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1.1 Nitric Oxide Synthases 

Salvador Moncada and colleagues reported in 1987 that the molecule responsible 

for relaxation of blood vessels is nitric oxide (NO).1 This publication marked the 

beginning of a new area of chemical and biological research, now with thousands of 

articles published each year. Long known as a cytotoxic agent in pathological processes 

and a major component of smog, NO is now recognized as a key signaling molecule in 

the cardiovascular, immune, and nervous systems.2  

 Nitric oxide synthases (NOSs) are responsible for the production of NO in living 

systems.3 The three (mammalian) isoforms of the enzyme are named for the tissues in 

which they are found: endothelial NOS (eNOS), neuronal (nNOS), and an inducible form 

found in macrophages (iNOS).4 NOS enzymes have been identified in some bacterial 

species as well, such as Bacillus subtilis and Sorangium cellulosum.5-6 NOS catalyzes the 

oxidation of L-arginine (Arg) to L-citrulline in two turnovers, with N-hydroxy- L-arginine 

(NOHA) as an enzyme-bound intermediate (the product of the first turnover). The overall 

reaction is shown in Scheme 1.1. 
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1.2 Mechanism of NO Production 

Arginine is oxidized to nitric oxide in two full turnovers, through the intermediate 

N-hydroxy-L-arginine. The intermediate actually has a higher binding affinity than 

arginine, preventing it from leaving the binding pocket, where it is positioned above the 

heme.16 The first turnover is a two-electron oxidation of substrate, formally a 

hydroxylation of one of the guanidinium nitrogens.2 The stoichiometry of this reaction is 

identical to that of hydroxylations carried out by the extensively-studied cytochromes 

P450.17-18 The second reaction, however, is unique in biology. The use of the 

tetrahydrobiopterin in a redox-active manner (Scheme 1.3) is unique to NOS. Also, the 

second turnover is formally a three-electron oxidation of NOHA to citrulline and NO, 

specifically the radical species and not any other nitrogen oxide.3  

The mechanism of NO production is not completely understood. The resting state 

of the enzyme is a six-coordinate ferric heme with a water molecule occupying the sixth 

ligand position (four positions are occupied by N donors from the porphyrin and one by a 

sulfur atom from an axial cysteine, Cys194).8 Although neither Arg nor NOHA ligates 

the heme, substrate binding shifts both the Soret absorption maximum and the heme spin 

state. The presence of substrate in the binding pocket sterically excludes water, forcing a 

high-spin five-coordinate heme complex.18 One-electron reduction of the NOS:substrate 

complex gives a five-coordinate ferrous heme that readily binds dioxygen, forming a 

ferrous-oxy species (equivalent to ferric superoxide), the last observed intermediate in the 

catalytic cycle.19   
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The role of pterin has been extensively investigated. This molecule binds in a 

pocket alongside the heme, forming a hydrogen bond with a protoporphyrin-IX 

carboxylate, thereby coupling it to the active site.20 It is known that a pterin-based radical 

forms and is reduced during the catalytic cycle, as determined by analysis of results from 

rapid-freeze EPR experiments.21-23 Production of NO has never been observed without 

fully reduced pterin cofactor, such conditions produce cyano-ornithine and nitrite rather 

than citrulline and NO.13    

The NOS reaction cycle bears many similarities to that of cytochromes P450 (cyt. 

P450). Cyt. P450s contain thiolate-heme active sites and hydroxylate substrates via two-

electron oxidation processes.18 The cyt. P450 cycle also begins with substrate binding 

followed by heme reduction, dioxygen binding, and another reduction step leading to the 

formation of a high-valent iron-oxo complex (Compound I) that hydroxylates the 

substrate (Scheme 1.3). Separate enzymes serve as reductases for most cyt. P450s, but 

substrate hydroxylation can be driven using external sources of electrons.17 It is of note 

that one cytochrome P450 has been found with an attached reductase domain: cyt. P450 

BM3.24 The reductase domain of this enzyme also shuttles electrons from NADPH 

through two flavins to the heme cofactor just like mammalian NOS, although it does not 

need to dimerize to function as NOS does. Owing to these similarities, the mechanism of 

the first turnover of NOS is postulated to be the same as that of cyt. P450s. However, the 

second turnover, a three-electron oxidation, is thought to employ a unique mechanism.25 

It has been suggested that a protonated ferric hydroperoxide may act as the nucleophile in 

the second turnover rather than Compound I, which is a ferryl P-IX radical cation.16   
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mutagenesis nearly impossible (one was replaced by a proline residue, removing the 

amide group, but also shifting an entire loop within the protein, confusing results).  

Steps in the mechanistic cycle borrowed from cyt. P450 are shown in Scheme 1.3.  

Although several intermediates in the cyt. P450 cycle already have been observed, there 

can be no doubt that “the hunt for an unambiguous experimental identification of the 

ephemeral active oxygen species will most certainly continue”.29 In fact, after several 

decades of research on cyt. P450s it was only within the past year that the elusive, high-

valent Compound I was positively characterized and shown to be the active 

hydroxylating oxidant.30 If that is the case for cyt. P450, then we may conclude that work 

on the NOS catalytic cycle is just beginning.  

 

1.3 Bacterial Nitric Oxide Synthases 

 The function of inducible nitric oxide synthase in mammalian macrophage cells is 

predominantly to kill the cells of invading bacteria by pumping them full of nitric 

oxide.10 NO is a radical species and therefore reacts rapidly with many parts of cells 

causing extensive damage. Given its usefulness in killing bacterial cells, it was surprising 

when researchers discovered NO synthase-like proteins in prokaryotic systems in the 

early 2000s.31-32 Since then, NOS-like proteins have been identified in all kingdoms of 

life, with examples in archaea and bacteria, emphasizing their biological importance.5 

Their presence in several pathogenic species is of particular interest. The bacterial NO 

synthases from three phyla of Gram-positive bacteria (actinobacter, deinococcus, and 

firmicutes) in particular share high levels of homology with the oxygenase domains of 

eukaryotic enzymes.6 
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 There are also, however, some striking differences between bacterial and 

eukaryotic systems. The largest difference is that only one bacterial NOS (bNOS) has 

been identified to date that contains a fused reductase domain within its amino acid 

sequence.35 Nearly all bNOS enzymes are made up of only the oxygenase domain where 

the chemistry of NO production occurs (the NOS from Sorangium cellulosum being the 

only exception). This raises the question of how reducing equivalents can be delivered. 

bNOS is also missing a zinc-binding loop contained in all the mammalian isoforms. This 

loop is necessary for the dimerization of mammalian systems, a requirement for function 

because a reductase domain from one monomer of enzyme provides the reducing 

equivalents for the oxygenase domain of the other monomer.36 Truncation of the peptide 

chain in order to remove this loop results in the abolishment of catalytic activity. This 

loop partially obstructs the pterin cofactor binding site, protecting it from solvent.37 Some 

bacteria cannot synthesize tetrahydrobiopterin, they simply lack the necessary sequences 

in their genomes.6 It has been proposed that removal of this loop allows room to 

accommodate the larger pterin, tetrahydrofolate, which all these bacteria are able to 

synthesize.5 The final major difference is a single point mutation near the heme. This 

position is a conserved valine among eukaryotic systems, while in bacteria it is an 

isoleucine.38 It has been shown previously that this residue, situated right above the iron 

atom and within Van der Waals contact distance of Fe-NO species (Ile), affects the rate 

of NO release from the enzyme.39 These differences may highlight key functional 

differences among species.  

 Given these few but striking differences, it was necessary to prove that bacterial 

NO synthase-like proteins did in fact produce nitric oxide, and using the same chemistry 
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as their eukaryotic counterparts. One landmark study required the collaboration of three 

groups, those of Stephen Lippard, Dennis Stuehr and Evgeny Nudler.33 It is a 

complicated process to definitively prove that an enzyme functions and produces NO, not 

any other species, in vivo. In oxygenated aqueous solution, NO is oxidized rapidly to 

nitrite and nitrate. Reagents have been developed that can colorimetrically detect these 

NO metabolites in solution (Griess Assay, Cayman Chemicals). As NO transforms to 

NO2
- and NO3

- in solution, the concentration of these in solution is proportional to the 

amount of NO produced.34 This team of researchers used both the Griess Assay to detect 

NO in the extracellular environment of the cells of B. subtillus and B. anthracis and an 

NO-specific fluorescent probe called CuFL that allows for intracellular NO detection. 

These techniques, in combination with creative use of an arabinose promoter, allowed 

them to prove that NO is indeed produced in these cells by their NOS enzymes.  

 The demonstration of NO synthesis within bacterial cells raises the question of 

why NO is produced.6 The signaling functions of NO in eukaryotic systems are mediated 

by the NO receptor, soluble guanylate cyclase (sGC).40 A bacterial homolog of sGC has 

been identified as a family of H-NOX proteins found by Michael Marletta and 

coworkers.41 Interestingly, though, no H-NOX protein has been found in the genome of 

any bacteria that also code for NOS.42 No other NO receptors have been identified. It has 

been proposed that in pathogenic bacteria the synthesis of NO promotes resistance to 

oxidative stress caused by the host immune system.43 NO may also promote antibiotic 

resistance, due to its ability to chemically modify many compounds used as antibacterial 

agents.44 While these hypotheses may explain the role of NO in pathogenic strains such 
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as Staphylococcus aureus and Bacillus anthracis, the role of NO in non-pathogenic 

bacteria remains a mystery.   

 The NOS (gsNOS) from a non-pathogenic bacterial thermophile, Geobacillus 

stearothermophilus, is the focus of this majority of this work. Only one chapter deals 

with the mammalian inducible isoform, the rest focus on this unique bacterial enzyme. 

gsNOS is noted for the particularly stable ferrous-oxy complex it forms.34 This complex 

lasts only a few seconds at most in other enzymes, but is stable on the order of a minute 

in gsNOS at 4 °C. It is not incredibly surprising that the kinetics of this enzyme are 

slower at standard temperatures than other enzymes, given it comes from a thermophilic 

organism and must function properly at significantly elevated temperatures. It is this 

stability that makes this a useful system to study. This enzyme was originally expressed, 

characterized, and crystallized by Brian Crane and coworkers at Cornell.34 The protein 

fold as revealed by X-ray crystallography is shown in Figure 1.3, with a close-up on the 

heme-thiolate active site.  
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1.4 An Interest in Heme-Thiolates 

 The Gray group has had a long-standing interest in heme-thiolate systems, 

specifically high-valent iron-oxo species long believed (and only recently proven) to be 

the active hydroxylating species in cytochromes P450. Our work on high-valent iron 

hemes actually began in the mid to late 1990s.  The group had developed a technique 

called flash/quench, a general scheme of which is shown in Scheme 1.4.45 In this process, 

a photosensitizer such as ruthenium(II) tris(2,2’-bipyridine (or bpy)) is excited by 

illumination with visible light (into its metal to ligand charge transfer band) creating an 

excited state with a lifetime of more than 600 µs (the flash). Interestingly, this excited 

state has a significant driving force to either gain or lose an electron, about 0.8 V.46 In the 

presence of another reactant, such as ruthenium(III) hexaammine, the excited state reacts 

(is quenched) to form Ru(II) hexaammine and Ru(III)(bpy)3. This Ru(III)(bpy)3 species is 

an incredibly potent oxidant, with a driving force of nearly 1.3 V (in aqueous solution). 

Not only does flash/quench provide a more potent reactant, but often the further 

separation of charges produces a longer lifetime for the oxidizing species, allowing more 

time for the desired reaction to occur. (This same flash/quench scheme can be performed 

using a reductive quencher such as octacyano molybdate to produce the strong reductant 

Ru(I)(bpy)3.)  

Both reversible and irreversible quenchers can be used. In reversible systems, the 

quencher eventually reacts with either Ru(III) or another oxidized species to reform all of 

the original species in their resting oxidation states. For irreversible systems, once the 

quencher reacts with the excited photosensitizer it undergoes further chemistry, 
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to form an oxidized, formally Fe(IV) species. Both Compound II (ferryl) and Compound 

I (ferryl + porphyrin radical cation) were observed. This process was repeated with the 

enzyme horse radish peroxidase (HRP).48 With this system, and irreversible oxidative 

quencher was needed in order to afford enough time to transfer an electron from the heme 

center to the Ru(III) species. The characterization of these species furthered our 

understanding of their catalytic cycle.  

 The group then wished to extend this process to generate high-valent iron species 

in more complex systems, particularly cytochromes P450. Unfortunately, this afforded no 

detectable reaction. In fact, the use of irreversible quenchers led only to the degredation 

of their protein systems. The highly oxidized Ru(III) will find something to react with, 

even if it cannot perform the desired reaction with the iron, effectively leading to 

oxidative destruction of the protein.   

 In an effort to observe these elusive high-valent species in a cyt. P450, the group 

then began developing what later came to be called “wires”. Wires are modified 

photosensitizers, similar to the traditional Ru(bpy)3 but with an additional component.49 

In examining the crystal structures of HRP and cyt. P450s, it became clear that while the 

heme of HRP was exposed to solvent (and therefore solution) on one edge, the heme of 

cyt. P450 was completely buried by the protein backbone. Researchers needed a way to 

promote interaction between the photosensitizer and the active site. The second 

component of these wires addressed this issue of coupling to the protein by attaching a 

tail group to the photosensitizer head (Figure 1.4). The tail group typically resembled the 

substrate of the particular cyt. P450 under study, bringing the Ru moiety closer to the 

heme, in effect, wiring the two together.  
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particular there remain many questions about the exact mechanism by which NO is 

produced.  

 

1.5 Tools of the Bioinorganic Chemist 

 The ultimate goal of the work presented herein is to further our understanding of 

the catalytic cycle of nitric oxide synthases in particular and heme-thiolates in general. 

There are many techniques for characterizing a metalloenzyme and its mechanism, even 

beyond those previously used by our group. One technique of great use to the Gray group 

is electronic absorption spectroscopy (UV-vis). This technique is particularly useful in 

the case of heme enzymes due to their characteristic absorption bands in the visible 

region of the electromagnetic spectrum. Both the Soret band and the Q bands are 

sensitive to oxidation state and ligation of the iron.18 Several examples of various 

common oxidation states with typical axial ligation (the sixth position, other than the four 

coordinating porphyrin nitrogens and the axial cysteine ligands) are shown in Figure 1.5. 

Shifts in Soret position (the intense band near 400 nm) are significant enough to allow a 

researcher to identify oxidation or ligation state often by simple UV-vis characterization.   
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determine an exact reduction potential and cyclic voltammetry to learn about the kinetics 

of such systems. These are just a few of the techniques available to a modern 

bioinorganic chemist, and such techniques will be introduced and explained further as 

they are used in the following work.  

The final, but possibly most important, tool available to enzymologists (and 

chemists) today is site-directed mutagenesis. This process (awarded the Nobel Prize in 

Chemistry in 1993) allows researchers to select particular amino acids within a protein’s 

sequence and change them into another amino acid, through creative use of primers and 

the polymerase chain reaction (PCR). Proteins can now be investigated and modified on 

the atomic level.  

 

1.6 Conclusion 

These techniques were used to investigate the nitric oxide synthase from 

Geobacillus stearothermophilus and its reactivity, with the goal of furthering our general 

understanding of NOS enzymes and their mechanism of NO production. This particular 

system provides stability not present in other NOSs and can be expressed in high yields 

in Escherichia coli in the lab (8 mg/L). Investigations were made into the nature of the 

heme active site and its reactivity.  

This was done using two sets of mutant enzymes. The first set of mutants was 

designed to perturb the hydrogen bonding to the axial thiolate ligand. The native Trp was 

replaced in turn with His (which can still H-bond but cannot π-stack with the porphyrin), 

Phe (which can π-stack but not H-bond) and Tyr (again it can π-stack but not H-bond, but 

the hydroxylate group greatly alters its electronics). These mutants were analyzed using 
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various bioinorganic techniques, compared with the wild type, and used to learn about the 

tuning of the heme cofactor for the exact reactivity of NOSs.  

The second set of mutants was made to investigate rates of NO release from the 

enzyme, once produced during catalysis. Different cellular functions of NO would 

require different rates of NO production and release.2 It has been observed that two 

particular positions may be involved in gating NO release (positions 134 and 223 in 

gsNOS). Mutations were made to vary the bulk of side chains at these positions, and their 

rates of NO release and interactions with the diatomic mimic carbon monoxide (CO) 

were measured in detail. This thesis covers the work done investigating these two sets of 

mutants and the information gleaned from these experiments.  
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