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ABSTRACT 

All heme thiolate enzymes have conserved hydrogen bonding networks 

surrounding the axial thiolate ligand. In order to understand the role of this proximal 

hydrogen bonding network in nitric oxide synthases (NOS), three mutants of the NOS 

enzyme from Geobacillus stearothermophilus were expressed and characterized. The wild 

type enzyme has a tryptophan residue at position 70 that π-stacks with the porphyrin ring 

and donates a long hydrogen-bonding interaction to the thiolate ligand of the heme iron. 

The native Trp was replaced with His, Phe, and Tyr. These three residues were selected to 

investigate the two effects of the Trp, H-bonding and π-stacking. Several different 

spectroscopic techniques were used to investigate the stability and properties of these 

mutant enzymes. The identity of each mutant was confirmed by mass spectrometry. Both 

UV-visible absorption and circular dichroism spectroscopies were used to assess the 

stability of the new proteins. It was shown using binding assays, generation of the ferrous-

CO species, and redox titrations that the σ-donating abilities of the thiolate are increased 

after removal of the hydrogen bonding group in the Trp. Finally, electron paramagnetic 

resonance spectroscopy and Evans method nuclear magnetic resonance spectroscopy were 

used to characterize the spin state of the iron center in each mutant, reflecting the increased 

σ-donating capabilities of the thiolate upon removal of the hydrogen bonding group. The 

reduction potential of wild type and W70H were determined by chemical titration to be       

-362 and -339 mV vs. NHE, respectively. This is the first report of the reduction potential 

of any bacterial nitric oxide synthase. 

The reactivity of each the wild type enzyme and the three new mutants was tested 

using stopped-flow mixing coupled with UV-visible absorption spectroscopy and the 
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Griess Assay. Autoxidation rates measured by stopped-flow suggest that the Tyr and Phe 

mutants do indeed have significantly more negative reduction potentials, but that the His 

mutant is particularly slow to oxidize. The Griess Assays showed that all four enzymes 

produce nitrite in solution, when provided with substrate, cofactor and hydrogen peroxide 

(as a source of reducing equivalents). In single turnover experiments, however, only three 

of the four enzymes showed evidence of ferric-NO production. The His mutant showed no 

intermediate absorbance near 440 nm (which would be indicative of ferric-NO formation), 

suggesting that it releases NO- rather than the radical species NO·. The role of this 

hydrogen bond is concluded to be an electronic one, rather than playing any part in 

positioning the heme. It prevents formation of the inactive P420 species, and tunes the 

reduction potential to one high enough to be reduced by a reductase but low enough to still 

deliver an electron to the redox active cofactor, tetrahydrobiopterin, at the end of catalysis.   

The rate at which NO is released by each NOS enzyme varies greatly among 

isoforms and species, over nearly two orders of magnitude. One residue (an isoleucine 

located above the heme in bacterial enzymes) involved in the gating of NO release has been 

previously identified by Stuehr. However, this single residue does not account for the 

entirety of the differences among the forms of NOS. Another residue, a histidine at position 

134 in NOS from Geobacillus stearothermophilus (gsNOS), was hypothesized to also 

participate in gating NO release based on an observed correlation between rates of NO 

release and the bulk of side chains at this position. Each single point mutation, H134S and 

I223V, and the double mutant were expressed in gsNOS and their reactivity toward the 

diatomic molecules CO and NO were studied. CO rebinding was investigated using laser 

flash photolysis and NO release using stopped flow UV-visible spectroscopy. The presence 
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of both monomer and dimer was observed in solution, and position 134 was shown to be 

another key residue in gating NO release. Wild type gsNOS contains both the bulkier 

Ile223 and His134 and has the slowest measured NO release (0.039 s-1) of all NOS 

enzymes. A new, more accurate kinetics model for turnover is proposed. Each single 

mutation increased NO release substantially, while the double mutant has a rate constant of 

1.0 s-1, nearly as fast as mammalian iNOS at 2.3 s-1, identifying position 134 as another 

important factor determining rate constants for NO release. 
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