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6.1 Abstract 

The accurate measurement of a protein’s electrochemical properties is an 

important part of understanding its function. Several methods have been developed to 

facilitate communication between deeply buried protein metal centers and electrodes. 

One such technique, protein film voltammetry (PFV), involves the immobilization of 

proteins on the surface of electrodes by various means. Such techniques can result in 

clear signals from proteins, allowing the measurement of not only reduction potentials 

but kinetics as well. Two types of PFV have been employed in the study of the nitric 

oxide sythase from Geobacillus stearothermophilus. First, a mutant of this NOS was 

covalently connected to a gold electrode. It was hypothesized that the use of a 

hydrophilic linker would maintain a normal aqueous environment around the enzyme and 

avoid the shifting of potentials (a common problem in PFV). When it was found that this 

technique still resulted in measuring responses with significantly shifted potentials (as 

compared with those measured by redox titration in solution), a more traditional film was 

employed. The kinetics of gsNOS was studied in DDAB films and compared with the 

mammalian inducible isoform. It was found to show similar behavior, and experiments 

are still underway to further characterize the kinetics of wild type and three mutants of 

gsNOS (W70H, W70F, and W70Y, introduced in Chapter 3).  
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Discrepancies in measured reduction potentials are not limited to cyt. P450s or 

even iron enzymes in general. A chemically modified electrode, cysteamine on Au(111), 

was used to measure the CuII/I potential of the enzyme copper nitrite reductase. The 

authors neglect to specifically mention the measured potential in the report; however, the 

included cyclic voltammograms show a quasi-reversible wave slightly negative of 0 mV 

vs. SCE.11 The same group published later voltammetric studies of the same copper-

containing nitrite reductase, this time using gold electrodes modified not with cysteamine 

but with self-assembled monolayers of alkane thiols.12 They again fail to mention the E1/2 

they measured, but the couple clearly lies at nearly +100 mV vs. SCE. Two different 

monolayers on the same electrode resulted in two different reduction potentials. 

Curiously, these differing potentials go undiscussed but for one mention of differing 

dielectric constants between films and aqueous solution.4 The cause of these shifts 

remains unknown.  

Interestingly, varied electrochemical approaches have produced consistent results 

in other cases. Film voltammetric methods have been used for several small electron 

transfer (ET) proteins, such as cytochromes c and cupredoxins, Figure 6.1. The reduction 

potential cupredoxin azurin, for example, falls near +300 mV vs. NHE regardless of 

electrochemic method.13-15 A trend seems apparent: technique-based discrepancies in 

reduction potential are endemic to larger metalloproteins, but measured values tend to 

converge as molecular size decreases.   
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difficult; only when using a specially designed cell and extensive reflections can one take 

a UV-visible or IR spectrum of a protein within a film.18 Films have successfully been 

employed with a number of enzymes including cyt. P450, myoglobin, and nitric oxide 

synthase.19 A selection of some of the surfactants that have been used for film 

voltammetry is shown in Scheme 6.1.  

 

Scheme 6.1. Surfactants commonly used for protein film voltammetry.  

These surfactants typically contain a polar head group and a long alkyl chain, 

making them similar to lipids and, presumably, cell membranes. Solutions of these 

surfactants in organic solvents are dropped onto polished electrode surfaces and the 

solvent is allowed to evaporate.20 An interlocking network of the surfactant, or a film, is 

left behind. When soaked in an aqueous solution of protein sample, some protein is taken 

up into the film or otherwise interacts with it. This technique has demonstrated the largest 

deviation from solution reduction potentials amongst the many electrochemical 

techniques. The reason for this is hypothesized to be the lipid-like nature of the film. 

Perhaps lipid-like films provide a more accurate measure of the potential of membrane-

bound proteins, although no concrete data support this hypothesis. Unfortunately, 
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detailed characterization of biological samples on solid surfaces is difficult as most 

characterization techniques are solution-based.  

Covalent attachment of the samples of interest can be used to couple the active 

site to the electrode. Mutagenesis to install a single, solvent-exposed cysteine will allow 

for attachment of the protein to a gold electrode directly through the cysteine sulfur atom. 

Alternatively, this cysteine can be used to functionalize the protein with some other group 

for attachment to the surface, as demonstrated by Liu and coworkers.21 Investigators have 

proposed that these methods block movement of the protein and lock it out of potentially 

necessary conformations, particularly with respect to protein-electrode ET pathways.4, 7 

This lack of motion is a concern with all methods that tether the sample to the electrode 

surface. Comparison of the results of voltammetry with both covalent and non-covalent 

attachment to gold electrodes using SAMs should provide insight into the issue of sample 

diffusion on the electrode surface.   

Electrochemistry was carried out using covalent attachment of NOS to standard 

SAMs, but the potential measured was +195 mV vs. NHE, about 450 mV positive of 

other NOS enzymes.22 A hydrophilic SAM terminated in a maleimido functionality was 

then used to attach gsNOS to the surface in a covalent fashion rather than the traditional 

hydrophobic SAMs. It was hypothesized that the hydrophilic SAMs on a gold electrode 

would promote a normal hydration sphere around the protein and prevent the shift in 

potential previously observed in PFV of mammalian iNOS. Cyclic voltammograms were 

collected on gsNOS. This bacterial enzyme displayed similar properties as iNOS, with 

the observable dissociation of water upon reduction of the iron center. Unfortunately, the 

measured potential was again shifted very positive of the potential measured in solution.  
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Given that this technique using covalent attachment still showed altered reduction 

potentials for the iron site, the complicated synthesis and electrode prep were deemed 

unnecessary and further investigations were made using traditional films. Films of DDAB 

and wild type gsNOS were co-deposited onto the surface of basal plane pyrolytic graphite 

electrodes and their electrochemical properties were investigated.  

 

6.3 Materials and Methods  

Electrodes were purchased from Pine Instruments. Chemicals, such as arginine 

and TrisHCl buffer, were purchased from Sigma-Aldrich. The enzymes used in this study 

were expressed and mutated as described previously in Chapter 3.  

A mutant form of gsNOS was expressed, containing a single, solvent-exposed 

cysteine residue for use in covalent attachment. The native enzyme has four cysteine 

residues at positions 76, 161, 227, and 269. Cys76 ligates the iron center and is necessary 

for activity and for heme incorporation. Position 161 is completely buried within the 

protein interior and hidden from solvent. These residues were left un-mutated as they 

should not interfere in any way with the protein labeling process. Positions 227 and 269, 

however, are exposed to solvent at the surface of the protein, so these two residues were 

mutated to serines so as not to interfere with covalent labeling reactions which rely on a 

nucleophilic thiolate. A cysteine was installed near the heme (in order to facilitate 

communication with the electrode) at position 115, where a lysine residue is found in the 

wild type and is fully solvent exposed. SAMs were made with polyethylene glycolated 

(PEG-ylated) thiols in order to produce a hydrophilic surface. This PEG-ylated thiol was 

terminated in an azide to facilitate “click” chemistry. A small molecule containing an 
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Interesting features can be observed in the voltammograms, such as differing 

interactions with the axial water ligand (see Figure 6.9) due to altered electronics of the 

heme site. The trend in measured reduction potentials matches that observed by redox 

titration. Experiments were also carried out with the wild type enzyme at increased pH 

and indicated a shift of approximately 60 mV per pH unit, as is consistent with a proton-

coupled electron transfer event. Given the presence of the water molecule that 

coordinates the heme in the Fe(III) state, but not the Fe(II) state and the possible 

protonation of the axial thiolate ligand, this result was expected. Studies are on-going in 

an effort to characterize the equilibrium for water ligation in each enzyme and the effect 

of the substrate arginine on these kinetics.  
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