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ABSTRACT 

All heme thiolate enzymes have conserved hydrogen bonding networks 

surrounding the axial thiolate ligand. In order to understand the role of this proximal 

hydrogen bonding network in nitric oxide synthases (NOS), three mutants of the NOS 

enzyme from Geobacillus stearothermophilus were expressed and characterized. The wild 

type enzyme has a tryptophan residue at position 70 that π-stacks with the porphyrin ring 

and donates a long hydrogen-bonding interaction to the thiolate ligand of the heme iron. 

The native Trp was replaced with His, Phe, and Tyr. These three residues were selected to 

investigate the two effects of the Trp, H-bonding and π-stacking. Several different 

spectroscopic techniques were used to investigate the stability and properties of these 

mutant enzymes. The identity of each mutant was confirmed by mass spectrometry. Both 

UV-visible absorption and circular dichroism spectroscopies were used to assess the 

stability of the new proteins. It was shown using binding assays, generation of the ferrous-

CO species, and redox titrations that the σ-donating abilities of the thiolate are increased 

after removal of the hydrogen bonding group in the Trp. Finally, electron paramagnetic 

resonance spectroscopy and Evans method nuclear magnetic resonance spectroscopy were 

used to characterize the spin state of the iron center in each mutant, reflecting the increased 

σ-donating capabilities of the thiolate upon removal of the hydrogen bonding group. The 

reduction potential of wild type and W70H were determined by chemical titration to be       

-362 and -339 mV vs. NHE, respectively. This is the first report of the reduction potential 

of any bacterial nitric oxide synthase. 

The reactivity of each the wild type enzyme and the three new mutants was tested 

using stopped-flow mixing coupled with UV-visible absorption spectroscopy and the 
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Griess Assay. Autoxidation rates measured by stopped-flow suggest that the Tyr and Phe 

mutants do indeed have significantly more negative reduction potentials, but that the His 

mutant is particularly slow to oxidize. The Griess Assays showed that all four enzymes 

produce nitrite in solution, when provided with substrate, cofactor and hydrogen peroxide 

(as a source of reducing equivalents). In single turnover experiments, however, only three 

of the four enzymes showed evidence of ferric-NO production. The His mutant showed no 

intermediate absorbance near 440 nm (which would be indicative of ferric-NO formation), 

suggesting that it releases NO- rather than the radical species NO·. The role of this 

hydrogen bond is concluded to be an electronic one, rather than playing any part in 

positioning the heme. It prevents formation of the inactive P420 species, and tunes the 

reduction potential to one high enough to be reduced by a reductase but low enough to still 

deliver an electron to the redox active cofactor, tetrahydrobiopterin, at the end of catalysis.   

The rate at which NO is released by each NOS enzyme varies greatly among 

isoforms and species, over nearly two orders of magnitude. One residue (an isoleucine 

located above the heme in bacterial enzymes) involved in the gating of NO release has been 

previously identified by Stuehr. However, this single residue does not account for the 

entirety of the differences among the forms of NOS. Another residue, a histidine at position 

134 in NOS from Geobacillus stearothermophilus (gsNOS), was hypothesized to also 

participate in gating NO release based on an observed correlation between rates of NO 

release and the bulk of side chains at this position. Each single point mutation, H134S and 

I223V, and the double mutant were expressed in gsNOS and their reactivity toward the 

diatomic molecules CO and NO were studied. CO rebinding was investigated using laser 

flash photolysis and NO release using stopped flow UV-visible spectroscopy. The presence 
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of both monomer and dimer was observed in solution, and position 134 was shown to be 

another key residue in gating NO release. Wild type gsNOS contains both the bulkier 

Ile223 and His134 and has the slowest measured NO release (0.039 s-1) of all NOS 

enzymes. A new, more accurate kinetics model for turnover is proposed. Each single 

mutation increased NO release substantially, while the double mutant has a rate constant of 

1.0 s-1, nearly as fast as mammalian iNOS at 2.3 s-1, identifying position 134 as another 

important factor determining rate constants for NO release. 

 

 



 

 

ix
TABLE OF CONTENTS 

Acknowledgements ............................................................................................ iii 
Abstract ............................................................................................................... iv 
Table of Contents ................................................................................................ ix 
List of Figures ..................................................................................................... xi 
List of Schemes ................................................................................................. xiii 
List of Tables .................................................................................................... xiv 
Chapter 1: Introduction and Background ............................................................ 1 

Nitric Oxide Synthases .................................................................................. 2 
Mechanism of NO Production ...................................................................... 6 
Bacterial Nitric Oxide Synthases .................................................................. 9 
An Interest in Heme-Thiolates .................................................................... 15 
Tools of the Bioinorganic Chemist ............................................................. 19 
Conclusion ................................................................................................... 21 
References .................................................................................................... 23 

Chapter 2: An Interest in Thiolate Coordination .............................................. 27 
Introduction .................................................................................................. 29 
Materials and Methods ................................................................................ 45 
Results and Discussion ................................................................................ 50 
Concluding Remarks and Discussion ......................................................... 60 
References .................................................................................................... 65 

Chapter 3: Hydrogen Bonding Mutants: Thermodynamics ............................. 69 
Introduction .................................................................................................. 71 
Materials and Methods ................................................................................ 82 
Results and Discussion ................................................................................ 92 
Conclusions ................................................................................................ 109 
References .................................................................................................. 111 

Chapter 4: Hydrogen Bonding Mutants: Kinetics .......................................... 116 
Introduction ................................................................................................ 118 
Materials and Methods .............................................................................. 124 
Results and Discussion .............................................................................. 127 
Conclusions ................................................................................................ 138 
References .................................................................................................. 141 

Chapter 5: Pathway Mutations and NO Release ............................................. 143 
Introduction ................................................................................................ 145 
Experimental Methods .............................................................................. 150 
Results ........................................................................................................ 153 
Discussion .................................................................................................. 162 
Conclusions ................................................................................................ 174 
References .................................................................................................. 176 

Chapter 6: Electrochemistry of gsNOS ........................................................... 180 



 

 

x
Introduction ................................................................................................ 182 
Materials and Methods .............................................................................. 187 
Results ........................................................................................................ 188 
References .................................................................................................. 196 

Chapter 7: Conclusions and Future Work ....................................................... 198 
Roles of Hydrogen-Bond Donating Groups ............................................. 199 
Gating Diatomics in NOS ......................................................................... 202 
Future Directions ....................................................................................... 203 

Appendix I: Wires Review ............................................................................... A1 
Appendix II: Labeling gsNOS ........................................................................ A18 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

xi
LIST OF FIGURES 

Number Page 
1.1 Domains of NOS ..................................................................................... 5 
1.2 Structure of bsNOS and iNOS .............................................................. 10 
1.3 Structure of gsNOS ............................................................................... 14 
1.4 Rhenium wire in binding pocket ........................................................... 18 
1.5 Absorption spectra of several forms of NOS ........................................ 20 
2.1 Electronic states of a DBA molecule .................................................... 31 
2.2 Tunneling timetables ............................................................................. 34 
2.3 Potential energy curves for electron transfer ........................................ 35 
2.4 Rhenium wire in binding pocket ........................................................... 38 
2.5 Absorption spectra of iNOS:wire complexes ....................................... 40 
2.6 Luminescence spectra of iNOS and iNOS:wire ................................... 41 
2.7 Transient difference spectra of reduced iNOS ..................................... 42 
2.8 Transient absorption spectra of iNOS ................................................... 43 
2.9 Absorbance spectra of ascorbate and TMPD ....................................... 49 
2.10 Transient absorbance spectra of quenched tmRu-F9bp ...................... 50 
2.11 Transient luminescence of Ru(bpy)3

2+ ................................................ 51 
2.12 Luminescence decay of wire bound to iNOS ..................................... 53 
2.13 Transient absorbance of iNOS:wire complex..................................... 54 
2.14 Transient absorbance of quenched iNOS:wire complex .................... 55 
2.15 Transient generation of Fe(III/II) difference spectrum ...................... 56 
2.16 Transient absorbance of iNOS:wire complex..................................... 57 
2.17 Transient absorbance of iNOS:wire complex..................................... 57 
2.18 Steady-state reduction of iNOS .......................................................... 59 
2.19 The heme center to NOS ..................................................................... 62 
3.1 Close up of heme center ........................................................................ 77 
3.2 Thermal denaturation curve of gsNOS ................................................. 80 
3.3 Crystal structure of gsNOS ................................................................... 81 
3.4 Cuvette used for Hemochromagen Assay ............................................ 86 
3.5 Apparatus used for redox titrations ....................................................... 91 
3.6 Thermal denaturation curves for all four NOS mutants ....................... 92 
3.7 Ferrous-CO complex of wild type gsNOS ........................................... 94 
3.8 Ferrous-CO complex of W70F gsNOS ................................................ 94 
3.9 Spectral changes induced by imidazole ................................................ 96 
3.10 Calculation of dissociation constants from gsNOS ............................ 97 
3.11 Absorbance changes upon introduction of arginine ........................... 97 
3.12 Formation of the gsNOS “hemochrome” ........................................... 99 
3.13 Absorbance spectra of gsNOS mutants ............................................ 100 
3.14 EPR spectra of four gsNOS mutants ........................................ 101–102 
3.15 Spectroelectrochemistry of Ru(acac)3 .............................................. 106 



 

 

xii
3.16 Redox titration of wild type gsNOS ................................................. 107 
3.17 Redox titration of W70F gsNOS ...................................................... 107 
4.1 Close up of heme-thiolate with Trp70 ................................................ 124 
4.2 Autoxidation of W70F ferrous gsNOS ............................................... 128 
4.3 Autoxidation of W70H ferrous gsNOS with substrate ...................... 129 
4.4 Single turnover reaction of wild type gsNOS ..................................... 135 
4.5 Single turnover reaction of W70Y gsNOS ......................................... 136 
4.6 Single turnover intermediates of W70Y gsNOS ................................ 136 
4.7 Single turnover reaction of W70H gsNOS ......................................... 137 
5.1 Absorption spectra of gsNOS ............................................................. 154 
5.2 Steady-state Fe(II)-CO/Fe(II) difference spectrum  ........................... 155 
5.3 Transient generation of five-coordinate Fe(II) ................................... 156 
5.4 Transient difference spectrum of gsNOS ........................................... 157 
5.5 Kinetics traces for each of four mutant enzymes ............................... 158 
5.6 Single turnover experiment with gsNOS ............................................ 161 
5.7 Generated fits for both single and double exponential ....................... 163 
5.8 Spectra of intermediates for H134S/I223V ........................................ 168 
5.9 Spectra of intermediates for wild type ................................................ 169 
5.10 Spectra of intermediates for five-state model ................................... 173 
6.1 Depictions of proteins in films ............................................................ 184 
6.2 Method of attachment of gsNOS ........................................................ 189 
6.3 Cyclic voltammograms of attached gsNOS ....................................... 189 
6.4 Voltammetric response at 100 mV/s ................................................... 190 
6.5 Fit of scan rate dependence to Equation 6.1 ....................................... 191 
6.6 Cyclic voltammogram of gsNOS, attached with PEG linker ............ 192 
6.7 Background-subtracted cyclic voltammograms ................................. 192 
6.8 Cyclic voltammograms of gsNOS in DDAB film ............................. 193 
6.9 Cyclic voltammograms of W70F gsNOS in DDAB film .................. 194 



 

 

xiii
LIST OF SCHEMES 

Number Page 
1.1 Production of NO by NOS ...................................................................... 3 
1.2 Electron transfer cofactors in NOS ......................................................... 4 
1.3 Reaction mechanism of NOS .................................................................. 8 
2.1 Photosynthesis and respiration .............................................................. 29 
2.2 Flash/quench schemes ........................................................................... 36 
2.3 Reaction mechanism of NOS ................................................................ 37 
2.4 tmRu-F9bp ............................................................................................. 45 
2.5 Reversible flash/quench experiment ..................................................... 52 
2.6 Oxidation of TMPD .............................................................................. 53 
3.1 Five-electron oxidation of arginine ....................................................... 72 
3.2 Reaction mechanism of NOS ................................................................ 74 
4.1 Production of NO by NOS .................................................................. 119 
4.2 Reaction mechanism of NOS .............................................................. 120 
4.3 Electron transfer cofactors .................................................................. 121 
4.4 Reaction scheme for the Griess Assay ................................................ 122 
4.5 Reaction of oxygen with ferrous NOS ................................................ 127 
4.6 Reaction of reduced NOS with oxygenated buffer ............................ 133 
5.1 Reaction mechanism of NOS .............................................................. 146 
5.2 Model for conversion of ferrous to ferric NOS .................................. 160 
5.3 Standard kinetics model for recombination ........................................ 162 
5.4 Modified kinetics model for CO ......................................................... 166 
5.5 Five-state model for NO kinetics ........................................................ 170 
6.1 Surfactants for making films ............................................................... 185 
6.2 Maleimide-terminated thiol ................................................................. 188 

 



 

 

xiv
LIST OF TABLES 

Number Page 
2.1 Ru and Re wires that bind to iNOS ....................................................... 39 
3.1 Spectral dissociation constants of imidazole and arginine ................... 98 
3.2 Molar absorptivities of four NOS mutants ........................................... 99 
3.3 EPR g-tensors of each mutant ............................................................. 102 
3.4 Number of unpaired electrons by Evans method ............................... 103 
4.1 Rate constants for autoxidation of NOS ............................................. 130 
4.2 Nitrite production rates by gsNOS mutants ........................................ 131 
5.1 CO recombination rates ....................................................................... 158 
5.2 Percentage of each rate constant by mutant ........................................ 159 
5.3 Rate constants for NO release ............................................................. 161 
5.4 Effects of concentration on relative amplitudes ................................. 164 
5.5 Power dependence  .............................................................................. 165 
5.6 Full kinetics details for single turnover of each mutant ..................... 171 
6.1 Reduction potentials of cytochrome P450-BM3 ................................ 182 
6.2 Measured reduction potentials of four NOS mutants ......................... 194 

 
 

 

 



1 
 

 

 

 

 

 

 

 

 

C h a p t e r  1  

 

 

Introduction and Background 

  



2 
 

1.1 Nitric Oxide Synthases 

Salvador Moncada and colleagues reported in 1987 that the molecule responsible 

for relaxation of blood vessels is nitric oxide (NO).1 This publication marked the 

beginning of a new area of chemical and biological research, now with thousands of 

articles published each year. Long known as a cytotoxic agent in pathological processes 

and a major component of smog, NO is now recognized as a key signaling molecule in 

the cardiovascular, immune, and nervous systems.2  

 Nitric oxide synthases (NOSs) are responsible for the production of NO in living 

systems.3 The three (mammalian) isoforms of the enzyme are named for the tissues in 

which they are found: endothelial NOS (eNOS), neuronal (nNOS), and an inducible form 

found in macrophages (iNOS).4 NOS enzymes have been identified in some bacterial 

species as well, such as Bacillus subtilis and Sorangium cellulosum.5-6 NOS catalyzes the 

oxidation of L-arginine (Arg) to L-citrulline in two turnovers, with N-hydroxy- L-arginine 

(NOHA) as an enzyme-bound intermediate (the product of the first turnover). The overall 

reaction is shown in Scheme 1.1. 



 

S
ar
 

ch

ca

co

fl

d

re

ox

co

ox

cheme 1.1. 
rginine.  

Each 

hains.7 Each

almodulin l

ontains bind

lavins FMN 

inucleotide)

esponsive ag

xygenase do

ofactor, and 

xygenase do

Production

mammalian

h single, lo

linker, and 

ding sites for

(flavin mon

, all cofactor

gent that ca

omain binds

a redox-acti

omain where

n of NO by

n enzyme f

ong (1000+

an oxygen

r NADPH (n

nonucleotide 

rs are shown

auses structu

s the substr

ive tetrahydr

e oxidation o

 

y nitric oxid

forms a hom

+ residue) c

ase domain

nicotinamide

or riboflavin

n in Scheme

ural changes

rates (argini

robiopterin c

of substrate o

de synthases

modimer of

chain conta

n (Figure 1

 adenine din

n 5ʹ-phospha

e 1.2.8 The ca

s in the pre

ine and N-h

cofactor. It i

occurs. 

s from the 

f two ident

ains a reduc

1.1). The re

nucleotide ph

ate) and FAD

almodulin li

esence/absen

hydroxy-L-ar

is at the hem

starting ma

tical polype

ctase doma

eductase do

hosphate) an

D (flavin ad

inker is a cal

nce of Ca2+.

rginine), a h

me cofactor i

3 

aterial 

eptide 

ain, a 

omain 

nd the 

enine 

lcium 

. The 

heme 

in the 



 

S
F
 

an

ca

ch

th

ox

in

cheme 1.2. 
MN, (C) FA

The m

nd balances

almodulin li

hain, in this 

he presence o

xygenase do

nducible NO

Cofactors in
AD, and (D) N

mammalian i

. The functi

nker, while 

case literally

of calcium r

omain in the

OS is regul

nvolved in el
NADPH.9  

isoforms are

ions of eNO

iNOS is calc

y fused to th

egulating eN

e absence of 

lated very 

lectron trans

e regulated t

OS and nNO

cium ion ind

he chain of t

NOS and nN

f Ca.11 On th

cafeully wi

sfer in NOS:

through a co

OS are regul

dependent.10

the NOS enz

NOS by preve

he other hand

ithin white 

 

: (A) tetrahy

omplicated s

lated by cal

0 Calmodulin

zyme, and is

enting electr

d, the levels

blood cell

ydrobiopterin

system of ch

lcium ions a

n is a polype

s very sensiti

ron transfer t

s of expressi

s.10 Further

4 

n, (B) 

hecks 

and a 

eptide 

ive to 

to the 

on of 

r, the 



 

re

pr

su

(p

te

el

re

sp

to

F
sy
fu
d

eduction pot

revent relea

ubstrate, oxy

The 

protoporphyr

etrahydrobio

lectrons fro

educed pteri

pecies.13 Alt

o date, struct

Figure 1.1. 
ynthases. (Y
ull-length m
omains, thus

tential of iN

se of reactiv

ygen binds, o

oxygenase 

rin IX, or 

opterin (pteri

m the redu

n cofactor. I

though struc

tures of indiv

Graphical r
YHL Nguyen
mammalian n

s it is still un

NOS is also 

ve oxygen s

oxidizes the 

domain 

P-IX) as 

in, H4B). N

uctase doma

In the absen

ctural charac

vidual doma

representatio
n, PhD thesi
nitric oxide 
nclear how a

controlled b

species. (Wh

iron to Fe(II

(NOSoxy) 

in cytochr

NO is produc

ain to activa

nce of H4B n

cterization o

ains are know

on of the d
is from Calt
synthase ha

and where th

by the prese

hen Fe(II) is

II), and is re

contains 

romes P450

ced when th

ate dioxyge

no NO is pro

f full-length

wn.14-15  

domains and
tech). (Note
as ever been
he two domai

ence of subs

s produced i

eleased as su

a thiolat

0 (P450) an

his domain 

en, in the p

oduced, but 

h NOS has n

d geometry
: No crystal

n reported, o
ins interact.)

strate in ord

in the absen

uperoxide.)12

te-ligated h

nd (6R)-5,6

is supplied 

presence of 

rather other

not been rep

y of nitric o
l structure o
only the sep
) 

5 

der to 

nce of 

2  

heme 

6,7,8-

with 

fully 

r NOx 

ported 

 

oxide 
f any 

parate 



6 
 

 
 

1.2 Mechanism of NO Production 

Arginine is oxidized to nitric oxide in two full turnovers, through the intermediate 

N-hydroxy-L-arginine. The intermediate actually has a higher binding affinity than 

arginine, preventing it from leaving the binding pocket, where it is positioned above the 

heme.16 The first turnover is a two-electron oxidation of substrate, formally a 

hydroxylation of one of the guanidinium nitrogens.2 The stoichiometry of this reaction is 

identical to that of hydroxylations carried out by the extensively-studied cytochromes 

P450.17-18 The second reaction, however, is unique in biology. The use of the 

tetrahydrobiopterin in a redox-active manner (Scheme 1.3) is unique to NOS. Also, the 

second turnover is formally a three-electron oxidation of NOHA to citrulline and NO, 

specifically the radical species and not any other nitrogen oxide.3  

The mechanism of NO production is not completely understood. The resting state 

of the enzyme is a six-coordinate ferric heme with a water molecule occupying the sixth 

ligand position (four positions are occupied by N donors from the porphyrin and one by a 

sulfur atom from an axial cysteine, Cys194).8 Although neither Arg nor NOHA ligates 

the heme, substrate binding shifts both the Soret absorption maximum and the heme spin 

state. The presence of substrate in the binding pocket sterically excludes water, forcing a 

high-spin five-coordinate heme complex.18 One-electron reduction of the NOS:substrate 

complex gives a five-coordinate ferrous heme that readily binds dioxygen, forming a 

ferrous-oxy species (equivalent to ferric superoxide), the last observed intermediate in the 

catalytic cycle.19   



7 
 

The role of pterin has been extensively investigated. This molecule binds in a 

pocket alongside the heme, forming a hydrogen bond with a protoporphyrin-IX 

carboxylate, thereby coupling it to the active site.20 It is known that a pterin-based radical 

forms and is reduced during the catalytic cycle, as determined by analysis of results from 

rapid-freeze EPR experiments.21-23 Production of NO has never been observed without 

fully reduced pterin cofactor, such conditions produce cyano-ornithine and nitrite rather 

than citrulline and NO.13    

The NOS reaction cycle bears many similarities to that of cytochromes P450 (cyt. 

P450). Cyt. P450s contain thiolate-heme active sites and hydroxylate substrates via two-

electron oxidation processes.18 The cyt. P450 cycle also begins with substrate binding 

followed by heme reduction, dioxygen binding, and another reduction step leading to the 

formation of a high-valent iron-oxo complex (Compound I) that hydroxylates the 

substrate (Scheme 1.3). Separate enzymes serve as reductases for most cyt. P450s, but 

substrate hydroxylation can be driven using external sources of electrons.17 It is of note 

that one cytochrome P450 has been found with an attached reductase domain: cyt. P450 

BM3.24 The reductase domain of this enzyme also shuttles electrons from NADPH 

through two flavins to the heme cofactor just like mammalian NOS, although it does not 

need to dimerize to function as NOS does. Owing to these similarities, the mechanism of 

the first turnover of NOS is postulated to be the same as that of cyt. P450s. However, the 

second turnover, a three-electron oxidation, is thought to employ a unique mechanism.25 

It has been suggested that a protonated ferric hydroperoxide may act as the nucleophile in 

the second turnover rather than Compound I, which is a ferryl P-IX radical cation.16   
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mutagenesis nearly impossible (one was replaced by a proline residue, removing the 

amide group, but also shifting an entire loop within the protein, confusing results).  

Steps in the mechanistic cycle borrowed from cyt. P450 are shown in Scheme 1.3.  

Although several intermediates in the cyt. P450 cycle already have been observed, there 

can be no doubt that “the hunt for an unambiguous experimental identification of the 

ephemeral active oxygen species will most certainly continue”.29 In fact, after several 

decades of research on cyt. P450s it was only within the past year that the elusive, high-

valent Compound I was positively characterized and shown to be the active 

hydroxylating oxidant.30 If that is the case for cyt. P450, then we may conclude that work 

on the NOS catalytic cycle is just beginning.  

 

1.3 Bacterial Nitric Oxide Synthases 

 The function of inducible nitric oxide synthase in mammalian macrophage cells is 

predominantly to kill the cells of invading bacteria by pumping them full of nitric 

oxide.10 NO is a radical species and therefore reacts rapidly with many parts of cells 

causing extensive damage. Given its usefulness in killing bacterial cells, it was surprising 

when researchers discovered NO synthase-like proteins in prokaryotic systems in the 

early 2000s.31-32 Since then, NOS-like proteins have been identified in all kingdoms of 

life, with examples in archaea and bacteria, emphasizing their biological importance.5 

Their presence in several pathogenic species is of particular interest. The bacterial NO 

synthases from three phyla of Gram-positive bacteria (actinobacter, deinococcus, and 

firmicutes) in particular share high levels of homology with the oxygenase domains of 

eukaryotic enzymes.6 
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 There are also, however, some striking differences between bacterial and 

eukaryotic systems. The largest difference is that only one bacterial NOS (bNOS) has 

been identified to date that contains a fused reductase domain within its amino acid 

sequence.35 Nearly all bNOS enzymes are made up of only the oxygenase domain where 

the chemistry of NO production occurs (the NOS from Sorangium cellulosum being the 

only exception). This raises the question of how reducing equivalents can be delivered. 

bNOS is also missing a zinc-binding loop contained in all the mammalian isoforms. This 

loop is necessary for the dimerization of mammalian systems, a requirement for function 

because a reductase domain from one monomer of enzyme provides the reducing 

equivalents for the oxygenase domain of the other monomer.36 Truncation of the peptide 

chain in order to remove this loop results in the abolishment of catalytic activity. This 

loop partially obstructs the pterin cofactor binding site, protecting it from solvent.37 Some 

bacteria cannot synthesize tetrahydrobiopterin, they simply lack the necessary sequences 

in their genomes.6 It has been proposed that removal of this loop allows room to 

accommodate the larger pterin, tetrahydrofolate, which all these bacteria are able to 

synthesize.5 The final major difference is a single point mutation near the heme. This 

position is a conserved valine among eukaryotic systems, while in bacteria it is an 

isoleucine.38 It has been shown previously that this residue, situated right above the iron 

atom and within Van der Waals contact distance of Fe-NO species (Ile), affects the rate 

of NO release from the enzyme.39 These differences may highlight key functional 

differences among species.  

 Given these few but striking differences, it was necessary to prove that bacterial 

NO synthase-like proteins did in fact produce nitric oxide, and using the same chemistry 
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as their eukaryotic counterparts. One landmark study required the collaboration of three 

groups, those of Stephen Lippard, Dennis Stuehr and Evgeny Nudler.33 It is a 

complicated process to definitively prove that an enzyme functions and produces NO, not 

any other species, in vivo. In oxygenated aqueous solution, NO is oxidized rapidly to 

nitrite and nitrate. Reagents have been developed that can colorimetrically detect these 

NO metabolites in solution (Griess Assay, Cayman Chemicals). As NO transforms to 

NO2
- and NO3

- in solution, the concentration of these in solution is proportional to the 

amount of NO produced.34 This team of researchers used both the Griess Assay to detect 

NO in the extracellular environment of the cells of B. subtillus and B. anthracis and an 

NO-specific fluorescent probe called CuFL that allows for intracellular NO detection. 

These techniques, in combination with creative use of an arabinose promoter, allowed 

them to prove that NO is indeed produced in these cells by their NOS enzymes.  

 The demonstration of NO synthesis within bacterial cells raises the question of 

why NO is produced.6 The signaling functions of NO in eukaryotic systems are mediated 

by the NO receptor, soluble guanylate cyclase (sGC).40 A bacterial homolog of sGC has 

been identified as a family of H-NOX proteins found by Michael Marletta and 

coworkers.41 Interestingly, though, no H-NOX protein has been found in the genome of 

any bacteria that also code for NOS.42 No other NO receptors have been identified. It has 

been proposed that in pathogenic bacteria the synthesis of NO promotes resistance to 

oxidative stress caused by the host immune system.43 NO may also promote antibiotic 

resistance, due to its ability to chemically modify many compounds used as antibacterial 

agents.44 While these hypotheses may explain the role of NO in pathogenic strains such 
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as Staphylococcus aureus and Bacillus anthracis, the role of NO in non-pathogenic 

bacteria remains a mystery.   

 The NOS (gsNOS) from a non-pathogenic bacterial thermophile, Geobacillus 

stearothermophilus, is the focus of this majority of this work. Only one chapter deals 

with the mammalian inducible isoform, the rest focus on this unique bacterial enzyme. 

gsNOS is noted for the particularly stable ferrous-oxy complex it forms.34 This complex 

lasts only a few seconds at most in other enzymes, but is stable on the order of a minute 

in gsNOS at 4 °C. It is not incredibly surprising that the kinetics of this enzyme are 

slower at standard temperatures than other enzymes, given it comes from a thermophilic 

organism and must function properly at significantly elevated temperatures. It is this 

stability that makes this a useful system to study. This enzyme was originally expressed, 

characterized, and crystallized by Brian Crane and coworkers at Cornell.34 The protein 

fold as revealed by X-ray crystallography is shown in Figure 1.3, with a close-up on the 

heme-thiolate active site.  
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1.4 An Interest in Heme-Thiolates 

 The Gray group has had a long-standing interest in heme-thiolate systems, 

specifically high-valent iron-oxo species long believed (and only recently proven) to be 

the active hydroxylating species in cytochromes P450. Our work on high-valent iron 

hemes actually began in the mid to late 1990s.  The group had developed a technique 

called flash/quench, a general scheme of which is shown in Scheme 1.4.45 In this process, 

a photosensitizer such as ruthenium(II) tris(2,2’-bipyridine (or bpy)) is excited by 

illumination with visible light (into its metal to ligand charge transfer band) creating an 

excited state with a lifetime of more than 600 µs (the flash). Interestingly, this excited 

state has a significant driving force to either gain or lose an electron, about 0.8 V.46 In the 

presence of another reactant, such as ruthenium(III) hexaammine, the excited state reacts 

(is quenched) to form Ru(II) hexaammine and Ru(III)(bpy)3. This Ru(III)(bpy)3 species is 

an incredibly potent oxidant, with a driving force of nearly 1.3 V (in aqueous solution). 

Not only does flash/quench provide a more potent reactant, but often the further 

separation of charges produces a longer lifetime for the oxidizing species, allowing more 

time for the desired reaction to occur. (This same flash/quench scheme can be performed 

using a reductive quencher such as octacyano molybdate to produce the strong reductant 

Ru(I)(bpy)3.)  

Both reversible and irreversible quenchers can be used. In reversible systems, the 

quencher eventually reacts with either Ru(III) or another oxidized species to reform all of 

the original species in their resting oxidation states. For irreversible systems, once the 

quencher reacts with the excited photosensitizer it undergoes further chemistry, 
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to form an oxidized, formally Fe(IV) species. Both Compound II (ferryl) and Compound 

I (ferryl + porphyrin radical cation) were observed. This process was repeated with the 

enzyme horse radish peroxidase (HRP).48 With this system, and irreversible oxidative 

quencher was needed in order to afford enough time to transfer an electron from the heme 

center to the Ru(III) species. The characterization of these species furthered our 

understanding of their catalytic cycle.  

 The group then wished to extend this process to generate high-valent iron species 

in more complex systems, particularly cytochromes P450. Unfortunately, this afforded no 

detectable reaction. In fact, the use of irreversible quenchers led only to the degredation 

of their protein systems. The highly oxidized Ru(III) will find something to react with, 

even if it cannot perform the desired reaction with the iron, effectively leading to 

oxidative destruction of the protein.   

 In an effort to observe these elusive high-valent species in a cyt. P450, the group 

then began developing what later came to be called “wires”. Wires are modified 

photosensitizers, similar to the traditional Ru(bpy)3 but with an additional component.49 

In examining the crystal structures of HRP and cyt. P450s, it became clear that while the 

heme of HRP was exposed to solvent (and therefore solution) on one edge, the heme of 

cyt. P450 was completely buried by the protein backbone. Researchers needed a way to 

promote interaction between the photosensitizer and the active site. The second 

component of these wires addressed this issue of coupling to the protein by attaching a 

tail group to the photosensitizer head (Figure 1.4). The tail group typically resembled the 

substrate of the particular cyt. P450 under study, bringing the Ru moiety closer to the 

heme, in effect, wiring the two together.  
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particular there remain many questions about the exact mechanism by which NO is 

produced.  

 

1.5 Tools of the Bioinorganic Chemist 

 The ultimate goal of the work presented herein is to further our understanding of 

the catalytic cycle of nitric oxide synthases in particular and heme-thiolates in general. 

There are many techniques for characterizing a metalloenzyme and its mechanism, even 

beyond those previously used by our group. One technique of great use to the Gray group 

is electronic absorption spectroscopy (UV-vis). This technique is particularly useful in 

the case of heme enzymes due to their characteristic absorption bands in the visible 

region of the electromagnetic spectrum. Both the Soret band and the Q bands are 

sensitive to oxidation state and ligation of the iron.18 Several examples of various 

common oxidation states with typical axial ligation (the sixth position, other than the four 

coordinating porphyrin nitrogens and the axial cysteine ligands) are shown in Figure 1.5. 

Shifts in Soret position (the intense band near 400 nm) are significant enough to allow a 

researcher to identify oxidation or ligation state often by simple UV-vis characterization.   
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determine an exact reduction potential and cyclic voltammetry to learn about the kinetics 

of such systems. These are just a few of the techniques available to a modern 

bioinorganic chemist, and such techniques will be introduced and explained further as 

they are used in the following work.  

The final, but possibly most important, tool available to enzymologists (and 

chemists) today is site-directed mutagenesis. This process (awarded the Nobel Prize in 

Chemistry in 1993) allows researchers to select particular amino acids within a protein’s 

sequence and change them into another amino acid, through creative use of primers and 

the polymerase chain reaction (PCR). Proteins can now be investigated and modified on 

the atomic level.  

 

1.6 Conclusion 

These techniques were used to investigate the nitric oxide synthase from 

Geobacillus stearothermophilus and its reactivity, with the goal of furthering our general 

understanding of NOS enzymes and their mechanism of NO production. This particular 

system provides stability not present in other NOSs and can be expressed in high yields 

in Escherichia coli in the lab (8 mg/L). Investigations were made into the nature of the 

heme active site and its reactivity.  

This was done using two sets of mutant enzymes. The first set of mutants was 

designed to perturb the hydrogen bonding to the axial thiolate ligand. The native Trp was 

replaced in turn with His (which can still H-bond but cannot π-stack with the porphyrin), 

Phe (which can π-stack but not H-bond) and Tyr (again it can π-stack but not H-bond, but 

the hydroxylate group greatly alters its electronics). These mutants were analyzed using 
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various bioinorganic techniques, compared with the wild type, and used to learn about the 

tuning of the heme cofactor for the exact reactivity of NOSs.  

The second set of mutants was made to investigate rates of NO release from the 

enzyme, once produced during catalysis. Different cellular functions of NO would 

require different rates of NO production and release.2 It has been observed that two 

particular positions may be involved in gating NO release (positions 134 and 223 in 

gsNOS). Mutations were made to vary the bulk of side chains at these positions, and their 

rates of NO release and interactions with the diatomic mimic carbon monoxide (CO) 

were measured in detail. This thesis covers the work done investigating these two sets of 

mutants and the information gleaned from these experiments.  
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2.1 Abstract   

The Gray group has been studying electron transfer in protein systems for the past 

three decades. During this time a vast amount of information has been collected 

concerning the nature of the protein matrix and its ability to facilitate such charge transfer 

reactions. This led to the development of techniques for the covalent attachment of 

photosensitizers to metalloproteins, and later to the development of compounds 

consisting of sensitizers linked to substrates (dubbed “wires”) in order to promote 

interactions between the photosensitizer and the metal active site buried deep within the 

protein. A Ru-diimine wire, [(4,4’,5,5’-tetramethylbipyridine)2Ru(F9bp)]2+ (tmRu-F9bp, 

where F9bp is 4-methyl-4’-methylperfluorobiphenylbipyridine), binds tightly to the 

oxidase domain of inducible nitric oxide synthase (iNOSoxy). The binding of tmRu-F9bp 

is independent of tetrahydrobiopterin, arginine, and imidazole, indicating that the wire 

resides on the surface of the enzyme, distant from the active-site heme. Photoreduction of 

an imidazole-bound active-site heme iron in the enzyme-wire conjugate (kET = 2(1) × 107 

s-1) is fully seven orders of magnitude faster than the in vivo process. Wires such as this 

surface-binding example are used to study the various electron transfer processes in 

metalloenzymes in an effort to generate and characterize reactive intermediate species 

that are otherwise unobservable.   
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Electron transfers occur from one redox active compound to another. In biological 

systems these are commonly flavins, quinones, porphyrins, and metal centers. Nature 

developed protein scaffolds in order to insulate these redox sites from one another, 

preventing deleterious side reactions and promoting only the specific reaction of choice. 

The very nature of these protein scaffolds is designed to inhibit the random transfer of 

charge, making electron transfer difficult. The physical presence of the scaffold separates 

the two species participating in electron transfer. Without these scaffolds, species would 

simply move toward the thermodynamically favored state and cells would stop 

functioning. Particular reactions are desired, however, and therefore the protein must 

somehow also facilitate these vital charge transfers over large distances (sometimes 

greater than 20 Å). The Gray group has long been interested in understanding how 

proteins mediate these long-range electron transfer reactions.  

A very powerful theory for studying and understanding electron transfer (ET) 

reactions has been developed by the Caltech professor Rudy Marcus. While, originally 

developed with simpler systems in mind, this theoretical formalism has proven applicable 

in protein systems and provides a context within which ET in metalloproteins can be 

studied.       

Semi-Classical Marcus Theory 

Marcus Theory is a formalism through which electron transfer reactions can be 

understood.3-4 It relies on the Franck-Condon Principal which states that when a molecule 

absorbs a photon the rearrangement of electrons is nearly instantaneous (occurs over the 

femtosecond timescale).4 However, the nuclei of the constituent atoms are much heavier 

than the electrons and, therefore, nuclear movement is incredibly slow on the timescale of 
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uncomplexed photogenerated oxidants were not successful so we changed course, as 

discussed in the following paragraphs.  

Since 1999, we have developed sensitizer-linked electron tunneling wires that are 

able to deliver electrons and holes rapidly to and from deeply buried active sites of heme 

enzymes.16 Attachment of the photosensitizer to the substrate promotes a close interaction 

between the two and increases the probability of electron transfer by increasing coupling 

(HAB) (Figure 2.4).   This technique proved very useful with cytochromes P450 and 

enabled the characterization of the enzyme in two states, open and closed as well as 

transient generation of a reduced state. These heavy-metal containing wires can actually 

promote crystallization of protein samples and provide a second transition metal besides 

the heme iron to aid in solving crystal structures. A selection of such molecules 

developed for the oxygenase domain of iNOS (iNOSoxy) is shown in Table 2.1.  

 

Figure 2.4: Substrates linked to sensitizers target active-site channels of enzymes. 
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this transformation in two turnovers, producing NG-hydroxy-L-arginine (NHA) as an 

enzyme-bound intermediate, requiring three electrons from its reductase domain. Each 

turnover is expected to proceed through a mechanism similar to that of cytochrome P450 

(although the two turnovers may utilize a different species for substrate oxidation), 

central to which are two slow electron transfer (ET) events.12, 18-22 The first ET event 

reduces the resting, substrate-bound heme to the ferrous state, which then binds oxygen 

to create the last observable intermediate (ferric-superoxo).20, 23 It is thought that the 

second ET event, where the electron is supplied by the cofactor tetrahydrobiopterin 

(BH4), produces one or more high-valent heme species, with substrate oxidation possibly 

occurring from a ferryl-porphyrin+˙ intermediate (Compound I).20, 24 The sluggishness of 

the second ET step, however, has so far prevented the characterization of high-valent 

intermediates in the catalytic cycle in solution.12, 20, 25 Cryoreduction of the heme domain 

of ferric-superoxo endothelial NOS at 77 K leads to the formation of a ferric-peroxo 

species.12 Annealing at 165 K results in conversion to the product state without the 

appearance of intermediates. These data suggest that O-O bond cleavage is slower than 

reaction with substrate.   

 By employing laser-induced ET to reduce the active-site heme very rapidly, it 

should be possible to observe high-valent intermediates that follow in the catalytic cycle. 

Toward this end, we and others have developed photoactive electron tunneling wires to 

deliver electrons and holes to and from the deeply buried heme active sites in P450cam8, 

26-27 and NOS.16, 28-30 Importantly, one of the NOS wires, tmRu-F9bp (Scheme 2.4), can 

potentially probe the catalytic cycle, since it binds tightly and specifically to the oxidase 

domain of the inducible form of the enzyme (iNOSoxy) in a region that is distant from 
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the active site.17 Here we demonstrate that an imidazole-ligated heme in tmRu-

F9bp:iNOSoxy can be photoreduced several million times faster (kET = 2(1) × 107 s-1) 

than the physiological ET reaction.  

 
 
Scheme 2.4. tmRu-F9bp.  
 
 
 
2.3 Materials and Methods 

General   

The tmRu-F9bp complex was synthesized as described previously.8-9, 31 

Tetramethylphenylenediamine (TMPD) was obtained from Aldrich and vacuum-

sublimed before use. Tetrahydrobiopterin (BH4, Aldrich) was stored under argon at -20 

°C. All other chemicals were used as received from Sigma, JT Baker, Fischer, EM 

Sciences, and Mallinckrodt. UV-visible absorption spectra were acquired on an Agilent 

8453 UV-visible spectrophotometer. Gel electrophoresis was run on a Phast System 

(Pharmacia) with 8–25 percent gradient precast agarose gels and SDS buffer strips. 
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iNOSoxy Expression and Purification   

The heme domain of iNOS with a C-terminal His6 tag was overexpressed in E. 

coli and purified as described previously 32 with several exceptions. Briefly, expression 

cells were subjected to two rounds of chemical lysis by pelleting and resuspension in 40 

mL of B-PER lysis buffer (protein extraction reagent B, Pierce). The lysis buffer included 

a cocktail of protease inhibitors (10 μg/mL benzamidine, 5 μg/mL leupeptin, 1 μg/mL 

each pepstatin, antipain, and chymostatin, and ~ 500 μM Pefabloc (Roche)) as well as 

100 μg/mL DNase, 100 μg/mL RNase, ~ 500 μg/mL lysozyme, and 20 mM imidazole per 

liter of cells. The suspension was centrifuged and the supernatant was loaded directly 

onto a His6 immobilized metal-ion affinity chromatography column (5 mL Ni2+:HisTrap, 

Amersham). Once the protein was completely loaded, it was washed with 20 column 

volumes of 20 mM imidazole in 50 mM NaPi/300 mM NaCl/pH 8. The protein was 

eluted with 150 mM imidazole and concentrated to ~ 3 mL in an Amicon Ultra 

centrifugation device (10,000 MWCO, Millipore). The concentrated sample was then 

further purified over a size-exclusion column, as described previously.32 The anion 

exchange column was omitted when ≥ 95 percent purity was confirmed by UV-visible 

spectroscopy and gel electrophoresis. The purified protein was concentrated to ~ 200 μM, 

divided into 100 μL aliquots, and stored in 50% glycerol at -80 °C.  

Sample Preparation   

Small aliquots of iNOSoxy were thawed and exchanged into phosphate buffer (50 

mM KPi, 50 mM KCl, pH 7.4) using a PD-10 desalting column (BioRad) immediately 

before use. The position of the heme Soret maximum (422 nm) confirmed the presence of 

low-spin, water-bound heme.17, 32 The heme protein concentration was determined using 
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ε422 = 75 mM-1cm-1 per unit heme.17 For the inhibitor-bound samples, imidazole (400-500 

μM) was added, and binding was confirmed by a Soret shift to 428 nm.17, 32 For substrate-

bound, pterin-free samples, 1 mM arginine was added to dilute (~ 2–20 μM) iNOSoxy 

and allowed to incubate at 4 °C for approximately 30 min. In the absence of pterin (BH4), 

only partial conversion to a high-spin heme (λmax = 398 nm 32-33) was observed. For 

substrate- and pterin-bound samples, fresh BH4 solutions were prepared daily. Phosphate 

buffer was thoroughly deoxygenated by bubbling with argon for ≥ 10 min. Solid BH4 was 

added to the degassed buffer under a counter-flow of argon. Dilute iNOSoxy (~ 2–20 

μM) was deoxygenated by at least 30 evacuation-Ar backfill cycles, taking care to avoid 

bubbling of the solution. Aliquots of concentrated, deoxygenated pterin and arginine 

stocks were then added to the protein solution, giving final concentrations of 100 μM 

BH4 and 1 mM arginine. The solution was incubated for 2 h at 4 °C; binding of BH4 and 

arginine was confirmed by a Soret shift to 396 nm.34-35  

 For quenching experiments, 1 M ascorbate stock solutions were prepared daily by 

dissolving ascorbate in thoroughly deoxygenated 1 M KOH. Ascorbate (1 M) and solid 

TMPD were added to deoxygenated protein solutions under a counter-flow of argon.  

Transient Spectroscopy   

Luminescence decay and transient absorption measurements were made as 

described previously.7, 36-37 The ~ 8 ns, 480 nm excitation pulses were produced by a 

Nd:YAG pumped optical parametric oscillator. Data were collected at 1×109 samples s-1 

using a LeCroy digital oscilloscope. Transient absorbance data were converted from 

intensity to absorbance using the following expression (Eq. 2.3): 

     









0

log
I

I
Abs    (2.3) 
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where I is the intensity of light transmitted through the sample excitation volume, and I0 

is the average transmitted light intensity during the 200 ns prior to the laser shot. 

Luminescence decay curves and transient absorbance traces were fit to one, two, or three 

exponentials using a nonlinear least-squares algorithm (Eq. 2.4, Igor Pro): 

      
n

tk
n

necctI 0)(    (2.4) 

Each experiment was repeated at least three times unless indicated otherwise.  

Determination of RuI→FeIII ET Rate Constants   

At a given time after excitation, the absorbance observed at a given wavelength 

(λ) between 400 and 450 nm is (Eq. 2.5): 

        I
RuRu

II
RuRu

II
FeFe

RuRuFeAbs IIIIIIIIIIII  *
*

 (2.5) 

Since ascorbate, TMPD, and TMPD+• do not absorb strongly in this region (under the 

conditions of these experiments, Figure 2.9), the contributions of these species were 

neglected. Owing to substantial populations of unbound Ru-complex, the absorbance 

changes at these wavelengths due to depopulation of RuII and formation of *RuII are large 

compared to those for FeII formation because [*RuII]>>[FeII]. Moreover, the presence of 

both free and iNOSoxy-bound wire complicates the transient absorbance kinetics. In 

fitting these data, we were unable to identify a phase that was distinct from those 

corresponding to *RuII decay in bound and free wires, and that reliably could be 

attributed to intraprotein ET from RuI to FeIII (kET).   
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reductants to produce FeII.6 In this experiment, a quencher (Q) reduces the photoexcited 

sensitizer to create a strongly reducing species (RuI in Scheme 2.5). In the absence of 

other electron acceptors, the lifetime of RuI is dependent on the rate of recombination 

with the oxidized quencher (kr in Scheme 2.5). Because Q+ and RuI are present at low 

and equal concentrations, recombination is slow (ms timescale) and heme reduction 

competes effectively.  

 

Scheme 2.5. Representation of the reversible flash/quench experiment employed in this 
work. For simplicity, TMPD and ascorbate are represented together as Q. In a successful 
flash/quench experiment, quenching must compete with intrinsic relaxation (k0) and 
energy transfer (ken) for depletion of the RuII excited state (kQ[Q] ≥ k0 + ken); and electron 
transfer (kET) must be faster than recombination between oxidized quencher and reduced 
sensitizer (t½ = 1/kr[RuI]0).  
 

Owing to its high solubility in water and lack of spectral interference with heme 

Soret changes, ascorbate (Asc) is an attractive choice as a quencher for this system. Even 

at high concentrations (10 mM), however, Asc quenching produces only small yields of 

FeII
 (Figures 2.12 and 2.13). TMPD (Scheme 2.6) is a better quencher than Asc, but has 

limited solubility in water.39-40 Further, TMPD autoxidizes to create a soluble bright blue 

cation radical in aqueous media.41 Under conditions necessary for efficient excited-state 

quenching, the production of the radical rapidly turns the solution dark blue, obscuring 

small transient changes in the heme spectrum. 

Q + Ru(II)* --- Fe(III)

Q + Ru(II) --- Fe(III)
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This is a remarkably rapid reduction given the estimated Ru-heme distance of 

20.2 Å17 and the absence of a through-bond pathway to the heme. Given its slim profile, 

hydrophobicity, and potential to π-stack with aromatic residues, the perfluorobiphenyl 

moiety of tmRu-F9bp may intercalate into the protein interior, leaving open the 

possibility of a through-wire hopping mechanism.28 

Identity of the Reduced Species   

In order to determine the nature of the product of electron transfer to the heme, 

the six-coordinate FeIII-Im species was reduced under equilibrium conditions for 

comparison with the transient data. Reaction of FeIII-Im with sodium dithionite in a glove 

box under an inert atmosphere, followed by removal of excess dithionite on a size-

exclusion (PD-10) column equilibrated with 10 mM imidazole, produced a species with 

the absorption spectrum shown in Figure 2.18. 

Reduction of NOS has been extensively studied.25, 35, 44-47  Six-coordinate ferrous-

NO and -CO species have been characterized by several investigators;35, 46-47 and, in the 

absence of arginine and BH4, it has been shown that these six-coordinate species are 

unstable. Addition of CO (or NO) to five-coordinate FeII causes a red-shift in the Soret 

band to 444 nm (or 440 nm).35  The 444 nm band blue-shifts over time to 421 nm, which 

suggests that a species analogous to the inactive P420 form of cytochrome P450 is 

produced. It has been proposed that the axial thiolate is not bound to the heme iron in the 

421 nm species35, 47 of that the thiolate is protonated.48  

The blue-shift of the iNOSoxy Soret peak upon dithionite reduction (Figure 2.18, 

inset) demonstrates that the red-shifted transient FeII species produced by photochemical 

heme reduction likely has different axial coordination. The steady-state FeII absorption 
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product that is observed under equilibrium conditions. We suggest that the transient FeII 

iNOS species formed by photochemical reduction contains a low-spin FeII heme with 

axial Cys and imidazole ligands. In our experiment, this species is likely reoxidized by 

TMPD+• before loss of axial ligation, which would generate the species observed under 

equilibrium conditions.   

 

2.5 Concluding Remarks and Discussion 

 We have developed a system in which the heme of inducible nitric oxide synthase 

can be photoreduced rapidly without interfering with substrate/cofactor binding. 

Employing flash/quench experiments with a surface-binding Ru-diimine wire in 

combination with reductive quenchers, we observed ET to the imidazole-bound heme of 

iNOSoxy fully seven orders of magnitude faster than the natural reduction. This finding 

represents an important step toward our goal of identifying reactive intermediates in the 

catalytic cycles of heme monooxygenases.  

 Interestingly, however, the product of this ET reaction is a six-coordinate heme. 

In contrast, the product of steady-state reduction of the heme is consistant with either a 

five-coordinate species with imidazole ligation or a complex where the negative axial 

thiolate ligand becomes protonated forming a neutral thiol ligand.  On the millisecond 

timescale this six-coordinate species is stable, however, over the long term it will decay 

to the more thermodynamically favored five-coordinate or neutral thiol complex. This 

decay highlights the inherent instability of the thiolate-ligated heme complex.  

 Upon closer inspection of the environment around the thiolate ligand, one finds a 

collection of three hydrogen bond (H-bond) donors all directed toward the thiolate. 
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Comparison of iNOSoxy with other NOS enzymes reveals that these three hydrogen bond 

donors are universally conserved, with not a single exception. This high level of 

conservation underscores their potential importance. Not only are they conserved in nitric 

oxide synthases, but the crystal structures of other heme thiolate enzymes reveal similarly 

conserved hydrogen bond donors in all. Cytochrome P450s (cyt. P450) all contain three 

H-bond donors; chloroperoxidase (CPO) contains only two such donors.  

When analyzing these polypeptide chains, one finds that in cyt. P450 and CPO all 

three donors in the proximal heme environment come not from amino acid side-chains 

but from amide protons in the backbone of the polypeptide chain. In NOS alone one and 

only one of the H-bond donors comes not from an amide but from the N-H of a 

tryptophan’s indole ring, Figure 2.19. The universality of these H-bond donors pointing 

right at the axial thiolate ligand provokes questions of their function in the reactivity or 

stability or electronic tuning of these enzymes.  
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donor decreases the σ-donating ability of the thiolate significantly; its removal 

strengthens the iron-sulfur bond. They “conclude that the functions of the proximal 

hydrogen bonding network in P450cam are to stabilize the heme-thiolate coordination, and 

to regulate the redox potential of the heme iron.”54 While these conclusions seem 

reasonable, it is difficult to say the effect of a particular H-bond when several things are 

affected at once.  

We wish to determine the role of these H-bond donors and support or refute the 

previous findings, but particularly to study their effects in NOS. This family of enzymes 

provides a unique opportunity, given that one of the H-bond donors comes not from the 

backbone but from a side chain, allowing for facile and systematic variation using site-

directed mutagenesis. Several such mutations have previously been made in NOS and 

characterized by resonance Raman.55-56 No further characterization has been reported.  

One other mutant of interest replaced the tryptophan with a histidine, preserving 

and possibly increasing the H-bond donor ability of the group. In this mutant, researchers 

actually saw a slower kinetics profile and possibly a new intermediate by stopped-flow 

spectroscopy.25 No further characterization was done and the new intermediate, based 

solely upon the position of the Soret band, was suggested to be Compound I (Scheme 

2.3, the ferryl complex in blue).  The lifetime of this new intermediate is on the order of a 

couple of seconds before decaying to product. Compound I is formally a Fe(V) complex, 

with a ferryl and another radical cation sometimes found on the porphyrin ring. The 

likelihood of such a species living for that length of time is incredibly low as it will be 

very reactive, making its assignment as Compound I doubtful.14 No other investigations 

into the role of this H-bond donor have been made.  



64 
 

We propose to investigate the role of these H-bond donors by systematically 

varying the functional groups on this side chain in question through the use of site-

directed mutagenesis. The native tryptophan will be replaced with histidine, 

phenylalanine, or tyrosine. Histidine can also participate in hydrogen bonding, but lacks 

the ability to π-stack with the porphyrin ring. Phenylalanine complements the histidine 

mutation in that it can π-stack but cannot hydrogen bond. The tyrosine can also π-stack, 

but the electronics should be significantly altered due to the presence of the hydroxyl 

group on the aryl ring, which is at an angle that should prohibit hydrogen bonding with 

the thiolate. These three mutants will be expressed and thoroughly characterized using 

the tools of modern bioinorganic chemistry to investigate the thermodynamics of the 

resulting active site and its reactivity (EPR, electrochemistry, single turnover 

experiments, etc.). These studies should provide valuable insight into the specific role of 

these hydrogen bond donors and their purpose in NOS and other heme thiolate enzymes, 

and this work will be the focus of the bulk of this thesis.  
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3.1 Abstract 

 All heme thiolate enzymes have conserved hydrogen bonding networks 

surrounding the axial thiolate ligand. In order to understand the role of this proximal 

hydrogen bonding network in nitric oxide synthases, three mutants of the NOS enzyme 

from Geobacillus stearothermophilus were expressed and characterized. The wild type 

enzyme has a tryptophan residue at position 70 that π-stacks with the porphyrin ring and 

donates a long hydrogen-bonding interaction to the thiolate ligand of the heme iron. The 

native Trp was replaced with His, Phe, and Tyr. These three residues were selected to 

investigate the two effects of the Trp, H-bonding and π-stacking. Several different 

spectroscopic techniques were used to investigate the stability and properties of these 

mutant enzymes. The identity of each mutant was confirmed by mass spectrometry. Both 

UV-visible absorption and circular dichroism spectroscopies were used to assess the 

stability of the new proteins. It was shown using binding assays, generation of the 

ferrous-CO species, and redox titrations that the σ-donating abilities of the thiolate are 

increased after removal of the hydrogen bonding group in the Trp. Finally, electron 

paramagnetic resonance spectroscopy and Evans method nuclear magnetic resonance 

spectroscopy were used to characterize the spin state of the iron center in each mutant, 

reflecting the increased σ-donating capabilities of the thiolate upon removal of the 

hydrogen bonding group. The reduction potential of wild type and W70H were 

determined by chemical titration to be -362 and -339 mV vs. NHE, respectively. This is 

the first report of the reduction potential of any bacterial nitric oxide synthase.  
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3.2 Introduction 

 Heme-thiolate enzymes play important roles in human physiology such as drug 

metathesis and in the production of signaling molecules involved in processes such as 

neurotransmission.1-2 Cytochromes P450 (cyt. P450) are a super-family of these 

interesting heme enzymes and many different forms are found in mammals.3 They carry 

out a broad array of biological transformations from epoxidation of alkenes to 

isomerizations and many different oxidation and reduction reactions. They are most 

famous for their ability to hydroxylate unactivated carbon-hydrogen bonds. It would take 

a unique and highly reactive complex to afford such difficult and varied reactions.  

 There are only a small number of heme-thiolate enzymes (counting cyt. P450 as a 

single entity).3 Joining cyt. P450 are the nitric oxide synthases (NOS) and 

chloroperoxidase (CPO). CPO carries out the typical peroxidase and catalase activities of 

any standard peroxidase enzyme.4 It is unique among peroxidases, however, in its ability 

to use hydrogen peroxide to oxidize the halogens iodide, bromide, and chloride, and use 

them to form carbon-halogen bonds on substrates.  

   The family of enzymes called nitric oxide synthases (NOSs) is responsible for 

biological production of NO.5 This family includes three isoforms named for the tissues 

in which they are found: endothelial NOS (eNOS), neuronal (nNOS), and an inducible 

form found in macrophages (iNOS).  The function of eNOS and nNOS is regulated by 

calcium ions and a calmodulin linker, while the inducible isoform is calcium ion 

independent.6  NOSs catalyze the oxidation of L-arginine (Arg) to L-citrulline in two 

turnovers, with Nω-hydroxy-L-arginine (NOHA) as an intermediate (the product of the 

first turnover).7  The overall reaction is shown in Scheme 3.1. 
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(characteristic absorbance of metalloporphyrins, 421 nm for substrate- and pterin-free 

iNOS)17 as well as the spin-state (from low- to high-spin ferric).18 The Soret of pterin- 

and arginine-loaded iNOS occurs at 390 nm.  This is followed by a one-electron 

reduction of the iron to ferrous. Ferrous heme readily binds oxygen, forming a ferrous-

oxy species (equivalent to ferric-superoxide),8 the last observed intermediate in the 

catalytic cycle.8, 19   

The role pterin has been extensively investigated.11, 16, 20 This molecule binds in a 

pocket alongside the heme, forming hydrogen bonds with a carboxylate group on the 

heme directly coupling it to the iron active site.13 It is known that a pterin-based radical 

forms and is reduced during the cycle (Scheme 3.2), as determined by rapid-freeze 

electron paramagnetic resonance experiments.12, 21 The current hypothesis is that proton-

coupled electron transfer from pterin aids in formation of the hydroxylating species.10, 20 

No turnover has ever been observed without the pterin cofactor bound.22 The pterin 

cofactor is thought to be essential for producing the active hydroxylating species through 

proton-coupled electron transfer. The efforts of this study focus on characterizing the iron 

active site. 

The known mechanistic data and overall reaction bear many similarities to 

cytochrome P450s (CYP450).  The CYP450s contain cysteine-ligated hemes and 

hydroxylate their substrates via a two-electron oxidation.23-24  Their mechanism also 

begins with substrate binding and is followed by reduction, dioxygen binding, and 

another reduction step leading to the formation of high-valent iron-oxo species which are 

very reactive and hydroxylate the nearby substrate.24  Separate enzymes serve as 

reductases for CYP450s, but they too can hydroxylate substrate when supplied with an 



 

ex

p

tu

so

nu

as

S
th
ta
 
 

co

xternal sour

ostulated to

urnover is un

ort.27  It has

ucleophile in

s Compound

cheme 3.2. 
hat have bee
aken in each 

Stopp

ommonly us

rce of elect

 be the sam

nique in bio

s been hypo

n the second

d I.8   

The propose
n proposed, 
turnover.  

ed-flow m

sed to observ

trons.25  Du

me as CYP4

logy; there i

othesized tha

d turnover19 r

ed catalytic 
but not obse

mixing coup

ve catalytic 

ue to the s

450s, at leas

is no preced

at a protonat

rather than t

cycle of nit
erved. The n

pled to UV

intermediate

similarities, 

st for the fi

dent for a thr

ated ferric-hy

the ferryl-po

tric oxide sy
numbers 1 an

V-visible a

es. Unfortun

the mechan

first turnover

ree-electron 

ydroperoxid

orphyrin radi

 

ynthase. Blue
nd 2 in red s

absorption 

nately, the re

nism of NO

r.26  The se

oxidation o

e may act a

ical cation kn

e denotes sp
show the path

spectroscop

eactivity of 

74 

OS is 

econd 

of this 

as the 

nown 

pecies 
hway 

py is 

nitric 



75 
 

oxide synthases is too fast to catch all of the intermediate steps. Using this technique, the 

final observable species before product formation is the ferrous-oxy (or ferric-superoxo 

depending on formal placement of the electron).6 In the first turnover, the next species 

observed is the resting ferric state and in the second turnover it is the ferric-NO complex, 

which slowly releases NO to finish the cycle. No other intermediates can be seen by 

stopped-flow, presumably due to the speed with which they react.  

Evidence supporting that the hydroperoxo species (in blue) is the active oxidant in 

the second turnover comes mainly from the ENDOR (electron-nuclear double resonance 

spectroscopy) studies conducted on the NOS from Geobacillus stearothermophilus 

(gsNOS) by Brian Hoffman and Roman Davydov.28-29 These experiments show cleavage 

of the O-O bond prior to reaction with substrate in the first turnover, supporting the 

formation of Compound I or a similar species. In the second turnover, however, no 

cleavage of the O-O bond is observed prior to attack on substrate. They hypothesize that 

the presence of the hydroxyl group in NOHA makes the substrate easier to oxidize. The 

hydroperoxo heme complex might have enough oxidizing power to react with NOHA but 

not the arginine, requiring Compound I in the first turnover.  

 It is the O-O bond cleavage event that is vital to the reactivity of NOS and cyt. 

P450. Without this, Compound I cannot form and the active site will fail to produce a 

species with sufficient oxidizing power to react with substrates such as unactivated 

alkanes. It has been hypothesized that the role of the thiolate ligand is to promote this 

cleavage.30 The strong σ-donating ability of the anionic ligand pushes more electron 

density into the iron and therefore also into the iron-oxygen bond and weakening the O-O 

bond. This has been dubbed the “thiolate push”.31 
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 Upon closer inspection of the environment around the thiolate ligand, one finds a 

collection of three hydrogen bond (H-bond) donors all directed toward the thiolate. 

Comparison of gsNOS with other NOS enzymes reveals that these three hydrogen bond 

donors are universally conserved, with not a single exception.32 This high level of 

conservation underscores their potential importance. Not only are they conserved in nitric 

oxide synthases, but the crystal structures of other heme thiolate enzymes reveal similarly 

conserved hydrogen bond donors in all. Cytochrome P450s (cyt. P450) all contain three 

H-bond donors; chloroperoxidase (CPO) contains only two such donors.3 

When analyzing these polypeptide chains, one finds that in cyt. P450 and CPO all 

three donors in the proximal heme environment come not from amino acid side-chains 

but from amide protons in the backbone of the polypeptide chain. In NOS alone one and 

only one of the H-bond donors comes not from an amide but from the N-H of a 

tryptophan’s indole ring, Figure 3.1. The universality of these H-bond donors pointing 

right at the axial thiolate ligand provokes questions of their function in the reactivity or 

stability or electronic tuning of these enzymes.  
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donor decreases the σ-donating ability of the thiolate significantly; its removal 

strengthens the iron-sulfur bond.33 They “conclude that the functions of the proximal 

hydrogen bonding network in P450cam are to stabilize the heme-thiolate coordination, and 

to regulate the redox potential of the heme iron”.35 While these conclusions seem 

reasonable, it is difficult to say the effect of a particular H-bond when several things are 

affected at once.  

We wish to determine the role of these H-bond donors and support or refute the 

previous findings,36 but particularly to study their effects in NOS. This family of enzymes 

provides a unique opportunity, given that one of the H-bond donors comes not from the 

backbone but from a side chain, allowing for facile and systematic variation using site-

directed mutagenesis. Several such mutations have previously been made in NOS and 

characterized by resonance Raman.37-38 These studies show that removal of this H-bond 

donor strengthens the Fe-S bond. No further characterization has been reported.  

One other mutant of interest replaced the tryptophan with a histidine, preserving 

and possibly increasing the H-bond donating ability of the group. In this mutant, 

researchers actually saw a slower kinetics profile and possibly a new intermediate by 

stopped-flow spectroscopy.39 No further characterization was reported, and this new 

intermediate was suggested to be Compound I, based solely upon the position of the 

Soret band (Scheme 3.2, the ferryl complex in blue).  The lifetime of this new 

intermediate is on the order of a couple seconds before decaying to product. Compound I 

is formally a Fe(V) complex, with a ferryl and another radical cation sometimes found on 

the porphyrin ring. The likelihood of such a species living for that length of time is 
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incredibly low as it will be very reactive, making its assignment as Compound I 

doubtful.40 No other investigations into the role of this H-bond donor have been made.  

We investigated the role of these H-bond donors by systematically varying the 

functional groups on this side chain in question through the use of site-directed 

mutagenesis. The native tryptophan was replaced with histidine, phenylalanine, or 

tyrosine. Histidine can also participate in hydrogen bonding, but lacks the ability to π-

stack with the porphyrin ring. Phenylalanine complements the histidine mutation in that it 

can π-stack but cannot hydrogen bond. The tyrosine can also π-stack, but the electronics 

should be significantly altered due to the presence of the hydroxyl group on the aryl ring, 

which is at an angle that should prohibit hydrogen bonding with the thiolate. These three 

mutants have been expressed and thoroughly characterized using the tools of modern 

bioinorganic chemistry to investigate the thermodynamics of the resulting active site 

(EPR, electrochemistry, etc.). These studies provide valuable insight into the specific role 

of these hydrogen bond donors and their purpose in NOS and other heme thiolate 

enzymes. 

 All studies were conducted using the nitric oxide synthase from the thermophilic 

bacterium Geobacillus stearothermophilus. This particular organism spends its entire 

existence at elevated temperatures, forcing the optimization of the function of its 

enzymes to this elevated temperature range (a thermal melting curve for the wild type 

enzyme gsNOS is shown in Figure 3.2). Due to this, the NOS from G. bacillus (gsNOS) 

functions optimally at temperatures well above other NOSs and shows a remarkably 

slowed kinetics profile at standard laboratory temperatures (such as 4 and 10 °C). 

Researchers conducted single turnover experiments with this enzyme and found it to form 
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 The wild type enzyme has a tryptophan residue at position 70 which hydrogen 

bonds with the thiolate ligand and π-stacks with the porphyrin ring of the heme. This Trp 

was replaced systematically by His, Tyr, and Phe. The wild type and these three mutant 

enzymes were studied by several techniques to characterize the thermodynamics of the 

active site. It was found that while these mutations do not greatly alter the stability of the 

protein or its overall fold, they do tune the electronics of the active site, shifting the spin 

state and altering the potential of the site.  

 

3.3 Materials and Methods 

General 

 The plasmid for the nitric oxide synthase from Geobacillus stearothermophilus 

was a gift from the lab of Brian Crane. This enzyme was expressed as previously 

described by Sudhamsu and Crane with no significant deviations in procedure.41 The 

enzyme was overexpressed in Escherichia coli BL21 (DE3) cells. Cells were grown to an 

optical density of approximately 1.0–1.4 and induced by adding a solution containing 

iron(III) chloride, IPTG, and δ-aminolevulinic acid (Aldrich) to final concentrations of 

125 mg/L, 100 µM, and 50 mg/L, respectively, in milliQ water. The pETDuet vector 

(Novagen) coded for a C-terminal cleavable His6-tag so samples were purified using 

metal affinity chromatography. (This vector also confers chloramphenicol resistance to 

the cells, so 34 µg/mL of this antibiotic were added to all cultures in Luria broth.) The 

His6-tag was then cleaved using bovine thrombin (Calbiochem). Both thrombin and the 

His-tag were removed using size exclusion chromatography. Sample purity and Soret 

band epsilon values were determined through use of the Hemochromagen Assay.  
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 A QuikChange site-directed mutagenesis kit from Stratagene was used to make 

the desired mutations in the amino acid chain. Primers were designed according to the 

guidelines outlined by the QuikChange kit manual. Unless otherwise noted, protein 

solutions were made in the following buffer: 50 mM Tris (2-amino-2-hydroxymethyl-

propane-1,3-diol), 150 mM NaCl, pH 7.5 (the same buffer used for size exclusion 

chromatography).  

Circular Dichroism Spectroscopy 

 Circular dichroism spectroscopy was used to determine the stability of each 

protein sample. Chiral objects interact with circularly polarized light in such a way as to 

turn or distort the polarization of the light.43 This is measured as ellipticity. Chiral 

features in macromolecules such as alpha helices or beta sheets are associated with 

particular signals by circular dichroism. Due to the size of the protein samples in question 

(gsNOS contains 375 residues with significant contributions from both alpha helices and 

beta sheets) the concentration of NOS in each cuvette was kept below 2 µM. Samples 

with greater concentrations gave signals too large for the spectrometer to resolve. Alpha 

helices give characteristic ellipticity at 222 nm, to the red of the part of the spectrum 

where buffer would begin to affect the signal. For this reason, the standard Tris buffer 

was still used for these measurements. Spectra were collected scanning from 210 nm to 

260 nm, stepping every one nm, to record the elliptical properties of the enzyme sample. 

In all cases the mximum signal was observed between 220 and 225 nm. To record the 

effects of temperature on each sample, the detector was fixed at 222 nm and the 

temperature was increased slowly, by steps of 2 °C, from 25 to 95 °C.  
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UV-Visible Absorption Spectroscopy  

UV-visible absorption spectroscopy is a particularly useful technique for 

characterizing heme proteins, as the position and shape of the Soret absorption band of 

the heme center is extremely sensitive to both the oxidation state of the iron and the 

coordination sphere around that iron. The maximum absorption of the Soret band can 

shift tens of Ångstroms due to simple additions of coordinating molecules such as 

imidazole or carbon monoxide.44 UV-visible absorption spectra were acquired on an 

Agilent 8453 UV-visible spectrophotometer with a 2 nm resolution. 

A common method for characterizing heme-thiolate enzymes and assessing their 

stability is by forming the ferrous-CO complex.37 It is the strong, sharp absorption of this 

band at 450 nm that gives cytochrome P450 its name. The Soret band of ferrous-CO NOS 

typically lies to the blue of cyt. P450 at 446 nm. Samples were brought into an anaerobic 

glove box and reduced using dithionite. Excess dithionite was then removed using a PD-

10 desalting column (although removal is not necessary in all situations). The samples are 

then sealed by Köntes valve in a quartz cuvette and brought out of the box. The 

headspace of this special cuvette was then connected to a tank of carbon monoxide and 

this gas was bubbled over the headspace, replacing the atmosphere. As CO diffuses into 

solution, the ferrous-CO complex is rapidly formed. The cuvette was then re-sealed and 

UV-vis spectra collected.      

Hemochromagen Assay 

 The heme center with its Soret absorption band provides a particularly useful 

handle for determining protein concentration as well. The Hemochromagen Assay allows 

researchers to characterize the molar absorptivities of heme centers in protein samples to 



85 
 

a degree that is far more accurate than the standard Bradford Assay.45 In this method, the 

protein is denatured using strong base to liberate the heme center and pyridine is added in 

large excess to force coordination of the heme. This five-coordinate pyridine-heme is 

then reduced with dithionite to yield a ferrous complex (called a hemochrome) with a 

known and distinct absorption in the Q-band region. This new complex has two sharp Q-

bands, the lower energy of which has a larger molar absorptivity of 34,640 M-1cm-1.45 As 

long as the original spectrum of the fully-oxidized resting state of the enzyme is recorded 

first, the hemochrome can then be generated and the concentration of the sample can be 

calculated based on heme concentration using the known epsilon value of the 

hemochrome.  

 Samples of wild type gsNOS and all three mutants were made with absorbances 

between 0.3 and 1.0 (to keep the % transmittance within the best working range of the 

spectrophotometer. Each sample was prepared in a specialized cuvette (Figure 3.4), 

allowing the sealing of the sample from atmosphere, or its connection to a Schlenk line, 

all while in a quartz cuvette allowing for measurement of the UV-visible absorption 

spectrum. A spectrum of each protein sample was collected initially, before any additions 

or degassing; each sample was exactly 1 mL of approximately 4–10 µM enzyme. Then 

125 µL of each pyridine and 1 M NaOH were added to the sample. The spectrum was 

again recorded to verify denaturation of the protein. Samples then had to be very 

thoroughly degassed through at least 30 rounds of gentle pump/purge to remove oxygen 

from the atmosphere and allow equilibration of the argon atmosphere with solution. 

Several crystals of solid dithionite were placed in the bulb, while the sample was kept 

anaerobic, and then the atmosphere above the diothionite was exchanged for argon again 
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Binding Assays  

 The interaction of substrates with the active site can be characterized 

spectroscopically using UV-visible absorption spectroscopy. With heme proteins, the 

introduction of substrates or inhibitors to the binding pocket often shifts the position and 

shape of the Soret band in a characteristic manner.46 Here, the substrate is arginine and 

the inhibitor is imidazole. The relationship between the concentration of 

substrate/inhibitor added and the resulting spectral shift has been calculated as follows in 

Equation 3.1,  

ଵ

௱ை
ൌ ݉	 ଵ

ሾௗሿ
െ	 ଵ

ೞ
      (3.1) 

where ΔOD is the change in absorbance due to the presence of the substrate or inhibitor 

and m is the slope of the resulting line, [imid] is the concentration of analyte added (in 

this case, imidazole).47 This simple linear relationship allows for the calculation of a 

dissociation constant, KS, through facile spectroscopic characterization by UV-vis (the 

symbol KS is used to distinguish this term as a spectral dissociation constant rather than a 

traditional dissociation constant, KD. This technique requires a large shift in absorbance 

to give reliable results. In some cases, a competition assay was required in order to see 

significant shifts in the Soret band (the protein was pre-loaded with imidazole of a known 

concentration and then arginine was added to that sample to displace the imidazole).  

Electron Paramagnetic Resonance Spectroscopy (EPR) 

 One unique feature of heme-thiolate systems is related to the spin state of the iron. 

The electronics of these systems is poised just so that the pairing energy (the energetic 

cost of placing two electrons in the same orbital due to their mutual repulsion) and 

ΔOctahedral (the splitting between the Eg and T2g states of the metal center) are nearly 
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identical. Under different conditions both high spin and low spin states can be observed, 

and often a mixture of the two states is seen. With Fe(III), high spin complexes have a 

spin of S = 5/2 and low spin complexes have a spin of S = 1/2.   

 EPR requires the glassing of frozen samples and the random alignment of all 

paramagnetic species. In order to ensure glass formation, high glycerol concentrations are 

used. Samples were prepared with the following conditions: 20 µM NOS, 20% by 

volume glycerol, 50 mM NaCl, 50 mM Tris at pH 7.5. Samples containing arginine had 

an Arg concentration of 300 µM in order to ensure full formation of the arginine-bound 

complex, and all were pre-frozen by rapid immersion in liquid nitrogen. Spectra were 

collected using a Bruker EMX Biospin instrument with a Gunn diode microwave source. 

Liquid helium was used to cool the instrument and sample and spectra were collected at 

20 K. EPR parameters were simulated using the software package SPINCOUNT.48  

Evans Method NMR 

 To determine the spin state of samples at room temperature, Evans method 

nuclear magnetic resonance spectroscopy (NMR) was applied. With this method, one can 

determine the spin state of a sample by the paramagnet’s affect on the surrounding 

solvent.49 Samples were prepared with 1 mM protein sample inside of a capillary-like 

insert (Wilmad, part number WGS-5BL). These inserts are designed to fit inside of a 

standard NMR tube, with buffer in the surrounding space. This allowed the use of less 

than 100 µL of protein sample, reducing the total amount of protein required. The 

presence of the paramagnetic iron center in the protein shifts the NMR peak of the water 

in the buffer. The magnitude of this shift is directly related to the concentration of the 

paramagnet and the number of unpaired electrons in that species (Equations 3.2, 3.3, and 
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3.4, specifically for a 600 MHz NMR spectrometer, from the manual for Chemistry 3b at 

Caltech). Samples were prepared with the standard buffer (50 mM Tris, 150 mM NaCl, 

pH 7.5) but with 20% D2O and 80% H2O rather than 100% H2O as an internal standard to 

allow for proper tuning of the magnet.   

ܺ ൌ ቀ
ଷ

ସగ
ቁ	ቀ

∆ఔ

ఔ
ቁ	ቀ

ଵ


ቁ 	ܺ                               (3.2) 

In the above equation, Xg is the gram susceptibility of the sample, ν is the measured 

frequency of the NMR signal, m is the mass of the paramagnetic material in 1 mL of 

solution, and X0 is the gram susceptibility of the pure solvent (water being -7.203 × 10-7 

cm3g-1). This gram susceptibility is then used in Equation 3.3 to determine the number of 

unpaired electrons in the paramagnetic sample.  

ܺெ ൌ 	 ܺ(3.3)                       ܯ 

ߤ ൌ 	2.84ඥܺெܶ ൌ 	ඥ݊ሺ݊  2ሻ     (3.4) 

XM is the molar susceptibility of the sample in question, M is its molecular weight, and T 

is the temperature in Kelvin. These equations allow one to calculate the number of 

unpaired electrons in a given system as long as the two solvent peaks (with and without 

the paramagnetic species) can be resolved.   

Redox Titrations 

 In order to measure the reduction potential of each protein sample, redox titrations 

were carried out. In this technique, a chemical oxidant or reductant is added to the protein 

sample. This chemical reactant should have a reduction potential close to that of the 

protein being studied (± 100 mV) in order to observe equilibrium between oxidized and 

reduced forms from sub-stoichiometric reaction with the protein sample. The reduction 
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potential of other NOSs has been measured previously and found to typically lie in the 

range of -250 to -300 mV vs. NHE.16, 39 Ru3+(acac)3 was chosen as a chemical oxidant 

because it has a reversible reduction potential at -275 mV. The protein was reduced under 

inert atmosphere in a glove bag (experiments were carried out in the lab of Michael 

Marletta at UC Berkeley) and sealed in a cuvette along with the Ru(acac)3 sample (in the 

syringe) of a specialized apparatus for this reaction shown in Figure 3.5. Small aliquots 

of ruthenium complex were added at a time, the sample was mixed and the resulting 

spectrum collected. This technique relies on the absorption of the oxidized and reduced 

species of one of the two reactants to be well resolved. From the UV-vis spectrum, the 

concentrations of the oxidized and reduced form of each of the two reactants can be 

calculated given the molar absorptivities and the Nernst Equation applied to give the 

reduction potential of the protein.  

ܩ∆ ൌ 	െ݊ܧܨ ൌ 	െܴ݈ܶ݊ܭ     (3.5) 
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 The thermal denaturation data collected show a somewhat remarkable result: none 

of the mutant enzymes shows a marked decrease in stability toward temperature. Given 

the two roles of this residue at position 70, it was hypothesized that these roles were vital 

to the fold of the protein. The fact that all four enzymes are stable to 60 °C and show 

similar behavior to the wild type above that temperature proves this hypothesis to be 

false. The His mutant (shown in yellow in Figure 3.6) may begin to unfold at slightly 

lower temperatures than wild type, consistent with the π-stacking of the Trp being 

important for positioning the heme in the enzyme. However, this effect is very small. The 

Tyr and Phe mutants, if anything, show increased stability over the wild type. Again, this 

is consistent with the hypothesis, as these two residues preserve the π-stacking function. 

They cannot provide a hydrogen bond to the thiolate (the hydroxyl group of the tyrosine 

side chain is pointed at an unfavorable angle, away from the thiolate), but the data show 

that this does not destabilize the enzyme.  

 Another common method for determining the stability of heme-thiolate enzymes 

involves the generation of the ferrous-CO complex. It is this form of the enzyme that 

absorbs strongly near 450 nm, giving cytochromes P450 their name. This tests 

specifically the stability of the heme center and the iron-thiolate bond. Cyt. P450s and 

NOSs are known to form an inactive form called P420 under some conditions.52 This has 

been proposed to be either loss of axial thiolate coordination or protonation of the axial 

thiolate to make a neutral thiol ligand. In the case of NOS, it has even been shown to be 

reversible inactivation of the enzyme, but without the proper thiolate ligation the enzyme 

cannot produce NO.35, 52  
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 Upon formation of the ferrous-CO complex, the wild type gsNOS shows stable 

formation of the six-coordinate complex with maximum absorption at 446 nm as 

expected (Figure 3.7). The W70H mutant also shows stable formation of this complex, 

however with a blue-shifted Soret band at 440 nm. The reason for this blue shift is 

unknown, but may arise from altered tuning of the porphyrin ring. The two remaining 

mutant enzymes, W70Y and W70F, both remove hydrogen bonding capabilities. Over the 

course of 24 hours, both mutants show near complete formation of the P420 species 

(Figure 3.8). Removal of this one H-bond donor may increase interactions with the other 

two donors and increase the σ-donating ability of the thiolate ligand to the iron center. 

The data suggest that this third, distant (3.7 Å) H-bond donor stabilizes the enzyme in the 

active form by either decreasing the thiolate ligand’s σ-donating ability or by preventing 

any one H-bond from being too strong in order to reduce the risk of protonation of the 

thiolate, or some combination thereof.  

 In the catalytic cycle of NOS, a similar ferrous-O2 complex must form and remain 

stable on the timescale of catalysis in order for the enzyme to productively form NO. The 

electron density on the iron must be tuned in order to stabilize that six-coordinate species, 

yet still allow for ligand dissociation from the ferric-NO species formed in the last step of 

catalysis (Scheme 3.2). This unique requirement, the release of NO, may be the reason 

for the differences between the NOS and cyt. P450 proximal H-bonding network. In cyt. 

P450 all three H-bonds come from the amide backbone, while only two come from the 

backbone in NOS, the third coming from this Trp residue. Cyt. P450 has a separate 

phenylalanine residue for π-stacking with the porphyin ring, rather than combining these 

two functions in a single Trp residue.38 
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Table 3.1. Spectral dissociation 
constants of imidazole and arginine. 

 (µM)  K
s
 (arg) K

s
 (imid) 

WT 4.0 38 

W70H  4.5 88 

W70F  3.2 130 

W70Y  4.3 210 
 

It is clear from the values in Table 3.1 that while the interaction of imidazole with 

the heme is greatly affected by mutations at position 70, the dissociation constant of 

arginine remains unaffected. This can be explained by the manner in which each 

substance binds. Arginine is positioned in the binding pocket above the heme, without 

directly ligating the iron. It is held in place by hydrogen bonds and hydrophobic contacts 

within the substrate channel.13, 53 A high spin five-coordinate complex is formed; arginine 

merely kicks out the water molecule that weakly coordinates the iron. Imidazole, on the 

other hand, directly coordinates the iron, forming a bond between the iron and nitrogen of 

the ring. As the hydrogen bond donating group is removed, the thiolate becomes a better 

donor to the iron. This increases the electron density on the iron. The direct ligation of the 

imidazole forces even more electron density into the iron, which is disfavored, so as the 

thiolate becomes a better donor, the imidazole binds less tightly.  

UV-Visible Characterization of the Resting State 

 As stated previously, electronic absorption spectroscopy is a useful tool for 

characterizing heme enzymes. The Hemochromagen Assay is used to determine protein 

concentration based on heme concentration. This assumes the presence of one heme unit 

per polypeptide chain. All measurements made herein depend on signal changes in the 
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paramagnetic spin state. NMR experiments can be carried out at room temperature, 

allowing for a more direct comparison with UV-vis. The presence of paramagnetic 

compounds in high concentrations shifts the resonance of the solvent peak. This shift is 

related to the number of unpaired electrons in the complex by the Equations 3.2, 3.3, and 

3.4. Table 3.4 shows results of these measurements. Strengthening the H-bonding 

capabilities of the residue at position 70 decreases the number of unpaired electrons 

relative to wild type, while removing that H-bond increases the number of unpaired 

electrons and shifts the sample further towards high spin. These results agree with those 

from UV-vis and together confirm that the enzyme is predominantly high spin in 

character at room temperature (low spin would have one unpaired electron, high spin 

would have five).  

Table 3.4. Unpaired electrons for each mutant as determined by Evans method.  

Sample  delta, ppm [NOS], mM n (unpaired e) 

WT  0.041 1.00 3.9 

His  0.040 1.26 3.3 

Phe  0.057 1.16 4.4 

Tyr  0.062 1.38 4.1 

 

Redox Titrations 

 In order to fully characterize the electronics of the ground state of each enzyme’s 

active site, a measurement of the heme (Fe3+/2+) reduction potential is necessary. 

Determination of the reduction potential of a redox active center is not always 

straightforward, particularly when the complex of interest is buried within a protein 
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scaffold. The backbone of a protein is made mostly from insulating C-C and C-N bonds 

and is designed to discourage random electron transfer reactions in favor of one particular 

function of the enzyme. Nature must find the balance between discouraging deleterious 

redox reactions and promoting productive reactions. The presence of the protein scaffold 

buries the active site and in most cases prevents communication with electrodes, 

rendering standard electrochemical techniques useless. Small molecules, however, which 

can freely diffuse through solution, can still react with most metal sites within proteins. 

For this reason, chemical redox titrations are the method of choice for measuring 

reduction potentials.  

For chemical redox titrations no electrodes or potentiostats are required; however, 

spectroscopic handles are necessary to indicate that a redox process has occurred. Many 

metalloproteins have absorption bands in the visible region, making them amenable to 

characterization by UV-visible spectroscopy. Provided there are wavelengths where the 

two redox forms show characteristic absorption bands, relative protein concentration can 

be measured. A chemical oxidant/reductant is employed with a known reduction potential 

near (within ±100 mV) the expected potential of the protein under analysis, in this case 

Ru(acac)3 with a Ru3+/2+ reduction potential of -275 mV vs. NHE. This feature is required 

for the measurement of a precise equilibrium constant in Equation 3.6 as sub-

stoichiometric reactions will be observed. A small molecule chemical titrant must be 

designed to have desirable UV-visible absorption properties so as not to obscure the 

changes taking place with the enzyme as well as a potential close to that of the sample in 

order to observe equilibrium between the two. However, if the titrant has clear optical 

changes upon change in oxidation state, it too can be used to calculate the concentration 
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of each species in solution. Equation 3.6 is employed, where E is the difference between 

the reduction potential of the titrant and the protein, and E0 is the reduction potential of 

the titrant itself.  

First, the optical spectra of Ru(acac)3 were recorded at various potentials using a 

standard spectroelectrochemical cell (CH Instruments) (Figure 3.15). A solution of 95 

µM Ru(acac)3 in 150 mM NaCl, 50 mM Tris, pH 7.5 was made and degassed to remove 

oxygen from solution. The potential was held at -400 mV vs. the Ag/AgCl reference 

electrode (about -200 vs. NHE) for a few minutes to allow full equilibration and the first 

spectrum (in red) was recorded. The potential was then stepped in 20 mV increments (10 

mV when nearing the reduction potential of the compound) to the negative, each time 

several minutes were allowed for full equilibration of the solution before a UV-vis 

spectrum was recorded. This was continued until no further optical changes were 

detected (the final spectrum is shown in purple). These data confirm the reported 

reduction potential of -275mV and identify isosbestic points at 290 and 398 nm.  

 



 

F
O
 
 

en

an

in

co

th

pr

ce

Figure 3.15. 
Oxidized, Ru

This r

nzyme. Sam

nd excess re

n a specializ

omplex was

he way (Fig

resence of a

enter. Any le

Spectroelect
u(III), red. Re

ruthenium c

mples of five-

eductant was

zed cuvette (

 then added

gures 3.16 a

any oxygen, 

eak would ca

trochemical 
educed, Ru(I

complex wa

-coordinate 

s removed u

(Figure 3.5)

d in a stepwi

and 3.17). T

as it reacts 

ause large de

characteriza
II), purple. 

as then used

ferrous enzy

sing desaltin

) with Ru(II

ise manner a

These measu

rapidly and 

eviations in 

ation of Ru(

d to oxidize

yme were m

ng columns. 

II)(acac)3 in 

and UV-vis 

urements ar

stoichiomet

observed sp

acac)3, 95 µ

e the reduce

made in an an

 The sample

the syringe

spectra wer

re extremely

trically with 

pectra.  

µM in Tris bu

ed form of

naerobic cha

e was then s

e. This ruthe

re recorded a

y sensitive t

the reduced

106 

 

uffer. 

each 

amber 

sealed 

enium 

along 

to the 

d iron 



 

F
sh
(b
 

F
fr
 
 

p

Figure 3.16.
howing a sh
blue).  

Figure 3.17. 
rom reduced

Accur

otentials in 

. Redox titr
hift from red

Titration us
d NOS (green

rate measure

question are

ration using
duced NOS (

sing Ru(acac
n) to oxidize

ement of red

e very negat

g Ru(acac)3

(green) to o

c)3 to oxidiz
ed protein plu

duction pote

tive of 0 vs

to oxidize 
oxidized prot

ze W70F ferr
us excess Ru

entials is pa

. NHE and 

wild type 
tein plus exc

rous gsNOS
u complex (b

articularly d

reactions ar

ferrous gsN
cess Ru com

S, showing a
blue).  

ifficult whe

re slow, as i

107 

 

NOS, 
mplex 

 

a shift 

n the 

is the 



108 
 

case here. Reliable potentials were determined for wild type (-362 ±5 mV) and W70H (-

339 ±5 mV). These numbers are both within 100 mV of the potential of the chemical 

titratrant, Ru(acac)3. The other two mutant enzymes, however, should have significantly 

lower potentials as the thiolate ligand becomes a better donor to the iron as literature 

suggests.38 This would lead to stoichiometric reaction with the Ru complex. If 

equilibrium cannot be observed, the potential of the iron site cannot be determined. This 

was in fact the case, as only stoichiometric oxidation of the iron was observed and no 

measure of the Keq could be obtained for W70F and W70Y. It is sufficient to conclude 

that removal of this strategic hydrogen bond donor substantially decreases the reduction 

potential of the center, consistent with the lack of stability in the ferrous-CO complexes 

of these two mutants.  

 It is also of note that the potentials measured for wild type and W70H are not as 

expected from previous work.58 The potential of most NOS enzymes falls between -240 

and -270 mV vs. NHE. One exception to this is mammalian inducible NOS which has a 

potential near -350 mV without substrate present.16 This is too negative to be reduced by 

the flavins in the NOS reductase domain. Upon introduction of the substrate, the potential 

shifts up toward -250 mV and the iron center can now be reduced by the flavins. In other 

mammalian forms, the presence of calcium ions regulates electron transfer between the 

two domains. In its absence, the oxygenase domain and reductase domain are too far 

separated for electron transfer to occur. In inducible NOS, the activity of which is 

independent of calcium ion concentration, it is this redox switch that most likely prevents 

deleterious side reactions. (If the heme center is reduced without substrate present, 

reactive oxygen species are formed which can damage the cell. However, if the heme is 
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only reduced when the substrate is present, this unproductive reduction event is avoided.) 

This is the first measurement of the reduction potential of any bacterial NOS. These 

enzymes may be regulated in a manner similar to inducible NOS, which is fitting in light 

of their lack of dedicated reductase domain.  

 The potential of the histidine-containing mutant lies positive of the wild type 

enzyme. This same effect was seen in inducible NOS, where the corresponding mutation 

(W188H) shifts the potential positive by 88 mV (as opposed to only 20 mV as seen here). 

It may be that the tighter fold of gsNOS alters this interaction relative to inducible NOS. 

The histidine may not come into as close contact as the tryptophan, or the electronics of 

the porphyrin ring may be affected in a unique way. A crystal structure of these mutant 

enzymes would aid in this discussion. Samples have been sent to the lab of Brian Crane 

at Cornell, however crystals of NOS are notoriously difficult and slow-growing. Efforts 

to determine the structure of these three new mutants are ongoing.  

 

3.5 Conclusions 

 The thermodynamics of wild type and three mutants of gsNOS were characterized 

by various methods. Data from circular dichroism spectroscopy show that mutations at 

position 70 do not decrease the overall stability of the protein fold. The evidence from 

multiple techniques is clear, however, that these mutations significantly affect the 

electronics of the heme center. It was shown using binding assays, generation of the 

ferrous-CO species, and redox titrations that the σ-donating abilities of the thiolate are 

increased after removal of the hydrogen bonding group in the Trp. Both chemical redox 

titrations and instability of ferrous-CO complexes of the two mutants lacking this key 
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hydrogen bond (W70F and W70Y) suggest that they have more negative reduction 

potentials that the two mutants with this hydrogen bond (wild type and W70H). Evans 

methods NMR was used to confirm the results of UV-visible spectroscopy which suggest 

that removal of this hydrogen bond shifts the heme center toward the high-spin state due 

to strengthening of the Fe-S bond, as seen in the binding assays.  

 It can be concluded that this universally-conserved tryptophan residue serves 

several roles, but positioning of the heme within the protein (as has been suggested for 

cyt. P450s) is not one of them. In order to produce NO the electronics of the heme center 

must be tuned in such as way as to stabilize high-valent iron species for the oxidation of 

substrate. During catalysis, the site must also be tuned not only to support six-coordinate 

ferrous-oxy complex, but promote release of NO· from the heme in the end. If the 3/2+ 

reduction potential of the site is too negative, the ferrous-oxy may be unstable or the 

high-valent iron species too stable to perform the desired reactivity. If too negative, 

release of NO will be disfavored and decrease the rate of release to undesirable levels. 

The reactivity of these mutants will shed further light on the role of this key hydrogen-

bond donating group.  
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4.1 Abstract 

The heme-thiolate enzymes cytochromes P450, chloroperoxidase, and nitric oxide 

synthase all activate dioxygen to oxidize substrates. In each of these enzymes, there is a 

conserved hydrogen bonding network around the proximal thiolate ligand. These 

hydrogen bond donors come predominantly from backbone amide groups and help to 

tune the electronics of the heme center. However, in nitric oxide synthase one of these 

three hydrogen-bond donating groups comes from the side chain of a tryptophan residue, 

making nitric oxide synthases unique. Three mutant forms of the nitric oxide synthase 

from Geobacillus stearothermophilus were expressed in E. coli. These mutants each have 

a single point mutation, converting this native tryptophan residue to a histidine, 

phenylalanine, or tyrosine. The reactivity of each the wild type enzyme and the three new 

mutants were tested using stopped-flow mixing coupled with UV-visible absorption 

spectroscopy and the Griess Assay. Autoxidation rates measured by stopped-flow suggest 

that the Tyr and Phe mutants do indeed have significantly more negative reduction 

potentials, but that the His mutant is particularly slow to oxidize. The Griess Assays 

showed that all four enzymes produce nitrite in solution, when provided with substrate, 

cofactor, and hydrogen peroxide (as a source of reducing equivalents). In single turnover 

experiments, however, only three of the four enzymes showed evidence of ferric-NO 

production. The His mutant showed no intermediate absorbance near 440 nm (which 

would be indicative of ferric-NO formation), suggesting that it releases NO- rather than 

the radical species NO·.  

  



118 
 

4.2 Introduction 

As stated previously, nitric oxide synthases are the family of enzymes responsible 

for production of the signaling molecule NO.1-2 It was shown by Moncado3 that the active 

biological signaling molecule is in fact NO· and not any other NOx species. It is this 

molecule that induces relaxation of the cells lining the walls of blood vessels, thus 

regulating blood flow in mammals. Since that time, the field of NO signaling has grown 

rapidly and it is now known that nitric oxide is also involved in neurotransmission, the 

immune response, and apoptosis.1-2, 4  

This family of enzymes makes NO from arginine (Arg) in two turnovers, through 

the enzyme-bound intermediate N-hydroxyarginine (NOHA) (Scheme 4.1).5-6 Much of 

what is known about its catalytic cycle is similar to the well-studied cytochrome P450.7-8 

The observed intermediates (as well as probable intermediates in blue) are shown in the 

cycle in Scheme. 4.2.  

The resting state of the enzyme is a ferric heme with a loosely coordinated water 

molecule.9 This is displaced sterically when substrate binds within the enzyme, forcing a 

five-coordinate complex and shifting the iron to the high spin state. The heme is then 

reduced (in mammalian systems, reducing equivalents come from a dedicated reductase 

domain fused into the same polypeptide chain) to form a ferrous-heme complex. Reduced 

iron species readily bind dioxygen in biological systems. The ferric-oxy species (or 

ferric-superoxo depending on assignment of electrons, as shown by the equilibrium at the 

bottom of the cycle in Scheme 4.2) in cytochrome P450 is reduced by another electron 

from the reductase domain. NOS is unique in that this electron comes from a redox active 

cofactor called tetrahydrobiopterin (pterin) (Scheme 4.3). After this event, the next 
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Another common method used to characterize NO production is called a Griess 

Assay. In aqueous solution, nitric oxide rapidly reacts to form nitrite and other NOx 

species.6 Reagents were developed to react specifically with nitrite, again in aqueous 

solution, in order to spectroscopically characterize in vivo NO production (Scheme 4.4).15 

Reagent B reacts with NO2
- (nitrite) to form a diazonium salt, which then reacts with 

Reagent A to form an azo dye with an intense visible absorption band at 540 nm. The 

molar absorptivity of this band is known so it can be used to determine the amount of 

nitrite in solution.  

Both stopped-flow UV-vis spectroscopy and the Griess Assay were used to 

investigate the kinetics and reactivity of a series of mutant enzymes of nitric oxide 

synthase. The NOS used in these studies is that from Geobacillus stearothermophilus 

(gsNOS).16-17 This particular organism is a bacterial thermophile, and therefore its 

enzymes have been optimized to function at elevated termperatures. This adds to the 

stability of their fold,15 a notorious problem for the mammalian nitric oxide synthases. 

This enzyme, gsNOS, has a particularly stable ferrous-oxy intermediate. In the absence of 

substrate, rate constant for its decay is less than 0.1 s-1. This has led to its use in other 

studies, such as the experiments conducted by Davydov and Hoffman which give the 

only evidence for both of the blue intermediates shown in Scheme 4.2.12-13  

The mutants investigated in the studies presented here have been introduced 

previously (see Chapters 1 and 3, Figure 4.1). The role(s) of the proximal hydrogen 

bonding network involving the axial thiolate ligand were investigated. Three mutant 

enzymes, W70H, W70F, and W70Y, were expressed and their reactivity (along with the 

wild type enzyme) was investigated by stopped-flow UV-visible absorption spectroscopy 
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4.3 Materials and Methods 

Sample Preparation 

The plasmid for the nitric oxide synthase from Geobacillus stearothermophilus 

was a gift from the lab of Brian Crane. This enzyme was expressed as previously 

described by Sudhamsu and Crane with no significant deviations in procedure.15 The 

enzyme was overexpressed in Escherichia coli BL21 (DE3) cells. Cells were grown to an 

optical density of approximately 1.0–1.4 and induced by adding a solution containing 

iron(III) chloride, IPTG, and δ-aminolevulinic acid (Aldrich) to final concentrations of 

125 mg/L, 100 µM, and 50 mg/L, respectively, in milliQ water. The pETDuet vector 

(Novagen) coded for a C-terminal cleavable His6-tag so samples were purified using 

metal affinity chromatography. (This vector also confers chloramphenicol resistance to 

the cells, so 34 µg/mL of this antibiotic were added to all cultures in Luria broth.) The 

His6-tag was then cleaved using bovine thrombin (Calbiochem). Both thrombin and the 

His-tag were removed using size exclusion chromatography. Sample purity and Soret 

band epsilon values were determined through use of the hemochromagen assay.  

A QuikChange site-directed mutagenesis kit from Stratagene was used to make 

the desired mutations in the amino acid backbone. Primers were designed according to 

the guidelines outlined by the QuikChange kit manual. Unless otherwise noted, protein 

solutions were made in the following buffer: 50 mM Tris (2-amino-2-hydroxymethyl-

propane-1,3-diol), 150 mM NaCl, pH 7.5 (the same buffer used for size exclusion 

chromatography). Steady-state UV-visible spectra were collected on an Agilent HP 8452 

diode array spectrophotometer.  
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Stopped Flow UV-Visible Spectroscopy   

Samples were prepared anaerobically and transferred to an anaerobic tonometer 

with 1.5 equivalents of dithionite to scavenge any residual oxygen. Dithionite was used to 

scavenge oxygen from the stopped flow spectrophotometer (HiTech Scientific) syringes 

and excess dithionite was removed by repeated washing with anaerobic buffer. For 

autoxidation rates, samples of reduced protein (4–6 µM gsNOS) free of substrate and 

pterin cofactor were mixed with aerated buffer. Autoxidation rates were also measured in 

the presence of 2.5 mM Arg and 15 µM pterin. Protein samples for single turnover 

experiments (4–6 µM gsNOS loaded with, 60 µM H4B and 200 µM N-hydroxy-L-

arginine) were rapidly mixed with air-saturated buffer. All experiments were conducted 

at 4 °C. The formation and release of NO in the single turnover experiments was 

monitored using a diode array detector and the rates fit globally using SpecFit32 (HiTech 

Scientific). Measured rates were independent of protein concentration under experimental 

conditions and all measurements were repeated at least six times before averaging. 

Griess Assay 

In order to quantify turnover in each of the enzymes, NO production was 

monitored using the Griess Assay. Reagents A and B were purchased from Cayman 

Chemicals. Solutions were made containing of 100 µL of 30 µM NOS and 1 mM 

arginine in 150 mM NaCl, 50 mM Tris buffer at pH 7.5. To these solutions, 2 µL of 1M 

H2O2 was added to a final concentration of 20 mM. The solution was allowed to react for 

three minutes before addition of Reagent B, which stops the reaction and denatures the 

protein. The sample must be allowed to sit for ten minutes before addition of Reagent A 

in order to allow formation of nitrite from aqueous nitric oxide. The UV-visible 
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Calculated rate constants for conversion of the ferrous-oxy intermediate to the ferric 

resting state (from SpecFit software) are shown in Table 4.1.  

 

Table 4.1. Rate constants for oxidation of each mutant 
enzyme, with and without substrate/cofactor. 

Sample  Oxidation rate,  s-1  With substrate, s-1  

WT  0.096 0.51 

His  0.0098 0.19 

Phe  0.23 2.6 

Tyr  0.62 4.3 

 

 The effect of the presence of arginine and the pterin cofactor is apparent from 

Table 4.1.  The rate constant for oxidation of the wild type enzyme is increased by the 

smallest amount among the four enzymes, a factor of approximately 5, while the W70H 

mutant oxidizes faster in the presence of these two additional substances by a factor of 

nearly 20. This is a remarkable increase. The data show that the ferrous-oxy species of 

the W70H mutant is much more stable than the others, by an order of magnitude or more, 

but this effect is lessened under catalytic conditions where reactivity of the enzyme 

toward substrate dominates the kinetics rather than simple oxidation of the iron center.  

 Assuming that all four samples interact with dioxygen in the same manner, the 

rates of autoxidation of the heme should correlate with the reduction potentials. This is 

consistent with results from Chapter 3 showing that the reduction potential of the Phe and 

Tyr mutants are significantly more negative than wild type and W70H. The presence of 

this single, long hydrogen bonding interaction brings the reduction potential more 
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positive. The potential of the W70F and W70Y mutants is most likely too negative to 

allow reduction by a reductase enzyme in vivo.   

Griess Assay 

 The function of nitric oxide synthases is to produce nitric oxide. This radical 

species reacts rapidly in aqueous solution, making it difficult to quantify NO production. 

One of the compounds that NO forms in buffered solutions is NO2
-, nitrite. A 

colorimetric assay for this species has been developed and patented, allowing for the 

facile determination of nitrite concentrations in solution. This should be proportional to 

the amount of NO originally formed by the enzyme.  

 

Table 4.2. Nitrite production rates by gsNOS mutants.  

Sample  NO2
- production, heme-1  min-1  x 100  

WT  10.7 ± 0.6 

His  13.9 ± 0.7 

Phe  4.3 ± 0.1 

Tyr  3.4 ± 0.1 

 

 With wild type as a benchmark, W70H shows increased nitrite production while 

W70F and W70Y show a marked decrease in production. This decrease could be caused 

by any of several things. First, if a mutant produces NO at a decreased rate, this would 

lead to decreased consumption of reducing equivalents from the hydrogen peroxide and 

less nitrite in the solution. Alternatively, if the electronics of the system have been 

unbalanced, a decrease in quantity of nitrite could mean similar or even increased 

consumption of reducing equivalents, but with uncoupling of this from NO production. 

The enzyme would instead release superoxide or other compounds, or even oxidize parts 
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of the protein itself leading to degradation. Unfortunately, the Griess Assay can tell us 

only the amount of nitrite in any given aqueous solution.  

Hydrogen peroxide has sufficient driving force to reduce all four of these protein 

samples (-680 mV). Upon mixture with the enzyme, a ferric-hydroperoxo species is 

formed (the first complex in blue in Scheme 4.2). Due to their more negative reduction 

potentials, the Tyr and Phe mutant enzymes autoxidize very rapidly. This means that their 

rate of consumption of reducing equivalents should be equal or even increased compared 

with wild type regardless of catalytic activity. Without this conserved hydrogen bond, the 

hydroperoxo complex may react too quickly to release reactive oxygen species and the 

ferric enzyme without reacting with the substrate. Alternatively, with a better donating 

thiolate ligand, O-O bond cleavage may occur incredibly rapidly. This would form 

Compound I (second species in blue in Scheme 4.2) and facilitate the first turnover, but 

perhaps not provide enough time for the ferric-hydroperoxo to react with NOHA in the 

second turnover, preventing NO formation. Catalysis using hydrogen peroxide as 

reductant and the source of dioxygen has been shown to produce cyano-ornithine in 

mammalian inducible NOS rather than citrulline (and NO).19  

Single Turnover Experiments 

 To observe turnover of the enzyme, stopped-flow mixing was employed coupled 

with UV-visible absorption spectroscopy for detection of intermediates. The resting state 

of the enzyme, with substrate and cofactor bound, has a Soret band with a maximum 

absorption at 396 nm. The position of this band is very consistent across isoforms, while 

the substrate and cofactor-free forms can vary from 400 (gsNOS)15 to 421 nm 

(mammalian iNOS).19-20 The ferrous-oxy complex, formed immediately after mixing the 
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and k2. Despite k1 incorporating many elementary steps, this model for fitting the kinetics 

data fits all spectra well using the SpecFit software.  

In all cases the first trace shows the five-coordinate ferrous species, prior to 

formation of the ferrous-oxy. This arises due to the use of excess reductant, which is 

necessary to ensure that the enzyme remains fully reduced in the syringe. The reductant, 

sodium dithionite, reacts several orders of magnitude more rapidly with oxygen than the 

enzyme.24 Thus, the small excess of dithionite (less than 1 equivalent of the enzyme so as 

not to greatly alter the initial concentration of oxygen in solution) will react completely 

before the other chemical reactions occur. Typical traces for the wild type enzyme are 

shown in Figure 4.4 below. The ferrous complex can be seen in the first (and only the 

first) trace, red. The second trace, in green, corresponds well with formation of the 

ferrous-oxy complex. This formation is complete before the second trace can be 

collected, thus the rate is too fast to be calculated accurately from these data. For all 

kinetics analyses the first spectrum is discarded, as this is the only spectrum where the 

ferrous-unligated complex is visible. In every case the spectra first red-shift (relative to 

the five-coordinate ferrous starting material) before blue shifting to the ferric species.  
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some NOx at a rate actually increased relative to wild type. These data together suggest 

that the W70H mutant enzyme does not release NO· but rather NO- from the heme center. 

The other three enzymes, however, clearly form ferric-NO complexes, as observed by 

stopped-flow.   

 

4.5 Conclusions 

 Stopped-flow coupled with UV-visible spectroscopy was employed to 

characterize wild type gsNOS and these three new mutant enzymes. It was shown that 

their autoxidation rates correlate with reduction potential data discussed in Chapter 3. 

The histidine mutant has an elevated reduction potential and the slowest autoxidation rate 

relative to the other three. The wild type is more negative by approximately 20 mV with a 

potential of -362 mV vs. NHE. This reduction potential is similar to that of mammalian 

inducible NOS, but these two are then more negative than other NOS enzymes by 100 

mV.26 The reason for this behavior in gsNOS is unknown, but in iNOS the presence of 

the substrate sterically excludes a water molecule that coordinates the heme and this 

binding event shifts the reduction potential into the normal range for NOSs. The two 

mutants lacking this conserved hydrogen bond, W70F and W70Y, have significantly 

more negative potentials and were found to have very fast rate constants for autoxidation, 

consistent with more negative potentials. 

 The production of NOx species of all four enzymes was characterized by the 

Griess Assay. The wild type produces nitrogen oxide species at a rate similar to other 

NOSs. The W70H mutant has an elevated rate of NOx release/formation. The two 

mutants without this hydrogen bond have significantly decreased rates of NOx 
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production. Clearly this hydrogen bond plays a role in the rate of NO release from the 

enzyme or the speed with which it is formed (as all four should react sufficiently rapidly 

with hydrogen peroxide for reduction not to be a factor).  

 Finally, stopped-flow was once again employed in order to determine if the Griess 

Assay was indeed detecting NO· or rather NO- which are indistinguishable by that 

method. The ferric-NO complex, the immediate precursor to the nitric oxide product, was 

observed for three of the four enzymes. Interestingly, this could not be observed for the 

W70H mutant. This mutant most likely releases NO-.  

 The conserved proximal hydrogen bond donating group found near the axial 

thiolate ligand in all nitric oxide synthases plays a key role in tuning the electronics of the 

active site. This is a uniquely long hydrogen bonding interaction between this tryptophan 

and the thiolate, at just 3.7 Å. Without this interaction, the enzyme is still capable of 

producing NO, as found for both the W70F and W70Y mutants by single turnover 

experiments. Their reduction potentials, however, are incredibly negative and most likely 

fall far below the biologically relevant window. The replacement of this tryptophan with 

a histidine results in an enzyme with a more elevated potential, however it cannot release 

NO radical. The histidine residue, lacking the aryl ring, most likely cannot π-stack with 

the porphyrin ring, giving it more flexibility. This may allow it to move closer to the 

thiolate to improve this hydrogen bonding interaction. If this interaction is too strong, 

NO- is released.  

In the second turnover of the catalytic cycle, an electron from the heme center 

must be shuttled back into the tetrahydrobiopterin cofactor to re-reduce it. The potentials 

of both the heme and the pterin must be tuned perfectly to allow forward electron transfer 
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into the ferrous-oxy complex followed by back electron transfer into the pterin. This back 

electron transfer allows release of NO· and not NO-.27 If the potential of the heme center 

is too high, this back electron transfer cannot occur, preventing NO· release. Thus, the 

hydrogen bonding interaction is necessary for tuning the reduction potential high enough 

for the reduction of the heme by a reductase domain/enzyme. However, when too strong, 

the potential is tuned too high to send an electron back into the pterin after catalysis, 

which is necessary for formation of the product NO.  
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5.1 Abstract   

Nitric oxide synthases (NOS) are a family of enzymes responsible for the 

production of the signaling molecule nitric oxide (NO). The rate at which NO is released 

by each enzyme varies greatly among isoforms and species, over nearly two orders of 

magnitude. One residue (an isoleucine located above the heme in bacterial enzymes) 

involved in the gating of NO release has been previously identified by Stuehr. However, 

this single residue does not account for the entirety of the differences among the forms of 

NOS. Another residue, a histidine at position 134 in NOS from Geobacillus 

stearothermophilus (gsNOS), was hypothesized to also participate in gating NO release 

based on an observed correlation between rates of NO release and the bulk of side chains 

at this position. Each single point mutation, H134S and I223V, and the double mutant 

were expressed in gsNOS and their reactivity toward the diatomic molecules CO and NO 

were studied. CO rebinding was investigated using laser flash photolysis and NO release 

using stopped flow UV-visible spectroscopy. The presence of both monomer and dimer 

was observed in solution and position 134 was shown to be another key residue in gating 

NO release. Wild type gsNOS contains both the bulkier Ile223 and His134 and has the 

slowest measured NO release (0.039 s-1) of all NOS enzymes. Each single mutation 

increased NO release substantially, while the double mutant has a rate constant of 1.0 s-1, 

nearly as fast as mammalian iNOS at 2.3 s-1, identifying position 134 as another 

important factor determining rate constants for NO release.   
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5.2 Introduction  

Nitric oxide synthases (NOS) are found in all eukaryotes, as well as a selection of 

prokaryotes, and are responsible for biological production of nitric oxide (NO).1-2 In 

mammals, various isoforms of NOS are involved in processes such as neurotransmission 

and vasodilation.3 Interestingly, the immune system uses high levels of NO to kill 

invading bacterial cells. Given this function of NO, the discovery of NOS-like enzymes 

in bacteria was unexpected. The role of NO in these bacteria is still under debate, 

although it has been proposed to be a method to combat host immune responses.4-6 

Different functions most likely require different rates of NO release in cells. This can be 

controlled through several methods such as regulation of protein expression within a cell 

(as is the case for mammalian inducible NOS found in macrophages) or on the molecular 

level within the enzyme. These studies focus on the latter, namely the manner in which 

the enzyme itself regulates NO release.  

Nitric oxide synthases contain a thiolate-ligated heme active site, very similar to 

that found in cytochromes P450.7-8 This superfamily of enzymes carries out a vast array 

of biological oxidations, using the heme cofactor to activate dioxygen.9 NOS, on the 

other hand, catalyzes only the oxidation of arginine to produce NO in two turnovers 

(through the enzyme-bound intermediate N-hydroxy-L-arginine). The first turnover 

involves a two-electron oxidation of substrate like cytochromes P450, while the second is 

formally a three-electron oxidation and is unique in biology.10-11 What is known of the 

catalytic cycle is shown in Scheme 5.1 colored black. The two species in blue are 

intermediates from the cycle of cytochromes P450 used to fill in gaps in our knowledge 
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corroborated.12) However, multiple groups have demonstrated ferric-NO formation and 

its decay to release the radical species. In mammals, a series of complex steps has 

evolved in order to regulate enzyme function and keep tight control on each step, such as 

delivery of electrons and the tuning of redox potentials.13 It is not fully understood how 

the protein matrix controls NO release and what factors cause this rate to vary among 

forms of NOS enzymes, nor how NO production is controlled in bacterial systems.   

In order to study NO release, stopped flow UV-visible spectroscopy has been 

employed. The unique spectroscopic features of heme enzymes allow for the 

differentiation of various species during catalysis. Single turnover experiments, where the 

fully-reduced, substrate-bound enzyme is held in de-oxygenated buffer and then mixed 

rapidly with buffer that is saturated in oxygen, have allowed the determination of rates of 

NO release in many NOS enzymes.14-17  

It was observed in such stopped flow measurements that while the mammalian 

NOS isoforms release NO on the order of 2 to 5 s-1, many bacterial enzymes release NO 

about one order of magnitude slower.16 Crystallographic studies reveal a valine residue in 

mammalian forms which is replaced with an isoleucine in many bacterial forms.18-20 This 

isoleucine is within Van der Waals contact of any diatomic bound at the iron center. 

Stuehr and coworkers showed that installation of an isoleucine at this position in the 

mammalian inducible NOS slows the rate of NO release, while removal of this methyl 

group through mutation to a valine in the bacterial NOS from Bacillus subtilus increases 

its rate of NO release.16 While this is an important finding, the rate constants do not 

change by the full order of magnitude that separates them (in iNOS, 2.3 s-1 slows to 0.77 
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and in bsNOS 0.23 increases to 0.82). Clearly additional factors modulate the rates of NO 

release.    

Flash photolysis is another technique commonly used to study the interactions of 

diatomic molecules with proteins.21-23 Most heme centers form stable complexes with 

carbon monoxide (CO) in the ferrous state.7, 24 While indefinitely stable in the dark, when 

exposed to visible (green) light the iron-carbon bond of the ferrous-CO species is broken, 

liberating CO and transiently generating a five coordinate ferrous heme. Under an 

atmosphere of CO, the six-coordinate species is reformed.25 Due to large differences 

between the absorbance spectra of the five- and six-coordinate heme species, transient 

absorption spectroscopy is again an ideal technique for observing reactivity.25-26 CO is 

used preferentially over NO and O2 because it alone is redox inactive. Exposure of 

reduced enzyme immediately leads to oxidation of the iron center. The lifetime of a 

ferrous-oxy species is incredibly short (milliseconds to seconds at best). Nature has been 

forced to take steps to prevent this reaction in order to prevent the release of superoxide 

into cells. If the protein is reduced when substrate and cofactor are not present, 

superoxide will certainly be released, leading to cellular damage. NO also undergoes 

redox chemistry with the ferrous iron to oxidize it. CO is the closest mimic that will not 

undergo the same chemical reactions. The interactions of CO with myoglobin,27-30 

microperoxidase-8,31 human myeloperoxidase,32 and cytochrome P45033-35 have been 

previously studied extensively. It was found that CO is a good mimic for the study of 

oxygen binding to these biologically important proteins.24, 29  

Both flash photolysis and stopped flow coupled with transient UV-visible 

spectroscopy were used to study the interactions of diatomics with the nitric oxide 
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synthase from Geobacillus stearothermophilus (gsNOS).36-37 The wild type enzyme, with 

isoleucine in position 223 (gsNOS numbering) directly above the heme as is commonly 

found in bacterial enzymes, as well as three other mutant species were studied by both 

techniques. Site-directed mutagenesis was used to insert a valine at position 223, as 

previously demonstrated in bsNOS to increase the rate of NO release. Mutations were 

also made at position 134.  

We have observed a correlation between reported rate constants of NO release in 

the literature with residues found at this position. We will call these two positions gates. 

bsNOS has a histidine residue at this alternate position and has a particularly small rate 

constant of 0.23 s-1, while the NOS from Deinococcus radiodurans, also bacteria, has a 

larger release rate constant of 0.50 s-1 and a smaller alanine residue at this second gate.38 

Both bacterial enzymes have an isoleucine in the first gate, keeping the overall rate 

smaller than mammalian forms. The NOS from mammalian neurons,39 however, has a 

larger release rate constant of 5 s-1 and both gating positions contain smaller residues, 

valine near the heme and a serine corresponding to position 134 in gsNOS. The enzyme 

with the fastest recorded release rate constant comes from the bacterium Sorangium 

cellulosum17 which has a valine above the heme and glycine at the second gate, and 

releases NO at a rate of 7–10 s-1. Clearly, smaller residues at these two positions correlate 

with faster release of NO, while bulkier groups at 134 and 223 slow down NO release.  

A series of four variants of gsNOS were expressed: wild type, I223V, H134S, and 

the double mutant H134S/I223V. The wild type enzyme with the bulkier side chains was 

found to have the slowest reported NO release rate of 0.039 s-1 by stopped flow 

spectroscopy. Each single mutant increased this rate constant substantially, I223V to 0.30 
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s-1 and H134S to 0.16 s-1. The double mutant increased the rate of NO release to 1.0 s-1, 

nearly the same as the mammalian isoforms. These data show that position 134 is in fact 

another residue key to enzymatic regulation of NO release, along with the known 

valine/isoleucine mutation. These results, together with CO flash photolysis studies 

provide a clear picture of the interactions of both NO and CO with this biologically 

important enzyme. 

 

5.3 Experimental Methods 

Sample Preparation  

The plasmid for the nitric oxide synthase from Geobacillus stearothermophilus 

was a gift from the lab of Brian Crane. This enzyme was expressed as previously 

described by Sudhamsu and Crane with no significant deviations in procedure.36 The 

enzyme was overexpressed in Escherichia coli BL21 (DE3) cells. Cells were grown to an 

optical density of approximately 1.0–1.4 and induced by adding a solution containing 

iron(III) chloride, IPTG, and δ-aminolevulinic acid (Aldrich) to final concentrations of 

125 mg/L, 100 µM, and 50 mg/L, respectively, in milliQ water. The pETDuet vector 

(Novagen) coded for a C-terminal cleavable His6-tag so samples were purified using 

metal affinity chromatography. (This vector also confers chloramphenicol resistance to 

the cells, so 34 µg/mL of this antibiotic were added to all cultures in Luria broth.) The 

His6-tag was then cleaved using bovine thrombin (Calbiochem). Both thrombin and the 

His-tag were removed using size exclusion chromatography. Sample purity and Soret 

band epsilon values were determined through use of the hemochromagen assay.  
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A QuikChange site-directed mutagenesis kit from Stratagene was used to make 

the desired mutations in the amino acid backbone. Primers were designed according to 

the guidelines outlined by the QuikChange kit manual. Unless otherwise noted, protein 

solutions were made in the following buffer: 50 mM Tris (2-amino-2-hydroxymethyl-

propane-1,3-diol), 150 mM NaCl, pH 7.5 (the same buffer used for size exclusion 

chromatography). Steady-state UV-visible spectra were collected on an Agilent HP 8452 

diode array spectrophotometer.  

For laser experiments, oxygen-free samples were pumped into an anaerobic 

chamber (with an atmosphere of 100% N2) and reduced under excess dithionite. A small 

excess of dithionite was left in samples in order to ensure that the heme center remained 

in the reduced, ferrous state throughout the entirety of the experiment. Samples were then 

placed in a quartz cuvette (Starna Cells) with a graded seal connecting the cuvette to a 

Köntes valve, enabling the secure sealing of the cuvette from atmosphere. The cuvettes 

were then sealed and removed from the anaerobic chamber. The side arm of the cuvette 

was attached to a Schlenk line and evacuated and backfilled with carbon monoxide 

(100% or 20% with 80% N2) three times. Once the side arm was under the desired 

atmosphere of CO, the Köntes valve was opened to the side arm. The headspace of the 

cuvette, above the protein solution, was evacuated and back-filled with CO from the 

Schlenk line three times and sealed under this new atmosphere. The sample was gently 

shaken over night, in the dark, at 4 °C to allow for full equilibration of the atmosphere 

with the solution. Inadequate equilibration time resulted in irreproducibility between 

samples.   
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Formation of the ferrous-CO complex was confirmed using its characteristic 

absorption band at 446 nm. The stability of the sample was monitored by UV-visible 

spectroscopy after its generation, and immediately before and after laser irradiation. No 

samples showed significant degradation after irradiation by the laser.  

Nanosecond Transient Absorption Spectroscopy 

All transient UV-visible spectroscopic measurements for CO flash-photolysis 

experiments were conducted at the Beckman Institute Laser Resource Center at Caltech. 

For time-resolved measurements, a 10 Hz Q-switched Nd:YAG pulsed laser was used to 

provide 8 ns pulses of irradiation (Spectra-Physics Quanta-Ray PRO-Series). This laser 

was used to pump an optical parametric oscillator, which allows tuning pulses from the 

laser (355 nm output) in the visible region, between 400 and 650 nm (Spectra-Physics 

Quanta-Ray MOPO-700). The details of this setup have been previously described.40 All 

samples were excited with 560 nm laser pulses and exposed to less than 5 mJ/pulse of 

power. All traces are an average of 500 laser shots using 1 nm slits.        

Stopped Flow UV-Visible Spectroscopy   

Samples were prepared anaerobically and transferred to an anaerobic tonometer 

with 1.5 equivalents of dithionite to scavenge any residual oxygen. Dithionite was used to 

scavenge oxygen from the stopped flow spectrophotometer (HiTech Scientific) syringes 

and excess dithionite was removed by repeated washing with anaerobic buffer. Protein 

samples (4–6 µM gsNOS, 60 µM H4B, and 200 µM N-hydroxy-L-arginine) were rapidly 

mixed with air saturated buffer at 4 °C. The formation and release of NO was monitored 

using a diode array detector and the rates fit globally using SpecFit32 (HiTech 
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Scientific). Measured rates were independent of protein concentration under these 

experimental conditions.  

Data Analysis  

Transient absorption traces were converted to optical density using Equation 5.1 

and fit using Igor-Pro graphing software. All data were fit to a double exponential decay 

function, with residuals less than 1% of the signal.  

 

5.4 Results 

Steady-State Spectroscopy  

UV-visible spectroscopy was used to characterize the resting state and to verify 

the formation of the ferrous-carbonyl species of each mutant sample. This technique is 

particularly useful given the sensitivity of heme absorption bands to their environment, 

ligation, and oxidation state. Each enzyme displayed a single Soret peak with an 

absorbance maximum at 446 nm as is typical for nitric oxide synthases and close to that 

of the related cytochromes P450, named for the sharp absorption of their ferrous-carbonyl 

species at 450 nm.7 The spectra of several such forms of the wild type enzyme are shown 

in Figure 5.1. 
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We also analyzed the effect of these mutations on the pre-exponential factor of 

each rate from the double exponential fit. By introducing these small changes, we appear 

to be altering significantly the amount of the fast and slow phase, relative to one another. 

By introducing a single serine residue near the surface of the enzyme, the ratio of A1 to 

A2 is shifted from 2:1 to 1:2.  

Table 5.2. Relative percentages of each rate constant by mutant. 

100% CO WT I223V H134S H134S/I223V

A1 (t1) 66% 46% 36% 43% 

A2 (t2)  34% 54% 64% 57% 

 
Stopped-Flow UV-Visible Spectroscopy  

NO release rates were measured for each protein sample using single turnover 

experiments. The enzyme was loaded with the redox active cofactor, tetrahydrobiopterin, 

and the substrate N-hydroxyarginine and then reduced using sodium dithionite. These 

samples were prepared anaerobically, sealed in a gas-tight syringe, and mixed with fully 

aerated buffer ([O2] ≈ 258 µM) to initiate turnover. Catalysis was monitored using UV-

visible spectroscopy between 370 and 710 nm, with spectra taken at regular intervals over 

millisecond to second timescales. On faster timescales, the five-coordinate ferrous heme 

complex can be observed in the initial trace due to the excess dithionite present. Nearly 

immediately (within 5 ms, the dead time of the mixer), the ferrous-oxy species is formed; 

this formation is too rapid for stopped-flow spectroscopy to characterize the rate. (Note: 

dithionite reacts with oxygen several orders of magnitude faster than the enzymes under 

study and is therefore completely reacted before the second trace is collected.) The 

ferrous-oxy subsequently forms an intermediate complex, which finally decays to the 

resting ferric state of the enzyme (Scheme 5.2). In all cases, the first trace is discarded, as 
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Further, the amplitudes of each exponential component of the fits are significant, with no 

one component accounting for less than 30% of the signal (Table 5.2). We hypothesized, 

given what is known about nitric oxide synthases and how they differ from other systems 

studied by this method, that we might be observing both the monomer and dimer in 

solution. It is known that NOS functions only as a dimer in mammals and disrupting 

dimerization shuts down catalysis.1 During purification, bands for both monomer and 

dimer were observed on a size exclusion column in the same buffer with the same ionic 

strength. To test this hypothesis, samples were made with varying concentrations and we 

monitored the amplitude of both the faster and slower processes. Table 5.4 shows the 

clear effect of concentration on the amplitudes of the faster and slower signals, consistent 

with the presence of monomer and dimer. Further, the two rate constants are similar in 

magnitude and both on the millisecond timescales, which agrees with both processes 

being second-order recombination with slightly different barriers. Introducing the 

presence of both monomer and dimer would account for the observed behavior of all 

samples.   

Table 5.4. Effects of concentration 
on the relative proportion of the two 
processes. Concentration in µM. 
 

[NOS] A
1
 A

2
 

6.1 64% 36% 

9.9 58% 42% 

27 35% 65% 

 
 

Another possibility exists, however, as explanation for two observed millisecond 

processes. In proteins such as hemoglobin, a phenomenon called cooperativity is 
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observed.43-44 When laser irradiation hits the sample, because of the large quantum yield 

for this photochemical process, a high percentage of photodissociation is observed. One 

can imagine a case where the protein exists completely as a dimer in solution and when 

irradiated either one or both bound CO molecules are librated. If cooperativity (or anti-

cooperativity) is a contributing factor, dimers with a single CO molecule still bound 

would have a higher recombination rate constant than those where both are dissociated 

due to changes in protein conformation. In such a situation, the proportion of CO that is 

released from the protein will vary with laser intensity according to a standard power 

dependence and the proportion of the faster rate should decrease. A tenfold increase in 

laser power did not alter the proportion of the two rates observed, it merely increased the 

overall signal strength (Table 5.5).  

 
Table 5.5. Power dependence of the relative amplitudes of each signal. 

Power at sample (mJ/pulse) invτ1 (s
-1) invτ2  (s

-1) A1 A2 

0.6 91 9.9 x 102 58% 42% 

0.7 91 1.0 x 103 57% 43% 

2.8 88 9.6 x 102 59% 41% 

6.4 87 9.4 x 102 59% 41% 

7.0 87 9.4 x 102 59% 41% 

 

From all these results we conclude that we are in fact observing both the 

monomer and dimer forms of the enzyme under experimental conditions, that both react 

with CO to give a rebinding rate constant on the order of 105 M-1 s-1 as has been found in 

other proteins, and propose the following kinetics model, Scheme 5.4.  
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NO Formation and Release  

In order to determine the effect of these mutations on the NO release rate 

constant, we conducted single turnover experiments in the lab of Prof. Michael Marletta 

at UC Berkeley with the assistance of Dr. Emily Weinert. This allows for the direct 

comparison of our mutations with previously published rates of NO release. The wild 

type enzyme was found to release NO with a rate constant of 0.039 s-1, which closely 

matches the rate constant previously published by Crane and Sudhamsu of 0.04 s-1, under 

the same experimental conditions.36 This enzyme has the smallest reported rate constant 

of all NOS enzymes. Each single mutation (H134S and I223V) increases the rate 

significantly, while the double mutant brings the rate to 1.0 s-1, close to the higher rates 

found in mammalian enzymes (which were measured at a slightly higher temperature). 

The ability of a mutation at position 134 to both increase the rate on its own and to 

further increase the rate beyond the single mutation already known at position 223 (Table 

5.3) confirms that it is in fact another key residue gating NO release.  

Transient Spectra Generated by Modeling 

During the fitting procedure, it was observed that the spectrum generated for the 

intermediate ferric-NO complex is not always consistent. For the fastest mutant, 

H134S/I223V, the ferric-NO species is nearly cleanly resolved, showing a peak near 440 

nm (Figure 5.8). The slower mutants and the wild type enzyme showed a mixture of 

Soret bands (Figure 5.9). The observation of multiple bands like this clearly indicates 

that the model is incomplete — what is being fitted as a single intermediate is actually a 

mixture of species. This has been observed before in both a bacterial NOS and a slower 

mutant of a mammalian enzyme.16 It has been proposed that the presence of the Ile near 
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Table 5.6. Full kinetics details of fitting model for each of the four enzymes including a 
comparison of the NO release rate with the three-state model. 
Enzyme Process Rate Constant 3-State Model’s Fit 
Wild Type A > B 8.1 × 10-2  
 B > B1 1.5 × 105  
 B1 > B 8.2 × 104  
 B > B2 1.5 × 103  
 B2 > B 2.9 × 103  
 B > C 0.10 0.04 
    
H134S A > B 1.7 × 102  
 B > B1 1.1 × 106  
 B1 > B 1.4 × 106  
 B > B2 1.6 × 103  
 B2 > B 6.7 × 105  
 B > C 0.31 0.16 
    
I223V A > B 1.0 × 101  
 B > B1 4.9 × 104  
 B1 > B 8.9 × 104  
 B > B2 1.2 × 101  
 B2 > B 1.6 × 103  
 B > C 0.51 0.30 
    
H134S/I223V A > B 1.6 × 101  
 B > B1 1.8 × 104  
 B1 > B 4.1 × 100  
 B > B2 1.4 × 103  
 B2 > B 1.9 × 100  
 B > C 1.9 1.0 
 

 In this model, A is the ferrous-oxy complex as before. Again, the spectrum of this 

species is well known and can be used to verify the accuracy and chemical 

reasonableness of the model and fit. The spectrum of B is specified as the ferric-NO 

spectrum with a maximum absorbance at 441 nm (courtesy of Dr. Joshua Woodward 

from the Marletta group), which is known to form during turnover. The spectrum of C is 

the final resting state of the enzyme, the five-coordinate ferric species. The spectrum 
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generated for one of the two new intermediates is essentially identical to that of the ferric 

resting state. This is consistent with an equilibrium between rapid release and rebinding 

of NO trapped in the binding pocket, which would be very fast when compared with the 

other processes occurring. It is also consistent that this would be seen to the greatest 

extent in the two enzymes with the Ile residue present near the heme. The methyl group 

of this residue is right at Van der Waals contact distance from any diatomoics bound to 

the iron and clearly blocks any exit from the binding pocket (as is clear from the crystal 

structure, PDB file 2FLQ).   

The identity of the other intermediate is less obvious, but at least one reasonable 

possibility exists. The species is clearly formed after the majority of catalysis, being in 

equilibrium with the ferric-NO species. Several other models were applied, but the only 

one that fits the collected data is one where this species is in rapid equilibrium with the 

ferric-NO complex. As seen in Figure 5.10, this species has a Soret maximum near 420 

nm. A species with a similar absorbance has been previously observed under catalytic 

conditions for the first turnover (Arg rather than NOHA was used as substrate).15 This is 

also a slower enzyme, with a Trp to His mutation as discussed in Chapters 3 and 4, but 

made in the mammalian inducible NOS isoform. In this study, the authors proposed that 

this newly characterized species is Compound I.  



 

F
en
sh
 

p

co

an

th

nm

su

re

m

n

th

co

Figure 5.10. 
nzyme. All 
hape of the Q

Comp

orphyrin rin

omplex and 

nd shown 

hermophilic 

m lives appr

uch a reacti

eady to be 

maximum ab

o evidence f

We pr

he enzyme o

omplex mus

Spectra of a
spectra mat

Q-bands. Th

pound I is a

ng or another

is incredibly

to react co

enzyme at 4

roximately 1

ve oxidant w

oxidized by

sorption nea

for this speci

ropose that t

r a P420 for

st be sent ba

all intermed
ch their rep
e identity of

a Fe(IV)=O 

r amino acid

y reactive. T

ompletely w

4 °C. In this

10–15 secon

would live 

y the comp

ar 365 nm. W

ies at 422 nm

this species 

rm of the iron

ack to the p

diate species 
orted literatu
f the species 

with anothe

d close to th

This complex

with substra

s NOS muta

nds at 10 °C 

for that amo

plex and Co

We have mad

m (see Chapt

in our syste

n center. It i

terin cofacto

in the five-
ure values w
in green rem

er radical ca

he heme cen

x was recent

ate in less 

ant, the com

before fully

ount of time

ompound I 

de the same 

ter 4). 

em may be e

is known tha

or to re-redu

-state model
within ±2 nm
mains unkno

ation typica

nter. This is 

tly isolated a

than 1 sec

mplex with S

y decaying. I

e with subs

has been s

Trp to His m

either an HN

at one electro

uce it and re

l of the wild
m, as well a
own.  

ally found o

formally a F

and characte

cond, even 

Soret band a

It is doubtfu

trate presen

hown to ha

mutation and

NO complex

on from the h

elease NO i

173 

 

d type 
as the 

n the 

Fe(V) 

erized 

in a 

at 422 

ul that 

nt and 

ave a 

d saw 

x with 

heme 

in the 



174 
 

second turnover.45 The observed species may be the product heme complex before 

electron transfer to the pterin. The spectrum is nearly identical (simply 4 nm blue-shifted) 

of the spectrum of HNO-myoglobin.46 However, this cannot be the species observed in 

the study of mammalian NOS, as they were probing the first turnover. An alternative 

explanation is that this 420 nm species is analogous to the P420 species (Chapter 3) 

where the thiolate ligand is protonated and/or dissociates. We may be observing the 

equilibrium between two protonation states of this ligand. Identification of a species 

based solely on a single UV-visible spectrum is difficult at best, but further attempts are 

being made to understand the origin of this spectrum.  

 

5.6 Conclusions 

First, CO is a valuable diatomic mimic for the more reactive dioxygen and nitric 

oxide, however with a caveat. One must remember the conditions under which 

experiments are performed. For CO photolysis, systems are under saturating conditions 

with large excesses of carbon monoxide. This is a good system for comparison with 

oxygen binding to hemoglobin in the lungs. Nitric oxide formation, on the contrary, 

involves the production of a single molecule of NO per protein, far from saturating 

conditions. Further, NO reacts rapidly in aerated aqueous solution, further preventing its 

buildup and keeping the system from reaching equilibrium. Also, the driving force 

ultimately behind each of these processes involves formation or cleavage of two distinct 

bonds. CO is very similar to NO, but on a fundamental level an Fe-N bond is not an Fe-C 

bond. While experiments with CO provide a wealth of information about the overall 
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kinetics model for reactivity with diatomics, for an NO release rate one must perform the 

single turnover experiments.  

With these experiments, we have confirmed that the isoleucine residue at position 

223 does gate NO release in gsNOS, slowing the decay of the ferric-NO species. We 

have also demonstrated that position 134, occupied by a histidine in wild type gsNOS, 

also gates NO release, with smaller residues at this position corresponding to faster 

release rates. Together, these two positions can account for the majority of the differences 

in rate between any two NOS enzymes. 

Further, we have used a new, more accurate model to fit our data, showing rapid 

equilibrium between the bound and unbound NO, and another unidentified species. This 

species has been previously observed. It was called Compound I. The Compound I in 

cytochromes P450 has a much more blue-shifted Soret band with a maximum near 365 

nm and it reacts much more quickly. It is of note that this species with absorbance at 420 

nm has now been observed in both turnovers. Unfortunately, its identity remains a 

mystery.  
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6.1 Abstract 

The accurate measurement of a protein’s electrochemical properties is an 

important part of understanding its function. Several methods have been developed to 

facilitate communication between deeply buried protein metal centers and electrodes. 

One such technique, protein film voltammetry (PFV), involves the immobilization of 

proteins on the surface of electrodes by various means. Such techniques can result in 

clear signals from proteins, allowing the measurement of not only reduction potentials 

but kinetics as well. Two types of PFV have been employed in the study of the nitric 

oxide sythase from Geobacillus stearothermophilus. First, a mutant of this NOS was 

covalently connected to a gold electrode. It was hypothesized that the use of a 

hydrophilic linker would maintain a normal aqueous environment around the enzyme and 

avoid the shifting of potentials (a common problem in PFV). When it was found that this 

technique still resulted in measuring responses with significantly shifted potentials (as 

compared with those measured by redox titration in solution), a more traditional film was 

employed. The kinetics of gsNOS was studied in DDAB films and compared with the 

mammalian inducible isoform. It was found to show similar behavior, and experiments 

are still underway to further characterize the kinetics of wild type and three mutants of 

gsNOS (W70H, W70F, and W70Y, introduced in Chapter 3).  
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Discrepancies in measured reduction potentials are not limited to cyt. P450s or 

even iron enzymes in general. A chemically modified electrode, cysteamine on Au(111), 

was used to measure the CuII/I potential of the enzyme copper nitrite reductase. The 

authors neglect to specifically mention the measured potential in the report; however, the 

included cyclic voltammograms show a quasi-reversible wave slightly negative of 0 mV 

vs. SCE.11 The same group published later voltammetric studies of the same copper-

containing nitrite reductase, this time using gold electrodes modified not with cysteamine 

but with self-assembled monolayers of alkane thiols.12 They again fail to mention the E1/2 

they measured, but the couple clearly lies at nearly +100 mV vs. SCE. Two different 

monolayers on the same electrode resulted in two different reduction potentials. 

Curiously, these differing potentials go undiscussed but for one mention of differing 

dielectric constants between films and aqueous solution.4 The cause of these shifts 

remains unknown.  

Interestingly, varied electrochemical approaches have produced consistent results 

in other cases. Film voltammetric methods have been used for several small electron 

transfer (ET) proteins, such as cytochromes c and cupredoxins, Figure 6.1. The reduction 

potential cupredoxin azurin, for example, falls near +300 mV vs. NHE regardless of 

electrochemic method.13-15 A trend seems apparent: technique-based discrepancies in 

reduction potential are endemic to larger metalloproteins, but measured values tend to 

converge as molecular size decreases.   
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difficult; only when using a specially designed cell and extensive reflections can one take 

a UV-visible or IR spectrum of a protein within a film.18 Films have successfully been 

employed with a number of enzymes including cyt. P450, myoglobin, and nitric oxide 

synthase.19 A selection of some of the surfactants that have been used for film 

voltammetry is shown in Scheme 6.1.  

 

Scheme 6.1. Surfactants commonly used for protein film voltammetry.  

These surfactants typically contain a polar head group and a long alkyl chain, 

making them similar to lipids and, presumably, cell membranes. Solutions of these 

surfactants in organic solvents are dropped onto polished electrode surfaces and the 

solvent is allowed to evaporate.20 An interlocking network of the surfactant, or a film, is 

left behind. When soaked in an aqueous solution of protein sample, some protein is taken 

up into the film or otherwise interacts with it. This technique has demonstrated the largest 

deviation from solution reduction potentials amongst the many electrochemical 

techniques. The reason for this is hypothesized to be the lipid-like nature of the film. 

Perhaps lipid-like films provide a more accurate measure of the potential of membrane-

bound proteins, although no concrete data support this hypothesis. Unfortunately, 
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detailed characterization of biological samples on solid surfaces is difficult as most 

characterization techniques are solution-based.  

Covalent attachment of the samples of interest can be used to couple the active 

site to the electrode. Mutagenesis to install a single, solvent-exposed cysteine will allow 

for attachment of the protein to a gold electrode directly through the cysteine sulfur atom. 

Alternatively, this cysteine can be used to functionalize the protein with some other group 

for attachment to the surface, as demonstrated by Liu and coworkers.21 Investigators have 

proposed that these methods block movement of the protein and lock it out of potentially 

necessary conformations, particularly with respect to protein-electrode ET pathways.4, 7 

This lack of motion is a concern with all methods that tether the sample to the electrode 

surface. Comparison of the results of voltammetry with both covalent and non-covalent 

attachment to gold electrodes using SAMs should provide insight into the issue of sample 

diffusion on the electrode surface.   

Electrochemistry was carried out using covalent attachment of NOS to standard 

SAMs, but the potential measured was +195 mV vs. NHE, about 450 mV positive of 

other NOS enzymes.22 A hydrophilic SAM terminated in a maleimido functionality was 

then used to attach gsNOS to the surface in a covalent fashion rather than the traditional 

hydrophobic SAMs. It was hypothesized that the hydrophilic SAMs on a gold electrode 

would promote a normal hydration sphere around the protein and prevent the shift in 

potential previously observed in PFV of mammalian iNOS. Cyclic voltammograms were 

collected on gsNOS. This bacterial enzyme displayed similar properties as iNOS, with 

the observable dissociation of water upon reduction of the iron center. Unfortunately, the 

measured potential was again shifted very positive of the potential measured in solution.  
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Given that this technique using covalent attachment still showed altered reduction 

potentials for the iron site, the complicated synthesis and electrode prep were deemed 

unnecessary and further investigations were made using traditional films. Films of DDAB 

and wild type gsNOS were co-deposited onto the surface of basal plane pyrolytic graphite 

electrodes and their electrochemical properties were investigated.  

 

6.3 Materials and Methods  

Electrodes were purchased from Pine Instruments. Chemicals, such as arginine 

and TrisHCl buffer, were purchased from Sigma-Aldrich. The enzymes used in this study 

were expressed and mutated as described previously in Chapter 3.  

A mutant form of gsNOS was expressed, containing a single, solvent-exposed 

cysteine residue for use in covalent attachment. The native enzyme has four cysteine 

residues at positions 76, 161, 227, and 269. Cys76 ligates the iron center and is necessary 

for activity and for heme incorporation. Position 161 is completely buried within the 

protein interior and hidden from solvent. These residues were left un-mutated as they 

should not interfere in any way with the protein labeling process. Positions 227 and 269, 

however, are exposed to solvent at the surface of the protein, so these two residues were 

mutated to serines so as not to interfere with covalent labeling reactions which rely on a 

nucleophilic thiolate. A cysteine was installed near the heme (in order to facilitate 

communication with the electrode) at position 115, where a lysine residue is found in the 

wild type and is fully solvent exposed. SAMs were made with polyethylene glycolated 

(PEG-ylated) thiols in order to produce a hydrophilic surface. This PEG-ylated thiol was 

terminated in an azide to facilitate “click” chemistry. A small molecule containing an 
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Interesting features can be observed in the voltammograms, such as differing 

interactions with the axial water ligand (see Figure 6.9) due to altered electronics of the 

heme site. The trend in measured reduction potentials matches that observed by redox 

titration. Experiments were also carried out with the wild type enzyme at increased pH 

and indicated a shift of approximately 60 mV per pH unit, as is consistent with a proton-

coupled electron transfer event. Given the presence of the water molecule that 

coordinates the heme in the Fe(III) state, but not the Fe(II) state and the possible 

protonation of the axial thiolate ligand, this result was expected. Studies are on-going in 

an effort to characterize the equilibrium for water ligation in each enzyme and the effect 

of the substrate arginine on these kinetics.  
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7.1 Roles of the Hydrogen-Bond Donating Groups in Tuning the Axial Thiolate 

The thermodynamics of wild type and three mutants of gsNOS were characterized 

by various methods. Data from circular dichroism spectroscopy shows that mutations at 

position 70 do not decrease the overall stability of the protein fold. The evidence from 

multiple techniques is clear, however, that these mutations significantly affect the 

electronics of the heme center. It was shown using binding assays, generation of the 

ferrous-CO species, and redox titrations that the σ-donating abilities of the thiolate are 

increased after removal of the hydrogen bonding group in the Trp. Both chemical redox 

titrations and instability of ferrous-CO complexes of the two mutants lacking this key 

hydrogen bond (W70F and W70Y) suggest that they have more negative reduction 

potentials than the two mutants with this hydrogen bond (wild type and W70H). Evans 

Methods NMR was used to confirm the results of UV-visible spectroscopy which suggest 

that removal of this hydrogen bond shifts the heme center toward the high-spin state due 

to strengthening of the Fe-S bond, as seen in the binding assays.  

 It can be concluded that this universally-conserved tryptophan residue serves 

several roles, but positioning of the heme within the protein (as has been suggested for 

cyt. P450s) is not one of them. In order to produce NO the electronics of the heme center 

must be tuned in such as way as to stabilize high-valent iron species for the oxidation of 

substrate. During catalysis, the site must also be tuned not only to support the six-

coordinate ferrous-oxy complex, but promote release of NO· from the heme in the end. If 

the 3/2+ reduction potential of the site is too negative, the ferrous-oxy may be unstable or 

the high-valent iron species too stable to perform the desired reactivity. If too negative, 

release of NO will be disfavored and decrease the rate of release to undesirable levels.  
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Stopped-flow coupled with UV-visible spectroscopy was employed to 

characterize wild type gsNOS and these three new mutant enzymes. It was shown that 

their autoxidation rates correlate with reduction potential data discussed in Chapter 3. 

The histidine mutant has an elevated reduction potential and the slowest autoxidation rate 

relative to the other three. The wild type is more negative by approximately 20 mV with a 

potential of -362 mV vs. NHE. This reduction potential is similar to that of mammalian 

inducible NOS, but these two are then more negative than other NOS enzymes by 100 

mV. The reason for this behavior in gsNOS is unknown, but in iNOS the presence of the 

substrate sterically excludes a water molecule that coordinates the heme and this binding 

event shifts the reduction potential into the normal range for NOSs. The two mutants 

lacking this conserved hydrogen bond, W70F and W70Y, have significantly more 

negative potentials and were found to have very fast rate constants for autoxidation, 

consistent with more negative potentials. 

 The production of NOx species of all four enzymes was characterized by the 

Griess Assay. The wild type produces nitrogen oxide species at a rate similar to other 

NOSs. The W70H mutant has an elevated rate of NOx release/formation. The two 

mutants without this hydrogen bond have significantly decreased rates of NOx 

production. Clearly this hydrogen bond plays a role in controlling the rate of NO release 

from the enzyme or the speed with which it is formed (as all four should react sufficiently 

rapidly with hydrogen peroxide for reduction not to be a factor in this assay).  

 Finally, stopped-flow was once again employed in order to determine if the Griess 

Assay was indeed detecting NO· or rather NO- which are indistinguishable by that 

method. The ferric-NO complex, the immediate precursor to the nitric oxide product, was 
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observed for three of the four enzymes. Interestingly, this could not be observed for the 

W70H mutant. This mutant most likely releases NO-.  

 The conserved proximal hydrogen-bond donating group found near the axial 

thiolate ligand in all nitric oxide synthases plays a key role in tuning the electronics of the 

active site. This is a uniquely long hydrogen bonding interaction between this tryptophan 

and the thiolate, at just 3.7 Å. Without this interaction, the enzyme is still capable of 

producing NO, as found for both the W70F and W70Y mutants by single turnover 

experiments. Their reduction potentials, however, are incredibly negative and most likely 

fall far below the biologically relevant window. The replacement of this tryptophan with 

a histidine results in an enzyme with a more elevated potential, however it cannot release 

NO radical. The histidine residue, lacking the aryl ring, most likely cannot π-stack with 

the porphyrin ring, giving it more flexibility. This may allow it to move closer to the 

thiolate to improve this hydrogen bonding interaction. If this interaction is too strong, 

NO- is released.  

In the second turnover of the catalytic cycle, an electron from the heme center 

must be shuttled back into the tetrahydrobiopterin cofactor to re-reduce it. The potentials 

of both the heme and the pterin must be tuned perfectly to allow forward electron transfer 

into the ferrous-oxy complex followed by back electron transfer into the pterin. This back 

electron transfer allows release of NO· and not NO-. If the potential of the heme center is 

too high, this back electron transfer cannot occur, preventing NO· release. Thus, the 

hydrogen bonding interaction is necessary for tuning the reduction potential high enough 

for the reduction of the heme by a reductase domain/enzyme. However, when too strong, 
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the potential is tuned too high to send an electron back into the pterin after catalysis, 

which is necessary for formation of the product NO. 

 

7.2 Gating of Diatomics in Nitric Oxide Synthase 

First, CO is a valuable diatomic mimic for the more reactive dioxygen and nitric 

oxide, however with a caveat. One must remember the conditions under which 

experiments are performed. For CO photolysis, systems are under saturating conditions 

with large excesses of carbon monoxide. This is a good system for comparison with 

oxygen binding to hemoglobin in the lungs. Nitric oxide formation, on the contrary, 

involves the production of a single molecule of NO per protein, far from saturating 

conditions. Further, NO reacts rapidly in aerated aqueous solution, further preventing its 

buildup and keeping the system from reaching equilibrium. Also, the driving force 

ultimately behind each of these processes involves formation or cleavage of two distinct 

bonds. CO is very similar to NO, but on a fundamental level an Fe-N bond is not an Fe-C 

bond. While experiments with CO provide a wealth of information about the overall 

kinetics model for reactivity with diatomics, for an NO release rate one must perform the 

single turnover experiments.  

With these experiments, we have confirmed that the isoleucine residue at position 

223 does gate NO release in gsNOS, slowing the decay of the ferric-NO species. We 

have also demonstrated that position 134, occupied by a histidine in wild type gsNOS, 

also gates NO release, with smaller residues at this position corresponding to faster 

release rates. Together, these two positions can account for the majority of the differences 

in rate between any two NOS enzymes. 
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Further, we have used a new, more accurate five-state model to fit our data 

showing rapid equilibrium between the bound and unbound NO, and another unidentified 

species. This species has been previously observed in a mammalian enzyme by another 

group. It was called Compound I. The Compound I in cytochromes P450 has a much 

more blue-shifted Soret band with a maximum near 365 nm and it reacts much more 

quickly. It is of note that this species with absorbance at 420 nm has now been observed 

in both turnovers. This species could possibly be some form of the P420 species in NOS, 

which has either lost thiolate ligation or the thiolate has become protonated, becoming a 

neutral thiol ligand. Unfortunately, its exact identity remains uncertain. 

 

7.3 Future Directions 

 Several experiments remain in order to fully characterize the set of mutants 

probing the role of the hydrogen bonding to the axial thiolate. First, redox titrations must 

be conducted with a different chemical titrant. The 3/2+ couple of Ru(acac)3 is too 

positive to determine the potential of the W70F and W70Y mutants. Another reagent, 

such as benzyl viologen with a reduction potential of -374 mV vs. NHE, might prove 

more appropriate for observing the equilibrium between oxidized and reduced species. 

Further, these titrations should be carried in the presence of the substrate arginine as well, 

in order to determine if the presence of substrate shifts the potential as was seen with 

mammalian inducible NOS.  

 The full effect of mutating this hydrogen bond donor cannot be understood until 

structural data is collected. Crystallography would answer questions about the distance of 

each residue from the thiolate and from the porphyrin ring, as well as the positioning of 
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the sulfur atom with respect to the iron for each sample. It would also reveal any other 

unexpected effects on the fold of the protein. Samples have been sent to the lab of Brian 

Crane at Cornell, an expert in NOS crystallography. This family of enzymes, however, is 

notoriously difficult and slow to crystallize. Efforts to obtain these three-dimensional 

structures are underway.  

 Work on protein film voltammetry with gsNOS is still ongoing in the lab of 

Michael Hill at Occidental College. In addition to measuring reduction potentials, the 

interaction of each sample with the axial water ligand will be investigated by studying the 

scan rate dependence. The iron centers will also be probed in the presence of arginine, 

which should shift all potentials and remove any interaction with water at the heme. 

These experiments are expected to be completed within the next couple of months.  

 Finally, electron transfer pathways in NOS should be studied using more 

traditional Gray group laser-induced flash/quench techniques. Attempts have been made 

at connecting a Ru-trisdiimine photosensitizer to the enzyme in order to induce ET 

to/from the heme (see Appendix II). The iodoacetamidophenanthroline ligand should be 

used to tether Ru(bpy)2 to the enzyme at position 115. Initial studies show quenching of 

the Ru excited state and formation of Ru(III), but no oxidation of the heme despite rapid 

loss of the Ru(III). These results suggest that possibly another residue in the enzyme is 

being oxidized. gsNOS has more than a dozen oxidizable Trp and Tyr residues. 

Mutations may be required in order to promote oxidation of the heme center rather than 

another residue. Further studies should be able to produce high-valent heme species in 

this enzyme. The characterization of any high-valent species in NOS would be of 

incredible interest to the field, as the active oxidants are still unknown.  
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Probing the heme-thiolate oxygenase domain of inducible nitric oxide 

synthase with Ru(II) and Re(I) electron tunneling wires 

Charlotte A. Whited, Wendy Belliston-Bittner, Alexander R. Dunn, Jay R. Winkler* and 

Harry B. Gray*  

Beckman Institute, California Institute of Technology, Pasadena, 91125, USA 

  

ABSTRACT: Nitric oxide synthase (NOS) catalyzes the production of nitric oxide from L-

arginine and dioxygen at a thiolate-ligated heme active site.  Although many of the reaction 

intermediates are as yet unidentified, it is well established that the catalytic cycle begins with 

substrate binding and rate-limiting electron transfer to the heme.  Here we show that Ru(II)-

diimine and Re(I)-diimine electron tunneling wires trigger nanosecond photoreduction of the 

active-site heme in the enzyme.  Very rapid generation of a reduced thiolate-ligated heme opens 

the way for direct observation of short-lived intermediates in the NOS reaction cycle.   

 

INTRODUCTION 

 Salvador Moncada and colleagues reported  in 1987 that the molecule responsible for 

relaxation of blood vessels is nitric oxide (NO).1  This publication marked the beginning of a new 

area of chemical and biological research, with thousands of articles published each year. Long 

known as a cytotoxic agent in pathological processes,2 NO now is recognized as a key signaling 

molecule in the cardiovascular, immune, and nervous systems.3  

 Nitric oxide synthases (NOSs) are responsible for the production of NO in living 

systems.4  The three (mammalian) isoforms of the enzyme are named for the tissues in which they 

are found: endothelial NOS (eNOS), neuronal (nNOS), and an inducible form found in 

macrophages (iNOS).  The functions of eNOS and nNOS are regulated by calcium ions and a 

                                                 
* Correspondence to: J. R. Winkler; winklerj@caltech.edu; H. B. Gray; hbgray@caltech.edu  
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both the Soret absorption maximum and the heme spin state.7, 17  One-electron reduction of the 

NOS:substrate complex gives a five-coordinate ferrous that readily binds dioxygen, forming a 

ferrous-oxy species (equivalent to ferric superoxide),8 the last observed intermediate in the 

catalytic cycle.8, 18   

The role of pterin has been extensively investigated.11, 16, 19  This molecule binds in a 

pocket alongside the heme, forming hydrogen bonds with a P-IX carboxylate, thereby coupling it 

to the active site.13  It is known that a pterin-based radical forms and is reduced during the 

catalytic cycle, as determined by analysis of results from rapid-freeze EPR experiments.12, 20  

Turnover has never been observed without fully reduced pterin cofactor.21    

The NOS reaction cycle bears many similarities to that of P450s.  P450s contain thiolate-

heme active sites and hydroxylate substrates via two-electron oxidation processes.22, 23  The P450 

cycle also begins with substrate binding followed by heme reduction, dioxygen binding, and 

another reduction step leading to the formation of a high-valent iron-oxo complex (Compound I) 

that hydroxylates the substrate (Scheme 2).23  Separate enzymes serve as reductases for P450s, 

but substrate hydroxylation can be driven using external sources of electrons.24  Owing to these 

similarities, the mechanism of the first turnover of NOS is postulated to be the same as that of 

P450s.25  However, the second turnover, a three-electron oxidation, is thought to employ a unique 

mechanism.26  It has been suggested that a protonated ferric hydroperoxide may act as the 

nucleophile in the second turnover18 rather than Compound I, which is a ferryl P-IX radical 

cation.8   
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Scheme 2: Proposed NOS catalytic cycle; active-site intermediates that have not been observed are shown 
in red. 
 

Steps in the mechanistic cycle borrowed from P450 are shown in Scheme 2.  Although 

several intermediates in the P450 cycle already have been observed, there can be no doubt that 

“the hunt for an unambiguous experimental identification of the ephemeral active oxygen species 

will most certainly continue.”22  If that is the case for P450, then we may conclude that work on 

the NOS catalytic cycle is just beginning.  

A long-standing goal in our group is the development of methods to generate and observe 

high-valent iron-oxo complexes that are believed to play key roles as intermediates in the 

catalytic cycles of heme enzymes.27  Direct observation during turnover would allow definitive 

identification of the active oxidant.  Drawing on studies of similar enzymes and using EPR under 

cryogenic conditions and X-ray crystallography, investigators have amassed a large body of 

evidence that strongly indicates that Compound I (Scheme 2, the ferryl P-IX racial cation shown 

in red) is the active species.28  The steps leading to formation of this highly reactive species are 

slow, making its observation problematic, as at best it is present in very low concentrations 

during catalysis.   
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We have investigated the redox photochemistry of two heme enzymes, microperoxidase-

8 (MP-8, a heme octapeptide fragment of cytochrome c) and horseradish peroxidase (HRP).29  

Visible excitation of Ru(bpy)3
2+ (bpy is 2,2’-bipyridine) in the presence of oxidative quenchers in 

solution generates a powerful Ru(III)-diimine oxidant, which reacts rapidly with P-IX to form the 

P-IX radical cation, which then oxidizes Fe(III) to give high-valent iron-oxo complexes of MP-8 

and HRP.29, 30  Attempts to generate high-valent hemes in P450s in reactions with uncomplexed 

photogenerated oxidants were not successful so we changed course, as discussed in the following 

section.   

 

CHANNEL-BINDING WIRES 

Since 1999 we have developed sensitizer-linked electron tunneling wires that are able to 

deliver electrons and holes rapidly to and from deeply buried active sites of heme enzymes.31, 32  

Attaching the photosensitizer to the substrate promotes a close interaction between the two, and 

increases the probability of ET (Figure 1).   A selection of such molecules developed for the 

oxygenase domain of iNOS is shown in Chart 1. 

 

Figure 1: Substrates linked to sensitizers target active-site channels of enzymes. 
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CONCLUSIONS 

 We have developed a system in which the heme of inducible nitric oxide synthase can be 

photoreduced rapidly without interfering with substrate or cofactor binding.  Employing flash-

quench experiments with a surface-binding Ru-diimine wire in combination with reductive 

quenchers, we observed ET to the imidazole-bound heme of iNOSoxy fully seven orders of 

magnitude faster than the natural reduction.  This finding represents an important step toward our 

goal of identifying reactive intermediates in the catalytic cycles of heme oxotransferases.   
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AII.1 Introduction and Summary 

The Gray group’s interest in NOS focuses on the nature of the putative high-

valent intermediates in the catalytic cycle. To study these, we have expressed a mutant 

with a single solvent-exposed cysteine residue and attached a ruthenium tris-diimine 

complex as a photosensitizer. We use the Ru complex and a laser-induced flash/quench 

scheme to pull electrons out of the active site to generate high-valent species, which we 

characterize by transient absorption spectroscopy.   

In order to photochemically generate high-valent species of the heme center in 

nitric oxide synthase, mutant forms of the enzyme from Geobacillus stearothermophilus 

were expressed.* The enzyme contains more than a dozen surface-exposed histidine 

residues, so cysteine labeling is the preferred method for attaching the photosensitizer. 

There are four native cysteine residues in gsNOS at positions 76, 161, 227, and 269. 

Cys76 ligates the iron center and is necessary for enzymatic function. Cys161 is fully 

buried within the core of the protein and inaccessible to solution. Positions 227 and 269 

were mutated to serine residues in order to prevent them from interfering with labeling 

reactions. First, a cysteine was installed close to the heme at position 84 (only 8 residues 

from the axial thiolate ligand). This position failed to label. Another position, K115, was 

mutated to a cysteine and this mutant was successfully labeled on two occasions 

(K115C/C227S/C269S). All of these plasmids can be found in the -20 alumni freezer in 

the box labeled Charlotte NOS.  

 The first molecule synthesized for labeling purposes was the photosensitizer 

shown below in Scheme 1. This molecule was attached to the mutant gsNOS protein on 

two occasions. Labeling conditions and synthetic details can be found below.  
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with 4 x 25 mL of dichloromethane. The pink color remains in the aqueous fraction. The 

DCM is then rotovapped to give pure product. Yield, 20%. For NMR characterization see 

Strouse et al.  

(2) 0.249 g of the product from (1) was dissolved in 15 mL of methanol. This 

solution was submerged in an ice bath. 6 mL of a solution of 0.2 M NaOH was prepared, 

and 55 mg of sodium borohydride (NaBH4) was added to the NaOH solution. After 

ample time for cooling of the methanol, the borohydride was added dropwise to it. This 

mixture was allowed to stir on ice for a few minutes before removal of the ice bath and 

stirring for another hour at room temperature. The methanol was removed leaving a 

suspension of white solid in the aqueous fraction of the reaction. To this 6 mL of 

saturated Na2CO3 aqueous solution was added. This aqueous mixture was then extracted 

4 times with 15 mL of chloroform. The chloroform was dried using MgSO4 and then 

filtered and rotovapped to yield a white solid in > 90% yield.  

(3) 193.6 mg (0.40 mmol) of cis-dichloroRu(bpy)2 and 100 mg (0.50 mmol) 4-

hydroxymethyl-4’-methylbipyridine (product of (2)) were added to a round bottom flask. 

This was dissolved in 100 mL of water and refluxed for 1 hour. It was then cooled, 

filtered, the liquid collected, and a solution of saturated NH4PF6 (aq.) was used to crash 

out the product. This was filtered and the product dried on a vacuum line.  

(4) Once dry, the product from (3) was dissolved in 10 mL HBr and 1 mL H2SO4 

and refluxed for approximately 5–6 hours. It was cooled and the product was precipitated 

using saturated NH4PF6 (aq.) again to precipitate the product. This was filtered and 

washed with ether and dried under vacuum to yield pure product.  
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AII.4 Future Directions 

 This project was abandoned due to poor reproducibility of the labeling reaction 

and the lack of oxidation of the heme, as shown in the laser studies. We now know that 

reproducibility of the labeling reaction can be avoided by using an iodoacetamido-

phenanthroline to label rather than an aryl bromide. See Ener et al., PNAS, 2010, 107, 

18783–18786. A note on synthesis of this new label: isolation was simplified by attaching 

aminophenanthroline to Ru(bpy)2Cl2 first (by a similar procedure used for step (3) 

above), and then mixing this complex with iodoacetic anhydride (1:1) in DCM and 

extracting this with an aqueous solution to remove iodoacetic acid. The product is light 

sensitive, so store it under foil. When this complex is used under the same labeling 

conditions as above or those published by Ener and coworkers, the labeling proved more 

reliable.  

 

 

 

* Attempts were made to photochemically oxidize the heme with Ru(bpy)3
2+ in the 

presence of both reversible and irreversible oxidative quenchers. In neither case were any 
oxidative products observed, therefore covalent attemchent was deemed necessary. 
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