) ln(Vdyn/Vo) − a ln(Vdyn/Vbg) + b ln(VoT/L)

. (5.11)

The estimate (5.11) cannot be used in a predictive manner, before finding the solution through

simulations, because values of Vbg, Vdyn, and T depend on the solution itself. However, since

Vdyn > Vbg and Vdyn > Vo, (5.11) suggests that smaller values of a may decrease the seismic ratio S,

hence promoting intersonic transition. This consideration motivates the selection of the four cases

presented in this chapter (Table 5.2), where we achieve different intersonic behaviors in homogeneous

seismogenic regions and induce heterogeneity favorable to intersonic transition mainly by varying

the value of parameter a.

For all simulations in this chapter, we define the starting time of a dynamic event as the time

when maximum slip velocity on the fault reaches Vseis = 0.1 m/s, and the ending time as the time

when maximum slip velocity on the fault becomes less than Vseis. The initial stress τi(x, z) of an

individual point is defined as the shear stress of that point at the starting time, residual stress

τe(x, z) is the shear stress at each point at the ending time of the event, peak strength τp(x, z) is the

maximum shear stress at a point during the event, and dynamic frictional resistance τd(x, z) at each

point is the stress when the slip velocity at that point is larger than Vseis = 0.1 m/s for the last time

before the end of the event. The static stress drop is given by Δτ = τi − τe. Values of τi, τe, τp, and

τd for point (0 km, 0 km) are marked by black crosses in Figure 5.3. Slips corresponding to times

when τi, τp, τd, and τe are reached are marked as Di, Dp, Dd, and De in Figure 5.3. Figures (a),

(b), and (c) are for the third event of Case I, and (d) is for the third event of Case II. In both Case

I and Case II, Vdyn is of the order of 1 m/s, and T is of the order of 100 years. Due to the smaller

value of a, the seismic ratio S in Case I is smaller than in Case II, which is consistent with formula

(5.9).
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Figure 5.3: Typical behavior of a location within the seismogenic region, with (0 km, 0 km) used as
an example. (a)–(c) Shear stress vs. slip, shear stress vs. time, slip vs. time for Case I. Zero time is
the starting time of the third event, and slip is set to be zero at the zero time. Seismic ratio at this
location is 2.08 > Scrit,3D(= 1.19) in this event. Nonetheless, rupture passes this location with an
intersonic speed. τp, τi, τd, and τe are defined in the text. (d) Shear stress vs. slip for Case II. Zero
time is the starting time of the third event. Seismic ratio is 2.21, and rupture passes this location
with a subsonic speed. For both Cases I and II, Vdyn is of the order of 1 m/s, and T is of the order
of 100 years. Larger a results in higher seismic ratio S in Case II, making Case II less susceptible
to intersonic propagation.
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Figure 5.4: (a) Slip accumulation along the horizontal line z = 0 km in Case I. Red dashed lines are
plotted every 1 second when maximum slip velocity on the fault exceeds 1 mm/s, representing slip
accumulation during seismic periods, and green solid lines are plotted every 5 years, representing
slip accumulation in aseismic periods. The 1st, 3rd, 5th and 9th events have global intersonic
propagation. (b) Maximum slip velocity on the logarithmic scale vs. time in years. Each vertical
line represents a seismic event.

5.3 Intersonic transition due to rheological boundaries for

Case I of a homogeneous seismogenic region

We start by presenting results for Case I, which has a homogeneous velocity-weakening (seismogenic)

region. It also has a smaller value of friction parameter a than other cases (Table 5.2), which promotes

intersonic transition (Section 5.2). Note that this case cannot be called homogeneous overall, as the

homogeneous velocity-weakening region is surrounded by velocity-strengthening regions, creating

heterogeneity in fault properties and, as we will see, in fault stress. Figure 5.1(b) shows distributions

of friction parameters a and b along the horizontal line z = 0 km and vertical line x = 0 km,

respectively.

The simulated earthquake sequence for Case I contains events of two distinct types. Figure 5.4

(a) shows slip accumulation along the horizontal line z = 0 km in earthquake sequences, and Figure

5.4(b) shows maximum slip velocity on the fault as a function of time. The maximum slip velocity
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is on the order of 10−9 m/s during interseismic periods, and 10 m/s during dynamic events. Seismic

events occur every T = 56−59 years, and all events nucleate from the left rheological boundary and

propagate to the right. However, as shown in Figure 5.4(a), slip per event along z = 0 km is larger

and rupture speed is faster in some events (e.g., 1st, 3rd, 5th, 9th) than others (e.g., 2nd, 4th, 6th,

7th, 8th).

We study the propagation of dynamic rupture for representative events from each category, and

find that one of them is intersonic while the other is subsonic. Figure 5.5 shows snapshots of slip

velocity of the third and sixth events for Case I. A part of the fault region is shown [-35 km, 35

km]×[-8 km, 8 km]. The seismogenic velocity-weakening region occupies the area [-30 km, 30 km]×[-

5 km, 5 km] in the middle, and the fault area shown contains parts of velocity-strengthening regions

of about 5 km on each side along the horizontal direction, and 3 km along the vertical direction.

Slip velocity is shown on the logarithmic scale, ranging from 10−12 m/s to 1 m/s. The plate loading

rate is 10−9 m/s. White and bright yellow colors correspond to seismic slip velocity, orange and red

correspond to aseismic slip velocity, and black corresponds to locked portions of the fault. For each

event, zero time is the starting time of the event, i.e., the time when maximum slip velocity reaches

Vseis = 0.1 m/s. The first panel shows slip velocity distribution at 1.11 seconds after the beginning

of the event, and the time interval between two successive snapshots is 2.22 seconds. The blue line

is plotted as a reference, to indicate the shear wave speed cs, which is 3 km/s. For both events, most

of the seismogenic region is locked before the dynamic rupture. The velocity-strengthening region

slips with slip velocity of the order of the plate loading rate. Rupture initiates from the lower left

corner of the seismogenic region. Initial stages of rupture propagation are similar for the two events:

dynamic rupture propagates faster along the vertical and horizontal rheological boundaries than

along the mid-depth of the velocity-weakening region, forming a concave rupture front. Rupture is

similar in the two events up to the time of 7.78 seconds. At that time, both ruptures have intersonic

speeds locally, in areas close to velocity-strengthening regions. After that, the two events behave

differently. In the third event, the intersonic propagation along the rheological boundaries causes

the entire rupture to transition to intersonic speeds. The average rupture speed along the horizontal
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line z = 0 between the time of 7.78 s and 16.67 s is 4.1 km/s, which is an intersonic speed. In

the sixth event, the intersonic propagation along the rheological boundaries dies out and the overall

rupture speed is subsonic. It is 2.7 km/s between the time of 7.78 s and 16.67 s.

Let us compute the distribution of rupture speed over the fault in the two events. Figures 5.6

(a) and (b) show contours of rupture time tr(x, z) for the two events respectively, where tr(x, z) of

each point is defined as the time when its slip velocity reaches Vseis = 0.1 m/s for the first time

during the dynamic event. All points with same rupture time form the rupture front at that time.

In both events, rupture initially spreads both along the mode II horizontal direction and the mode

III vertical direction, up to the time of 4 seconds. After that, rupture saturates the entire depth of

the fault and propagates predominantly along the mode II horizontal direction, before hitting the

vertical rheological boundary on the right, which occurs around the time of 16 seconds for the third

event and 23 seconds for the sixth event. For both events, the predominantly mode II propagation

in the x direction occurs within the horizontal range x ∈ [−Lseis/2 + 1.5Wseis, Lseis/2 − 0.5Wseis] =

[−15 km, 25 km]. In that fault region, we can regard the rupture speed c(x, z) to be the speed of

rupture propagation in the horizontal x direction. The calculation scheme for c(x, z) is presented

in Appendix 5.7. Figures 5.6 (c) and (d) show the distribution of c(x, z) on the fault for the two

events, respectively. In both events, rupture has local intersonic propagation close to rheological

boundaries. In the third event, most of the region within x ∈[-15 km, 25 km] is ruptured with

intersonic speeds, while in the sixth event, most of the region within x ∈[-15 km, 25 km] is ruptured

with subsonic speeds.

To categorize events and compare with seismic observations, we need a definition of rupture speed

c∗(x) that is independent of depth z, and only a function of the along-strike position x. Kanamori

(2004) defined rupture speed as the speed of rupture propagation at the depth z where the largest

slip occurs. We follow his definition. In our model, the largest slip always occurs approximately

at the depth of z = 0 km, we define c∗(x) = c(x, z = 0). We call an event intersonic if and only

if rupture speed c∗(x) is intersonic for along-strike stretches longer than Wseis, the width of the

seismogenic region. Otherwise, we call the event subsonic. Note that a subsonic event can have
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Figure 5.5: Snapshots of slip velocity in the third and sixth events for Case I. Slip velocity is shown
on the logarithmic scale, ranging from 10−12 m/s to 1 m/s. White and bright yellow correspond to
seismic slip velocity, and black corresponds to locked portions of the fault. The white dashed boxes
in the top panels indicate the location of the velocity-weakening region. Zero time is the starting
time of each event. The time interval between two successive panels is 2.22 s. The blue dashed line
is plotted to indicate the position of the rupture front (at depth z = 0 km) if it propagates with the
shear wave speed of 3 km/s. The two events have similar initial rupture propagation (before the
time of 7.78 s), but afterwards the third event propagates appreciably faster than the sixth event.
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rupture speed c(x, z) for the same events
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local intersonic transients. The rupture speed c∗(x) in the third and sixth events is shown in Figure

5.7(a). In the third event, the rupture speed is intersonic throughout the along-strike distance [-15

km, 25 km], therefore the third event is an intersonic event. In the sixth event, the rupture speed is

subsonic throughout the along-strike distance [-15 km, 25 km], and hence it is a subsonic event.

To compare the observed rupture speeds with seismic ratios, let us define the average seismic

ratio S̄ for the velocity-weakening region. We define the average seismic ratio S̄ as the average of

the seismic ratio S(x, z) over the seismogenic velocity-weakening region:

S̄ =
1

LseisWseis

∫ Wseis/2

−Wseis/2

∫ Lseis/2

−Lseis/2

S(x, z)dxdz. (5.12)

The average shear stress before dynamic events τ̄i, peak resistance τ̄p, dynamic friction resistance

τ̄d, and residual stress τ̄e are defined analogously. Table 5.3 shows the comparison of the defined

values in the third and sixth events for Case I (The table also shows other cases discussed in later

sections). The two events have the same τ̄p and τ̄d, but the third event (intersonic) has larger τ̄i

and Δτ , and hence smaller S̄, than the sixth event (subsonic). Hence intersonic events have smaller

values of S̄, consistent with earlier studies (e.g., Andrews, 1976; Day, 1982a; Dunham, 2006).

Table 5.3: Some simulated quantities from dynamic events
Event # τ̄i (MPa) τ̄p (MPa) τ̄d (MPa) Δτ (MPa) S̄ Rupture behavior

Case I, 3rd 31.0 37.6 24.1 7.2 1.16 intersonic
Case I, 6th 30.2 37.6 24.1 6.1 1.45 subsonic
Case II, 3rd 31.3 38.7 25.0 5.8 1.23 subsonic

Case IIh1, 3rd 31.6 38.1 25.1 6.8 1.10 intersonic
Case IIh2, 3rd 31.6 38.1 25.2 6.5 1.15 intersonic

5.3.1 Effects of stress concentration at rheological boundaries on inter-

sonic transition

In the third event, intersonic propagation starts in areas close to the top and bottom rheological

boundaries. Later, the entire rupture transitions to intersonic speeds. This transition process is

quite different from most single-rupture models, where intersonic propagation first initiates at the
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mid-depth of the fault (e.g., Madariaga and Olsen, 2000; Fukuyama and Olsen, 2002; Dunham,

2006). The difference comes from the heterogeneous stress distribution in earthquake cycles.

After long-term history of slip on the fault in earthquake cycles, the distribution of shear

stress becomes much more complicated and heterogeneous than that at the beginning of the sim-

ulation, and hence it significantly influences rupture behavior. Figure 5.8 shows distributions of

shear stress on the fault before the third and sixth events in Case I. For both events, the shear

stress in the velocity-strengthening region is almost uniform and approximately equal to 28 MPa

(≈ σ {fo + (āvs − b) ln(Vpl/Vo)}, steady-state value for slip velocity Vpl). Within the velocity-

weakening seismogenic region, shear stress close to rheological boundaries is higher (33–36 MPa),

than in the mid-depth of the seismogenic region (less than 30 MPa). The high initial shear stress

near the rheological boundaries results from the prior aseismic slip. In interseismic periods, the

velocity-strengthening regions steadily slip with slip velocities of the order of the plate rate (10−9

m/s), while most of the velocity-weakening region is essentially locked, with slip velocities of the

order of 10−50 m/s to 10−40 m/s in Case I. The slip disparity between velocity-strengthening and

velocity-weakening regions concentrates shear stress, creating areas of high shear stress along rheo-

logical boundaries.

To illustrate that the stress concentration along rheological boundaries is a generic feature in our

model, we consider a simplified analytic model. We consider a 2D anti-plane model subjected to the

following slip distribution δ(z) along depth z on the fault:

δ(z) =

⎧⎪⎪⎨
⎪⎪⎩

0, |z| ≤ Wseis/2

δ̄ = VplT, |z| > Wseis/2,

(5.13)

where δ(z) = 0 in the region |z| ≤ Wseis/2, which mimics the behavior of velocity-weakening region

during interseismic periods, and δ̄ = VplT in the outside region, which mimics the slip accumulation

of velocity-strengthening region during interseismic periods. Therefore, the slip distribution of equa-

tion (5.13) mimics the interseismic slip accumulation along depth for Case I, in a simplified way.
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The static stress transfer τsf(z) resulting from this slip distribution is (e.g., Freund, 1979):

τsf(z) = − μ

2π

∫ +∞

−∞

∂δ/∂ξ

z − ξ
dξ. (5.14)

Substituting equation (5.13) into (5.14), we have

τsf(z) =
μ

2π

VplTWseis

(Wseis/2)2 − z2
. (5.15)

τsf is positive and linearly proportional to δ̄ = VplT in the region |z| ≤ Wseis/2, indicating shear

stress increases in the locked region during interseismic periods, with larger amplitude for higher slip

disparity δ̄ = VplT . Static stress transfer at depth z = 0 is (2μ/π)(VplT/Wseis), which is inversely

proportional to the width of seismogenic region Wseis. Static shear transfer τsf is much higher

near the boundaries z = ±Wseis/2 than the center z = 0. The fault regions next to rheological

boundaries have larger stress accumulation than the mid-depth region. Figure 5.9 compares this

analytic model with our simulation. Blue solid lines represent the distributions of slip δ(z) and

static stress transfer τsf of the 2D anti-plane model, and red dashed lines represent the distributions

of simulated interseismic slip and stress accumulation along x = 0 km for the time period between the

second and third events. Overall, they are qualitatively consistent with each other. The analytical

model even matches the simulation quantitatively in the mid-depth seismogenic regions. However,

in the 2D analytic model (5.13 - 5.15), the slip distribution abruptly jumps from 0 to δ̄ at the

boundaries, leading to infinitely large τsf there. In any realistic fault model, the high stress right at

the boundary between slipping and locked regions would cause slip, extending the slipping region

into the locked region. We observe such penetration of slip into the locked region in our models.

The high shear stress, and hence low seismic ratio, next to rheological boundaries before dynamic

events explains local intersonic propagation there (for both the third and sixth events). Figure 5.10

shows distributions of seismic ratio S for the third and sixth event. Single-rupture simulations

showed that lower seismic ratio favors intersonic transition; for example, for intersonic transition

and propagation to occur on 3D homogenous faults, seismic ratio S should be smaller than a critical
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second and third events of Case I (red dashed line) and slip distribution assumed in a 2D anti-plane
model (blue solid line). (b) The corresponding shear stress accumulation

value Scrit,3D = 1.19 (Dunham, 2006). In Figure 5.10, regions close to rheological boundaries have

low seismic ratios (red color) and favor intersonic propagation. At the same time, the mid-depth

locked region has high seismic ratios (blue color) and favors subsonic propagation. That is why

rupture propagates with intersonic speeds next to rheological boundaries, and subsonic speeds in

mid-depth region, and forms a concave front in both events (Figure 5.5).

The third and sixth events behave differently after rupture saturates over depth, due to the

different distributions of shear stress, and hence seismic ratio in the mid-depth of the velocity-

weakening region. As shown in Figures 5.8 and 5.10, shear stress in most of the mid-depth region is

higher, and hence the seismic ratio is lower, in the third event than in the sixth event. In the third

event, the intersonic propagation along the areas next to rheological boundaries is able to prompt

faster propagation of the mid-depth region and activate the global intersonic propagation on the

fault. However, in the sixth event, the intersonic propagation along the rheological boundaries, is

overcomed by subsonic rupture propagation of the mid-depth region. The difference in shear stress

before events comes from the irregularity in the event recurrence time. The interseismic periods

before intersonic events (59.3 years for the third event) are slightly larger than before subsonic

events (56.9 years for the sixth event), causing larger shear stress build-up, consistently with estimate

(5.15). More discussion about distributions of shear stress and seismic ratio over the seismogenic
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Figure 5.10: Distribution of seismic ratio S = (τp − τi)/(τi − τd) on the fault (within velocity-
weakening seismogenic region) for the third and sixth event of Case I

region is in Section 5.5.2.

5.4 Intersonic transition due to favorable compact hetero-

geneity

Intersonic transition due to rheological boundaries does not occur for all parameter choices. For

example, consider slip response in our fault model with āvw = 0.004 and L = 0.016 m (Case

II). Larger values of āvw in Case II increase seismic ratio, which makes intersonic transition less

likely than in Case I. A smaller L in Case II is chosen to keep the earthquake nucleation size h∗

approximately same as in Case I. The distribution of friction parameters a and b are shown in Figure

5.1. Figure 5.11 shows slip accumulation along the horizontal line z = 0 km for Case II. The average

earthquake recurrence time is T = 52 years. We find that after the first event, all subsequent events

are similar and there are no intersonic events. Figure 5.12(a) shows snapshots of slip velocity on the

fault for the third event of Case II. The blue dashed line is plotted to indicate the position of the

rupture front (at depth z = 0 km) if it propagates with the shear wave speed cs. Local intersonic

propagation occurs next to rheological boundaries, but the overall rupture speed is subsonic. More
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Figure 5.11: (a) Slip accumulation along the horizontal line z = 0 km in Case II, with a homogeneous
velocity-weakening region. All events after the first one are subsonic. (b) Maximum slip velocity on
the logarithmic scale vs. time in unit of years.

discussion about Case II is in Section 5.4.1.

In the single-rupture model of Chapter 4, we find that a compact heterogeneity can completely

change failure processes of the fault, perturbing subsonic crack into becoming intersonic. Guided by

this idea, we consider the possibility of intersonic transition on the fault if Case II is implemented

with a favorable heterogeneity in the form of a square patch of smaller a and b (Case IIh1). In Case

IIh1, the patch is centered at xh = −5 km, zh = 0 km, and the distributions of friction parameters

a and b are given by:

a(x, z) = aII(x, z) + Δa [B(x − xh; Lh; wh)B(z − zh; Lh; wh) − 1] (5.16)

b(x, z) = bII(x, z) + Δa [B(x − xh; Lh; wh)B(z − zh; Lh; wh) − 1] (5.17)

where aII(x, z) and bII(x, z) are distribution of a, b from Case II, Δa = 0.003, Lh = 9 km, and wh

= 1 km. Outside the patch with |x − xh| > (Lh + wh)/2 = 5 km or |z − zh| > (Lh + wh)/2 = 5

km, we get a(x, z) = aII(x, z), and b(x, z) = bII(x, z), which are the same as in Case II. Inside

the patch given by |x − xh| < (Lh − wh)/2 = 4 km and |z − zh| < (Lh − wh)/2 = 4 km, we get
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Figure 5.12: Snapshots of slip velocity on the fault for the third event of Cases II and IIh1. The
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resistance in Case IIh1 makes the entire rupture transition to intersonic speeds.
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a(x, z) = aII(x, z) − Δa, and b(x, z) = bII(x, z) − Δa, with both a(x, z) and b(x, z) smaller by Δa

than in Case II. Friction parameters smoothly vary in between the two regions. The patch centered

at (xh, zh) is approximately square with length Lh = 9 km. The patch has smaller friction parameter

a, and hence potentially smaller peak resistance during dynamic rupture (equation (5.9)). The fault

model and distribution of friction parameters a and b are shown in Figure 5.13(b).

5.4.1 Weaker patch as favorable heterogeneity for intersonic transition

By introducing a weaker patch of lower peak resistance, Case IIh1 produces occasional and repeated

global intersonic transition and propagation in earthquake sequences. As shown in Figure 5.14,

global intersonic propagation occurs in the first, third, sixth, and ninth events out of eleven events.

(For Case IIh1 and IIh2 with a weaker patch, we call an event having global intersonic propagation

only if rupture speed c∗(x) is intersonic for longer than Wseis in the region outside the patch.)

We pick the third event for Cases II and IIh1 to illustrate the effect of a weaker patch in detail.

Figure 5.12 shows the snapshots of slip velocity on the fault for these two events. In Case II, rupture

next to the upper rheological boundary has some local intersonic propagation, which transitions

back to subsonic speeds at the location x = −6 km. The average rupture speed at depth z = 0 km

between the times of 3.3 s and 21.11 s is 2.7 km/s. In Case IIh1, the rupture front at depth z = 0

km initially propagates with subsonic speeds, and the upper rheological boundary has some local

intersonic propagation. Around the time of 7.78 s, secondary ruptures initiate at the weaker patch

near top and bottom rheological boundaries. The ruptures propagate with intersonic speeds in front

of the main rupture, and induce transition of the overall rupture to intersonic speeds. Between

the times of 3.33 s and 16.67 s, the average rupture speed along z = 0 km is 3.6 km/s, which is

intersonic. Figure 5.16 shows the distributions of rupture time and rupture speed in the seismogenic

region for the two events. In Case IIh1, secondary cracks initiate in the weaker patch before the

arrival of main rupture, leading to a rupture front jump. The regions between the front of main

rupture and secondary cracks are left white in Figure 5.16(e). The third event in both cases nucleates

from the lower left corner of the velocity-weakening region. Case II does not have global intersonic
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Figure 5.13: (a) Fault model of Case IIh1: a buried strike-slip fault model with a weaker patch (red)
centered at (-5 km, 0 km). Figure (b) and (c) show the distributions of friction parameters a and b
along horizontal line z = 0 km and vertical line x = 0 km in Cases IIh1 and IIh2, respectively. In
Case IIh2, the heterogeneity is of the same size as in Case IIh1 but centered at (5 km, 0 km).
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slip velocity in logarithmic scale vs. time in unit of years

propagation. In Case IIh1, rupture mainly propagates with subsonic speeds before the weaker patch

(green color in Figure 5.16(e)); intersonic transition occurs in the patch, and intersonic propagation

is maintained after exiting the patch (with yellow and red colors). If we measure the horizontal

distance between the center of earthquake nucleation (at the location of x = −27 km) and the

center of the patch (x = −5 km), and define it as transition distance Ltran, then Ltran = 22 km in

Case IIh1. We compare this value with theoretical estimates for homogeneous faults in Section 5.5.4.

Figure 5.17 shows the distribution of seismic ratio S over the seismogenic region before the third

events for Case II and Case IIh1. The patch in Case IIh1 has smaller value of the friction parameter

āvw, and hence smaller seismic ratio S = (τp − τi)/(τi − τd) than the surrounding areas. Due to

concentrated shear stress τi near the rheological boundaries, seismic ratio S is further reduced in

parts of the patch next to the rheological boundaries. That is why, secondary intersonic cracks

nucleate there before the arrival of the main rupture.

Hence we find that a weaker patch significantly changes rupture behavior and long-term fault

slip in Case IIh1, resulting in occasional intersonic events in the fault model that has no intersonic

events without the patch.
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Figure 5.16: Figure (a), (b), and (c): rupture time of the third event for Case II, IIh1, and IIh2,
respectively; Figure (c), (d), and (e): horizontal rupture speed c(x, z) on the fault of the third event
for Case II, IIh1, and IIh2, respectively. The black dashed boxes in Figures (e) and (f) indicate the
locations of the weaker patch. Global intersonic transition occurs in Case IIh1 and IIh2, and the
transition occurs approximately at the location of the weaker patch.
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5.4.2 Initiation of secondary cracks in the weaker patch by an intersonic

loading field

In Section 4.3, we demonstrate that a secondary rupture can be initiated ahead of the main rupture

and driven to intersonic speeds by the intersonic loading field of the main rupture. That result is the

generalization of the finding by Burridge (1973) and Andrews (1976) that a secondary rupture can

nucleate at the peak of the shear stress traveling ahead of the main rupture in cases of sustained in-

plane sliding. The results of Chapter 4 show that the secondary rupture does not have to be initiated

by the peak, and it can be initiated by the elevated stress ahead of the peak if fault heterogeneity

is present.

Here we show that sustained secondary cracks in the third event of Case IIh1, which eventually

lead to intersonic transition of the entire rupture, are indeed initiated not at the shear stress peak

but rather ahead of the peak, due to the presence of the weaker patch, consistently with our findings

in Chapter 4. Figure 5.18 shows snapshots of shear stress (panels a–c) and slip velocity (panels

d–e) along the horizontal line z = 4 km (near the top rheological boundary) for the third event of

Case IIh1. The time interval between panels is 1 s. In Figure 5.18(a), we find a typical picture for

in-plane sliding, with a sharp shear stress increase (at about x = −15.3 km) corresponding to the

main rupture front and a shear stress peak ahead of the rupture front, at about x = −14.0 km. The

stress peak is the result of pile-up of shear waves, and it travels with the shear wave speed. The

rupture front is subsonic at this time. Note that the rupture front along the z = 4 km line has

intersonic speeds before the time of 6.1 s shown in Figure 5.16(a), but that instance of intersonic

propagation is short-lived. The shear stress field ahead of the stress peak, −14.1 km < x < 0 km, is

an intersonic loading field (Section 4.6.1). One second later (Figure 5.18(b)), the main rupture front

advances to x = −12.4 km, and the shear stress peak advances to x = −11.0 km. Yet, in Figure

5.18(e), we see nonzero slip velocity farther ahead, for −10 km < x < −7 km. Hence this secondary

rupture has initiated due to the shear stress increase ahead of the shear stress peak, at the edge of

the weaker patch. Figures 5.18(c) and (f) show the subsequent propagation of the rupture. The slip

velocity of the secondary rupture continues to grow, and the stress peak of the main rupture front
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Figure 5.18: Initiation of an intersonic secondary rupture in the third event of Case IIh1. (a)–
(c): Snapshots of shear stress distribution along the strike distance at z = 4 km depth, next to a
rheological boundary, at the times t = 6.1 s, 7.1 s, and 8.1 s, respectively. (d)–(f): Corresponding
snapshots of slip velocity. Red solid lines represent the location of the weaker patch. Blue dashed
lines represent the horizontal locations of shear stress peak. The secondary rupture initiates in the
weaker patch ahead of the shear stress peak, consistent with our findings in Chapter 4.

decreases. At the time of 8.1 s, the secondary crack front arrives at x = −2.8 km, and the average

rupture speed between the time of 7.1 s and 8.1 s is 4.4 km/s. The secondary crack initiated in the

weaker patch propagates with intersonic speeds driven by the intersonic loading field of the main

rupture.

5.4.3 Influence of the location of the weaker patch

In Case IIh1, intersonic transition occurs at the weaker patch. To investigate the influence of the

patch location on intersonic transition, we consider a case with the patch centered at xh = 5 km,

zh = 0 km (Case IIh2). The other model parameters in Case IIh2 are the same as in Case IIh1. The

distributions of friction parameters a and b for Case IIh2 are shown in Figure 5.13(c).

Despite the different location of the patch, Case IIh2 results in similar fault behaviors, with some

earthquakes transitioning to intersonic speeds, due to the weaker patch. We again select the third

event in Case IIh2 for comparison with Cases II and IIh1. Figures 5.16(c) and (f) show distributions
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Figure 5.19: (a) Average shear stress τ̄i before each event in Case I. (b) Effective seismic ratio S̄
for each event in Case I. Red solid dots represent intersonic events and blue empty circles represent
subsonic events.

of rupture time and rupture speed, respectively, and Figure 5.17(c) shows the distribution of seismic

ratio. Comparing Cases IIh1 and IIh2, we find that their intersonic transition processes are qualita-

tively similar. In both cases, the rupture is mainly subsonic before the patch. Intersonic transition

occurs in the patch, and rupture maintains intersonic speeds after exiting the patch. Table 5.3 lists

several rupture parameters of the third event for Cases II, IIh1, and IIh2. All parameters, e.g.,

τ̄i, τ̄p, τ̄d, Δτ , and S̄, are similar for Cases IIh1 and IIh2. The weaker patch dominates intersonic

transition in Cases IIh1 and IIh2, and the transition distance Ltran depends on the location of the

heterogeneity.

5.5 Discussion

5.5.1 Influence of seismic ratio S̄ on rupture behavior

From the four simulated cases, we observe that there exists a simple correspondence between the

average seismic ratio S̄ and intersonic/subsonic rupture propagation during dynamic events. Figure

5.19 shows the average seismic ratio S̄ and average shear stress τ̄i before each event for Case I, and

Figure 5.20 shows S̄ and τ̄i for Cases II, IIh1, and IIh2. We select Case I for discussion, but the

arguments are qualitatively applicable to Cases II, IIh1, and IIh2. In Figure 5.19, red solid dots
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represent intersonic events and blue empty circles represent subsonic events. There are two critical

values Sc,min = 1.32 and Sc,max = 1.42. Events with S̄ < Sc,min have global intersonic propagation;

events with S̄ > Sc,max do not have global intersonic propagation; events with average seismic ratio

in a narrow range Sc,min < S̄ < Sc,max may be intersonic or subsonic, depending on other fault

conditions, e.g., the distribution of seismic ratio. However, there is no such correspondence between

shear stress τ̄i before events and rupture behavior: most intersonic events have higher τ̄i, but there

are some exceptions. The first event has global intersonic propagation, but its τ̄i = 30.00 MPa is

the lowest among all events shown in Figure 5.19.

The correspondence between S̄ and rupture behavior in our model is qualitatively consistent with

previous studies using single-rupture models (e.g., Andrews, 1976; Dunham, 2006). In a 2D in-plane

model of an unbounded fault with uniform initial shear stress, Andrews (1976) found that intersonic

transition can occur on faults with seismic ratio S < Scrit,2D = 1.77 after rupture propagates long

enough distance, and no intersonic transition can occur for S < Scrit,2D. Dunham (2006) found

that the critical seismic ratio in 3D is Scrit,3D = 1.19. However, there are differences between our

model and the models of Andrews (1976) and Dunham (2006). In the models of Andrews (1976) and

Dunham (2006), the fault has uniform peak resistance, dynamic frictional resistance, and seismic

ratios S, all of which are known before simulations. In our model, the seismic ratio S is unknown

before the simulation, as it depends on τp, τd, and τi obtained from the simulation. Moreover, S

is nonuniform on the fault. Average seismic ratio S̄ describes fault conditions only in an average

sense. And the critical seismic ratio for intersonic transition is higher in our model than in the

3D model of Dunham (2006). For certain values of seismic ratio, e.g., 1.19 < S̄ < 1.32, intersonic

transition would occur in our model, but not in the 3D homogeneous fault model of Dunham (2006).

This shows that rheological boundaries indeed act as favorable heterogeneity, enhancing intersonic

transition with respect to the homogeneous model.
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Figure 5.20: Effective seismic ratio S̄ and average initial shear stress τ̄i before each dynamic event for
Cases II, IIh1, and IIh2. Red solid dots represent intersonic events and blue empty circles represent
subsonic events.

5.5.2 Distribution of seismic ratio over seismogenic region

The distribution of seismic ratio S before dynamic events is heterogeneous and separates the velocity-

weakening region into two areas: the area next to rheological boundaries that creeps during interseis-

mic periods and has lower seismic ratio, and the mid-depth area that is locked during interseismic

periods and has higher seismic ratio (Figures 5.10 and 5.17). In this section, we estimate the different

seismic ratios in the two regions.

The low-seismic-ratio area next to rheological boundaries creeps steadily with slip velocity of the

order of plate rate Vpl before dynamic events, therefore the state variable is θ ≈ L/Vpl, and the

shear stress before a dynamic event can be estimated as:

τi = σ{fo + (a − b) ln
Vpl

Vo
}. (5.18)

Following the same arguments as for the formulae (5.9– 5.10), we estimate the peak resistance τp
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and dynamic friction resistance τd as:

τp = σ{fo + a ln
Vdyn

Vo
− b ln

Vpl

Vo
}, (5.19)

τd = σ{fo + (a − b) ln
Vdyn

Vo
}. (5.20)

Then the estimate of seismic ratio Sslip in the slow slipping region near rheological boundaries is

Sslip =
τp − τi

τi − τd
=

a

b − a
. (5.21)

Sslip = 0.2 in Case I and Sslip = 0.5 in Cases II, IIh1, and IIh2, which match the simulated results

quite well (Figure 5.10 and 5.17). Equation (5.21) suggests that seismic ratio in the area next to

rheological boundaries is determined by friction parameters a and b, and smaller a/b promotes faster

rupture propagation there.

In the mid-depth area which is locked, the peak resistance τp and the dynamic frictional resistance

τd are approximately described by equations (5.9) and (5.10), respectively. During interseismic

periods, the shear stress accumulation in the mid-depth locked region is governed by formula (5.15).

The stress shear τi before a dynamic event can be estimated as

τi = τd + τsf(z) = σ{fo + (a − b) ln
Vdyn

Vo
} +

μ

2π

VplTWseis

(Wseis/2)2 − z2
, (5.22)

which is a function of depth z. By equating the above equation with equation (5.8), we can get the

background slip velocity Vbg,lock(z) of the locked region before a dynamic event:

Vbg,lock(z) = Vdyn

(
L

VdynT

)b/a

exp
{

μ

2πσa

VplTWseis

(Wseis/2)2 − z2

}
. (5.23)

Vbg,lock(z) decreases as |z| decreases and reaches its minimum value at depth z = 0:

Vbg,lock(z = 0) = Vdyn

(
L

VdynT

)b/a

exp
{

2μVplT

πσaWseis

}
. (5.24)
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The seismic ratio Slock(z) at mid-depth locked region is:

Slock(z) =
τp − τi

τi − τd
=

2πσb
(
(Wseis/2)2 − z2

)
μWseisVplT

ln
VdynT

L
− 1. (5.25)

Slock(z) increases as |z| decreases and reaches its maximum value at depth z = 0:

Slock(z = 0) =
τp − τi

τi − τd
=

πσbWseis

2μVplT
ln

VdynT

L
− 1. (5.26)

These estimates of Slock(z = 0) match the simulated values (Figure 5.10 and 5.17) within a factor

of 1.5. An interesting observation from equation (5.26) is that smaller seismogenic width Wseis

may actually decrease the seismic ratio at the mid-depth region, promoting faster ruptures. This

effect directly comes from the static stress transfer term (5.15) at the mid-depth, which is larger for

narrower seismogenic faults.

The above analysis suggests that the seismic ratio is almost uniform in the slipping region next

to rheological boundaries, and increases as |z| decreases in the mid-depth region. This kind of

distribution is qualitatively consistent with the simulated results.

5.5.3 Significance of rheological boundaries for rupture dynamics

Presence of rheological boundaries on natural faults have been inferred from a number of laboratory

experiments and fault observations, as discussed in the beginning of Chapter 5. An important

consequence of their presence is shear stress concentration that occurs on rheological boundary

between the aseismically creeping region and the locked region, due to accumulated disparity of

aseismic slip. From 2D modeling of earthquake cycles, Lapusta et al. (2000) found that earthquakes

nucleate and small earthquakes cluster at the rheological boundaries due to this stress concentration,

which is consistent with observations of fault seismicity (e.g., Ellsworth et al., 2000; Schaff et al.,

2002).

This study shows that stress concentration at rheological boundaries strongly influences dynamic

rupture propagation. Once earthquake rupture nucleates, it propagates faster over the fault areas
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next to rheological boundaries than over the rest of the seismogenic region, making the rupture

transition to intersonic speeds in some cases, e.g., the third event of Case I. In some other cases,

e.g., the sixth event of Case I, the high shear stress next to rheological boundaries only promotes

local intersonic propagation there.

The effect of rheological boundaries observed in this study illustrates the necessity of conducting

3D modeling of long-term fault slip, as some conclusions drawn from single-rupture models may be

inadequate. In many single-rupture models, the aseismic region (the velocity-strengthening region

considered in this work) is simplified as an unbreakable region that can absorb infinitely large

stress without failure. In these models, the finite width of the seismogenic region has the effect

of depressing intersonic transition and propagation (e.g., Day, 1982a; Fukuyama and Olsen, 2002;

Madariaga and Olsen, 2000; Dunham, 2006). Dunham (2006) found that when the width of the

seismogenic region is smaller than a critical value, the arrest waves sent out by the rheological

boundaries will inhibit intersonic propagation of the fault. Many intersonic events in our model

would have been subsonic events in Dunham’s model. For example, with S̄ = 1.16 and Wseis = 10

km in the third (intersonic) event of Case I, Dunham’s model would predict a subsonic rupture, as

the seismogenic width Wseis = 10 km is much narrower than the critical value given in his study.

These single-rupture models do not account for the fact that the aseismic regions on natural faults

are not completely unbreakable, or that, due to complicated prior slip history, stress distribution

before events is not uniform, but higher at the rheological boundaries, where earthquakes tend to

nucleate and propagate faster.

Note that the presence of rheological boundaries results in heterogeneous stress drop over the

seismogenic region. Figure 5.21 shows distribution of the stress drop Δτ = τi − τe for the third

and sixth events of Case I. As expected, in both events, areas next to the rheological boundaries

have the largest positive stress drop, due to high shear stress before events. Stress drop in the

velocity-strengthening region is negative, as it absorbs energy emitted by dynamic waves during

seismic events, releasing it later during postseismic periods. Interestingly, higher stress drop near

the rheological boundaries does not correspond to higher slip there than on the rest of the fault
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Figure 5.21: Distribution of stress drop Δτ = τi − τe for the third and sixth events of Case I. The
distribution is heterogeneous due to the presence of rheological boundaries.

(Figure 5.22).

5.5.4 Effect of weaker patches on earthquake sequences

From earthquake sequences in Cases IIh1 and IIh2, we find that the weaker patches have two main

effects on fault slip. They lead to more irregular earthquake sequences than the fault would have

produced without the patches. They also promote intersonic transition on the fault and determine

transition distance Ltran.

The first effect is demonstrated in Figures 5.11, 5.14, and 5.20. Figures 5.11 and 5.14 illustrate

earthquake sequences and show that Case II of a homogeneous seismogenic region exhibits period

behavior, while Case IIh1 with a weaker patch has a more complex earthquake sequences. Figure

5.20 shows average seismic ratio S̄ and average initial shear stress τ̄i for Cases II, IIh1, and IIh2.

If we exclude the first event in Figure 5.20, which has artificially assigned initial conditions, S̄ in

subsequent events varies in a smaller range in Case II than in Cases IIh1 and IIh2. The average

shear stress before dynamic events has similar behavior.

The weaker patch also induces transition to intersonic speeds (Section 5.4) and determines tran-

sition distance. We take the third event of Case IIh1 as an example. The transition distance in
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that event is Ltran = 22 km (we define Ltran as the horizontal distance between the center of the

nucleation zone and the center of the patch). For a comparison, we compute intersonic transition

distances of a homogenous fault. Let us consider a linear slip-weakening fault with uniform τi, τp,

τd, and d0 that are equal to the average values of Case IIh1. In the 2D model, the transition distance

Lsw,2D
tran can be approximately expressed as (Andrews, 1976; Xia et al., 2004):

Lsw,2D
tran =

9.2
(Scrit,2D − S)3

Lc, (5.27)

where Scrit,2D = 1.77, and Lc is the half-length of quasi-static critical crack, given by:

Lc =
1

π(1 − ν)
μ(τp − τd)d0

(τi − τd)2
. (5.28)

Therefore we have

Lsw,2D
tran = 48 km. (5.29)

The intersonic transition distance Lsw,3D
tran in the 3D unbounded fault model is larger than Lsw,2D

tran in

2D. Interpolating from Figure 5 of Dunham (2006), we get

Lsw,3D
tran ≈ 2Lsw,2D

tran = 96 km. (5.30)

Ltran = 22 km of Case IIh1 is about four times smaller than Lsw,3D
tran ≈ 96 km for the 3D homogenous

fault. Hence the presence of weaker patch can considerably shorten transition distance.

5.5.5 Effect of rupture speed on slip distribution

In our simulations, intersonic and subsonic events lead to different distributions of slip during dy-

namic rupture. We take the third (intersonic) and sixth (subsonic) events of Case I as examples.

We define the final slip δe(x, z) due to an event as the difference of slip between the starting time
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Figure 5.22: Distribution of final slip δe(x, z) on the fault due to the third (intersonic) and sixth
(subsonic) events for Case I. In each panel, the red star indicates the event hypocenter.

and the ending time of the event. The average slip over depth δ̄e(x) is then:

δ̄e(x) =
1

Wseis

∫ Wseis/2

−Wseis/2

δe(x, z)dz, (5.31)

and the overall average slip in the velocity-weakening region δ̄e is:

δ̄e =
1

Lseis

∫ Lseis/2

−Lseis/2

δ̄e(x)dx. (5.32)

Figure 5.22 shows the distribution of slip during the third and sixth events. The red stars indicate

the event hypocenters. In both events, slip near the hypocenter is smaller compared with most of

the seismogenic region. This is because earthquakes nucleate at the corner of the seismogenic region,

where stress concentration is maximum, and the rheological boundaries restrict the slip growth at

the hypocenter during dynamic event. Overall, the intersonic event has larger slip than the subsonic

event. δ̄e is 2.06 m in the third event, which is 26% larger than δ̄e (= 1.63 m) in the sixth event.

Note that the average stress drop Δτ in the third event is only 18% larger than the sixth event.

Figures 5.7(a) and (b) show the rupture speed c∗(x) and average slip over depth δ̄e(x) for the two
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events. Larger c∗(x) usually corresponds to larger δ̄e(x). In Figure 5.7, c∗(x) and δ̄e(x) are positively

correlated.

5.5.6 On friction behavior during dynamic rupture

Rate and state friction laws were developed from laboratory rock experiments for slip velocity from

10−8 m/s to 10−3 m/s (e.g., Dieterich, 1979; Ruina, 1983; Blanpied et al., 1991, 1995; Marone,

1998). During dynamic rupture, many additional weakening mechanisms, e.g., flash heating, ther-

mal pressurization of pore fluids (Rice, 2006, and references therein), may be activated and may

dominate the constitutive response of the fault. In this chapter, we use rate and state friction as

a proxy for linear slip-weakening friction during dynamic rupture, which has been widely used in

the study of intersonic transition (e.g., Andrews, 1976; Day, 1982a,b; Fukuyama and Olsen, 2002;

Dunham, 2006). Rate and state friction in its aging formulation is a unique tool that adequately

represents rock behavior during interseismic periods and earthquake nucleation, allowing us to sim-

ulate long-term fault slip, while turning into approximately linear slip-weakening behavior during

dynamic rupture, allowing us to represent the dynamic events as realistically as most single-rupture

simulations currently do. A future step would be to study intersonic transition with a more physical

friction law, e.g., a combined friction law that incorporates rate and state friction at slow slip veloc-

ities and laws motivated by thermal-weakening mechanisms at high slip velocities. We hypothesize

that more physical friction laws would yield results that are qualitatively similar, as the results are

due to the presence of rheological boundaries and favorable heterogeneities, and not to a particular

feature of the friction law used.

5.6 Conclusion

We study intersonic transition and propagation of dynamic ruptures in the context of earthquake

sequences and aseismic slip in a 3D fault model. The model of a planar strike-slip fault governed by

rate-and-state friction contains a potentially seismogenic velocity-weakening region surrounded by

velocity-strengthening regions.
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We find that the rheological boundary between the velocity-weakening and velocity-strengthening

regions promotes intersonic transition. The interseismic slip disparity between a velocity-strengthening

region and velocity-weakening region causes stress concentration. Once earthquake rupture nucle-

ates, it propagates faster over these areas of higher prestress than over the rest of the seismogenic

region, transitioning to intersonic speeds in some cases. Since the presence of such rheological bound-

aries on natural faults can be inferred from laboratory studies and fault observations, this factor

may significantly contribute to intersonic transition on natural faults. The occurrence of intersonic

transition in our 3D model depends on friction properties and fault stress that develops in the model

before large earthquakes and can be explained by the distribution of the average seismic ratio on the

fault before large events. In a broader context, the rheological transition boundary can be considered

as a favorable heterogeneity of higher initial shear stress naturally arising from earthquake cycles.

We also find that intersonic transition in 3D models of long-term slip can be further promoted

by favorable compact fault heterogeneity, as suggested by the 2D single-event study of Chapter 4.

Our simulations show that adding a fault patch of lower effective peak frictional resistance can qual-

itatively modify the behavior of the simulated fault, resulting in occasional intersonic earthquakes

in a model that has no intersonic events without the patch. The intersonic transition distance is

determined by the location of the heterogeneity. Secondary crack initiated in the heterogeneity is

driven to intersonic speeds by the intersonic loading stress field of the main rupture. This study

shows that the intersonic transition mechanism due to favorable heterogeneity described in Chapter

4 is qualitatively valid in the fault model with long-term history of seismic and aseismic slip.

We emphasize that the phenomenon of intersonic transition due to rheological boundaries could

not be established in prior studies, as it can only be observed in simulations that include all the of the

following factors: First, the numerical methodology needs to be fully-dynamic and include inertial

effects to enable intersonic transition in simulations. Second, the fault model needs to be 3D in order

to include the rheological boundary in the direction of rupture propagation. Third, the methodology

should be able to simulate long-term slip history of faults to establish stress distribution on the fault

before large events. So far, earthquake cycles modeling has shown that rheological boundaries
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Figure 5.23: Rupture time along the line z = −4 km in the third event of Case IIh1. The black solid
line is the original rupture time tr, and the red dashed line is the adjusted rupture time t∗r , used to
compute horizontal rupture speed.

promote earthquake nucleation (Lapusta et al., 2000), clustering of small earthquakes (Lapusta and

Rice, 2003), and intersonic transition and propagation (this work). Further studies of the effect of

rheological boundaries would enhance our understanding of rupture dynamics on natural faults.

5.7 Appendix: calculation of horizontal rupture speed c(x, z)

A straightforward way of computing horizontal rupture speed at a fault location (x, z) is to calculate

the average rupture speed in a horizontal interval [x−NΔx, x + NΔx], where Δx is the discretized

cell size and N is an integer defining the width of the interval. Then we have

c(1)(x, z) =
x + NΔx − (x − NΔx)

tr(x + NΔx, z) − tr(x − NΔx, z)
. (5.33)

The drawback of the above formula is that it does not account for the possibility of a rupture

front jump. The black solid line in Figure 5.23 is the rupture time along strike at depth z = 4

km in the third event of Case IIh1. When the main rupture arrives at x = −13 km (at the time

of about 7 seconds), a secondary crack initiates at the location of x = −9 km. The rupture front

instantaneously jumps from the location of x = −13 km to x = −9 km, and the rupture speed of
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the region between x ≈ −13 km to x ≈ −9 should not be defined, or have a special value such as

infinity which can be interpreted as a jump. However, equation (5.33) yields finite values (which

can be negative) of the horizontal rupture speed in the above region.

To remedy the drawback of equation (5.33), we first computed the adjusted rupture time t∗r(x, z)

at every point (x, z).

1. At every depth z, we set the adjusted rupture time at x = Lseis/2 (the right edge of the

seismogenic region) to be equal to its actual rupture time:

t∗r(x = Lseis/2, z) = tr(x = Lseis/2, z). (5.34)

2. Starting from x = Lseis/2 − Δx, we move towards x = −Lseis/2, setting:

t∗r(x, z) = min {tr(x, z), t∗r(x + Δx, z)} . (5.35)

After the procedure (5.34–5.35), the adjusted rupture time t∗r(x, z) is a monotonously non-

decreasing function of the horizontal coordinate x. The red dashed line in Figure 5.23 shows the

adjusted rupture time t∗r(x, z) along z = 4 km. t∗r(x, z) is equal to t(x, z) in the region where no

rupture front jumps over, and t∗r(x, z) is set to the time of the rupture jump in the region of a jump.

3. Then we compute horizontal rupture speed c(x, z) as:

c(x, z) = +∞, if t∗r(x, z) = t∗r(x + Δx, z) = t∗r(x − Δx, z) (5.36)

else

c(x, z) =
x + imaxΔx − (x + iminΔx)

t∗r(x + imaxΔx, z) − t∗r(x + iminΔx, z)
, otherwise. (5.37)

In equation (5.37), imax is the maximum value of index i (i ≤ N) satisfying:

t∗r(x + jΔx, z) > t∗r(x + (j − 1)Δx, z), ∀ 1 ≤ j ≤ i; (5.38)
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and imin is the minimum value of index i (i ≥ −N) satisfying:

t∗r(x + jΔx, z) < t∗r(x + (j + 1)Δx, z), ∀ i ≤ j ≤ −1. (5.39)

The above procedure ensures that rupture speed is computed as the average rupture speed in a

horizontal spatial interval of 2NΔx for most regions; and that it is set to be infinity in the region

where rupture front jumps occur. In all simulations, we use N = 10 and Δx = 0.1 km.
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Chapter 6

Conclusions and future work

We have developed three-dimensional (3D) boundary-integral methodology for simulating long-term

history of spontaneous seismic and aseismic slip on a planar rate-and-state fault subjected to slow

tectonic loading. Our approach is the first one to combine long-term deformation histories and

the resulting stress redistribution on faults with full inclusion of inertial effects during simulated

earthquakes in the context of 3D models. It reproduces all stages of earthquake cycles, from accel-

erating slip before dynamic instability, to rapid inertially driven propagation of earthquake rupture,

to post-seismic slip, and to interseismic creep, including aseismic transients. Such problems are

highly nonlinear and lack analytic solutions. The accuracy of our solutions to 3D dynamic rupture

propagation problems is verified by comparison with a finite difference method that was developed

for simulations of single dynamic events. Solutions to test problems converge through grid reduction

and are consistent between the two methods, validating both numerical approaches and providing

useful data for testing future numerical methods.

The developed methodology is applied to evaluation of simplified quasi-dynamic approaches,

to investigation of rupture interaction with compact fault heterogeneity, and to intersonic rupture

transition. We find that the 3D quasi-dynamic approaches not only result in much slower slip and

rupture velocities, as was already established in 2D models, but also produce different long-term

slip patterns. Our study of a fault model with a stronger patch shows that interaction of dynamic

rupture with the heterogeneity in the first dynamic event and subsequent events is quite different,

due to redistribution of fault stress by slip. This illustrates the importance of considering long-term
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slip histories even if one is interested only in the behavior of dynamic ruptures.

The main application of the developed computational tools is the study of intersonic transition

and propagation of dynamic rupture. Intersonic ruptures have been inferred from seismic observa-

tions and recorded in the lab. They have the potential to cause strong ground motion farther from

the fault than subsonic ruptures. Using 2D in-plane simulations of single rupture events, we demon-

strate that transition to intersonic speeds may be dominated by favorable fault heterogeneities. This

qualitative finding is confirmed by considering intersonic transition and propagation in the devel-

oped 3D models over long-term deformation histories. We discover that rheological boundaries, the

presence of which on faults has ample laboratory and observational evidence, act as favorable het-

erogeneity, concentrating stress and promoting intersonic transition. Compact fault heterogeneity

in the form of weaker patches further promotes intersonic transition in 3D models.

The results of this thesis demonstrate that 3D simulations of long-term fault slip that fully

account for inertial effects can uncover phenomena that cannot be discovered with simpler models.

In 2D models, the fault is simplified to a line which limits the nature of heterogeneous fields that

can be assumed. Simulations of one instance of dynamic rupture strongly depend on the chosen

initial conditions and do not allow the model to evolve towards behavior consistent with the model

geometry, friction, and other parameters. Quasi-dynamic formulations lead to modified rupture

properties and cannot reproduce wave-induced phenomena such as intersonic transition.

The study also demonstrates the importance of incorporating fault heterogeneities into earth-

quake models. A small stronger patch alters slow slip and nucleation, resulting in a different earth-

quake pattern on the fault. A simple combination of rectangular velocity-weakening and velocity-

strengthening fault regions creates areas of stress concentrations due to interseismic slip and pro-

motes faster rupture speeds. Finally, a favorable fault region of higher prestress or lower strength

promotes intersonic transition. Hence it is important to understand which distributions of friction

and other parameters are realistic for natural faults.

The next step in improving the developed methodology would be to include dynamic weakening

mechanisms. Rate and state friction laws were derived from laboratory rock experiments for low
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slip velocity (e.g., Dieterich, 1979; Ruina, 1983; Blanpied et al., 1991, 1995; Marone, 1998). During

dynamic rupture, thermal weakening mechanisms, such as thermal pressurization of pore fluid and

flash heating (Rice, 2006, and references therein), may be activated, and they are likely to dominate

fault response. In the future, it is important to extend the rate and state formulation to include

these and other weakening processes at high slip rates. This is a nontrivial task, as the existing

small-scale descriptions of several weakening mechanisms involve lengthscales and timescales that

are intractable in 3D models of long-term slip.

The developed approach can be used to study a number of fault slip phenomena, such as postseis-

mic slip, earthquake nucleation in heterogeneous regions, and slip response of faults with complex

patterns of velocity-weakening and velocity-strengthening properties. Recent improvements in avail-

ability and quality of seismic and geodetic data have revealed complex interactions of seismic and

aseismic slip, with more heterogeneous fault coupling than previously believed, slow earthquakes,

and aseismic transients that are often accompanied by seismic tremor. We can use the developed

simulation methodology to interpret this rich information through forward modeling, with the goal

of determining constitutive behavior and properties of natural faults.

As an example, consider the results obtained in the work by Chen and Lapusta (2008) which

used the developed methodology to study small repeating earthquakes. Since their recurrence times

range from a fraction of a year to several years and their locations are known, small repeating

earthquakes are an excellent observation target. They are used to study an increasingly richer array

of problems, from fault creeping velocities and postseismic slip to earthquake interaction and stress

drops. An intriguing observation about repeating earthquakes is their scaling of recurrence time with

seismic moment which is significantly different from the scaling based on a simple conceptual model

of circular ruptures with stress drop independent of seismic moment and no aseismic slip. Chen and

Lapusta (2008) simulated long-term slip on a small velocity-weakening fault patch surrounded by a

much larger velocity-strengthening region. They found that the patch produces not only earthquakes

but also aseismic slip, and the proportion of seismic and aseismic slip varies with the patch radius and

hence with the earthquake size. The model reproduces the observed scaling of the seismic moment
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with the recurrence time and results in source parameters comparable with inversions. The simple

conceptual model cannot match the observed scaling because it does not account for the aseismic

slip on the patch. This is yet another example of the importance of simulating aseismic slip, even if

one is only interested in earthquakes.
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