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Abstract 

This thesis presents the results of research in the use of holographic modules in 

optoelectronic systems, their applications, and the characterization of polymer materials on 

which to record volume holograms, for these modules. The first chapter makes the case that 

a direct interface between an optical memory and a chip integrating detectors and logic cir­

cuitry can better utilize the high parallelism inherent in holographic modules. 

The second chapter introduces the idea ofreconfigurable computing and Field Pro­

grammable Gate Arrays (FPGAs) as the framework in which to design a hybrid system, the 

Optically Programmable Gate Array (OPGA), that outperforms its electronic counterpart 

by reducing its reconfiguration time by three orders of magnitude. 

The OPGA is the combination of three elements: an addressing device to selectively 

recall holographic data pages, an optical memory, and an optoelectronic chip. The third 

chapter investigates the issues related to each one of these elements and their integration in 

a compact module. Operation of the system is demonstrated by holographically program­

ming the OPGA chip. 

In the fourth chapter, experiments are perfonned to characterize the Aprilis 

ULSH500-7 A photopolymer and study quantitatively its ability to store high-bandwidth 

holographic data pages. A method for hologram mastering and copying using Aprilis films 

is also demonstrated. 

Chapter five investigates the recording and diffusional-amplification dynamics of 

the PQ-doped PMMA polymer. Different strategies to optimize the material by reducing 

the duration of its post-exposure are examined, and the corresponding experimental results 

presented. The recording of strong gratings in samples of PQ-PMMA is tested to determine 

the suitability of this material for components in optical fiber networks. 

The final chapter deals with applications and systems that can benefit from a direct 

interface with a holographic module. The use of optically programmable processors in the 

field of neural prosthetics is explored. The design of a holographic 4-D microscope is pre­

sented and tested experimentally. 
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1 Introduction 

Since its invention by Gabor in 1948 [1-1], holography has been applied in many 

different areas in industry as well as in science. The use of holography for optical data stor­

age has drawn particular attention since proposed in the early 1960's [1-2],[1-3]. The high 

storage densities achievable with holographic memories, first estimated by van Heerden in 

1963 [1-2] reaching the range of a TByte/cm3
, motivated intense research to develop holo­

graphic systems. However, it was not until the early 1990's that advancements in optoelec­

tronic devices and materials made viable holographic memories [1-4],[1-5]. 

Parallelism is inherent to holographic memories in two different ways: First, due to 

the Bragg effect, it is possible to superimpose (i.e., multiplex) hundreds, or even thousands, 

of holograms in the same volume that can be retrieved either individually or simulta­

neously, like in optical correlators, without crosstalk. Second, the information carried by 

the holograms can be spatially modulated and fonnatted as pages of digital data that can 

contain information in the order of 1 Mbit. This parallelism makes it possible to achieve 

very high transfer rates, in the range of 1 Tbit/s, between the optical memory and the pho­

todetector array during the readout cycle. 

Although holographic memory platforms have been developed [1-6]-[1-9] to suc­

cessfully demonstrate such high densities and transfer rates, typically they have not 

addressed the issue of how to deal with the information once it has been retrieved. There 

are two issues that require consideration: The first one is how can this gigantic transfer rate 
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be sustained after detection. In other words, how can an optoelectronic system efficiently 

deliver the retrieved data from the module of the detector to the processor unit of the system 

without loss in the transfer rate. The second issue is about the sort of processors, and by 

extension applications, that not only demand a large amount of input data, but also need to 

process it at very high rates. 

This thesis addresses these questions as it looks at the optoelectronic system as a 

whole, in which the holographic module needs to interact efficiently with the processor. In 

that aspect, it will be argued that a direct interface between a holographic module and a sil­

icon chip that integrates computing resources alongside photo detectors can meet the high 

throughput of the optical memory and satisfactorily solve the bandwidth bottlenecks of cur­

rent systems. The thesis also deals with the issue of identifying systems in which to show 

the advantages derived from such an interface. Various situations are considered in which 

the hologram is always the pivotal element of the system, although it performs a different 

role in each case. 

In the context of an optically reconfigurable processor, the holograms store the 

infonnation needed to program the logic. The system benefits from the parallelism of the 

holographic data page and the distributed hardware resources of the device to increase the 

computing performance of the processor. In the case of reconfigurable interconnects, the 

hologram can store several interconnection patterns. High throughput is achieved by 

having simultaneously many optical channels, each one modulated at high speed, being 

selectively redirected by different holograms. For imaging applications, a holographic 

microscope utilizes the diffraction properties of volume gratings to image a specimen onto 

the detector. In this scenario, high transfer rate is again obtained by having the unknown 
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wavefront of the specimen be sensed in parallel by the multiplexed holograms to extract 

information of the specimen and deliver it efficiently to the detector. 

Although these are just a few examples, they illustrate the basic principles through 

which holography can tackle the problem of high information transfer rates. Holograms can 

convert a simple input (e.g., a plane wave reference beam) into a complex 2-D wavefront, 

or even a transform a 2-D wavefront into another. Furthermore, multiple holograms can 

process the same wavefront simultaneously without one grating affecting the operation of 

the others. it is believed there are many more systems that could take advantage of these 

properties if they incorporated a direct interface to a holographic module. 

1.1 Outline of the thesis 
The work presented in this thesis can be divided into three different areas: holo­

graphic systems, optical materials, and applications. At the holographic system level, 

Chapter 2 presents an optoelectronic system, the so-called Optically Programmable Gate 

Array (OPGA), that implements a direct interface between a holographic memory and a sil­

icon chip that combines both detectors and logic resources. The context of reconfigurable 

processors and, more specifically Field Programmable Gate Arrays (FPGAs), has been 

chosen to illustrate how a fast optical interface can overcome the limitations of current elec­

tronic devices. The OPGA consists of three major elements: an array ofVCSELs to recall 

the holographic templates, an optical medium, and a VLSI chip. After looking at the system 

as a whole in Chapter 2 and evaluating two different architectures, Chapter 3 addresses the 

main requirements and issues for each one of the three components, and their integration in 

a compact module. Finally, holographic programming of the OPGA chip is demonstrated. 
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The second part of the thesis deals with holographic materials. The feasibility of 

high-performance optoelectronic systems relies heavily on the availability of holographic 

materials that can fulfill their demands. Photopolymers are particularly attractive for read­

only applications because of their high recording sensitivity and large modulation of their 

index of refraction. Chapter 4 presents the experimental characterization of Aprilis poly­

mer, testing not only its dynamic range but also performing a quantitative measurement of 

its ability to multiplex high-bandwidth images. Chapter 5 considers a different type of 

polymer, the PQ-PMMA, that exhibits hologram amplification through diffusion. Efforts 

to optimize the material in order to reduce the duration of its post-processing, or even make 

it unnecessary, are evaluated through experimentation. 

The last piece of the thesis looks at the applications in which to show the advantages 

derived from using hybrid optoelectronic systems. The final section of Chapter 5 explores 

the possibility of implementing filters (or interconnects) for wavelength division multiplex­

ing (WDM) systems using holograms stored in a thick polymer like PQ-PMMA. In the con­

text of the OPGA, Chapter 6 applies the idea of optically reconfigurable processors into the 

area of neural prosthetics and analyzes a specific example. Chapter 6 also presents a holo­

graphic microscope able to extract 4-D infonnation (3-D spatial plus color) from a speci­

men in real time. The architecture of such a microscope is analyzed theoretically and its 

operation is experimentally demonstrated. 
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2 Optically reconfigurable processors 

2.1 Introduction 
Reconfigurable processors bring a new computational paradigm where the proces-

sor modifies its structure to suit a given application, rather than having to modify the appli-

cation to fit the device. The reconfigurability makes it possible for these processors to use 

more efficiently their resources by adjusting themselves depending on the characteristics 

of the input or on nonsatisfactory previous results to better implement the target task. 

INPUT 

Pattern 
recognition 
(Processor) 

Fig. 2-1. Reconfigurable processor applied to pattern recognition. The external memory stores 
the configuration templates that define the functionality of the processor. Using reconfiguration 
the same processor can perform different tasks on the same input image. 

Given an application, like pattern recognition in Figure 2-1, the reconfigurable pro-

cessor can be customized to deal with a specific class of objects, but with enough flexibility 

that, if at a later time the salient class of objects shifts to a different one, the device can be 

reprogrammed to deal with the new problem without degrading its performance. Further-
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more, the processor can adapt itself in order to be robust to changes of orientation or illu­

mination of the input object. By reprogramming, the same hardware can be time­

mUltiplexed to carry out sequentially several tasks on the same input, or perform different 

tasks to different parts of the same input image. Reconfiguration also makes it possible to 

implement learning by allowing the processor to evolve in a controlled manner in order to 

learn the function that needs to be computed. 

In other applications, where it is necessary to implement different concurrent tasks 

by partitioning the hardware resources among them, a reconfigurable processor can outper­

form a nonreconfigurable solution by dynamically reallocating the hardware of idle tasks 

into those that may be temporarily overflowed. This feature, called spatial multiplexing, 

becomes especially attractive when partial rather than global reconfiguration is possible 

because it allows reprogramming part of the device without halting the execution in the rest 

of it. 

In this chapter, we will see how optics can playa very important role in the devel­

opment of reconfigurable processors. Section 2.2 provides the reader with a brief de scrip-

tion of Field Programmable Gate Arrays (FPGAs), while Section 2.3 explains how the 

performance of a conventional FPGA can be enhanced by interfacing the chip to a holo­

graphic memory. Finally, the architecture ofthe OPGA module and the system design con-

siderations are presented in Section 2.4. 

2.2 Field Programmable Gate Arrays (FPGAs) 
A Field Programmable Gate Array (FPGA) is a device where this idea of reconfig-

urable hardware can be implemented. FPGAs emerged as a new technology for the imp le-
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mentation of digital logic circuits during the mid 1980's. The basic architecture of an FPGA 

consists of a large number ofConfigurable Logic Blocks (CLBs) and a programmable mesh 

of interconnections. Both the function performed by the logic blocks and the interconnec­

tion pattern can be specified by the circuit designer. In the beginning FPGAs were mostly 

viewed as large Programmable Logic Devices (PLDs) and they were usually employed for 

the implementation of the "glue-logic" used to tie together complex VLSI chips like micro­

processors and memories used to build general purpose computers. 

While several FPGAs were configured by static RAM (SRAM) cells, this was gen­

erally considered a limitation by users concerned about the chip's volatility. For this reason, 

fuse-based FPGAs were also developed and for many applications were much more attrac­

tive, both because they were faster and smaller, due to less programming overhead, and also 

because there was no volatility in their configuration since this had been burned into the 

chip. Not until the late 1980's and early 1990's did it become clear that the volatility of 

SRAM-based FPGAs was not a liability but could open an entirely new spectrum ofappli­

cations, since the programming of such FPGAs could be changed electrically at almost any 

point during operation. 

These devices have gained popularity due to the fact that they are between a soft­

ware oriented solution, like a microprocessor running a program stored in memory, and a 

hardware-oriented solution, like an application specific integrated circuit (ASIC) 

(Figure 2-2). The FPGA-based solution is faster than a microprocessor or Digital Signal 

Processors (DSPs) because the FPGA is conceived as a large array of small logic blocks 

working in parallel and operating at the bit level, exactly where general purpose processors 

are most inefficient. Even though microprocessors have more capabilities, in order to keep 
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Fig. 2-2. Flexibility/speed trade-off comparison for different hardware implementations: 
microprocessors (JlP); digital signal processors (DSP); field-programmable gate arrays (FPGA); 
and application specific integrated circuits (ASIC). 

their generality, they are still designed to operate with fix data formats (8, 16, 32, 64 

bits ... ). Therefore, they perform poorly when they need to deal with problems where data 

has "non-standard" lengths. On the other hand, the fine granularity of the computing blocks 

of the FPGA allows the user to better map the hardware resources of the chip to meet the 

demands of the problem. Using FPGA platforms, speedups of several orders of magnitude 

have been achieved for some applications [2-1]-[2-4]. The ASIC solution provides most of 

the time the optimal implementation both in terms of speed and silicon area requirement, 

however, it has the drawbacks of being a single-purpose processor. Compared to ASICs, 

FPGAs are much more flexible since they contain some hardware resources that can be pro-

grammed by the user to implement some given task and, by changing that configuration, 

the same hardware can be used to carry out something totally different with minimal devel-

opment time and cost. 
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Although FPGA architecture design is a field of important ongoing research in the 

FPGA conununity, and many different implementations have already become commer-

cially available, it is beyond the scope of this section to describe all of them. To illustrate 

the common features of their internal structure, one of the most widely used designs, the 

synunetric array [2-5] , Figure 2-3, will be analyzed. In this case, the logic blocks are 

1000000000 00000001 

Programmable 
Interconnect 

Configurable 
Logic Block 

Fig. 2-3. Architecture of a typical FPGA. A symmetric array of CLBs is surrounded by a mesh of 
buses and matrices of programmable interconnects that provide cOlmectivity among the CLBs, as 
well as with the input/output (I/O) cells. 

arranged in a two-dimensional array and interleaved with vertical and horizontal buses used 

to establish connectivity among them. Connections between segments in two different 

buses can also be perfonned by means of programmable interconnects in switching matri-

ces. Finally, on the periphery of the chip, there are some input/output cells. 

The basic functional unit of the FPGA is the Configurable Logic Block (CLB), 

which implements an elementary Boolean operation. Despite the fact that there are CLBs 

based on multiplexors or OR-AND arrays, the use oflook-up tables (LUTs) to synthesize 
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logic functions enjoys much greater flexibility [2-5] . A LUT can be seen as a small bank of 

memory where the inputs encode the address of a position in this memory, which stores the 

result of a pre-programmed logic function of the inputs. By changing the bits stored in the 

LUT, the function computed is altered. 

---------~~~~ 

Of--+---XQ 

I 
I I 
I I 

: --~--------- --- ------ ----- ------------ ---- --- ~ 
Fig. 2-4. Schematic ofa LUT-based CLB. Two independent sets of inputs F[l:4] and G[1:4] feed 
the LUTs on the left of the figure . The outputs of the LUTs can be combined using an additional 
LUT for more complex Boolean functions. The control signals C[1:4] define the way the results of 
the LUTs are routed to the output of the CLB by means of the multiplexors. This output can be 
buffered, which allows implementing sequential logic. 

The schematic of a LUT -based CLB is shown in Figure 2-4. In this case, two sets 

of inputs, on the left-hand side, feed two independent 4-input LUTs. A third LUT has the 

ability of combining the results of the LUTs from the previous stage, increasing the func-

tionality of the CLB to implement more complex logic functions. The two outputs of the 
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CLB are on the right-hand side and they can be buffered if necessary by means of flip-flops. 

These registers allow implementing sequential logic in the CLB. 

FPGAs have traditionally been used very successfully as accelerators in many 

applications like signal processing [2-1], image filtering [2-2], automated target recogni-

tion [2-3], or cryptography [2-4]. In a typical arrangement, as shown in Figure 2-5, the 

Configuration Data 

Fig. 2-5. FPGAs are usually used as accelerators. The master processor (f!P and memory) 
programs the slave processor (FPGA) to perform those most computationally intense tasks. 

FPGA is setup as a coprocessor that is controlled by the microprocessor. For a given appli-

cation, if there is some task that is computationally very expensive, the microprocessor can 

program the FPGA to perform that task much faster than if it was executed by the main pro-

cessor. The configuration data of the FPGA, which specifies the values in the LUTs and the 

interconnection pattern, is stored in an external memory, in most cases an EPROM, and 

downloaded into the FPGA chip on demand. The microprocessor just feeds the data into 

the FPGA and waits for the results, and all the cumbersome computation has been hard-

wired inside the FPGA. 
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Although the size of these devices, in tenus oflogic gates, can vary among different 

models and manufacturers, they can easily contain on the order of 105 gates and the trend 

is to keep increasing the logic density to go beyond the million-gate FPGA. This means that 

the configuration data page for a medium size FPGA can be as large as 1 Mbit. Despite the 

fact that the FPGA can be reprogrammed multiple times, the user typically does not take 

advantage of this feature. In most cases, the FPGA is configured only once and this config­

uration is downloaded into the FPGA off-line, before the execution is started. The main 

reason for not reconfiguring dynamically the device, i.e., changing its internal configura­

tion once the execution has started and some data is already flowing into the device, has 

been the small communication bandwidth between the external configuration memory and 

the FPGA chip itself. The configuration bandwidth of the FPGA has not scaled well enough 

to keep up with the enonuous data throughput. Upon programming, the configuration data 

is downloaded serially by shifting a long bit stream into the FPGA. The transfer data rate 

between memory and FPGA is only on the range of 100 Mbps, which results on configura­

tion times of tens or even hundreds of milliseconds. These long reconfiguration times, if 

compared to clock cycles of just tens of nanoseconds and input/output throughputs reach­

ing 100 Gbps, become an important overhead. Some attempts to decrease the reconfigura­

tion times have been proposed, like providing a dedicated parallel bus to increase the 

bandwidth with the configuration memory, or having fast-access cache memory built in the 

chip [2-6],[2-7]. Both solutions only contribute to further increase the already high power 

dissipation of the FPGAs, which although application dependent can easily be in the range 

of 1-10 Watts. 
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2.3 Optically Programmable Gate Array 
Optical memory modules possess inherently a high degree of parallelism, since the 

data is handled in the format of pages. Such parallelism results in a large communication 

bandwidth between the memory and the array of photodetectors during a readout cycle, or 

the Spatial Light Modulator (SLM) upon recording. The use of optical memories in infor-

mation processing systems makes it necessary to consider the interface between the holo­

graphic module and the silicon circuitry that processes the data retrieved from the memory 

and stores computational results. 

Traditionally, holographic systems have not addressed this issue, so even though 

the information can be delivered very fast to and from the optical memory, this parallelism 

is lost in the communication between the optoelectronic chips and the processor, becoming 

a bottleneck. Therefore, a direct interface between memory and processor would be much 

more effective since the parallelism would always be preserved, as suggested in Figure 2-6. 

The direct interface avoids the slow interchip communication by simply integrating on the 

same silicon die the logic circuitry and an array of photo detectors. However, the question 

now is to identify which computing devices have enough hardware parallelism to exchange 

data efficiently with the optical memory. It is here that the distributed hardware resources 

of the FPGA marry the parallelism of the optical memory. 

Based on the FPGA architecture, the OPGA [2-8] is a device where the computation 

is still performed by programmable logic blocks and interconnects as in the conventional 

FPGA, but where the configuration data is brought into the chip optically. The design of 

the OPGA is conceptually different from a similar system described in [2-9], in which the 

information is brought into the chip via optical VO ports while the configuration is still per-
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Fig. 2-6. Direct interface between the optical memory and the silicon chip carrying 
photodetectors and logic circuitry. The configuration templates stored as holograms (depicted as 
slices) can be downloaded in parallel to the chip. 

formed electronically. This optical reconfiguration capability in the OPGA results from 

interfacing an optical memory with an optoelectronic chip, as illustrated in Figure 2-6. The 

holographic memory can store a large number of configuration templates that can be trans-

ferred down to the FPGA chip as a single page. By taking the reconfiguration circuitry out 

of the FPGA chip, the OPGA can achieve a larger logic density, i.e., more CLBs can be 

implemented, than in the conventional device. 

In its initial implementation, the OPGA module is intended to operate as a Holo-

graphic Read-Only Memory (HROM), where a priori and for a given application, the user 

will decide the library of different configuration templates that needs to be stored in the 

memory. This frees the OPGA module from all the optics and optoelectronics required to 

write in the memory, like the SLM, and makes it very compact. However, it is conceivable 
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that future OPGA designs encompass both read and write capabilities, which would enable 

an increased computational flexibility. 

The OPGA is basically the integration of three main components or technologies: 

an array of vertical cavity surface-emitting lasers (VCSELs) used to retrieve the templates 

stored in the memory; the optical memory that contains a large set of configuration con­

texts; and the VLSI chip that combines CMOS logic and photodetectors. Each one of these 

components presents a number of issues that will be discussed in the next chapter. 

2.4 OPGA system architecture 
The technique used to store and mUltiplex the holograms in the optical memory 

determines the architecture of the entire module. For this reason, it is not possible to discuss 

the holographic memory, the VCSEL array, or the chip separately without giving first a 

more general view to the system involving these three elements. The OPGA has the poten­

tial to outperform conventional FPGAs in two different aspects: 

• Number of fast-access configurations: The OPGA module can contain one hun­

dred holographic templates, formatted as pages of 1000 x 1000 pixels, so there is 

enough infonnation in each hologram to program a medium-sized FPGA. Com­

pared to cache-based FPGAs, in which between four and eight configurations are 

stored locally [2-6J, the 100 templates stored in the optical memory represent a two­

order of magnitude increase in flexibility for the OPGA . 

• Reconfiguration speed: The parallel interface between holographic memory and 

chip makes it possible to decrease reconfiguration times in two or three orders of 

magnitude and go from the millisecond regime in electric FPGAs down to micro-
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seconds in their optical counterpart. The reconfiguration time of the device depends 

greatly on the optical power available per VCSEL and is eventually limited by the 

integration time of the photodetectors, being the target configuration time between 

1-100 lls. 

This section introduces the two architectures that have been considered for the 

OPGA module, compares the main system-level requirements of the two designs, and dis-

cusses how they are interrelated. 

2.4.1 Transmission-geometry OPGA module 
The initial design for the OPGA consisted of a symmetric transmission-geometry 

module as depicted in Figure 2-7. Each one of the VCSELs in the array is used to record a 

different hologram in the memory, which in this case is a thin layer of red-sensitive photo-

polymer. For a matter of robustness, the polymer film is sandwiched between two prisms. 

Fig. 2-7. Transmission-geometry OPGA module. The spherical wave emitted by the VeSEL 
retrieves a holographic template from the optical memory and projects it onto the photodetector 
array in the chip. 
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The technique used to mUltiplex the holograms is shift multiplexing with spherical refer-

ence [2-10],[2-11]. Therefore, the shift selectivity of the material needs to be matched to 

the spacing between adjacent VCSELs in order not to have crosstalk between data pages. 

Phase-conjugate reference is used to read out the holographic templates, so the reconstruc-

tions self-focus on the array of photodetectors on the FPGA chip. Since no additional optics 

is required for the readout, the module is very compact. 

(a) (b) 

Fig. 2-8. (a) Schematic drawing of the recording setup for the OPGA, where BS is a beam 
splitter and SLM is a spatial light modulator, and (b) actual setup used in the experiments. 

In the recording setup, as the schematic in Figure 2-8(a) shows, the beam emitted 

by the VCSELs is collimated by the first lens. Then a beam splitter (BS) creates the refer-

ence and signal beams. A SLM is used to transfer the information that needs to be stored in 

the memory into the signal beam. The SLM image is projected to plane P, where the pho-

todetectors will be upon readout, by a lens. The lens on the reference arm focuses the ref-

erence beam creating a converging spherical beam used to record the hologram on the 

photopo!ymer. During readout the array of VCSELs should be placed on the plane where 
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the converging reference beam focuses, so that the diverging beam emitted by the VCSEL 

creates the phase-conjugate reference that reads out the hologram. 

Some experiments have been perfonned with this architecture to record and multi-

plex holograms in the memory, in this case a 100 flm thick film of Du Pont HRF700 pho-

topolymer. In the experimental setup, Figure 2-8(b), a single mask with a chessboard 

pattern was used instead of the SLM and it was rotated to store different holograms. The 

board on the right of the picture corresponds to the circuit to drive the array of VCSELs. 

Figure 2-9 presents the reconstruction of two different pages. Since the VCSELs can be 

switched on and off in less than a nanosecond, different pages can be retrieved in very short 

time. This means that the OPGA module could switch rapidly among configuration con-

texts. 

Hologram I Hologram 2 

Fig. 2-9. Detail of the reconstruction using VCSELs of two shift-multiplexed holograms in the 
transmission-geometry module. 

A number of problems have been encountered in this architecture, not intrinsically 

related to the architecture itself but to the VCSELs, which were not specially designed for 

this application, and the medium used in the optical memory. The main problem, noticeable 
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in Figure 2-9, is that there is some crosstalk between holograms. The reason is that for the 

thickness of the medium, 100 11m, the shift selectivity of the memory is larger than the spac­

ing between VeSELs (50 11m in particular for this array) and, consequently, Bragg-mis­

match between neighboring holograms is not achieved. Placing the VeSELs much closer 

to the optical medium would narrow the shift selectivity of the memory. However, the small 

divergence angle of the VeSEL requires placing the array far enough as to overlap the 

entire footprint of the signal beam in order to record the hologram. Therefore, these two 

requirements turn out to be incompatible. Nevertheless, this limitation could be overcome 

by having a custom array of VeSELs with larger separation between elements and larger 

divergence angles. Another possibility would be to place a lenslet array on top of the 

VeSELs in order to increase their divergence angle. 

Another issue is the quality of the reconstructed holograms. In this architecture, the 

spot of the signal beam on the material is relatively large, which makes the recording very 

sensitive to irregularities in the optical medium. However, a more serious issue is the power 

required per VeSEL to have short reconfiguration times in the OPGA. Since the 100 holo­

graphic pages are stored in a single location, the power requirement on each VeSEL 

becomes more demanding. If the target is to fully reconfigure the device in tens of I1S, a 

straightforward calculation assuming a material with MIS requires that each laser output a 

few mWatts. The characterization of the VeSEL arrays will reveal that a power require­

ment of 0.5 mW per element is more realistic. 
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2.4.2 Reflection-geometry OPGA module 
Mostly due to the limitation in power, the architecture of the OPGA evolved 

towards a new design where the device could still have short reconfiguration times, in the 

range of tens ofl-ls, but with a not so demanding requirement on the power per VCSEL. The 

technique used to store the holograms combines both spatial and shift multiplexing. The 

main difference with respect to the previous architecture is that upon recording, 

Figure 2-10, a lens focuses the beam before it impinges the SLM, as in a van der Lugt imag-

Trans,atlf·on ... " 
Stage ",'" " 

...... , , , , , , , 
... ... 

Rotation Stage 

Fig. 2-10. OPGA recorder setup. The linear translation stage in the reference arm, combined 
with the rotation stage and the lenses in the 4-F system in the signal arm, is used for the shift 
multiplexing of the holograms. 

ing system [2-12], down to a small spot on the recording medium. By changing the angle 

of incidence of the beam on the lens, the signal spot focuses on a different location in the 
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material, which is partially overlapping with the previous ones. The pages of data are 

recorded in these partially overlapping circles that span a stripe on the optical material. To 

achieve Bragg mismatch among holograms, a converging reference beam needs to be 

shifted accordingly to illuminate the corresponding signal spot. In the recording setup, a 

laser diode with enough coherence length can be used instead of the VeSEL array. The 

beam emitted by the diode is collimated and splitted into the signal and reference arm. The 

signal beam passes through a rotation stage and a 4-F system that changes its angle before 

it illuminates the SLM. The reference beam is focused by a lens mounted on a mechanical 

scanner used to translate the beam beyond the shift-selectivity of the optical medium. 

LOGIC + DETECTORS CHIP 

Fig. 2-11. OPGA reader module. The light emitted by each veSEL is used to read out a different 
hologram that self-focuses, due to phase-conjugation, on the array of detectors in the chip. 

During readout, the system becomes very compact (Figure 2-11) for two reasons. 

First, the module uses reflection geometry for recording, so during readout the beam from 

the VeSEL and the array of photo detectors are both located on the same side of the mate-

rial. Secondly, phase-conjugate readout makes unnecessary the use of any extra compo-

nent. The VeSEL array is placed on the plane where the recording reference beams focus. 
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Thus, each VCSEL illuminates one of the spots in the memory and the reconstructed image 

back-propagates to the plane of the SLM where the photo detector array is located upon 

readout. 

OPTICAL MEMORY 

FPGA + Detector Circuit LOGIC + DETECTORS 
CHIP 

Transmission OPGA module Reflection OPGA module 

Signal spot size 
J2[NP + (A/p)2d + NPU,<P)] 2H on material --

(D) 1 - (A/p) P 
Distance from 

D· [ sinCa) + sin(a) r D· [ sinCa) + sin(a) r VeSEL array 
(Zo) sinCe + a) sinCe - a) sinCe + a) sinCe - a) 

Shift 'AZo 'AZo 
selectivity 

(8) 2LsinCe) 
LJn2 - sinCe)2 

Wavelength 'AJn2 
- sinCe)2 'A selectivity 

2Lsin(e)2 L[n + sinCe)] (11/J/...) 

Table 2-1. Summary of the expressions of system design features for the transmission- and reflection­
geometry OPGA modules. 

A benefit of this new architecture is that the diffraction efficiency per hologram 

now scales not as the total number of stored holograms but the number of overlapping ones 

at any location. Therefore, an important increase in diffracted power is obtained. Assuming 

that the same 100 configuration pages are stored in the M/5 material, but only 20 holograms 

overlap at any given location, then the diffraction efficiency per hologram is as high as 

6.25%. The increase in diffracted power makes possible to achieve flsec-scale reconfigura-
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tion times with only 0.5 mW of available power. A comparison of the main features 

between the transmission and the reflection modules is presented in Table 2-1, their rele-

vance towards the design of the OPGA will be discussed in the following paragraphs. 

Table 2-2 provides the description of the system parameters and their values. They will 

help to illustrate the differences between the two proposed designs. 

Transmission Reflection 
Parameter name Symbol OPGA system OPGA system 

Data page format NxN 1000xl000 

veSEL wavelength 680nm 

veSEL divergence angle (half angle) a 

Distance from recording plane (Fresnel hologram) d 

Focal length of transforming lens (Fourier hologram) F 

Reference beam angle (w.r.t. material surface) 8 

Material thickness L 

companson 

Besides relaxing the power requirement of the VCSELs, another benefit of the new 

architecture is that recording occurs at the Fourier plane, rather than in the Fresnel zone as 

in the original transmission module. In the transmission module, a 1000 x 1000 pixel holo-

gram with 5 f.lm pixel-size placed at a distance of 10 rom from the recording plane would 

result in a footprint of 11 rom in diameter. On the other hand, for the reflection module, if 

the SLM is placed at the same distance from the recording material, and the lens that 

focuses the signal beam has a focal length of 10 rom, the signal spot size on the material 

will be just 2.7 rom in diameter. Given the smaller dimension of the area where the pages 

are recorded, the holograms are much less sensitive in the second case to any nonuniformity 

of the medium and, consequently, the quality of the reconstructed images is better. 



Chapter 2 - Optically Reconfigurable Processors 2-20 

The size of the signal spot on the recording plane has a major impact on the shift 

selectivity of the memory because the spherical reference beam emitted by the VCSEL 

must originate far enough to be able to completely overlap the signal spot on the material. 

For example, the large footprint in the transmission module, compounded with the low 

divergence angle of the VCSELs, makes necessary to position the VCSEL array at a dis­

tance of 51 mm, which in tum results in a shift selectivity of 122 f.!m. In the second design, 

the fact that the signal spot is smaller allows to position the VCSELs much closer to the 

medium (the minimum Zo is 8.7 mm), lowering the shift selectivity to 21 f.!m. 

Large shift selectivities are very undesirable. As 8 increases, so does the spacing 

required between VCSELs in the array, which compromises their uniformity. One 

approach to narrow the shift selectivity is by increasing the thickness of the recording 

medium; however, this also narrows the tolerance of the holograms to differences between 

the nominal wavelength of emission of the array and the actual wavelength of each individ­

ual element. This can be observed in Figure 2-12, where the diffraction efficiency of the 

hologram is plotted as a function of the thickness of the material when the readout and 

recording wavelength differ by 0.17 run, which corresponds to a dispersion of 0.05%. If we 

want to ensure that wavelength mismatch never accounts for more than 10% loss in diffrac­

tion efficiency, the thickness of the lllaterial should not exceed 250 f.!lll. This shows that the 

thickness of the medium plays an important trade-off between shift-selectivity and dynamic 

range on one side (in which the larger, the better), and tolerance to wavelength mismatch 

on the other (in which the smaller, the better). 

It is important to point out that the advantages of the second architecture over the 

first one originate not in that the former uses reflection geometry as opposed to transmis-
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Fig. 2-12. Diffraction efficiency as a function of the thickness of the material in the reflection­
geometry OPGA module when the readout wavelength differs in 0.05% with respect to the 
wavelength used for recording. 

sion geometry, but in the difference between Fourier-plane versus Fresnel-region record-

ing. As a matter of fact, a transmission-type architecture using a van der Lugt imaging 

system is also possible. This case would be particularly interesting because the system 

would enjoy both small shift selectivity and, at the same time, broader wavelength selec-

tivity than in a reflection module, which means more tolerance to wavelength nonunifor-

mity. 
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3 OPGA elements and system integration 

3.1 Introduction 
After focusing on the system as a whole in the previous chapter, this chapter will 

look at each one of the elements of the OPGA separately. The following sections consider 

specific issues of the VCSEL array, the chip and the optical material, and the requirements 

they have to meet for their use in the OPGA system. Section 3.5 deals with the integration 

of the three components into a small package and presents a prototype for the OPGA that 

demonstrates, in a compact module, the operation of VCSELs as addressing devices to 

readout holograms from the optical memory. Finally, the integration between a holographic 

memory and a silicon chip is demonstrated in Section 3.6, where holograms are utilized to 

configure the logic in the chip. 

3.2 Red VeSEL arrays 
Vertical Cavity Surface Emitting Lasers (VCSELs) operating in the infrared wave-

lengths are widely used in optical fiber data links, optical interconnects, and storage appli­

cations. In contrast to conventional laser diodes, which emit light from the edge of the chip, 

VCSELs emit light vertically from the wafer surface. Therefore, instead of having to cleave 

the wafer into single elements, they can be packaged as large arrays [3-1]. The first 

VCSELs emitting in the red wavelengths were reported in 1993 [3-2]. The shift towards 

shorter wavelengths has opened the possibility of using such devices in holography, since 

most optical materials are sensitive in the visible range of the spectrum. 
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As described in Chapter 2, a VCSEL array can be used as addressing device in the 

OPGA module to selectively retrieve one data page from the optical memory. Section 3.2.1 

describes the requirements the VCSEL array must meet, while Section 3.2.2 presents the 

results of the experimental characterization of arrays with different VCSEL sizes and ele-

ment count that have been fabricated by Honeywell. 

3.2.1 VeSEL requirements 

The two most important parameters for the VCSELs, if they are to be used in the 

OPGA module, are their output power and wavelength uniformity across the array. 

Consider first the wavelength uniformity: As seen in Section 2.4, the holograms are 

recorded in the memory of the OPGA module using a laser diode. However, they are read 

out with the VCSELs. Any difference between the recording and readout wavelengths will 

have a double effect on the reconstruction of the hologram: First, the amount of diffracted 

light will decrease due to Bragg-mismatch, making necessary longer detector integration 

times and therefore degrading the reconfiguration performance of the OPGA. Second, the 

reconstruction ofthe hologram will shift on the plane of the detector, resulting in pixel mis-

registration and incorrect programming of the OPGA chip. 

These two effects are depicted in the K-sphere diagram in Figure 3-1. A grating 

(vector KG) is recorded at wavelength 'A (solid circumference) by the interference of the 

reference beam propagating at an angle 8 with respect to the x-axis (vector K R ) and the 

signal beam. If the hologram is now read out at a wavelength 'A' (dashed circumference) by 

the beam K'R ' the reconstructed signal beam will be Bragg-mismatched by an amount 6Kz 

and propagate along K's at an angle a with respect the z-axis. 
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z 

Fig. 3-1. K-sphere diagram to illustrate the deviation angle a of the diffracted beam K's when 
the grating is read out with a reference beam at wavelength 1..' instead of I.. • 

According to the definition of angles in Figure 3-1, and assuming that the medium 

has a thickness L along the z-axis and is infinite in the transverse dimensions, the wave-

length selectivity of the hologram can be readily calculated and is given by 

( 1'1/0..) /0.. 
T = L(l + sine)' 

(3-1) 

where 1'1/0..=/0..-/0..'. Furthermore, if the detector plane is perpendicular to the z-axis and 

located at a distance 0 from the material, the amount of shift along the x-axis (8x) of the 

reconstructed hologram on the detector plane results in 

8x = otana",o(I'1/o../o..)cose. (3-2) 

The approximately equal sign is due to tana '" sina '" a, which is true only for small 1'1/0... 

Equation 3-2 can be rewritten in the form of a constraint on the ratio (~/o..) for a maximum 
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acceptable shift (8x)max that the system can tolerate without suffering from pixel misregis-

tration 

(~A) < (8x)max 
A - Dcose . (3-3) 

In the context of the OPGA module (e=300, D=lO mrn, L=200 11m, and A=680 nm) 

the condition in Equation 3-3 becomes more restrictive than the wavelength selectivity. To 

avoid a maximum shift larger than 20% of a 10 11m pixel detector, (8x)max= ±2 11m results 

in (~AA) S; ±0.021 %. Therefore the ratio of the difference between highest and lowest 

wavelengths across the VeSEL array, AH and AL, respectively, to the recording wavelength 

(
AH - AL) 

must satisfy A < 0.05 %. 

As far as the power requirement is concerned, the maximum optical power that the 

veSEL can output has a direct impact in the reconfiguration time of the OPGA. It is imp or-

tant to point out that the VeSEL must operate in single mode. The presence of higher-order 

modes would degrade the quality of the reconstructed holograms as the wavefront of the 

beam emitted by the VeSEL would not match the wavefront of the laser diode used during 

recording. 

The incident power required per VeSEL (PIne) depends on parameters of the holo-

graphic memory and the photodetectors. The former can be either related to the medium 

itself, like the dynamic range, or to the design of the optical memory, like the number of 

holograms sharing the same spatial location (M) and the number of pixels in each hologram 

(N x N). Among the latter, there is the integration time of the detectors (TInt) and the min-

imum number of photons for correct detection (#photons), which in tum is a function of the 

detector quantum efficiency and the threshold number of signal electrons required at the 
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detector. The required incident power can then be parametrized as a function of the integra-

tion time (OPGA reconfiguration time) and described by 

(hC) 2 (M/#)-2 
PIne ~ (#photons)· -:;: . N . M (3-4) 

As described in Chapter 2, each location on the material contains only 20 holo-

grams (M=20) of 1000 x 1000 pixels each (N2= 106) . The number of photons required is a 

function of the integration time. As the integration time increases, the number of collected 

noise-electrons increases as well, and therefore more signal electrons (photons) are 

required for correct detection. Testing of the photodetectors has revealed that up to 50 Ilsec 

integration time, 2600 photons are required for correct detection [3-3]. 
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Fig. 3-2. Minimum power emitted by the VeSEL for correct signal detection as a function ofthe 
integration time of the photodetectors. 

The dependence between power and integration time described in Equation 3-4 is 

presented in Figure 3-2. As it can be observed, 25 Ilsec integration time can be attained if 
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each VeSEL is able to output 0.5 mW in single mode. Although shorter reconfiguration 

times could be achieved if the VeSEL was able to emit a few milli-Watts of power and, for 

example 5 m W in single-mode would make possible an integration time of just 2.5 flsec, 

the value of 0.5 m W per VeSEL will be taken as a more realistic power requirement. 

3.2.2 Array characterization 

Initial experiments to characterize red VeSELs and to verify the suitability of this 

type oflaser diodes for applications in holographic systems were performed on a 4 x 4 sym-

metric array with a 50 flm spacing between elements. 

The VeSELs operate in single mode and produce a spherical beam with a full diver-

gence angle of 8.7°. When switching on the VeSELs, the rise time is less than 100 ps, 

which allows switching speeds over I GHz. Their output power is on the range of hundreds 
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Fig. 3-3. Temporal evolution of the power emitted in continuous mode by the VeSELs over a 
period of five hours. Each curve correspond to a different element of the VeSEL array. 
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of fl Watts, from 50 fl W for the worst elements up to almost 300 fl W for the best ones. The 

stability over time of the output power has also been studied. The power emitted by the 

VCSELs has been monitored over a period of 5 hours. Figure 3-3 shows the measurements 

for eight different elements in the array. As it can be observed, there is an initial drop in 

power due most probably to thennal heating of the P-N junction of the lasers. The long-

tenn stability measured after a one hour wann-up over the last 4 hours results to be on aver-

age 18.6%, although in the worst case it is as large as 32.9%. A more realistic parameter is 

the short-tenn stability over a 15 minute interval after the initial wann-up, which turned out 

to be on average 4.8% and never larger than 9.2%. 
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Fig. 3-4. Drift in wavelength of emission of the VCSELs monitored for a period of three hours. 
The solid line corresponds to the ensemble-averaged wavelength across the array, while the dashed 
lines indicate the maximum and minimum time-average wavelength for an individual laser. 
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The wavelength of all the operating devices in the array has been measured 

(Figure 3-4). The average wavelength across the entire array is 680.62 nm, with the highest 

and lowest wavelengths being 680.71 nm and 680.56 nm, respectively. This dispersion of 

values of just 0.15 nm across the array con'esponds to a uniformity of 0.022%, in compli-

ance with the specifications. 

The fluctuation of the wavelength for individual elements with time has also been 

investigated, and it has been found to be smaller than 0.016%. This very good stability, 

even without any thermal control ofthe VCSEL, and a coherence length better than a meter, 

makes the VCSELs adequate to record and readout holograms, as shown in Figure 3-5. 

Fig. 3-5. Hologram ofa 34 flm pixel-size mask recorded on 100 flm thick Du Pont photopolymer 
using YCSELs. 

The characterization of the 4 x 4 array revealed that, in order to use VCSELs in the 

OPGA module, the amount of optical power emitted by each device needed to be aug-

mented and that the good wavelength uniformity in the small array might be difficult to pre-

serve as the size of the array was increased. Both issues were taken into consideration when 

specifying larger arrays of 25 x 1 YCSELs. Figure 3-6 shows the die containing columns 
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of 25 veSELs each, with a 100 11m pitch. The devices where fabricated in three different 

diameters: 20 11m, 15 11m, and 10 11m. 

Fig. 3-6. Picture of the die containing several 25x 1 arrays of red VCSELs, arranged in columns. 
The devices are the small circles at the end of the square pads. 

The optical power vs. current curve has been measured for the three sizes of 

devices. Figure 3-7 shows the typical results for a 10 11m, 15 11m and 20 11m cell. It was 

observed that as the size of the VeSEL is augmented, so are its threshold current and opti-

cal power. However, the device becomes multimode at lower levels of current. The 10 11m 

veSEL could not produce more than 0.34 mW single-mode on average across the entire 

array. On the other hand, the 20 11m VeSEL becomes multimode slightly above its thresh-

old current at O.4mW, despite the fact that it can produce more than 1 mW. The 15 11m 

veSEL turned out to be the one that is able to put out the highest power in single-mode, 

around 0.58 mW on average across the array, satisfYing the power requirement for the 

OPGA module. 

The wavelength stability of individual VeSELs was about 0.012%. As far as the 

wavelength uniformity across the 15Ilm-VeSEL array is concerned, the wavelength varies 
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Fig. 3-7. Typical Optical power vs. current characteristic curve for the 10 fim (circles), 15 fim 
(triangles) and 20 fim (squares) VeSEL. For each curve, the change from solid to clear markers 
indicates the transition in the VeSEL beam profile from single mode to multimode. 

form 677 .87 run to 677.46 run, being 677 .65 run the array-average wavelength. This results 

in a uniformity of 0.06%. 

3.2.3 Conclusions 
Improvements in the fabrication process of the 25 x 1 arrays with respect to previ-

ous generations of devices have made possible to increase their output power and meet the 

desired target of 0.5 mW single-mode. However, the wavelength uniformity has proved to 

be difficult to preserve in larger arrays as the physical distance between VCSELs increases. 

Despite the fact that Honeywell has been able to produce some arrays with a level of un i-

formity better than 0.05%, the consistency from die to die seems to still require further 

research in the fabrication process. 
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The degradation of the wavelength uniformity as the size of the VCSEL array 

increases is the main cause that prevents VCSELs from being used as the addressing device 

in the OPGA system, and forces to consider other alternatives instead, like having a MEMS 

array of mirrors deflecting the beam of a single laser diode. 

3.3 OPGA chip 
The development of pixel sensors using standard CMOS technology [3-4], the same 

that is used for most microprocessors and memory modules, enables the integration of pho­

todetectors with on-chip processing circuitry and has coined the expression "camera-on-a-

chip" [3-5]. The OPGA chip makes use of the system-on-a-chip idea and integrates on the 

same die an array of pixels to detect the reconstructed holograms, as well as the logic cir­

cuitry of a conventional FPGA. 

The photodetectors can be combined with the existing logic of the FPGA using 

either one of the two different topologies depicted in Figure 3-8: the detectors can be 

sparsely distributed across the whole chip interleaving them with the logic, or conversely, 

they can be laid out as a single large array on a specific region of the chip. 

From the electronics point of view, the first topology is more convenient, because 

each pixel is detected exactly where it is needed to program the logic element. This makes 

unnecessary to distribute the detected signals all across the chip. However, from the optics 

side, to have detectors spread over the entire chip means that the quality of the recon­

structed hologram must be uniform over a much larger area. Therefore, the second topology 

makes the optics simpler because the hologram needs to be uniform in a smaller region. 
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Logic Blocks Photodetectors 

(a) (b) 

Fig. 3-8. Detector distribution on the OPGA chip: (a) Sparse, where the photo detectors are 
interleaved with the logic; or (b) Concentrated, where all the photodetectors are implemented as an 
array and detected signals need to be delivered to the programmable elements. 

However, this comes at the price of having to implement a more complex mesh of buses to 

deliver the detected signals to the logic blocks. 

Since each one of these topologies presents interesting aspects, both of them have 

been considered in the OPGA chips that have been designed and fabricated. In the first two 

generations of the chip, the photodetectors were arranged in small arrays and integrated into 

each logic block. However, the concentrated topology has been adopted in the final design 

because it simplifies the interface with a regular SLM. 

3.3.1 Differential encoding 
The light detected by each pixel needs to be converted into a logic value" 1" or "0" 

by comparing its voltage to some threshold. The simplest way to perform such conversion 

is to set the same threshold to all the photodetectors in the chip. However, a global threshold 

cannot compensate for spatial variations of intensity across the entire data page. An alter-

native is to use different threshold levels across the area of the chip. This is not a perfect 
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solution either, even assuming that generating many different bias voltages for the thresh­

olds is not an issue, because the spatial nonuniformity in the reconstructed hologram can 

change from one holographic page to another. 

A very efficient way to be more robust to the intensity nonuniformity of the recon­

structed data page is differential encoding [3-6], [3-7]. In this case, a pair of pixels in the 

hologram represents each single bit of information required to program the chip. The dif­

ferential photodetector must have two photosensitive areas, referred to as the left and right 

pixels, which need to be matched to the pixel pair in the hologram. The logic "1" is then 

represented by left pixel ON and right pixel OFF and logic "0" by left pixel OFF and right 

pixel ON. This coding scheme makes it unnecessary to set any threshold for the photode­

tectors. Since the global variation of the incident illumination is reduced, the signal-to­

noise ratio is increased and therefore the bit-error rate is improved. From the optics point 

of view, this type of data representation is simple and does not increase the system cost. 

3.3.2 Photodetector structure 
CMOS pixel sensors are based on either a passive or an active structure. Passive 

pixel sensors (PPS), depicted in Figure 3-9(a), consist of just a photosite that converts pho­

tons into electrons. The generated photocurrent discharges the reset voltage stored in the 

floating diffusion of the pixel. The analog pixel value is carried off the pixel to the support 

circuits that will amplify and digitize it. The simplicity in design of the passive pixel makes 

possible to dedicate most of the area of the pixel to the collection oflight, obtaining high 

fill factors. However, this simplicity also makes the PPS more vulnerable to noise. On the 

other hand, active pixel sensors (APS), Figure 3-9(b), incorporate additional transistors 
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Pixel Output 

Pixel Output 

Ca) Cb) 

Fig. 3-9. Circuit schematic of (a) a passive pixel sensor, and (b) an active pixel sensor that 
includes a source-follower amplifier. 

inside each pixel, like the source follower amplifier in Figure 3-9, to amplifY the photo-

generated signal and reduce noise. However, adding these components reduces the fill 

factor of the APS. 

In the OPGA chip, the main two requirements on the photodetectors are their size 

and speed. The pixel sensors must have small pitch to result in a low overhead in silicon 

area. The smaller size of passive pixels makes them interesting for this application. But at 

the same time, the pixels must have enough sensitivity to guarantee a short integration time 

in the range of 1-100 )Jsec. This second requirement is better satisfied by active pixels, 

which reject better noise and crosstalk. 

In order to find out which type of CMOS sensor is the most adequate for the OPGA 

application, and in particular to investigate the possibility of utilizing passive pixels, a first 

prototype chip has been designed and fabricated by Photobit using 0.35 )Jm CMOS process. 

The chip contains a 2 x 3 array of optically addressable logic blocks. The architecture of 

the logic block, Figure 3-10, is based on a 4-input I-output LUT that can be programmed 
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Fig. 3-10. Architecture of an optically addressable 4-input I-output LUT. During the 
programming cycle, the array of 16 differential pixels time-share the photodetector. The detected 
bits are stored into the latches, and can be accessed during normal operation via the decoder. 

by an array ofl6 differential pixels with 5 J..tm pitch implemented inside the logic block. The 

areas of the OPGA chip that are not light sensitive have been shielded with metal to avoid 

stray radiation interfering with the logic circuit. 

The optically addressable CLB in Figure 3-10 consists of a 4-bit decoder and a 

memory bank formed by an array of 16 latches to store the value of the computation, as in 

a conventional LUT; but dislike an "all-electronic" LUT, the logic block incorporates a 

16 x 2 pixel array and a shared photodetector. The size of each CLB is about 125 x 85 J..tm, 

and the overhead due to optoelectronics is 24.8%. A detailed block diagram ofthe detection 

chain is provided in Figure 3-11. During the programming cycle, the photodetector will 

sequentially interrogate the 16 pixel pairs to read out the analog value in the left and right 

pixel of the pair. These voltages are taken to the first amplification stage, where a common 

source amplifier amplifies each channel separately before the signals are fed to the second 
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stage of the photodetector: a differential amplifier/comparator that produces the digitized 

output that is delivered to the corresponding latch in the LUT. 

Left 
Pixel 

SELi 
Reset 

...L 

Pixel 
Bus 

Latch 
Bus 

WR RD 

1 

Output 
Bus 

Fig. 3-11. Block diagram of the detection chain. The fust stage consists of two common source 
amplifiers (A) to amplify the value of each pixel in the pair separately. The second stage is a 
differential amplifier and comparator (CMP) that produces a I-bit digitized output. 

The preliminary testing of the passive-pixel chip showed satisfactory operation of 

the logic blocks at low clock speeds around 60 KHz. The performance of the chip degrades 

at higher clock speeds, as the electron injection noise in the pixel buses becomes more seri-

ous and leads to problems like blooming and crosstalk, which result in erroneous program-

ming ofthe LUTs. The lesson learned from the characterization ofthe first-generation chip 

was that despite the potential savings in real estate obtained when using PPS, the chip 

requires a higher level of noise suppression for high-speed operation only achievable with 

the use of the APS. This is the reason why an active pixel solution was adopted for the 

second and third generation chips, the latter also referred to as full OPGA chip and 

described in the next section, also fabricated by Photobit. 
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3.3.3 Full OPGA chip design 

The final version of the OPGA chip [3-3], Figure 3-12, mimics a small-scale FPGA. 

The chip combines a 64 x 32 array of differential APS sensors (the big block on the left in 

the picture); and the logic array (the small block on the right in the picture) containing the 

logic blocks and interconnecting resources. 

Fig. 3-12. The full OPGA chip, designed by Photobit in 0.35 ~m standard CMOS process, 
integrates a 64 x 32 array of differential photodetectors (the large block on the left in the picture) 
and fully connected logic array (the small block on the right). 

The programmable logic array contains four logic blocks in a 2 x 2 arrangement, 

and an interconnection network based on five crossbar switching matrices and four connec-

tion matrices, and four 5-bit tri-state I/O ports. A schematic of the logic array is provided 

in Figure 3-13. The architecture of the CLB is based on a 5-input LUT with I-bit buffered 

output. The crossbar switching matrices (S-Boxes) allow for connectivity between two seg-

ments of bus lines or between the buses and the 110 ports. On the other hand, the connection 

matrices (C-boxes) establish connectivity between segments of bus and the inputs of the 

logic blocks. 
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Fig. 3-13. Schematic of the programmable logic array. The logic circuitry consists of a 2 x 2 
array of 5-input LUTs with one buffered output each. The LUTs are fully interconnected by means 
of 5 switching matrices located in the center, left, right, top, and bottom of the array. 

The APS array has been designed with pixel size of 15 /-lm. Although smaller sizes 

can be fabricated, the 15 /-lm sensor size has been selected to match the pixel size of the 

Kopin SLM that will be used to record the holograms in the optical memory. The detection 

process to read out the analog signal in each APS pair and convert it into a I-bit digitized 

output is performed in parallel row-wise by an array of32 detectors, physically located on 

the bottom of the APS array in Figure 3-12, and time-shared within each column of the APS 

array. The block diagram of the photodetector is essentially the same as the one depicted in 

Figure 3-11, with the difference that the passive sensors have been replaced by active ones. 

Once a 32-bit control word has been detected, it can be used to program the on-chip 

logic. A total of 13 words, or equivalently rows of the APS array, are necessary to configure 
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the entire logic of the OPGA, therefore 4 different configurations can be downloaded 

simultaneously into the chip. This feature makes it possible to switch between configura­

tion contexts within the same hologram and implement partial reconfiguration of the 

OPGAchip. 

3.4 Optical materials 
After deciding upon the mechanism to store the configuration templates in the holo-

graphic memory of the OPGA, it is not less important to consider which optical media are 

appropriate for the OPGA system. One of the basic requirements on the optical material is 

its M/#. The medium must have enough dynamic range to support 100 holographic recon­

figuration templates. As discussed in Section 2.4, a material with at least MIS would be 

desirable. It is worth making the remark that this M/# must be achieved not just for plane 

wave holograms but for high-bandwidth data pages as well. In general, thicker media are 

preferred because they offer larger dynamic range and better selectivity, which allows for 

more dense multiplexing. However, in this particular application, a too thick material 

would result in a very narrow wavelength selectivity, making even more stringent the 

requirement in wavelength uniformity of the VCSEL array. 

In order to make possible the recording of high-bandwidth data pages, the holo­

graphic material should exhibit very good optical quality and uniformity, low scattering 

and not undergo significant dimensional changes during recording, like shrinkage in certain 

photopolymers. Finally, the material should also have a broad modulation transfer function 

(MTF) to provide enough flexibility to work in both transmission and reflection 

geometries. 
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Since the optical memory in the OPGA is intended to operate in a read-only mode, 

many different polymer-based materials can be used. In these media, readout of the stored 

data does not result in erasure, therefore, the lifetime of the holograms is only limited by 

the aging of the polymer itself. Holographic polymers are interesting because they exhibit 

very good dynamic range and also have high sensitivity. For example, Du Pont photopoly­

mer has been used in early experiments in the OPGA, as well as in the system demonstra­

tion described in Section 3.6. However, this polymer suffers from shrinkage and poor 

optical quality due to nonuniformity of the material, which distorts the reconstructed 

images. This problem becomes more important as the pixel size is reduced, even if phase­

conjugate readout is used. Therefore, Du Pont photopolymer is not the best option for a full 

scale system. Another alternative that has been considered is a red-sensitive acrylamide­

based PYA material (see Section 3.4.1). This medium is fairly similar to Du Pont photo­

polymer and in fact suffers from many of the same problems as the Du Pont films. 

The possibility of using PQ-doped PMMA has also been explored. This material 

shows good optical quality and M/# [3-8], but it has extremely poor absorption in the red, 

making necessary to use green wavelength laser sources in the OPGA module. A full 

description of the mechanism of grating formation in PQ-PMMA, along with experiments 

to optimize the performance of the material, are provided in Chapter 5. Nevertheless, the 

most solid choice seems to be the Aprilis film [3-9]-[3-11], since it enjoys both good 

recording dynamics and high optical quality. Chapter 4 presents the experimental charac­

terization of the material and its use in holographic data storage applications. 

A list of optical materials would not be complete without taking into consideration 

the photorefi"active crystals. Iron-doped lithium niobate crystals are another good option for 
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the OPGA (see Section 3.4.2), and an advance packaging design that uses a LiNb03 crystal 

is described in Section 3.5 and has been demonstrated in [3-12]. The volatility of the stored 

information during readout, or even in the dark, has been traditionally seen as a drawback 

in this class of materials, however, recent research has successfully developed nonvolatile 

re-writable memories using doubly doped crystals [3-13] , [3-14]. 

Du Pont Aprilis LiNb03:Fe MB-PVA PQ-PMMA 

Thickness 20-100 ~m 200-500 ~m cm SO 11m 1-10 mm 

M/#' 4.5 (100 11m) 10 (200 11m) 5 (S mm) I (SO 11m) 4.S (3 mm) 

Sensitivity: 
-I mJ/cm2 1 mJ/cm2 >100 mJ/cm2 20 mJ/cm2 12 mJ/cm2 1% energy 

Saturation 300 mJ/cm2 300 mJ/cm2 N/A 40 mJ/cm2 -I J/cm2 

Scattering 5 x 1O-4/strad 1O-5/strad 1O-6/strad - Du Pont 1O-4/strad 

Optical Quality Good Very good Excellent Good Very good 

MTF Good 0.2-10 11m Good -- Good 

Shrinkage -3.5% -0.05% N/A - Du Pont N/A 

Post-processing Curing Curing N/A -- Baking 

Volatility No No Yes w/o fixing No No 

Lifetime: 
Shelflife Months Months Years -- Years 

Data retention Years > 10 years Years -- Years 

Table 3-1. Companson of the malO propertIes of available holographIc matenals that have been consIdered 
for the OPGA. (*M/# measured for the actual thickness ofthe material) 

Before presenting the experimental characterization of each one of the materials 

and discussing of their particularities, Table 3-1 provides a comparative overview of the 

main properties of the different holographic media that have been considered for the OPGA 

module. 

3.4.1 MB-doped acrylamide-based PYA polymer 
The repertory of red-sensitive holographic media has been increased with the devel-

opment of an acrylamide in polyvinyl alcohol (PV A) photopolymer film. The use of acry-
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lamide material for holography was first published in [3-15]. High diffraction efficiency 

holograms using acrylamide in PYA solution films were reported in [3-16]. This particular 

material is doped with 3,7-bis(dimethylamino)phenothiazin-5-ium chloride, usually called 

methylene blue (MB), which is a chromophore sensitive to red wavelengths. 

Films ofMB-PYA polymer have been synthesized to characterize its performance. 

Sample preparation consists of dissolving the acrylamide, along with the MB dye and a 

polymerization initiator, triethanolamine, in an aqueous solution with 10% wt of PYA. The 

concentrations of monomer, dye and initiator were chosen to match the values for material 

optimization published in [3-17] and summarized in Table 3-2. The solution was poured 

onto glass plates and let dry in the dark to obtain films of 80 , . .lITI in thickness. 

Component Concentration 

Acrylamide 3.4 x 10-1 M 
Triethanolamine 2.0 x 10-1 M 
Methylene blue 2.4 x 10-4 M 

. . Table 3-2. ConcentratIOns of the optImal compOSItIon of the photosensitive 
PYA solution. Concentrations are in Molar (i.e. , Molll) 

The absorption spectrum of one of the samples, Figure 3-14, shows that the material 

is highly absorptive in the region of the red wavelengths, resulting in an optical density of 

1.17 for an 80 )lm thick film at 633 nm. 

The photochemistry ofthis material is fairly similar to the one ofDu Pont polymer. 

Exposure of the sample to red light excites the dye molecules, which in turn activate the 

molecules of the initiator, triggering the free-radical polymerization of the acrylamide. 

Holographic recording is achieved by illuminating the sample with an interference pattern. 

The photoinduced polymerization of the acrylamide in the bright fringes, combined with 
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Fig. 3-14. Absorption spectrum of an 80 J.!m thick MB-PVA film. 

the diffusion of the monomer from the dark into the bright regions, results in significant 

local changes of the index of refraction. 

Recording experiments on this material have been performed using a He-Ne laser 

in a symmetric transmission-geometry setup. The angle of incidence of each one of the 

beams (outside the material) is 30° with respect to the surface normal of the sample. The 

growth of the hologram to saturation is plotted in Figure 3-15. The recording curves satu-

rate after 250 mllcm2 of exposure, achieving a level of diffraction efficiency about 35%. 

The square root of these curves has been fitted to saturating mono-exponentials to deter-

mine the recording "time" constant. This constant resulted to be 99.5 mllcm2 on average, 

which corresponds to a sensitivity of791 cmll. 

The material seems to require about 10 mllcm2 of pre-exposure energy before there 

is any growth in the diffraction efficiency of the hologram. This agrees well with the results 
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Fig. 3-15. Hologram diffraction efficiency as a function of the recording exposure energy. 
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from the mUltiplexing experiments in which the early holograms are consistently weaker, 

like the first two holograms in Figure 3-18(a) and Figure 3-19. 

The recorded holograms presented good quality and rendered nice selectivity 

curves, like the one presented in Figure 3-16. The measured angular selectivity turned out 

to be 0.74° (outside the material). This very wide angular selectivity is fully consistent with 

the 80 11m thickness of the samples. 

Multiplexing experiments have been performed in order to measure the M/# of the 

material. The small thickness of samples, which results in large angular selectivity, greatly 

limits the number of holograms that can be angularly multiplexed. Alternatively, 

peristrophic multiplexing [3-18] can accommodate more easily a larger number of co-

located holograms. The sample is mounted on a rotation stage in the experimental setup, so 

it can be rotated around the normal to its surface between successive exposures. As the 
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Fig. 3-16. Angular selectivity curve for a hologram recorded in an 80 11m thick MB-PVA film. 

sample rotates, the direction of propagation of the diffracted wave changes, which can then 

be filtered off the detector, making it possible to record a new hologram without having 

crosstalk from the previous one. In general the sample can be rotated 360°, however the 

degeneracy of the symmetric recording geometry reduces that range to just 1800. 

Figure 3-17(a) plots the diffraction efficiencies of 31 multiplexed holograms. Each 

recording beam had 1.04 mW/cm2 in intensity and a 7 mm diameter. The exposure energy 

was 17 mJ/cm2 for all the holograms, ensuring that the dynamic range of the sample is used 

up after approximately 530 mJ/cm2. The cumulative grating strength of the holograms is 

then computed in Figure 3-17(b). The MI# can be estimated from the saturation value of 

this curve, being M/0.91 for the actual thickness of the material. 

The M/# can be optimized by equalizing the strengths of the holograms using a 

recording schedule. A schedule was calculated by fitting a sixth order polynomial to the 
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Fig. 3-17. (a) Individual hologram strengths of 31 holograms multiplexed with equal exposures, 
and (b) their cumulative grating strength. The solid line in (b) is a sixth order polynomial fit. 

experimental data in Figure 3-17(b) according to the method described in [3-19]. The 

scheduled recording experiment produced more equal holograms, Figure 3-18(a), with an 
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average diffraction efficiency 11 = 9.6 x 10-
4

. The cumulative grating strength curve in 

Figure 3-18(b) saturated at M/0.94, which is slightly higher than in the previous case for 

constant exposure. 

The optimization process can be iteratively refined by computing a new recording 

schedule for the next iteration based on the results from the previous one. As the holograms 

become more equalized, the cumulative grating strength should saturate at a higher value, 

indicating that the dynamic range of the material is used more efficiently. Although better 

equalization has been achieved in the experiments, Figure 3-19, it has not necessarily been 

coupled to higher·M/# (M/0.81 in Figure 3-19, with an average 11 = 7.5 x 10-
4

). This is 

most probably due to differences in the thickness of the samples 

The material presents a good MI# for its small thickness. Further mUltiplexing 

experiments produced a maximum MI# of 1.3. However, the large absorption of the mate­

rial at 633 nm leaves little room to increase the dynamic range by making thicker samples. 

The consistency of the results throughout different experiments was poor due to sample-to­

sample variance. Further development ofthe MB-PV A material is necessary if this material 

is to be used for holographic data storage applications, like in the OPGA system. 

Another aspect that needs consideration is the image quality of the reconstructed 

holograms. Shrinkage during recording is expected in this material due to the process of 

polymerization induced by illumination with the laser beam. In that sense, the fact that the 

angle of incidence of the probing beam needed to be detuned to Bragg-match the hologram 

in Figure 3-16 is an indication of the presence of shrinkage. Other issues like material uni-
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Fig. 3-18. (a) Individual strengths of 31 multiplexed holograms recorded with an exposure 
schedule and (b) their cumulative grating strength. 
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formity and scattering were not investigated, although no significant improvements with 

respect to Du Pont photopolymer are expected_ 

3.4.2 Lithium niobate crystals 
Photorefractive crystals have been widely used as support for holographic data stor-

age applications [3-20], [3-21]. Unlike the other materials compared in Table 3-1, holo-

gram formation in LiNb03 is achieved by means of the photorefractive effect. During 

recording, the interference pattern of two light beams excites electrons in the bright fringes 

into the conduction band of the crystal. At the end of their lifetime, the excited electrons 

return to either the valence band or to centers in the bandgap created by dopants like iron, 

where they can be promoted again into the conduction band. However, the electrons that 

recombined into centers in the dark fringes of the interference pattern can no longer be 

excited and remain trapped. The redistribution of charges in the crystal, and their eventual 
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trapping, builds a spatially variant electric field that induces in turn the modulation of the 

refractive index of the crystal through the electro-optic effect, known as Pockel's effect. Of 

course, the process of index modulation is reversible, so uniform illumination will erase 

any local distribution of electric charges. 

The recording sensitivity in LiNb03 crystals is between one and two orders of mag­

nitude lower than in photopolymers, making the recording process more slowly. However, 

this is relatively unimportant in the context of the OPGA, because the OPGA module is 

intended to operate as a read-only memory and therefore the recording of the holographic 

configuration templates occurs off-line. Furthermore, unlike photopolymers, LiNb03 crys­

tals offer the possibility of implementing a fully read-write module. A holographic RAM 

type of memory [3-22] makes it possible to update the set of configuration templates that 

the OPGA chip can access at any particular time, giving a higher level of flexibility to the 

OPGA system. 

Although a comprehensive characterization of LiNb03:Fe is beyond the scope of 

this section, experiments have been performed using Fe-doped crystals in the reflection 

geometry for red wavelengths to verify that their performance meets the requirements for 

this particular application. The experimental setup is a symmetric reflection-geometry 

system in which each recording beam impinges the crystal at an angle of 10° (outside the 

medium) and has an intensity of 4.03 mW/cm2. 

Among the z-cut LiNb03 crystals available in the laboratory, the best results have 

been obtained in an 8 mm thick crystal with 0.02% wt Fe that was reduced in order to 

increase its absorption at 633 nm. The evolution of a grating in that crystal is monitored in 
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Figure 3-20, in which the hologram is recorded for 30 minutes, growing up to 4.8% in dif-

fraction efficiency. The square root of the rising edge of the curve has been fitted to a line 

and the sensitivity of the crystal has been estimated to be 0.031 cmll. The hologram is then 

exposed to non-Bragg-matched uniform illumination for an interval of 6 hours to study the 

erasure dynamics. This portion of the curve has been fitted to a monoexponential, resulting 

in an erasure time constant ("te) of29304 sec. 
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Fig. 3-20. Recording and Bragg-mismatched erasure curves at 633 urn for an 8 rum thick z-cut 
LiNb03:Fe 0.02% wt crystal. 

In photorefractive materials, the dynamic range is directly related to the asymmetry 

between the recording and erasure rates. The recording process follows an exponential 

growth to saturation (Ao) with recording time constant "tw . The M/# is obtained as the prod-

uct of the recording slope at the origin and the erasure time constant [3-23]: 

M/# (3-5) 



Chapter 3 - OPGA elements and system integration 

resulting in MlS.8 for the thickness of this particular LiNb03 crystal. 
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Fig. 3-21. Angle selectivity curve of a hologram in an 8 mm thick crystal. 
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An alternative way to measure the dynamic range, also less subject to errors due to 

the estimation of the recording and erasure time constants, is by multiplexing several holo-

grams at the same location. To minimize crosstalk between neighbor holograms, the angu-

lar separation between them was chosen to be 0.15°, which corresponds to the third null of 

the selectivity curve shown in Figure 3-21. The results of two different experiments, in 

which 41 and 10 1 holograms were angularly multiplexed, are presented in Figure 3-22. 

The holograms have been equalized using a recording schedule computed as 

explained in [3-24], and according to which the recording time for the mth hologram (tm) is 

given by the following expression: 
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Fig. 3-22. Comb func tion of (a) 41 and (b) 101 angularly multiplexed holograms equalized using 
recording schedule. 
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(3-6) 

where 'te is the erasure time constant of the crystal (in this case 'te=29304 sec) and t1 is the 

recording time of the first hologram. If t1 is chosen to be 'te, then the expression of 1m 
't 

reduces to ~. However, t1='te may lead to undesirably long recording times, as it occurs in 
m 

this case in which the erasure time constant is more than 8 hours. 

If t 1 is smaller than 'te, it is still possible to equalize the multiplexed holograms, 

although not the entire dynamic range of the material will be used. To see how the used 

portion of the dynamic range, (M/#)Used' relates to the real (M/#) of the material, consider 

the Mlh hologram. Since it is the last hologram, it sees no erasure and therefore its grating 

strength is given by 

Plugging in the expressions for the recording slope and tM , Equation 3-7 becomes 

which can be re-written as 

(M/#)Real . ---­
'te 

M-J +-
t1 

(3-7) 

(3-8) 

(3-9) 

On the other hand, given the fact that the holograms have been equalized, the used 

portion of the (M/#) satisfies the relation (M/#)Used = ~. M, in which ~ is the 

grating strength of the mlh hologram. Since all the holograms are equally strong, it suffices 
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to take the case m=M and replace into Equation 3-9 to obtain finally the relation between 

(M/#)Used and (M/#)Real: 

(M/#)Uscd 
M 

(M/#)Rca l . ---'-''---
M - 1 + 't e 

tl 

(3-10) 

In Figure 3-22(a), the holograms have a diffraction efficiency of 1.39 x 10-3 on 

average, resulting in (M/#)Used= 1.53. Since tl is just 1.02% o['];e, only the 29.77% of the 

dynamic range was used, which means in fact Ml5.13 for the thickness of the crystal. A 

similar result is obtained in Figure 3-22(b), in which the measured (M/#)Used=2.26 corre-

sponds to just the 45.47% of the dynamic range, being M/4.97 the true value for the crystal. 

In both cases, the M/# is somewhat lower than the value computed using Equation 3-5. 

The optical quality of LiNb03 is much higher than in any other of the materials that 

have been considered. This property, combined with a very low level of scattering of the 

material , makes possible to store data pages with very small pixel size. Figure 3-23 shows 

Fig. 3-23. Phase-conjugate reconstruction of a 4 !lm pixel hologram recorded in LiNb03. 
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a phase-conjugate reconstruction of a 4 11m pixel hologram recorded in the same 8 mm 

thick crystal. In the experiment, the hologram has been magnified using a x40 microscope 

objective to image it onto a CCD camera with 9 11m pixel pitch. However, the system could 

have been made totally lens less by matching the pixels in the hologram to a 4l1m-pitch 

CMOS detector. Two different metrics are commonly used to measure the quality of a 

detected hologram: the signal-to-noise ratio (SNR) and the bit-error rate (BER). 
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Fig. 3-24. Histogram of pixel intensity of hologram shown in Figure 3-23 fitted to two normal 
distributions to compute the BER. 

The SNR measures the contrast between the ON and OFF pixels of the hologram, 

which can be easily observed from the histogram ofthe intensities (digitized into 256 levels 

in an 8-bit resolution CCD) of the hologram pixels, as shown in Figure 3-24. Imperfections 

and local defects in the material, as well as in the optics of the setup, lead to intensity non-
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unifonnity of the reconstructed hologram, which results in a distribution of pixel intensities 

that cluster into two groups in the histogram. The SNR is then defined as 

SNR = iJ., - iJ.o 

Ja~ -a~ 
(3-11) 

where iJ.I and a I are the mean and standard deviation of the cluster corresponding to the 

ON pixels (logic "1"); and similarly iJ.o and ao for the cluster of OFF pixels (logic "0"). 

The BER provides infonnation about the probability of erroneous detection, and 

can also be obtained from the histogram by fitting each cluster to some type of probability 

distribution: 110 for "1", andloO for "0". For example, the data in Figure 3-24 has been 

fitted to two nonnal distributions. The BER is then defined as 

BER = PI! I,(~)·d~ +porlo(~,)·d~ , (3-12) 
- 00 y 

where PI and Po are the symbol priors, usually taken ~ because the holograms are random­

pixel images, and y is the decision threshold, which according to the maximum likelihood 

criterion is optimal when detennined as the solution to P, . I, (y) = po· lo(Y) . If/lO and 

100 are nonnally distributed, Equation 3-12 reduces to 

( 
iJ., - Y J ( Y - iJ.o~ BER = P, . erfc M + po· erfc M . 
~2·a, ~2·a 

(3-13) 

The hologram in Figure 3-23 presents a global SNR across the entire image of 4.98, 

with regions where the SNR reaches a maximum of 5.18. The resulting raw BER (i.e., 

before any error-correction techniques are implemented) is 5.25 x 10-4. 
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The above presented experimental results show that LiNb03 is able to meet both 

the optical quality requirements for small-sized pixels and the dynamic range consider­

ations (i.e., MIS) for rapid configuration of the OPGA system. However, the larger thick­

ness of the crystals (a few millimeters rather than a few hundred microns in polymers) puts 

more strain in the level of wavelength unifonnity of the VCSELs. It is also important to 

point out that the volatility of the holograms has to be addressed for a long-tenn operation 

of the OPGA module. Solutions to this problem exists, like thennal fixing [3-21], although 

nonvolatility is obtained at the expense ofM/#. 

3.5 Module packaging 
After presenting the properties and main issues of each one of the three major com-

ponents of the OPGA module, it is necessary to discuss next the integration of the address­

ing device, optical memory, and CMOS chip, in a single package. The main goal is that the 

OPGA module needs to be small enough to be mounted on a computer board, thus the 

module should have a low profile. As already mentioned in Chapter 2, the height of the 

module depends only on the focal length of the lens used before the SLM, and this distance 

can be made as little as 1 cm. The module is very compact due to the lens less readout and 

to the small size of the area of the recording medium used to store the holograms. 

The package shown in Figure 3-25 houses the optical memory on the top rectangu­

lar window. The VCSEL arrays, integrated on both sides, retrieve the holograms detected 

on the chip located on the bottom of the package. The package also needs to be robust to 

ensure the proper alignment between all of its components. It is important to preserve the 

one-to-one correspondence between the pixels in the hologram and the photodetectors on 
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Fig. 3-25. Mechanical design of the OPGA module integrating in a compact package the optical 
memory (window on the top), VeSEL arrays (one on each side) and the chip (bottom). 

the chip and also to avoid any change on the areas illuminated by the VCSELs on the optical 

material. 

A first prototype has been developed to demonstrate that it is possible to integrate 

all three elements in a compact module. The module uses a 5 x 1 array ofVCSELs to read 

out the holograms that have been stored in a 100 J..!m thick layer of DuPont photopolymer 

used as the optical memory. For this demonstrator, instead of the OPGA chip, a simple 

CCD camera chip was interfaced to the optical memory to detect the reconstructed 

holograms. 

During recording, a laser diode stores two shift-multiplexed holograms in the 

memory at the two locations that match the position of the two VCSELs at each end of the 

array. The laser diode has been thermally controlled to match its wavelength to the one of 

the VeSELs. The experimental setup, shown in Figure 3-26, combines a reflection geom-

etry architecture and lens less readout making the OPGA module very simple and compact. 

Once the recording operation is finished, the VCSEL array is assembled into the OPGA 

reader module, and the module removed from the setup of the recorder. 
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Fig. 3-26. Picture of the experimental setup used to record the holograms into the optical 
memory of the OPGA module. 

Fig. 3-27. First generation OPGA prototype mounted on the board that carries the circuitry to 
drive sing le VCSELs in the array and to power up the module . 

The OPGA module is then mounted on a demo board, shown in Figure 3-27, that 

contains the additional circuitry to drive the VCSELs and select which element in the array 

is active. The board also carries the interface to the monitor where the holograms are dis-

played as they are read out by the VCSELs (Figure 3-28). 
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Fig. 3-28. Reconstmction of the two holograms stored in the optical memory of the OPGA 
prototype. Two different VeSELs are used to retrieve one hologram at a time. 

A more advanced packaging for the OPGA module has been proposed and demon-

strated in [3-12] . The module achieves an extremely low profile by directly mounting the 

optical memory, a thin slab of LiNb03:Fe, on top of the OPGA chip as depicted in 

Figure 3-29. The system makes use of the folded shift multiplexing technique[3-12] to 

store holograms into the memory. The light from the VCSELs is coupled into the crystal 

from the edge and guided along the crystal as it bounces off the top and bottom surfaces 

due to total internal reflection to read out the holograms, which are projected onto the 

OPGA chip. 

OPGA chip 

LiNb03 
Crystal 

Fig. 3-29. Advanced packaging for the OPGA in which a thin slab of LiNb03 is directly 
mounted on top of the OPGA chip. The beam from the VeSEL is guided inside the crystal. 
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3.6 System demonstration 
The previous section discussed the integration of the three components of the 

OPGA into a compact module. A demo OPGA module was developed in which VCSELs 

were used to read out holographic data pages from the optical memory. However, the 

system used a CCD camera instead of the OPGA chip. In this section, the holographic pro­

gramming of the OPGA chip will be demonstrated. The system described here interfaces 

the full OPGA chip with an optical memory containing the configuration templates that are 

downloaded onto the chip upon readout. 

3.6.1 Demonstrator setup 
The 514 nm line of an Argon ion laser is used in the experimental setup sketched in 

Figure 3-30. In order to record the holograms in the OPGA system, the laser light beam is 

split into two arms. The signal beam illuminates a 15 IJ.m pixel 320 x 240 Kopin SLM. The 

pattern displayed on the SLM is projected onto the chip using two 5 cm focal length Nikon 

lenses arranged in a 4-f system and pixel-matched to the APS array of the chip. 

The holographic memory, in this particular demonstration a 38 IJ.m thick sample of 

Du Pont photopolymer, is placed between the SLM and the first Nikon lens. The optical 

medium is mounted on a rotation stage to provide peristrophic multiplexing. The iris placed 

at the Fourier plane of the first lens in the 4-f system, initially intended to filter out the 

higher diffraction orders of the signal beam produced by the pixelation of the SLM, will 

also serve to block all the peristrophically multiplexed holograms that are not selected to 

program the chip at any given time. Simple additional optics is necessary to bring a plane 

wave reference beam onto the holographic material at an angle of incidence of 45° with 
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Fig. 3-30. Experimental setup for the holographic programming of the OPGA chip. The 
microscope (inside the dashed-line box) is used to monitor the pixel-matching process. 

respect to its surface nonnal. The total intensity of the recording beams has been set to 

3.6.2 Pixel alignment process 

The differential-encoding scheme used by the OPGA chip makes the process of 

pixel-matching the SLM to the APS array more difficult. As described in Section 3.3 .1, 

each pair of pixels in the SLM is mapped into one bit of infonnation. The alignment is com-

plicated by the fact that the output of the chip does not correspond to the image on the SLM 

as seen by the APS array on the chip (i.e, a 64 x 64 pixel array), but to the differentially 

detected configuration bits (i.e., a 64 x 32 data page). Therefore, the digitized output ofthe 

chip alone does not provide enough infonnation to guide the alignment process. 

Instead, pixel-matching between the SLM and the chip has been perfonned with the 

aid ofa microscope as shown in Figure 3-30. Due to the imaging property of the 4-fsystem, 



Chapter 3 - OPGA elements and system integration 3-44 

when the chip is illuminated with an incoherent light source (e.g., a white LED illuminator), 

the light reflected off the surface of the chip forms an image of the aITay of photo detectors 

at a distance equal to one focal length in front of the first Nikon lens. The microscope mag-

nifies this image, Figure 3-31(a), and projects it onto a CCD camera. 

(a) (b) (e) 

Fig. 3-3\. Pixel alignment process showing the image of (a) the APS array on the chip, (b) the 
pixels on the SLM, and (c) the SLM pixels superimposed on the APS array. 

Similarly, the pattern displayed on the SLM can also be observed on the micro-

scope. The pixels of the SLM are imaged first on the OPGA chip. However, the chip can 

be viewed as a partial miITor that reflects some of the light that comes from the SLM. This 

light travels back through the 4-f system and fonTIs an image again at one focal length away 

from the first lens, right in front of the microscope, Figure 3-31(b). The pixel-matching 

condition is achieved when the pattern displayed on the SLM coincides with the layout of 

the APS array, Figure 3-31(c). 

3.6.3 Holographic programming 
Once the optical interface is properly aligned, holograms carrying configuration 

data can be recorded in the optical memory, and their reconstructions used to drive the logic 
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of the OPGA. Figure 3-32 shows the reconstruction of a hologram as seen by the APS array 

on the chip. The differential nature of the encoded data is evident from the fact that columns 

of mostly ON pixels are immediately followed by a colunm in which the only ON pixels 

occur at the vacancies of the previous column. 

Fig. 3-32. Reconstruction of a hologram containing configuration data. The extension of the 
region of the hologram that can be visualized on the CCD is limited by the aperture of the 
objective lens in the microscope. 

The digitized output of the APS array is accessible from the outside of the chip and 

can be visualized on a computer screen via a parallel port that connects the board that car-

ries the OPGA chip to a computer. The 64 x 32 output pattern in Figure 3-33, cOlTespond-

ing to the hologram showed in Figure 3-32, is retrieved free from error. The detected data 

is then used to program the logic array of the OPGA to perfonn some type of computation. 

Given that only 13 rows out of the 64 available in the APS an·ay are needed to fully con-

figure the logic, several optical programs can be stored in the hologram and downloaded 

into the chip in less than 8 f.!S (APS integration time). 

Two different operations can be programmed using this hologram: Configuration 

# 1 routes a 5-bit input signal from the 110 port on the left of the chip throughout the chip 
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Fig. 3-33, Digitized output of the APS array showing the programming information contained in 
the hologram after being differentially detected. The hologram contains two configuration 
templates in the rows encircled by dotted lines. 

and is finally delivered to the I/O port on the top of the logic array (labeled as Output Port 

A) in Figure 3-34(a). On the other hand, configuration #2 modifies the internal state of the 

crossbar switching matrices, so the input signal is re-routed towards the I/O port on the right 

of the chip (labeled as Output Port B) in Figure 3-34(b). The operation ofthe chip is exper-

imentally verified with a test signal generated by a 5-bit counter that cycles through all its 

32 logic states. The results of the holographic programming can be observed in the scope 

trace in Figure 3-35. As the programming of the chip toggles continuously between config-

uration #1 and #2, the input signal is alternatively delivered to either port A or port B. 

The ability to reconfigure the OPGA using different rows ofthe APS array is equiv-

alent to the concept of partial reconfiguration used in the FPGA community, when only part 
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Fig. 3-34. Routing scheme programmed by each one of the two configurations contained in the 
hologram. (a) Configuration #1 delivers the 5-bit input to Output Port A (on the top), while (b) 
Configuration #2 sends it to Output Port B (on the right). 
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Fig. 3-35. Scope trace of the output of the logic block array as programmed optically. A 5-bit 
input signal is delivered cyclically to either Output Port A during Configuration # 1, or Output Port 
B during Configuration #2. 

of the logic of the FPGA needs to be reprogrammed. Having different configurations coex-

isting on the same hologram adds flexib ility to the OPGA. 
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Fig. 3-36. Reconstruction of the two multip lexed holographic templates as seen by the APS 
array. Each hologram carries two configuration programs: (a) Hologram 1 contains Configuration 
# I and #2, whi le (b) Hologram 11 contains #3 and #4. 

Finally, fu ll reconfiguration using different holograms has been demonstrated by 

peristrophically multiplexing two holographic patterns in the optical memory with an angu-
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lar separation of200 between them. The reconstruction of the two holographic templates is 

presented in Figure 3-36. By rotating the optical medium, it is possible to select between 

Hologram I and Hologram II to implement global reconfiguration of the chip. Furthermore, 

by choosing which rows to use within each hologram, two different functions can be pro­

grammed. Therefore, 4 different configurations can be downloaded into the chip. While the 

two operations performed by Hologram I have already been described (see Figure 3-34), 

the ones performed by Hologram II (configurations #3 and #4) are presented in Figure 3-37 

and explained below. 

Configuration #3 broadcasts the signals from the input port to both output ports, 

while configuration #4 splits the input lines into two groups: those corresponding to the 

even bits are sent to Output Port A, and the lines carrying the odd bits are sent to Output 

Port B. The experimental results are presented in Figure 3-38. The 5-bit counter used as test 

input signal appears on both output ports during configuration #3, as shown in the scope 

trace. When the OPGA is programmed with configuration #4, the bits with weights 2°, 22 

and 24 are detected on Output Port A, while the ones with weights 2' and 23 appear on 

Output Port B. 

The reconfiguration time (T con fig) can be defined as the interval between the end of 

the execution of the program under the current configuration (i.e., once the 5-bit counter 

has cycled through its 32 logic states) and the beginning of the execution ofa different pro­

gram with the new configuration (i.e., the first logic state of the counter). The configuration 

time includes the readout cycle of the selected rows of the APS array, plus the delivery time 

of the configuration bits to the logic blocks. In the experiment shown in Figure 3-38, the 

measured Tconfig was 127 J..ls for full chip configuration. This time has to be interpreted as 
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Fig. 3-37. Routing scheme programmed by the two configurations contained in Hologram 11. (a) 
Configuration #3 broadcasts the 5-bit input to both Output Port A and B, while (b) Configuration 
#4 sends the even lines of the input to Output Port A and the odd lines to Output Port B. 
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Fig. 3-38. Scope trace of the output of the logic block array as programmed optically by 
Hologram II. The 5-bit input signal is broadcast to both output ports during Configuration #3, and 
split into even and odd lines during Configuration #4. The reconfiguration time Tconfig is 127 f.ls. 

an upper bound, because it is limited by the master clock signal of 500 KHz generated by 

the OPGA board. 

This last experiment demonstrates the feasibility of transferring information in par-

allel from a holographic database to a silicon chip, and the high degree of flexibility derived 

from the reconfiguration capabilities. The system can be expanded to include more holo-

graphic templates using materials with larger dynamic range and better optical quality, like 

Aprilis photopolymer. 

Automation of the rotation stages to implement either peristrophic or angular mul-

tiplexing should also be carefully explored. The reconfiguration time measured in the 

experiments did not take into consideration the time it takes to retrieve a particular holo-

graphic data page from the optical memory. The use ofa VCSEL array in the design of the 
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OPGA made the readout time be negligible because no mechanical components were 

involved. However, if a single laser is to be used to overcome the limitations of the red 

VCSELs, the use of a fast steering device is required to keep the reconfiguration time low. 

Fortunately, the increase in available output power that a laser diode provides with respect 

to the VCSELs makes possible to trade offlonger retrieval times with shorter photo detector 

integration times. 
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4 Holographic data storage in Aprilis 
photopolymer 

4.1 Introduction 
The use of photopolymers in optical data storage and other holographic applications 

has fuelled an extensive research work to develop new materials [4-1]-[4-9]. However, it 

has proven difficult to find the one that, while enjoying a large dynamic range and high sen-

sitivity, can also remedy the limitations that most of the conventional polymers suffer from, 

like shrinkage and scattering. In that regard, the material developed by Aprilis Inc. [4-10], 

[4-11] seems to have successfully addressed many of these issues. The excellent optical 

quality of the Aprilis material, with /J IO wavefront distortion over a 2 x 2 mm area, com-

bined with an extremely low level of scattering and very wide modulation transfer function 

(MTF), which extends from 0.2 /lm to 10 /lm, makes this polymer meet satisfactorily the 

demands of high performance holographic systems.[4-12] 

Shrinkage in Aprilis film is negligible thanks to the use of the cationic ring-opening 

polymerization (CROP) technology [4-12]. If compared to DuPont photopolymer, for 

example, Aprilis experiences a 0.05% dimensional change during recording (mostly in the 

transversal direction), which represents a two order of magnitude improvement with 

respect to the 3.5% in DuPont. Figure 4-1 shows the different effects of shrinkage on the 

reconstruction of a digital image recorded in a sample of DuPont and in Aprilis. For the 

hologram recorded in DuPont, shrinkage makes impossible to reconstruct the entire image 

at once. The leftmost part of the image in Figure 4-1(a) is lost due to Bragg mismatch. On 
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the other hand, as shown in Figure 4-1 (b), there is no problem to retrieve the entire holo-

gram recorded in the Aprilis. 

(al (bl 

Fig.4-l. Qualitative comparison of the effect of shrinkage on the reconstruction of the hologram 
ofa digital image recorded in (a) Du Pont and (b) Aprilis polymer. 

Although the holographic medium was initially thought to be the most critical ele-

ment in the OPGA module, the optical memory is no longer the limiting factor thanks to 

the good perfonnance of the Aprilis material. Section 4.2 presents further experimental 

characterization of Aprilis ULSH500-7 A, a 200 I.un thick film designed to operate at both 

514 tun and 532 nm. Section 4.3 deals with the ability of the medium to store images. 

Finally, Section 4.4 introduces a tec\mique for hologram duplication using Aprilis films . 

4.2 Material characterization 
The effect of the pre-exposure on the quality of the holograms recorded in Aprilis 

material has been investigated. Experiments were perfonned with an Argon laser in a trans-

mission-geometry setup. The 514 nm recording beams had an intensity of 15 mW/cm2 and 

were incident at 20° with respect to the surface nonnal of the material. A white light lamp 
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with a green filter was used for pre-exposure. Its emission spectrum had a peak at 532 nm, 

and its FWHM bandwidth was approximately 90 nm. The intensity of the lamp was set to 

While in other photopolymers, like Du Pont, holographic recording does not begin 

until a given amount of energy has been absorbed by the material, interestingly hologram 

growth can be observed in Aprilis films without any pre-exposure applied to the samples. 

The real-time growth of a hologram in a sample without pre-exposure has been monitored 

with a He-Ne laser and is shown in Figure 4-2. The recording curve does not exhibit a dead 
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Fig. 4-2. Real-time growth of a hologram recorded without energetic pre-exposure. 

zone at the beginning before hologram formation takes off, on the contrary the diffraction 

efficiency grows very rapidly to its maximum before it goes through a hump and finally 

settles at around 50%. 
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The angular selectivity curve of this hologram, measured in Figure 4-3(a), is highly 

distorted and presents substantial enhancement of its side lobes. The actual selectivity 

curve (solid dots) differs greatly from the theoretical plot ( solid line) for the thickness of 

the material. Another experiment was performed in which the sample of Aprilis was pre­

exposed for 150 mJ/cm2, and then a grating was recorded for nearly I J/cm2. A 60% strong 

hologram was obtained at the end of the experiment, whose angular selectivity curve, 

Figure 4-3(b), rendered very good agreement with the theory. The reason for pre-exposure 

in Aprilis material seems to be the need to structurally stabilize the polymer before holo­

graphic recording takes place. Insufficient pre-exposure will doubtlessly result in distorted 

holograms. 

Experiments to multiplex plane-wave holograms were conducted to determine the 

dynamic range of the material. In the setup, the sample was centered on a rotation stage to 

allow for peristrophic multiplexing. Moreover, angular multiplexing was also available 

thanks to the combination of a mirror mounted on a second rotation stage and a 4-f system, 

both placed in the path of the reference beam. 

The issue of hologram distortion reappears in the multiplexing experiments. If the 

sample receives inadequate pre-exposure, the addition of more holograms causes the deg­

radation of the previously recorded ones. Eventually the material becomes stable, so the 

recording of more holograms does not damage the previous ones. To visualize this effect, 

Figure 4-4 presents the angular selectivity curves of some of the 320 holograms multi­

plexed in a deficiently pre-exposed sample. The early holograms, in particular the first, 

second and third holograms in Figure 4-4(a), are severely distorted. By the time the 58th, 

59th and 60th holograms were recorded, Figure 4-4(b), the sample was more stable, so their 
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Fig. 4-3. Comparison of the angular selectivity curves for a hologram recorded (a) without pre­
exposure and (b) with 150 mJ/cm2 of pre-exposure. In each case, the actual measurement (solid 
dots) is compared to the theoretical selectivity curve (solid line). 

selectivity curves started to agree with what is expected from theory. Finally, the 178th, 

179th and 180th holograms, Figure 4-4(c), rendered very nice selectivity even after storing 

140 more holograms. 
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Fig. 4-4. Angular scan of the multiplexed holograms at three peristrophic location showing the 
selectivity curves of the (a) first , second and third; (b) 58th, 59th and 60th; and (c) 178th, 179th 
and 180th holograms. 

Despite the fact that large values of dynamic range have been measured (reaching 

MilO), the concept of MI# is not meaningful if part of the multiplexed holograms are dis-

torted, because they have no use in any application. I t is therefore necessary to increase the 

amount of energy delivered to the sample during pre-exposure to avoid distortion since the 

very first hologram. Unfortunately, this will be at the expense of sacrificing part of the 

available dynamic range of the material. 
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Fig. 4-5 . (a) Cumulative grating strength of 720 plane-wave holograms and (b) their individual 
hologram strengths with equal exposures for each hologram. 

Figure 4-5 shows the results of a mUltiplexing experiment in which 720 holograms 

were recorded in a single location of the material. The holograms were disposed in six 

angular groups separated by 1°. Each group was integrated by 120 holograms spaced by 

1.5° in the peristrophic direction. A pre-exposure of 120 mJ/cm2 was delivered to the 
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sample before the holograms were recorded with constant exposure, 0.75 mJ/cm2 each. The 

cumulative grating strength curve in Figure 4-5(a) saturates around 4.4. Figure 4-5(b) pre-

sents the diffraction efficiency of the holograms ordered according to the sequence in 

which they were recorded. As a result of the constant exposure, the strength of the holo-

grams decays exponentially. 

In order to equalize the holograms, a recording schedule has been derived using the 

results presented in Figure 4-5(a) as described in [4-13]. Another experiment was carried 

out to store 720 holograms in a new sample. In this case, scheduled recording was adopted, 

but the disposition of the holograms and pre-exposure parameters were kept the same. The 

results are in Figure 4-6. The saturation value of the cumulative grating strength, 

Figure 4-6(a), increased with respect to the unscheduled case, revealing an M/# of6.8. The 

holograms exhibited good equalization (within 20%), as it can be observed in 

Figure 4-6(b), and the average diffraction efficiency was 0.9 x 10-4. 

4.3 Holographic data storage 
The holograms stored in the optical memory of the OPGA module will be actual 

pages of encoded data, rather than simple plane waves, thus the ability of the Aprilis mate-

rial to store multiple high bandwidth images needs to be tested. The signal-to-noise ratio 

(SNR) and the bit-error rate (BER) introduced in Chapter 3 will be used again as metrics of 

the image quality of the holograms. 

4.3.1 Image-plane holograms 
The signal arm of the experimental setup has been modified as shown in Figure 4-7 

to relay the image of a 40 /-lm random-pixel mask onto the CCD camera. The lenses have a 
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Fig. 4-6. (a) Cumulative grating strength of 720 plane-wave holograms and (b) their individual 
hologram strengths with an exposure schedule. 

focal length of 8cm and the material is placed at the image-plane of the 4-f system fonned 

by the first two lenses. The sample has been mounted on a double rotation stage to provide 

both angle and peri strophic multiplexing. The angle between the reference and signal beam 

is now 32.50 (in air), with the material placed symmetrically between the two when at the 
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Fig. 4-7. Schematic drawing of the setup used to record image holograms. The material is 
mounted on a two-axis rotation stage and is located at the image plane of the first 4-f system. All 
lenses have a focal length (f) of 8 cm. 

zero position. The purpose of the second 4-f system is twofold: First, it images the record-

ing plane onto the CCD detector. Second, it implements a spatial filter, when an iris is 

placed at the Fourier plane of the third lens, necessary to select which one of the peristroph-

ically multiplexed holograms is presented to the detector [4-14]. 

The SNR of the mask imaged through the optical system is measured in first place, 

resulting in a value of 8.20. Since the Aprilis polymer is sandwiched between two 1.5mm-

thick glass slides, the effect of inserting the glass slides in the signal path was considered 

next, leading to an SNR of 8.12. Finally, the quality of the imaging through a sample of 

Aprilis material bleached with uniform illumination produced an SNR of8.65. The fact that 

there was no degradation of the SNR evidences the good optical quality of the material. 

A single hologram was recorded with beam intensities of 2.5 m W Icm2 for a total 

exposure of 1.5 mJ/cm2. The image of the reconstructed holographic data page is in 
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Fig. 4-8. Reconstruction of a single image-plane hologram of a 40 ,"un random-pixel mask. 

Figure 4-8. The SNR ofthe reconstmcted hologram was 6.45 , and the BER measured from 

its pixel histogram (Figure 4-9) resulted in 2.38 x 10-8. The next step was to multiplex 270 

holograms in a single location. The holograms were aITanged in 6 sets separated 2° in the 

angular direction. In tum, each set consisted of 45 peristrophic holograms separated 4° 

.w 
" " 0 
u 

c-< 
OJ 
x 

' M 

'" 

25 

20 

15 

I 
10 L 

50 100 150 

Pixel value 

Fig. 4-9. Histogram of pixel intensities of the holographic data page In Figure 4-8. The 
histogram has been fitted to two normal distributions to compute the BER. 
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from each other. The holograms were recorded with equal exposure for 0.75 mJ/cm2, while 

the beam intensities were kept the same as in the single hologram case. Figure 4-10 shows 

(a) (b) (e) 

Fig. 4-10. Reconstmction of the (a) first, (b) 135th, and (c) 270th hologram from a set of 270 
image holograms recorded with equal exposures. 

the reconstruction of the first, 135th and 270th holograms, ranked according to the order in 

which they were recorded during the experiment. These holograms presented an averaged 

SNR of 5.25. A recording schedule was derived, using again the method described in 

[4-13], by fitting a sixth-order polynomial to the cumulative strengths of the measured 

holograms. Using the schedule, and keeping all other parameters the same as in the 

unscheduled experiment, a new set of270 holograms was recorded. The reconstruction of 

three of the holograms is presented in Figure 4-11. The measured SNR was 5.ll on aver-

(a) (b) (e) 

Fig. 4-11. Reconstmction of the (a) first, (b) 135th, and (c) 270th hologram from a set of 270 
image holograms recorded with exposure schedule. 
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age, fairly similar to the constant-exposure case. For the sake of comparison with the results 

presented in Figure 4-6, the cumulative grating strength curve of this set of holograms is 

shown in Figure 4-12. At the end of the experiment, after a total exposure of 0.2 J/cm2, the 
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Fig. 4-12. (a) Cumulative grating strength of270 image-plane holograms and (b) their individual 
hologram strengths with an exposure schedule. 
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curve in Figure 4-12(a) reaches 2.91 , although it has not saturated yet. Compared to the 

curve in Figure 4-6(a), a 50% reduction in M/# can be expected when mUltiplexing 

random-pixel images with respect to the case of plane-wave holograms due to the fact that 

only half of the pixels in the mask are bright. 

The imaging performance of the material for reflection holograms has also been 

tested. In the reflection-geometry setup, the reference beam impinges the sample from 

behind, so the angle between the two recording beams is 147.50
. Since peri strophic multi-

plexing is not possible in reflection geometry 1 , only angle-multiplexing was employed to 

store 11 holograms with constant exposure of 0.75 mJ/cm2 and angular separation of 20 

Three of the holograms are shown in Figure 4-13. Their averaged SNR was 5.20, virtually 

the same as the value obtained for transmission-geometry holograms. 

(a) (b) (c) 

Fig. 4-13. Reconstruction of the (a) first , (b) 2nd, and (c) lith hologram from a set of 11 
reflection-geometly holograms recorded with equal exposures. 

A summary of the results for image-plane holograms is provided in Figure 4-14, 

from which it can be seen that Aprilis material is able to store holograms with high fidelity. 

I. The grating vector of a symmetric reflection-geometry hologram is parallel to the axis of rotation of the 
material, therefore the peristrophic direction becomes degenerate. [n a nonsymmetric case, the amount of 
peristrophic rotation necessary to have the reconstruction blocked out by the spatial filter is still large 
enough to make multiplexing impractical. 
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Fig. 4-14. Summary of the values of SNR obtained for image-plane recording. The horizontal 
axis specifies the case for which the SNR was measured. 

The decay in SNR with respect to the original level above 8 is the result of distortion pro-

duced by the successive recording of holograms in the sample. As more holograms are mul-

tiplexed, local changes of the index of refraction of the medium leads to a degradation of 

the reconstruction of the previously recorded holograms and thus a drop in the SNR. How-

ever, due to the good optical quality of this material, high values of SNR can still be 

obtained. 

4.3.2 Fourier-plane holograms 

In many applications, like in the reflection-geometry OPGA module, it is the spec-

trum of the data page rather than its image that is recorded into the optical medium. While 

in an image-plane hologram, defects or nonuniformity in the recording medium reveal in 

the fonn of changes of intensity across the extension of the reconstructed hologram, as it 
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can be appreciated in the upper left comer of Figure 4-8; in the case of a Fourier-plane holo-

gram, these defects will affect different parts of the signal spectrum, having a more global 

effect on the reconstructed image. Therefore, it is also necessary to characterize the Aprilis 

material when holographic recording takes place at the Fourier plane. The setup shown in 

Figure 4-7 has been slightly modified so the overlapping between the signal and reference 

beam occurs at the Fourier-plane of the first lens after the mask, while keeping the angle 

between the two beams and the lenses in the signal path the same as before. 
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Fig. 4-15. Summary of the values of SNR obtained for Fourier-plane recording. The horizontal 
axis specifies the case for which the SNR was measured. 

Direct imaging, and imaging through glass, of the mask on the CCD camera 

resulted in very high SNR, about 10 as indicated in Figure 4-15. However the SNR dropped 

to 6.52 when the mask was imaged through a sample of Aprilis that had been bleached 

under uniform illumination. The big drop in SNR reveals how sensitive imaging is to local 
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defects in the recording medium. Better imaging through the sample can be obtained if this 

is moved slightly offthe Fourier plane of the first lens, so that the focused signal spot is not 

inside the material. The inset in Figure 4-16 shows the reconstruction of a hologram 

exposed for 4.1 mJ/cm2. Holographic recording did not significantly reduce the SNR of the 

system, since the hologram has an SNR of 6.47, approximately the same as for the image-

plane hologram. The BER calculated from the pixel histogram in Figure 4-16 is 5.62 x 10-9. 

35.-----~------~----~------._----_., 

30 

25 

250 

Pixel value 

Fig. 4-16. Histogram of pixel intensities of the reconstruction of a Fourier-plane hologram 
(shown in the inset), and fitted normal distributions to calculate the BER. 

The multiplexing of Fourier-plane holograms has also been investigated. For this 

particular experiment, the 40-)lm pixel mask was replaced by a 640 x 480 Kopin SLM with 

24-)lm pixel pitch. The lenses ofthe second 4-f system in the recording setup were changed 

in order to demagnify the size of the pixels of the SLM, so that they match the size of the 

pixels in the CCD (approximately 9 )lm). The intensity of the recording beams was bal-

anced at the recording plane, being the reference 5 mW/cm2
. 
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A set of 99 random-pixel data pages with a minimum feature size of 4 x 4 SLM-

pixels was generated, and stored in a single location of the material combining angular and 

peristrophic multiplexing. The holograms were alTanged in 11 angular subsets, spaced 2.5° 

from each other, each subset consisting of9 holograms separated by 20° in the peristrophic 

orientation. Scheduled recording was used to make equal the strength of the holograms. Six 

ofthe multiplexed holograms are shown in Figure 4-17. The reconstmctions rendered high-

(a) (b) (c) 

(d) (e) (f) 

Fig. 4-17. Holographic reconstruction of the (a) first, (b) second, (c) third, (d) lOth, (e) 45th, and 
(f) 99th data page created with an SLM and recorded in the Fourier-plane at a single location of the 
material. 

quality images and exhibited good equalization, as it can be observed from their comb nmc-

tion in Figure 4-18 . It is not surprising that the first three holograms in Figure 4-18 have a 

lower diffraction efficiency. Unlike in random-pixel patterns, the percentage of bright 
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pixels in these three holograms is lower than 50%. The average diffraction efficiency is 

2.35 x 10-3, which corresponds to M/4.83. 
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Fig. 4-18. Individual diffraction efficiency of the 99 angular and peristrophically multiplexed 
holographic data pages recorded with exposure schedule. 

This last result demonstrates that the Aprilis material provides a large dynamic 

range for the storage of high bandwidth images, and can meet the (M/#)Image required to be 

used effectively in the OPGA. Furthermore, the performance of the material for both 

image-plane and Fourier-plane recording makes indeed this material an excellent candidate 

for such application. 

4.4 Hologram mastering and duplication 
As discussed in Chapter 3, one ofthe requirements for the OPGA module is that it 

needs to be compact. In order to achieve a very simple design, the technique to read out the 

holograms must not require any lenses. The ability of the Aprilis material to store high-

quality holograms makes possible to devise a process of hologram mastering and duplica-
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tion that efficiently simplifies the retrieval of the holographic templates in the OPGA 

module without increasing the complexity of the recorder, nor compromising the quality of 

the reconstructions. 

Other techniques that allow for lensless readout have been traditionally employed. 

One of them is to use a single-lens imaging system (e.g., a unit magnification imaging sys­

tem) and record at the back focal plane of the lens, before the detector. The main disadvan­

tage of this approach is that it is extremely difficult for a single lens, even for a custom­

made one, to obtain good imaging quality over a large area. As a variation of this method, 

two lenses arranged in a 4-f system can be utilized to relay the contents of the SLM onto 

the detector. In this case, holographic recording takes place on the Fresnel region between 

the second lens and the detector. A pair of lenses can more effectively correct for aberra­

tions in the system and achieve better image quality. However, customized lenses would 

still be necessary for large data pages. Furthermore, sometimes this solution may not be 

viable if the lenses have very short working distance. 

An alternative approach is phase-conjugate readout [4-15]-[4-17], which unlike the 

other two solutions does not require any special optics in the system. The quality of the 

reconstructed holograms does not depend on the imaging optics, but on how well the wave­

front of the counter-propagating readout beam matches the one of the recording beam. This 

turned out to be problematic in the context of the OPGA, because the reference beam during 

recording should be a converging spherical wave that exactly matches the divergent beam 

emitted by each VCSEL, thus making the requirements on the VCSELs more stringent. 
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The technique to master and duplicate holograms investigated ill this section 

obtains the same imaging quality as in the phase-conjugate readout case, even with off-the-

shelflenses in the recorder, while avoiding the complexity of phase-conjugating a spherical 

reference beam in the OPGA. This technique splits the holographic recording process into 

two steps. During the first one, a master hologram (i.e., a high-quality hologram with high 

diffraction efficiency) is recorded in a 200 )lm thick Aprilis film by interfering a focused 

signal beam with a plane-wave reference, as sketched in Figure 4-19. The master hologram 

Nd:YAG Laser 

Master 
Hologram 

Fig. 4-19. Schematic of the setup for the mastering process. Recording occurs between the signal 
beam and the forward-propagating reference beam. Upon read-out, the phase-conjugated reference 
is used to pixel match the hologram to the CMOS imager (not shown in the figure). 

is read out using a phase-conjugate of the reference beam. Since the reference beam is a 

plane-wave, it is easier to generate a high-fidelity phase-conjugated wavefront. At this 

time, the mask and the focusing lens are removed from the setup and replaced by a CMOS 

imager, so the reconstruction of the hologram can be pixel-matched. 
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In the experimental setup, the 532 nm line of a Nd:YAG laser was used to record 

the master hologram. The signal travels through a 65 mrn focal-length lens before it 

impinges a 24-f..!m pixel mask. The phase-conjugated reconstruction of the hologram, dis-

played in Figure 4-20, was pixel-matched to a CMOS imager with 12 f..!m pitch, thus each 

pixel in the hologram is double sampled by the detector. 

Fig. 4-20. Picture of the pixel-matched and phase-conjugated master hologram as detected by 
the CMOS imager. The hologram pixel size is 24 f!m. 

Once the master hologram has been pixel-matched, it can be copied to other sam-

pies of Aprilis. During the second step, the duplication process, a fresh film is placed 

between the master hologram and the CMOS camera, as suggested in Figure 4-21. The 

duplicated hologram is recorded by the interference between the phase-conjugated recon-

struction of the master and a spherical reference beam. The light emitted from the tip of an 

optical fiber provided a spherical wavefront to simulate the beam emitted by the VCSEL. 

Moreover, the sample for duplication was mounted on a translation stage so several copies 

of the master hologram can be multiplexed by translating the material. 
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Fig.4-21. Setup for the hologram copying process. The duplicated hologram is recorded by the 
interference between the reconstruction of the master hologram and a spherical wave reference. 

In the actual experiment, the raw beam of the laser was expanded and used directly 

as reference to record a copy of the master hologram. The region of the hologram encom-

passed by the white square in Figure 4-20 has been magnified in Figure 4-22(a) to facilitate 

the comparison with the same portion of the duplicated hologram, which is presented in 

Figure 4-22(b). Despite the poor quality of the reference beam, the results are noticeable. 

From the two pictures, no degradation in the duplicated hologram can be appreciated, prov-

ing the high degree of fidelity of the copying process. 

(a) 

Fig. 4-22. (a) Detailed view of the master hologram (square block encircled by the white line in 
Figure 4-20), and (b) the same part of the data page retrieved from the copied hologram. 
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5 Optimization of PQ-PMMA polymer 

5.1 Introduction 
The optical properties of thick polymers, like PQ-doped PMMA, make them well-

suited in many holographic applications. PQ-PMMA is a material that exhibits hologram 

amplification through diffusion. The long post-processing of the PQ-PMMA samples after 

recording, necessary to reveal the holograms, is seen as one of the disadvantages of this 

material. Therefore, this chapter will focus on the optimization of the material in order to 

reduce the duration of the post-processing, or even make it unnecessary. 

After a brief description of the material and an explanation of the diffusional mech-

anism of grating formation in PQ-PMMA in Section 5.2 1, different options to increase the 

speed of hologram formation are investigated. Section 5.3 explores the impact of the resid-

ual concentration of monomer in the polymeric matrix on the diffusion speed by means of 

a comparative analysis between the material used at the California Institute of Technology 

and the one fabricated at the National Chiao Tung University. Section 5.4 tackles the effect 

of adding plasticizer to the material. Although the plasticizer is very effective in increasing 

the speed of hologram formation, it will compromise the stability of the gratings. Finally, 

in Section 5.5, the performance of the material is tested when the basic PQ molecule is 

replaced by other PQ-based compounds. 

I. A comprehensive characterization of the optical properties ofthis material, and its use as support for opti­
cal data storage, can be found in [5-1]. 
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The last section in this chapter explores the area of applications for which the PQ-

PMMA material could be utilized. Section 5.6 deals particularly with the possibility to 

implement narrow band filters for WDM applications using this material. 

5.2 Phenanthrenequinone-doped PMMA 
Phenanthrenequinone- (PQ-) doped poly(methyl methacrylate) (PMMA) [5-2], 

[5-3] has been used as a recording material in optical memories and other holographic sys-

terns [5-4]-[5-7]. This material consists ofa polymeric basis doped with chromophores, the 

PQ molecules. This material is lightweight and durable, and does not suffer from shrinkage. 

High-optical quality samples of different shapes and thicknesses can be obtained. These 

properties make it an excellent candidate for holographic memory modules. 

5.2.1 Recording and hologram formation process 
The process of hologram formation in PQ-PMMA is depicted in Figure 5-1. Persis-

tent holographic recording is achieved by interfering two beams of coherent light inside the 

material. An interference pattern with a spatial period A of the form 

(5-1) 

induces the modulation of the index of refraction of the material by optically activating the 

PQ molecules, in the bright fringes, and inducing their attachment to the PMMA matrix. 

Recording occurs at room temperature, at which the diffusion ofPQ molecules is negligible 

[5-2],[5-8]. Therefore, the attachment of PQ molecules to PMMA chains results in local 

changes of the concentration of index of refraction of the material with respect to those 

regions, the dark fringes, where the PQ molecules remain unattached. IfC is the concentra-
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PMMA doped with PQ 
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Recording 
PO Bonds to PMMA 

5-3 

Fig.5-1. Process of hologram formation in PQ-PMMA by means of photoinduced attachment of 
PQ molecules to the PMMA matrix, and subsequent hologram amplification due to diffusion of 
nonattached PQ molecules. 

tion ofPQ molecules that are uniformly distributed in a fresh PQ-PMMA sample, then once 

recording is completed (referred to as time t=O) the concentration of bonded PQ (C2) fol-

lows a spatial distribution like 

(5-2) 
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in which Co is a constant related to the exposure energy of the hologram. The distribution 

offree PQ molecules (C l ) has also been modulated by the light pattern, leading to 

(5-3) 

The diffraction efficiency of the hologram is proportional to the square ofthe mod-

ulation of the index of refraction (under the assumption of weak grating). Before any 

baking is applied to the sample, the expression of the ~n is the result from the two out-of-

phase gratings and is given by 

- -
where u l and u 2 are the polarizabilities, and C l (x, 0) and C2(x, 0) are the first Fourier 

component of the concentrations of free PQ and PQ attached to PMMA respectively. 

Since one grating is partially compensating the other one, the diffraction efficiency 

ofthe hologram is weak; however, it can be enhanced by raising the temperature, for exam-

pie to 55°C in our experiments. At higher temperatures free PQ can diffuse, thus the grating 

fonned by unattached molecules C l (x, t) is erased, while the one fonned by the attached 

PQ Cix, t) remains unaffected. The one-dimensional diffusion equation for each one of 

the two gratings can be written as 

(5-5) 

with Dl being the diffusion constant of free PQ molecules, and assuming the diffusion con-

stant of bonded molecules D2 = o. The solution to Equation 5-5 is of the fonn 
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(5-6) 

in which the exponential decay models the erasure of the grating formed by free PQ mole-

cules with baking. As t --? 00, the erasure process is completed and the expression for the 

modulation of the index of refraction becomes: 

(5-7) 

The erasure of one of the gratings results in the enhancement of the diffraction effi-

ciency of the hologram. Photopolymers in which this type of diffusional enhancement 

occurs are usually called diffusion-amplified materials. The amplification of the revealing 

process can be defined as the ratio of &1 between the after and before baking values 

A = ~n(x, t --? (0) 
~n(x, t = 0) 

(5-8) 

and purely depends on the contrast of the polarizability of the photoproduct (the PQ mole-

cules bonded to the PMMA chains) with respect to the original PQ molecules. 

5.2.2 Experimental setup 
The 514 nm line of an Argon ion laser is used in a symmetric transmission-geome-

try setup, Figure 5-2, to record the holograms in the PQ-PMMA samples. The recording 

laser beams are spatial-filtered and collimated (not shown in Figure 5-2), and the angle of 

incidence outside the material of each one of them is approximately 30° with respect to the 

surface normal of the sample, resulting in a grating period A of 0.5 /lm. A 633 nm He-Ne 

laser beam, outside the absorption band ofPQ-PMMA, is Bragg-matched to the hologram 

to monitor the real-time growth of the hologram during recording, the post-exposure 
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dynamics of the sample once the 514 nm beams have been shut off, and the evolution of 

the grating strength with baking. 

Mirror on 
Rotation Stage He-Ne Laser 

(633nm) 

---------......-

Fig. 5-2. Experimental setup used to record gratings in PQ-PMMA samples. The He-Ne beam 
can be Bragg-matched to the sample with a mirror on a rotation stage and a 4-f system to monitor 
the post-recording dynamics of the sample. 

The red beam is reflected off a mirror mounted on a motorized rotation stage and 

passes through a 4-f system before impinging the optical medium. This allows to correct 

the angle of incidence of the red beam for changes in the bulk index of refraction of the 

material, or even take into account the possibility of residual shrinkage, while monitoring 

the post-exposure dynamics of the material. Furthennore, the fact that the experimental 

setup makes possible to take selectivity curve measurements of the holograms with the He-
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Ne beam is essential to study the effect of baking on the holograms because the baking does 

not take place in situ, and therefore the hologram needs to be perfectly Bragg-matched 

every time that the sample is repositioned into the setup after having been baked in the oven 

for a period of time. 

5.3 Effect of the residual concentration of MMA 
A different type of PQ-PMMA material has been developed at the National Chiao 

Tung University (NCTU) and used for optical data storage applications. The material fab­

ricated at NCTU seems to contradict the mechanism of hologram formation and amplifica­

tion described in Section 5.2.1, since high diffraction efficiency holograms have been 

reported in these PQ-PMMA samples with recording at room temperature without the need 

for any post-recording thermal treatment of the samples [5-6],[5-9]. It is believed that in 

this case, the higher concentration of monomer in the sample plays a key role in the record­

ing process, because the PQ molecules seem to prefer to attach to MMA rather than to the 

PMMA matrix [5-9]. An alternative explanation for hologram formation is then regarded, 

in which at room temperature MMA and PQ molecules can diffuse in the material. How­

ever, the PQ-MMA groups, formed due to photoexcitation of the PQ during recording, 

experience only minimal diffusion. Thus no baking is required to amplify the hologram, 

since continuous diffusion of PQ is building up the PQ-MMA grating while at the same 

time erasing any out-of-phase grating of free PQ. 

In order to find a common theory that can satisfactorily explain the distinct holo­

gram dynamics exhibited by the PQ-PMMA material fabricated at NCTU and the one 

developed at Caltech, comparative experiments to monitor the recording and baking pro-



Chapter 5 - Optimization of PQ-PMMA polymer 5-8 

cesses have been performed on samples from both universities. The samples used in the 

comparison are a 1 mm thick disk of 40 mm in diameter made at Caltech and a bar 20 x 36 

mm in cross section and 2.4 mm thick made at NCTU. The concentration ofPQ is 0.5% wt, 

the same in both samples. 

5.3.1 Sample preparation process 
Sample preparation consists of dissolving PQ molecules (:S;0.7%) in liquid methyl 

methacrylate (MMA) together with azo-bis-isobutirylnitrile (AIBN), a polymerization 

thermal initiator. This solution is poured into molds and allowed to polymerize in a pressure 

chamber. The preparation process followed at Caltech differs from the one followed at 

NCTU in the temperature at which the pressure chamber is set during polymerization. For 

the Cal tech material, the temperature of the chamber is set to 80°C. On the other hand, at 

NCTU the polymerization process is split into two steps [5-5],[5-9]. First, the solution is let 

to rest at room temperature for approximately 120 hours until the solution turns homoge-

neously viscid. At this point, the temperature of the chamber is increased to 45°C for 24 

hours to complete the process. After the polymerization is completed, the residual concen-

tration of monomer in the Caltech samples (- 1 %) is much smaller than in those from NCTU 

(-10%). This excess of monomer will be, as it will be argued, responsible for the very dis-

tinct properties of both PQ-PMMA materials. 

5.3.2 Comparison of the recording dynamics 
A weak hologram is recorded in the NCTU and Caltech samples using the setup 

described in Section 5.2.2. The exposure energies are 0.3 and 0.5 J/cm2 respectively. This 

energy is delivered to the sample in an interval of less than 10 sec, minimizing thus the 
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effect of instability in the recording setup. Figure 5-3 shows the dark enhancement of the 

diffraction efficiency of the hologram in the NCTU (solid line) and Caltech (dashed line) 

samples during a period of 5 hours after recording. The square root of each curve, the grat-

ing strength, has been fitted to a mono-exponential function with time constant 23.05 min-

utes for the NCTU sample and 16.96 minutes for the Caltech sample. From these results, 

there are two issues that need to be interpreted: First of all, the reason why this time con-

stant seems to be the same in both cases. And secondly, why the saturation level in the 

NCTU sample occurs at a much higher value of diffraction efficiency than in the Caltech 

sample. 

10-' ,--------------------------------------------, 

10-3 

10" 

NCTU sample 

Caltech sample 

/'""------------
I 

, 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Time [hours] 

Fig. 5-3. Comparison between the evolution of the diffraction efficiency of a hologram recorded 
in the NCTU sample (solid line) and in the Caltech sample (dashed line) for five hours after 
exposure at room temperature. 

As far as the time constant is concerned, the experimental results on both PQ-

PMMA media suggest that the same mechanism is taking place in both samples and dom-
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inates the post-recording dynamics. Then the question is to identify what this process is. It 

is central to the understanding of the dynamics of the material to verify the possibility that 

free PQ molecules may diffuse in the polymeric matrix at room temperature, at which the 

experiments were performed. This hypothesis can be checked by solving the one-dimen-

sional case ofthe diffusion equation at room temperature, equivalently to what was done in 

Section 5.2.1. The diffusion constant of the free PQ molecules (D t ) relates to the measured 

time constant 1: as: 

(5-9) 

Taking A=0.5 J.!m and 1:",,20 minutes, the diffusion constant would be 10- 11 m2/s at 25°C. 

This value is far from the value of 10-21 m2/s reported in [5-2], even if the latter is adjusted 

to account for the difference of plasticity of the two samples. Therefore, it can be concluded 

that the observed dynamics does not correspond to the diffusion of free PQ molecules. In 

fact, it is believed that the enhancement of the hologram after recording is due to the attach-

ment of photo activated PQ radicals to either MMA or PMMA. Consequently, the observed 

dynamics is the rate at which this attachment is taking place. This process is much faster 

than the diffusion of PQ molecules and, in the experiment, it is completed within the first 

two hours after exposure. 

Regarding the question why the diffraction efficiency at its saturation value in the 

NCTU sample is much higher than it is in the Caltech sample, in the experiment shown in 

Figure 5-3 it is about 2 orders of magnitude, and having already ruled out the possibility of 

PQ molecules diffusing at 25°C from dark into bright regions of the material, the only spe-

cies that could still diffuse would be the MMA. The fact that MMA is about two and a half 
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times lighter than PQ can explain an increase of its diffusion constant in one or two orders 

of magnitude, however this would still be insufficient to account for the value obtained 

from the experiment. 

Conversely, it is believed that the origin of such a difference in diffraction effi­

ciency is partly found in the ratio of the polarizabilities of the PQ molecule in its different 

states.[5-2],[5-8] If at. a2 and a3, are the polarizabilities and C1(x,t), C2(x,t) and C3(x,t) 

are the concentrations of free PQ, PQ attached to PMMA, and PQ attached to MMA, 

respectively, then upon recording the two offsetting gratings are in the case of the Caltech 

PQ-PMMA: 

L'1n(x, t) = a 2C2(x, t) - a l C1 (x, t), (5-10) 

where the minus sign indicates the 7t phase shift between the gratings, and for the NCTU 

PQ-PMMA: 

(5-11) 

It is then conjectured that the ratio between a3 and al must be larger than the ratio 

between a2 and al resulting in a larger amplification and thus a stronger hologram. It is 

unlikely though that this higher contrast obtained when PQ attaches to MMA can totally 

account for the different behavior of the two samples. Furthermore, if we take into account 

the fact that the number of PQ molecules (0.5%wt) is in either case much lower than the 

number of molecules of monomer (1 %wt in the Caltech and lO%wt in the NCTU samples), 

it is not unreasonable then to think that even in the Caltech PQ-PMMA part of the grating 

is recorded in PQ molecules attaching to the monomer. 
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What we consider to be the main reason for the discrepancy in behavior of the sam-

pIes can be found in [5-7]. As described in the reference, PQ can act as photoinitiator of 

polymerization in those situations where there is an important excess of residual monomer, 

as it happens in the NCTU material. In these situations, the photopolymerization is com-

bined, and can even dominate, the diffusion mechanism of hologram formation. In other 

words, in the NCTU PQ-PMMA, the photo activated PQ molecules act as initiators of the 

polymerization before they eventually attach to MMA, resulting in substantial modulation 

of the index of refraction, and thus strong holograms. 

5.3.3 Comparison of the baking dynamics 

The effect of baking the samples on the diffraction efficiency of the holograms has 

also been investigated. Six holograms were recorded on different locations on the Caltech 

sample with exposure energies ranging from 2 J/cm2 up to 20 J/cm2 The recording sensi­

tivity of the material can be obtained by fitting the grating strength of the holograms to a 

line, Figure 5-4(a). In the figure, only five of the six holograms are presented. The holo­

gram with exposure energy of 20 J/cm2 is omitted because of saturation of the material. 

From the measurements, a prebaking sensitivity of 0.103 cmlJ is obtained. The sample was 

then taken out of the recording setup and placed in an oven at 55°C. The diffraction effi­

ciency of the holograms has been monitored and it is plotted in Figure 5-5(a) as a function 

of the baking time. As expected, at 55°C the diffusion of free PQ molecules is greatly 

enhanced so after just 18 hours in the oven, the free PQ grating has been practically totally 

erased. On average, the holograms amplified their diffraction efficiency by a factor of 

22.78, achieving values as high as 60% for the longest exposures. At this point, the "after 
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baking" sensitivity is measured, resulting in 0.396 cmlJ, Figure 5-4(a). This increase is con­

sistent with the amplification of the holograms during baking. 

A similar experiment is performed on the NCTU sample. Five holograms were 

recorded with energetic exposures from 0.25 J/cm2 to 1.5 J/cm2. The holograms have been 

allowed to develop for 2.5 hours in the dark before placing the sample in the oven. At this 

point the holograms were measured, and their grating strengths fitted to a line, 

Figure 5-4(b), resulting in an equivalent sensitivity of 1.34 cmlJ, which is approximately 

3.4 times higher than the one obtained in the Caltech sample. The diffraction efficiency of 

the holograms was monitored after incremental baking was being applied to the sample. 

The result that was obtained, as shown in Figure 5-5(b), is clearly different from the one 

experienced by the Caltech sample. The holograms are not enhanced but degraded by the 

baking. The evolution of the strength of the gratings can be fitted to exponential functions, 

and the time constant is estimated to be 9.65 hours. 

The reason for the degradation is that at 55°C both free PQ molecules and PQ­

MMA groups can diffuse in the polymer matrix, so it is not that one of the two out of phase 

gratings is being erased but both of them, resulting in the destruction of the hologram. Once 

again, the estimated time constant can be converted to a diffusion constant using 

Equation 5-9. For A=0.5 flm and 1:=9.65 hours, the equivalent diffusion constant for free 

PQ and PQ-MMA would be 1.9 x 10-19 m 2/s at 55°C, which is in good agreement with the 

value of 1.6 x 10-19 m2 Is extrapolated from data reported in [5-2]. 
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Fig. 5-4. Comparison of the recording sensitivity: (a) Caltech sample: Steady-state grating 
strength of the holograms before baking (black dots and solid line) and after 18 hour baking (white 
dots and dashed line) as a function of the exposure energy; (b) NCTU sample: Steady-state grating 
strength of the holograms (before baking only). 
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Fig. 5-5. Effect of baking at 55°C on the diffraction efficiency as a function of time: (a) 
Amplification of the holograms recorded in the Cal tech sample; (b) Erasure of the holograms 
recorded in the NCTU sample. 
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5.3.4 Prolonged baking 
The effect of prolonged baking of the sample has also been analyzed. In the case of 

the Caltech sample, the strength of two holograms, each with exposure energy of20 J/cm2, 

has been monitored for up to 44 days of continuous baking, Figure 5-6(a). After the initial 

amplification; further baking did not significantly degrade the grating formed by the PQ 

attached to the PMMA. On the other hand, in the NCTU material the destruction of the 

hologram is not complete. As it can be seen in Figure 5-6(b), the grating strength curves 

initially decay due to the mentioned diffusion process, but eventually flatten off to some 

final value. The remaining grating is due to the modulation of index refraction caused by 

the polymerization of monomer in the illuminated areas, as well as by the fraction of PQ 

that attached to the PMMA. This grating is stable and will not degrade with additional bak-

ing. The presence of a residual grating supports the hypothesis that the polymerization 

mechanism is responsible for the hologram recording in the NCTU material. 

5.3.5 Conclusion 
From the comparison between the NCTU and Caltech PQ-PMMA materials, it is 

concluded that the difference in their behavior lies in the different concentration of residual 

MMA in the samples. Experimental evidence shows that during recording PQ molecules 

attach to MMA but no diffusion takes place at room temperature. However, the excess of 

monomer during recording enables photoinduced polymerization as a mechanism for holo-

gram formation leading to high diffraction efficiencies without the need of baking. The 

grating formed by the PQ-MMA groups is unstable and it can be erased within a few hours 

of baking. 
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Fig. 5-6. Effect of prolonged baking: (a) Evolution of the grating strength of 2 holograms 
(exposure energy 20 J/cm2) recorded in the Caltech sample as a function of baking time; (b) Decay 
of the grating strength of the holograms recorded in the NCTU sample as a function of baking 
time. 
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5.4 Role of the plasticizer 
The slow diffusion offree PQ molecules in PMMA is regarded as being one of the 

major problems of the PQ-PMMA material. The samples have to be baked in an oven to 

facilitate the diffusion of PQ molecules, responsible for the revealing of the hologram. This 

process typically takes about one or two days at 55 DC. It would be then desirable to be able 

to modify the composition of the material to increase the diffusion speed ofPQ molecules 

and, consequently, reduce the revealing time ofthe hologram. In this section, the possibility 

of achieving this objective by adding plasticizer to PQ-PMMA has been explored. 

Adding plasticizer to the material has the effect oflowering the glass transition tem­

perature of the polymer. [5-1 0] The glass transition is a property of amorphous polymers, 

i.e., polymers whose chains are not atTanged in ordered crystals, but just disseminated 

around. At high temperatures, the polymer chains have no difficulty in moving around and 

the material becomes rubber-like. This motion usually is not translational, in the sense that 

the chain as a whole is not moving any distance in one direction. Instead, the motion is 

mainly due to the fact that segments of the chain can wiggle around, folding or opening the 

chain. When the temperature is low, the chains tend to stay immobile in the material. The 

temperature at which this change of mobility occurs is called the glass-transition tempera­

ture (Tg).In the case ofPMMA, Tg is between 100 and l20DC [5-10]. 

The glass-transition temperature of a polymer depends on the flexibility of the 

backbone of the polymer chain (e.g., the "methacrylate" part ofPMMA), as well as on the 

groups that hang from the backbone (e.g., the "methyl" part of PMMA). These pendant 

groups limit how closely polymer chains can pack together. Therefore the larger the pen-
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dant groups, the farther apart the chains are and the more easily they can move, thus the 

lower Tg. 

The plasticizer plays a role equivalent to big pendant groups. The molecules of plas-

ticizer fill in the space between the polymer chains, separating them from each other and 

lowering the glass-transition temperature. 

Fig. 5-7. Dibutyl phthalate (DBPH) 

The plasticizer used in the PQ-PMMA was dibutyl phthalate (DBPH). Plasticized 

samples were prepared by pouring DB PH into the solution with the monomer and AIBN 

and PQ before the polymerization process is initiated. The behavior of these samples was 

studied experimentally and the results are presented here. 

5.4.1 Experimental method and results 
The effect ofthe plasticizer on the hologram dynamics in PQ-PMMA can be studied 

by monitoring the evolution of its post-recording strength as incremental baking is applied 

to PQ-PMMA samples with different concentration levels of DBPH. 

Three different 2mrn-thick samples with a DB PH concentration of 1%,2% and 3%, 

respectively, and a 3 mrn thick sample containing no DB PH were used for this experiment. 
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Six holograms were recorded using the setup described in Section 5.2.2 on different loca­

tions of each one of the samples with exposure energies from 0.50 J/cm2 up to 6 J/cm2 . 

After recording, the samples were kept in the dark at room temperature for 2 hours to allow 

the process of attachment of photoactivated PQ radicals to PMMA to be completed before 

baking the samples at 55°C. 

The evolution of the strength of the holograms is shown in Figure 5-8 and 

Figure 5-9 as incremental baking is applied to the samples for up to 112 hours. It can be 

observed in the figures that as the concentration of plasticizer increases, there is a faster 

growth of the holograms during the post-exposure, since the diffusion of free PQ molecules 

is favored. However, at the same time the lifetime of the hologram is reduced, since the 

PMMA chains can diffuse in the medium more easily too. 

The amplification factor of the hologram, defined as the ratio between the maxi­

mum strength achieved by the hologram during baking and its strength measured right after 

recording, is plotted in Figure 5-10. The amplification of the gratings is fairly consistent 

across the cases 2%, 1 %, and no DBPH, resulting in 4.70 on average (solid line). The case 

3% DBPH is distinct as the average amplification factor is 2.97 (dashed line). The lower 

amplification is due to higher levels of grating strength obtained right after exposure. This 

suggests that, for this concentration of plasticizer, the glass-transition temperature has been 

lowered to the extend that the diffusion of free PQ is greatly enhanced even at room tem­

perature. 



Chapter 5 - Optimization of PQ-PMMA polymer 

.:: -Cl 
c:: 
~ 
iii 
Cl 
c:: 

:;:; 
~ 

(!) 

0.1 

o 

0.1 

o 

20 

20 

40 60 

Baking Time [hours] 

(a) 

40 60 

Baking Time [hours] 

(b) 

80 

80 

--- 0.50 J/cm' 
-0-- 0.75 J/cm' 
--y- 1.00 J/cm' 
--'V- 2.00 J/cm' 

-- 4.00 J/cm' 
-0- 6.00 J/cm' 

100 

___ 0.50 J/cm' 

--'V- 0.75 J/cm' 

-- 1.00 J/cm' 
-0-- 2.00 J/cm' 
~ 4.00J/cm' 
-0-- 6.00 J/cm' 

100 

5-21 

120 

120 

Fig. 5-8. Effect of baking at 55°C on the grating strength of the holograms as a function of time 
for the samples with (a) no DBPH, and (b) 1 % DBPH. 
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Fig. 5-9. Effect of baking at 55°C on the grating strength of the holograms as a function of time 
for the sample with DBPH concentration of (a) 2%, and (b) 3%. 
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Fig. 5-10. Grating strength amplification factor as a function of the hologram exposure energy 
for samples with different concentration of plasticizer. The solid line is the average amplification 
for holograms in samples with 0%, 1 %, and 2% DBPH, while the dashed line is the average for the 
holograms in the sample with 3% DBPH. 

5.4.2 Theoretical model 
The temporal behavior of the hologram is the result of the competition of two dif-

fusional processes: One of them is the decay of the grating formed by the unattached PQ 

molecules, which reveals the grating formed by the PQ molecules bonded to the PMMA 

chains, resulting in the enhancement of the hologram. The other process is due to the dif-

fusion ofPQ-PMMA chains themselves, which leads to the decay of the grating formed by 

the bonded PQ molecules and therefore to the erasure of the hologram. As suggested in 

Figure 5-11 , the evolution of the grating strength can be modeled as the combination of an 

exponential growth to saturation with a fast time constant 'I (associated to the diffusion of 

free PQ) and an exponential decay with a much slower time constant '2 (related to the dif-

fusion of the macromolecules) in the following way 



Chapter 5 - Optimization of PQ-PMMA polymer 

where Ao would be the saturation grating strength if there was no erasure. 
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Fig. 5-11. Theoretical model of the diffusional processes in the PQ-PMMA sample. The solid 
line obtains from the combination of an exponential growth (PQ diffusion) and an exponential 
decay (macromolecule diffusion), both depicted with dashed lines. 

Given the fact that '2» ']' Equation 5-12 can be simplified for the cases t» '] and 

'] » t. In the first case, it can be assumed that the growing exponential has reached satura-

tion, so Equation 5-12 reduces to 

(5-13) 

In the case '] » t, Equation 5-12 can be approximated by the first-order Taylor's series 

expansion around the origin as 

Jll ~ Jlll t = 0 + dd Jlli t 
t t = 0 

(5-14) 
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The experimental curves presented in Section 5.4.1 have been fitted in their decay-

ing portions to a line in order to determine the parameters '2 and Ao as described by Equa-

tion 5-13. The saturation grating strength as a function of the exposure energy is presented 

in Figure 5-12 for different concentrations of DB PH. For the sake of comparison, the value 

of Ao corresponding to the sample without plasticizer has been nonnalized by a factor x ~ 

to take into account the fact that this sample is Imm thicker than the others. The fact that 

there is little spread in the values of Ao across different levels of plasticizer for each expo-

sure energy indicates that the plasticizer has no effect on the energetic sensitivity or on 

dynamic range of the material. 
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Fig. 5-12. Saturation value of the grating strength as a function of the exposure energy for 
samples with concentration of DB PH between 0% and 3%. 

The slope at the origin of the curves has also been fitted and 'I has been estimated 

using Equation 5-14 and the previously calculated value for Ao. Table 5-1 summarizes the 
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values obtained for the growth and decay time constants for different concentrations of 

DBPH. The entries in the table correspond to the mean and standard deviation of each one 

of the time constants after averaging over the six holograms that were recorded in each one 

of the samples . The last colullU1 in the table contains the ratio '2 / ' l' which serves to verifY 

that '2 is more than two orders of magnitude larger than 'I and therefore the assumption 

' 2 » 'I is satisfied for all concentrations of plasticizer. 

DBPH Growth Time Constant, I Decay Time Constant '2 Ratio 
Concentration [hours] [hours] '2/ ' I 

[%] Average Stand.Dev. Average Stand.Dev. 

0 17.40 0.15 4536.26 4059.87 260.67 
1 1l.35 0.35 1639.08 179.87 144.54 
2 3.21 0.18 590.08 22.72 183.85 
3 0.75 0.54 261.12 40.78 349.29 

Table 5-1. Summary of the estnnated growth and decay time constants for different 
concentrations of DBPH. 

As far as the decay time constant is concerned, '2 decreases with increasing pres-

ence of plasticizer in the sample. Furthermore as Figure 5-13 suggests, the decrease seems 

to follow an exponential trend at least for concentrations up to 3% of DBPH. The linear fit 

to the data considers only the values oh2 for 1 %, 2%, and 3% DBPH because the data point 

for 0% DBPH is not significant. 

Similarly, the growth time constant decreases with increasing concentration of pi as-

ticizer. The values for 'I have been plotted in Figure 5-14 and their average values have 

been fitted to a line. The data point corresponding to the sample with 3% concentration of 

DBPH has been excluded from the fit because of its large estimation error. The quality of 

the fit in Figure 5-14 suggests also an exponential dependence with the concentration of 

plasticizer in the material. However, the fact that the fit is not as well behaved as the one 
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Fig. 5-13. Hologram decay time constant as a function of the concentration of DBPH in the 
sample (dots) and monoexponential fit to the experimental data (solid line). 

obtained for the decay time constant (Figure 5-13), implies that the dependence of'l on the 

concentration of DBPH is more complex than a monoexponential relation. This is sup-

ported by the fact that the line in Figure 5-14 should be below the data point 'J for 3% 

DBPH since this time constant has been underestimated. Notice in this case that the moni-

toring of the evolution of the hologram after exposure, Figure 5-9(b), was impaired by the 

rapid growth of the hologram with baking. 

5.4.3 Conclusions 

The use of plasticizer in PQ-PMMA samples helps to reduce the revealing time of 

the holograms, but at the expense of compromising the stability of the material due to the 

diffusion of the polymer chains and, with it, the lifetime of the holograms. Furthermore, 

there does not seem to be much room for optimization of the material because the rate at 
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Fig. 5-14. Hologram growth time constant as a function of the concentration of DBPH in the 
sampJe (dots) and monoexponential fit to the experimental data (solid line). 

which the growth and decay time constants decrease with increasing concentration of 

DBPH (linear fits in Figure 5-13 and Figure 5-14) is approximately the same. 

As a fringe benefit of these experiments, the diffusion constant at 55°C of PMMA 

can be estimated using the linear fit in Figure 5-13. The value L2~000 hours at 0% DBPH 

can be extrapolated, which according to Equation 5-9 on page 10 and taking A=0.5 f.lm, 

translates into a diffusion constant of 4.40 x 10-22 m2/sec at 55°C for the PMMA macro-

molecules. 

Finally, for highly plasticized samples, the diffusion of free PQ molecules is greatly 

enhanced even at room temperature. This phenomenon, noticeable in the case ofthe sample 

with 3% DB PH in which the amplification factor is smaller due to higher prebaking diffrac-

tion efficiencies, becomes dramatic for samples with 5% DBPH. Figure 5-15 shows that the 
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prebaking grating strengths of holograms measured after recording in a 2 mm thick sample 

with 5% DBPH are equivalent to the after-baking strengths in a nonplasticized sample. 

Unfortunately, the lifetime of these holograms is just a few days at room temperature. 

J: -Cl 
<: 
E -VI 
Cl 
<: -E 

(!) 

0.1 

0.01 

'1 
/ 

/7~ 
~ 

---;----

-----
/ ~-------~-'l ~~ 

/ ?'~ 

/J' 

J/ 
J 

-+- 5% DBPH 
-.- No DBPH (pre·baking) 
-<r- No DBPH (after baking) 

0.00 1 .j..,..,"TT"T"TT"T""'T"'"TT"T""""""''''''''''''''''''''rrrT"T"T,..,'::;:;::;:;:;::;:;:;:::;:;::;:;::;::;::;:;:;::;:;::;::;:;:;::;:;:~ 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 

Exposure Energy [J/cm2
] 

Fig. 5-15. Grating strength as a function of the exposure energy for a sample with no DBPH, 
measured before (solid triangles) and after (clear triangles) baking, compared with a sample with 
5% DBPH (solid circles) without any baking. 

5.5 New PQ molecules 
After the experimental study of the effect of the plasticizer in the PQ-PMMA mate-

rial done in the previous section, the main result is that the plasticizer has the positive effect 

of facilitating the diffusion of PQ molecules, but at the same time the diffusion of PMMA 

macromolecules. In other words, by modifYing the global composition of the medium, it is 

not possible to uncouple one diffusional process from the other. 
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A different approach to the optimization of the material focuses on the optimization 

of the PQ molecules themselves. If the structure of the PQ molecules could be modified, or 

substituted with some other molecules from the same family, in a way in which their diffu-

sion coefficient in a given environment is increased, this would impact only in the revealing 

time of the hologram without compromising its lifetime. In this section, the possibility of 

replacing PQ molecules with other PQ-based compounds is investigated. 

5.5.1 Modified PQ molecules 

The following three variations on the basic PQ molecule (9,1O-phenanthrene-

quinone) have been taken into consideration: l-isopropyl-7-methyl-9,1O-phenanthrene-

quinone (referred to as IPMPQ), 2,4-dimethyl-6-brom-9,10-phenanthrenequinone (or 

DMBPQ) and 2,4,5,7-tetramethyl-9,lO-phenanthrenequinone (or TMPQ). 

(a) (b) 

Fig. 5-!6. (a) 9, ! O-phenanthrenequinone, (b) !-isopropyl-7 -methyl-9,! O-phenanthrenequinone, 
( c) 2,4-dimethyl-6-brom-9,l O-phenanthrenequinone, and (d) 2,4,5,7 -tetramethyl-9, lO-phenan­
threnequinone. 
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Different 1 mm thick PMMA samples doped with 0.8% IPMPQ, 0.5% DMBPQ, 

and 0.5% TMPQ were fabricated in order to characterize the holographic properties of each 

one of the new molecules. For reference, their performance is compared to a 0.5% PQ 

sample with the same thickness. 

The absorption spectrum of the IPMPQ-PMMA sample, showed in Figure 5-17, 

follows closely the spectrum of the PQ-PMMA sample, which is in fact the reason why the 

concentration of IPMPQ was chosen to be 0.8% instead of 0.5% as for the other samples. 
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Fig. 5-17. Absorption spectra of I mm thick unexposed PMMA samples doped with either 0.5% 
PQ or 0.8% IPMPQ. 

The absorption spectra of the DMBPQ-PMMA and the TMPQ-PMMA samples are 

presented in Figure 5-18. Compared to regular PQ-PMMA, the optical density ofDMBPQ-

PMMA is slightly higher at both 488 nm and 514 nm wavelengths. The TMPQ-PMMA has 

an optical density 2.6 times bigger than PQ-PMMA at 514 nm and almost 4 times larger at 
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488 run. Like in PQ-PMMA, the absorption at 532 run is also very low for the three new 

materials. 
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Fig. 5-18. Absorption spectra of 1 mm thick unexposed PMMA samples doped with 0.5% of 
DMBPQ orTMPQ. 

5.5.2 Experimental comparison 
Experiments to characterized the performance of these different PQ-based PMMA 

materials at 514 run have been performed using the setup described in Section 5.2.2. To 

study the recording dynamics, the growth of a hologram is monitored in real time as the 

exposure energy of20 J/cm2 is delivered to the sample at room temperature. The recording 

curves for the four materials are compared in Figure 5-19. Although the IPMPQ-PMMA 

sample grows faster and saturates at a higher level of diffraction efficiency than the PQ-

PMMA sample, they both exhibit a very similar behavior. The saturation value of diffrac-

tion efficiency is around 1.6% and it requires about 8 J/cm2 to reach the 90% of the satura-

tion value. 
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Fig. 5-19. Comparison of the hologram recording dynamics for the PQ-, IPMPQ-, DMBPQ-, and 
TMPQ-PMMA samples. 

The dynamic range of the DMBPQ-PMMA material seems to be much lower than 

in the other two previous samples, since the diffraction efficiency saturates below 0.2%. 

However, the recording speed is still comparable to IPMPQ-PMMA and PQ-PMMA 

because it takes 9.2 J/cm2 to reach the 90% of the saturation diffraction efficiency. Finally, 

the TMPQ-PMMA sample exhibits very inefficient recording, as the hologram did not 

reach saturation after an exposure of20 J/cm2. The slow recording can be mostly attributed 

to the high absorption of the sample at 514 nm. By fitting the experimental data to a satu-

rating mono-exponential curve, the dynamic range of the TMPQ-PMMA sample is esti-

mated to be 0.8% and that it requires 43.4 J/cm2 to reach the 90% level. 

The post-exposure behavior of the samples has also been investigated. A hologram 

has been recorded with a 10 J/cm2 exposure in each one of the samples. Right after expo-
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sure, the evolution of the diffraction efficiency of the holograms has been monitored with 

the He-Ne laser for 10 minutes as they rest in the dark at room temperature. 
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Fig. 5-20. Comparison of the post-exposure dark dynamics at room temperature for the PQ-, 
IPMPQ-, DMBPQ-, and TMPQ-PMMA. The vertical solid line indicates the end of the recording. 

The experimental results are presented in Figure 5-20, in which the vertical line 

separates the exposure (left-hand side) and the post-exposure regimes (right-hand side). It 

comes as no surprise, after the results presented in Figure 5-19, that the strength of the holo-

grams at the end of the recording time is higher in IPMPQ-PMMA and PQ-PMMA than it 

is in DMBPQ-PMMA and TMPQ-PMMA. During the post-exposure, the holograms con-

tinue growing in the dark: the grating strength of the holograms amplified by a factor of 

1.44 in the first 10 minutes after exposure for the IPMPQ, PQ and DMBPQ materials, and 

1.35 for TMPQ-PMMA. The fact that the enhancement of the hologram after recording is 

fairly similar in all the samples is fully consistent with the explanation provided in 

Section 5.3.2, according to which the enhancement during post-exposure is due to the 
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attachment of photoactivated PQ-based radicals to PMMA. The oxygen atoms in the PQ 

molecule are responsible for the attachment to the PMMA chains. Therefore, the same 

dynamics is expected in all the PQ-based materials. 

Finally, the evolution of the hologram with baking of the different PQ-based mate-

rials is studied. Six holograms with energetic exposures ranging between 2 and 20 J/cm2 

have been recorded in the PQ-PMMA, IPMPQ-PMMA, and DMBPQ-PMMA samples. 

The range chosen for the TMPQ-PMMA was between 4 and 45 J/cm2 due to the lower sen-

sitivity of the material. The diffraction efficiency of the holograms has been monitored as 

a function of the baking time. The evolution of the gratings in IPMPQ-PMMA is shown in 

Figure 5-21. The results are once again very similar to the PQ-PMMA case that was already 
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Fig.5-21. Effect of baking at 55°C on the grating strength of the holograms as a function of time 
in an IPMPQ-PMMA sample. 
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presented in Figure 5-5(a) . The holograms have been fully revealed after 18 hours in the 

oven and their diffraction efficiency amplified by a factor of22.8 on average. 

The baking dynamics in the cases of DMBPQ-PMMA, Figure 5-22(a), and TMPQ­

PMMA, Figure 5-22(b), is distinct from the two previous materials in the sense that the dif­

fusion of the PQ-based molecules seems to be much slower than in the original PQ-PMMA 

material. The revealing of the hologram in the DMBPQ-PMMA material, due to the erasure 

of the grating formed by free DMBPQ molecules, was not completed even after baking the 

sample for 12 days. The TMPQ-PMMA material presented even a poorer performance, 

because the holograms hardly amplified with baking. 

5.5.3 Conclusions 
The main results of the experimental comparison of the PQ-based PMMA materials 

are summarized in Table 5-2. Although the use of new PQ-based molecules has led to some 

improvements in the material as far as the recording process is concerned, none of the new 

molecules seems to have a big impact in reducing the baking time required for complete 

revealing of the holograms. In that sense, the DMBPQ and TMPQ molecules have exactly 

the opposite effect as they seem to diffuse with much higher difficulty in the polymeric 

matrix, slowing down the growth of the hologram during baking The IPMPQ-PMMA 

material has higher dynamic range and recording sensitivity than the regular PQ-PMMA; 

however, these improvements do not seem to be more relevant than to make IPMPQ­

PMMA material a perfect substitute of PQ-PMMA. 
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Fig. 5-22. Effect of baking at 55°C on the grating strength of the holograms as a function of time 
in (a) a DMBPQ-PMMA sample, and (b) a TMPQ-PMMA sample. 
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RECORDING POST-EXPOSURE BAKING 

Dynamic Range Saturation Energy Amplification 
Molecule (prebaking) (90% level) [J/cm2] (first 10 min) Amplificationt 

PQ 1.49% 8.49 2.02 22.31 
IPMPQ 1.63% 7.35 2.05 22.61 

DMBPQ 0.17% 9.19 2.13 27.83' 
TMPQ 0.80% 43.44 1.82 2.16' 

Table 5-2. Companson of the recordmg, post-exposure and bakmg parameters for the four PQ­
based molecules. t Amplification for diffraction efficiency after 12 days bake. 'Measured after 44 
days bake instead of 12 days. 

A different approach to optimize the material by replacing the polymeric matrix has 

been proposed and tested in [5-11]. PQ-doped poly(bisphenol-A-carbonate) (PC) is used 

instead ofPQ-PMMA. It seems to be that PQ molecules can diffuse in PC more easily than 

they can in PMMA, resulting therefore in shorter revealing time of the holograms. One 

might think that PC could behave in a similar manner to plasticized PMMA, lowering the 

glass-transition temperature of the material. However, PC has in fact a higher glass-transi-

tion temperature than PMMA (Tg-1500C versus TClOO°C), which means that at any given 

temperature the diffusion of PC macromolecules is smaller than it is for the PMMA chains, 

increasing the lifetime of the holograms. Therefore, PQ-PC overcomes the limitations of 

PQ-PMMA as it enjoys both faster hologram growth and longer lifetime. 

5.6 Strong gratings for WDM applications 
Bragg gratings in fibers are widely utilized to implement drop-filters and demulti-

plexors for WDM applications. One of the techniques used to create the grating in the fiber 

is holography, in which the interference pattern of two UV -light beams records a sinusoidal 

modulation of the index of refraction of the silica fiber. The possibility of implementing 
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free-space optical components for optical fiber networks is particularly interesting. Since 

more degrees of freedom exist in the design of free-space components, higher flexibility 

can be added to these devices, like tunability of the filters for example. This explains why 

holographic media, like photorefractive materials and LiNb03 in particular, have been used 

as support for Bragg gratings in WDM applications [5-12],[5-13]. The low sensitivity of 

LiNb03 is seen as a drawback because it makes a long recording process in a stabilized 

setup necessary. Furthermore, the volatility of the gratings stored in the crystal requires the 

use of hologram fixing techniques. 

Thick polymers are a good alternative to photorefractives because they possess high 

recording sensitivity and do not suffer from erasure. In addition to this, they are inexpensive 

and more durable than LiNb03. This section will investigate the suitability of the PQ-

PMMA material to implement narrow filters for WDM applications [5-7]. 
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Fig. 5-23. Absorption spectrum in the infrared band for a 1 mm thick PQ-PMMA sample. 
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The absorption spectrum of a PQ-PMMA sample in the infrared has been measured 

using a Varian Cary 500 spectrometer. From Figure 5-23, the optical density of the material 

at 1550 nm is 0.03 for a 1 mm thick disk. The fact that the material is fairly transparent in 

the band around 1550 nm is beneficial for this application, because it leads to little insertion 

losses, however it also means that holographic recording at these wavelengths is poor. The 

formalism of the K-sphere (Figure 5-24) is useful to see that the grating can be recorded in 

transmission geometry in the visible, where the absorption spectrum of the material has 

been optimized, and then readout in the infrared in reflection geometry. 
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Fig. 5-24. K-sphere diagram to illustrate the Bragg-matching in the infrared wavelengths of a 
grating recorded in the visible. 

According to Bragg theory, a grating of spatial period A can be matched at different 

wavelengths by appropriately choosing the angle of incidence of the light beam. A holo-

gram recorded in the green (AGreen) with an angle of incidence for each one of the recording 
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beams eGreen, can be read out in the infrared (f"IR) if the incidence angle e iR satisfies the 

condition[ 5-14] 

sin(eGreen) 

AGreen 

2n 
A 

(5-15) 

In the particular context of the filters for WDM, we are interested in a perfect reflection 

5.6.1 Experimental setup and results 
Three millimeter thick PQ-PMMA disks have been used in the experiments. 

Squares of about 2.4 x 2.4 em in cross section have been obtained by cutting off the edges 

of the disks. The flat facets have then been polished to allow the propagation of a laser beam 

(514nm) 

IR tunable-laser 

sample 

----:;::~:[=~C=j...:...-. Through channel 
Drop 

channel 

Fig. 5-25. Experimental setup for recording in transmission-geometry using the 514 run line of 
the Argon laser, and readout in reflection-geometry with a tunable infrared laser. 
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between opposite edges without experiencing significant scattering. As suggested in the 

sketch in Figure 5-25, the grating is recorded from the "top" of the sample (i.e., the 

2.4 x2.4 cm facet). The green light beams from an Argon laser are incident on the sample 

at approximately 30° (outside the medium) in a symmetric transmission geometry. The 

recording beams have been sufficiently expanded to cover the entire cross section of the 

sample, thus maximizing the extension of the grating to the entire width of the sample 

during readout. The hologram is read out using a Photonetics OSICS external cavity laser 

(ECL), with a tuning range from 1520 nm to 1600 run. The hologram will be Bragg-

matched in reflection, therefore the infrared beam is nonnally incident to one of two edges 

of the sample that is perpendicular to the grating vector. 
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Fig. 5-26. Experimental angular selectivity curve of the hologram measured at 514 nm (dots) 
and theoretical prediction (solid line). 

Figure 5-26 shows the experimental result of a hologram recorded with an exposure 

energy of 5 J/cm2. After baking the sample at 55°C in the oven for 42 hours, the grating has 
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a diffraction efficiency of72. 7% when measured in transmission with green light. The mea-

sured selectivity curve (dots) shows a good agreement with the theoretical prediction (solid 

line ). 

The wavelength selectivity of the hologram in the 1550 nm band is analyzed in 

Figure 5-27. The amount of transmitted power, usually referred to as the through channel 

by the terminology for optical fiber components, is monitored as the wavelength of the 

infrared laser is swept across its tuning range. The hologram suppresses the wavelength for 

which the Bragg condition is satisfied, producing a notch in Figure 5-27. The minimum in 
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Fig. 5-27. Wavelength selectivity of the hologram measured in the infrared. The vertical axis 
represents the transmitted power in the through channel. 

transmission efficiency occurs at 1530.43 nm, for which 99.01 % of the input channel is 

rejected, or equivalently the rejection is 20.03 dB. Using Kogelnik formula,[5-15] the mea-

sured diffraction efficiency of the reflection hologram corresponds to a modulation of the 
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index of refraction tm=0.64 x 10-4, which is consistent with the value L'l.n=0.53 x 10-4 

derived from the measurement of the grating in transmission geometry at 514 nm. 

In order to better characterize the shape of the wavelength selectivity of the holo­

gram, the bandwidth of the filter is measured for different levels of rejection of the through 

channel. A commonly used metrics for the width of the stopband of the filter is the distance 

between the points for which the suppression of the transmitted signal drops 3 dB with 

respect to the maximum, which in this particular case is 0.09 nm (or equivalently 

11.53 GHz). The information about the flat-top behavior of the filter is captured by the 

0.5 dB bandwidth of the hologram, which turned out to be 0.04 nm (or 5.12 GHz). Finally, 

the bandwidth of the filter at the baseline level is 0.42 nm (or 53.80 GHz). This is also an 

interesting parameter because it detennines how closely different holograms can be multi­

plexed without crosstalk to form a filter bank. 

The filter shape in Figure 5-27 presents an asymmetry between the left and right 

edge of the notch. Although the asymmetry is not severe in the particular experiment shown 

in the figure compared to measurements in other samples, one can still observe that the edge 

corresponding to larger wavelengths is less steep and shows some sort of secondary lobes. 

One reason to justify the observed behavior has to do with the quality of the grating, either 

because the wavefronts that impinge on the PQ-PMMA sample are not perfectly colli­

mated, or because they become distorted as they propagate inside the material. In either 

case, the recorded hologram differs from a pure sinusoidal grating, giving rise to asymme­

try. Another reason for deviations from the theoretical filter shape, although for shorter 

wavelengths, is the finite aperture of the infrared beam, about 0.5 mm in diameter. Diffrac­

tion effects as the beam travels across the sample result in some of its components diverg-
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ing from the original direction of propagation (i.e., the x-axis). These components can be 

Bragg-matched at shorter wavelengths, as the radius ofK-sphere becomes larger. 

5.6.2 Recording considerations: Secondary gratings 

The recording of strong gratings has revealed the presence of distortion in the holo-

gram when is read out in the green, once the baking process has been completed. This dis-

tortion manifests in the fonn of fringes over the aperture of the diffracted beam, leading to 

a degradation of the angular selectivity curve of the hologram. Although the distortion was 

thought initially to be related to stress applied to the sample by the metal mount that holds 

it during recording, or maybe during the post-processing of the sample in the oven due to 

the difference between the thermal expansion coefficient of the metal and PMMA, it turned 

out in fact to be related to the build-up of a secondary grating during exposure. The pres-

ence of this secondary grating leads to interference with the original hologram in a sym-

metric recording setup, but can be avoided by using a nonsymmetric geometry and 

recording a slanted grating instead, as can be observed in Figure 5-28. 

The sketches in Figure 5-29 help to visualize this effect and understand the differ-

ence between the symmetric and slanted cases. During exposure, the interference between 

two plane waves propagating at angles eR and es with respect to the z-axis (i.e., the surface 

nonnal of the material), and with wave vectors KR and KS defined as 

KR = K· [2· coseR - X . sineR] 

Ks = K· [2· coses + x . sines] 

results in a hologram with the following grating vector: 

(5-16) 

(5-17) 
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Fig. 5-28. Angular selectivity curve for a transmission hologram recorded in a perfect symmetric 
geometry (dashed line and dots) compared to the curve for a 10°-slanted grating (solid line). 

As each one of the recording beams impinges the rear surface of the sample, part of the light 

is reflected back into the material, producing the components K's and K'R 

K'R = - K· [z· coseR + x· sineR] 

K's = -K· [z . coses - x . sines] 

which will record a secondary grating (K'G) given by the expression 

(5-18) 

(5-19) 

In the symmetric case (eR=eS=e) shown in Figure 5-29(a), the z -component of the 

two gratings vanishes and they become colinear. In practice, the fact that the front and rear 

surfaces of the sample are not perfectly parallel to each other introduces a slight tilt between 

KG and K'G. Therefore, when probing the hologram with a green light beam, both gratings 

are Bragg-matched and two diffracted spots that propagate almost colinearly but slightly 
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Fig. 5-29. K-sphere diagrams to illustrate the origin of the secondary grating. (a) In the 
symmetric case, the back reflection of the recording beams records a noise grating that will be 
Bragg-matched during readout; (b) for slanted recording, the noise grating due to back reflections 
has a different orientation and will not be Bragg-matched during readout. 

shifted with respect to each other can be observed. The interference pattern between the two 

beams is presented in Figure 5-30. As the angle of incidence of the probing beam is 

changed, the interference pattern changes proving that the two spots exhibit Bragg-selec-

tivity. For the image in Figure 5-30, the interference is destructive over most of the region 

of overlap and only the far edges of the two beams are bright. 

This problem can be eliminated by using a nonsymmetric geometry. As shown in 

Figure 5-29(b), if the angles of the recording beams are chosen to be eR = e + ¥ and 
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Fig. 5-30. Profile of the diffracted spot showing an O-shaped pattern as a result ofthe destructive 
interference between the beams diffracted by each one of the two holograms. 

8 s = 8 - ~<p , then the tilt between the two gratings is ~<p , which can be made larger than 
2 

the angular selectivity of the material so only one grating (Ke) is Bragg-matched. Since the 

interference with the spurious grating is avoided, the holograms exhibit good quality angu-

lar selectivity curves, as it can be observed in Figure 5-28. 

5.6.3 Readout considerations: Depth scan 
During readout in the infrared, the laser beam is coupled from the edge of the sam-

pie. Since the diameter of the infrared beam, about half millimeter, is smaller than the thick-

ness of the sample, typically 3 mrn, the wavelength selectivity of the hologram can be 

analyzed as the point of incidence of the laser beam is gradually scanned from the top (i.e., 

the front surface of the PQ-PMMA sample during recording) to the bottom of the sample 

along the direction of the z-axis in Figure 5-25. Figure 5-31 shows in a 3-D plot how the 

wavelength selectivity of a hologram varies from the top to the bottom surface in steps of 

200 flm. The first depth slice, labeled as 0 flm, corresponds to the minimum depth at which 

the entire diameter of the laser beam is guided inside the sample. The next depth slices are 
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measured relatively to this point, being 2600 J..lm the deepest before the beam is clipped by 

the optical mount on which the sample rests. 
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Fig. 5-31. Suppression of the transmitted challiel as a function of the wavelength of the laser 
measured at different depths in 200 11m steps across the 3 mm thickness of the sample. 

From the experimental data, the following two trends can be noticed: First, the dif-

fraction efficiency of the filter seems to be stronger, and also the hologram exhibits a better 

flat-top behavior, when the beam propagates through the sample at a depth that corresponds 

to the middle, around 1300 J..lm in the experiment in Figure 5-31. As the wavelength selec-

tivity measurement is perfonned closer to either the top or bottom surfaces, the hologram 

becomes weaker. 

Second, the wavelength at which the transmitted channel is maximally suppressed 

shifts from shorter wavelengths near the top of the sample to longer wavelengths around 
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the center, and then from longer to shorter again as the wavelength selectivity measurement 

is taken near the bottom of the sample. The swing of the Bragg wavelength can be better 

observed in Figure 5-32, in which this wavelength is plotted as a function of the depth. 
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Fig. 5-32. Dependence of the Bragg wavelength of the filter with depth across the thickness of 
the PQ-PMMA sample. 

Both effects have their origin in the process of cutting the PQ-PMMA disks into 

squares, and then polishing the edges of the sample. Despite careful processing, the edge 

of the sample, rather than being a flat surface, still presents some curvature. The curvature 

of the edge is more pronounced near the top and bottom surfaces of the sample, and less 

important in its central portion. Near the surfaces, the curvature of the interface changes the 

direction of propagation of the normally incident infrared beam in the x-z plane, according 

to the coordinate system of Figure 5-25. Since the beam travels at an angle with respect to 

the x-axis, a shorter wavelength (i .e., longer K-vector) is required to Bragg-match the holo-
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gram. Therefore, the Bragg wavelength is longer in the central part ofthe edge, where there 

is almost no deflection, and shorter on the top and bottom of the sample, where the curva-

ture is more prominent. 

The variation of the diffraction efficiency of the hologram with depth is the result 

of the finite aperture of the readout beam combined with the curvature of the edge of the 

sample. When the point of incidence of the beam is near the center portion of the edge, 

almost all the rays across the aperture of the beam travel parallel, thus all they are Bragg­

matched at the same wavelength and the hologram appears to be stronger. As the incident 

beam is shifted to either the top or the bottom, and the curvature becomes more severe, dif­

ferent rays across the aperture of the beam undergo different amounts of deflection. Since 

each angle is Bragg-matched at a different wavelength, as indicated in Equation 5-15, the 

resulting filter shape looks weaker and slightly wider, mainly in its tails. 

Better polishing techniques can efficiently reduce both effects, and obtain a more 

consistent measurement of the selectivity of the filter across the depth of the sample. 

Figure 5-33 shows the behavior of the Bragg wavelength as a function of depth for another 

PQ-PMMA sample with better polished edges. For the purpose of comparison with the data 

in Figure 5-32, the range of the horizontal axis has been fixed to 0.5 nm in both cases to 

emphasize the reduction in the variation of the Bragg wavelength in the second case. 

5.6.4 Discussion 
This section has explored the possibility of using strong holograms recorded in PQ-

PMMA samples as narrow wavelength selectors for the WDM band. Judging from the 

experimental results, the material does not seem to provide enough modulation of its index 
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Fig. 5-33. Dependence of the Bragg wavelength of the filter with depth across the thickness of 
the PQ-PMMA sample. 

of refraction, ~n is barely in the range of 10-4, to obtain flat-top bandpass filters with 

enough bandwidth and suppression of neighbor channels to meet the standards for telecom 

applications_ 

High optical quality samples are essential for the successful use of this material as 

support for holographic filters. As already seen in Section 5.6.3, the grating is very sensi-

tive to the flatness of the facets through which the readout laser beam comes in and out of 

the sample. In addition to this, the quality of the polishing has also an impact on scattering 

and fanning of the beam, which translates into higher insertion losses when the light of the 

through or the drop channels has to be coupled back into an optical fiber. 

The experiments have also revealed that spurious gratings can develop during 

recording. Although this problem is not unique to this particular application, prolonged 
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exposures, necessary to saturate the dynamic range of the material and obtain strong holo-

grams, make more likely the build-up of secondary gratings. 

Finally, further material development would be necessary to understand how sensi-

tive the diffusional dynamics of grating enhancement and erasure are to changes in the pro-

cess of sample preparation and polymerization, as well as to the aging of the material on 

the shelf. 
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6 Holographic systems for processing and 
imaging applications 

6.1 Introduction 
Chapter 2 introduced the concept of reconfigurable computing. It was argued there 

that reconfigurable processors have the advantage that can tailor its hardware resources to 

deal more efficiently with any given problem. In this context, the OPGA added the feature 

of high-speed optical interface allowing for run-time reconfiguration. This chapter investi-

gates applications that could fully exploit the unique capabilities of such a device. 

Although there are many applications that require real-time processing, it is not evi-

dent which ones could benefit from reconfiguration. Let alone, those in which reconfigura-

tion would take place so often that would justify the need for an interface with a 

holographic memory. In that sense, the OPGA defines a new paradigm of applications. 

Section 6.2 explores its boundary by examining when optical reconfiguration starts to be 

advantageous over all-electronic solutions. 

The prospect of helping paralyzed patients, by translating neural activity from the 

brain into control signals for prosthetic devices, has flourished in recent years thanks to dis-

coveries in systems neuroscience, and to the rapid advance of MEMS [6-1]-[6-3] . How-

ever, potential barriers to continued progress in neural-prosthetic systems exist, like the 

relatively limited computational power available for mobile real-time processing of neural 

signals. Section 6.3 addresses this issue by proposing the use of reconfigurable processors, 
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and OPGAs in particular, to meet the computational challenges of neural-prosthetic 

systems. 

Finally, Section 6.4 presents a different type of application: a holographic micro­

scope capable of sensing 4-D information (i.e., 3-D spatial plus color) of a specimen. This 

microscope is morphologically similar to an OPGA, since the system can be still regarded 

as the combination of a silicon chip, a holographic memory and addressing device (e.g., a 

fluorescent specimen). Unlike in the OPGA, information is not stored in the holograms. 

The information is inherent to the addressing device (i.e., the specimen). Reconfigurability 

is still embedded in the system inasmuch as various imaging tasks (e.g., extracting spectral­

band information, focusing at a particular depth) are performed by different holograms. 

6.2 OPGA vs. cache-based FPGA 
A fast interface with memory makes possible to bring the reconfiguration time 

down to the range of microseconds. The OPGA uses this fact to reprogram the chip in real­

time. However, the OPGA is not the only approach to achieve dynamic reconfiguration. 

Some FPGA manufacturers, like Xilinx [6-4], have tried a different solution. They have 

developed FPGAs where a cache memory is built in the chip to store locally, inside the 

FPGA, a limited number of configurations, Figure 6-1. The cached configurations can be 

accessed very fast, in just a few nanoseconds, and transferred in parallel to the logic. The 

cache memory can store those configuration templates that are more frequently used, 

reducing the number of accesses to the slow external memory to fetch a new configuration. 

The asymmetry between many accesses to a fast cache memory and only a few accesses to 

the slow external memory helps to amortize the cost ofthe reconfiguration during run time. 
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Fig. 6-1. Structure of an on-chip cache memOlY FPGA. 
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The on-chip cache memory FPGA decreases the reconfiguration time at the expense of 

decreasing the amount of logic implemented on the chip, since the same die area needs to 

be shared to implement banks of SRAM. 
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Fig. 6-2. Area trade-off between logic blocks and (a) banks of memory in the built-in cache 
memOlY FPGA, or (b) photodetectors in the OPGA. 
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This section presents a comparison between the two architectures (Figure 6-2), 

OPGA versus cache-memory-based FPGA, in terms of logic density. In both cases, it is 

necessary to trade off some area of the chip to implement either an array of photo detectors, 

in the OPGA, or banks of RAM memory, in the cache-based FPGA. The goal is to investi-

gate which one of these two approaches allows for a higher computational capacity defined 

in tenns of CLBs. 

The model analyzes the number of CLBs that can be implemented in a fixed die area 

as a function of the number of configuration templates that the system is dealing with. This 

model does not make a distinction between logic blocks and programmable interconnects 

and buses. It only counts how many CLBs can be implemented in the available area after 

having subtracted the area dedicated to photodetectors or cache memory. This number can 

be understood as CLB-equivalents, so that a switching matrix or bus segments can have a 

cost in terms of CLB-equivalents. Thus, it is left as a chip design decision how to balance 

that number of CLB-equivalents among real CLBs, interconnect matrices and buses to 

reach some optimum. The number ofCLBs, NCLB, can be expressed as the ratio of the total 

die area and the area per logic block, ACLB, and its area overhead due to either photodetec-

tors or cache memory. IfbcLB stands for the number of bits required to configure a CLB, 

then the optical overhead is bCLB times the area of a pixel detector, AOetector. Therefore, the 

number of CLBs for the OPGA is given by 

Die Area (6-1) 
ACLB + bCLB x AOetector 
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On the other hand, the cache-memory overhead is given by the size in pages of the RAM, 

NConfig, and the area ofa I-bit memory cell, ARAM. The numberofCLBs that can be imple-

men ted in a cache memory based FPGA results in 

Die Area NCLB = ~----~~~~=---~----
ACLB + NConfig x bCLB x ARAM 

(6-2) 

If some numerical values are taken into consideration, the number of CLBs for both 

situations can be plotted as a function of the number of templates. For the simulation in 

Figure 6-3, the CLB considered is similar to the one in the XC3000 series from Xilinx 

[6-5] . The logic block requires 64 bits of configuration and its area is 291 x 156 flm. For 

the banks of memory, both dynamic RAM (DRAM) and static RAM (SRAM) have been 

considered, although due to the nonvolatility of the optical memory it is more fair a com-

parison with SRAM rather than DRAM. The size for I-bit memory cell is 8 flm2 for SRAM 

and 1.5 flm2 for DRAM. The analysis has studied two sizes of detectors: 5 x 5 flm and 

2 x2 flm pixel size. 

As it can be observed in Figure 6-3 and described by Equation 6-1, the overhead due 

to the photo detectors remains constant independently of the number of templates in the 

application. However, the perfonnance of the cache-based FPGA decreases as more and 

more templates need to be stored in the chip using up the area dedicated to logic. Note that 

in Figure 6-3 the horizontal axis is in logarithmic scale. For a small number of templates, 

the conventional FPGA outperforms the OPGA since almost no reconfiguration is involved 

in the application. Nevertheless, the break-even point occurs around 3 or 4 configuration 

pages. As expected from the difference in area, the decrease in performance for a SRAM 

cache starts sooner than for the DRAM cache. It is important to mention that this model 
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Fig. 6-3. Performance comparison between OPGA and cache-memory FPGA. The number of 
logic elements as a function of the number of configurations is plotted for two different pixel-sizes 
in the case of the OPGA and compared to SRAM and DRAM (dashed lines), and to an actual 
design from [6-6] (solid line) 

does not consider the overhead in the memory due to additional circuitry like sense ampli-

fiers or row/column decoders. It is difficult to quantifY such overhead because it can sig-

nificantly vary from one chip to another. However, the figure contains the curve that 

corresponds to an actual design of a DRAM-cache-based FPGA [6-6]. The effect of this 

overhead is to shift the curve downwards. The OPGA outperfonns clearly the cache-based 

FPGA for applications involving the order of hundreds oftemplates. This defines a domain 

of applications that can be carried out much more efficiently using an OPGA. 

6.3 Neural prosthetics 
In broad terms, neural-prosthetic systems or brain-computer interfaces aim to pro-

vide disabled patients with new options for interacting with the world [6-1]. Sensory pros-

thetics, such as cochlear implants or artificial vision, encode information from the 
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environment and deliver it to the nervous system by appropriate electrical stimulation. 

Motor prosthetics work in reverse, by translating neural activity into control signals for 

prosthetic devices, to assist patients with upper spinal cord injuries, neuro-degenerative dis­

eases or amputations [6-7]-[6-10] . Finally, intra-central-nervous-system prosthetic systems 

intervene with ongoing neural processing by stimulating brain regions or by recording from 

one region and stimulating another region [6-11] . 

Despite the great variety of sensors and actuators needed to address the dysfunc­

tions mentioned above, sensory, motor, and intra-central-nervous-system prosthetic sys­

tems have many computational requirements in common. From a computational 

perspective, these systems will likely grow to look even more alike as, for example, motor­

prosthetic systems evolve to also include supplementary sensory feedback to the nervous 

system and all prosthetic systems incorporate learning and adaptation to contend with, and 

take advantage of, neural plasticity. The anticipated similarities among these systems, as 

well as the demanding requirements imposed by mobile real-time processing of neural and/ 

or sensory data, motivate the development of a processor optimized for neural-prosthetic 

systems. 

Reconfigurable processors are well suited for neural prosthetics for three principle 

reasons. First, neural-prosthetic systems require many diverse computations and a single 

processor capable of being "rewired" rapidly can efficiently perform a wide range of cal­

culations. Second, neural-prosthetic systems run in real time and reconfigurable processors 

can meet these real-time demands by being "wired" nearly optimally for any given task, 

which often includes a parallel processing topology. Finally, neural-prosthetic systems are 

likely to require greater computational resources as, for example, the number and variety 
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of sensors (e.g., electrodes) used to collect information expands. Reconfigurable proces-

sors, as with other high-speed electronic systems, are likely to scale well as the number of 

recorded neural signals increases due to the relatively slower time scale of the biological 

system, which allows time-multiplexing schemes to absorb the increasing computational 

demands. 

How can reconfigurable processors in general, and OPGAs in particular, potentially 

be applied to neural-prosthetic systems? In order to see more easily the relevance and 

potential merits of reconfigurable processing, a specific example of a motor-prosthetic sys-

tem, in particular a prosthetic arm, will be introduced. The goal of the discussion is simply 

to point out a few of the principles when considering reconfigurable processors in the con-

text of neural-prosthetic systems. It is beyond the scope of this section to present a detailed 

design. 

6.3.1 Example of a neural-prosthetic system 
Figure 6-4 is a block diagram of a system that translates cortical activity into control 

signals for stimulating the musculature of a paralyzed arm. A person typically sees (senses) 

an object that he/she wishes to reach toward, forms a mental plan for where and how to 

move the arm, and finally sequences through the movement commands. Different attributes 

of this movement are manifest in different regions of cortex, with anyone attribute (e.g. 

reach location) encoded across numerous neurons. This neural activity can be sensed in 

many ways, typically with pennanently implanted electrodes. It is thought that tens to hun-

dreds of electrodes, implanted in several cortical areas, will eventually be needed to gather 

enough detail of the motor plan to accurately reconstruct the desired movement in real time. 
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Therefore numerous neural-signal channels need to be amplified, filtered, and digitized for 

subsequent processing, and much of this circuitry may eventually be integrated with or near 

the recording electrodes. After passing through this front end, a digitized signal stream 

from each electrode must be processed to associate action potentials (spikes) with particu-

lar neurons, to estimate spectral power density, and to estimate other spatio-temporal signal 

features that researchers are continuing to relate to movement parameters. These signals 

can then be compared with previously characterized responses of each neuron and electrode 

to arrive at a moment-by-moment estimate of the desired movement parameter, such as the 

ann movement direction or end-point location. Common estimation methods include max-

imum likelihood and neural networks. 

, 
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Fig. 6-4. Block diagram of a motor-prosthetic system (prosthetic-arm system). Information can 
be transmitted down subcutaneous wires or with telemetry, in which case additional transmit and 
receive circuitry is required. The block elements are grouped, according to their possible 
implementation, as three subsystems (boxes shaded in gray). The front end requires specialized 
circuitry that may best be implemented as an ASIC. The Reconfigurable Neural-Prosthetics 
Processor (RNPP), which could be implemented with a reconfigurable processor like the OPGA, 
performs many of the block element operations. Muscle stimulation could be performed with 
BIONTM-like stimulators, injected into muscles. 
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Once the movement parameters of interest have been decoded from the neural mea­

surements, the neural-prosthetic system must generate estimates for muscle-stimulation 

parameters (i.e., inverse kinematics). In this particular example, the goal is to electrically 

stimulate the paralyzed arm's musculature to achieve arm movements. Control of this pros­

thetic-ann system is achieved through negative feedback by comparing visually the arm's 

new position to the desired location and iterating as necessary. Importantly, even with care­

ful calibration of the entire system such that a person's desired arm movements are exe­

cuted accurately, the system will change with time and with experience. As time passes, 

recording quality changes due to electrode drift and neurons dying, and the efficacy of 

muscle stimulation can also change. As users gain more experience, neurons will almost 

certainly adapt (plasticity) in order to improve the performance of the system, as the brain 

does whenever presented with a demanding new task. Without also adapting the neural­

prosthetic system to contend with and take advantage of these changes, system perfor­

mance will eventually deteriorate to the point of being useless. A supervisor could monitor 

these time-dependent and experience-dependent changes, and adjust the system accord­

ingly. For example, if one of the neurons controlling the system drifts out of recording 

range or even dies, the supervisor can remove this neuron from the database thereby 

making performance robust against such events. Then, if a new neuron becomes detectable 

the supervisor can monitor its response to ongoing prosthetic-arm movements in order to 

learn the encoding characteristics of this new neuron. 

Several blocks in Figure 6-4 can be grouped together according to how these ele­

ments could be implemented. There are three of these groups, delimited by the gray boxes 

in the figure, which will be referred to as subsystems. The first subsystem is the front end, 
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which consists of amplifiers, filters, and AID converters needed to transform the continu­

ous-time and continuous-voltage neural waveform from each electrode into discrete-time 

and discrete-voltage signals. As these functions require highly specialized and optimized 

circuits (e.g. , low-noise amplifiers, fast high-precision AID converters) they are likely to be 

best implemented in an ASIC. As it will be discussed below, it is also possible that addi­

tional front-end functions such as signal buffering, which is straightforward to include on 

an ASIC, could simplify overall system design. 

The second subsystem is the neural-prosthetics processor, which could be imple­

mented in an OPGA. The reconfigurable neural-prosthetics processor (RNPP) as drawn in 

Figure 6-4 would handle four major functions described previously: spike sorting and spec­

tral analyses; estimating (decoding) arm-movement parameters from the neural data; esti­

mating (inverse kinematics) appropriate muscle stimulation parameters given the estimated 

ann-movement parameters; and supervising performance and adjusting the parameters of 

the system accordingly. In addition, the RNPP could perform two additional functions that 

are needed in the system architecture envisioned for this example. First, when a block of 

neural data is needed, the RNPP requests this data from the front-end subsystem that tem­

porarily buffers data for each electrode channel (see Section 6.3.2). Second, when stimula­

tion parameters have been estimated, the RNPP sends these parameters onto the stimulation 

subsystem (see Section 6.3.2). 

The final subsystem illustrated in Figure 6-4 is the muscle stimulators. Current 

state-of-the-art muscle stimulators, such as the BION™ [6-12], are capable of being 

injected into muscle with a hypodermic needle, powered wirelessly, and receiving a wire­

less digital transmission including a stimulator-specific identifier and stimulation parame-
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ters. Thus to move the arm, the RNPP need only encode the muscle stimulation parameters 

appropriately and issue the data packets. 

6.3.2 Reconfigurable Neural-Prosthetics Processor (RNPP) Subsystem 

Figure 6-5 illustrates how a reconfigurable processor might operate in a neural-

prosthetic system. This example applies an OPGA to the prosthetic-arm system described 

above and is intended to suggest a general architecture, not a fully functional design. Neural 

data flows in from the left, through the RNPP (depicted in gray), and muscle-stimulator 

commands flow out on the right. The RNPP subsystem figure consists of an OPGA chip 

area versus time plot, which suggests how OPGA electronics could be reconfigured 

through time, as well as the OPGA holographic memory (at top of figure). 
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Fig. 6-5. Possible Reconfigurable Neural-Prosthetics Processor (RNPP) architecture using an 
OPGA. Neural signals from the front-end ASIC enter from the left (dashed lines) and muscle­
stimulation parameters exit on the right (dashed lines). The OPGA is represented in two main 
parts, both shaded in gray. The electronic portion is represented as an OPGA Chip Area vs. Time 
plot, which illustrates how the OPGA electronics are allocated and reconfigured through time. The 
RNPP operates in cycles, with a period of T (ms). The holographic memory is depicted at the top 
of the figure. Lines indicate information flow, with arrows indicating the direction of this flow. 
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When operation begins, the front-end ASIC starts storing neural data samples in an 

on-chip buffer. This buffer can be thought of as a memory page with rows corresponding 

to sample number (time) and columns corresponding to electrode number. The number of 

rows equals the sampling rate termed R (e.g., 40 Ksamples/s or 40 samples/ms) multiplied 

by the period of time required to service all data in the buffer, represented by T (ms). The 

number of columns (electrodes) is tenned as N, which could be on the order of tens to hun­

dreds. Each memory element is B bytes, which is typically two (e.g., 12- 16bit samples). 

From time 0 to T, the first buffer is filled and from time T to 2T a second buffer is filled. 

This allows the RNPP T ms (the interval T -2T in real time) to service the neural data stored 

in the first buffer. The first buffer is overwritten from 2T to 3T, while the RNPP services 

the second buffer, and so on. This architecture allows the ASIC to implement most of the 

data memory (e.g., 2 buffers x RT samples x N electrodes x B bytes/sample = 2RTNB 

bytes) freeing the RNPP to store only a small amount of neural data at any time (e.g., 

RT samples x 1 electrode x B bytes/sample = RTB bytes). For example, if a 10 x 10 elec­

trode array were implanted, and the electrical signals sampled at 40 kHz for 20 ms time 

frame and afterwards digitized with 12 bit precision, a 120 Kbyte RAM memory for each 

page would be enough to store all the neural data in the ASIC. The OPGA would require 

lIN as much on-chip memory, 1.2 Kbytes. 

As shown in Figure 6-5, the RNPP must complete all of its operations within one 

period (T ms). This period is bounded by the maximum allowable time between muscle­

stimulator updates, which could range from hundreds of ms for coarse motor control to just 

a few ms for fine motor control. While T may be made as small as current technology will 

allow, the ultimate limit rests with the time scale of neural representations and the infonna-
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tion transmission rate achieved by the front-end sensors. An important point is that while 

T ms pass between muscle-stimulator updates, the absolute latency of the system (i.e., time 

from neural event until muscle stimulation) is 2T ms, as T ms is consumed in the front end 

and T ms is consumed in the RNPP. Therefore, the maximum allowable period T must also 

take into consideration the maximum allowable latency in the closed-feedback prosthetic 

system. 

The first RNPP operation in this example architecture is to configure the OPGA to 

request, receive and store neural data. The OPGA is configured by reading a page of con­

figuration data from the holographic memory (downward-directed arrow from holographic 

memory at far left of Figure 6-5) and is fast enough (l- lOf.!s) that no appreciable time is 

allocated to this operation in the figure. The second OPGA operation is to request T ms of 

Electrode 1 data from the front-end ASIC, receive these data, and place these data into on­

chip OPGA memory. This operation consumes some finite amount of time, illustrated as 

the width of the "Electrode 1: Receive Data" bar, and occupies some fraction of the total 

OPGA electronics area, illustrated as the height of the bar. Again, this figure is meant 

simply to be suggestive of architectural principles. A certain fraction of the OPGA elec­

tronics area is configured as memory, with "raw neural data and intermediate results" and 

"supervisor parameters" each having their own reserved regions. 

The next RNPP operations are to configure the OPGA for spike sorting, spike sort 

T ms of Electrode 1 data, and place the results in the OPGA memory. Spike sorting requires 

the OPGA electronics to be configured as an efficient DSP-like processor in order to cor­

relate the neural data with neural-waveform templates [6-13]. Electrodes typically sense 

action potentials originating from many neurons with 1-4 of these neurons being identifi-
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able based on their voltage-time waveform shapes. Statistical neural templates appropriate 

for each electrode can be learned off line, stored in the holographic memory, and then 

retrieved just before spike sorting data from a given electrode. Cross-correlating these 

neural-wavefonn templates (1-4 templates, roughly 2-3 ms in duration each) with the 

neural data from Electrode 1 (T ms in duration) requires shift (delay), multiplication and 

addition operations that are straightforward to implement in FPGAs/OPGAs. Let's con­

sider a hypothetical, although not unrealistic, OPGA device containing 3500 CLBs and a 

30 Kbyte bank of on-chip RAM memory. In such a device, four template-matching filters 

for a 2msec-Iong sequence each could be simultaneously implemented using slightly less 

than 1000 CLBs, assuming that we take advantage of efficient distributed computing algo­

rithms, like the ones described in [6-14]. This low CLB count would even allow for the pro­

cessing of multiple electrodes in parallel. The identity and time of each action potential in 

the T ms of Electrode 1 data is stored for later analysis. This does not consume large 

amounts of memory since spike rates are relatively low (e.g., <100 spikes/s on average) and 

identity and time information can be compact. Just 80 bytes per electrode, for example, if 

10 matches are found on average in each one of the filters, and each match is encoded as 2 

bytes. 

The final RNPP operation that must be performed on data from each electrode is 

spectral analysis or digital filtering. Digital filters appropriate for estimating the power in 

a given frequency band, for example, can be designed offline given off-line data from each 

electrode. These filter coefficients are likely specific to each electrode. Since the power in 

multiple frequency bands may be of interest, the OPGA could be configured as a DSP filter 

bank, which again requires delays, multiplication and addition operations. A 256 tap filter, 
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using 12-bit precision complex coefficients, can be implemented in the OPGA using just 

715 CLBs [6-14]. Therefore, there is enough hardware available to implement a bandpass­

filter bank to obtain the spectral information of the neuronal signals in three different 

regions of the spectrum simultaneously. This suggests that even FFT analyses are possible. 

Filter coefficients for the digital filters of each electrode and the filter-bank electronics con­

figuration data is stored in the holographic memory and is downloaded just before analyz­

ing data from a given electrode. After analysis, the relatively compact spectral estimates, 

maybe just 16 bytes per electrode, are stored for later use. 

This sequence of operations - receive T ms of buffered neural data, spike sort, and 

filter - repeats until all N channels of electrode data have been processed. Together all 

such operations must consume less than T ms (sketched as 0.6T ms in Figure 6-5) to allow 

sufficient time to complete the remaining RNPP operations (sketched as OAT ms). Con­

tinuing with the example, ifthe OPGA could be clocked at 166 MHz, the time required to 

compute the spike sorting and the spectral analysis could be as low as 116 I.l.S, which with 

the reconfiguration overhead of 2 I.l.s for the two reconfigurations becomes 118 I.l.s per elec­

trode. Therefore the array of 100 electrodes could be processed in 12 ms (within 60% of 

20 ms). Importantly, the key reconfigurable-processing architectural principles can already 

be seen at work. First, the diverse neural-prosthetic computations are accommodated by the 

OPGA rewiring rapidly, in order to efficiently perfonn a range of calculations. Second, the 

OPGA meets the real-time demands by being "wired" nearly optimally for any given task, 

which includes parallel processing topologies. Finally, the OPGA is able to scale well with 

the number of electrodes (sensors) delivering neural data by time-multiplexing its opera­

tions. The number of electrodes this OPGA can handle is set by the speed of the processor, 
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not by the number of parallel circuits that will fit within the area of the chip. This ability to 

time-multiplex the processing of data from increasing number of electrodes, as opposed to 

adding additional physically parallel circuits which consume more chip area, is afforded by 

the relatively slower biological time scale and by the fast and parallel circuits possible in 

FPGAs/OPGAs. 

The next RNPP operation is to estimate the arm-movement parameters. The goal is 

to estimate how the arm should move (e.g., new x, y, z location in space) given the new 

neural observations extracted from the preceding T ms in time (e.g., spike times and spec­

tral power density). Though the best way to perform this estimation is a matter of current 

research, all methods require a database for how each neuron/electrode responds for real or 

intended reaches in numerous directions. This database can be constructed off line, stored 

in the holographic memory, and retrieved when the RNPP needs to estimate arm move­

ments. The OPGA should also be configured to perform any of a number of estimation 

algorithms (e.g., maximum likelihood, Bayesian analysis, neural network) and, again, this 

configuration data is stored in the holographic memory. As before these algorithms reduce 

to multiplications and additions where the FPGA can perfonn millions of those per milli­

second [6-14]. The results of this estimation are quite compact, potentially as small as the 

new x, y, z ann location, for example, just 6 bytes. Importantly, ann-movement estimation 

scales well as the number ofneurons/electrodes increase. 

After estimating and storing the new arm location, for example, the RNPP must 

estimate how each of several muscle stimulators should be activated in order to direct the 

arm to this desired location. Estimates of this sort require a model for where each muscle­

stimulator is implanted, how muscle stimulation leads to muscle contraction, and how this 
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contraction moves the arm. These models are then run in reverse to arrive at stimulation 

parameters given the desired arm location. These reverse models, and the OPGA electron­

ics needed to run them efficiently, are stored in the holographic memory. Upon completion, 

the identity of each stimulator (1 byte) and its stimulation current level (1 byte) and dura­

tion (1 byte) are stored in the on-chip memory, for delivery to BIONTM-like 

stimulators [6-12]. 

The last RNPP operation before the arm starts moving is to send these muscle-stim­

ulation parameters to the transmitter. As with the front-end ASIC to RNPP connection, the 

RNPP to muscle-stimulator connection is envisioned to contain a wireless link. Therefore, 

the RNPP must simply send the wireless transmitter the identity of each muscle-stimulator 

and its stimulation parameters, perhaps in an appropriately encoded packet format, and the 

transmitter will broadcast the instructions. Each muscle stimulator will activate 

accordingly. 

The final RNPP operation is to perform the supervisory duties described in the pre­

vious section. Many signals and conditions are expected to change throughout the lifetime 

of such a neural-prosthetic system, therefore ongoing adjustments are almost certainly 

needed for adequate performance over months or years. At the front end, electrodes may 

drift, thereby changing the recording characteristics. The RNPP should adjust the spike­

sorting and spectral-analysis algorithms accordingly. At the arm-movement estimation 

stage, neural plasticity can change the response characteristics of neurons. Thus, the 

response database and/or estimation algorithms must learn/adapt accordingly. Finally, at 

the back end, it is likely that over time muscle stimulation will eventually lead to slightly 

different arm movements. Again, the supervisor should adapt the model parameters appro-
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priately. While the basic supervisory logic circuitry can be stored in, and retrieved from, 

the holographic memory, much of the information needed by the supervisor must be stored 

in OPGA electronic memory (see "Electronic Memory: Supervisor Parameters" in 

Figure 6-5). The supervisor must analyze past neural signals and system performance, store 

intermediate assessments, and store numerous adjusted parameter values to be accessed by 

the other RNPP operations (e.g., new spike-sort parameters). 

6.3.3 Discussion 
Section 6.3 attempted to illustrate how a reconfigurable processor, the OPGA, 

might be applied to an example neural-prosthetics system, the prosthetic-arm system. This 

so called reconfigurable neural-prosthetics processor (RNPP) subsystem performs most, if 

not all, of the signal processing, estimation, and control essential for the prosthetic-arm sys­

tem. The OPGA-based RNPP is able to achieve this level of performance by virtue of its 

inherent reconfiguration speed, parallel and optimized circuitry, and the use of a time-mul­

tiplexing scheme. According to the stated assumptions and approximations, a single OPGA 

built in current FPGA technology would be able to perform all RNPP tasks for approxi­

mately 100 electrodes. Importantly, as semiconductor and optical technologies continue to 

advance a single OPGA could be capable of processing neural signals from more elec­

trodes, perform more complex computations and control, or both. To again emphasize the 

broad range of neural-prosthetic systems that can be envisioned, it is also conceivable that 

OPGAs could contribute meaningfully to sensory-prosthetic systems (e.g., transforming 

images into electrical-stimulation patterns) since FPGAs have already made an important 

impact on image processing. 
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6.4 Holographic 4-D imaging 
Optical data storage is one of the areas in which holography has been extensively 

used. In a holographic memory, the infonnation is encoded into the hologram and retrieved 

with a laser beam, usually a simple plane wave. This section deals with the use ofhologra­

phy for imaging applications. In this case, the infotmation is no longer stored in the holo­

gram itself, but in the spatially encoded wavefront of the probing beam. The Bragg­

selectivity property of a volume hologram that is extremely useful for high-density data 

storage, can in fact be also efficiently utilized in imaging applications, like confocal 

microscopy [6-15], [6-16] or tomography [6-17]. 

The problem here considered is the use of holograms to extract spatial and color 

infonnation (hence 4-D imaging) of a specimen and project it onto a 2-D space on the 

detector. Apart from holography, other techniques are used to perfonn such transfonnation. 

For example, the confocal microscope places a pinhole at the fmite conjugate distance of 

the imaging lens before the detector in order to discriminate one point at a particular depth 

in the specimen. Light originating from neighboring points will miss the pinhole, or will be 

defocused, so the pinhole filters out background noise improving the resolution of the sys­

tem. A variation of this technique is the two-photon excitation microscopy 

(TPEM) [6-18], [6-19], in which 3-D localization is achieved by focusing high-energy 

femtosecond pulses inside the specimen, instead of using a pinhole. 

Both confocal and two-photon microscopy suffer from the same limitation, namely 

only the infonnation of one point ofthe specimen is gathered at a time. Consequently, there 

needs to be a scanning mechanism to reconstruct the entire volume of the specimen. More­

over, if color infonnation is required, several measurements need to be taken using differ-
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ent color filters. The inherent parallelism that holographic systems enjoy can satisfactorily 

overcome these limitations. Unlike the aforementioned techniques, holographic imaging 

renders simultaneously a 2-D slice of the specimen on the detector. Furthermore, by mul-

tiplexing several holograms, many of such slices (at different depths and in different color 

bands) can be sensed in parallel, making unnecessary the use of sophisticated and time-con-

suming scanning schemes. Therefore, the holographic microscope has an enormous poten-

tial for applications that demand real-time microscopy. 

Hologram 
Specimen 

Logic circuit & Detectors 

Fig. 6-6. 4-D microscope interfacing a holographic module with a chip that integrates 
photodetectors and processing resources. 

Although essentially different in operation to the OPGA, the 4-D microscope still 

shares important commonalities with the former. Like an OPGA, the holographic micro-

scope (sketched in Figure 6-6) consists of the integration of three major components: a 

holographic element, a silicon chip (e.g., CCD camera, CMOS imager. .. ) and an addressing 

device (e.g., a fluorescent specimen). However in the microscope, instead of having 
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VCSELs reading out complex datapages stored in the optical memory, the spatially 

encoded light from the specimen is diffracted by simple gratings. 

The 4-D microscope also enjoys the concept of reconfigurability, since the holo-

grams stored in the device perform different tasks, like focusing at a particular depth or fil-

tering a specific spectral band. Depending on the light wavefronts emanating from an 

unknown fluorescent specimen, various holographic templates will be selected, and the 

information delivered to different areas of the detector array in the chip. As in the OPGA, 

the adaptability and parallelism of the holographic microscope are vital for the real-time 

processing of the information contained in the specimen. 

Finally, the 4-D microscope could also benefit from a direct interface between its 

holographic module and a silicon chip that integrates both logic circuitry and a detector 

array, since it would allow to implement a variety of image-processing tasks, like template 

matching for example, or even perform on-chip analysis to extract information from the 

speCImen. 

6.4.1 Principle of operation 

To illustrate the principle of operation of the holographic microscope, consider the 

case of a transmission-geometry volume hologram, as depicted in Figure 6-7. Assume that 

a pure sinusoidal grating has been recorded by the interference between a plane wave prop­

agating along the -x direction and a collimated beam propagating along the z axis gener­

ated by a point source located on-axis at the focal plane of lens L 1. 

Because of the angular Bragg selectivity of the hologram, strong diffraction is only 

achieved when the position of a probing monochromatic point source on the (x, y)-plane 
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Fig. 6-7. Schematic of a microscope that utilizes a transmission-geometry volume hologram. L 1 
and L2 are lenses. 

matches the location of the point source used during recording. The diffracted light is 

focused into a point on the detector plane. If the probing point source is shifted along the 

x-axis, the hologram becomes quickly Bragg-mismatched and no light is diffracted towards 

the detector. One exception to this is what occurs along the y-axis. The recording geometry 

makes this direction be degenerate, which means that as the probing point source is shifted 

along this axis, the Bragg condition is always satisfied. Therefore the points in the specimen 

along a line parallel to the y-axis map into a line on the detector plane. 

Similarly, the grating also exhibits Bragg selectivity in wavelength, which means 

that if the wavelength of emission of the probing point source differs from the wavelength 

at which the hologram was recorded, then the amount of diffracted power on the detector 

becomes negligible very rapidly. 
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In order to produce a full 2-D image on the detector plane, consider the Bragg con-

dition for a symmetric grating given by 

A= 
2 . sin8' 

(6-3) 

where A is the spatial period of the grating, Ie the wavelength of the probing beam, and 8 

its angle of incidence (measured with respect to the surface normal of the material). Equa-

tion 6-3 establishes a coupling between wavelength and angle (or equivalently position 

along the x-axis) that makes it possible for points along the x-axis to Bragg-match the holo-

gram, provided that the appropriate wavelength is selected. Therefore, when a specimen is 

illuminated with an extended broadband source, the hologram performs a one-to-one map-

ping between points on the (x, y)-plane and the detector plane. 

As in a confocal microscope, the hologram is also able to discriminate light origi-

nating from different depths. The selectivity in depth is related to the angular Bragg selec-

tivity of the grating. As the probing point source is shifted along the z-axis away from the 

focal plane of lens L I, the wavefront after the lens becomes spherical. A spherical wave 

can be regarded as the superposition of plane-wave components propagating at different 

angles. As the wave acquires more sphericity, fewer components remain Bragg-matched, 

therefore the amount of diffracted power decreases to zero. 

6.4.2 Experimental imaging 

A holographic microscope has been built to test its performance and use it in imag-

ing applications. The sketch in Figure 6-8 depicts a basic transmission-geometry setup, in 

which the angle of incidence of each ann is 45° (in air) with respect to the surface normal 

of the optical medium. In fact, the holographic microscope consists just ofax40/0.65NA 
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Fig. 6-8. Experimental setup of the recorder for the 4-D microscope. MOl and M02 are two 
microscope objectives, while Ll, L2, and L3 are lenses. During normal operation, the microscope 
consists only of MOl and L3, in addition to the optical material. 

microscope objective (MOl in Figure 6-8), the holographic element and an imaging lens 

(an 8 cm focal-length lens labeled as L3) to relay the specimen on the CCD. 

The recording process occurs in situ, and requires the additional optical elements 

shown in the figure. In order to simulate a point source, a second x4010.65NA microscope 

objective (M02) is placed in the signal path before MOl to focus the beam. Microscope 

objective MOl collimates the signal wavefront before it impinges the optical medium. To 

tune the hologram to get infonnation from a particular depth, the position of the simulated 

point source can be varied by means of a motorized translation stage on which microscope 
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objective M02 has been mounted. After microscope objective MOl, a slightly converging 

(diverging) signal beam interferes with the reference beam, a simple plane wave, to record 

a hologram sensitive to a depth longer (shorter) than the focal length of the microscope 

objective. 

The information of multiple depth-slices can be obtained by multiplexing several 

holograms. In this case, each depth-slice can be separated on the detector plane (the Fou­

rier-plane ofL3) by slightly changing the angle of the reference beam during recording. In 

the experimental setup, this is achieved with a mirror mounted in a rotation stage and a pair 

of lenses (Ll and L2) fonning a 4-f system. Finally, information from different spectral 

bands can be gathered by tuning the holograms accordingly, which would require to adjust 

the angle of both recording beams. Although possible, this feature has not been added to 

the experimental setup. 

The resolution of the system has been checked in first place. A single hologram was 

recorded using the 488 run line of the Argon laser in a 5 mm thick x-cut LiNb03:Fe crystal 

with 0.05% wt doping. The intensity of each beam was 9 mW/cm2 and the crystal was 

exposed for 3 hours. At the end of the experiment the diffraction efficiency of the hologram 

reached 13%. The selectivity in depth of the hologram as the simulated point source is 

shifted along the z-axis (as defined in Figure 6-7) from its position during recording is pre­

sented in Figure 6-9. The experimental data (dots) is compared to the theoretical prediction 

(solid line) calculated using the method described in Section 6.4.3.3. The measured depth 

resolution (tl.z) is 4 11m FWHM, which is larger than the predicted value of2 11m. However, 

an experimental value larger than the prediction is expected due to aberrations, mainly in 

the imaging lens but also in the microscope objective. 
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Depth [Ilm] 

Fig. 6-9. Depth selectivity measurement (dots) of a hologram recorded on 5 mm thick LiNb03 
crystal compared to the theoretical prediction (solid line). 

The angular selectivity curve of the hologram has also been measured and com-

pared with the theory (Figure 6-10). The Bragg selectivity is approximately 1.25 x 10-2 

degrees (outside the crystal), which means that, using a x4010.65 microscope objective, if 

a monochromatic point source is shifted by more than 111m along the x-axis (as defined in 

Figure 6-7) on the input plane of the microscope, the hologram will not be Bragg-matched. 

In other words, the hologram decomposes the input plane into 2 11m thick monochromatic 

stripes. 

The ability of the hologram to image has been tested next. During normal operation 

(i.e. once the recording process has finished) objective M02 is retracted so that a specimen 

can be placed in front of objective MOl and observed under the microscope using white 

light illumination. Figure 6-11 shows the image of an 11 11m pixel mask as rendered by the 
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Fig. 6-10. Experimental angular selectivity curve (dots) ofa hologram recorded on 5 mm thick 
LiNb03 crystal compared to the theory (solid line), 

hologram on the CCO camera. For this particular experiment, a x IO/O.25NA objective was 

used, so a larger field of view can be observed under the holographic microscope. 

Fig. 6-11. Image rendered by the hologram on the CCD of an 11 /-Lm pixel mask when 
illuminated with a white light lamp. 

One of the advantages of the holographic microscope over the more traditional con-

focal techniques is that a 2-D image of a depth/color slice of the specimen is obtained 
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simultaneously rather than just one point of it at a time, thus making unnecessary any 

mechanical scanning. This propeliy becomes particularly interesting in applications in 

which infonnation of the specimen needs to be acquired in real time, like, for example, the 

movement of micron-sized particles in turbulence. In the experiments, an aqueous solution 

containing 15 f!m diameter polystyrene beads was prepared and poured into a container 

made of micro cover-glass walls. The evolution of the microspheres as they float in the 

solution was observed under the microscope. Figure 6-12 shows a sequence of four frames 

in which a single microsphere is tracked as it travels across the field of view of the micro-

scope, indicated by the bright vertical stripe in the picture. From frame (a) through (d), the 

bead goes from the upper-left portion of the bright band to its lower-right corner. 

(a) (b) 

(c) (d) 

Fig. 6-12. Sequence of four frames, in which (a) is first and (d) is last, obtained with the 
holographic microscope using a x40/0.65NA objective of a 15 /-lm microsphere as it travels across 
the field of view of the microscope. 
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Finally, imaging with multiple holograms has been considered. Five holograms 

were multiplexed using scheduled recording in the 5 mm thick crystal with a total recording 

intensity of 12 mW/cm2. The narrow depth selectivity of the system makes it possible to 

mUltiplex depth-slices separated by just 15 J.lm from each other. Figure 6-13 presents the 
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Fig. 6-13. Scan along the z-axis showing five holograms multiplexed in a 5 mm thick crystal. 
The holograms are tuned at different depths, with IS Ilm spacing, spanning a 60 Ilm range. 

comb function of the five holograms as the probing point source is scanned in depth 

(z-axis). Each hologram is projected on the CCD camera with an angular separation of 0.5°. 

Again, a solution of suspended microspheres was used as specimen. Figure 6-14 shows the 

reconstruction of the five holograms when the specimen is illuminated with the laser beam. 

The holograms appear as narrow vertical stripes on the detector plane, due to the small 

bandwidth of the laser. 

More interesting results can be obtained if broadband light is used to illuminate the 

specimen, since each one of the stripes in Figure 6-14 broadens and makes it possible to 
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Fig. 6-14. Simultaneous reconstruction of five depth-multiplexed holograms when a specimen is 
illuminated with the laser beam. 

observe the microspheres at different depths without having to physically move the spec i-

men. Figure 6-15 contains a sequence of three pictures in which a microsphere can be seen 

switching from one stripe to another one as it moves in the solution changing its depth with 

respect to the microscope objective. As the bead crosses from the left to the right hand side 

(a) (b) (c) 

Fig. 6-15. Sequence of three frames showing a microsphere being imaged by two different 
holograms (on the left and on the right sides of each frame) as the microsphere changes its depth 
inside the liquid solution from (a) to (c). 

of the image, it also changes its depth. Frame (a) in Figure 6-15 , shows a bead on the left-

hand side of the image. As the bead moves towards the right and gets to the center of the 

image, frame (b), a second circular spot appears. This is due to the fact that the microsphere 
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begins to be Bragg-matched by a different hologram (i.e., a different depth-slice). By the 

time the microsphere reaches the right side, frame (c), the original spot has completely van-

ished and only the second one is visible. 

6.4.3 Imaging properties of a reflection-geometry volume hologram 
A symmetric reflection-geometry grating has the particularity of being degenerate 

both in the in-plane and out-of-plane directions. This property can be of special interest 

when applied to imaging, because an entire 2-D slice of the object would be Bragg-matched 

to the hologram and thus imaged onto the CCD. This section considers the suitability of a 

reflection hologram in a system like the 4-D microscope by analyzing the transformation 

performed by the grating to map the object space into the image plane, and studying how 

its angular and spectral selectivity influence the transversal and longitudinal (i.e., depth) 

resolution of the system. 

Based on the design of the transmission-geometry mIcroscope presented in 

Figure 6-7, the reflection-geometry module depicted in Figure 6-16 consists basically of 

the same elements. The light emitted by the specimen is collimated by lens L 1 before it illu-

minates the hologram. The grating senses the collimated wavefront and, depending on its 

spatial and spectral properties, some of its components are reflected. The beam splitter is 

used to separate the detector plane, referred to as the (x' , y' )-plane, from the input plane 

(i.e., the x, y space); and redirects the diffracted light towards the imaging lens (L2). 

6.4.3.1 Selectivity and image transformation 

Consider a monochromatic point source placed at the focal distance of lens LI in 

Figure 6-16 (specified by frna) and located on the optical axis of the lens (i.e., x=O, y=O). 
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Fig. 6-16. Schematic diagram of a holographic microscope using a reflection-geometry volume 
grating. The hologram performs a transformation between the object (i .e., specimen) space (x, y, z) 
and the image space (x', y'). L1 and L2 are the collimating and imaging lens, respectively. 

The interference of its collimated wavefront with a plane wave propagating along - z 

records a perfect reflection-geometry grating inside the optical medium defined by the 

vector KG = - 2k· z. 

If the point source is shifted from its original position along the x-axis by an amount 

~xp, the wavefront after the lens will still be collimated but will propagate with a certain 

angle ~8R with respect to the z-axis. In the paraxial approximation (i.e., ~xp « frno )' the 

mapping between position and angle performed by the collimating lens is given by 

(6-4) 

As sketched in Figure 6-17, the grating is read out with a slightly tilted reference beam, as 

a result the diffraction propagates along -z at an angle ~8s. Therefore, the wave vectors 

of the reference (KR) and signal (Ks) beams take the form: 



Chapter 6 - Holographic systems for processing and imaging applications 6-34 

x 

z 

Fig. 6-17. K-sphere diagram to illustrate the angular Bragg selectivity ofa reflection grating. 

KR = k· (cos~8R . z + sin~8R . x) 
Ks = k · (-cos~8s' z + sin~8s' x) (6-5) 

If the optical medium is assumed to have infinite transversal dimensions and finite 

thickness along the z-axis (Lz), only the z-component of the diffracted beam can be Bragg-

mismatched. In other words, the following vector relation must be satisfied: 

(6-6) 

The relation ~8s = ~8R is obtained from the x-component of Equation 6-6, after making 
2 

the approximation sin(a.) '" a. and cos(a.) '" 1- ~ given that both ~8R and ~8s are 

small. This result can be applied in the equation for the z-component to solve for the detun-

(6-7) 
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Under Born approximation, the diffraction efficiency of the hologram is related to the 

amount of detuning by 

JYJ - sinc(Lz 
. ~K ) . 

211 z 
(6-8) 

The angular Bragg selectivity of the hologram is defined by the first null of the sinc nmc-

tion, which occurs for 

(6-9) 

Similarly to the collimating lens (Ll), the imaging lens (L2 in Figure 6-16) trans-

lates the propagation angle of the diffracted beam into a position on the detector plane (i.e., 

the focal plane oflens L2) as defined by 

(6-10) 

where ~ is the focal length of the imaging lens. Combining Equations 6-4 and 6-10, and 

using the result ~es = ~eR from Equation 6-6, 

(6-11) 

in which the sign reversal comes from the reflection of the incident beam on the hologram. 

Thus, the hologram performs a linear transformation between points along the x-axis on the 

input space and points along the x' -axis on the detector plane. 

It is worth noticing that the system presents rotational symmetry around the z-axis. 

Despite the fact that the expression of the angular selectivity has been derived assuming 

incident and diffracted beams contained in the (x, z)-plane, the orientation of the x- and 
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y-axes is completely irrelevant as the grating is always degenerate. Therefore, the grating 

is able to perform by itself a 2-D mapping of the (x, y)-plane onto the (x' , y' )-plane. 
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Fig. 6-18. Normalized diffraction efficiency on detector as a function of the position of a 
monochromatic point source as it moves along the x-axis. 

The amplitude of the imaged points is affected by the sinc function of the hologram 

(Equation 6-8) as plotted in Figure 6-18. Points along a line that extends beyond the angular 

selectivity of the grating, will not be relayed to the detector plane. Fortunately, the square-

root dependence of t,.8R, due to the degeneracy of the pure reflection grating, results in 

fairly wide selectivity curve. In the context of the 4-D microscope, the angular selectivity 

does not determine the transversal resolution of the system (which is solely limited by the 

numerical aperture of the lenses for a monochromatic point source), but the size of the cir-

cular window over which the microscope can observe the specimen. The radius of this disk 

(t,.Xp) is obtained from combining Equations 6-4 and 6-9, and results in 
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(6-12) 

To illustrate the mapping performed by the hologram, a numerical simulation pro-

duces the 2-D intensity distribution of the diffracted spot on the detector plane as a mono-

chromatic point source is shifted along the x-axis. Figure 6-19 shows four instances of a 

Fig. 6-19. Simulation of the intensity profile and position of the diffracted spot on the detector 
plane as a monochromatic point source is shifted along the x-axis in 4.5 x A steps. Simulation 
parameters: A=514 nm, Lz=200 ~m, t;no=4.5 mm, f;=4.5 mm and NA=O.65. 

diffraction-limited spot on the detector plane, whose position x'd changes as the probing 

point source is shifted in steps of 4.5 x Ie along the x-axis, but still well within the Bragg 

selectivity of the hologram. 

Consider now the situation in which the readout wavelength (A') differs from the 

wavelength used during recording (A), while the point source remains in the same location 
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x 

z 

Fig. 6-20. K-sphere diagram to illustrate the wavelength Bragg selectivity of a reflection grating. 

as the one during recording. In this case, depicted in Figure 6-20, the wave vectors of the 

incident and diffracted beams are given by 

KR = k' · Z 
Ks = -k'· Z 

(6-13) 

so in order to satisfy Equation 6-6, the de tuning term must be ~Kz = - 2 . (k' - k) . Assum­

ing k' = k - ~k = k · (1 + ~A.A. ) , the expression in Equation 6-8 hits its first null when 

A. 
2L ' z 

(6-14) 

which is known as the wavelength selectivity of the hologram. Unlike with its angular 

behavior, the hologram is very sensitive to changes in wavelength. Strong diffraction will 

occur only when the wavelength used for readout is well within the Bragg selectivity of the 

hologram. 
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The numerical simulation in Figure 6-21 shows how the intensity of the diffracted 

beam profile decreases very rapidly as the wavelength of the probing monochromatic point 

source is shifted from the Bragg condition in steps of20% of the value of the wavelength 

selectivity (Equation 6-14). 
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Fig. 6-21. (a) Normalized diffraction efficiency on detector as a function of the wavelength 
detuning for a monochromatic point source. (b) Simulation of the intensity profile of the diffracted 
spot on the detector plane as a monochromatic point source changes its emission wavelength in 
0.2 x ~A. steps. The dots in (a) correspond to the points at which wavelength detuning has been 
simulated. Simulation parameters: A.=514ruTI, Lz=200 J..lm, ['110=4.5 mm, f i=4.5 mm and NA=0.65. 

To understand how the wavelength selectivity affects the transversal resolution of 

the microscope, it is necessary to consider the more general case of a slanted (i.e. , asym-
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metric) reflection grating. Suppose two counter-propagating beams with arbitrary angles 

8R and 8s with respect to the z-axis, their interference results in a grating vector 

(6-15) 

Upon readout, the hologram is probed with a beam (KR) incident at the same angle 8R but 

with different wavelength (A'). Due to the change in wavelength, and in order to verify 

Equation 6-6, the diffracted beam (Ks) may have to deviate from its initial angle 8s to a 

new 8s+""8s. Given the expressions of the wave vectors of the incident and diffracted 

beams 

KR = k'· [cos8R · Z + sineR· x] 
Ks = k'· [-cos(es + ""8s) · z + sin(8s + ""es)· x] (6-16) 

and following a similar derivation as before, it can be easily verified that the wavelength 

selectivity of the hologram is given by 

(6-17) 

which reduces to Equation 6-14 when eS=eR=o. Furthermore, the deflection angle of the 

diffracted beam is related to the shift in wavelength as 

sin8R - sines. (""A) . 
cos8 s A 

(6-18) 

Finally, the imaging lens converts the change in angle ""8s into a shift in position on the 

detector plane. The point source that used to be imaged at x'd for wavelength A, will be 

imaged at x'd + ""x'd for A', where ""x'd takes the form 

""X'd = f j • [sin8R - sines] . (""AA) . (6-19) 



Chapter 6 - Holographic systems for processing and imaging applications 6-41 

This effect has been modeled into the numerical simulation. A slanted grating with 

angles 8R=0 and 8s=5° is read out by the collimated beam of a monochromatic point 

source. The sequence of pictures in Figure 6-22 shows the shift along the x' -axis (vertical 

axis in Figure 6-22) as the wavelength of the probing point source changes in steps of20% 

of the spectral selectivity around the Bragg wavelength. 

Fig. 6-22. Simulation of the intensity profile and position of the diffracted spot on the detector 
plane (along the x'-axis) for a slanted grating as a monochromatic point source changes its 
emission wavelength in 0.2 x t3."- steps. Simulation parameters: 8R=00, 8s=5°, "-=514 nm, 
Lz=200 ~m, fmo=4.5 mm, f j=4.5 mm and NA=O.65. 

Equation 6-19 is especially important when the point source has a bandwidth, as 

each spectral component within the selectivity of the hologram will be mapped into a dif-

ferent position on the detector plane, resulting in some sort of rainbow and thus blurring the 

image of the specimen. Figure 6-23 compares the simulated diffracted spot obtained for a 

monochromatic source of wavelength A and the one for a point source with bandwidth from 

A-\,2 x L'1A to A+1.2 x L'1A, shown in Figure 6-23(a) and (b), respectively. The dispersive 

behavior of the grating degrades the resolution of the microscope, as it can be appreciated 

in the widening of the diffracted spot in the cross-sectional plot in Figure 6-23(c). 
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Fig, 6-23 . Simulation of the intensity profile of the diffracted spot on the detector plane produced 
by a slanted grating for (a) a monochromatic point source with emission wavelength 'J... and (b) a 
chromatic point source with bandwidth 'J...±1.2 x !'!.'J.... (c) Comparison of the intensity of the 
diffracted spot for a cross-sectional cut along the x' -axis for the monochromatic (dashed line) and 
the chromatic (solid line) point sources. Simulation parameters: 8R=Oo, 8s=5°, 'J...=5 14 nm, 
Lz=200 ~lm, fmo=4 .5 mm, f i=4.5 mm and NA=O,65, 

Therefore, the wavelength selectivity plays a key role in defining the transversal 

resolution of the holographic microscope. The best resolution can be achieved using a sym-

metric grating, because .6.x'd = 0 when 9s=9R. In this particular case the transversal reso-

lution is only limited by the numerical aperture of the lenses in the system. However, the 
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need to multiplex several holograms to image various color bands and depths on different 

regions of the detector plane, makes necessary to introduce some slant in the gratings. 

6.4.3.2 Spatial and wavelength coupling 

The previous section showed that the hologram is selective in wavelength and capa-

ble of imaging points in a neighborhood of the z-axis (i.e., point x=O, y=O). This section 

will consider the coupling between position and color that, like in the transmission-geom-

etry microscope, pennits to extend the field of view of the microscope beyond the spatial 

selectivity of the hologram; and will also study the dependence of the spatial and wave-

length selectivity for an arbitrary point on the (x, y)-plane. 

To analyze the coupling between position and wavelength, consider again a sym-

metric reflection grating. The detuning tenn is given by 

6Kz = - 2k' . cose + 2k, (6-20) 

where e is measured with respect to the z-axis. Coupling is achieved when the hologram is 

Bragg-matched (i.e., 6K,=0). Let r = Jx2 + / be the distance of point (x, y) to the z-axis, 

then tane = __ r_. In the Bragg-matched case, Equation 6-20 can be re-written as 
fmo 

2 ? [(k') 2 ] r = ~o· k - 1 , (6-21) 

which means that the points on a circle of radius r around the z-axis can be imaged onto the 

detector plane if they emit light at Ie' . Figure 6-24 indicates the relative change in wave-

length required to satisfY Equation 6-21. Therefore, a full 2-D image can be obtained on the 

detector by sectioning the input plane into monochromatic concentric circles when the 

specimen is illuminated with an extended broadband source. It is worth noticing in Equa-
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Fig. 6-24. Relative change with respect to A of the emission wavelength of a monochromatic 
point source required to satisfy the Bragg condition as a function of the distance of the point source 
from the z-axis. 

tion 6-21 that coupling is only possible for A' < A, which is a consequence of KG being a 

1800 grating for wavelength A. 

Consider first the case of angular detuning. Assume 8 = 8
0 
+ il8 , with 80 being 

the Bragg angle. After cancelling out the Bragg-matched terms, Equation 6-20 becomes 

(6-22) 

U sing the relation il8 = - M ,valid under the paraxial approximation, the radius of spa­
fmo 

tial selectivity (M) for an arbitrary point located at a distance r from the z-axis is given by 

(6-23) 

The solution to Equation 6-23 is plotted in Figure 6-25, assuming a medium of thickness 

Lz=390 x A. The more off-axis a point is located on the (x, y)-plane, the smaller its spatial 
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Fig. 6-25. Radius of the disk of spatial selectivity (M) for a monochromatic point source as a 
function of the distance of the source from the z-axis, assuming a material of thickness 
Lz=390 x A. 

selectivity, and consequently the smaller the size of the window that can be imaged by the 

4-D microscope. 

Similarly, the wavelength detuning can be analyzed assuming k' = k'o + L'ik' , with 

Bragg match occurring for L'ik' =0, in Equation 6-20. After simplifying the Bragg-matched 

terms, the spectral selectivity for a point whose Bragg wavelength A'o results in 

(6-24) 

Equation 6-24 says that the relative wavelength selectivity of the hologram is constant over 

the entire (x, y)-plane. Plugging Equation 6-21 into 6-24, the spectral selectivity can be 

explicitly related to position as 
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(6-25) 

Thus, the farther the point source is from the z-axis, the narrower the portion of its spectrum 

that can be Bragg-matched by the hologram. 

6.4.3.3 Depth selectivity 

As the point source shifts along the z-axis, the wavefront after the collimating lens 

(Ll) is no longer a plane wave. As the probing beam changes its sphericity, the hologram 

gradually becomes Bragg-mismatched. A simple analytical approximation can be obtained 

by decomposing the spherical wave into its spatial frequency components. Each component 

is a plane wave propagating with angle e, for which the response of the hologram can be 

easily calculated. The diffraction efficiency for a monochromatic point source shifted by 

6Zp from the focal plane of lens Ll is approximately 

1 pm" (Lz )2 
YJ(6Zp) := -e -1 sinc 2· [2k - 2k' · cose] . de , 

max 0 It 

(6-26) 

where the range of transverse spatial components is determined by the amount of defocus-

ing of the point source and the numerical aperture of the lens Ll and results in 

(6-27) 

Equation 6-26 is solved numerically and plotted in Figure 6-26 for the case Lz=200 f.lm, 

A=514 nm and fmo=4.5 mm. The wide angular selectivity of the reflection hologram results, 

as seen in Figure 6-26, in a poor performance to discriminate point sources located at dif-

ferent depths. Therefore, the hologram does not improve the depth of focus of the micro-

scope, which is limited by the numerical aperture ofthe lenses. On the contrary, it increases 



Chapter 6 - Holographic systems for processing and imaging applications 

11 - . -. --'----- - T - - - -, , 

09 - - --: - - - : -- -, , 
, , 

>-08 __ I __ ~ _ _ 

" ' c 
-~ 0.7 
;;= 
w 
c 0.6 
o 
U 
~ 0.5 
i5 

, 
-,-

~ 0.4 - - - - - - - -:-
.J:::! I 

'iii 
E 0.3 

~ 
_ ____ _ ___ . 1- -------1 

O~ I--- : , 

- ----"- ----

, 

, 

I ~ __ ~' 

---! ---I 
.---~-~ 

-1500 -1000 -500 o 500 1000 1500 
Depth [microns] 

6-47 

Fig. 6-26. Normalized diffraction efficiency as a function of the position along the z-axis of a 
monochromatic point source. Simulation parameters: 1..=514 run, Lz=200 ~m, fmo=4.5 mm, 
f;=4.5 mm and NA=O.65. 

the level of background noise as the hologram cannot filter out light originating at different 

depths. 

Finally, it is interesting to point out the coupling between depth and wavelength for 

a chromatic point source. Figure 6-27 presents the simulation results of the depth scan 

along the z-axis for a point source as its wavelength of emission is changed. As the figure 

indicates, the hologram can be partially Bragg-matched at shorter wavelengths if the point 

source is shifted away from the focal plane of the collimating lens. This happens because 

some ofthe components ofthe defocused probing beam can better satisfy the Bragg condi-

tion. The figure exhibits an asymmetric behavior in wavelength. This is due to the fact that 

coupling between depth and wavelength is not possible for wavelengths longer than the 
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Bragg wavelength, which is consistent with the result from Equation 6-21 and, as men-

tioned earlier, is just the consequence of KG being a 1800 grating for wavelength A. 

2000 

1500 

1000 
0.7 

0.6 
en 500 
c e 
" E 0 

-<= 
K 
OJ 

-500 0 

-1000 

-1500 

-2000 
-2 -1.5 -1 -0.5 0 0.5 

Wa\,\9length detuning [lltJA] 

Fig. 6-27. Normalized diffraction efficiency of the hologram (color-coded in grayscale) as a 
function of the position along the z-axis of a monochromatic point source (vertical axis in the 
figure) and detuning of its wavelength of emission (horizontal axis). 

6.4.4 Discussion 
Both the results from experiments done with the transmission-geometry microscope 

and the theoretical analysis of the reflection-geometry module reveal that the resolution of 

the system is in large measure detetmined by the quality of the collimating and imaging 

lenses. In this sense, the holographic microscope does not outperform other more conven-

tional solutions used in microscopy. Nonetheless, the 4-D microscope can show its superior 

performance over competing technologies in the arena of applications that require real-time 

visualization of the specimen. The 4-D microscope is better suited for those situations in 
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which it is paramount to gather multispectral or multi depth information of the specimen. 

While its competitors need to trade in resolution in order to gain speed, the holographic 

microscope can keep the same level of resolution while offering high speed. 

The parallel processing ability of the 4-0 microscope, in fact, inherent to most holo-

graphic systems, derives from the capability of multiplexing various holograms in the opti-

cal medium. However, this parallelism comes at the expense of dividing the photon count 

on the microscope. Therefore, to increase the light efficiency of the system, it is necessary 

to act either on the holographic material to improve its performance (e.g., larger M/#), or 

on the hologram to widen its spectral response (e.g., chirping the hologram), or even on the 

specimen itself by using more efficient and narrow-band fluorescent markers (e.g., quan-

tum dots) [6-20], [6-21]. 

Finally, the wavelength selectivity of the hologram poses a trade-off between light 

collection efficiency and resolution. A broad wavelength selectivity benefits the photon 

count in the microscope, but at the same time degrades its transversal resolution. Fortu-

nately, the reflection geometry can be of assistance in breaking this trade-off as for this 

geometry the resolution of the system is less sensitive to the bandwidth of the hologram. 
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