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2.1 Abstract   

The Gray group has been studying electron transfer in protein systems for the past 

three decades. During this time a vast amount of information has been collected 

concerning the nature of the protein matrix and its ability to facilitate such charge transfer 

reactions. This led to the development of techniques for the covalent attachment of 

photosensitizers to metalloproteins, and later to the development of compounds 

consisting of sensitizers linked to substrates (dubbed “wires”) in order to promote 

interactions between the photosensitizer and the metal active site buried deep within the 

protein. A Ru-diimine wire, [(4,4’,5,5’-tetramethylbipyridine)2Ru(F9bp)]2+ (tmRu-F9bp, 

where F9bp is 4-methyl-4’-methylperfluorobiphenylbipyridine), binds tightly to the 

oxidase domain of inducible nitric oxide synthase (iNOSoxy). The binding of tmRu-F9bp 

is independent of tetrahydrobiopterin, arginine, and imidazole, indicating that the wire 

resides on the surface of the enzyme, distant from the active-site heme. Photoreduction of 

an imidazole-bound active-site heme iron in the enzyme-wire conjugate (kET = 2(1) × 107 

s-1) is fully seven orders of magnitude faster than the in vivo process. Wires such as this 

surface-binding example are used to study the various electron transfer processes in 

metalloenzymes in an effort to generate and characterize reactive intermediate species 

that are otherwise unobservable.   
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Electron transfers occur from one redox active compound to another. In biological 

systems these are commonly flavins, quinones, porphyrins, and metal centers. Nature 

developed protein scaffolds in order to insulate these redox sites from one another, 

preventing deleterious side reactions and promoting only the specific reaction of choice. 

The very nature of these protein scaffolds is designed to inhibit the random transfer of 

charge, making electron transfer difficult. The physical presence of the scaffold separates 

the two species participating in electron transfer. Without these scaffolds, species would 

simply move toward the thermodynamically favored state and cells would stop 

functioning. Particular reactions are desired, however, and therefore the protein must 

somehow also facilitate these vital charge transfers over large distances (sometimes 

greater than 20 Å). The Gray group has long been interested in understanding how 

proteins mediate these long-range electron transfer reactions.  

A very powerful theory for studying and understanding electron transfer (ET) 

reactions has been developed by the Caltech professor Rudy Marcus. While, originally 

developed with simpler systems in mind, this theoretical formalism has proven applicable 

in protein systems and provides a context within which ET in metalloproteins can be 

studied.       

Semi-Classical Marcus Theory 

Marcus Theory is a formalism through which electron transfer reactions can be 

understood.3-4 It relies on the Franck-Condon Principal which states that when a molecule 

absorbs a photon the rearrangement of electrons is nearly instantaneous (occurs over the 

femtosecond timescale).4 However, the nuclei of the constituent atoms are much heavier 

than the electrons and, therefore, nuclear movement is incredibly slow on the timescale of 
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uncomplexed photogenerated oxidants were not successful so we changed course, as 

discussed in the following paragraphs.  

Since 1999, we have developed sensitizer-linked electron tunneling wires that are 

able to deliver electrons and holes rapidly to and from deeply buried active sites of heme 

enzymes.16 Attachment of the photosensitizer to the substrate promotes a close interaction 

between the two and increases the probability of electron transfer by increasing coupling 

(HAB) (Figure 2.4).   This technique proved very useful with cytochromes P450 and 

enabled the characterization of the enzyme in two states, open and closed as well as 

transient generation of a reduced state. These heavy-metal containing wires can actually 

promote crystallization of protein samples and provide a second transition metal besides 

the heme iron to aid in solving crystal structures. A selection of such molecules 

developed for the oxygenase domain of iNOS (iNOSoxy) is shown in Table 2.1.  

 

Figure 2.4: Substrates linked to sensitizers target active-site channels of enzymes. 
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this transformation in two turnovers, producing NG-hydroxy-L-arginine (NHA) as an 

enzyme-bound intermediate, requiring three electrons from its reductase domain. Each 

turnover is expected to proceed through a mechanism similar to that of cytochrome P450 

(although the two turnovers may utilize a different species for substrate oxidation), 

central to which are two slow electron transfer (ET) events.12, 18-22 The first ET event 

reduces the resting, substrate-bound heme to the ferrous state, which then binds oxygen 

to create the last observable intermediate (ferric-superoxo).20, 23 It is thought that the 

second ET event, where the electron is supplied by the cofactor tetrahydrobiopterin 

(BH4), produces one or more high-valent heme species, with substrate oxidation possibly 

occurring from a ferryl-porphyrin+˙ intermediate (Compound I).20, 24 The sluggishness of 

the second ET step, however, has so far prevented the characterization of high-valent 

intermediates in the catalytic cycle in solution.12, 20, 25 Cryoreduction of the heme domain 

of ferric-superoxo endothelial NOS at 77 K leads to the formation of a ferric-peroxo 

species.12 Annealing at 165 K results in conversion to the product state without the 

appearance of intermediates. These data suggest that O-O bond cleavage is slower than 

reaction with substrate.   

 By employing laser-induced ET to reduce the active-site heme very rapidly, it 

should be possible to observe high-valent intermediates that follow in the catalytic cycle. 

Toward this end, we and others have developed photoactive electron tunneling wires to 

deliver electrons and holes to and from the deeply buried heme active sites in P450cam8, 

26-27 and NOS.16, 28-30 Importantly, one of the NOS wires, tmRu-F9bp (Scheme 2.4), can 

potentially probe the catalytic cycle, since it binds tightly and specifically to the oxidase 

domain of the inducible form of the enzyme (iNOSoxy) in a region that is distant from 
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the active site.17 Here we demonstrate that an imidazole-ligated heme in tmRu-

F9bp:iNOSoxy can be photoreduced several million times faster (kET = 2(1) × 107 s-1) 

than the physiological ET reaction.  

 
 
Scheme 2.4. tmRu-F9bp.  
 
 
 
2.3 Materials and Methods 

General   

The tmRu-F9bp complex was synthesized as described previously.8-9, 31 

Tetramethylphenylenediamine (TMPD) was obtained from Aldrich and vacuum-

sublimed before use. Tetrahydrobiopterin (BH4, Aldrich) was stored under argon at -20 

°C. All other chemicals were used as received from Sigma, JT Baker, Fischer, EM 

Sciences, and Mallinckrodt. UV-visible absorption spectra were acquired on an Agilent 

8453 UV-visible spectrophotometer. Gel electrophoresis was run on a Phast System 

(Pharmacia) with 8–25 percent gradient precast agarose gels and SDS buffer strips. 

Samples were loaded in 4x SDS buffer and stained with Coomassie blue. Samples were 

run against Precision Plus All-Blue standards (BioRad). 
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iNOSoxy Expression and Purification   

The heme domain of iNOS with a C-terminal His6 tag was overexpressed in E. 

coli and purified as described previously 32 with several exceptions. Briefly, expression 

cells were subjected to two rounds of chemical lysis by pelleting and resuspension in 40 

mL of B-PER lysis buffer (protein extraction reagent B, Pierce). The lysis buffer included 

a cocktail of protease inhibitors (10 μg/mL benzamidine, 5 μg/mL leupeptin, 1 μg/mL 

each pepstatin, antipain, and chymostatin, and ~ 500 μM Pefabloc (Roche)) as well as 

100 μg/mL DNase, 100 μg/mL RNase, ~ 500 μg/mL lysozyme, and 20 mM imidazole per 

liter of cells. The suspension was centrifuged and the supernatant was loaded directly 

onto a His6 immobilized metal-ion affinity chromatography column (5 mL Ni2+:HisTrap, 

Amersham). Once the protein was completely loaded, it was washed with 20 column 

volumes of 20 mM imidazole in 50 mM NaPi/300 mM NaCl/pH 8. The protein was 

eluted with 150 mM imidazole and concentrated to ~ 3 mL in an Amicon Ultra 

centrifugation device (10,000 MWCO, Millipore). The concentrated sample was then 

further purified over a size-exclusion column, as described previously.32 The anion 

exchange column was omitted when ≥ 95 percent purity was confirmed by UV-visible 

spectroscopy and gel electrophoresis. The purified protein was concentrated to ~ 200 μM, 

divided into 100 μL aliquots, and stored in 50% glycerol at -80 °C.  

Sample Preparation   

Small aliquots of iNOSoxy were thawed and exchanged into phosphate buffer (50 

mM KPi, 50 mM KCl, pH 7.4) using a PD-10 desalting column (BioRad) immediately 

before use. The position of the heme Soret maximum (422 nm) confirmed the presence of 

low-spin, water-bound heme.17, 32 The heme protein concentration was determined using 
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ε422 = 75 mM-1cm-1 per unit heme.17 For the inhibitor-bound samples, imidazole (400-500 

μM) was added, and binding was confirmed by a Soret shift to 428 nm.17, 32 For substrate-

bound, pterin-free samples, 1 mM arginine was added to dilute (~ 2–20 μM) iNOSoxy 

and allowed to incubate at 4 °C for approximately 30 min. In the absence of pterin (BH4), 

only partial conversion to a high-spin heme (λmax = 398 nm 32-33) was observed. For 

substrate- and pterin-bound samples, fresh BH4 solutions were prepared daily. Phosphate 

buffer was thoroughly deoxygenated by bubbling with argon for ≥ 10 min. Solid BH4 was 

added to the degassed buffer under a counter-flow of argon. Dilute iNOSoxy (~ 2–20 

μM) was deoxygenated by at least 30 evacuation-Ar backfill cycles, taking care to avoid 

bubbling of the solution. Aliquots of concentrated, deoxygenated pterin and arginine 

stocks were then added to the protein solution, giving final concentrations of 100 μM 

BH4 and 1 mM arginine. The solution was incubated for 2 h at 4 °C; binding of BH4 and 

arginine was confirmed by a Soret shift to 396 nm.34-35  

 For quenching experiments, 1 M ascorbate stock solutions were prepared daily by 

dissolving ascorbate in thoroughly deoxygenated 1 M KOH. Ascorbate (1 M) and solid 

TMPD were added to deoxygenated protein solutions under a counter-flow of argon.  

Transient Spectroscopy   

Luminescence decay and transient absorption measurements were made as 

described previously.7, 36-37 The ~ 8 ns, 480 nm excitation pulses were produced by a 

Nd:YAG pumped optical parametric oscillator. Data were collected at 1×109 samples s-1 

using a LeCroy digital oscilloscope. Transient absorbance data were converted from 

intensity to absorbance using the following expression (Eq. 2.3): 

     









0

log
I

I
Abs    (2.3) 
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where I is the intensity of light transmitted through the sample excitation volume, and I0 

is the average transmitted light intensity during the 200 ns prior to the laser shot. 

Luminescence decay curves and transient absorbance traces were fit to one, two, or three 

exponentials using a nonlinear least-squares algorithm (Eq. 2.4, Igor Pro): 

      
n

tk
n

necctI 0)(    (2.4) 

Each experiment was repeated at least three times unless indicated otherwise.  

Determination of RuI→FeIII ET Rate Constants   

At a given time after excitation, the absorbance observed at a given wavelength 

(λ) between 400 and 450 nm is (Eq. 2.5): 

        I
RuRu

II
RuRu

II
FeFe

RuRuFeAbs IIIIIIIIIIII  *
*

 (2.5) 

Since ascorbate, TMPD, and TMPD+• do not absorb strongly in this region (under the 

conditions of these experiments, Figure 2.9), the contributions of these species were 

neglected. Owing to substantial populations of unbound Ru-complex, the absorbance 

changes at these wavelengths due to depopulation of RuII and formation of *RuII are large 

compared to those for FeII formation because [*RuII]>>[FeII]. Moreover, the presence of 

both free and iNOSoxy-bound wire complicates the transient absorbance kinetics. In 

fitting these data, we were unable to identify a phase that was distinct from those 

corresponding to *RuII decay in bound and free wires, and that reliably could be 

attributed to intraprotein ET from RuI to FeIII (kET).   
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reductants to produce FeII.6 In this experiment, a quencher (Q) reduces the photoexcited 

sensitizer to create a strongly reducing species (RuI in Scheme 2.5). In the absence of 

other electron acceptors, the lifetime of RuI is dependent on the rate of recombination 

with the oxidized quencher (kr in Scheme 2.5). Because Q+ and RuI are present at low 

and equal concentrations, recombination is slow (ms timescale) and heme reduction 

competes effectively.  

 

Scheme 2.5. Representation of the reversible flash/quench experiment employed in this 
work. For simplicity, TMPD and ascorbate are represented together as Q. In a successful 
flash/quench experiment, quenching must compete with intrinsic relaxation (k0) and 
energy transfer (ken) for depletion of the RuII excited state (kQ[Q] ≥ k0 + ken); and electron 
transfer (kET) must be faster than recombination between oxidized quencher and reduced 
sensitizer (t½ = 1/kr[RuI]0).  
 

Owing to its high solubility in water and lack of spectral interference with heme 

Soret changes, ascorbate (Asc) is an attractive choice as a quencher for this system. Even 

at high concentrations (10 mM), however, Asc quenching produces only small yields of 

FeII
 (Figures 2.12 and 2.13). TMPD (Scheme 2.6) is a better quencher than Asc, but has 

limited solubility in water.39-40 Further, TMPD autoxidizes to create a soluble bright blue 

cation radical in aqueous media.41 Under conditions necessary for efficient excited-state 

quenching, the production of the radical rapidly turns the solution dark blue, obscuring 

small transient changes in the heme spectrum. 

Q + Ru(II)* --- Fe(III)

Q + Ru(II) --- Fe(III)

Q+ + Ru(I) --- Fe(III)

Q+ + Ru(II) --- Fe(II)

h k0 + ken

kQ

kr

kET

kb
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This is a remarkably rapid reduction given the estimated Ru-heme distance of 

20.2 Å17 and the absence of a through-bond pathway to the heme. Given its slim profile, 

hydrophobicity, and potential to π-stack with aromatic residues, the perfluorobiphenyl 

moiety of tmRu-F9bp may intercalate into the protein interior, leaving open the 

possibility of a through-wire hopping mechanism.28 

Identity of the Reduced Species   

In order to determine the nature of the product of electron transfer to the heme, 

the six-coordinate FeIII-Im species was reduced under equilibrium conditions for 

comparison with the transient data. Reaction of FeIII-Im with sodium dithionite in a glove 

box under an inert atmosphere, followed by removal of excess dithionite on a size-

exclusion (PD-10) column equilibrated with 10 mM imidazole, produced a species with 

the absorption spectrum shown in Figure 2.18. 

Reduction of NOS has been extensively studied.25, 35, 44-47  Six-coordinate ferrous-

NO and -CO species have been characterized by several investigators;35, 46-47 and, in the 

absence of arginine and BH4, it has been shown that these six-coordinate species are 

unstable. Addition of CO (or NO) to five-coordinate FeII causes a red-shift in the Soret 

band to 444 nm (or 440 nm).35  The 444 nm band blue-shifts over time to 421 nm, which 

suggests that a species analogous to the inactive P420 form of cytochrome P450 is 

produced. It has been proposed that the axial thiolate is not bound to the heme iron in the 

421 nm species35, 47 of that the thiolate is protonated.48  

The blue-shift of the iNOSoxy Soret peak upon dithionite reduction (Figure 2.18, 

inset) demonstrates that the red-shifted transient FeII species produced by photochemical 

heme reduction likely has different axial coordination. The steady-state FeII absorption 
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product that is observed under equilibrium conditions. We suggest that the transient FeII 

iNOS species formed by photochemical reduction contains a low-spin FeII heme with 

axial Cys and imidazole ligands. In our experiment, this species is likely reoxidized by 

TMPD+• before loss of axial ligation, which would generate the species observed under 

equilibrium conditions.   

 

2.5 Concluding Remarks and Discussion 

 We have developed a system in which the heme of inducible nitric oxide synthase 

can be photoreduced rapidly without interfering with substrate/cofactor binding. 

Employing flash/quench experiments with a surface-binding Ru-diimine wire in 

combination with reductive quenchers, we observed ET to the imidazole-bound heme of 

iNOSoxy fully seven orders of magnitude faster than the natural reduction. This finding 

represents an important step toward our goal of identifying reactive intermediates in the 

catalytic cycles of heme monooxygenases.  

 Interestingly, however, the product of this ET reaction is a six-coordinate heme. 

In contrast, the product of steady-state reduction of the heme is consistant with either a 

five-coordinate species with imidazole ligation or a complex where the negative axial 

thiolate ligand becomes protonated forming a neutral thiol ligand.  On the millisecond 

timescale this six-coordinate species is stable, however, over the long term it will decay 

to the more thermodynamically favored five-coordinate or neutral thiol complex. This 

decay highlights the inherent instability of the thiolate-ligated heme complex.  

 Upon closer inspection of the environment around the thiolate ligand, one finds a 

collection of three hydrogen bond (H-bond) donors all directed toward the thiolate. 
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Comparison of iNOSoxy with other NOS enzymes reveals that these three hydrogen bond 

donors are universally conserved, with not a single exception. This high level of 

conservation underscores their potential importance. Not only are they conserved in nitric 

oxide synthases, but the crystal structures of other heme thiolate enzymes reveal similarly 

conserved hydrogen bond donors in all. Cytochrome P450s (cyt. P450) all contain three 

H-bond donors; chloroperoxidase (CPO) contains only two such donors.  

When analyzing these polypeptide chains, one finds that in cyt. P450 and CPO all 

three donors in the proximal heme environment come not from amino acid side-chains 

but from amide protons in the backbone of the polypeptide chain. In NOS alone one and 

only one of the H-bond donors comes not from an amide but from the N-H of a 

tryptophan’s indole ring, Figure 2.19. The universality of these H-bond donors pointing 

right at the axial thiolate ligand provokes questions of their function in the reactivity or 

stability or electronic tuning of these enzymes.  
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donor decreases the σ-donating ability of the thiolate significantly; its removal 

strengthens the iron-sulfur bond. They “conclude that the functions of the proximal 

hydrogen bonding network in P450cam are to stabilize the heme-thiolate coordination, and 

to regulate the redox potential of the heme iron.”54 While these conclusions seem 

reasonable, it is difficult to say the effect of a particular H-bond when several things are 

affected at once.  

We wish to determine the role of these H-bond donors and support or refute the 

previous findings, but particularly to study their effects in NOS. This family of enzymes 

provides a unique opportunity, given that one of the H-bond donors comes not from the 

backbone but from a side chain, allowing for facile and systematic variation using site-

directed mutagenesis. Several such mutations have previously been made in NOS and 

characterized by resonance Raman.55-56 No further characterization has been reported.  

One other mutant of interest replaced the tryptophan with a histidine, preserving 

and possibly increasing the H-bond donor ability of the group. In this mutant, researchers 

actually saw a slower kinetics profile and possibly a new intermediate by stopped-flow 

spectroscopy.25 No further characterization was done and the new intermediate, based 

solely upon the position of the Soret band, was suggested to be Compound I (Scheme 

2.3, the ferryl complex in blue).  The lifetime of this new intermediate is on the order of a 

couple of seconds before decaying to product. Compound I is formally a Fe(V) complex, 

with a ferryl and another radical cation sometimes found on the porphyrin ring. The 

likelihood of such a species living for that length of time is incredibly low as it will be 

very reactive, making its assignment as Compound I doubtful.14 No other investigations 

into the role of this H-bond donor have been made.  
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We propose to investigate the role of these H-bond donors by systematically 

varying the functional groups on this side chain in question through the use of site-

directed mutagenesis. The native tryptophan will be replaced with histidine, 

phenylalanine, or tyrosine. Histidine can also participate in hydrogen bonding, but lacks 

the ability to π-stack with the porphyrin ring. Phenylalanine complements the histidine 

mutation in that it can π-stack but cannot hydrogen bond. The tyrosine can also π-stack, 

but the electronics should be significantly altered due to the presence of the hydroxyl 

group on the aryl ring, which is at an angle that should prohibit hydrogen bonding with 

the thiolate. These three mutants will be expressed and thoroughly characterized using 

the tools of modern bioinorganic chemistry to investigate the thermodynamics of the 

resulting active site and its reactivity (EPR, electrochemistry, single turnover 

experiments, etc.). These studies should provide valuable insight into the specific role of 

these hydrogen bond donors and their purpose in NOS and other heme thiolate enzymes, 

and this work will be the focus of the bulk of this thesis.  
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