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Abstract

In this work, we evaluate the evidence for some of the more exotic ideas in cosmology for which

scientists are searching today, these anomalies being dark matter, statistical anisotropy, and non-

Gaussianity. Dark matter, which is estimated to comprise 83% of the matter in our universe, still

remains undiscovered. We search data from the Energetic Gamma Ray Experiment Telescope for

a gamma-ray line in the energy range 0.1–10 GeV from the 10◦ × 10◦ region around the Galactic

center. Our null results lead to upper limits to the line flux from the Galactic center. We use these

limits to place constraints on the particle’s two-photon annihilation cross section as a function of

its mass, which we show to produce stronger limits than those derived from measurements of the

511-keV line.

Next, we investigate the possibility that cosmic inflation deviates from statistical isotropy. Sta-

tistical isotropy is a common assumption that should be tested. We develop cosmic-microwave-

background statistics for a direction-dependent primordial power spectrum. We then construct

minimum-variance estimators for the coefficients of a spherical-harmonic expansion of the direction-

dependence of the primordial power spectrum. We find that a power quadrupole as small as 2.0%

can be detected by the Planck satellite. We also constrain statistical anisotropy of the quadrupolar

form using a sample of photometric luminous red galaxies measured by the Sloan Digital Sky Survey.

Not detecting evidence, we place limits on an axisymmetric quadrupole model. We find discrepancies

between our results and a cosmic microwave background analysis that claimed a positive detection.

We also find the quadrupolar asymmetry limits to be between -0.41 and 0.38 with 95% probability.

Finally, we prepare a search for evidence of non-Gaussianity in the the early universe. Scale-

dependent bias has been shown to be a competitive probe of non-Gaussianity in large-scale structure,

and constraints have been calculated using various tracers of the matter distribution. We seek to

extend this analysis to the latest sample of photometric quasars measured by the Sloan Digital Sky

Survey to search for evidence of scale-dependent bias in large-scale structure. Specifically we con-

struct three data samples at various redshifts, removing various systematic effects. We calculate the

cross-correlation angular power spectra between two of the data samples to search for any remaining

systematics. We find a positive detection on large scales, which leads us to the conclusion that more

systematics testing is needed to render this QSO catalog useful to constrain non-Gaussianity.
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Chapter 1

Introduction and Summary

1.1 The Quest for Precision

The current standard picture of cosmology, a patchwork of several ideas that together describe

our universe very precisely, is a triumph of the pursuit of precision cosmology over the previous

three decades. The very early universe seems to have undergone a period of exponential expansion

called inflation that has made our observable universe isotropic and without curvature. The particle

driving this early expansion, a single scalar field called the inflaton, decayed, producing matter

density fluctuations that exhibit an isotropic and nearly Gaussian distribution. We also know based

on the expansion history of our universe that its fundamental elements consist of dark matter, an

exotic material that does not interact electromagnetically with other particles, and dark energy, a

mysterious force with negative pressure that drives the current accelerated expansion, with normal

matter and radiation comprising less than 5% of the universe’s energy budget. This patchwork of

ideas agrees very well with observations of the cosmic microwave background (CMB) radiation and

large-scale structure (LSS).

While these ideas together are a competitive model for our universe, each individual idea struggles

to find compelling observational clues to reveal its nature. We know that dark matter must consist

mostly in the form of weakly-interacting massive particles (WIMPs), yet these particles have yet to

be discovered in particle detectors or colliders. Measurements of the CMB and LSS are just beginning

to reach the precision necessary to distinguish between various inflation models, while anisotropic

inflation, multi-field inflation, and the ekpyrotic model (cyclic expansion) remain viable alternatives.

The next generation of experiments are set to usher in a new era of precision cosmology where the

true natures of dark matter and inflation can be revealed. In this thesis, we report our investigations

of dark matter and inflation alternatives that have contributed to our current understanding of the

early universe as well as motivated further studies in this field.

Much evidence exists for WIMP dark matter, a theorized particle that only interacts with other

particles through the weak force and gravity, as a major component of the universe [1, 2, 3]. Dark
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matter halos explain the flat rotation curves of stars in most galaxies at large distances as well as the

stability of most galaxies. On large scales, the spectrum of matter perturbations and temperature

fluctuations of the CMB require most of the matter in the universe to be of a nonbaryonic form,

favoring WIMPs as the preferred theory. The main competitors to dark matter are modified gravity

theories [4, 5, 6], yet the so-called “bullet cluster” [7], in which the center of mass was shown to be

separated from the center of visible matter, greatly favors dark matter as the correct explanation.

The nonbaryonic nature of this particle leads us speculate its identity is within a particle theory

beyond the Standard Model. Supersymmetry (SUSY) [8], a solution to the hierarchy problem in

particle physics, requires every Standard Model fermion to have a bosonic superpartner, and vice-

versa. SUSY behaves as a broken symmetry in nature, causing the superparticles to be much heavier

than the Standard Model particles. A WIMP candidate naturally arising from this theory is the

neutralino, the lightest stable particle in SUSY and is expected to have a mass between 10 GeV

to a few TeV. Though the neutralino is the most favored candidate, particles with lower masses

have still received much interest. Neutralinos with lighter masses, or light dark matter, have been

shown to be possible in theories where the unification of SUSY gauge particles, or gauginos, at high

energies is not assumed [9]. Some SUSY theories even allow neutralino masses as low as 100 MeV

[10, 11]. One way to detect these particles is through their annihilation signal, which indirectly

includes gamma rays. Specifically, a gamma ray spectrum in the case of WIMP annihilation should

include a line with an energy equal to the WIMP mass [12]. Though these searches are currently

being done using the Fermi Gamma-Ray Space Telescope [13], dark matter with masses less than 10

GeV should be detectable using data from its predecessor, the Energetic Gamma-Ray Experiment

Telescope (EGRET) [14]. Particularly, we should be able to constrain the cross section to gamma

rays by using this data.

The most ubiquitous characteristics of our universe are its homogeneity and isotropy. Although

matter perturbations such as galaxies and clusters prevent pure homogeneity and isotropy to be

possible, symmetry still suggests that the universe is statistically homogeneous and isotropic. In this

case, the distributions of both matter and CMB perturbations are isotropic and homogeneous as

viewed by any observer at rest with respect to the CMB. These assumptions are taken for inflation

models; however, several signals in the CMB have suggested that statistical isotropy (SI) could

be broken [15, 16, 17, 18]. These signals include cold spots, alignment of multipole moments,

and power asymmetries between the Galactic hemispheres. These reported signals have led to

many theoretical studies to find their explanation, including investigations of modified inflation

[19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and modified dark energy [29, 30]. Most of the a posteriori

detections of SI violations, including all of those mentioned earlier, have been shown to be statistically

insignificant when performing a proper a priori analysis [31]. While the Wilkinson Microwave

Anisotropy Probe (WMAP) [32] has helped constrain SI violation considerably, we hoped to find
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if Planck [33], the next-generation CMB probe, could present the first truly precise constraints (or

possible detection) of statistical anisotropy.

One a priori signal that has been shown to be significant is a quadrupolar asymmetry in the

CMB. In particular, an inflation model proposed by Ackerman et al. [24] called for a matter

power spectrum of fluctuations that depended on its wavevector’s scale and direction, producing

a statistically anisotropic observable universe exhibiting quadrupolar asymmetry. Although this

particular model has been shown to be unstable [34], the quadrupolar matter power spectrum serves

as a capable straw-man test of future statistically asymmetric models. In particular, a claimed

detection of quadrupolar asymmetry was presented using WMAP data [35]. Though this detection

was later shown to be in the direction of the Ecliptic [36] and thus highly suspected to be due

to systematic effects [37, 38], this motivated the search for a compatible signal in LSS, particularly

within the galaxy distribution. With the Sloan Digital Sky Survey (SDSS) [39] containing the largest

well-sampled catalog of luminous red galaxies (LRGs), we expected that a constraint could be placed

on statistical anisotropy using this data.

Another signature of standard inflation that is currently being tested is Gaussianity. The stan-

dard single-field, slow-roll inflation has a number of potential observables that can distinguish it

from other inflation models and alternatives, including the primordial power spectrum of perturba-

tions, B-mode polarization, the lack of isocurvature perturbations, and Gaussianity. In particular,

Gaussianity is the idea that the primordial perturbations to the inflaton that produced the LSS

we see today exhibit a Gaussian distribution. Although even the standard inflation model exhibits

some non-Gaussianity, this signal is undetectable because it would be much less than the signal due

to nonlinearities [40]. However, current cosmological probes have not ruled out alternatives to the

standard model, such as multi-field inflation or the ekpyrotic model. In order to try to confirm

or rule out these alternatives, gravitational perturbations produced by the inflaton are written as

Φ = φg + fNLφ
2
g, where fNL parametrizes the amount of non-Gaussianity [41, 42]. Much work has

been done to constrain fNL. The most popular statistic in this endeavor has been the CMB bispec-

trum, or three-point correlation function, which vanishes for fNL = 0. From this statistic we now

know |fNL|<∼ 100 [43]. Alternative probes using LSS include the galaxy bispectrum, which suffers

from nonlinearities, and galaxy and dark matter clustering, which suffer from low-number statis-

tics. One method that has been successful in probing non-Gaussianity using LSS is searching for

scale-dependent halo bias [44, 45]. In standard structure-formation models, matter perturbations

inside dark matter halos clump together to produce fluctuations in the number density of galax-

ies, with the bias being the ratio between the fluctuations in galaxy number density and matter

density. This bias is considered to be redshift-dependent but normally scale-independent. In stan-

dard inflation, large-scale density fluctuations that produce matter halos are uncorrelated with the

small-scale fluctuations that form galaxies. This is no longer true when non-Gaussianity is present,
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causing small-scale fluctuations to be modulated by the large-scale ones. Thus, we would see greater

power on large scales, and this manifests as a bias correction that scales as k−2. There have been

many searches for this effect in LSS, and these constraints are becoming competitive with CMB

bispectrum constraints. One tracer of the matter density that is of great interest is quasars. These

are some of the brightest objects at large distances, making them useful in constraining LSS at

redshifts z >∼ 1. One of the latest analyses used a quasar sample that included quasars from redshifts

1.45 < z < 2[45]. Since then, the quasar sample has been extended to larger redshifts ranges, with

redshifts as low as z = 0.9 and as large as z = 2.9. With a larger range, we should be able to

constrain fNL more precisely.

In this thesis, we discuss precision measurements that have advanced our quest to find or rule

out dark matter, statistical anisotropy, and non-Gaussianity. In Chapter 2, we set constraints on

the cross section for light dark matter to annihilate into photons using measurements of the diffuse

gamma ray background from EGRET. The next two chapters focus on statistical anisotropy searches.

In Chapter 3, we show how future CMB probes like Planck will be able to constrain quadrupolar

asymmetry, while Chapter 4 discusses actual constraints we set on quadrupolar asymmetry using

LSS data from SDSS. Finally, we present work towards placing limits on non-Gaussianity from

photometric quasars in Chapter 5.

1.2 Constraints on Light Dark Matter

In Chapter 2, we search data from the Energetic Gamma Ray Experiment Telescope (EGRET) for a

gamma-ray line in the energy range 0.1–10 GeV from the 10◦×10◦ region around the Galactic center.

Any significant gamma-ray line emission found could have been produced by WIMP annihilation,

in which two nonrelativistic WIMPs collide and annihilate to become two gamma-ray photons of

equal energy. In the limit of negligible WIMP speeds, the energy of the gamma-ray lines equals

the WIMP mass. We probe the Galactic center because this is where the ratio of annihilation

photons, which vary as ρ2
DM, to the background cosmic rays is largest. We begin by constructing

the gamma ray differential flux in the range 100 MeV < Eγ < 10 GeV in the galactic coordinate

range −5◦ < l < 5◦ and −5◦ < b < 5◦ using EGRET data. We then fit this differential flux with

various astrophysical templates including nuclear interactions in the interstellar medium, electron

bremsstrahlung, and unresolved point sources within our Galaxy, which we then subtract to find

the residual flux. Taking into account energy uncertainties, we search for evidence of a gamma-ray

line. Our null result leads to upper limits to the line flux at each energy in the range 0.1–10 GeV.

Assuming WIMP annihilation as the sole source of gamma-ray lines from the Galactic center and

using the relation between the flux product and the dark matter halo density profile, we construct

upper limits to the WIMP two-photon annihilation cross section as a function of WIMP mass for
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various dark matter halo models. We also show that for a toy model in which Majorana WIMPs in

this mass range annihilate only to electron-positron pairs, these upper limits supersede those derived

from measurements of the 511-keV line and continuum photons from internal bremsstrahlung at the

Galactic center.

1.3 Upcoming CMB Probes of Statistical Anisotropy

We develop cosmic microwave background statistics in Chapter 3 for a primordial power spectrum

that depends on the direction, as well as the magnitude, of the Fourier wavevector. We use the

anisotropic inflation model proposed by Ackerman, Carroll, and Wise (ACW) as our toy model, with

a parameter g2M scaling the quadrupolar part of the power spectrum. We begin by introducing the

formalism of anisotropic power spectrum effects on the spherical harmonic coefficients of the CMB

temperature fluctuations. This formalism is generalized for the non-quadrupolar case by scaling

each multipole L term of the power spectrum with gLM . We find that the angular power spectrum

Cl is supplemented by the set of moments DLM
ll′ that connects power between different scales. We

then consider a simple estimator we call the power multipole moments that searches in a model-

independent way for anisotropy in the square of the temperature (and/or polarization) fluctuations.

Though we can use this estimator to search for a general form of statistical anisotropy, we find

that it is sub-optimal for power asymmetry. We then construct the minimum-variance estimators

for the coefficients of a spherical-harmonic expansion of the direction-dependence of the primordial

power spectrum. To illustrate, we apply these statistics to an inflation model with a quadrupole

dependence of the primordial power spectrum on direction and find that a power quadrupole as

small as 2.0% can be detected with the Planck satellite limited by partial sky coverage. We present

the formalism for using polarization fluctuations in Appendix A.

1.4 New Limits to Statistical Anisotropy Using LSS

In Chapter 4, we set limits on quadrupolar asymmetry in the primordial power spectrum using the

SDSS Data Release 5 (DR5) photometric LRG sample as a tracer of the matter distribution. As

in the previous chapter, we parametrize quadrupolar asymmetry in terms of the ACW model, with

the parameter g2M scaling the quadrupolar variation in the power spectrum. We first develop the

formalism for anisotropic power spectrum effects on the spherical harmonic coefficients of the galaxy

number density perturbations. We use this formalism to construct estimators for the g2M s. After

testing the robustness of our estimators, we use them to derive estimates of g2M while allowing for

other systematic effects in the calibration. We find a null result for our search; however, we use

our results to construct upper limits to g2M . We then compare our results to a claimed detection
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of quadrupolar asymmetry in the CMB. By converting our five g2M parameters into a quadrupolar

asymmetry magnitude g∗ (given an asymmetry direction), we show that our result using LSS is

incompatible with the CMB result. This leads to the conclusion that the CMB result is due to

instrumental error and not cosmological in origin. We then marginalize our estimates of g2M over

asymmetry direction to get a 95% confidence interval for g∗ given by −0.41 < g∗ < +0.38. In

Appendix C, we calculate connection coefficients for the real spherical harmonics listed in Appendix

B used in our calculations. We also calculate the effective scales for g2M probed by the CMB and

LSS in Appendix D.

1.5 Search for Non-Gaussianity Using LSS

In Chapter 5, we seek to prepare photometric quasar maps in order to constrain local-type non-

Gaussianity in the primordial pertubations created during inflation by probing the scale-dependence

of the halo bias. We parametrize non-Gaussianity in terms of fNL, which scales the non-Gaussianity-

inducing quadratic correction to the gravitational perturbation field. Using the formalism developed

for scale-dependent bias in terms of fNL, we derive estimators for the angular power spectrum of

perturbations in quasar number density in terms of fNL. We also model systematic effects that

must be projected out to constrain fNL properly. We calculate the cross-correlation angular power

spectrum between the first and third slices to search for systematics. We see that systematic errors

persist despite our efforts to remove them. We conclude more systematic analysis must be undertaken

to produce clean autocorrelation power spectra of the quasar maps. These spectra will be useful

in constructing limits on fNL. In Appendix E we determine the redshift distributions for the three

redshift slices.
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Chapter 2

Search with EGRET for a
Gamma-Ray Line from the
Galactic Center

2.1 Introduction

Weakly-interacting massive particles (WIMPs) provide promising candidates for the dark matter in

Galactic halos [1, 2, 3]. The most deeply explored WIMP candidate is the neutralino, the lightest

superpartner in many supersymmetric extensions of the standard model [8]. Although the favored

mass range for neutralinos is usually >∼ 10 GeV, there are other WIMP candidates with masses

in the 0.1–10 GeV range. For example, neutralinos with masses as low as 6 GeV are plausible if

gaugino unification is not assumed [9]. Neutralinos with masses as low as 100 MeV are plausible in

the next-to-minimal supersymmetric standard model (NMSSM) [10, 11]. Also, scalar and spin-1/2

particles with masses in the MeV range have been considered [46] to explain the 511-keV gamma-ray

line observed by INTEGRAL [47, 48], a line whose strength, as explained in Ref. [46], has defied

easy explanation from traditional astrophysics.

One way to detect WIMPs is to search for monoenergetic gamma rays produced by pair anni-

hilation in the Galactic halo [12]. These gamma rays have energies equal to the WIMP mass mχ.

Such a line spectrum could be easily distinguished from the continuum spectrum from more prosaic

gamma-ray sources (e.g., cosmic-ray spallation), and thus serve as a “smoking gun” for dark-matter

annihilation.

Since the dark-matter density is highest at the Galactic center, the flux of WIMP-annihilation

photons should be greatest from that direction. On the other hand, the continuum background

should also be highest from the Galactic center. We estimate that for a Navarro-Frenk-White
0The material presented in this chapter was first published in Search with EGRET for a gamma-ray line from the

Galactic center, Anthony R. Pullen, Ranga-Ram Chary, and Marc Kamionkowski, Phys. Rev. D 76, 063006 (2007).
Reproduced here with permission, copyright (2007) by the American Physical Society.
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profile [49], the WIMP-annihilation flux from the 10◦ × 10◦ region from the Galactic center should

exceed that from the Galactic anticenter by a factor ∼ 100, while the flux of cosmic-ray–induced

photons at energies O(GeV) is only about 8 times higher from the Galactic center than from the

Galactic anticenter. Thus, the Galactic center is the preferred place to look for a WIMP-annihilation

signal. It is also the location of the 511-keV anomaly that has motivated the consideration of lower-

mass WIMPs.

In this chapter, we search data from the Energetic Gamma Ray Experiment Telescope (EGRET)

[14] on the Compton Gamma Ray Observatory (CGRO) for a gamma-ray line in the energy range

100 MeV to 10 GeV from a 10◦×10◦ region around the Galactic center. We found no evidence for a

gamma-ray line from the Galactic center in this energy range. From these null results, we can bound

the cross section 〈σv〉γγ for WIMP annihilation to two photons for WIMPs in this mass range.

The plan of this chapter is as follows: In Section 2.2, we discuss how EGRET data are cataloged.

In Section 2.3, we reconstruct from the EGRET data the differential flux of photons as a function

of energy. In Section 2.4, we fit to the data a model of the flux produced by cosmic rays and point

sources near the Galactic center. In Section 2.5, we search for a line excess of photons from WIMP

annihilation. In Section 2.6, we report upper limits to 〈σv〉γγ as a function of mχ for WIMPs within

the mass range of 0.1 GeV to 10 GeV for a variety of dark-matter-halo models. In Section 2.7,

we show that in a toy model in which the WIMP annihilates only to electron-positron pairs, this

upper limit is stronger over this mass range than limits derived from the 511-keV line and from

lower-energy continuum gamma rays from internal bremsstrahlung.

2.2 Source of Data

We obtained publicly available data from the CGRO Science Support Center (COSSC).1 We used

the EGRET photon lists (QVP files), which contain event lists of all photons detected during a given

viewing period. The data that we used from these files are the photon’s Galactic latitude, Galactic

longitude, zenith angle, energy, and energy uncertainty. We also required the exposure files, which

contain the detector’s effective area multiplied by the viewing time of the detector for a particular

viewing period multiplied by EGRET’s 1-sr field of view. The exposure is provided as a function of

latitude, longitude, and energy range. We also obtained the counts files, which contain the number

of photons at various spatial coordinates and energy ranges within a viewing period. The energy

bins, along with their respective energy ranges, are shown on the COSSC site.
1http://cossc.gsfc.nasa.gov/docs/cgro/cossc/egret/
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Table 2.1: Viewing periods used in analysis. The more dominant viewing periods are in bold and
have an exposure of > 106 cm2 s sr at 150–300 MeV, over our region of interest.

5.0 7.2 13.1 16.0 20.0 23.0 27.0
35.0 38.0 42.0 43.0 209.0 210.0 214.0
219.0 223.0 226.0 229.0 229.5 231.0 232.0
302.3 323.0 324.0 330.0 332.0 334.0 336.5
339.0 421.0 422.0 423.0 423.5 429.0

2.3 Construction of Gamma-Ray Flux

We begin by constructing the photon differential flux as a function of energy. We use data only

from a square region on the sky from −5◦ to 5◦ Galactic longitude and −5◦ to 5◦ Galactic latitude.

Each viewing period covers a particular region of the sky, and there were 34 viewing periods for our

region of interest. These viewing periods were found using Table 1 in the Third EGRET Catalog

[50] and are listed in Table 2.1.

The differential photon flux can be determined from the counts files provided by EGRET, but

these provide only counts in 10 energy bins, each with a width comparable to the photon energy

in that bin. However, we will below search for lines with energies spanning the full energy range.

This analysis is performed (as discussed below) by fitting the measured photon distribution to a

continuum plus a line broadened by a Gaussian, consistent with the instrumental resolution, about

each central line energy. We therefore work with the EGRET events and exposure files, which list an

energy and effective exposure, respectively, for each photon, and reconstruct the differential energy

flux in 119 energy bins. Before doing so, however, we first construct the differential energy flux from

the events files with the same 10 bins as in the EGRET counts files, to be sure that our event-file

analysis recovers the EGRET counts files, the most commonly used EGRET data product.

We first split the data into the 10 energy bins used by EGRET. Since the exposure files record a

photon index value of 2.1 for the photon distribution (a value more-or-less consistent with the fluxes

arrived at in Figs. 2.1 and 2.2), the average energy Eavg of photons in an energy bin [Emin,Emax] is

Eavg = 11× E−0.1
min − E−0.1

max

E−1.1
min − E

−1.1
max

MeV. (2.1)

Variation of the photon index values over the range [1.7,2.7] only changes Eavg by ∼ 1% for these

energy bins and by ∼ 0.01% for the 119 smaller energy bins. This variation also only changes the

average exposures by less than 10%, which does not affect our final results significantly. Thus, our

assumption of a value of 2.1 for the photon index is a reasonable one.
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Figure 2.1: The differential flux within ten energy bins with error bars denoting energy uncertainty
for events data and half-bin sizes for counts data.

We calculate the differential flux (photons cm−2 s−1 sr−1 MeV−1) from the counts files using

F (Ei) =
n(Ei)

ε(Ei)∆Ei
, (2.2)

where Ei is the average energy of one of the ten large energy bins, n(Ei) is the number of photons

within that energy bin, ε(Ei) is the total exposure from the exposure files over the viewing region

within that energy bin, and ∆Ei is the size of the energy bin. The quantities n(Ei) and ε(Ei) are

both summed over all viewing periods and all positions within the region of interest. The uncertainty

σF (Ei) in the flux is

σF (Ei) =

√
n(Ei)

ε(Ei)∆Ei
. (2.3)

We assume Gaussian errors in the photon energy. The energy uncertainty is just the median of the

energy uncertainties of the individual photons within that energy bin, taken from the events data.

We then constructed from the events file the photon number n(Ei) in each counts-file energy

bin. We found that in order to reproduce the counts data from the events file, we needed to reject

photons with zenith angles greater than 100◦ and energy uncertainties greater than 40% of the

photon energy. This zenith cut also rejects albedo gamma rays from the Earth’s atmosphere. The

photon differential fluxes obtained from both the counts files, and the events files (binned in the

same way as the counts files) are shown in Fig. 2.1. We were not able to match the counts- and

events-file photon numbers at the first energy bin to within 25%. However, for reasons discussed

below, we discarded this energy bin (below 0.1 GeV) from our analysis.

We then proceeded to construct the differential flux from the events files, applying the same

photon cuts, with narrower bins, to facilitate the analysis in Section 2.5. We split the data into 119

energy bins, with each bin ranging in energy from Emin,i = 30× 1.05i MeV to Emax,i = 30× 1.05i+1
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Figure 2.2: The photon differential flux using 120 energy bins.

MeV, where i ranges from 0 to 118. To calculate exposures, we interpolated log[ε(En)] over log(En),

where En is an average energy for a large energy bin n, and ε(En) is the same exposure for the large

bin n used for the ten large bins earlier. Fig. 14 of Ref. [14] shows that the exposures do not vary

rapidly for energies >∼ 0.1 GeV, and so this interpolation should be sufficient for our purposes. The

flux is shown in Fig. 2.2. We note that Figs. 2.1 and 2.2 agree with EGRET’s measurement of the

diffuse gamma-ray spectrum in the same region of sky, shown in Fig. 4 of Ref. [51]. We also note

a bump in the differential flux in Fig. 2.2 at around 3 GeV. We believe this artifact is due to the

miscalibration of Class B photon events [52].

2.4 Determination of Continuum Gamma-Ray Flux

The line we seek is an excess over a continuum, and we must therefore model that continuum

before we can search for an excess. Our aim in this section is thus to find a simple functional

form that accurately models the continuum over the resolution scales of the instrument. A simple

linear interpolation over each space of several energy-resolution elements would be sufficient, but

we instead consider several astrophysically motivated functional forms, although the details of the

precise astrophysical origin for the continuum are not important for our search for a line excess.

We were able to find a good fit to the continuum by a linear combination of three astrophys-

ical sources for the diffuse gamma-ray background from the Galaxy. In the first source, nuclear

interactions, cosmic rays collide with nuclei in interstellar matter to produce neutral pions, which

decay mostly into gamma rays [53]. The second process is bremsstrahlung from cosmic-ray elec-

trons interacting with interstellar matter [53]. The third, interior-point-source emission, comes

from unresolved point sources within our Galaxy, such as gamma-ray pulsars [54]. We also con-

sidered exterior-point-source emission [55] and inverse-Compton scattering of interstellar radiation



12

from cosmic-ray electrons, but found that the first three sources listed above were sufficient to

model the flux. Ref. [53] gives the differential gamma-ray production functions for the nuclear and

bremsstrahlung contributions. The production functions are for the cosmic-ray spectrum in the solar

neighborhood. We assumed the production functions at the Galactic center are proportional to the

production functions in the solar neighborhood.

The functional form of the differential flux to which we fitted the data was Ffit(E) = αFnuc(E)+

βFbrem(E) + σFint(E), where Fnuc(E), Fbrem(E), and Fint(E) are the differential photon fluxes

from nuclear interactions, bremsstrahlung, and interior point sources, respectively, and α, β, and σ

are amplitudes determined by fitting the data. The source functions for nuclear interactions and

bremsstrahlung are

Fnuc(E) =


2.63

(
E

GeV

)−2.36
exp

[
−0.45

(
ln
(
E

GeV

))2]
, 0.01 GeV < E < 1.5 GeV,

3.3
(
E

GeV

)−2.71
, 1.5 GeV < E < 7.0 GeV,

4.6
(
E

GeV

)−2.86
, E > 7.0 GeV,

(2.4)

Fbrem(E) =

 0.44
(
E

GeV

)−2.35
, 0.01 GeV < E < 5.0 GeV,

2.1
(
E

GeV

)−3.3
, 5.0 GeV < E < 40 GeV,

(2.5)

where the source functions are given in units of cm−2 s−1 sr−1 GeV−1. We assume interior point

sources to be gamma-ray pulsars. Three pulsars seen by EGRET were the Crab, Geminga, and Vela

pulsars, which have photon indices of −2.12, −1.42, and −1.62, respectively [54]. We approximate

the photon index as having the average value of −1.7, so that

Fint(E) =
(

E

GeV

)−1.7

cm−2 s−1 sr−1 GeV−1 . (2.6)

The fitted flux [Ffit(Ei)] and the subsequent contributions from each physical process are shown in

Fig. 2.3.

2.5 Analysis of Excess Photons in Gamma-Ray Spectrum

We next construct a residual number of counts by subtracting the fitted number

Nfit(Ei) = Ffit(Ei)ε(Ei)∆Ei (2.7)

from the observed number N(Ei) of counts. The counts N(Ei) and Nfit(Ei) are displayed in Fig. 2.4.

We take the residual spectrum to be the upper limit to the number of photons in each energy

bin that could come from WIMP annihilation. However, to search for the signal we must take into
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Figure 2.3: The measured and model gamma-ray flux along with contributions from nuclear inter-
actions (nuc), bremsstrahlung (brem), and interior point sources (int).

Figure 2.4: The spectrum of actual counts, N(Ei), and the fitted spectrum, Nfit(Ei).

account the finite energy resolution. With infinite energy resolution, the WIMP-annihilation excess

would appear as a monochromatic peak over a smooth background distribution. However, because

of energy uncertainties, each photon captured by EGRET will appear to have an energy equal to

its true energy plus an error, which we take to be Gaussian. Thus, monochromatic photons will be

spread over neighboring energy bins. Because our bins are logarithmically spaced, the Gaussian will

appear skewed, but it will still be distinguishable from the background spectrum.

Suppose our true spectrum before measurement consists of a continuum C(Ei) produced by back-

ground radiation and an excess Np of photons with energy Ep. After measurement, the continuum

will change shape but remain smooth, while the excess will spread out as a Gaussian profile over

multiple bins. The Gaussian skews negligibly, so we approximate the excess as a standard Gaussian.
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Table 2.2: Dimensionless resolution R of EGRET at various energies
Energy (MeV) R

100 9.42
200 11.21
500 12.39
1000 12.08
3000 11.49
10000 9.07

Thus, we model the data D(Ei) as

D(Ei) = C(Ei) +Npfp(Ei), (2.8)

where fp(Ei) is a normalized Gaussian of the form,

fp(Ei) =
exp

[
−(Ei − Ep)2/2σ2

Ep

]
∑
l exp

[
−(El − Ep)2/2σ2

Ep

] . (2.9)

In Eq. (2.9), the denominator is summed over all energy bins within 3σEp
of the Gaussian central

energy Ep. The energy uncertainty σEp
at energy Ep, is given by

σEp
=

Ep
R(Ep)

, (2.10)

where R(Ep) is the dimensionless resolution at energy Ep. The fractional full-width at half-maximum

(% FWHM), or
√

2 ln 2 times twice the reciprocal of the resolution, is shown for various energies

in Fig. 20 in Ref. [14]. From the % FWHM, we produce a table of resolution vs. energy, shown

in Table 2.2. We calculate the resolution at each energy by interpolating log[R(E)] over log(E).

Because the first value for R given in Table 2.2 is for energy E = 100 MeV, we cannot extrapolate

log(R) to lower energies with certainty. Therefore, we restrict our analysis to the energy interval 0.1

GeV–10 GeV.

The number Np(Ei) can be deduced at each energy bin in the spectrum by solving Eq. (2.8) for

Np, assuming D(Ei), C(Ei), and fp(Ei) are known. Each Np(Ei) has an uncertainty,

σNp
(Ei) =

√
C(Ei)
fp(Ei)

, (2.11)

due to continuum fluctuations. Most bins in the spectrum contain large numbers of photons. There-

fore, we average Np using Gaussian statistics to calculate Np and σNp
, the value and uncertainty of

the excess, for each energy bin Ep greater than 100 MeV. The resulting ratio of Np to σNp
is shown
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Figure 2.5: Ratio of excess photons to the excess uncertainty.

in Fig. 2.5.

Fig. 2.5 does show statistically significant deviations of the data from our model for the contin-

uum. To determine if this residual favors the Gaussian model, we compare χ2 for a Gaussian model

to χ2 for a constant-excess model. We calculate χ2 for both models over a ±3σEp
range centered

at the excess center. The Gaussian is Npfp. We also compare the residual with a constant excess

Nc, where dNc/dE is constant and Nc is proportional to the energy-bin size. We normalize Nc such

that the lowest energy bin 3σEp from the Gaussian center has 10 photons. We compared χ2 for the

excess at energies E = 210 MeV and E = 2000 MeV, two energies that have high excess-photons-to-

excess-uncertainty ratios (see Fig. 2.5). At both energies we found χ2 to be smaller for the constant

excess, a simpler model, than for the Gaussian. Thus, we show that the residual does not favor the

Gaussian model, and we do not attribute any of these deviations to a WIMP-annihilation line (see

Fig. 2.6). Rather, it appears that there is some continuum contribution that our analysis has not

taken into account.

We therefore use Np to calculate an upper limit to the line flux. This line flux is different from

the differential flux used in previous sections in that this flux is not divided by the energy bin size.

Since Np has positive and negative values, we take the 2σ upper limit to the line flux Φu(Ep) to be

Φu(Ep) =

 (Np + 2σNp
)/ε(Ei), Np ≥ 0,

2σNp
/ε(Ei), Np < 0.

(2.12)

The 2σ upper limit to the line flux is shown in Fig. 2.7.

We illustrate the reliability of the upper limit to the line flux by repeating the analysis in

Section 2.5 for a sliding-window continuum model. At each energy bin Ei we fitted the diffuse flux

data within 3 to 9σEi
of Ei to a single power law. The amplitude and index of the power law, which

varied with energy bin, were then used to construct the background radiation continuum C(Ei) in
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Figure 2.6: The residual number of counts (crosses) and the expected Gaussian (solid curve) from
a smeared line excess. The top panel shows the residual and Gaussian at E = 210 MeV, while the
bottom panel shows the same at E = 2000 MeV. The ratio of excess photons to excess uncertainty
is high at these energies. Notice in both panels the residual does not resemble the Gaussian. For
E = 210 MeV and E = 2000 MeV, respectively, χ2 for the Gaussian is 17.3 and 38.0 and χ2 for the
constant excess is 11.0 and 23.9. Thus, the Gaussian model is not favored.

Section 2.5 needed to search for a line excess. No significant excess was found, and an upper limit

to the line flux was determined. This 2σ upper limit, shown in Fig. 2.7, agrees quite well with the

previous upper limit in Section 2.5 except around 3 GeV, where the previous upper bound is more

conservative. To be conservative, we chose the upper limit to the line flux from the multi-component

continuum fits, for the rest of our analysis.

2.6 Upper Limits to the Annihilation Cross Section

If WIMPs comprise the Galactic halo, then the flux of line photons from WIMP annihilation is (for

Majorana WIMPs)

Φ(Eγ = mχ) =
〈σv〉γγ
4πm2

χ

∫
l.o.s

ρ2
χ dl, (2.13)
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Figure 2.7: Upper limits to the line flux Φu from the Galactic center. The solid line is the upper
limit derived from the continuum model in Section 2.4. The dashed line is the upper limit derived
from the sliding window technique.

where Φ is the line flux of photons in units of photons cm−2 s−1 sr−1, 〈σv〉γγ is the velocity-averaged

cross section for the WIMP to annihilate to two photons, mχ is the WIMP mass (which is equal to

the photon energy Eγ), and ρχ is the density profile of the WIMP halo. The integral is along the

line of sight, and dl is the differential distance along the line of sight. The residual in the previous

section gives the average line-of-sight line flux within a 10◦× 10◦ region around the Galactic center.

Therefore, we integrate Eq. (2.13) over our viewing region to find the relation between 〈σv〉γγ and

mχ.

The density profile of the WIMP halo must be known in order to integrate Eq. (2.13). The

functional form of the halo density profile is motivated by theory and simulations, with parameters

chosen for consistency with the measured Milky Way rotation curve. We assume the following

parametrization of the density profile,

ρ(r) = ρ0
(r0/a)γ [1 + (r0/a)α](β−γ)/α

(r/a)γ [1 + (r/a)α](β−γ)/α
. (2.14)

Here, ρ0 is the local density of the halo at the solar system; r0 is the distance from the solar system

to the Galactic center, which we take to be 8.5 kpc; a is the core radius; and α, β, and γ are

parameters that determine the halo model. Various combinations of α, β, and γ have been used

in simulations and are of particular interest. We chose to study the Ka and Kb profiles proposed

by Kravtsov et al. [56]; the NFW profile proposed by Navarro, Frenk, and White [49]; and the

modified isothermal profile, or Iso, which is commonly used. These profiles are listed in Table 2.3.

The quantities ρ0 and a are chosen for each profile so that the profile will account for the Galactic

rotation curve. These values are taken from Fig. 5 in Ref. [57]. We insert each of these profiles into

Eq. (2.13) and integrate over our viewing region to find the line flux Φ in terms of 〈σv〉γγ and mχ.
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Table 2.3: Parameters for each profile type.
Profile α β γ ρ0 (GeV/cm3) a (kpc)

Ka 2 3 0.2 0.4 11
Kb 2 3 0.4 0.4 12

NFW 1 3 1 0.3 25
Iso 2 2 0 0.3 4

Figure 2.8: The 2σ upper limits to the velocity-averaged annihilation cross section 〈σv〉γγ as a
function of WIMP mass for various halo-density profiles.

The resulting upper limit to the annihilation cross section 〈σv〉γγ is shown in Fig. 2.8 as a function

of WIMP mass mχ for each halo model listed in Table 2.3.

2.7 Discussion

To illustrate the possible utility of this new bound, we consider a toy model in which WIMPs are

Majorana fermions that couple to electrons via exchange of a scalar boson (the U boson [58, 59]) of

mass mU (assumed to be much heavier than both WIMPs and electrons) through the Lagrangian

density,

L =
CUfAe
2m2

U

χγµγ5χψeγ
µγ5ψe, (2.15)

where CU and fAe are axial couplings of the U boson to the WIMP field χ and the electron field

ψe, respectively. Annihilation of WIMPs with O(MeV) masses to electron-positron pairs has been

considered as a possible explanation [46] for the observed flux, Φ511 = 9.9+4.7
−2.1 × 10−4 photons

cm−2 s−1 [48], of 511-keV photons as measured at the Galactic center by the SPI camera on the

INTEGRAL satellite. In this scenario, positrons from WIMP annihilation then annihilate with

electrons in the IGM to produce these 511-keV photons. The annihilation rate—and therefore the
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cross section for annihilation to electron-positron pairs, and thus the coupling CUfAe/m
2
U—are

determined by the flux of 511-keV photons. More precisely, the 511-keV flux determines an upper

bound to this annihilation rate, cross section, and coupling, but we will here suppose the entire

511-keV flux to be from positrons from WIMP annihilation.

Ref. [60] pointed out that if WIMPs annihilate to electron-positron pairs, they can also undergo

annihilation to an electron-positron-photon three-body final state, a process we refer to as internal

bremsstrahlung. If 〈σv〉e+e− is the cross section for annihilation to electron-positron pairs (as cal-

culated, e.g., in Refs. [58, 59, 61]), then the differential cross section for bremsstrahlung of a photon

of energy Eγ is
d〈σv〉Br

dEγ
= 〈σv〉e+e−

αe
π

1
Eγ

[
ln
(
s′

m2
e

)
− 1
][

1 +
(
s′

s

)2
]
, (2.16)

where s = 4m2
χ, s′ = 4mχ(mχ − Eγ), and αe is the fine-structure constant. The quantity

E2
γd〈σv〉Br/dEγ increases roughly linearly with Eγ for Eγ < mχ and peaks at a value (for our WIMP

mass range of 0.1–10 GeV) less than 10% smaller than the WIMP mass. The measured upper limits

to the flux were approximated in Ref. [60] E2
γdΦBr/dEγ

<∼ 7 × 10−3 MeV cm−2 s−1 sr−1 over the

energy range 1–100 MeV. This flux was averaged over a region on the sky centered at the Galactic

center from −30◦ to 30◦ Galactic longitude and −5◦ to 5◦ Galactic latitude. For the purposes of

this illustrative exercise, we extend this bound up to 10 GeV (roughly consistent with the line limit

we have derived).

Each annihilation to an electron-positron pair produces two 511-keV photons either directly (7%

of all annihilations) or by producing positronium and decaying (23.3% of all annihilations); the rest

produce noncontributing continuum photons [60, 62]. The resulting flux of 511-keV photons is (for

Majorana particles)

Φ511 =
ξ〈σv〉e+e−

4πm2
χ

∫
ρ2
χ dl dΩ, (2.17)

where ξ = 0.303 is the fraction of positrons that undergo two-photon annihilation, the dl integral is

along the line of sight and the dΩ integral is over the SPI camera’s field of view, a 16◦-diameter circle

around the Galactic center. Likewise, the differential flux of photons from internal bremsstrahlung

is
dΦBr

dEγ
=
d〈σv〉Br/dEγ

8πm2
χ∆Ω

∫
ρ2
χ dl dΩ, (2.18)

where ∆Ω ' 0.182 sr is the solid angle over the 60◦ by 10◦ Galactic region mentioned earlier.

The two-photon annihilation cross section 〈σv〉γγ for the Lagrangian of Eq. (2.15) is given by

[63]

〈σv〉γγ =
α2
em

2
χC

2
Uf

2
Ae

π3m4
U

|I(ξe)|2 , (2.19)
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where ξe = m2
e/m

2
χ, I(ξe) = 1

2 [1 + ξeJ(ξe)], and J(ξe) is given by

J(ξe) =
(

1
2

ln
1 +
√

1− ξe
1−
√

1− ξe
− iπ

2

)2

, (2.20)

for ξe ≤ 1. For our WIMP mass range 0.1–10 GeV, ξe � 1 and I(ξe) ' 1/2. The cross section for

annihilation to electron-positron pairs 〈σv〉e+e− is given by [59, 61]

〈σv〉e+e− =
C2
Uf

2
Ae

2πm4
U

[
4
3
m2
χv

2
χ +m2

e

]
, (2.21)

where v2
χ = 3

4v
2
c is the mean-square center-of-mass velocity and vc ' 220 km/s is the WIMP rotation

speed, assuming the electron energy Ee = mχ � me and mU � mχ. We use Eqs. (2.19) and (2.21)

to derive upper limits to the coupling CUfAe/m2
U appearing in the Lagrangian of Eq. (2.15).

Fig. 2.9 shows the upper limit, assuming an NFW halo-density profile, to the coupling CUfAe/m2
U

from measurements of the 511-keV line [46], the limit to the bremsstrahlung-photon flux [60], and

our 2σ limit to the line-photon flux. We see that for the model assumptions and WIMP mass range

considered here, the limit to the two-photon annihilation cross section derived from our 2σ limit to

the line-photon flux is the strongest of these three. At first, this result may seem surprising, given

that the two-photon annihilation process is higher order in αe, but this suppression is counteracted

by the helicity suppression of the cross section for annihilation of Majorana fermions to electron-

positron pairs. Refs. [64, 65] considered also gamma-rays from in-flight annihilation from e+e−

pairs, but their analysis was restricted to energies < 100 MeV.

Of course, the 2σ limit to the line-photon flux may not always provide the best limit to the two-

photon annihilation cross section for every WIMP model. It may well be that other models—e.g.,

those in which the dark-matter particle is a scalar [66]—can produce a ratio of 511-keV photons to

line photons large enough to cause the 511-keV limit to supersede the line photon limit.
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Figure 2.9: Upper limits to the ratio CUfAe/m2
U as a function of WIMP mass for the NFW halo-

density profile. The limits were calculated from the observed 511 keV emission, the constraints on
internal bremsstrahlung, and our derived limit to the line photon flux.
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Chapter 3

Cosmic Microwave Background
Statistics for a
Direction-Dependent Primordial
Power Spectrum

3.1 Introduction

It is well known that the homogeneity and isotropy of the universe are only approximate. There

are departures from homogeneity and isotropy that are now well-quantified by measurements of

the cosmic microwave background (CMB) and galaxy surveys. In current cosmological theory, the

notions of homogeneity and isotropy have been superseded by the notions of statistical homogeneity

and isotropy. The density of matter may differ from one point in the universe to another, but the

distribution of matter is described as a realization of a random field with a variance that is everywhere

the same and the same in every direction. This is generally the prediction of structure-formation

models, and in particular, of inflationary models.

Still, statistical isotropy and homogeneity are assumptions that can be tested quantitatively,

and the precision with which they can be tested is improving rapidly with the still-accumulating

wealth of cosmological data. Preliminary (and controversial) indications for a preferred direction in

the CMB [15, 16, 17, 18] have recently motivated the study of departures from statistical isotropy.

Subsequent theoretical work has shown that although statistical isotropy is a generic prediction of

inflation, inflation models can in fact be constructed to violate statistical isotropy [19, 20, 21, 22,

23, 24, 25, 26, 27, 28]. Dark-energy models might also accommodate departures from statistical

isotropy [29, 30]. These models provide useful straw men against which the success of the standard

inflationary predictions of statistical isotropy can be quantified.
0The material presented in this chapter was first published in Cosmic microwave background statistics for a

direction-dependent primordial power spectrum, Anthony R. Pullen and Marc Kamionkowski, Phys. Rev. D 76,
103529 (2007). Reproduced here with permission, copyright (2007) by the American Physical Society.
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The growing interest in such models motivates us to study generalized tests for statistical isotropy.

In a statistically isotropic universe, the primordial distribution of matter is a realization of a random

field in which Fourier modes of the density field have variances, a power spectrum P (k), that depend

only on the magnitude k of the wavevector k. If we drop the assumption of statistical isotropy, the

power spectrum will depend on the direction k̂ as well. If δ(k) is the Fourier amplitude of the

fractional density perturbation, then the power spectrum is defined by

〈δ(k)δ∗(k′)〉 = δD(k− k′)P (k), (3.1)

where the angle brackets denote an average over all realizations of the random field, and δD is a

Dirac delta function; note that we are still preserving the assumption that different Fourier modes

are uncorrelated. The most general power spectrum can then be written,

P (k) = A(k)

[
1 +

∑
LM

gLM (k)YLM (k̂)

]
, (3.2)

where YLM (k̂) (with L ≥ 2) are spherical harmonics, and gLM (k) quantify the departure from

statistical isotropy as a function of wavenumber k. Since the density field is real, Fourier modes for

k are related to those of −k, in such a way that the multipole moment L must be even. In the

limit gLM (k) → 0, we recover the usual statistically isotropic theory with power spectrum A(k).

The implementation, Eq. (3.2), of power anisotropy is motivated in part by the inflationary model

of Ref. [24], which predicts g2M (k) 6= 0.

Here we consider several CMB tests for statistical isotropy. The first, which we refer to as

“power multipole moments”, is a simple and intuitive estimator that involves measurement of the

multipole moments of the square of the temperature/polarization fields.1 As an example, we apply

this statistic to an inflationary model [24] that predicts a quadrupole in the matter power spectrum.

Although power multipole moments provide a nice model-independent test for departures from

statistical isotropy, more sensitive probes can be developed if the particular form of the departure

is specified. To illustrate, we thus construct the minimum-variance estimators for the anisotropy

coefficients gLM (k) under the assumption that they are constants. The naive power multipole

moments, although intuitively simple, co-add a number of modes with equal weight. The minimum-

variance estimator co-adds modes with weights that depend on their signal-to-noise, so that (as the

name suggests) the variance of the estimator is minimized. We show that this statistic provides a

far stronger probe for the gLM s.

The plan of this chapter is as follows: Section 3.2 reviews some CMB basics. Section 3.3 calcu-
1There has already been some evidence for a dipole in the CMB power [16, 18] that is analogous to the higher

multipole moments that we are considering here, but which cannot be due to anisotropy in the primordial power
spectrum because it has L = 1. There have also been searches [17] for anisotropy along the lines considered here, and
Ref. [67, 68] discusses similar statistics.
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lates the correlations of CMB spherical-harmonic coefficients if there are departures from statistical

isotropy. As we discuss there, the power spectrum Cl, which describes the two-point CMB statis-

tics if there is statistical isotropy, is generalized to a set of moments DLM
ll′ if statistical isotropy

is broken. In Section 3.4, we introduce and calculate the power multipole moments and calcu-

late the standard errors with which these moments can be recovered. We apply this statistic to a

quadrupole in the matter power spectrum, calculating the sensitivities of several CMB experiments

to such a quadrupole. Section 3.5 discusses minimum-variance estimators for the quantities DLM
ll′

that parametrize the departures gLM (k) from statistical isotropy. We then construct from these

the minimum-variance estimators for the quadrupole moments of the primordial power spectrum,

calculate their variance, and evaluate their sensitivity to departures from statistical isotropy. We

make some concluding remarks in Section 3.6. Throughout the main body of the chapter, we dis-

cuss statistics for only a temperature map, in order to make the presentation clear. Appendix A

generalizes to include the full temperature-polarization information. Our numerical results are for

a full temperature-polarization map, as well as for temperature or polarization alone.

3.2 Preliminaries

A CMB experiment provides the temperature T (n̂) as a function of position n̂ on the sky. The map

T (n̂) can be expanded in terms of spherical harmonics Ylm(n̂),

alm =
1
T0

∫
dn̂Y ∗lm(n̂)T (n̂). (3.3)

The alms are Gaussian random variables, and if there is statistical isotropy, then they are statistically

independent for different l and m: 〈alma∗l′m′〉 = Clδll′δmm′ .2 The set of Cls is the CMB temperature

power spectrum. We will see that when statistical isotropy is violated, there are correlations induced

between alms for different l and m [24]. If there is statistical isotropy, the two-point autocorrelation

function is

C(n̂, n̂′) = 〈T (n̂)T (n̂′)〉

= T 2
0

∑
l

2l + 1
4π

ClPl(n̂ · n̂′); (3.4)

i.e., the correlation function depends only on the separation between the two points. If statistical

isotropy is violated, this is not necessarily true.
2Strictly speaking, it is not the alms that are statistically independent, but rather their real and imaginary parts.
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3.3 Off-Diagonal Correlations for Anisotropic Power

Consider a primordial matter power spectrum P (k) given by Eq. (3.2). We expand T (n̂) in k space

in the form,
T

T0
(n̂) =

∫
d3k

∑
l

(−i)l(2l + 1)Pl(k̂ · n̂)δ(k)Θl(k), (3.5)

where Θl(k) is the contribution to the lth temperature moment from wavevector k. With these

conventions, Θl(k) is real. With our expression, Eq. (3.2), we can write the covariance matrix as

〈alma∗l′m′〉 = δll′δmm′Cl +
∑
LM

ξLMlml′m′D
LM
ll′ . (3.6)

Here, the set of Cls, given by

Cl = (4π)2

∫ ∞
0

dk k2A(k)[Θl(k)]2, (3.7)

is the usual CMB power spectrum for the case of statistical isotropy. Departures from statistical

isotropy introduce the second term, where

DLM
ll′ = (4π)2(−i)l−l

′
∫ ∞

0

dk k2A(k)gLM (k)Θl(k)Θl′(k), (3.8)

and

ξLMlml′m′ =
∫
dk̂Y ∗lm(k̂)Yl′m′(k̂)YLM (k̂)

= (−1)m
′ (
GLll′

)1/2
CLMlml′,−m′ ,

(3.9)

where CLMlml′m′ are Clebsch-Gordan coefficients, and

GLll′ ≡
(2l + 1)(2l′ + 1)

4π(2L+ 1)
(
CL0
l0l′0

)2
. (3.10)

Throughout, we use upper-case indices LM for power anisotropies, and lower-case indices lm for

temperature/polarization anisotropies. For L even, ξlml′m′ are nonvanishing only for l− l′ even, and

so the DLM
ll′ are real. Eqs. (3.8) and (3.9) agree with similar results in Ref. [68], and they recover

the results of Ref. [24] for L = 2.

If primordial perturbations are statistically isotropic and Gaussian, then the statistics of the

CMB temperature map are specified fully by the power spectrum, the set of Cls. If primordial

perturbations have a departure from statistical isotropy that can be written in terms of spherical

harmonics YLM (k̂), then the two-point statistics are described additionally by the set of multi-
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pole moments DLM
ll′ . These quantities are thus the generalization of the Cls if there is statistical

anisotropy.

3.4 Power Multipole Moments

3.4.1 Theoretical predictions

It is natural to expect that a spherical-harmonic pattern of anisotropy in the matter power spectrum

manifests itself in a similar pattern in the CMB power. It is thus natural to consider a set of “power

multipole moments”,

bLM =
1
T 2

0

∫
dn̂Y ∗LM (n̂)

〈
T 2
〉

(n̂), (3.11)

where
〈
T 2
〉

(n̂) = C(n̂, n̂) is the expectation value of the square of the temperature at position n̂

in the sky; it is the autocorrelation function at zero lag. With this statistic, we simply look for

anisotropies in the power. These statistics have several advantages. In addition to having a form

familiar from similar statistics [e.g., Eq. (3.3)] for temperature fluctuations, they have simple analytic

expressions in terms of P (k). There are also (as we show below), relatively simple expressions for

the cosmic-variance– and instrumental-noise–induced errors in the measurement of these statistics.

The variance
〈
T 2
〉

(n̂) as a function of position n̂ is given by

〈
T 2
〉

(n̂)
T 2

0

=
∑
lml′m′

〈alma∗l′m′〉Ylm(n̂)Y ∗l′m′(n̂). (3.12)

We put this into Eq. (3.11) and use

∑
mm′

CLMlml,−m′C
L′M ′

lml′,−m′ = δLL′δMM ′ , (3.13)

to obtain (for L ≥ 2)

bLM =
∑
ll′

GLll′D
LM
ll′ . (3.14)

3.4.2 Statistical noise

We now calculate the standard error, due to cosmic variance and instrumental noise, with which the

power multipole moments can be measured. To do so, we consider a full-sky map Tmap(n̂) of the

temperature in Npix equal-area pixels. The temperature in each pixel receives contributions from

signal and from noise. Thus, in pixel i, Tmap = T (n̂i)+T n
i , where T (n̂i) is the temperature measured

in pixel i, which will be the signal temperature smoothed by a Gaussian beam of full-width half-

maximum (FWHM) θfwhm, plus a noise T n
i . We assume that the noise is isotropic and that the noises

in different pixels are uncorrelated with variance σ2
T : i.e.,

〈
T n
i T

n
j

〉
= σ2

T δij . The power spectrum for
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the map is thus Cmap
l = |Wl|2Cl + Cn

l , where Cn
l = (4π/Npix)σ2

T is the noise power spectrum, and

Wl is a window function that takes into account the effects of beam smearing; for a Gaussian beam

of FWHM θfwhm, it is Wl = exp(−l2σ2
b/2) with σb = θfwhm/

√
8 ln 2 = 0.00742(θfwhm/1◦).

Since the instrumental noise is isotropic by assumption, we get an unbiased estimator for bLM

(for L ≥ 2) from

b̂map
LM =

1
T 2

0

∫
dn̂Y ∗LM (n̂) [Tmap(n̂)]2 . (3.15)

Cosmic variance and instrumental noise induce a variance in the bLM s, which we define as

ΞLM ≡
〈
b̂LM b̂LM

〉
, (3.16)

where we have assumed the null hypothesis, gLM = 0. For this null hypothesis of a statistically

isotropic Gaussian random map,

ΞLM =
2
T 4

0

∫
dn̂ dn̂′ Cmap(n̂, n̂′)Cmap(n̂, n̂′)

×YLM (n̂)Y ∗LM (n̂′)

= 2
∑
ll′

GLll′C
map
l Cmap

l′

(3.17)

where Cmap(n̂1, n̂2) is the two-point correlation function for the map, obtained from the expression,

Eq. (3.4), for the correlation function by replacing Cl by Cmap
l , and we have used

∑
mm′(C

LM
lml′m′)

2 =

1. Note that the absence of any M dependence of ΞLMAA′ is as we expected. Moreover, it follows from

Eq. (3.13) that the estimators for the different blms are uncorrelated:
〈
b̂LM b̂L′M ′

〉
∝ δLL′δMM ′ .

Given a power spectrum of the form Eq. (3.2), specified by the functions gLM (k), predictions for

the bmap
LM can be evaluated with Eq. (3.14) replacingDLM

ll′ in that equation by DLM,map
ll′ = DLM

ll′ WlWl′

and evaluating the DLM
ll′ with Eq. (3.8). The bmap

LM can then be measured using Eq. (3.15) with

variances given by Eq. (3.17).

3.4.3 A worked example

As a simple example, suppose the gLM (k) are constants, independent of k. We can then take gLM

outside the integral in Eq. (3.8). An estimator for gLM is then ĝLM = b̂map
lm /(bmap

lm /gLM ). Defining

Fll′ ≡ DLM
ll′ /gLM for this case, the variance with which each gLM can be measured is then

σ2
gLM

=
2
∑
ll′ G

L
ll′C

map
l Cmap

l′[∑
ll′ G

L
ll′Fll′WlWl′

]2 . (3.18)
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Moreover, the measured gLM are statistically independent as a consequence of the statistical inde-

pendence of the b̂LM .

To illustrate, we apply this result to an inflationary model [24] that has a power spectrum with

a quadrupole dependence on the angle.3 We use the Θl(k) calculated by CMBFAST [69] to obtain

Fll′ . We assume only scalar perturbations and the current best-fit cosmological parameters.

The numerical results are given in Table 3.1, but before reviewing them, we provide some very

rough estimates to get some feel for the numbers. To do so, ignore instrumental noise and suppose

that Wl = 1 for all l ≤ lmax. For L = 2, Fll′ 6= 0 only for l′ = l or l′ = l±2. Moreover, for these com-

binations of ll′ and for l� 2, we approximate the numerical results (which we use for the numerical

results in the table) for Fll′ as Fl,l+2 ' −0.5Cl. Also, (C20
l0l0)2 ∼ (5/8)l−1 for l� 1, and (C20

l0(l±2)0)2

is 1.5 times as large. Eq. (3.18) can then be approximated σ2
g2M
∼ 256π[

∑
l l(Cl)

2]/[
∑
l lCl]

2. If

the power spectrum has the form Cl ∝ l−2 (a very rough approximation to the temperature power

spectrum for l <∼ 1000), then σ2
g2M
∼ 128πl−2

min[ln(lmax/lmin)]−2. For example, using lmin = 2 and

lmax = 1000 yields σg2M
∼ 1.23.

Of course, there is nothing about the derivation of Eq. (3.18) that is specific to a temperature

map, and this result can be applied equally well, e.g., to the E-mode polarization. If we approximate

the polarization power spectrum by Cl ∼ const, then we find σ2
g2M
' 512πl−2

max, or σg2M
∼ 5× 10−2

for lmax ' 1000.

We now return to the numerical results for σg2M
listed in Table 3.1 for the Wilkinson Anisotropy

Probe (WMAP) [32], which has now collected three years of data, the Planck satellite [33], to be

launched in 2008, and EPIC [70], a satellite mission currently under study. The parameters assumed

for each model are listed, as well as results obtained using Eq. (3.14) assuming only TT is used

or EE only. Appendix A generalizes Eq. (3.14) to the case where the full temperature-polarization

is used (including the TE correlation), and we present numerical results for this case in the Table

as well. We also list results, labeled “CVO” (cosmic variance only), for a hypothetical experiment

that has perfect angular resolution and no instrumental noise. These numbers are for hypothetical

full-sky experiments, but a realistic experiment will likely only be able to use ∼ 65% of the sky for

cosmology. If so, then each estimate for σg2M
must be increased by a factor (0.65)−1/2, about 25%.

We also note that the theory cannot specify the direction ê of the quadrupole, and so a search for a

quadrupole would require evaluation of all five g2M s. A “3σ” detection would thus require that the

sum of the squares of the g2M s need to exceed (3σg2M
)2, which is independent of M .

The order of magnitude that we would expect for σg2M
is ∼ N

−1/2
pix , where Npix ∼ l2max is the

number of resolution elements on the sky, comparable to the precision with which one can measure

the variance (the monopole) of the temperature-fluctuation amplitude. The numerical results listed

3Note that our g20 is (2/3)
p

4π/5g∗, where g∗ is the coefficient in Ref. [24] of (k̂ · ẑ)2 if the preferred direction is
taken to be ẑ.
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Table 3.1: The standard error σg2M
to the amplitude of a quadrupole anisotropy in the matter

power spectrum for different experiments. The instrumental temperature and polarization noises
and beam width are listed for each experiment. We show results for the power multipole moments
(pmm)for TT only, EE only, and the full result. We also show in the last three columns σmv

g2M
from

the minimum-variance estimator for each experiment, for TT only, EE only, and the full result.

Experiment σT (µK) σP (µK) θfwhm σpmm
g2M

(TT) σpmm
g2M

(EE) σpmm
g2M

(total)
WMAP 30.0 42.6 21′ 1.3 11 1.2
Planck 13.1 26.8 5′ 1.6 0.16 0.16
EPIC 0.021 0.068 52′ 1.2 0.55 0.42
Cosmic variance 0 0 0 1.8 0.014 0.014
Experiment σmv

g2M
(TT) σmv

g2M
(EE) σmv

g2M
(total)

WMAP 0.024 2.4 0.024
Planck 0.0052 0.033 0.0050
EPIC 0.016 0.019 0.011

in Table 1 for the error to g2M obtained from the power quadrupole moment b̂2M are not quite as

good as this N−1/2
pix expectation. The origin of this discrepancy can be traced to two sources. First

of all, the two-dimensional CMB signal is degraded from the three-dimensional power spectrum; a

Fourier mode in the ẑ direction gives rise to some temperature fluctuation near the north pole, and

not just at the equator. This is manifest in the large coefficients (e.g., the factor of 512π) in our

analytic estimates.

However, another reason that the estimator b̂2M does not provide a sensitive probe of a quadrupole

departure from statistical isotropy is that it is not an optimal estimator for g2M . This estimator

sums the “signals” DLM
ll′ , but it does not weight these signals properly. This can be seen by noting

that for a Cl ∝ l−2 power spectrum, for example, the error obtained from Eq. (3.18) can be reduced

by applying a low-pass filter: i.e., by increasing the minimum values of ll′ in the sums. (A simple

calculation shows that with the properly chosen lower-l limit, σg2M
can be reduced by a factor of

30.) If the precision of the result is improved by removing data, then something is sub-optimal.

3.5 The Minimum-Variance Estimator

3.5.1 The estimator and its variance

The b̂LM estimator is a simple and intuitive quantity that can be measured to test for statistical

isotropy in a model-independent way. However, if one has a specific theory, defined by the functions

gLM (k) or some quantities that parametrize the gLM (k), then there will be estimators that can be

constructed to measure optimally those parameters. For example, if the gLM s are all constants,

then one can measure them better than the numerical results for the power multipole moments bLM
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would suggest. Below, we will derive the minimum-variance estimator for gLM .

Before moving on, it is instructive and will be useful below to re-derive the variance to b̂map
LM . We

return to Eq. (3.14) and note that bmap
LM can be written as a sum over DLM,map

ll′ ≡ DLM
ll′ WlWl′ . We

then return to Eq. (3.6) to derive the minimum-variance estimator for DLM,map
ll′ . Given a map amap

lm ,

each mm′ pair provides an estimator for DLM,map
ll′ , through

D̂LM,map
ll′,mm′ =

amap
lm amap,∗

l′m′ − Clδll′δmm′
ξLMlml′m′

, (3.19)

with variance 〈(
D̂LM,map
ll′,mm′

)2
〉

=
(1 + δll′δmm′)C

map
l Cmap

l′(
ξLMlml′m′

)2 . (3.20)

The estimators for different mm′ pairs are uncorrelated (if we use the real and imaginary parts of the

alms), so the estimators can be summed over all mm′ pairs, inversely weighted by the variance, to

obtain a minimum-variance estimator. If l = l′, we sum only over m′ ≥ m to avoid double-counting

pairs. However, the factor (1 + δll′δmm′) then weights the m = m′ modes twice as much, if l = l′,

and thus allows us to re-write the sum over all m and m′. The result for the estimator can thus be

written, for both l = l′ and l 6= l′, as

D̂LM,map
ll′ =

∑
mm′ a

map
lm amap,∗

l′m′ ξ
LM
lml′m′

GLll′
. (3.21)

We recognize these to be the bipolar-spherical-harmonic coefficients of Refs. [67], with a slightly

different weight. The variance of this estimator is then

〈(
D̂LM,map
ll′

)2
〉

=
(1 + δll′)C

map
l Cmap

l′

GLll′
. (3.22)

The variance, Eq. (3.18), with which each blm can be measured simply follows by summing the

variances of each term in Eq. (3.14).

Now, to construct the minimum-variance estimator, we simply note that the statistically in-

dependent quantities predicted by the theory are the DLM
ll′ ’s, the generalizations of the Cl’s for

a theory without statistical isotropy. We have constructed above estimators for these quantities,

and we have their variances. For a theory with constant gLM ’s, each DLM
ll′ provides an estimator

through ĝLM,ll′ ≡ D̂LM
ll′ /Fll′ . We then sum these, inversely weighted by their variance to obtain the

minimum-variance estimator,

ĝLM =

∑
l′≥l Fll′WlWl′D̂

LM,map
ll′

〈(
D̂LM,map
ll′

)2
〉−1

∑
l′≥l (Fll′WlWl′)

2

〈(
D̂LM,map
ll′

)2
〉−1 , (3.23)
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obtained from the entire map. The variance σ2
gLM

of this estimator is then obtained by summing

the inverse variances of all the estimators. Again, the sums are over l′ ≥ l, but the factor (1 + δll′)

in Eq. (3.22) allows us to write the sum over all ll′,

1
σ2
gLM

=
∑
ll′

GLll′
(Fll′WlWl′)2

2Cmap
l Cmap

l′
. (3.24)

3.5.2 Illustration: The Power Quadrupole

To illustrate, we now evaluate this expression for L = 2. Again, in this case, the only ll′ combinations

that contribute are l′ = l and l′ = l ± 2. We assume l, l′ � 1, approximate Fl,l+2 ' −0.5Cl, as

above, and evaluate CLMl0l′0 as in Sec. 3.4.3. We can then write,

1
σ2
g2M

' 0.035
∑
l

lC2
l (Wl)4

(Cmap
l )2

, (3.25)

which we can further approximate as 0.017 l2max, where lmax is the multipole moment at which

Cn
l ' Cl(Wl)2. The end result is then σg2M

' 7.6/lmax, quite close to what we would have expected

by simply counting the number Npix ' l2max of usable pixels. For the WMAP and Planck temperature

maps, lmax is roughly 650 and 2000, respectively, implying σg2M
∼ 1.2 × 10−2 and 3.8 × 10−3,

respectively, implying very significant improvements in the sensitivity over the power multipole

moments.

Table 3.1 lists the exact numerical results, obtained by evaluating Eq. (3.24) exactly, for both TT

only and EE only. Again, Appendix A generalizes Eq. (3.24) for the full temperature-polarization

map, including the TE cross-correlation, and numerical results for this case are also included. The

table shows that by weighting the modes correctly, we get an improvement of a factor of ∼ 2 for

WMAP and Planck EE and more than an order-of-magnitude improvement for WMAP and Planck

TT; this is in accord with our arguments that the signal-to-noise in the TT power multipole moments

was particularly poorly chosen. Although EPIC will have vastly improved instrumental sensitivity,

with its modest angular resolution, it is not particularly well suited to search for departures from

statistical isotropy. Again, the minimum-variance numbers in the table must be increased by about

25% to account for partial-sky coverage. And again, since the preferred direction is not known a

priori, the sum of the squares of the g2M s must exceed (3σg2M
)2 to claim a “3σ” detection of a

departure of statistical isotropy.

3.6 Concluding Remarks

We have considered CMB tests for the statistical isotropy of the primordial power spectrum. The

power spectrum of Eq. (3.2) is the most general power spectrum if the assumption of statistical
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isotropy is dropped. In the more general case, the CMB power spectrum Cl is generalized to a set of

momentsDLM
ll′ , which are closely analogous to the bipolar-spherical-harmonic coefficients of Ref. [67].

The power multipole moments bLM provide simple and intuitive statistics that can be used to search

in a model-independent way for departures from statistical isotropy. If, however, a particular model

is introduced by specifying a particular parametrization of the functions gLM (k), then minimum-

variance statistics can be introduced to improve the precision with which these parameters can

be constrained. For example, we constructed explicitly the minimum-variance estimators for the

coefficients gLM for the case in which they are k-independent. We applied these results to a model

in which there is a quadrupole in the primordial power spectrum, and the results are shown in Table

3.1. We see that the best probe of a primordial quadrupole moment will come from Planck TT, for

which we anticipate σg2M
= 0.0052. Multiplying this by 1.25 to account for a 65% sky coverage, and

then by the factor of 3 required for a “3σ” detection, we find that the smallest quadrupole amplitude

that will be detectable by Planck will be around 2.0%.

To reduce clutter in the equations and to keep the main line of reasoning clear, we have de-

rived equations in the main body of the chapter for the case where either the temperature or the

polarization is used, but not both. Appendix A generalizes the analysis to allow the use of the full

temperature-polarization information, including the TE cross-correlation.

What about other probes? Consider, for example, the Sloan Digital Sky Survey [39]. The

volume and galaxy density of the main galaxy survey allows measurement, roughly speaking, of the

amplitudes of Nmodes ∼ 105 independent Fourier modes of the density field, in the linear regime,

and these measurements are cosmic-variance limited. Measurement of the quadrupole of the power

spectrum can then simply be done by comparing the amplitudes of Fourier modes in different

directions. The standard error to the power multipole moments will thus be σgLM
∼
√

2/Nmodes ∼

10−2, comparable in order of magnitude to what can be achieved with the CMB. Of course, a

realistic search will be hampered by the irregular volume of the survey, redshift-space distortions,

and anisotropies (line-of-sight–versus–angular) inherent to the measurement technique. But then

again, there will be degradations (foregrounds, sky cuts, etc.) to the idealized CMB measurements

we have considered. Of course, if gLM (k) varies with k, then the constraints provided by the CMB

and galaxy surveys will be complementary, to the extent that the wavenumbers k probed by the

CMB and galaxy surveys differ. Looking forward, there is ultimately the possibility of accessing with

21 cm fluctuations approximately 1015 modes of the primordial density field [71], allowing values as

small as gLM ∼ 10−7 to be probed, but this is in the very far future.
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Chapter 4

Non-Detection of a Statistically
Anisotropic Power Spectrum in
Large-Scale Structure

4.1 Introduction

Statistical isotropy (SI) is one of the most standard predictions of structure-formation and infla-

tionary models. In this hypothesis, the density fluctuations in the universe are a realization of a

random field whose statistical properties (e.g., power spectra) are invariant under rotations. When

probing density fluctuations using the cosmic microwave background (CMB) temperature, SI is gen-

erally assumed in the analysis. However, searches for violations of SI, or statistical anisotropy, are

now being performed with increasing precision as the amount of CMB data has grown. These

searches are revealing possible evidence for statistical anisotropy in the CMB [15, 16, 17, 18],

including a possible detection of quadrupolar anisotropy [35, 36, 31]. In response, many have

proposed inflationary and dark-energy theories with parameters that quantify departures from SI

[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 75, 76, 77]. The detection of quadrupolar anisotropy in the CMB

now appears to be contaminated by systematic effects (possibly beam asymmetry [38], although this

is debated [36]); as such it is desirable to constrain quadrupolar anisotropy by other techniques.

One way to quantify statistical anisotropy is to allow the three-dimensional power spectrum of

matter density fluctuations P (k) to depend on the direction of k. This is a full description for

Gaussian but anisotropic initial perturbations. This approach was motivated by the inflationary

model of Ref. [24], a model for which Pullen & Kamionkowski [78] constructed parameter estimators

for CMB analysis. As usual, if δ(k) is the Fourier amplitude of the fractional matter density

0The material presented in this chapter was first published in Non-detection of a statistically anisotropic power
spectrum in large-scale structure, Anthony R. Pullen and Christopher Hirata, JCAP 1005, 027 (2010). Reproduced
here with permission, copyright (2010) by the Institute of Physics and SISSA.
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perturbation, an anisotropic power spectrum is defined via

〈δ(k)δ∗(k′)〉 = (2π)3δD(k− k′)P (k) , (4.1)

where the angle brackets denote an average over all realizations of the random field, and δD is a Dirac

δ-function; note that we still preserve the assumption that different Fourier modes are uncorrelated

(statistical homogeneity). A direction-dependent P (k) can be decomposed via

P (k) = P̄ (k)

[
1 +

∑
LM

gLM (k)RLM (k̂)

]
, (4.2)

where P̄ (k) is the isotropically averaged matter power spectrum, and RLM (k̂) (with L ≥ 2) are real

spherical harmonics. Physically, gLM gives the magnitude of statistical anisotropy on order L, with

M giving the direction of that anisotropy. Also, gLM = 0 for odd L because a real scalar density

field always has δ(k) = δ∗(−k) and hence P (k) = P (−k).

We define the real spherical harmonics RLM (k) in terms of the complex spherical harmonics

YLM (k) by

RLM =


1√
2
(YLM + Y ∗LM ) if M > 0

YL0 if M = 0
(−1)M

i
√

2
(Y ∗LM − YLM ) if M < 0 ;

(4.3)

these are easily seen to obey the usual orthonormality rules, but have the advantage of making the

gLM coefficients real. The expressions for L = 2 are given in Appendix B.

The purpose of this analysis is to measure or constrain the anisotropy using large-scale structure

data. Given the recent debate over the detection of quadrupolar anomalies in WMAP, and the

evidence that the signal is contaminated by systematic effects [36, 31], it is worth using other

datasets as well to constrain models with anisotropic power. In this analysis we will assume for

simplicity that gLM is scale-invariant. This is both a simplifying assumption, but is also a good

first approximation in at least some classes of modified inflationary models [24]. We will also focus

only on the quadrupole anisotropy g2M ; this is the phenomenologically simplest type of anisotropy

allowed, and also emerges from anisotropic inflation models in the limit of very weak anisotropy [24].

Galaxy surveys probe matter fluctuations because on large scales, the galaxy density is related

to the matter density in accordance with a linear bias model:

〈
δg(k)δ∗g(k′)

〉
= (2π)3δD(k− k′)b2gP (k) , (4.4)

where δg(k) is the Fourier amplitude of the fractional galaxy density perturbation, and bg is the linear
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galaxy bias. The galaxy survey probe has been used to estimate P (k) by stacking the measured

angular matter power spectra Cl in eight photometric redshift slices ranging from z = 0.2 to 0.6

[79]. By performing a similar analysis and including the anisotropy parameters g2M in the power

spectrum, we can use galaxy surveys to estimate quadrupole anisotropy while assuming fiducial

values for the other cosmological parameters.

The plan of this chapter is as follows: In Section 4.2 we describe the SDSS data used and why

we choose LRGs to trace the galaxy distribution. Section 4.3 calculates the angular correlations

statistical anisotropy produces in galaxy surveys and constructs estimators of the g2M s and other

systematic power spectrum variations. We present estimates of these parameters in Section 4.4,

and in Section 4.5 we present our conclusions. Wherever not explicitly mentioned, we assume a flat

ΛCDM cosmology with ΩM = 0.3, Ωb = 0.05, h = 0.7, ns = 1.0, and σ8 = 0.9. Since ours is a search

for anisotropy, small changes in the cosmology will result only in changes in the calibration of the

g2M estimator; they do not alter the null hypothesis.

4.2 Choice of Sample

There are several ways to use galaxy survey data to search for statistical anisotropy. In principle,

one could use a 3-dimensional redshift survey and search for anisotropy in the power spectrum.

This would however be very technically involved: redshift-space distortions make the line of sight

direction special. With sufficient sky coverage one could break the distinction between redshift-space

distortions and true statistical anisotropy. However, in this analysis we choose the technically simpler

route of using photometric galaxy catalogues, which can be studied using estimators analogous to

those for the CMB.

The photometric data we use come from the Sloan Digital Sky Survey (SDSS) [80]. The SDSS

consists of a 2.5 m telescope [81] with a 5-filter (ugriz ) imaging camera [82] and a spectrograph.

Automated pipelines are responsible for the astrometric solution [83] and photometric calibration

[84, 85, 86, 87]. Bright galaxies, luminous red galaxies (LRGs), and quasars are selected for follow-up

spectroscopy [88, 89, 90, 91]. The data used here were acquired between August 1998 and October

2004 and are included in SDSS Data Release 5 [92].

We use a sample of photometrically classified luminous red galaxies. LRGs are the most luminous

galaxies in the universe, making them appealing for probing maximal volume. They also tend to be

old stellar systems with uniform spectral energy distributions and a strong discontinuity at 4000
◦
A,

which enables precise photometric redshifts and hence measurements of {g2M} in multiple redshift

slices. This both reduces statistical error bars and allows tests for consistency. The cuts that define

the photometric LRG sample are enumerated in Ref. [93]. The sample is divided into 8 photometric

redshift slices of thickness ∆zp = 0.05 ranging from zp,min = 0.2 to zp,max = 0.6, using the “single-
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Table 4.1: Properties of the 8 LRG redshift slices; zp is the photometric redshift range, and zmean

is the mean (true) redshift of the slice. Ngal is the number of galaxies in the redshift slice, and bg is
the linear bias.

Label zp zmean Ngal bg

z00 0.20-0.25 0.233 30812 1.74
z01 0.25-0.30 0.276 38168 1.52
z02 0.30-0.35 0.326 37963 1.67
z03 0.35-0.40 0.376 55951 1.94
z04 0.40-0.45 0.445 77798 1.75
z05 0.45-0.50 0.506 138901 1.73
z06 0.50-0.55 0.552 126318 1.80
z07 0.55-0.60 0.602 93973 1.85

template” photo-z algorithm of Ref. [93]. We plot the redshift distributions in Fig. 4.1, while their

properties are given in Table 4.1.

Our galaxy catalogue is a subset of that used by Ref. [94], but we restrict our attention to

Galactic latitudes b > 45◦. This was done in Ref. [79] to prevent stellar contamination in the data,

and we decided to use the same cut accordingly. We pixelize these galaxies as a number overdensity,

δg = (n − n)/n, onto a HEALPix pixelization [95] of the sphere, with 1, 418, 213 pixels. This

corresponds to a solid angle of 4662 deg2 (as opposed to 3528 used in Ref. [79]). The LRG maps

thus generated are shown in Fig. 4.2.

4.3 Formalism and Estimators

4.3.1 Galaxy density projections on the sky

We relate angular correlations in the sky to the direction-dependent matter power spectrum P (k),

which follows the derivation in Ref. [79] for the statistically isotropic case. A photometric galaxy

survey measures the 2-dimensional projected galaxy overdensity δg(n̂), which is related to the full

3-dimensional density via

δg(n̂) =
∫

dχf(χ)δg(x = χn̂) , (4.5)

where χ is the comoving distance, and f(χ) is the radial selection function, which is the normalized

redshift distribution for the redshift slice. (We leave out redshift space distortions here, but include

them below.) By Fourier transforming δg(x) and using the identity

e−ik·n̂χ =
∞∑
l=0

(2l + 1)iljl(kχ)Pl(k̂ · n̂) , (4.6)
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Figure 4.1: The redshift distributions for the 8 photometric LRG redshift slices.

0.23 0.28 0.33 0.38

0.44 0.51 0.55 0.60

Figure 4.2: The LRG density in the 8 photometric redshift slices. The 45◦ radius caps are displayed
in a Lambert azimuthal equal-area projection, with the north Galactic pole at the centre, l = 0◦ at
right, and l = 90◦ at bottom. The labels indicate the characteristic redshift of each slice.
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we obtain

δg(n̂) =
∞∑
l=0

il(2l + 1)
∫

d3k

(2π)3
Pl(k̂ · n̂)δg(k)Wl(k) , (4.7)

where

Wl(k) =
∫

dχf(χ)jl(kχ) (4.8)

is the window function, and jl(x) and Pl(x) are the lth-order spherical bessel functions and Legendre

polynomials, respectively.

The statistical properties of the 2-dimensional galaxy field can be derived in analogy to those

for the CMB [78], with Wl(k) replacing the CMB radiation transfer function Θl(k).1 If statistical

isotropy is valid, then the two-point galaxy correlation function can be written as

Cg(n̂, n̂′)|SI = 〈δg(n̂)δg(n̂′)〉 |SI =
∑
l

2l + 1
4π

Cg,lPl(n̂ · n̂′) , (4.9)

where Cg,l is the angular galaxy power spectrum:

Cg,l =
2
π

∫ ∞
0

dk k2P̄g(k)[Wl(k)]2 , (4.10)

where P̄g(k) = b2gP̄ (k). However, the presence of statistical anisotropy will cause additional terms

to appear other than the ones in Eq. 4.9. Using Eqs. (4.7) and (4.2), we find for the statistically

anisotropic case

Cg(n̂, n̂′) =
∑
l

2l + 1
4π

Cg,lPl(n̂ · n̂′)

+
∑
LM

∑
lml′m′

DLM
g,ll′X

LM
lml′m′Rlm(n̂)Rl′m′(n̂′) . (4.11)

Here, the set of Cg,ls are given by the usual galaxy power spectrum for the case of statistical isotropy.

Statistical anisotropy produces the second term, where

DLM
g,ll′ = il−l

′ 2
π

∫ ∞
0

dk k2P̄g(k)gLMWl(k)Wl′(k) , (4.12)

and

XLM
lml′m′ =

∫
d2k̂Rlm(k̂)Rl′m′(k̂)RLM (k̂) (4.13)

1Note that with our definition of the Fourier transform, there is a relative factor of (2π)3 between some of our
formulas and those of Ref. [78].
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is the real 3-harmonic coupling coefficient. Its expression in terms of Wigner 3-j symbols is given in

C. Parity implies that XLM
lml′m′ is nonzero only for l+ l′−L even. Since earlier in the Introduction we

showed L is even, this requires l+ l′ to be even and DLM
g,ll′ to be real. Eqs. 4.10 and 4.12 agree with

similar results in Ref. [78], and XLM
lml′m′ in Eq. 4.13 is analogous to ξLMlml′m′ in Ref. [78]. Throughout

this chapter, we use upper-case indices LM for statistical anisotropies in the matter power spectrum,

and lower-case indices lm for random anisotropies in the galaxy distribution.

In Fig. 4.3 we show the predicted angular galaxy power spectra Cg,l for the eight redshift slices in

our analysis assuming our fiducial cosmology. We use CMBFast [69] to calculate P̄ (k), and we use

the Halofit prescription [96] to evolve P̄ (k) into the nonlinear regime. Note that we do not attempt

to account for the nonlinear evolution of gLM , which only suppresses the primordial anisotropy by

. 7% on quasilinear scales [97]. We also display [−Fg,l(l+2)], where Fg,ll′ = DLM
g,ll′/gLM . We only

need to show Fg,l(l+2) because we are interested only in quadrupolar statistical anisotropy, or L = 2.

For this case it can be shown that X2M
lml′m′ is zero except for the cases l′ = l and l′ = l ± 2, and

Fg,ll = Cg,l.2 Notice that for large l and smooth f(χ), Wl(k) →
√
π/l f(l/k)/(2k); then we have

Wl+2 'Wl and Fg,l(l+2) ' −Cg,l.

We also show in Fig. 4.3 Cg,l and [−Fg,l(l+2)] when the effect of redshift space distortions is

included. We include this effect by substituting for the window function Wl = W 0
l +W r

l , where W 0
l

is the window function shown in Eq. 4.8 and W r
l is given by

W r
l (k) = β

[
2l2 + 2l − 1

(2l + 3)(2l − 1)
W 0
l (k)

− l(l − 1)
(2l − 1)(2l + 1)

W 0
l−2(k)

− (l + 1)(l + 2)
(2l + 1)(2l + 3)

W 0
l+2(k)

]
, (4.14)

and β is the redshift distortion parameter given approximately by β ∼ Ω0.6
m /bg. The formulas for

redshift space distortions in the angular galaxy power spectrum were derived in Ref. [79].

4.3.2 Estimation of power and statistical anisotropy

We construct a quadratic estimator [98, 99] to measure the anisotropy coefficients g2M . As always

when searching for anisotropies, it is necessary to fit simultaneously for the galaxy power spectrum,

the anisotropy, and any systematics terms that may be present in the data. The basic premise is to

write the galaxy density fluctuation map as a vector δg of length Npix. This vector has an Npix×Npix

2For nonzero X2M
lml′m′ , the triangle inequality requires |l − l′| ≤ L = 2, and parity requires l − l′ to be even.
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Figure 4.3: The predicted angular power spectra for each of the 8 LRG redshift slices. The solid
lines show nonlinear auto power spectra, while the dash-dotted lines show the cross-power power
spectra with the adjacent slice at higher redshift. The dashed lines show the predicted [−Fg,l(l+2)].
The dotted lines show the effect of redshift space distortions on all three spectra.
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covariance matrix C, which we parameterize as

C =
Nt∑
i=1

piC,i, (4.15)

where the {pi}Nt
i=1 are parameters to be estimated and {C,i}Nt

i=1 are “templates”. The notation also

serves to remind us that C,i = ∂C/∂pi. In the case of a Gaussian random field, the minimum-

variance unbiased quadratic estimators for the {pi} are

p̂ = F−1q , (4.16)

where

Fij =
1
2

tr [C,i wC,j w] (4.17)

is the Fisher matrix and

qi =
1
2
δTg wC,i wδg . (4.18)

Here w is a weighting matrix, which should be taken equal to the inverse of the covariance matrix

C. Fortunately, the estimator p̂ remains unbiased (but not necessarily minimum-variance) for any

choice of weight w, and regardless of whether the true galaxy field δg is Gaussian or not. For our

analysis, we take the weight to be w = (S+N)−1, where S is the signal covariance matrix (diagonal

in lm-space, and using the theoretical power spectra) and N is the Poisson noise. The matrix

inversion and trace estimation are done by the iterative and stochastic methods described in detail

in Refs. [100, 79].

We next turn our attention to the template construction. The simplest template is the Poisson

noise itself,

Cij,N =
δij
n
, (4.19)

where n is the mean number of galaxies per pixel, and N is the noise amplitude (1 for pure Poisson

noise). We may also parameterize the isotropic part of the power spectrum by band power amplitudes

C̃n with Cg,l =
∑Nbin
n=1 C̃nη

n
l , where ηnl is a step function that is 1 when l is in bin n and 0 otherwise.

The corresponding template is

∂Cij

∂C̃n
=
∑
lm

Rlm(n̂i)Rlm(n̂j)ηnl . (4.20)
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We use 18 bins in l, ranging from l = 2 up through 600.

For the anisotropy parameters g2M , the templates are somewhat more complicated. We first

extract g2M from the anisotropy amplitude D2M
g,ll′ :

D2M
g,ll′ = g2MFg,ll′ , (4.21)

where

Fg,ll′ = il−l
′ 2
π

∫ ∞
0

dk k2P̄g(k)Wl(k)Wl′(k) . (4.22)

Inspection of Eq. 4.11 then leads us to:

∂Cij
∂g2M

=
∑
lmm′

[
Cg,lX

2M
lmlm′Rlm(n̂i)Rlm′(n̂j)

+Fg,l(l+2)X
2M
lm(l+2)m′Rlm(n̂i)R(l+2)m′(n̂j)

+Fg,l(l−2)X
2M
lm(l−2)m′Rlm(n̂i)R(l−2)m′(n̂j)

]
. (4.23)

In addition to these “essential” templates, we have also added two others to project out various

systematics that could mimic statistical anisotropy. In particular, if there are photometric calibration

errors that vary slowly across the survey (either colored or gray)3, then the depth or effective redshift

may vary, which would lead to a modulation of both the signal power spectrum and the noise level

across the sky.

We model the modulation of the signal power spectrum by considering a modulation in the

fractional density perturbation field in the form δ′(n̂) = [1 + h(n̂)]δ(n̂). This modulation will

cause the two-point galaxy correlation function to have an extra factor of [1 + h(n̂)][1 + h(n̂′)] '

1+h(n̂)+h(n̂′), assuming h(n̂)� 1. We choose to allow h(n̂) to have a quadrupole pattern. (Other

forms of slow modulation across the sky, e.g., a dipole, should be degenerate with a quadrupole

given that our data is only in a cap of radius 45◦.)

In this case δ′(n̂) can be written as

δ′(n̂) =

[
1 +

2∑
M=−2

h2MR2M (n̂)

]
δ(n̂) , (4.24)

where h2M are the modulation parameters. In the case of modulation with no statistical anisotropy,
3Colored errors apply to an error in the relative calibration of different bands, e.g., g− r, whereas gray errors leave

colors fixed but vary the magnitude of an object.
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Cg(n̂, n̂′) is given by

Cg(n̂, n̂′) =

{
1 +

2∑
M=−2

h2M [R2M (n̂) +R2M (n̂′)]

}
Cg(n̂, n̂′)|SI , (4.25)

where Cg(n̂, n̂′)|SI is given by Eq. 4.9. By using the identity

Rlm(n̂)Rl′m′(n̂) =
∑
LM

XLM
lml′m′RLM (n̂) , (4.26)

we find

Cg(n̂, n̂′) = Cg(n̂, n̂′)|SI

+
∑

lml′m′M

h2M (Cg,l + Cg,l′)X2M
lml′m′Rlm(n̂)Rl′m′(n̂′), (4.27)

hence

∂Cij
∂h2M

=
∑
lmm′

[
2Cg,lX2M

lmlm′Rlm(n̂i)Rlm′(n̂j)

+(Cg,l + Cg,l+2)X2M
lm(l+2)m′Rlm(n̂i)R(l+2)m′(n̂j)

+(Cg,l + Cg,l−2)X2M
lm(l−2)m′Rlm(n̂i)R(l−2)m′(n̂j)

]
. (4.28)

An analogous construction for modulation of the Poisson noise gives

∂Cij
∂f2M

=
δij
n
R2M (n̂i) . (4.29)

These 10 parameters (h2M and f2M ) are jointly estimated with {C̃n, g2M}.

4.3.3 Gaussian simulations

We test our estimator on a suite of simple simulations in order to verify its ability to detect anisotropy

when it is present (and to measure zero when anisotropy is not present). Gaussian simulations are

sufficient for this purpose since a quadratic estimator by construction cannot be sensitive to higher

moments of the data.

We perform two tests, one without anisotropy or modulation and one with both. In each test, we

use the power spectrum Cg,l and Fg,l(l+2) of redshift slice z00 for our fiducial cosmology to construct

50 sets of simulated galaxy perturbation maps over the pixels in our analysis’ viewing region. We

also add Gaussian noise to each pixel, with the variance in the noise set equal to 1/ngal, where ngal is

the average number of galaxies per pixel for the redshift slice (consistent with Poisson fluctuations).
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Figure 4.4: The parameter values for the simulation test with no input anisotropy or modulation,
including 1-sigma errors. The top-left panel shows the C̃n, the top-right panel shows the g2M s, and
the bottom panel shows the h2M s.

Then, we run each simulation through the algorithm to find an estimated set of parameters C̃n,

g2M , and h2M . We then average these parameters over all 50 simulations to find an output set of

parameters, which we then compare to our input parameters for constructing the simulations. Since

we do not input C̃n directly, we instead compare the output C̃n to Cg,l at the median l of bin n.

Note that the variance used to compare the input and output parameter sets is equal to the variance

of one simulation, taken from the diagonal of the inverse-Fisher matrix, divided by the number of

simulations.

For the first test, our simulations had input parameters g2M = h2M = 0 for all M . Since there is

no covariance between the simulated δg,lm, the real spherical harmonic coefficients of δg(n̂), we can

simulate each δg,lm independently. A plot of the input and output parameter values for C̃n, g2M ,

and h2M are shown in Fig. 4.4. In the figures we see good agreement between the input and output

values. This test shows us that our algorithm should not see anisotropy or modulation where there

is none. We also see that the error for g2,0 is larger than the errors for the other g2M s. This is due

to a lack of data in the equatorial plane while g2,0 parametrizes a quadrupole along the z-direction.

Our data set makes this type of quadrupole less distinguishable from a uniform excess over the whole

sky than with other quadrupole types.
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Figure 4.5: The parameter values for the simulation test with input anisotropy and modulation,
including 1-sigma errors. The top-left panel shows the C̃n, the top-right panel shows the g2M s, and
the bottom panel shows the h2M s. Note that the input values for g20 and h20 are 0.5.

In the second test, we simulate anisotropic power and modulation in the z-direction by setting

g20 = h20 = 0.5. Now that the δg,lms are correlated, their simulation is no longer trivial. To construct

the simulation, we define the matrix E(m)
ll′ , equal to 〈δg,lmδg,l′m〉 in the case g2M = h2M = 0 for all

M except M = 0. This matrix is given by

E
(m)
ll′ = Cg,lδll′ + g20Fg,ll′X

20
lml′m + h20(Cg,l + Cg,l′)X20

lml′m . (4.30)

To construct our simulation, we perform a Cholesky decomposition on E(m) to find the triangular

matrix L(m) such that E(m) = L(m)L(m)T . We use L(m) to construct δ(m)
g = L(m)x(m), where x(m)

is a Gaussian random matrix with zero mean and unit variance. This setup gives us the desired

covariances we need in the δg,lms. A plot of the input and output parameter values for C̃n, g2M ,

and h2M in this case are shown in Fig. 4.5. In the figures we see good agreement between the input

and output values, including for g20 and h20.
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4.4 Results

We show our results for Cg,l in Fig. 4.6. Because our galaxy sample covers only 11% of the sky,

the powers in Cl and g2M become degenerate, and the isotropic and anisotropic templates become

highly correlated. Thus, when calculating Cl, we remove the anisotropic templates for g2M , h2M ,

and f2M so that power in the Cls is favored. When using this approach, we see agreement between

the measured power spectra and the predicted spectra.

Our results for g2M are shown in Fig. 4.7. For each multipole of g2M , we see consistency with

the null result among the redshift slices except for the measurement of g20 in redshift slice z03. At

this redshift, we measure g20 = 0.925 ± 0.258 (Fisher uncertainty) or ±0.315 (uncertainty derived

from N -body simulations, as described in Sec. 4.4.1). This formally corresponds to a 3.59σ (Fisher)

or 2.94σ (simulation) detection significance; however all of the other redshift slices have g20 within

1σ of zero. This is puzzling and in principle could indicate either a statistical fluke or a systematic

error that afflicts the z03 slice. We note that the statistical significance is marginal: given that we

calculated 5× 8 = 40 g2M s, the probability of having at least one of them deviate by 2.94σ is 12%

(assuming a Gaussian distribution). On the other hand, the z03 slice is also the redshift at which

the LRG colour locus changes direction [79]. The z03 slice also has the highest bias, which would

make it susceptible to nonlinear errors.

The results we found for the other multipoles were consistent for each redshift slice only when

we allowed h2M and f2M to vary from the null result. We show the results for h2M in Fig. 4.8 and

f2M in Fig. 4.9. Note that many of the h2M s and f2M s are inconsistent with zero, which hint at

possible systematic errors of these forms.

4.4.1 Combined statistical anisotropy estimate

To find an estimate of g2M combining all of the redshift slices, we construct a minimum-variance

estimator of the form

ĝ2M =

∑
i g2M,i/σ

2
g2M,i∑

i 1/σ2
g2M,i

, (4.31)

where g2M,i is the estimate of g2M in redshift slice i and σ2
g2M,i

= (F−1)MM for redshift slice i. A

crude estimate of the uncertainty in ĝ2M is given by

1
σ2
g2M

=
∑
i

1
σ2
g2M,i

(4.32)

This uncertainty estimate neglects covariances between the redshift slices and non-Gaussian (trispec-

trum) corrections to the errors in individual slices. We therefore expect it to somewhat underestimate
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Figure 4.6: The measured angular power spectrum for the 8 LRG redshift slices. The solid lines are
the predicted nonlinear power spectra for our fiducial cosmological model, and the crosses are the
measured spectra.
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Figure 4.7: The quadrupole anisotropy parameters vs. redshift slice for each multipole with 1σ errors
from the simulations. Note g20 = 0.925 for redshift slice z03, formally a 2.94σ detection.
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Figure 4.8: The quadrupole modulation parameters vs. redshift slice for each multipole with 1σ
errors from the simulations.
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Figure 4.9: The Poisson noise modulation parameters vs. redshift slice for each multipole with 1σ
errors from the simulations.
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the true uncertainty in ĝ2M . For this reason we expect that error bars derived from N -body simu-

lations (as described next) are more reliable. The ĝ2M values and their uncertainties as calculated

by Eq. 4.32 are shown in the top panel of Fig. 4.10.

We may alternatively estimate the covariance matrix CMM ′ of g2M using N -body mock cata-

logues, which contain the correct slice-to-slice correlations and a more realistic description of the

true non-Gaussian density field. We used a suite of 10 simulation boxes of size (2h−1 Gpc)3 with

periodic boundary conditions, described in more detail in Ref. [101]. For simplicity, and since our

objective is to obtain a covariance matrix rather than a precision prediction of the power spectrum,

we have used the halo catalogue from a single simulation output at z = 0.3. We populate each halo

with a galaxy (or two galaxies if Mhalo > M2) and use its “true” redshift (including the halo peculiar

velocity) and the photo-z error distribution [93] to assign a photometric redshift. A catalogue of

galaxies is then constructed by taking each halo down to some minimum mass Mmin,i fixed by the

requirement to have the correct number of galaxies in the ith photo-z slice. The parameter M2

controls the amplitude of the “1-halo” term in the power spectrum arising from multiple galaxies

per halo (in the sense that the 1-halo term is set to zero if M2 = ∞). We choose M2 by first

constructing a mock catalogue with M2 = ∞. The excess power ∆Cl in the 300 ≤ l < 600 range

is then determined for each photo-z slice. The 3D number density of doubly-occupied haloes nd

required to produce this excess power is then estimated as

nd =
n̄2

2 dV/dΩ
∆Cl. (4.33)

An average value of nd is taken over all slices (nd = 1.8 × 10−5h3 Mpc−3) and this is used to set a

mass threshold (M2 = 7.8 × 1013h−1M�).4 This procedure generates an entire simulated photo-z

survey, including all 8 slices and the correct correlations among different slices due to large scale

structure.

We construct 40 realizations of the survey, using each of the 10 boxes 4 times with different

observer locations. We then estimate g2M for each simulation and redshift slice, which we marginalize

using Eq. 4.31 to find an estimate of ĝ(α)
2M for each simulation α. We use these estimates to construct

the covariance matrix of the form

CMM ′ =
1
39

40∑
α=1

(ĝ(α)
2M − g2M )(ĝ(α)

2M ′ − g2M ′) , (4.34)

where g2M is g2M averaged over the simulations. The diagonal elements of CMM ′ give the uncer-

tainties in g2M . We plot ĝ2M with these uncertainties in the bottom panel of Fig. 4.10. We see

in this case all the measurements are within one sigma of the null result, which is consistent with
4In principle, this procedure could be iterated with computation of a new ∆Cl, etc., however the method is probably

too crude to justify such a procedure.
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Figure 4.10: The quadrupole anisotropy parameters for each multipole marginalized over redshift
slice with 1-sigma errors. The top panel includes errors calculated from the Fisher matrix. The bot-
tom panel includes errors calculated using N-body simulations. Note that both results are consistent
within two sigma with the null result, shown as the dashed line in both plots.

statistical isotropy.

The final values of g2M and their covariance matrix are given in Table 4.2.

Finally, as a systematics test, we consider how the g2M s change when we do not project out the

extra templates {f2M , h2M}. We have shown in Table 4.3 the changes in g2M when none of the

systematics templates are included (“g2M only”) and when the f2M templates are left out but h2M

is included (“g2M & h2M”). As we can see from the table, the exclusion of the f2M templates has

essentially no effect, but there is a substantial change in g2M when the h2M templates are excluded

as well. However, since we expect the main effect of systematic power spectrum modulation across

the sky to be taken into account via the h2M s, and given that they change the result by < 3σ, we

do not expect a significant residual systematic after the h2M s and f2M s have been projected out.

4.4.2 Comparison with CMB results

Groeneboom et al. [36] report evidence for a quadrupolar power asymmetry in the 5-year WMAP

data. They investigated models of the form:

P (k) = P (k)[1 + g∗(k̂ · n̂)2], (4.35)
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Table 4.2: The anisotropy coefficients, averaged over the 8 redshift slices, using the more conservative
covariance matrix from the N -body simulations. Their covariance matrix is also given.

M g2M/10−2 Cov[g2M , g2M ′ ]/10−3

−2 3.901 1.238 -0.327 0.741 0.879 -0.283
−1 -0.979 -0.327 3.599 -0.164 -0.566 -0.042

0 9.508 0.741 -0.164 11.866 -0.761 -1.348
1 6.479 0.879 -0.566 -0.761 5.044 -0.015
2 -2.235 -0.283 -0.042 -1.348 -0.015 1.106

Table 4.3: The changes in the anisotropy coefficients, averaged over the 8 redshift slices, when only
some of the systematics templates are included. We present ∆g2M values, which are equal to the
g2M from the full analysis minus those with only some of the systematics templates, and the number
of sigmas by which the correction differs from zero, ∆g2M/σ(∆g2M ).

g2M only g2M & h2M

M ∆g2M ∆g2M/σ(g2M ) ∆g2M

−2 0.0128 0.63 0.0004
−1 0.1591 2.02 0.0027

0 0.2827 1.94 −0.0050
1 0.2830 2.78 0.0004
2 −0.0003 0.02 −0.0003

where g∗ is the amplitude of the asymmetry and n̂ is its preferred axis. For |g∗| � 1, this is

equivalent to our Eq. 4.2 with

∑
LM

gLMRLM (k̂) = g∗

[
(k̂ · n̂)2 − 1

3

]
=

2
3
g∗P2(k̂ · n̂) (4.36)

and a slightly rescaled definition of the power spectrum, P (k) = P̄ (k)(1− 1
3g∗). Here the − 1

3 ensures

that there is no L = 0 term in Eq. 4.36. Using the spherical harmonic addition theorem, we can see

that this requires

gLM =
8π
15
g∗δL2R2M (n̂). (4.37)

We may use this to construct an estimator for g∗ assuming a particular direction n̂; here we will

take n̂ to be in the Groeneboom & Eriksen direction so that we can test for consistency with their

value of g∗. The best estimator is

ĝ∗ =
15
8π

∑
MM ′ [Cov−1]MM ′ ĝ2MR2M ′(n̂)∑

MM ′ [Cov−1]MM ′R2M (n̂)R2M ′(n̂)
, (4.38)

with uncertainty

σ(ĝ∗) =
15
8π

1√∑
MM ′ [Cov−1]MM ′R2M (n̂)R2M ′(n̂)

; (4.39)
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here Cov is the 5× 5 covariance matrix of the estimators for g2M (see Table 4.2).

Using the WMAP W-band maps, and considering multipoles in the CMB out to lmax = 400,

Groeneboom et al. [36] find an asymmetry of gCMB
∗ = 0.29± 0.031 with an axis of maximum power

in the direction (l, b) = (94◦, 26◦), which they attribute to an unknown systematic effect because

different signals are observed in the V and W bands and the apparent alignment with the Ecliptic

poles. Using the above projection procedure, we find an amplitude gLRG
∗ = 0.006 ± 0.036 in this

direction. Groeneboom et al. also did their fit using the WMAP V-band maps, finding gCMB
∗ =

0.14 ± 0.034 in the direction (l, b) = (97◦, 27◦); when we project our LRG anisotropy coefficients

onto this axis, we find gLRG
∗ = 0.007 ± 0.037. Foregrounds and noise mis-estimation have been

disfavored as possible candidates [31]. A possible cause for the appearance of statistical anisotropy

in the CMB data would be the ellipticity of the WMAP beams, which when combined with the

survey strategy could result in a preferred axis in the direction of the Ecliptic Poles [35, 102, 37, 38].

Specifically, Hanson et al. [38] find that once asymmetric beam effects are subtracted, the data is

consistent with the isotropic model; however Groeneboom et al. [36] evaluated the resulting effect

and found it to be negligible. The WMAP 7-year analysis finds no known instrumental effect other

than beam asymmetry that can cause the anomaly, but they have not yet completed a full simulation

of beam asymmetry effects on quadrupolar power modulation [31]. We also note the the WMAP

team has already accounted for these beam effects in their estimation of the power spectrum, so this

systematic in the quadrupolar anisotropy does not affect the cosmological parameters derived from

WMAP.

Thus the cause of the apparent asymmetry in the WMAP maps is not definitively known. In any

case, our LRG analysis finds no anisotropy in this direction. It is possible that g2M is different at

the two scales probed by the CMB and the LRG sample. In most variants of inflation, where each

e-fold of expansion is similar to the previous one with ∼ O(1/N) deviations (where N is the number

of e-folds remaining), we would expect g2M to vary smoothly with the number of e-folds, or ln k.

We find the effective scales probed by Groeneboom et al.’s CMB analysis [36] and our LRG analysis

are 0.020 Mpc−1 and 0.15 Mpc−1, respectively (see D), which differ by only 2.0 e-folds. It would be

very surprising if inflation were not only anisotropic but also managed to produce a scale-dependent

anisotropy that varied over so short a baseline.

4.4.3 Direction-marginalized constraint on g∗

The above analyses have either set constraints on a general g2M (a 5-dimensional parameter space)

or on g∗ for a fixed anisotropy axis (a 1-dimensional parameter space). It is however of interest to

set constraints on general axisymmetric quadrupolar anisotropies, such as Eq. 4.36, which would

arise if there were a single preferred axis during inflation. This is a 3-dimensional parameter space:

there is an amplitude g∗ and a direction n̂ ∈S2.
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We may set constraints on g∗ via a Bayesian analysis in which a uniform prior is placed on

n̂, as has been done in several previous statistical anisotropy analyses [35, 103]. Our problem -

setting a limit on the amplitude of an anisotropy while marginalizing over its direction - is similar

to that performed by Ref. [103] for the large scale structure dipole; we follow the same methodology,

although we note that for the quadrupolar asymmetry g∗ could be positive or negative (“prolate” and

“oblate” power anisotropies are different and cannot be rotated into each other). The marginalized

likelihood function for g∗ is

L(g∗) =
∫

exp

{
−1

2

∑
MM ′

[Cov−1]MM ′

[
ĝ2M −

8π
15
g∗R2M (n̂)

]

×
[
ĝ2M ′ −

8π
15
g∗R2M ′(n̂)

]}
d2n̂, (4.40)

where ĝ2M are the estimated anisotropy coefficients and Cov is their 5 × 5 covariance matrix. If

we set a uniform prior on g∗, as done by Groeneboom & Eriksen [35], then we may divide L(g∗)

by its integral
∫
L(g∗) dg∗ and treat it as a posterior probability distribution. If we do this, then

we find that 68% of the posterior distribution is contained within −0.12 < g∗ < +0.10 and 95%

within −0.41 < g∗ < +0.38. Note that the distribution has very non-Gaussian tails because of the

large uncertainty on g20: a quadrupole anisotropy aligned with the Galactic axis would be difficult

to detect given our sky coverage. There is a small probability for such an alignment to occur and

not produce measurable g2M (M 6= 0) even if g∗ is large.

4.5 Conclusions

We have conducted a search for statistical anisotropy in the galaxy distribution. Statistical anisotropy

can manifest from the direction-dependent primordial power spectrum shown in Eq. 4.2 with the

magnitude of the anisotropy parametrized by gLM . This phenomenon causes the angular galaxy

power spectrum Cg,l to be generalized by DLM
g,ll′ , which includes gLM . We used estimators for-

mulated by Padmanabhan et al. [79] and a sample of LRGs from SDSS to search for evidence of

quadrupolar anisotropy parametrized by g2M . We found g2M for all M to be within 2σ of zero.

Using our estimates of g2M and assuming a symmetry axis in the direction (l, b) = (94◦, 26◦), we

calculated the anisotropy amplitude g∗ = 0.006±0.036 (1σ). This confirms that the previously iden-

tified anisotropy in the WMAP maps (already believed to be a systematic effect) is not of primordial

origin. When marginalizing over the symmetry axis direction and assuming a uniform prior for g∗,

we constrain −0.41 < g∗ < +0.38 with a 95% confidence level.

Looking forward, we expect much better sensitivity to g∗ from future galaxy surveys. For fixed

sky coverage, the uncertainty in g2M is proportional to the inverse square-root of the number of
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modes measured, i.e., it is proportional to l−1
maxN

−1/2
z where lmax is the maximum multipole at

which the galaxy distribution is well-sampled, and Nz is the number of effectively independent

redshift slices. The largest advance may be possible with future large-volume spectroscopic surveys

intended to study baryon oscillations. Here the effective number of redshift slices is Nz ∼ kmax∆r/π,

where ∆r is the radial width of the survey; for surveys that reach out to z ≈ 2 this is Nz ∼ 100

(instead of 8 here). As this redshift corresponds to a factor of ∼ 3 increase in distance relative to

the SDSS LRGs, we would expect that for similar sampling nP (k) lmax should increase by a factor

of 3. Thus such a survey should in principle be able to improve measurements of g2M by an order

of magnitude relative to those presented here. Further improvements in g20 might also be possible

if improvements in the dust map or work in redder bands allows one to work at lower Galactic

latitudes.
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Chapter 5

Search for Non-Gaussianity with
Photometric Quasars

5.1 Introduction

Inflation is the standard paradigm for the generation of perturbations in large-scale structure (LSS)

[106, 107, 108, 109]. Although the inflationary paradigm has successfully predicted various properties

of the observable universe, including flatness and a nearly scale-invariant spectrum of perturbations

[110, 111, 112, 113, 114], the correct model of inflation has yet to be determined. The simplest

inflation models predict nearly Gaussian primordial perturbations, though more complex models

such as multi-field inflation posit a departure from a Gaussian distribution. Alternatives to inflation,

such as the ekpyrotic model, also predict non-Gaussian primordial perturbations. Since a detection

of non-Gaussianity in cosmological data would discriminate between these fundamentally different

models, much work is being done to constrain non-Gaussianity, both in LSS through the galaxy

distribution and through anisotropies in the cosmic microwave background (CMB). Primordial non-

Gaussianity is readily probed through measurement of the bispectrum of the CMB, in which a

nonzero measurement constitutes a “smoking gun” detection, modulo any systematic effects. Some

alternative probes of non-Gaussianity in LSS include the galaxy bispectrum, which is plagued by

nonlinearities, and galaxy cluster abundances and dark-matter halo clustering, which suffer from

low-number statistics. The accepted parametrization of primordial non-Gaussianity is to introduce

a quadratic term to the primordial potential Φ, written as

Φ = φ+ fNL(φ2 −
〈
φ2
〉
) , (5.1)

where φ is a Gaussian random field [41, 42]. This form describes local-type non-Gaussianity with an

amplitude fNL. The latest constraint on fNL is from the Wilkinson Microwave Anisotropy Probe’s
0The work in progress presented in this chapter was done in collaboration with Christopher Hirata. Reproduced

with permission.
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(WMAP) [32] Seven-Year bispectrum, which gives −10 < fNL < +74 at 95% C.L. [43]. Planck [33],

which will soon give results from its first data release, is expected to produce constraints on fNL of

order σ(fNL) ∼ 7 [115].

One useful effect of non-Gaussianity that has gained much attention is a distinct scale-dependent

bias on large scales in galaxy clustering [44, 45]; probing this effect is the method we seek to employ

in this chapter. Specifically, it has been shown that fNL-type non-Gaussianity produces a shift

in the bias that behaves as ∆b(k) ∝ fNL/k
2; hence, a positive (negative) fNL leads to more (less)

clustering on large-scales. Various authors have used this method to constrain fNL. Slosar et al. [45],

using the Sloan Digital Sky Survey (SDSS) [80] Data Release 5 (DR5) [92], derived the constraints

−82 < fNL < +70 at 95% C.L. for the photometric quasi-stellar-object (photo-QSO) sample and

−29 < fNL < +70 at 95% C.L. for QSOs combined with other data sets, such as the integrated

Sachs-Wolfe effect (ISW) and luminous red galaxies (LRGs). Recently, Tseliakhovich et al. [116]

extended this analysis to a two-parameter curvaton model [117, 118, 119, 120, 121, 122] while others

have sought to use this method in combination with other data sets [123, 124]. DeBernardis et al.

[124] also showed that Planck and EUCLID together could possibly detect fNL ∼ 5.

In this chapter, we prepare the SDSS Data Release 6 (DR6) [125] Richards et al. photo-QSO

sample [126] to constrain fNL with the methodology of Ref. [45]. The photo-QSO sample, probing

large redshifts, is able to probe scale-dependent bias more effectively than other matter tracers.

The goal is to probe a larger redshift range than the previous analysis, using redshifts as low as

z = 0.9 and as high as z = 2.9. A search for non-Gaussianity using this data set was previously

done by Xia et al. in Ref. [127]. The authors used the entire sample (limited to UV-excess QSOs)

to constrain fNL. In this work we divide the quasars into three photometric redshift slices, which

should probe more modes in order to find tighter constraints on fNL. Much of this work involves

removing systematic effects in order to construct accurate angular power spectra. We construct

the cross-correlation between two of the redshift slices to test for systematic effects. We find that

many problems remain in the data despite our efforts to remove systematics. Future work will

involve determining the origin(s) of the remaining systematic issues in order to properly constrain

fNL and the curvaton model. The systematics that are removed may also need to be accounted in

constructing future QSO samples.

The plan of this chapter is as follows: in Sec. 5.2 we describe the photo-QSO data we use in

the analysis. We then show the correction to the galaxy bias due to non-Gaussianity, as well as

the methodology we use in this analysis, in Sec. 5.3. In Sec. 5.4, we discuss the methods we used

to remove systematics from our data set. We also in this section construct the cross-correlation

between the first and third redshift slices to search for systematics. In Sec. 5.5, we discuss our

current progress. Wherever not explicitly mentioned, we assume a flat ΛCDM cosmology with

parameters compatible with WMAP7 data release.
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5.2 Choice of Sample

We use photometric QSOs from SDSS DR6 [125] to trace the matter density and construct its

angular spectrum. The SDSS consists of a 2.5 m telescope [81] with a 5 filter (ugriz ) imaging

camera [82] and a spectrograph. Automated pipelines are responsible for the astrometric solution

[83] and photometric calibration [84, 85, 86, 87]. Bright galaxies, luminous red galaxies (LRGs), and

quasars are selected for follow-up spectroscopy [88, 89, 90, 91]. The data used here were acquired

between August 1998 and June 2006 and are included in SDSS Data Release 6 [125].

Specifically, we use the photometric QSO catalog composed by Richards et al. [126] (hereafter

RQCat). The entire catalog consists of 1,172,157 objects selected as QSOs from the SDSS DR6

photometric imaging data. QSOs are the brightest objects at large redshifts (z > 1), making

them better tracers of the matter density at large scales than LRGs. We limit our dataset to UV-

excess QSOs with high kernel-density-estimator (KDE) QSO probability densities. Specifically, we

implement this choice by requiring the catalog columns good > 0, uvxts = 1, and qsodens > 0.

We use QSOs from the 3 redshift slices ranging from zp,min = 0.9 to zp,max = 2.9. For the survey

geometry we construct the DR6 survey mask as union of the survey runs downloaded from the

SDSS CAS server. We omitted runs 2189 and 2190 because many objects in these runs were cut

from the catalog. This mask was pixelized using the MANGLE software [128, 129]. We plot the

redshift distributions in Fig. 5.1, while their properties are given in Table 5.1. The procedure for

constructing the redshift distributions is described in Appendix E and is similar to that described

in Ref. [94]. We pixelize the QSOs as a number overdensity, δq = (n − n)/n, onto a HEALPix

pixelization [95] of the sphere with Nres = 256. We then reject pixels with extinction E(B − V ) ≥

0.05, full widths at half-maximum of its point-spread function (PSF) FWHM ≥ 2 arcsec, and

stellar densities (smoothed with a 2◦ FWHM Gaussian) nstars ≥ 562 stars/deg2 (twice the average

stellar density), the same cuts implemented in Ref. [94]. We implement these cuts using dust maps

from Ref. [130] and stars (18.0 < r < 18.5) from the SDSS DR6 [125]. We also reject pixels for

which the survey region covers less than 80% of the pixel area. In addition, RQCat contained

regions that seemed to be undersampled. We excise angular rectangles around these regions to

remove them from the data. The angular rectangles in celestial coordinates that were removed are

(α, δ) = (122◦–139◦,−1.5◦–(−0.5)◦), (121◦–126◦, 0◦–4◦), (119◦–128◦, 4◦–6◦), (105◦–120◦, 6◦–25◦),

(111.5◦–117.5◦, 25◦–30◦), (110◦–116◦, 32◦–35◦), (246◦–251◦, 8.5◦–13.5◦), (255◦–270◦, 20◦–40◦), and

(268◦–271◦, 46◦–49◦). After these cuts, the survey region comprises 131,787 pixels covering a solid

angle of 6913 deg2. The QSO maps for each slice are shown in Fig. 5.2. Although there appears to

be striping along the survey latitudes in redshift slices z01 and z02, we account for this systematic

effect in our analysis, as we will show in Sec. 5.4.
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Table 5.1: Properties of the 3 QSO photometric redshift slices; zp is the photometric redshift range,
and zmean is the mean (true) redshift of the slice, and Nqso is the number of QSOs in the redshift
slice.

Label zp zmean Nqso

z01 0.9-1.3 1.230 64,320
z02 1.6-2.0 1.731 85,442
z03 2.3-2.9 2.210 11,589

Figure 5.1: The redshift distributions for the QSO photometric redshift slices z01 (solid), z02 (dotted)
and z03 (dashed).

z = 1.231 z = 1.742 z = 2.227

Figure 5.2: The QSO density in the 3 photometric redshift slices. The 180◦ radius caps are displayed
in a Lambert azimuthal equal-area projection, with the north Galactic pole at the centre, l = 0◦ at
right, and l = 90◦ at bottom. The labels indicate the characteristic redshift of each slice. Notice the
striping in redshift slices z01 and z02; we account for this systematic in Sec. 5.4.
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5.3 Theory and Method

5.3.1 Scale-dependent bias in the halo distribution as seen in the sky

We assume the halo model scenario (see Ref. [131] for a detailed review), in which all matter is

contained in a distribution of halos on large scales which mimics the distribution of matter on small

scales. In the Gaussian case, fluctuations on small and large scales are uncorrelated. However, a

signature of local-type non-Gaussianity is that the fNLφ
2 term in the gravitational potential causes

small-scale matter fluctuations to correlate with large-scale halo fluctuations due to mixing of their

respective gravity perturbations. Positive (negative) fNL incurs a positive (negative) correlation

between scales and an increase (decrease) in the halo bias on large scales as compared to the Gaussian

case. Specifically, this k-dependent shift in the bias was derived for a general halo mass function

n(M) in Ref. [45] and is of the form

∆b(M,k) =
3ΩmH2

0

c2k2T (k)D(z)
fNL

∂ lnn
∂ lnσ8

, (5.2)

while for the case of a universal mass function, such as the Press-Schechter [132] or Sheth-Tormen

[133] mass functions, this expression was shown in Ref. [45] to reduce to

∆b(M,k) = 3fNL(b− p)δc
Ωm

k2T (k)D(z)

(
H0

c

)2

, (5.3)

the expression first derived in Dalal et al. [44]. Here, T (k) is the transfer function, D(z) is the the

growth function normalized such that D(z = 0) = 1, c is the speed of light, Ωm and H0 are the

matter density and the Hubble parameter today, respectively, σ8 is the rms overdensity in a sphere

of radius R = 8h−1 Mpc, and δc is the critical density of spherical collapse. The parameter p ranges

from 1 for LRGs, which populate all halos equally, to 1.6 for QSOs that populate only recently

merged halos. We use p = 1.6 in our analysis to model the scale-dependent bias of QSOs.

5.3.2 Angular power spectrum due to scale-dependent bias and non-

Gaussianity

We probe scale-dependent bias and estimate fNL using its effects on the angular power spectrum

Cl. This spectrum, whose expression, including redshift space distortions, is given in Padmanabhan

et al. [79], can be written as a sum of three terms for the scale-dependent bias case in the form

Cl = C0
l + fNLC

f
l + f2

NLC
ff
l . (5.4)
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The three terms in this expression are integrals given by

C0
l = 4π

∫
dk

k
∆2(k)|W 0

l (k) +W r
l (k)|2

Cfl = 8π
∫
dk

k
∆2(k)[W 0

l (k) +W r
l (k)]∗W f

l (k)

Cffl = 4π
∫
dk

k
∆2(k)|W f

l (k)|2 , (5.5)

where ∆(k) is the linear matter power spectrum today1 and

W 0
l (k) =

∫
D(z)f(z)

H(z)
c

jl[kχ(z)]dz

W r
l (k) =

∫
Ω0.6
m (z)
b(z)

D(z)f(z)
H(z)
c

{
2l2 + 2l − 1

(2l + 3)(2l − 1)
jl[kχ(z)]

− l(l − 1)
(2l − 1)(2l + 1)

jl−2[kχ(z)]− (l + 1)(l + 2)
(2l + 1)(2l + 3)

jl+2[kχ(z)]
}
dz

W f
l (k) =

3δcΩm
k2T (k)

(
H0

c

)2 ∫ (
1− p

b(z)

)
f(z)

H(z)
c

jl[kχ(z)]dz . (5.6)

The scale-independent bias b(z) in Eq. 5.6 is assumed to be inversely proportional to the growth

function, e.g.,

b(z) =
b0
D(z)

, (5.7)

where b0 is the bias at redshift zero. We estimate b0 for each redshift slice by normalizing according

to the condition

∫
dn

dz
dz =

∫
f(z)
b(z)

dz = 1 , (5.8)

as done in Ref. [45]. The Cls in Eq. 5.5 were calculated for all 3 redshift slices and presented in

Fig. 5.3. Because redshift-space distortions and scale-dependent bias are significant on large scales,

redshift-space distortions must be taken into account in order to estimate fNL correctly. To illustrate

the effects of scale-dependent bias induced by non-Gaussianity on the angular power spectrum, we

also graph the behavior of Cl for nonzero fNL in Fig. 5.3

5.3.3 Estimators of non-Gaussianity

In this section we develop the estimators we will use in future work to constrain fNL as well as the

curvaton model. The model for the angular power spectrum described in the previous section leads
1Ref. [45] confirmed that nonlinearities are negligible for k < 0.1h Mpc−1. For our redshifts, this corresponds to

l < 270. We only use Cl for l < 250, so it is safe to use the linear matter power spectrum in our analysis.
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Figure 5.3: The predicted QSO angular power spectra for null and nonzero fNL. The solid lines
are the spectra for the Gaussian case, and the dotted (dashed) lines represent the fNL = 100 (−100)
case.

to a three-parameter model of the observed covariance matrix C for the QSO map of the form

C = p1C0 + p2Cf + p3Cff + CN , (5.9)

where C0, Cf , and Cff are the Npix ×Npix covariance matrices between pixels due to C0
l , Cfl , and

Cffl , respectively, of the form

CAij =
∑
l

(
2l + 1

4π

)
QlC

A
l Pl[cos(n̂i · n̂j)] , (5.10)

A = {0, f, ff}, CN is the Poisson noise matrix given by

CNij =
δij
n
, (5.11)

in terms of the mean number of galaxies per pixel n, and p = (p1, p2, p3) is a parameter vector in

a space describing a class of models for C. For our specific model, p1 quantifies any missing bias

not taken into account (ideally, p1 = 1), p2 = fNL, and p3 = f2
NL. Finally, Ql is a window function

similar to that for CMB anisotropies that appears due to finite pixel size

Ql =

〈
1
θ2

pix

∫ θpix/2

−θpix/2

dx

∫ θpix/2

−θpix/2

dy ei(lxx+lyy)

〉
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Figure 5.4: The window function Ql for θpix = 3.997 mrad.

=
1

2π

∫ 2π

0

dφ
sin2(lθpix cosφ/2) sin2(lθpix sinφ/2)

(lθpix/2)4 cos2 φ sin2 φ
, (5.12)

where θpix is the angular pixel size in radians, which for our map is θpix = 0.003997. We evaluate

this expression numerically and present its behavior for our map in Fig. 5.4.

We will use a quadratic estimator [98, 99] to measure the parameter vector p according to

p̂ = F−1q , (5.13)

where

Fij =
1
2

tr
[
C,i C−1C,j C−1

]
qi =

1
2
δTq C−1C,i C−1δq , (5.14)

are the Fisher matrix and quad vector, respectively, δq is the data vector of length Npix describing

the QSO overdensity map of a particular redshift slice, and C,i = ∂C/∂pi. We set fNL = 0 as

our prior for Cl to construct the covariance matrix templates. Note the matrix inversion and trace

estimation are done by the iterative and stochastic methods described in detail in Refs. [100, 79].

Since p3 is theoretically the square of p2, these parameters are expected to be correlated. Thus,

to get the best estimate of fNL, we must perform a Bayesian maximum likelihood analysis where

we construct the likelihood function L(fNL) using our estimate p̂ and find the value of fNL that

maximizes it as well as the 95% confidence interval. The likelihood function (unnormalized) is of

the form

L(fNL) =
∏

z−slices

exp−1
2
[
(Cov)−1

p2,p2(fNL − p̂2)2
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+ 2(Cov)−1
p2,p3(fNL − p̂2)(f2

NL − p̂3) + (Cov)−1
p3,p3(f2

NL − p̂3)2
]
, (5.15)

where Cov is the 2× 2 covariance matrix between the estimates of p2 and p3 and the exponential is

multiplied over the 3 redshift slices.

We will also extend the search for non-Gaussianity to the two-parameter curvaton model probed

in Ref. [116]. In the curvaton model, the inflaton ϕ alone drives the exponential expansion in the

early universe while the curvaton σ produces the initial perturbations once inflation is over. The two-

parameter model allows both fields to contribute to the initial perturbations. Though the curvaton

itself is a Gaussian field, it is predicted to produce significant inflation since the initial perturbations

in this model increase as σ2. This model is parametrized by f̃NL, the non-Gaussianity parameter

due to the curvaton, and ξ, the ratio of inflaton to curvaton contributions to the perturbations. It

can be shown that our Eq. 5.4 can be rewritten for this model as

Cl = C0
l +

f̃NL

(1 + ξ2)2
Cfl +

f̃2
NL

(1 + ξ2)3
Cffl , (5.16)

where C0
l , Cfl , and Cffl have the same form as in Eq. 5.5. Thus, we can use the same estimates for

p as before to estimate (f̃NL, ξ) and to find the 95% confidence contour, except that the likelihood

function (unnormalized) is now given by

L(f̃NL, ξ) =
∏

z−slices

exp−1
2

(Cov)−1
p2,p2

[
f̃NL

(1 + ξ2)2
− p̂2

]2

+ 2(Cov)−1
p2,p3

[
f̃NL

(1 + ξ2)2
− p̂2

][
f̃2

NL

(1 + ξ2)3
− p̂3

]

+ (Cov)−1
p3,p3

[
f̃2

NL

(1 + ξ2)3
− p̂3

]2
 . (5.17)

5.4 Systematics

The Richards et al. catalog we analyze requires much processing in order to be useful to constrain

non-Gaussianity. For example, although we remove pixels with large extinctions (see Sec. 5.2), we

must perform additional processing to project out the systematic effects that extinction produces

in the remaining pixels. Another systematic to project is red stars (g − r > 1.4), which prevented

Ref. [45] from using the z < 1.45 QSO sample in its fNL constraints. We also note apparent striping,

which we can project out without having to remove the striping manually. This striping should occur

along lines of constant survey latitude η, which are given in terms of celestial coordinates (α, δ) by

tan(η + 32.5◦) = tan δ csc(α− 95◦) . (5.18)
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We use the method demonstrated in Ho et al. [94] where a covariance template for each systematic

is added to the prior covariance matrix Ctrue in order to estimate Cl and fNL correctly, according

to the expression

C = Ctrue +
∑
i=sys

ζiEiET
i , (5.19)

where C yields an unbiased estimator when ζ → ∞ and the vector (over pixel) Ei is the template

for systematic i. The templates are set to be parallel (in pixel space) to the change in δq due to

the systematic. This condition gives templates for extinction in the form Eextinc,i = E(B − V )i and

for red stars in the form Ered stars,i = (nred stars,i − nred stars)/nred stars. Since SDSS scanned along

stripes of constant η with a width of ∆η = 2.5◦, we separate the survey region into 2.5◦-wide stripes

and create a template for each slice. The striping template for each stripe consists of either +1

(for pixels in the stripe) or 0 (for pixels outside the stripe). We set ζi for each template such that

the values of the Fisher and quad vectors converge. This condition is met by setting ζextinc = 100,

ζred stars = 1, and ζη = 100 for redshift slices z01 and z02. For z03, we raise ζextinc and ζη to 500 to

achieve convergence.

While this method should keep extinction and red stars from contaminating our quadratic esti-

mator, we must test our data to make sure there are not any other systematics we have not taken

into account. This is particularly true in searching for non-Gaussianity because large-scale excess

power has a degeneracy as both a signature of nonzero fNL and a signature of a systematic error

across the map such as photometric calibration errors or stellar contamination. To test for sys-

tematics, we construct the cross-correlation power spectrum between redshift slices z01 and z03. A

large class of systematic effects should appear in all three redshift slices, resulting in a statistically

significant cross-correlation. The resulting spectra is shown in Fig. 5.5. We see that there is a sizable

cross-correlation between these redshift slices. In particular, the largest cross-correlation appears in

the second l-bin (7 ≤ l < 12), which shows a 3.38σ-detection. This leads to the suspicion that a

systematic error remains in the data samples.

5.5 Discussion

This chapter presents the data samples and analysis tools needed to construct new constraints on

non-Gaussianity from scale-dependent bias using photometric quasars in SDSS DR6. We seek to

extend previous work by Slosar et al. to a larger redshift range in order to tighten limits on fNL.

We divide the photo-QSO catalog by Richards et al. into three redshift slices. We also construct

quadratic estimators of the angular power spectra as well as estimators for fNL which we will use

in future work. We also discuss how our estimators are modified to project out systematic effects.
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Figure 5.5: The measured cross-correlation angular power spectrum between QSO redshift slices
z01 and z03. The crosses are the measured spectrum and the solid line is the predicted spectrum.
Note that the predicted spectrum is not exactly zero because the redshift distributions have a small
overlap.

We end by constructing an angular cross-power spectrum between the first and third redshift slices

to test for any remaining systematic effects, which shows a positive detection of systematic error.

This work shows deep problems with the RQCat for estimating fNL (or any other cosmological

parameters) within multiple redshift slices. The previous analysis performed using this data [127]

placed all the quasars in one redshift slice. A map of all the UVX objects in the RQCat, shown

in Fig. 5.6, appears to have some of the same systematic issues we see in the maps of the redshift

slices from Fig. 5.2, including striping. Striping was not mentioned in the analysis of Ref. [127],

which may signal that the error bars in their analysis were underestimated. It is possible there are

other systematic effects such as calibration errors for which we have not accounted. Further work to

remove all systematics must be undertaken before the RQCat data sample can be used to constrain

fNL at multiple redshifts.
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Figure 5.6: The QSO density of the entire RQCat UVX sample. The figure format is similar to
Fig. 5.2, except that the color scale is twice as small.
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Appendix A

Generalization to a
Temperature-Polarization Map

For most experiments, the sensitivity to departures from statistical isotropy will come primarily

from either the temperature or the polarization. Considering both in tandem will provide some im-

provement in the result, but given the temperature-polarization cross-correlation, this improvement

will be weaker than what would be obtained by simply adding the two results in quadrature.

Still, to be complete, we include expressions for theory and estimators for a combined temperature-

polarization map. Assuming only primordial density perturbations contribute to the temperature-

polarization map, a map of the sky will now provide the E-mode polarization E(n̂), constructed

in the usual fashion [72, 73] from the measured Stokes parameters Q(n̂) and U(n̂), in addition to

the temperature T (n̂). The map can be written in terms of spherical-harmonic coefficients aX
lm, for

X = {T,E}, and Eq. (3.6) is generalized to

〈
aX
lma

X′,∗
l′m′

〉
= δll′δmm′C

XX′

l +
∑
LM

ξLMlml′m′D
LM,XX′

ll′ . (A.1)

The CXX′

l s and DLM,XX′

ll′ s are obtained as in Eqs. (3.7) and (3.8) by replacing the Θl(k)Θl′(k) factors

in the integrands of those equations by ΘX
l (k)ΘX′

l (k), where these are obtained from Eq. (3.5) by

replacing T (n̂) by X(n̂). Note that for TE and l 6= l′, DLM,XX′

ll′ 6= DLM,XX′

l′l . This will affect the

equations below for the minimum-variance estimator.

We now have a set of three power multipole moments bXX′

LM , obtained from Eq. (3.11) by replacing〈
T 2
〉

by 〈XX ′〉, which is itself obtained from Eq. (3.12) by using
〈
aX
lma

X′,∗
l′m′

〉
for the expectation

value therein. The expression for the bXX′

LM is the same as Eq. (3.14) using DLM,XX′

ll′ there.

The power-multipole-moment estimators b̂XX′,map
LM are as in Eq. (3.15) with [Tmap(n̂)]2 replaced

by [Xmap(n̂)X
′map(n̂)]. Things get a bit trickier, though, when we calculate the variances, as the

estimators for different XX′ will now be correlated, although still uncorrelated for different LM . The

variance in Eq. (3.16) is now promoted to a 3 × 3 matrix ΞLMAA′ , for {A,A′} = {TT,EE,TE}. For
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{A A′} = XX′ = {TT,EE}, ΞLMAA′ is given by Eq. (4.13) with Cmap
l1

Cmap
l2

replaced by CA,map
l1

CA′,map
l2

.

For the diagonal TE-TE term,

ΞLMTE,TE =
∑
ll′

GLll′ [C
TT,map
l CEE,map

l′ + CTE,map
l CTE,map

l′ ], (A.2)

and for the off-diagonal XX-XX′ terms,

ΞLMXX,XX′ = 2
∑
ll′

GLll′C
XX,map
l CXX′,map

l′ . (A.3)

Eq. (3.18) for the standard error with which a constant gLM can be recovered with the power

multipole moments is then replaced by [74, 72, 73]

1
σ2
gLM

=
∑
AA′

∂bALM
∂gLM

[(ΞLM )−1]AA′
∂bA

′∗
LM

∂gLM
. (A.4)

This is the equation used to obtain the “total” results listed in Table 3.1 for the power multipole

moment.

The minimum-variance estimator for gLM and its variance are similarly generalized. The esti-

mators D̂LM,A,map
ll′ are still uncorrelated for different ll′ pairs and different LM , but they are now

correlated for different A. The main subtlety is that since DLM,TE
ll′ 6= DLM,TE

l′l , we must be careful

to keep track of all TE modes for l 6= l′. This will require that we split the sum in the generalization

of Eq. (3.24) into two sums: the first over l = l′, and the second over l′ > l. (Actually, the sum can

in fact be written over all ll′, but at the cost of much uglier algebraic expressions.)

For l′ = l, there are now three (TT, EE, and TE) estimators to replace that in Eq. (3.19), and

for l′ > l, there are now four (TT, EE, TE, and ET) estimators to replace that in Eq. (3.19). For

all ll′, the estimators are as in Eq. (3.19), replacing each amap
lm and Cmap

l by the appropriate aX,map
lm

and CXX′,map
l , respectively. The estimator for each ll′, obtained after summing over all mm′, is the

same as in Eq. (3.21). For l = l′, the variances
〈(

D̂LM,A,map
ll′

)2
〉

are now promoted to a 3 × 3

covariance matrix. and for l′ > l, they are promoted to a 4 × 4 covariance matrix. In both cases,

the covariance matrix can be written as

Cll
′

AA′ ≡
GLll′

(1 + δll′)

〈
D̂LM,A,map
ll′ D̂LM,A′,map

ll′

〉
. (A.5)

For any ll′ pair, the diagonal entries, for A = {TT,EE}, are Cll′AA = CA,map
l CA,map

l′ , and the TT-EE

off-diagonal entry is Cll′TT,EE = CTE,map
l CTE,map

l′ . For l = l′, the diagonal TE-TE entry is

Cll
′

TE,TE =
[
CTT,map
l CEE,map

l +
(
CTE,map
l

)2
]
/2. (A.6)
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For l′ > l, we have Cll′TE,TE = CTT
l CEE

l′ , Cll′ET,ET = CTT
l′ CEE

l , and Cll′TE,ET = CTE
l CTE

l′ . For any ll′, we

have Cll′TT,TE = CTT
l CTE

l′ and Cll′EE,TE = CEE
l′ C

TE
l . For l′ > l, we also have Cll′TT,ET = CTT

l′ CTE
l and

Cll′EE,ET = CEE
l CTE

l′ .

The generalization of Eq. (3.24) is then

1
σ2
gLM

=
1
2

∑
l

GLll
∑
AA′

CA
l C

A′

l (Wl)4
[(
Cll
)−1
]

AA′

+
∑
l′>l

GLll′
∑
AA′

FA
ll′F

A′

ll′ (WlWl′)2

[(
Cll
′
)−1

]
AA′

,

(A.7)

where the matrix inversion is in the 3× 3 AA′ space in the first sum and in the 4× 4 AA′ space in

the second sum. We use Eq. (A.7) to evaluate the standard errors for the “total” minimum-variance

estimators listed in Table 3.1.
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Appendix B

Real l = 2 Spherical Harmonics

In Eq. 4.3 we introduce our convention for the real spherical harmonics RLM (θ, φ). To clarify the

functional form of RLM , we list the harmonics for L = 2. These are given by

R22(θ, φ) =

√
15

16π
sin2 θ cos(2φ)

R21(θ, φ) = −
√

15
4π

cos θ sin θ cosφ

R20(θ, φ) =

√
5

16π
(
3 cos2 θ − 1

)
R2,−1(θ, φ) =

√
15
4π

cos θ sin θ sinφ

R2,−2(θ, φ) = −
√

15
16π

sin2 θ sin(2φ) . (B.1)
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Appendix C

Expressions for the Anisotropy
Coefficient

In Ref. [78], Pullen and Kamionkowski introduced an anisotropy coefficient ξLMlml′m′ that appears in

the correlation function, given by

ξLMlml′m′ =
∫
dk̂Y ∗lm(k̂)Yl′m′(k̂)YLM (k̂)

= (−1)m
(
GLll′

)1/2
CLMlml′,−m′ , (C.1)

where CLMlml′m′ are Clebsch-Gordan coefficients, and

GLll′ ≡
(2l + 1)(2l′ + 1)

4π(2L+ 1)
(
CL0
l0l′0

)2
. (C.2)

However, since we use real spherical harmonics (given by Eq. 4.3) in our analysis as opposed to

complex spherical harmonics, we introduce the anisotropy coefficient XLM
lml′m′ given by Eq. (4.13).

We choose to write XLM
lml′m′ in terms of Wigner 3j symbols. Due to the piecewise nature of the real

spherical harmonics, XLM
lml′m′ will have different expressions for different values of m, m′, and M .

After much algebra, we can find the expressions for XLM
lml′m′ in terms of Wigner 3j symbols (written

in matrix form) and Pll′L, given by

Pll′L =

√
(2l + 1)(2l′ + 1)(2L+ 1)

4π

 l l′ L

0 0 0

 , (C.3)

which is nonzero only for l + l′ + L even. The expression for M = 0 is given by

XL0
lml′m′ = (−1)mPll′L

 l l′ L

m −m 0

 δmm′ . (C.4)
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The expressions for M 6= 0 can be obtained similarly, e.g.,

XLM
lml′m′ = Pll′L

 (−1)m
′

√
2

 l l′ L

m −(m+M) M

 δm′,m+M

+
(−1)m√

2

 l l′ L

m M −m −M

 δm′,m−M

 , (C.5)

for m > M > 0; the other equations are similar but will be omitted for brevity.
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Appendix D

Effective Scale for Quadrupole
Asymmetry Analyses

In Ref. [36], Groeneboom et al. calculated a quadrupole asymmetry in the matter power spectrum

by analysis of the CMB up to multipoles of l = 400. In this appendix, we derive the effective

wavenumber keff of this CMB measurement, as well as keff for our measurement using the LRG

sample.

To find keff for the CMB analysis, we first find an estimator for g2M in terms of measurable

quantities in Fourier space.1 This calculation has been done previously in Chapter 3. By using

Eq. 3.23 in that chapter, we can construct the minimum-variance estimator for g2M given by

ĝ2M =
∑
ll′ ĝ2M,ll′Qll′2(Fmap

ll′ )2/(Cmap
l Cmap

l′ )∑
ll′ Qll′2(Fmap

ll′ )2/(Cmap
l Cmap

l′ )
, (D.1)

where Cmap
l = |Wl|2Cl + Cnl is the map’s power spectrum, Wl = e−l

2σ2
b/2 is the beam window

function, Fmap
ll′ = WlWl′Fll′ , Qll′2 =

∑
mm′(X

2M
lml′m′)

2 = (Pll′2)2/5, and ĝ2M,ll′ is the estimator of

g2M . We can construct an estimator for each ll′ pair with ĝ2M,ll′ = D̂2M
ll′ /Fll′ , where D̂2M

ll′ is an

estimator constructed from the measured alms. By approximating for large l

 l l 2

0 0 0

2

' 1
8l

and

 l l ± 2 2

0 0 0

2

' 3
16l

, (D.2)

using Eq. (8.32) of Ref. [104], along with Fll = Cl and Fl(l±2) ' −0.5Cl (for temperature perturba-

tions), we have

ĝ2M '
∑
l lTl[

1
8π ĝ2M,ll + 3

64π (ĝ2M,l(l+2) + ĝ2M,l(l−2))]
7

32π

∑
l lTl

, (D.3)

where Tl = [1 + Cnl /(W
2
l Cl)]

−2.
1Although Ref. [36] parametrized the quadrupole asymmetry in terms of g∗, not g2M , this should not affect the

effective wavenumber of the measurement.
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If the expectation value of this estimator is taken, then ĝ2M,ll′ is replaced with 〈ĝ2M,ll′〉 =

D2M
ll′ /Fll′ . This estimator was constructed with the assumption that g2M is scale-invariant, in which

case 〈ĝ2M,ll′〉 = g2M and 〈ĝ2M 〉 does give the true g2M . However, if g2M does vary with scale, then

it has to be included inside the integral for D2M
ll′ , and the estimator’s expectation value must be

taken as g2M at k = keff . We find this scale by giving g2M (k) a functional form, which we use to

find 〈ĝ2M 〉 = g2M (keff).

We begin with the expectation value of ĝ2M,ll′ , given by

〈ĝ2M,ll′〉 =
∫
g2M (k)P̄ζ(k)Θl(k)Θl′(k)k2dk∫

P̄ζ(k)Θl(k)Θl′(k)k2dk
, (D.4)

where P̄ζ is the curvature power spectrum and Θl(k) is the transfer function of the CMB temperature

fluctuations. Typically, in inflationary models that break scale invariance, g2M will vary smoothly

with ln k, and we can write

g2M (k) = B1 +B2 ln(k/k∗) , (D.5)

where k∗ is the (arbitrary) pivot wavenumber such that P̄ζ(k∗) is constant even when the scalar

spectral index ns is varied. We then insert this expression into Eq. D.4 and find

〈ĝ2M,ll′〉 = B1 +B2

∫
ln(k/k∗)P̄ζ(k)Θl(k)Θl′(k)k2dk∫

P̄ζ(k)Θl(k)Θl′(k)k2dk
. (D.6)

The denominator in the second term is just Fll′ . The numerator can be rewritten by using P̄ζ(k) ∝

(k/k∗)ns such that

〈ĝ2M,ll′〉 = B1 +B2
∂ lnFll′
∂ns

. (D.7)

We then insert this expression into the expectation value of Eq. D.3 and, by using 〈g2M 〉 = B1 +

B2 ln(keff/k∗), we find

ln(keff/k∗) =
∑
l lTl(∂ lnCl/∂ns)∑

l lTl
. (D.8)

We can find the derivative in this expression numerically by using the finite difference method with

a two-sided derivative centered at the fiducial value ns = 1 with endpoints n±s = 1± 0.025.

We use the fiducial cosmological parameters (except for ns) to calculate Cl using CAMB [105],

along with WMAP’s instrumental parameters σT = 1.09× 10−5 and θfwhm = 21′, specifically in the

V band. These parameters give us Tls in the range of T2 = 0.99994 to T400 = 0.17. We select the

pivot wavenumber k∗ = 0.002 Mpc−1. This gives us kCMB
eff = 0.0204 Mpc−1.
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Finding keff for the LRG analysis is similar except we include measurements of perturbations at

8 redshift slices instead of only one last-scattering surface. By making the necessary changes for a

galaxy survey analysis, including F ig,l(l±2) ' −C
i
g,l (i denotes the redshift slice), we find

ĝ2M '
∑
l,i lT

i
g,l[

1
8π ĝ

i
2M,ll + 3

16π (ĝi2M,l(l+2) + ĝi2M,l(l−2))]
1

2π

∑
l,i lT

i
g,l

, (D.9)

where T ig,l = [1 +Ci,ng,l /C
i
g,l]
−2, Cn,ig,l = ∆Ω/ni, ∆Ω is the pixel size, and ni is the average number of

galaxies per pixel. The expectation value of the estimator ĝi2M,ll′ is given by

〈
ĝi2M,ll′

〉
=
∫
g2M (k)P̄g(k)W i

l (k)W i
l′(k)k2dk∫

P̄ (k)W i
l (k)W i

l′(k)k2dk
, (D.10)

where W i
l (k) is the (survey) window function. g2M (k) again varies smoothly with ln k, which allows

us to write

g2M (k) = D1 +D2 ln k . (D.11)

This parameterization gives us

〈
ĝi2M,ll′

〉
= D1 +D2

∫
ln kP̄g(k)W i

l (k)W i
l′(k)k2dk∫

P̄g(k)W i
l (k)W i

l′(k)k2dk
. (D.12)

The denominator in the second term is just F ig,ll′ , and the numerator can be calculated directly.

Inserting this into the expectation value of Eq. D.9, which equals D1 +D2 ln(keff), we find kLRG
eff =

0.151 Mpc−1.
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Appendix E

QSO Redshift Distributions

In Ref. [94], Ho et al. construct photometric redshift distributions fi(z) for QSOs using spectroscopic

data from 2SLAQ [134]. These redshift distributions determine how the matter overdensity δ(x)

relates to the QSO overdensity δq(n̂)

δq(n̂) =
∫ ∞

0

f(z)δ[n̂, χ(z)]dz . (E.1)

We refer the reader to Ref. [94] for the theory behind this method, and we describe our method

which is similar to and follows from Ref. [94].

The expression for f(z) is given as

fi(z) = b(z)Π(z) +
∫ ∞
z

W (z, z′)[α(z′)− 1]Πi(z′)dz′ , (E.2)

where b(z) is the linear bias as a function of redshift, χ(z) =
∫ z

0
c/H(z′)dz′ is the comoving radial

distance, and Πi(z) is the probability distribution for the QSO redshifts. The second term in Eq. E.2

is due to magnification bias, which becomes important for large redshifts, with the lensing window

function W (z, z′) given for a flat universe by

W (z, z′) =
3
2

ΩmH2
0

1 + z

cH(z)
χ2(z)

[
1

χ(z)
− 1
χ(z′)

]
, (E.3)

and α(z) being the logarithmic slope of the number counts of QSOs as a function of flux: N(> F ) ∝

F−α.

Since the photometric redshifts of QSOs are difficult to determine, we must rely on spectroscopic

data to compose redshift distributions. Specifically, we use spectroscopic QSOs (spectro-QSOs) from

an area with high spectroscopic coverage to construct a preliminary probability distribution Πi,prelim

and α(z). We use spectroscopic data from the 2SLAQ survey, which contains 8389 spectro-QSOs

over its total region of view. We restrict ourselves to using spectroscopic data from five rectangles on

the sky with declination range −01◦00′36′′–00◦35′24′′ and right ascension ranges 137◦–143◦, 150◦–
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Table E.1: Properties of Πi,prelim for the 3 QSO redshift slices; Nq is the number of spectro-QSOs
(matched with a photo-QSO in RQCat) in the photometric redshift slice, σ is the slice’s kernel width,
and α is the logarithmic slope of number counts as a function of flux.

Label Nq σ α

z01 599 0.08 0.48
z02 779 0.10 0.63
z03 236 0.06 0.64

168◦, 185◦–193◦, 197◦–214◦, and 218◦–230◦, the same as those used in Ref. [94]. These rectangles

in particular have high spectroscopic coverage and contain 5383 QSOs. Since we also need photo-zs

for the QSOs to construct probability densities, we only use QSOs that have matches in the RQCat,

decreasing the number of objects to 3443.

We calculate Πi,prelim(z) for each photometric redshift slice using a kernel density estimator of

the form

Πi,prelim(z) =
1
Nq

Nq∑
k=1

1√
2πσ

e−(z−zk)2/2σ2
, (E.4)

where Nq is the number of spectro-QSOs (matched with a photo-QSO in RQCat) in the photometric

redshift slice, zk is the spectro-z of the kth matched QSO, and σ is the slice’s kernel width. σ is

chosen to be smaller than any real features in Πi,prelim yet large enough to smooth out shot noise.

Table E.1 lists Nq and σ for each redshift slice, and Fig. E.1 shows a plot of Πi,prelim for each slice.

We also calculate α, the logarithmic slope of the number count of QSOs in terms of flux, by creating

a histogram of number counts in terms of the PSF magnitude in the g-band around g = 21 and

calculating the actual slope around this value. This value for each redshift slice is also listed in

Table E.1.

The expression for fi(z) in Eq. E.2 requires the true probability distribution Πi(z). However,

since α − 1 is small, the second term is subdominant to the first and we can substitute Πi(z) with

Πi,prelim(z) in the second term, giving us

fi(z) ' b(z)Πi(z) +
∫ ∞
z

W (z, z′)[α(z′)− 1]Πi,prelim(z′)dz′ . (E.5)

Πi(z) cannot be similarly substituted for in the first term, so we must estimate b(z)Πi(z) using LSS

data. We estimate b(z)D(z) as nearly constant, writing

b(z)Πi(z)D(z) = AiΠi,prelim , (E.6)
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Figure E.1: The preliminary redshift distributions for the QSO photometric redshift slices z01 (solid),
z02 (dotted), and z03 (dashed).

where Ai is a constant. Generally, Ai would be a piecewise function of z that varies in however

many places it needs to for Ai to be estimated precisely; however, we were able to estimate Ai as a

constant function with very small uncertainties.

We estimate Ai in each redshift slice by constraining its effect on the QSO clustering. We begin

by estimating the QSO correlation function wi(θ) in each redshift slice using the method presented

in Landy and Szalay [135]. Specifically, we use the estimator ŵ4(θ) along with its variance given in

Ref. [135], given by

ŵ4(θ) =
DD(θ)− 2DR(θ) +RR(θ)

RR(θ)
, (E.7)

where DD(θ), DR(θ), and RR(θ) are properly normalized histograms of the number of data-data

pairs, data-random pairs, and random-random pairs, respectively, binned in terms of angular sepa-

ration. We use the following expression for the Poisson uncertainty in our estimator

var[ŵ4] =
2

n(n− 1)RR
, (E.8)

where n is the number of random data points used to calculate RR(θ). To this we add a similar

expression for Poisson noise due to the data to get the total variance for wi(θ). Note that for these

stochastic calculations we use 25 simulations with the number of random points equal to twice the

number of data points. We calculate wi(θ) in 10 logarithmic bins of equal (logarithmic) size in the

range 0.3◦ < θ < 6◦. We use this angular range to avoid nonlinearities at smaller angles and potential

effects of non-Gaussianity at large angles. We compare this estimate of wi(θ) to the expression

w(θ) =
∫ ∞

0

dk kP (k)F (k, θ)
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Table E.2: Estimates for QSO redshift distribution amplitude Ai for each redshift slice.

Label Ai

z01 1.77±0.165
z02 1.88±0.145
z03 2.13±0.869

F (k, θ) = k

∞∑
l=1

(
2l + 1
2π2

)
Pl(cos θ)[Wl(k)]2 , (E.9)

where we substitute Eq. E.6 for the first term in Eq. E.5 to calculate Wl(k) in terms of A. Note

that we include the effect of redshift-space distortions in Wl(k). For calculating F (k, θ) we use

the Limber approximation for k > 0.0155 Mpc−1 by converting the sum to an integral1, replacing

Pl(cos θ) → J0(lθ), and replacing Wl(k) →
√
π/2lf(l/k)/k. We can write wi(θ) as a sum of terms

linear and quadratic in Ai, which allows us to fit for this parameter for each redshift slice. We also

add to this model a constant term Bi due to systematics effects for which we also fit2. In Table E.2,

we list estimates for the Ais, from which we derive the redshift distributions fi(z) shown in Fig. 5.1.

1We verified that for k > 0.017 Mpc−1 the summand vanishes for l < 40, which removes all terms over which the
Limber approximation is not valid.

2Note that we did not include Bi for redshift slice z03 because it caused Ai to not be constrainable.
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