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ABSTRACT 

The failure process of laminated composite materials originating from precut 

sharp cracks, as well as their propagation, is studied from a "global" perspective, 

appropriate for structural analysis. The size effect in the damage development is explored 

and the question of "scaling" of the results is addressed. 

Two globally orthotropic sets of panels with the notches aligned along the axes of 

orthrotopy are studied. The internally evolving damage in the crack tip region is 

examined through enhanced x-ray radiographic inspection and surface strain fields are 

measured by means of the Digital Image Correlation method (the applicability and 

limitations of which are analyzed and discussed). The results obtained from these two 

experimental techniques are joined to assess the feasibility of identifying internal damage 

solely from surface measurements. 

The shape of the region of influence of the crack is described and its extension 

measured. A simplified model for damage progression analysis is proposed. 

The process of initiation of the damage propagation is described in detail and the 

different responses for the two different layups are discussed. The maximum stress/strain 

and the Tsai-Hill failure criteria are compared with the experimental results on the 

laminates, and their reliability and limitations are addressed. 

The effective properties of the two sets of laminates are measured at three 

different loading rates and compared to theory, and the relevance of the time dependence 

of the material is studied. 
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CHAPTER 

ONE 

INTRODUCTION 

1-1 BACKGROUND, MOTIVATION 

From the very beginning, the aerospace industry has made use of all the advances that 

materials science has provided to construct structures that are energy efficient. For an 

engineer every gram of the structural weight saved is translated into kilograms of 

increased payload or an extension in range, SInce lighter structures reqUIre smaller 

engines and smaller lifting surfaces-in the case of airplanes; consequently less fuel is 

necessary, which in turn requires smaller tanks and leaves more space available for extra 

payload, and so on. All this should be achieved without compromising the stiffness, 

strength, or safety of the vehicle. Moreover, in many cases, the new materials have 

provided not only significant improvements in the weight-to-strength ratio but also in 

stiffness and safety, or have facilitated maintenance, repairs or fabrication and in certain 

instances, only the utilization.of the new !llaterial has made it possible for the vehicle to 

get off the ground. Two examples illustrate this point; one is an existing aircraft and the 

other one is still in the development stage. 

The first one is the technology demonstrator X-29 (Figure 1.1.1). This plane is 

extremely maneuverable due to its forward swept wing design. Only the stiffness-to-



.J 

weight ratio provided by advanced composites made the construction of the X-29 ' s thin 

supercritical wing possible; state-of-the-art composites allowed aeroelastic tailoring 

which, in turn, produced limited wing bending and twisting to eliminate structural 

divergence within the flight envelope. Additionally, composite materials allowed the 

wing to be sufficiently rigid for safe flight without adding an unacceptable weight 

penalty. 

Figure 1.1.1 X-29 technology demonstrator. The use of composite materials made 
possible the thin forward swept wings that give an extraordinary performance to this 
aircraft (NASA). 

The High Speed Civil Transport (HSCT) is another example. In the 1990s, NASA 

launched a large scale program-titled High Speed Research (HSR)-to develop the 

technologies that would make the construction of an affordable, environmentally friendly 

successor to the Concorde possible. Among its crucial characteristics were a Mach 2.4 

cruising speed, 300 passenger capacity, an operational maximal cruise temperature of 350 

OF, and a minimum of 60,000 hours, which its materials and structures were expected to 

endure. Traditional aerospace materials, such as aluminum or titanium, could not serve in 

this context so that new high-temperature and strong composite materials such as IM-
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7fPETI-5 were developed. The HSR program came to an end for financial reasons, but 

research around the 1M -7 fPETI -5 has continued because of the great potential that this 

material holds for many other aerospace applications. 

Figure 1.1.2 Wind tunnel model of the HSCT, an aircraft that would make extensive 
use of advanced composites to withstand extended periods of time at 350 OF 
temperatures, cruising at Mach 2.4 (NASA). 

Since the 1970s, the use of advanced composite materials has constantly increased 

in aerospace applications. The main benefits of composites over metals technology have 

been, including high stiffness-to-weight ratio, high strength-to-weight ratio, excellent 

fatigue resistance, corrosion resistance, low thermal conductivity, acoustical insulation, 

thermal insulation, and the ability to be tailored to a pat1icular need. If current metal 

structures were to be substituted by a fully composite one-without changing the 

manufacturing and the design procedures-weight savmgs of up to 30% could be 



6 

achieved. Furthermore, if the vehicle were to be completely redesigned, making use of 

the inherent properties and characteristics of the composite materials, further weight 

savings would be possible (e.g., all the rivets could be replaced by monolithic . 

constructions or by stitching or bonding). 

If composite materials present all these advantages, why is it that their application 

IS still somewhat limited? Some of the obstacles for a more expanded composites 

application III the aerospace industry are the high manufacturing costs compared to 

traditional materials, maintenance related issues-at least for certain applications III 

commercial transports, and a general lack of knowledge about how damage is initiated 

and progresses throughout a structure. In addition to the fact that their failure properties 

are much less explored and characterized than those of the metallic structures, the 

anisotropic nature of these materials renders more difficult the analysis, and 

consequently, the prediction capabilities that can be used in design or modeling are very 

limited. 
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1-2 COMPOSITE MATERIALS 

A composite material is simply a material that is formed by the combination of at least 

two different materials on a macroscopic scale with the purpose of generating a new 

"material" that has improved overall properties in comparison to its constituents. 

Advanced composites are composed of fibers of various forms and a matrix. The overall 

properties are a function of the constituents, their distribution and the interaction between 

them. According to the disposition of the constituents, three main categories of advanced 

composites are distinguished: 

1) Continuous fiber-reinforced composites, which in tum can be classified as 

i) Unidirectional fiber-reinforced composites and woven fabric composites 

ii) Random fiber-reinforced composites 

iii) Three-dimensional fiber-reinforced composites 

2) Discontinuous fiber-reinforced composites include 

i) Particulate fiber-reinforced composites 

ii) Chopped fiber-reinforced composites 

iii) Whisker-reinforced composites 

3) Molecular composites. 
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1-3 LAMINATED COMPOSITES 

Aircraft and aerospace industries mainly use continuous fiber-reinforced composites 

because, due to the anisotropy of the laminae, their properties can be controlled very 

effectively; i.e. , desired property values in different directions can be easily obtained by 

altering the material and manufacturing variables. For example, in a unidirectional 

composite, the ratio of the longitudinal strength (or stiffness) to the transverse strength 

(or stiffness) can be altered by controlling the volume fraction and orientation distribution 

of the fibers. The longitudinal properties of unidirectional composites are controlled by 

fiber properties, whereas the transverse properties are matrix dominated. In most 

engineering applications the transverse properties of unidirectional composites are found 

to be inadequate. This apparent limitation is overcome by forming laminates from the 

unidirectional layers by bonding together two or more laminae so that they act as an 

integral structural element. The principal material axes of the laminae are oriented to 

produce a structural element with the desired properties in all directions. 

Laminates are fabricated such that they behave as a monolithic material. Thence 

the simplification, in traditional laminate theory, that the bond between two laminae is 

perfect, i.e., infinitesimally thin and not shear deformable. Thus the laminae cannot slip 

relative to each other, and the displacements remain continuous across the bond. 

Equations have been developed for the stress-strain response of thin composite plates (for 

example, Tsai/Hahn and Jones). Such analyses provide both the intra-ply and the inter

ply stress components. When failure or a stress raiser is present, because of the sharp 

stress concentrations in all directions, the analysis of local failure modes is usually 
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complicated. Typically, multiple intra-ply cracks and inter-ply delamination occur during 

the course of the applied load. 

When a laminate is constructed by stacking a number of orthotropic laminae * In 

an arbitrary sequence of orientations, the laminate stiffness matrix will generally be fully 

populated; that is, all the elements are nonzero. However, it is possible, and in many 

cases desirable, to specify the stacking sequence such that a number of elements in the 

stiffness matrices are zero. This simplifies the laminate analysis and, more importantly, it 

sometimes avoids undesirable coupling between bending and stretching or twisting, or 

between midplane normal forces and shear strains. Surely coupling can induce unwanted 

stresses into a structure if the deformations are restricted. Thus, it is desirable to construct 

laminates that possess special characteristics. Some special cases are the symmetric, the 

unidirectional, cross-ply, and angle-ply, and the quasi-isotropic laminates. 

Symmetric laminates are constructed by placing the laminae symmetrically with 

respect to the midplane. They represent a common class because, besides ease in their 

analysis, the bending-stretching coupling is eliminated, which in nonsymmetric laminates 

causes an undesirable warping due to in-plane loads. Also, temperature changes will 

cause warping, and thus in the fabrication of a laminate at an elevated temperature 

warping will result when it is cooled to room temperature. 

Three different types of orthotropic laminates are normally constructed. These 

are (i) unidirectional laminate with all the laminae oriented in the same direction, (ii) 

cross-ply laminate with laminae oriented at 0° or 900 'only, and (iii) angle-ply laminate 

with equal number of laminae oriented at ± e angles. All of these laminae can be 

• It should be remembered that for an orthotropic material normal stresses and shear stresses along the axes 
of symmetry will only produce normal strains and shear strains, respectively. 
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symmetric also. This class of laminates behaves as an orthotropic layer with respect to in-

plane forces and strains, i.e. , as a laminate in which there is no coupling between the 

normal stresses and shear strain. 

Finally, in the quasi-isotropic laminate the extensional stiffness matrix [A] has 

isotropic character, i.e., it has two elastic coefficients that are independent of the 

orientation in the plane. Just as for an isotropic material. A quasi-isotropic laminate can 

be constructed by meeting the following conditions: 

1) The total number of layers must be three or more. 

2) The individual layers must have identical stiffness matrices [Q] and thicknesses. 

3) The layers must be oriented at equal angles with respect to a reference frame. If 

the total number of layers is n, the angle between two adjacent layers should be ± 

7[ l n 

A peculiarity of laminated composite materials, which becomes quite relevant for 

failure analysis purposes, is the well-studied fact that stresses in the vicinity of free edges 

cannot be considered two-dimensional (Pipes and Pagano, 1970). The out-of-plane stress 

components, often referred to as the interlaminar stresses, are the result of the ply 

interface load-transfer mechanisms. Agarwal (1990) summarizes Pagano ' s work about 

the importance of interlaminar stresses by the following points: 

1) The interlaminar shear stress is very high (perhaps even singular) at the free edge 

of a laminate (as the edges on sides of a laminate, cutouts, holes, etc.). 
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2) The interlaminar normal stress, (J=, has a very steep gradient near the free edge. A 

tensile value of (J= at the free edge may initiate delamination and can thus initiate 

or at least accelerate the failure process. 

3) The stacking sequence in a laminate affects the magnitude as well as the nature of 

the interlaminar stresses. Thus a difference in tensile static and fatigue strengths 

may be observed when the stacking sequence is altered even though the 

orientation of each layer does not change. 

4) The interlaminar stresses can be regarded as an edge effect only since their 

prominence is confined to a narrow region close to the edges. Predictions of the 

lamination theory are quite accurate in the regions away (e.g., a distance equal to 

the laminate thickness) from the edges. 

Thus, it is clear that the presence of cutouts, holes and through-cracks (that could 

be the result of high energy penetration, for example) can change the failure mode of the 

material under load significantly. Another important issue connected with the free edge 

effects is that it is a source of "size effect" in the failure mechanisms of composite 

materials. This refers to the observed fact that the strength of these materials is affected 

by the size of the specimen. It is of utmost importance to determine the nature of this 

dependence to be able to design full-scale structures based on the information obtained 

from laboratory tests. 

There have been observed significant effects of specimen size on the strength of 

fiber reinforced composites (Wisnom, N. R. , 2000). This is not a single phenomenon, but 

depends on the failure mechanism. Studies of fiber direction tensile failure, compressive 
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failure, and matrix dominated failures have all shown a tendency for the strength to 

decrease with increasing speCImen volume, with matrix failures showing the largest 

effect. 

Size effects in tensile failure have been found in both tensile and flexural tests of 

differently sized specimens, and from higher strengths in bending than in tension (Kies, 

1964; Nuismer and Whitney, 1974, 1975). The size effect in bending is not primarily due 

to the stress gradient since similar results are obtained in direct tensile tests. The 

magnitude of the effect is consistent with Wei bull statistics involving moduli in the range 

13 - 29 for glass and carbon fiber/epoxy materials (Cunningham et aI. , 1985; Hojo el aI. , 

1994; Wisnom and Maheri , 1994). There are some indications that the size effect 

diminishes with increasing scale. 

A number of studies (for example, Jackson, 1992; Wisnom and Atkinson, 1997; 

Crowther and Starkey, 1988; Bullock, 1974) have shown a reasonable fit with simple 

Weibull strength theory, and from a practical point of view, this would seem to be a 

reasonable way of accounting for the effects of stressed volume on tensile strength. 

However, other studies have shown discrepancies, and Weibull theory is not consistent 

with the progressive failure and load redistribution that is sometimes observed in tensile 

failures (Whitney and Knight, 1980). A model treating the composite as a bundle of fiber 

bundles is able to account for these discrepancies qualitatively. 

Lower compressive strengths have been found in large components than in small 

test coupons, and attributed to defects such as fiber waviness (Clarke, et aI. , 1997). This 

is a form of size effect, but one that is critically dependent on the manufacturing process. 

Size effects have also been found in compressive failure resulting from bending, which 
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are believed to be mainly a result of constraint due to the stress gradient through the 

thickness (Wisnom et a!. , 1997). There may also be size effects due to intrinsic material 

variability, but difficulties in compressive testing mean that the experimental evidence is 

currently inconclusive. 

There are large size effects for matrix-dominated failures (O'Brien and Salpekar, 

1993; Shivakumar et a!. , 1994). Strength is controlled by defects, especially voids and 

machining damage during specimen preparation. Weibull strength theory represents the 

size effect reasonably well, although there is some indication of a limiting value being 

reached for small volumes of material. Manufacturing quality, especially the level of 

voidage, has a significant effect on the magnitude of the size effect. 

Because there are so many demonstrations of how specimen size can influence 

failure behavior, it is essential to address this possibility of the failure mode investigated 

in the sequel to assess whether one may (conservatively) use strength data derived from 

small coupons in the design of large structures. It is crucial to assure that the 

manufacturing quality of test specimens is representative of that likely to be achieved in 

production. 
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1-4 GLOBAL FAILURE/FRACTURE INSTABILITIES 

It has already been mentioned that the anisotropy of composite materials gives rise to 

complicated three-dimensional states of stress in the presence of geometrical 

discontinuities such as cutouts, notches or ruptures (which could have been produced by 

penetration of a foreign object, for example). Another factor that renders the analysis of 

the failure of composites more complex than that of traditional materials is precisely their 

distinctive heterogeneity, i.e. , the composite is an aggregate of unidirectional plies which 

in tum are composed of two very different phases: the matrix and the fibers. Thus when a 

global failure occurs, the propagation of any damage occurs through a mechanism that is 

only similar to a crack. 

"""'~~""""~""'!+-II-- reinforcement 

leading damage 
zone 

damage wake 

~~~~---r global crack 

Figure 1.4.1 "Global crack" traversing a built-up structure with damage wake and 
interaction zone near a reinforcement element. 

In detail the failure progression has features of a band or region of damage rather 

than of a well-defined, classical crack-like geometry, but seen from a properly large or 

global scale such damage progression may be treatable by a crack analysis. This 
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situation is represented schematically in Figure 1.4.1, where a "crack" (not sharply 

defined by flank boundaries) tracks through an extended damage zone which represents a 

multitude of local or small scale damage phenomena, including matrix cracking, fiber 

pull-out, delamination, and various forms of fiber fracture. 

Such a macrocrack phenomenon has consequences when it interacts with other 

components of a structure, in that the details of the interaction do become important. 

Specifically, the issue here is that of the raising of stress levels at skin-structure joints that 

derive from an approaching macrocrack. This latter feature is likely to have a rather 

broad "front" with a diffuse but distinct stress concentration capability. Since such a 

front probably involves ply separations and fractures , this zone could extend on the order 

of inches. It is, therefore, very important to assess the size of such a zone for 

computational and design purposes. 

It is doubtful that this particular or other structural size parameter (e.g. , width of 

wake, interaction zone near reinforcement) could be established uniquely in the 

laboratory by using only small (structural) speCImens. Rather, (nearly) full-scale 

simulations would be necessary to be conducted for this purpose to be able to determine, 

out of the combined results, the scale factors for these failure modes. The test facilities at, 

and specimen cost to, Caltech impose a limit on the size of the specimens that could be 

tested but, nevertheless, elements close to working panels fell within these limits. 

Specimens of the geometry illustrated in Figure 1.4.2 would allow the 

, understanding of how a macrocrack interacts with a stringer. Clearly, the stiffness of the 

stringer determines the range over which the forces at the "tip" of the global crack are 

distributed and abated near the stringer; consequently the failure may stop (temporarily?). 
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The (possible) stress abatement with approach to the stringer depends on the (tensile and 

bending) stiffness of the latter, and probably on their relative values compared to those of 

the fracturing plate. These dependences need to be worked out. 

F 

F 

Figure 1.4.2 Exemplar configuration of a global crack traversing a reinforced plate. 

A first analysis shows that to understand the crack interaction with a stiffener, the 

nature of the stress and strain fields (as determined by the internal damage) in a sheet 

needs to be addressed as a global crack propagates through it. Surprisingly enough, very 

little work has been done in this area. However, leaving the crack-stiffener interaction for 

the future, the main topic of this study is the detailed description of the failure process, an 

assessment of the stress/strain fields in the vicinity of the "crack tip." the quantification 

of the extension of the "zone of ' crack ' influence"; this is to be done for different layups. 
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To quantify scale effects, it is necessary to conduct tests on differently sized specimens: 

from the small coupon size to the largest specimens that the testing facilities at Cal tech 

can handle (roughly 18 x 18"). The number of ply configurations is nearly limitless; 

however, a set of typical results could suffice for analysis and design purposes, once 

extrapolations on such data become better understood (measurements to be made in the 

future). 

F 

F 

(Jij (X,y) = ? 

Figure 1.4.3 Examination area at the front of a fracture 
zone in a composite (unreinforced) plate. 
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1-5 FAILURE CRITERIA 

Throughout the years, different failure criteria for composite materials have been 

developed. As already discussed, due to the complexity of the process of rupture, and 

because of the wide range of properties covered under the term "composite material"*, 

there is no single, universally accepted, failure criterion that can be applied to all possible 

situations. 

Failure criteria typically have been, either stress, strain or energy based, and they 

have used a micromechanics or a macromechanics analysis. The former can be used for 

the design of the composite materials themselves or for providing more insight into the 

failure process but could find only very limited and difficult application in structural 

design and analysis. The strengths of laminae and laminates with uniform stresses or 

strain fields were first developed and later on other criteria were proposed for materials in 

the presence of stress or strain gradients (including cutouts or notches). 

The macromechanics approach appears to be more appropriate for engineering 

applications and many criteria exist in the literature and have been quoted in Appendix A 

following Tan's survey (1994). From them, we selected the maximum stress/strain and 

the Tsai-Hillcriteria because they are most widely used, mainly due to their simplicity. 

Many of the other criteria require the determination of a large number of parameters, 

some of them difficult to measure or that would require a substantial amount of testing 

before the accuracy of the particular criterion could be assessed. Other criteria are the 

result of mere "curve fitting" with-in some cases-little physical basis. These reasons 

have limited their effectiveness in engineering design and analysis. The two criteria 

• For example, some composites are brittle and others more ductile. 
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mentioned have found widespread application and have even been incorporated in many 

commercially available finite element analysis programs as failure criteria. In essence, 

they have become industry's standard for establishing damage initiation. We will first 

present them and discuss some of their advantages and also their inherent limitations and 

drawbacks. Then, we will apply them to our experiment and draw some conclusions. 

Maximum Stress Criterion 

The maximum stress failure criterion assumes that failure occurs when anyone of the 

stress components along the principal material axes reaches, or is greater than, its 

indi vidual strength value *: 

(1.5.1) 

1 (761 2: S, 

being X, Y and S the material strengths in the fiber direction, perpendicular to it 

and in shear, respectively. The compressive strengths are generally different from their 

tensile counterparts for orthotropic and anisotropic materials (subscripts c and t). Note 

that shear strengths are the same in + and - directions along the principal material axes . 

• Throughout this work, the stresses and strains will be presented indistinctly in the normal tensorial 
notation (double subscripts i, j = 1, ... , 3) and in the contracted one, i.e., with only the six components of 
the symmetric tensor. In this case, 0'6 = T12. The case wi II be obvious from the context. 
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Maximum Strain Criterion 

The maximum strain failure criterion, ubiquitously in use for rapid design estimates, 

assumes that failure occurs when anyone of the strain components along the principal . 

material axes reaches, or exceeds, its individual critical strain value: 

(1.5.2) 

1 &61 2: e6 

where el. e2 and e6 denote the ultimate strains. They are generally not equal to Xi 

t, c, s) unless Ei denotes the secant modulus (Jones, 1999). This is because 

material nonlinearity exists, especially for longitudinal compression and shear. Their 

strength envelopes would only coincide when Poisson's ratio equals zero. 

It is clear that these criteria are suitable for only simple loading conditions since 

they do not take into account the interaction between the different stress (or strain) 

components. Furthermore, one can question the validity of producing a "failure 

envelope" with a curve that connects so different phenomena as fiber cracking with the 

micro buckling compressive failure. 

Mises, Hill and Tsai-Hill Criteria 

In 1928 Mises proposed a yield criterion for a crystal or a textured metal of the form 

Ai)a;a) = constant, (1.5.3) 

where A i) are constants that must be determined experimentally. This criterion was 

further developed by Hill for orthotropic materials as 
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(1.5.4) 

In both these equations, the tensile yield strength is assumed to be the same as the 

compressive yield strength. This is generally not true for fiber-reinforced composites. 

The difference in tensile and compressive strengths can be considered if these criteria are 

used to predict one stress quadrant at a time. In this case the strength surface would not 

be smooth. 

The strength coefficients F, G, H, L, M and N were related by Tsai (1968) to the 

uniaxial strengths. He considered unidirectional specimens and applied aI, a2, a3, and a6 

one at a time to obtain the strengths X; Y, Z and S. Two additional tests are needed to 

determine the coefficients Land M by applying a./ and a5. In the case of plane stress, 

Equation (1.5.4) reduces to 

(1.5.5) 

Equation (1.5.5) is known as the Tsai-Hill criterion. It is an obvious improvement 

on the maximum stress/strain criterion because it addresses the interaction of the different 

stress (or strain) components. The nature of that interaction is more questionable. That 

the transverse (perpendicular to the fi bers direction) and the shear stresses (or strains) can 

couple to produce failure appears reasonable. What is not evident is the influence of the 

longitudinal (along the fibers direction) components. And, finally, this criterion also 

suffers from the defect of connecting with the same "enveloping" curve disparate failure 

modes. 
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A Procedure for the Strength-Analysis of Laminates 

The analysis of stresses in the laminae of a laminate is a straightforward, but usually 

tedious, task. With the stresses considered a linear function of the applied loads, a single 

stress analysis suffices to determine the stress field that causes failure of an individual 

lamina. That is, if all the stresses are known in all the laminae, then they can be compared 

with a lamina failure criterion and uniformly scaled upward to determine the load at 

which failure occurs. 

The overall procedure of laminate-strength analysis, which simultaneously results 

in the laminate load-deformation behavior, is shown schematically in Figure 1.5.1 Here, 

load is taken in the generalized sense to mean both forces and/or moments; similarly, 

deformations are meant to include both strains and curvatures. The analysis is composed 

of two different approaches that depend on whether any laminae have failed. If no 

laminae have failed, the load must be determined at which the first lamina fails (so-called 

first ply failure). In the process of this determination, the lamina stresses must be found 

as a function of the unknown magnitude of loads first in the laminate coordinates and 

then in the principal material directions or each lamina. The proportions of load (i.e., the 

ratios of Nx to N;" Mx to M;" etc.) are, of course, specified locally at the beginning of the 

failure analysis. The load parameter is increased until some individual lamina fails. The 

properties of the failed lamina are then degraded in one of two ways: (1) totally to zero if 

the fibers in the lamina fail or (2) to fiber-direction properties if the failure is by cracking 

parallel to the fibers (matrix failure). Actually, because of the matrix manipUlations 

involved in the analysis, the failed lamina properties must not be zero, but rather 

effectively zero values to avoid a singular matrix that could not be inverted in the 
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structural analysis problem. The laminate strains are calculated from the known load and 

the stiffnesses prior to the failure of a lamina. The laminate deformations just after failure 

of a lamina are discussed later. 

LOADING AND LAMINAE PROPERTIES 
~ . .. ,., h';-" 
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Figure 1.5.1 Analysis of laminae strength and load-deformation behavior (Jones). 

Once one or more laminae have failed, new laminate extensional, 

bending-extension coupling, and bending stiffnesses are calculated. Lamina stresses are 

recalculated to. determine their distribution after a lamina has failed (the stresses in the 

remaining laminae must increase to maintain equilibrium). Then one must verify that the 

remaining laminae, at their increased stress levels, do not fail at the same load that caused 

failure of the lamina in the preceding cycle through the analysis. That is, can the lamina 
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stresses be successfully redistributed among the unfailed layers? If no more laminae fail , 

then the load can be increased until another lamina fails , and the cycle is repeated. In 

each cycle, the increased stresses caused by failure of a lamina must be verified not to 

cause an instantaneously progressive failure, that is, where the laminae all successively 

fail at the same load. When such a multiple failures occur, the laminate is said to have 

suffered gross failure. 

Note that the lamina failure criterion was not mentioned explicitly in the 

discussion of Figure 1.5.1. The entire procedure for strength analysis is independent of 

the actual lamina failure criterion, but the results of the procedure, the maximum loads 

and deformations, do depend on the specific lamina failure criterion. Also, the 

load-deformation behavior is piecewise linear because of the restriction to linear elastic 

behavior of each lamina. At any rate, the overall behavior of the laminate is nonlinear if 

one or more laminae fail prior to gross failure of the laminate. This is one of the many 

models for progressive failure of composites and shares the same problem with all of 

them, namely, the lack of a constitutive law for the material in the damaged region. Our 

experiments show the limitations or even the complete inapplicability of some of these 

criteria that have found a widespread usage. 
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CHAPTER 

TWO 

EXPERIMENTAL WORK 

2-1 EXPERIMENTAL WORK, DESCRIPTION 

The present study intends to analyze and characterize the failure and "fracture" 

mechanisms of laminated composite materials in terms of typical structural load 

descriptions rather than in terms of micromechanics considerations, such that the 

emphasis on structural design dominates the investigation. To understand, predict, 

avoid, and control these processes, clear and effective criteria need to be developed based 

on sound physical principles. 

To achieve that aim, accurate measurements of the deformation and strain fields 

are needed during the loading process; particularly, in the region around the "crack tip" 

or "failure front." Thus, in summary, this project consists of proposing a failure initiation 

criterion based on experiment; tracking the damage progression, both qualitatively and 

quantitatively; assessing the damage zone size as a function of load history and crack 

propagation; and finally, studying the residual strength after failure. The influence of the 

stacking order or layup is explored and the time dependence is also addressed. 

For determining the strains several methods were considered: strain gages and 

optical methods, such as the digital image correlation method (Ole), Moire and Moire 

interferometry. These methods provide information about the surface layers but it is not 
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clear that it can be used to fully characterize the damage state in the interior of the 

material. Therefore the use of nondestructive evaluation (NDE) techniques was 

imperative. The options considered were x-radiography, ultrasonic inspection and 

computerized tomography. 

The setup of the experiment limited the choice of measurement methods, 

eliminating the computerized tomography and the ultrasonic inspection. Besides the fact 

that the cost of such equipment was beyond the reach of this project, the measurements 

had to be performed in situ while the specimens (in the fixture that limited access to 

them) were being loaded on an MTS or Instron loading machine. Furthermore, the results 

of the ultrasonic inspection are of difficult interpretation. The x-radiography was the 

method that offered the most advantages, which are explained in greater detail in a 

subsequent section. 

The digital image correlation method (DIe) has been chosen to provide "field" 

measurements of the deformations. The other optical measuring techniques were 

dismissed because of the complexity of their setup and results interpretation. The strain 

gages were also dismissed for several reasons. One was that they would obstruct the x

ray imaging and a second one was that to obtain meaningful measurements a large 

number of very small strain gages would be needed adding too much complexity to the 

experiment. During the course of the tests it was found that they would have been wasted 

because, in some cases, early on, the outer layer is lost. This will be discussed in detailed 

in a subsequent section. 

To study the influence of "scaling," three sets of specimens were utilized; namely, 

panels of "coupon" size (6 x 6 in), another of "intemlediate" dimension (12 x 12 in) as 
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well as a set of panels of roughly "component" size (18 x 18 in). For a more detailed 

description of the specimens, see section 2-4. Taking advantage of the fact that the panels 

are not quasi-isotropic, it was possible to study the influence of the layup by cutting the . 

slits along or perpendicular to the 0° axis of the material. 

The tests on the smaller panels were conducted on an lnstron screw-driven tension 

testing machine but it proved to have insufficient load capability for the testing of the 

medium and larger panels. For that task an MTS servo-hydraulic system rated at 250 kN 

was used. 
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2-2 DIGITAL IMAGE CORRELATION (DIC) 

The DIe method allows the accurate measurement of displacement fie lds on a planar 

defonning solid. Two of its main advantages are that it provides field measurements, as 

opposed to point values, and that it is nonintrusive. 

Digital Image Correlation (DIC) 

undeformed deformed 

CORRELA TlON 

deformation field 

Figure 2.2.1 Schematic description of the DIe method. Two digital photographs of the same 
area (in the undeformed and in the deformed state) are compared to produce a mapping of 
the deformation field. 

Digital image correlation is a computer vision technique that extracts the whole 

field displacement data by comparing the features in a pair of digital images of a 

specimen surface before and after deformation. More specifically, the physical problem 

of measuring in-plane displacements at grid points on a macroscopically flat surface can 

be formulated as a correspondence mathematical issue of minimizing a correlation 

function with respect to six coefficients over a subset image region containing the grid 

point, namely, the two in-plane displacement components (u and v), and their four 

derivatives (ux , uy,v x and vy), all evaluated at the grid point. As the specimen is displaced 



29 

during a test, images are taken at prescribed intervals, ultimately reduced to a grayscale 

and saved as raw data files brightness values. When the test is complete, it is the job of 

the DIC software to track the brightness values from image to image and extract the in-

plane displacements due to translation, rotation, extension, and shear. These, of course, 

form the two-dimensional whole field displacement and strain maps for the specimen and 

can be reported cumulatively or incrementally. 

Several implementations of the DIC method have been demonstrated in a range of 

experimental mechanics and materials applications (Sutton et aI., 1983; Chu et aI. , 1985; 

James et aI. , 1990; Franke et aI. 1991 ; Vendroux and Knauss, 1994, 1998; Choi and Shah, 

1997; Tong, 1998; Li et aI. , 1998). For the present work, that developed by Vendroux and 

Knauss has been used. 

Crack tip 

Fig 2.2.2 Photograph of the region around the crack tip 
with spot pattern used for digital image correlation. 
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The specimens used in this study did not present surface features that could be 

used for DIe and thus it was necessary to provide a spot or splatter pattern of white and 

black paint on the area of interest. An example of this is shown in Figure 2.2.2. 

To test the applicability, accuracy and limitations of this method and provide a 

calibration, a series of tests were performed. All of them consisted in the determination of 

a known strain field via DIe by subjecting strips 1" wide of polycarbonate and aluminum 

(5052 alloy) to uniform uniaxial tension, as depicted in Figure 2.2.3. The strains derived 

with the DIe method were to be compared to those measured with a strain gage. The 

gage section shows the speckle pattern used for the DIe . 

• 
...... ...... ...... ...... 

+ 
Fig 2.2.3 Tension specimen with speckle pattern at gage section 
for Die evaluation. 

The aluminum specImens were not of much use quantitatively because they 

deformed plastically along shear bands and this localized deformation rendered the strain 

gage measurements troublesome for purposes of method evaluation. Nevertheless, 
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qualitatively, those tests showed that the method was applicable since the shear bands 

clearly appeared in the deformation field plots, as can be seen in Figure 2.2.4, which 

presents the data in the form of a vector plot of displacements. 

Figure 2.2.4 Deformation field of 5052 Aluminum specimen under 
uniaxial tension. The shear bands at 45° are clearly distinguishable. 

Thus, for calibration purposes, polycarbonate was used instead of aluminum. The 

test described in Figure 2.2.3 was repeated several times and plots of the deformation 

field similar to that shown in Figure 2.2.5 were obtained. 

Once the deformation -field is known, the strains can be computed. The average 

for the whole region was computed and compared to the measurements obtained with a 

strain gage. The results of the comparison are presented in Figure 2.2.5. Superimposed is 

a straight line of unit slope which is where the points would be expected to fall. It can be 
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seen that the values show reasonable agreement and that the values for the error cited in 

the literature of 0.1 % of strain are correct (for example, Tong, 1998). 
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Figure 2.2.5 Deformation field calculated with D1C for a policarbonate 
specimen (the area plotted is about 0.045" x 0.045"). 

Figure 2.2.6 Comparison between strains calculated via D1C and 
measured with strain gage for a polycarbonate specimen. 
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2-3 ENHANCED X-RAY RADIOGRAPHY INSPECTION 

X-ray radiography is one of the most common nondestructive evaluation (NDE) 

techniques in use for composites. Part of the energy in the x-ray beam is absorbed by the 

constituents in the material as it passes through the part. The transmitted energy is 

exposes a photographic film placed directly behind the opposite surface (shadow graph). 

Defects or flaws in the material produce a variation in energy transmission that shows up 

as shadow images on the photographic film. 

Figure 2.3.1 X-ray equipment for internal characterization of damage. 

Planar defects normal to the radiation beam, such as delaminations or interlaminar 

cracks, are not detected by radiography unless a radio-opaque penetrant is first injected 
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into these defect areas to improve the contrast. Furthermore, the use of these fluids is 

necessary to enhance the presence of ruptures because the absorption qualities of the 

typical composite materials constituents are very close to those of air (Mallick, 1997) . . 

This technique, called penetrant-enhanced x-ray radiography (PEXR), is often used to 

detect delaminations caused by low energy impacts; however, its use requires a way for 

the penetrant to access the defect areas and is therefore limited to delaminations that are 

open to the surface through an injection point. Several penetrants, including zinc iodide, 

silver nitrate, trichloroethylene, diiodomethane (DIM), diiodobutane (DIB), and 

tetrabromoethane (TBE), have been used for this purpose (Crane, 2000; Chang, 1975). In 

the present study TBE, DIM and DIB were used. The articles in the literature that deal 

with PEXR cite them extensively due to their excellent penetrant and x-ray absorption or 

contrasting capabilities (Chang, op. cit.; Mallick, op. cit.). 

The first tests were performed with TBE but, because of its toxicity and 

corrosiveness, it was replaced by DIM; the fact that it would dissolve and wash away the 

paint used for the spot pattern of the DIC method also made its use undesirable. The DIM 

provides results just as satisfactory without all the inconveniences of TBE. 

The x-ray film utilized was in the form of 4 x 5 in sheets of Kodak Professional 

TMAX 100. The x-ray machine was a Yoshida X-70 unit, with a 70 kVp source, shown 

in Figure 2.3.1. Preliminary tests lead to a typical exposure time of 4 seconds to achieve 

the best contrast. 



35 

2-4 THE SPECIMENS 

The test samples for the present study were fabricated at the NASA Langley Research 

Center. The material combination selected was IM7 / PETI-S. This composite has shown 

great potential for aerospace applications due to its superb heat resistance and high 

strength. It was a prime candidate for the fuselage material for the HSCT (High Speed 

Civil Transport). IM7 are carbon fibers manufactured by Hercules and PETI-S is the 

abbreviation for the fifth in a NASA-made series of phenylethynyl-terminated imide 

fonnulations. Its properties (per lamina) are summarized in Table 2.4.1. 

Table 2.4.1. Properties (per lamina) 
of IM7 / PETI-5 as fabricated 
(NASA Langley Research Center) 

E 1 = 21. 8 msi (in tension) 

E2 = 1.2-1 msi (in tension) 

EI = 21 msi (in compression) 

E2 = 1.2-1 msi (in compression) 

Vl 2 = 0.32 

G/2 = 0.77 msi 

&/uJ c = 0.0125 in/in 

&/11) 1 = 0.0156 in/ in 

&/') = 0.007825 in/ in 

r/2M = 0.0305 in/ in 

al = -0.19 micro in/ in/ o F 

a2 = 15.5 micro in/in/ o F 

t = 0.0056in 

p = 0.058 Ib/ in3 

Vr= 60 % 
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The layup was chosen to represent a generic configuration representative of a 

typical aerospace application such as an airplane fuselage; this layup was not quasi-

isotropic so as to be able to study the influence of the change of orientation on the 

"fracture properties." Thus, the panels were fabricated with the following layup, [902, 

+452, O2, -452, O2, +452, O2, -452]s, which is presented schematically in Figure 2.4.1. The 

nominal thickness was 0.179 in. 

Figure 2.4.1 Specimens layup (each layer is doubled), 
[902, +452, O2, -452, O2, +452, O2, -452]5. 
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From these panels compact tension specimens were cut in three different sizes 

according to the diagram of Figure 2.4.2. Half of the specimens were cut with the notch 

along the 0° and the rest at a right angle to it. This allowed the testing of two different 

layups: one with dominance of the 0° plies and, another for which the 90° layers were the 

most abundant. In the rest of this study, the panels with the notch in the 0° direction will 
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be identified as the Parallel panels and the ones with the crack at 90° as the 

Perpendicular ones. 

2.25 x a 

1.00 

I..: 
2.8125 x a 

Figure 2.4.2 Specimen geometry. a = 2.16,4.32 and 6.48 in for the small, 
medium and large specimens, respectively. 

2.8125 x a 

The initial notches or slits were needed to be as thin as possible to facilitate the 

repeatability of the results and the stability of the crack growth. Thus, as can be observed 

on Figure 2.4.2, they would result in very long cuts, especially for the largest panels. 

Such long slits cannot be produced with conventional saws since the material is so tough 

and hard, the 1001 tends to wobble and cannot produce a straight cut. Besides, the 

minimum cut thickness that can be obtained by saws would be unacceptably large for our 

purposes. 



38 

Different options were explored. Laser cuts appeared as an attractive solution but 

after several tests were performed on some scrap material, this method had to be 

discarded. The high temperature and the high-pressure gas used for the process caused 

the material to bulge on the exit side and burst. EDM, a technique normally used for 

producing extremely thin cuts and difficult patterns in metals, was not applicable because 

of the low conductivity of the composite material. 

0.081 

Diamond wire cut, 
0.006" wide 

Figure 2.4.3 "Crack" tip detail. The main cut of the slits was produced by 
water jet process and then extended with diamond-impregnated wire. 

Finally, acceptable results were obtained with water jet cutting. The notches and 

the circular loading holes were produced by a local shop (outside of Caitech). Clean slits 

were possible but the thinnest cut width that was achieved was 0.040". Cutting slots with 

a diamond coated wire would be capable of improving on that, but it was not possible to 

find a commercial shop that would perform this service. With the aid of a simple scroll 

saw and commercially available diamOl'ld impregnated steel wire, it was possible to 

extend the notches as shown in Figure 2.4.3 . Longer extensions were not possible 

because the wire would snap or it would simply be impossible to keep the cut straight. 
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2-5 THE LOADING FIXTURE 

To provide stable crack propagation, a loading arrangement under displacement control 

was preferred over force imposition. The peculiarities of the experimental setup and the 

techniques that were to be used basically drove the design of the loading fixture; a 

photograph and a schematic are shown in Figure 2.5 .J . In these images, the fixture carries 

one of the large specimens and is mounted in an Instron testing machine (photograph, 

left). 

Figure 2.5.1 Loading fixture. Diagram and photograph with a large specimen 
mounted in an Instron testing machine. 
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Fig. 2.5.2 Diagram of the loading fixture. 
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The final configuration of the fixture was determined by the following design 

constraints (refer to diagram 2.5.2): 

I. The crack is opened under displacement control. Therefore, a wedge and pms . 

with needle roller bearings to minimize friction, was the simplest solution. 

II. Previous finite element analysis calculations highlighted the probable occurrence 

of buckling, especially for the larger panels, as shown in Figure 2.5.3 . Thus, the 

specimen is supported along its edges to prevent buckling or out of plane 

displacements. The columns (Fig. 2.5.2) have a gap where the specimen can only 

perform the opening motion on the plane. 

Figure 2.5.3 Finite Element simulation or Mode I crack loading 
indicated that the specimens would be prone to buckling and would 
produce out-or-plane displacements. 

111. The crack has to be located in a vertical direction to facilitate the introduction, 

penetration and symmetric retention of the opaque x-ray enhancing medium - such 

as Diiodomethane (DIM)- into the crack. These chemicals allow the 
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identification of delamination and internal damage through x-ray imaging, as has 

already been explained in section 2-3. 

IV. The specimen should remain fixed in space during the tests, i.e. , rigid body 

motions and rotations should be minimized or prevented to facilitate the digital 

image correlation (DIC) process for the determination of the deformations. This 

presented a challenge since typically all the testing machines (lnstron, MTS) are 

fixed on the top and apply the load from the bottom end. This feature would have 

suggested driving the specimen into the wedge from the bottom up but, in that 

case, the DIC measurements would have been much more complicated to 

perform. To satisfy these two constraints, the specimen sits on a rigid frame 

formed by the base beam, the columns and the top beam that hangs from the top 

attachment of the test machine (Figures 2.5.1 and 2.5.2) 

v. The specimen is now fixed in space and the wedge has to be driven into the crack 

from the top down but the test machine, as has previously been mentioned, has the 

loading attachment at the bottom. Thus the wedges are mounted on the "wedge 

support" (Fig. 2.5.2), which in tum are connected by shear pins to the "side bars" 

that are attached to the "bottom beam," connected to the test machine. 

VI. The anticipated loads for these tests were expected to be very high (circa 60,000 

lb) and the fixture should fit in the space available in the frame of the Instron or 

MTS testing machines. This limitation made it necessary to use high strength 

steels for some parts of the loading fixture, e.g., the side bars were made of 

precipitation hardened 17-4 stainless steel. 
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vii. And finally, it was very desirable to be able to use only one loading fixture for 

specimens of different sizes to explore the influence of this variable in the damage 

process. Thus the fixture was built so that the columns and the side bars could be 

adjusted to accommodate the three sizes of specimens. 

Originally, the first wedge design had an angle of 44° but later on was redesigned 

to 20° to reduce the compression component as the loads increase for the larger 

specimens. All small specimens were tested using the 44°-angle wedge. 

Other modifications necessary in connection with the larger panels were related to 

the loading pins, i.e., the pins and bearings against which the wedge runs. It was 

necessary to harden the surface via heat treatment which, however, embrittled the pins. 

As a consequence, as the loads increased for the larger panels, some of the pins failed. 

Thus larger diameter pins were used to better distribute the loads and also to provide a 

larger cross-section for increased rigidity to better accommodate the bending moments. 

The original loading pins had a W' diameter whereas the latest design called for 2.16" . 
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CHAPTER 

THREE 

RESUL TS AND ANALYSIS 

3-1 THEORETICAL LAMINATE MECHANICAL PROPERTIES 

It is always convenient to be able to compare experimental results with well-established 

theory or sound numerical calculations. This allows assessing the contidence on the 

measurements and, in many cases, helps identify possible sources of error or other 

phenomena not anticipated at the beginning of an experiment and, in the end, adds to the 

better understanding of the problem of study. 

We are interested in constructing a computer model of the panels for all the 

previous reasons and also in using it to evaluate the failure criteria discussed earlier and 

in studying the size effect. For this purpose, a first simplification that can be done is to 

consider the panels as monolithic, anisotropic with "average" or "effective" mechanical 

properties. These can be calculated from the properties of each lamina using classical 

lamination theory (Jones, 1999). 

The mechanical material properties of each lamina, in its reference frame, were 

introduced in Table 2.4.1. From them the laminate properties were derived and are 
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summarized in Table 3.1.1. Here we recall the two types of specimens that we worked 

with (refer to Figure 3.1.1): 

1. Parallel. The crack direction coincides with the direction of the 0° ply in the 

diagram. As appears in Table 3.1.1, for this type of panel the largest elastic 

modulus is aligned with the crack. 

11. Perpendicula.". The crack direction coincides with the direction of the 90° ply in 

the diagram. 

._ .. (. 

Fig. 3.1.1 Schematic of the panel configuration and the layup of the laminate. By having the 
crack cut at 90° to the principal direction of this layup, two distinct types of test panels are 
produced (identified in our experiment as Parallel and Perpendicular) 

Table 3.1.1 Calculated Engineering Constants 
. for the Laminate (all in msi) 

Type of Panel EI E ] VI] GI ] 

Perpendicular 5.92 10.56 0.1.1 3.18 

Parallel 10.56 5.92 0.43 3.18 
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3-2 MEASURED LAMINATE MECHANICAL PROPERTIES 

To verify the results of the previous section, test coupons were cut from some undamaged 

regions of the panels after the tests had been completed to measure the laminate average 

properties and also to examine any possible time dependence of the material and its 

influence on the measurements. It was important to assess this question, often overlooked 

in the research on composites, materials where close to 50% of their volume is 

constituted of a polymer. 

E I, E] and VI ] were measured in our laboratories by means of the simple tension 

test of the coupons. Each of them was a 1 x 10" strip, cut from the original panels. The 

stress was derived from the measurements of the load cell of the MTS machine (the same 

as used for the fracture tests of the panels) and the strains, both the longitudinal and the 

transverse ones, were measured by means of strain gages. 

The measurements proceeded under displacement control. The coupons were 

pulled to a certain small displacement (equivalent to approximately 2% strain) and then 

kept at that load for 5 minutes, after which all load was released. This was performed at 

three different (ramp) loading rates, a fast (0.2 in/s), a slow (0.002 in/s) and a medium 

one (0.02 inls), shown in Figure 3.2.1. 
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It is clear from the graphs that there is a small drop in the stress and the strain 

values after the displacement stops. This drop was observed in both the strain and in the . 

load and because it occurs in a relatively short time, the argument is close at hand that 

this drop is due to slippage in the grips. After that first moment the value remains fairly 

constant and no relaxation is apparent in this timeframe (Figure 3.2.2). For the time scale 

of our experiments (in the order of an hour) we can consider the material as relatively 

insensitive in its time dependence. More work is indicated to establish whether this 

assessment holds when one considers longer laboratory tests of around one hour or 

structures that are to be in service for years . 
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Figure 3.2.2 Log-log plot of the quotient of the results of Figures 3.2.1 for the portion of fixed 
displacement. 
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The engineering constants measured in this way are collected in Table 3.2.1. Once 

again, no systematic variation is observed for the different loading rates and the 

differences can be said to be statistical. For the remainder of this work the average 

properties will be used. They provide values close to those calculated in the previous 

section. To measure G 12 would have been quite more complicated. Therefore, and since 

the other values fall very close to their calculated counterparts, we decided to use the 

theoretical value for this constant. 

Table 3.2.1 Measured Engineering Constants 
for the Laminate (all in msi) 

Load rate (in/s) 

0.2 11.26 5.48 

0.02 11.48 5.81 

0.002 11.2 7 5.76 

Average values 11.34 5.68 

0.48 

0.45 

0.49 

0.47 
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3-3 NUMERICAL SIMULATION AND LOAD-DISPLACEMENT BEHAVIOR 

The engineering constants obtained in the previous two sections were used as input for 

the numerical simulations with the commercially available finite element program 

ABAQUS. These served several purposes. They helped to 

1. "validate" the experimental results, 

11. to determine the compliance of our loading system (MTS machine and 

loading fixture )-this will be explained in more detail in subsequent 

sections, 

111. to obtain values of the J integral that could possibly be used as a 

normalizing parameter, 

IV. to assess the effect of the change of angle in the wedge of the fixture, and 

v. to determine the strains along the fiber directions *. 

Figure 3.3.1 Schematic diagram of finite element model of one of the panels in 
the deformed configuration (displacements exaggerated ~ 2Sx) . 

• this information can be compared to the strain fields obtained through the digital image correlation 
method and can also serve as input for a possible failure criterion. 
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The simulation utilized quadratic, reduced integration elements and included 

contact between the panel and the base and the loading pins, both of which were modeled 

as rigid analytical surfaces. Linearly elastic behavior, under plane stress conditions was 

prescribed. The boundary conditions imposed were zero displacement in the out-of-plane 

direction and concentrated loads at the reference points of the rigid pins. The 

concentrated loads, simulating the force produced by the wedge surfaces, had x and y 

components corresponding to a normal action of the wedge on the pins, i.e. , Px = 

PytanBl2, where Px is the horizontal opening load and Bis the wedge angle. 

The same analysis was performed on isotropic and on anisotropic panels. The 

load-displacement curves of the former behaved exactly as predicted by Equation 3.3 .1. 

On the contrary, the anisotropic specimens, showed a slight size dependence which, 

because of its small magnitude, can be considered a second order effect. Figure 3.3.2 

shows the load-displacement curves for the three sizes of panels (6 x 6", 12 x 12" and 18 

x 18") and the two layups (parallel and perpendicular, as defined in previous sections). 

The load is the opening load and the displacement is the pin center displacement, i.e., 

both are the components in the 1 or horizontal direction in our setting. 
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Figure 3.3.2 Load-displacement curves at the center of the pins for the three sizes of panels and for 
the two layups. On the top, the graph corresponds to the "perpendicular" panels (Le.,those for which 
EI is perpendicular to the crack) whereas that at the bottom refers to the "parallel" panels. 
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One may draw the following information from Figure 3.3.2. First, as would have 

been expected, the "perpendicular" panels are stiffer than the "parallel" ones. This is due 

to the fact the former contain three times as many layers with the fibers oriented at 90° to 

the crack and, in that sense, could be said to oppose the separation of the pins. Second, 

the lines for the different panels do not all coincide as is the case for the compact tension 

specimen made of a homogeneous, isotropic, linearly elastic material according to ASTM 

Standard E-399-72. The latter may be deduced from the equation given by Tada (Tada et 

aI2000): 

!.- (1 + a / b)2 [2.1630 + 12.219{a / b) _ 20.065{a / b)2 
E' 1 - a / b 

-0.9925{a / bY' + 20.609{a / bt - 9.9314{a / bY], 

(3.3.1) 

where 5 is the pin displacement, P is the load opening, E' is the elastic constant (£ for 

plane stress and £/ (1- V) for plane strain) and a and b are the dimensions of the panel as 

shown in Figure 3.3.3. 

1.25 x b 

b 

1.2 x b 

Figure 3.3.3 Standard geometry of the compact tension specimen (ASTM Standard E-399-72). 
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Since the ratio alb was kept constant for all the panels in the present investigation, 

equation 3.3.1 then becomes, 

i2 p 
E' 

(3.3.2) . 

i.e., the displacement is equal to the load times a constant (CIE ') 

As mentioned before, the size dependence is not evident to identify in the results 

plotted in Figures 3.3.2 since the differences are small but a trend is observed, small but 

clear: the stiffness decreases with the dimension of the panel. The response of the small 

panels presents an anomaly, which is due to the fact that the tests with those panels were 

conducted using the wider wedge (44°) as opposed to that used for the medium and large 

panels (20°). The net effect of a less shallow wedge is that the vertical force component is 

increased which pushes the bottom of the plate flat against the fixture, thus creating a 

stiffer structure. To verify this assumption, a simulation was executed for the 

medium/perpendicUlar panel but now with a 44° wedge. The results were compared to 

those of the previous simulations and, in effect, the new structure ended up being stiffer 

than for a 44° wedge angle (Figure 3.3.4). Later on it will be noted that these effects were 

also observed in the experiments. This justifies the use of a correction factor that would 

bring the two lines of Figure 3.3.4 into alignment. It was calculated and the value was 

found to be 1.12. 
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A very important parameter in fracture mechanics of brittle, homogeneous 

materials is the stress intensity factor (K" K II, Kill) since it is the value that controls the 

stress distribution in the plate. It is a function of the loads and of the geometry of the 

crack and of the body. For a compact tension specimen made of an isotropic, 

homogeneous, linearly elastic material K, is given by (Tada et aI., 2000): 

K , = 0" N..Jb - a[0 .443 + 2.32{a / b) 

-6.66{a / b)2 + 7.36{a / b r - 2.8{a / b t], 
(3.3.3) 

where O"/'; is the far field stress. The value of K, (or KII) at the initiation of fracture is 

considered t6 be a material property. 

Unfortunately, for anisotropic materials the stress distribution (in a singular stress 

field) is not controlled by K, (or KII) only, but also by functions of the anisotropic 

material properties and the orientation of the crack relative to the principal material 
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directions (Wu, 1967) and in some cases the opening and skew-symmetric openmg 

modes are not uncoupled as is the case for homogeneous materials. At any rate, the 

calculation of these new parameters would be more complicated and commercial finite 

element analysis programs like ABAQUS do not possess the capability for calculating 

them for anisotropic materials. For that reason we resorted to the calculation of the J 

integral , which can be considered as a general representation of the energy release rate 

and can be readily evaluated with ABAQUS. It should be remembered that for an 

isotropic, homogeneous, linearly elastic material , the stress intensity factor and J are 

related by 

J (3.3.4) 

In subsequent sections the values of the J integral will be used for normalizing purposes 

and they will also prove useful in our effort to find a failure criterion and in the reduction 

of the data on the growth of the damage area. 
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In Figure 3.3.5 it can be observed that the orientation of the crack within the 

panels has no effect on the J integral because for each size the two curves practically 

coincide. As for the homogeneous case, the value of the J integral scales linearly with the 

size of the panels *. This fact is the basis for using J as a normalizing parameter. 

• J is proportional to K/ which (from Equation 3.3 .3) is proportional to the square root ofa linear 
dimension of the compact tension specimen. 
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3-4 EXPERIMENTAL LOAD-DISPLACEMENT CURVES 

The raw measured load-displacement curves differed by a small amount from the 

computed ones. This was due the fact that the compliance of the loading system (the 

MTS machine and more impOliantly, the fixture) had not been taken into account in the 

computations. To quantify this contribution, a dummy aluminum specimen (12 x 12") 

was tested in the load fixture and simulated with ABAQUS; the resulting load-

displacement curves were compared (Figure 3.4.1). The planar geometry was the same as 

that of a medium sized composite panel with the only difference being the thickness, 

which was chosen to provide a stiffness similar to that of the composite panels. Some 

iterative finite element simulations were performed to find that thickness, which turned 

out to be a convenient value (0.125") because in that way a standard aluminum plate 

could be used and no costly extra machining was needed. 
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Figure 3.4.1 shows the computed curve along with two others. One of the latter 

corresponds to the pin opening measured directly with calipers on the deforming 

specimen. The other one represents the pin opening calculated from the crosshead 

displacement of the MTS machine, which was the primary method employed to obtain 

the load-displacement curves for all the tests. It can be seen that there is a nearly perfect 

agreement between the computation and the caliper measurements up to the point where 

damage appears after which the linear elastic assumption is no longer valid. It can also be 

observed that the two experimental curves (caliper measurements vs. crosshead motion) 

differ by a constant, multiplicative factor of 1.2. Once this factor was applied to the 

experimental data, good agreement was achieved with the numerical curves up to the 

point where the material starts to degrade; this can be seen in the following graphs. In 

them, the experimental results appear together with the finite element analysis curves. 
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Figure 3.4.2 Load-displacement curves for the Large panels (experimental). The 
straight lines represent the numerical analysis of the unbroken specimens. 
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Figures 3.4.2, 3.4.3 and 3.4.4 suggest there is a scaling parameter that links the 

three graphs and it turns out to be the square root of the panel length. The large panels are 

1.S times as big as the medium ones, which in turn are twice as big as the small ones .. 

Scaling-both the load and the displacement-for the three sizes of panels with respect 

to the medium-sized ones (dividing the load and the displacement values of the large 

panels by the square root of 1.S and multiplying the small ones times square root of 2) the 

data can be reduced as in Figure 3.4.3 (here only the experimental data is displayed and 

not the calculations). It is surprising how well the data scales with size, even in the 

damage region where one would not expect as much, due to the statistical nature of the 

failure process. 
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and divided by 1.5112 (the size scale parameters) for the Small and Large panels, respectively. 
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3-5 DAMAGE INITIATION 

Throughout the experiment it was observed that damage always started in the inner 

layers of the cracked plate as lamina cracks extending along the fiber respective 

directions, with no sign being apparent on the exterior. This is significant because it 

indicates that for these two layups at least, the delamination was a consequence of the 

redistribution of stresses after some in-plane failure of one or several laminae 

occurred-at least in the first instance. There is no indication that failure was locally 

connected to out-of-plane stresses which are important within a boundary layer on the 

order of the laminate thickness. Thus it turns out that edge effect correction was not 

needed here because clearly the in-plane transverse and shear stresses dominate the 

failure initiation. The other reason why this first statement is very important is because it 

has become a common practice to rely on visual inspections of composite material 

components and, as it will be shown, at least in the presence of cutouts, there can exist 

some significant damage while the exterior looks intact (Figure 3.5.1) 

Figure 3.5.1 The image on the left shows the surface of the material with the splatter 
pattern used for the digital image correlation. No damage is apparent on the outside 
but the x-ray image of the crack tip shows that some lamina cracks have developed 
(the dark regions). 
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Figure 3.5.1 is typical of the damage initiation for the Perpendicular panels. In all 

the tests of this type of specimens, be it for the Small, Medium or Large ones, the first 

damage to appear had always this star shape: cracks extending along the direction of the 

fibers in the different layers with neither any apparent delamination nor fiber breakage. 

Delamination and fiber breakage would come later in the loading cycle, once the stress 

distribution had been affected by this early damage. A similar failure initiation pattern 

was observed for the Parallel panels with the exception that there was no damage along 

the ± 45° on the crack side (Figure 3.5.2) which could be explained by the fact that the 

panel is more compliant in that orientation relative to the crack. This aspect will be 

explored in more depth when we analyze the differences in the strain distributions for 

the two panels. 

Figure 3.5.2 Initiation of damage in the Parallel panels. Notice that there are no 
cracks running along the ± 45° directions on the notch side. This was observed in all 
the tests of this panel type. 

' Thus, the damage always started as cracks propagating in the matrix following the fiber 

directions. More work is needed to determine whether what fails is the matrix or the 

fiber-matrix bond, something which was beyond the scope of this study. Only a limited 

exploration of this issue is provided through the following SEM images. They all 
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proceed from a layer that peeled off by delamination, but it is possible that the 

mechanism is the same as that which extends the lamina cracks in the interior of the 

material; after all, the weakest link is that which fails first and the objective is to 

determine whether separation occurs through the matrix or at the fiber-matrix interface. 

Only delaminated material was available for examining this issue because the specimens 

could not be disconnected from the MTS for SEM dissection; there was insufficient 

material to conduct the experiment in this manner. Figure 3.5.4 shows a detail at a 

higher magnification. The fibers appear very clearly, almost as if the matrix material had 

been cleaned off or removed. 

tOOJlill 250X 

Figure 3.5.3 SEM photograph of a layer that peeled off the panel after delamination. 
It would appear that the material failed at the interface between the fibers and the 
matrix. 



8Jlm 3000X 
Fig 3.5.4 Detail of delaminated region. Notice how, at least in this region, 
the fibers are almost stripped of all matrix material. 
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Since the objective of this study was concerned with the more global rather than 

micromechanics aspects, this line of detailed investigation was not pursued further. The 

dominant fact remains that failure starts in the laminae, parallel to the fibers. To assess 

whether the initial "star-shaped" fracture could be estimated from an intra-lamina strain 

distribution recourse was taken to the analytical (numerical) evaluation for the strain 

field in the crack tip region. The specific question raised is then as to whether the 

strain(s) in the ± 45°, 0° and 90° layers reached critical (conbinations of) strains some 

distance from the common crack tip. Presumably cracking would occur at least between 

such a location and the common crack tip. In this way a measure of (initial) damage 

extent might be established. The strain components that appear to be relevant for this 

problem are the shear and the transverse (in the fiber frame of reference for each ply); 

the extensional strain would play an important role only if fiber cracking was observed 

or fiber microbuckling (for the compression case) but neither phenomenon was observed 
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in the tests. Once again, fiber cracking -and micro buckling for the delamination, most 

likely-appear later in the failure process, following this initial damage evolution. When 

the fibers do crack they do it in a brittle fashion as illustrated in Figure 3.5.5. 

80JLOl 300X 

IJLm 15000X 

Figure 3.5.5 SEM photograph of the edge of a ply that delaminated and where fiber 
breakage occurred. It is clear that fibers break in brittle fashion. Also, some fiber 
pull out is evident. 



68 

To understand the diference in the behavior of failure initiation between the two 

layups let us thus tum our attention to the strain profiles around the crack tip, calculated 

numerically. 
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Figure 3.5.6 Analysis for a Large Parallel panel with an opening load of 3,502 lb. On the top, an 
x-ray image of the internal damage. The bottom graphs show the numerically calculated strain 
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Figure 3.5.7 Crack tip strain distribution (numerical) for a Large 
Perpendicular panel with an opening load of 5,094 lb. On the left, 
x-ray image of internal damage. 

From these plots it is now evident why the Parallel panels do not show cracks 

along the ± 135° rays. For the Parallel panels, the strain there is compressive, whereas for 

the Perpendicular panels. it is tensile, which, coupled with the shear strain (of the same 

order of magnitude) produces the failure . The ultimate strain values of the material, for a 

unidirectional lamina, are also plotted on the previous graphs and it can be observed, in 

accordance with what has already been mentioned a few pages before, that the cracks on 

the x-ray images are longer than what a maximum strain criterion would have predicted 

(i.e. , that the material would have failed when any of the strain components would have 

reached the measured ultimate strains). Thus it a simple application of a maximum strain 

criterion for laminates is inadequate, and it is clear that a more elaborate failure criterion 

is needed. 
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A criterion that incorporates the coupling of different components of strain is the 

Tsai-Hill criterion, presented in the previous chapter. This criterion is widely popular and 

has been utilized as the basis of computational efforts to model the damage progression in 

composites. It was originally formulated in terms of stress, and, its strain counterpart is 

(3.5.1) 

This is a criterion that has the same general form of von Mises' yield criterion but 

the physical basis to applying it to composite materials is somewhat elusive. It is 

immediately obvious from our experiments that this criterion includes some tenns that do 

not appear to have any effect on the cross-ply failure process, namely, the extensional 

contribution in the 1 direction. &22 and &/2 can interact-and our calculations show that 

they do interact-to extend the cracks but there is no reason to believe that ell would play 

any significant role, except in the case of fiber damage (breakage or microbuckling - if in 

compression), which did not occur in any of these tests. Therefore the criterion- any 

criterion-cannot be applied without first reflecting on the nature of the strains in the 

structure. 

The application of the Tsai-Hill criterion to the strain fields around the laminate 

crack tip should predict the length of the new cracks emanating from it. Figure 3.5.8 

shows the evaluation of the Equation (3.5.1) along the fiber direction for the four ply 

orientations of the laminates. Figure 3.5.9 shows a comparison of the "predicted" values 

with the measured ones from the x-ray examination. It is clear that the Tsai-Hill criterion 

underestimates the extension of the new ply cracks by a factor of 3 to 4. The values are 

compiled in Table 3.5.1. 
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Table 3.5.1 Comparison between the crack lengths predicted by the Tsai-Hill 
criterion and the actual experimental measurements, a long the 0, 45, 90 and 1350 

directions. 

Tsai-Hill Measured 

0° 45° 90° 135° 0° 45° 90° 

Large 
0.078 0.087 0.075 0.067 0.200 0.383 0.33 Parallel 

Large 
0.083 0.088 0.087 0.086 0.160 0.131 0.162 

Perpendicular 

Medium 
0.078 0.087 0.075 0.067 0.130 0.315 0.260 Parallel 

Medium 
0.086 0. 124 0.089 0.088 0.235 0.265 0.177 

Perpendicular 

Small 
0.051 0.075 0.042 0.039 0.196 0.401 0.212 Parallel 

Small 
0.044 0.058 0.044 0.044 0.220 0.170 0.187 Perpendicular 
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135° 

0.000 

0.193 

0.000 

0.249 

0.000 

0.204 

Alternatively, one can measure the length of the first damage/ply crack to appear 

in the x-ray images and assume that those ply cracks were originated because at some 

point along their length , the ultimate properties of the material were exceeded. That 

produced a precursor crack that changes the original strain distribution and thus produces 

further damage. The values of the strains coo and &'·0 in an unbroken panel, calculated 

numerically, at the locations of the new ply crack tips can be compared to the ultimate 

values for the lamina and some limits can be deduced. The following figures present that 

information; first , for the whole set of panels (both layups and the three sizes), and then 

one plot for each layup. 
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Figure 3.5.10 Normalized failure plot of strains-calculated 
numerically for unbroken panels-at lengths equivalent to the ply 
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73 

Several interesting results are contained in Figure 3.5.10. The strains at the 

locations of the new crack tips are smaller than the expected values of liod' and &'·d'. An 

explanation is that somewhere between those points and the global crack tip the material 

limits are exceeded and ply cracks are formed. Once this happens, the whole strain 

distribution is changed and the values are raised because of the new crack tips, producing 

new asymptotic fields around them. These, in turn, produce strains that exceed the 

material limits and, in that way, the length of the measured lamina cracks is reached. Of 

course that one also deals with possible pre-existent flaws and with the constraining 

effect of the adjacent-and normally unbroken- layers. This last fact can explain the 
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difference in behavior between the Parallel and the Perpendicular panels, evident in Fig. 

3.5.11. We note also that no systematic influence of the panel size is evident. 
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Figure 3.5.11 Normalized plots of strains at ply failure for 
Perpendicular panels (left) and Parallel panels (right). 

Therefore, a conclusion resulting from this examination of initial crack size is that 

a simplistic application of the Tsai-Hill or equivalent criteria to the strain fields 

calculated on an unbroken panel will predict cracks 3 to 4 times shorter than what 

experiments show. This points out the uncertainty existing on failure initiation 

determination. On the other hand, these first ply cracks propagate but not 

catastrophically. In fact , they stop and much of the load bearing capacity of the panel 

remains intact. For all the tests, the load level at which these first cracks were formed was 

55.48 ± 9.45%. It is true that the spread is large but one should not forget that failure is 

statistical in nature and, second, our sample was very limited. Appendix A contains the 

complete collection of the numerically calculated strain distributions for each of the test 

panels together with the corresponding x-ray image. 
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3-6 DAMAGE PROGRESSION 

In the previous section, the initiation of crack propagation was addressed. It was 

recognized that on all occasions these cracks started propagating within their respective 

laminae, along the direction of the fibers of that ply. As this happens, the states of stress 

and strain in the panel become complicated as interlaminar shear stresses change and new 

damage is introduced. Much of that new damage may be in the form of delamination, 

fiber breakage and intralaminar damage in the same fashion as the initial cracks or a 
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Figure 3.6.1 Opening load vs. pin displacement for four different tests on Large panels (18" x 

18"). The straight lines represent the computed panel responses. 

combination of all these modes. The process of failure thus continues until no load 

bearing capacity is left in the structure. Our tests were designed to prevent unstable crack 
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propagation (perfonned under displacement control), but from the load displacement 

curves one can identify certain salient features that assist in understanding the damage 

propagation process. For illustration purposes we use the P-S curve for the four large . 

panels (Figure 3.6.1) which represents also the response of the other two panel sizes. 

First, the relation is linear up to the appearance of the first damage. In the last 

section it was found that this first damage occurred close to 50% of the peak load. The 

peak load is another characteristic to be noted and this maximum load does not occur 

immediately before the largest drop in load. This significant load drop should correspond 

to the largest growth of damage, including delamination and additional intralaminar 

cracks. Thurs, in tenns of the load-displacement curves the failure process can be 

described as follows: 

i) The opening load and pin displacement increase linearly up to a certain 

threshold (approx O.5PIllQx) when the first damage appears and the load drops 

slightly (3.74 ± 2.53 % for all the tests). 

ii) After this initial damage, and accompanied by similarly discrete damage 

accumulations, the load increases until the peak load, which is immediately 

followed by a drop in load larger than the previous ones (13.53 ± 6.95 % for 

all the tests). It is important to note that, in general , this critical point did not 

correspond to the maximum single load drop reached in the test. We 

conjecture that under load control unstable crack propagation would follow. 

iii) After the first major drop in the load, and with further separation of the pins, 

the load also increases incrementally, accompanied by minor drops 

corresponding to further small scale failure (some matrix cracking, small 
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delamination, etc.). This process continues until a critical point is reached 

which, in general, is followed by another major drop in the load 

measurement (22.31 ± 7.33 % for all tests). This drop is not the largest in 

magnitude observed throughout the test; as it proceeds the load builds up 

again but never reaches the maximum again, though larger or more 

extensive failures take place as evidenced by pronounced load drops until 

the panel has lost its load bearing capability. 

Runaway Delamination 

We turn next to the analysis of the physical process that produces the behavior 

described above. Under superficial examination, the two layups exhibit noticeably 

different responses. This results from the orientation of the surface layers relative to the 

crack. For the Perpendicular panels, the outer layer runs parallel to crack and the opposite 

is the case for the Parallel ones. One first notes that in the Parallel panels the outer layer 

develops delaminations that reach the panel ' s edge, regardless of its size. Thus, whole 

strips would peel off from the Small , Medium or Large panels (Figure 3.6.2). As the test 

proceeded, more "strips" of the outer layers were shed off. One possible mechanism 

influencing the response of these layers is their buckling propensity under the generally 

compressive strains in the regions to either side of the crack ligament of the layer. Being 

this layer on a stress free surface, it is less constrained against out-of-plane displacement 

as the interior plies. 



Figure 3.6.2 Delamination in one of the Parallel panels; to the left the strip has 
completely dropped off, while on the right of the crack tip the layer has not yet 
detached completely. 
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This "runaway" delamination of the outer layer is not observed in the case of the 

Perpendicular panels and would occur repeatedly as the global crack grew. By the end of 

the test, the specimen would look like the two samples shown in Figure 3.6.3. As the 

global crack advances, it carries a stress distribution along that, even though is not the 

same as that of the original sharp crack, it produces incrementally the same effect of 

delaminating the outside layer. This observation of shedding the surface layer is a 

significant result with regard to the reinforcement of plates or panels by stiffeners. If the 

attachment layer is shed off by delamination, the effect of any stiffener is lost. Because 

this delamination is not a localized effect but rather extends far away, the implication for 

, reinforced structures is serious. Clearly, more work will be needed to address this issue in 

more detail ; to understand its mechanism and to measure the extension of the area 

affected by it. The question arises immediately, for example, whether the thickness of the 
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reinforcement could be used to minimize the possibility of the microbuckling of the layer 

and thus, to increase its peel resistance. 

Figure 3.6.3 Views of two different Parallel panels after completion of the test. Note that the 
delamination in the form ofthin strips extends all the way to the edge of the panels (runaway 
delamination). 

In this case of the Perpendicular panels, the outer layer is parallel to the direction 

or the original sharp crack. For this layup there is no delamination of the external layers. 

Moreover, the inner plies with a 90° orientation did not delaminate either. Using the same 

argument as before, one can say that the surrounding layers prevented their buckling off. 
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On the other hand, since all the layers inside the panel, which are not ± 45°, are precisely 

90°, a great amount of the inner damage includes fiber cracking. This will be clearer 

when we discuss the x-ray examinations. On the outside, the damage of the Perpendicular 

panels is typified in Figure 3.6.4. 

Figure 3.6.4 These images correspond to two different Perpendicular specimens. Note how 
the exterior damage is more confined than that of the Parallel panels since no long range 
delamination is present. 

Let us tum our attention to the sequence of events in the interior of the panel. We 

first analyze each layup separately, and then compare the results. 
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The Perpendicular Panels 

It is useful at this point to recall the layup of the specimens, i.e. , [902, +452, O2, -

452, O2, +452, O2, -452] s. We obtained the two different sets of panels by having the 

precursor notches (the global crack) cut along the zero direction or perpendicular to it. 

Thus, the panels consist mostly of ± 45° laminae (half of the plies have this orientation). 

The remainder is constituted as follows : 3/8 are 0° for the "Parallel" type or 90° for the 

"Perpendicular" one, and 118 of the layers (on the two external surfaces) in the direction 

at right angles to it. 

From a global point of view, one can see in Figure 3.6.5 that the damage is 

bounded by the ± 45° rays originating at the crack tip while the rest of the panel seems 

roughly intact. One observes also that the damage is not symmetric with respect to the 

global crack in that the damage extends more on "the right-hand side." Figure 3.6.5 is 

representative for all the Perpendicular panels, regardless of their dimensions. The reader 

is referred to Appendix C where all the x-ray images are collected and printed to their 

true scale. 

All the images in Figure 3.6.5 have the same scale and are labeled with the load 

level that was reached before the x-ray image was recorded. That is, the panels were 

loaded monotonically until a failure event occurred- the load drops that appear in Figure 

3.6.1 - and at that moment the displacement of the loading fixture was stopped and held 

at that state when the x-ray images and the photographs for DIC were recorded. After this 

the increase in load was resumed. 
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Figure 3.6.5 A sequence of x-ray images following the damage progression in a Large Perpendicular 
panel. The specimen was loaded to the indicated level where it underwent some stable "crack 
extension." The loading fixture was held at that opening displacement while the x-ray images and the 
photographs for Die were recorded and then the load increase was resumed. 
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Figure 3.6.5 Col11il1ued. 
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From the Figures it is clear that trying to describe-much less model-the 

fracture processes taking place inside the "damage" region is a formidable task. On the 

one hand, it is beyond our current computational or analysis capabilities to describe this 

damage and, on the other hand, such a description does not seem to be altogether useful 

for engineering design purposes. What is significant is, that there is an area of damage 

possessing a relatively simple geometry that could lead to an approach to the fracture 

analysis of composites in a way analogous to Irwin 's plasticity correction of linearly 

elastic fracture descriptions. 

The Parallel Panels 

Comparison of Figures 3.6.5 and 3.6.6 shows the exact same behavior, namely the 

development of the damage region bounded by cracks in the 45° and 0° layers and 

roughly with the same length, except for the delamination of the outer layer. If one were 

to ignore the horizontal swaths of Figure 3.6.6, the two layups would be 

undistinguishable from the global point of view. On the other hand, a detailed analysis of 

the damage region would show that what in one set of panels is fiber breakage 

corresponds to matrix cracking in the other. This is the reason why the Parallel panels are 

more compliant than their counterparts, even though the effect is mitigated by the stress 

redistribution enforced by the large amount of ± 45° plies. 
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Figure 3.6.6 A sequence of x-ray images following the damage progression in a Large Parallel panel. 
The specimen was loaded to the indicated after which it underwent some stable " crack extension" . 
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Figure 3.6.6 Continued 
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Therefore, the previous results suggest that the panel response, from a global 

point of view, could be modeled with a correction analogous to Irwin's. This thesis will 

be explored further in the following section. For the Parallel panels, it could be argued 

that the loss of the outer layers is a second order effect because they are so thin with 

respect to the laminate thickness and, furthermore, the load bearing capacity in that 

direction is not affected significantly because of the presence of the ± 45° plies. In that 

sense, one could replace the real panel with an equivalent one as shown in Figure 3.6.7. 

Obviously, a constitutive relation has to be developed for the damage region but that 

exceeds the scope of the present work, at the same time opening new avenues for 

research in composite materials. 
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Figure 3.6.7 Schematic description of the damage or process region ahead of the global 
crack. An approach analogous to Irwin's correction for plasticity may be possible. The real 
damage seems to favor the development of .iust one of the two right triangles due to 
instabilities inherent in the damage progression. 
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An examination of the x-ray images of all the tests shows that qualitatively there 

is no difference in the damage region between the different sizes of panels or between the 

two different layups, with the exception of what has already been said of the outer layer 

delamination of the Parallel panels. 

One of the tests of a Large Perpendicular panel provides an interesting result. In 

that case the damage region grew in the fashion that we have described previously 

(Figure 3.6.7) but only up to a certain width (0.8" to 1") and from that point on, it 

appeared to stop extending in the direction lateral to the global crackand only advanced 

with the global crack extension retaining essentialy the same width (Figure 3.6.8). 
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Figure 3.6.8 Continuous growth in a Large Perpendicular panel. Observe how the damage region 
first grows until it reaches a certain width (-0.8" from the center of the panel) which remains 
essentialy constant as measured lateral to the latter, trailing the advancing global crack but does not 
expand horizontally. 
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Figure 3.6.8 Contillued 
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This result is interesting because it indicates a finite damage extent that is at least 

insensitive to, if not independet of, the crack size. Whether this idea can be sustained for 

still larger panels, and, specifically for full sized (e.g. fuselage) structures needs further 

evaluation. However, so much is clear that if a bound on the damage zone exists 

independently of the size of the structure, then the energy consumption by the failure 

process is correspondingly limited also; an unstable fracture process is thus more easily 

generated than for a situation in which the energy expenditure increases in some 

proportion to the crack size. Figure 3.6.8 corresponds to one of the Large Perpendicular 

panels in which one might expect to be able to observe this phenomenon. At the same 

time, it must be stated that this well defined and bounded wake was not observed in the 

other test (c.f. Large Perpendicular panels in Appendix C). Clearly, further tests need to 

be performed to confirm or deny this concept more unambigously. 
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3-7 DAMAGE AREA CONCEPT 

The results of the previous section show that the bulk of the damage is contained in a 

roughly triangular region bounded by the ply-cracks extending in the 00 and one of the ± 

45 0
• In the current section, the extension of this "process" region is measured as a 

function of the pin displacement. 

The length of lamina cracks along the 00 line and along the ± 450 orientation were 

measured. Because of the triangular shape of the "damage region," its area can be readily 

calculated. Its magnitude was then plotted against the displacement of the loading pins 

• .. ' 
.' 

....... . .. .... . SITEII Parallel .. ' : ., ......• 9 SITEIl Perpendicular 
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Figure 3.7.1 Log-log plot of measured damaged area as a function of 
pin displacement for all panels using the triangle method 

scaled for panel size with respect to the medium sized panels: the displacement values of 

the Large panels were divided by the square root of 1.5, while those of the Small panels 
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were multiplied by the square root of 2, which will be recalled to be the geometric size 

proportion. The results for all the panels are collected in Figure 3.7.1. 

An alternative method of estimating the "process region" area consists on 

digitizing the x-ray images of the internal damage; with the aid of the computer program 

for image processing Photoshop, the darker regions in the images-representing areas of 

damage-, which have a certain value of light intensity (gray number) are replaced by 

black pixels. The images manipulated in this way are then loaded into the computer 

program Matlab where the amount of black pixels is counted. Since the density of the 

image is known, this number provides the extension of this "process region." The results 

of this analysis are shown in Fig. 3.7.2, which shows a remarkable agreement with Fig. 

3.7.1. 
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Figure 3.7.2 Log-log plot of measured damaged area as a function of pin 
displacement for all panels using the x-ray projection method. 
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Some "structure" is apparent in the growth of the damage area. First, it is evident 

that a power relation can be identified to connect the two variables. Second, as would 

have been expected, the growth of the Parallel panels' damage is possibly somewhat 

faster than that of the Perpendicular ones. Then, two equations should be obtained; one 

for each layup. Its general form is thus: 

A = Co" (3 .7.1) 

where A is the damage area, 0, the loading pin displacement, and C and q, the fitting 

parameters, whose values have been calculated and appear in table 3.7.1. 

Table 3.7.1 Calculation ofEq. 3.7.1. parameters 
for both area damage calculation methods 

Triangle Method Projection Method 

Layup c q c q 

Parallel 7,892 ± 6,283 4.49 ± 0.55 20,456 ± 12,592 5.13 ± 0.46 

Perpendicular I 86,847 ± 254,473 5.07 ± 0.92 37,003 ± 49.678 5.61 ± 0.63 

The results of both methods are consistent with each other. The exponent is of 

around 5 and, because of the spread of the data, it is impossible to conclude anything 

regarding a difference between the Parallel and the Perpendicular panels. A larger 

number of tests would be needed to explore that issue. 

In previous sections it was observed that the load-displacement curve for these 

panels, up to the initiation of fracture, was linear (Figure 3.6.1). Therefore, the 

complicated analysis of the panels once damage has begun, could be substituted by the 

linear model of the undamaged panel with a "superposed" model of the failure 
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progression containing the information of the advance or growth of the "process" area, 

provided by Equation 3.7.1 and the new constitutive law for the material in it, still to be 

developed . 

Failure Initiation Criterion Based on Damage Area Investigation 

The coupling of the damage area growth curves with the measured load-displacement 

curves can be used as a failure initiation criterion (Fig. 3.7.3 and Table 3.7.2) 
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Fig. 3.7.3 On the left, a schematic of the load-displacement response of the panels. Point i 
corresponds to the moment when the first damage appears and the specimen stops behaving 
linearly. Point c identifies the peak load reached after which it can be considered that the 
panel has lost cohesion and, therefore, the crack has propagated. Points i and c are shown on 
the pin displacement-damage area plot on the right. With this information, an equivalent 
value of the J integral from the analysis of the unbroken panels can be provided as a 
criterion of failure initiation and crack propagation. 

The load-displacement response of the unbroken panels is linear, as it has already 

been discussed, until the first ply cracks appear. From that moment on (point i in Fig. 



96 

3.7.3), the material accumulates damage until a critical point, c, is reached, after which 

the panel looses cohesion. These two moments are of great relevance for structural 

design. One can calculate their corresponding damage areas. In a sense, they can be 

considered as characteristic "flaw" sizes or, alternatively, from the analysis of the 

unbroken panels one can calculate an equivalent value of the J integral at those instances. 

That inforn1ation can be used as the critical stress intensity factor for these materials. A 

summary of the results of these calculations are contained in Table 3.7.2. 

Table 3.7.2 Values for pin displacement, opening load (both scaled) and equivalent 
damage area and J integral for damage initiation and moment of loss of cohesion for all 
the panels (refer to Fig. 3.7.3). 

u* (in) p* (lb) J (fi lb) 

Initiation 0.087 ± 0.007 4,460 ± 500 91 ± 17 0.039 ± 0.026 

Critical 0.16 ± 0.02 6,480 ± 400 308 ± 83 l.27 ± l.04 



3-8 SURFACE DEFORMATIONS-INTERNAL DAMAGE 

(DIC-X-RADIOGRAPHY) 
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In closing this chapter on the damage assessment near the tip of a growing global crack, · 

we examine the applicability or efficacy of using the measurement of the surface 

deformations or strain fields for the assessment of the internal state of the laminate. 

When discussing the failure initiation process, it was observed in previous 

sections that cracks had developed in the interior of the material in all the cases before 

any damage or change was apparent to the unaided eye. It was also mentioned how 

troublesome this was in view of the fact that it is a common practice to resort to visual 

inspection of composite material structures in the field. 

The DIC technique would seem to be an ideal candidate due to its relative 

simplicity and low cost. In what follows, we examine its application limits for this type of 

analysis. Measurements of the surface deformations using the DIC method were made 

each time an x-ray image of the interior damage was taken. The information of the two 

sources was blended into plots like that shown in Figure 3.8.1 , the full set of which is 

collected in Appendix D. 
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Figure 3.8.1 Strain fields of the outer layer calculated via digital image correlation and 
superposed on the x-ray image of the internal damage for one of the Medium Perpendicular 
panels at three different load levels. The center and right plots show regions (in white) where 
convergence of the method was not achieved. 
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These images summanze very well all the merits and limitations of the DIe 

method . It is obvious that the surface strains reveal the existence of one of the ply-cracks 

at 45°, where high strain gradients appear. This is encouraging but, at the same time, it is 

also evident that there exist other lamina-cracks that do not manifest themselves in the 

strain field . This could be due to any-or the combination-of the two following reasons : 
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1. The strain field produced by the first crack is larger than that produced 

by the others so it "overshadows" it. 

11. There are four [± 45°b layers in the laminate distributed through the 

thickness. If one of them lies just below the surface ply in view, the 

latter should be immediately influenced to show corresponding 

(inhomogeneous) strains. On the other hand, if the ply-crack occurs in 

a layer farthest away from the viewer, its effect on the strain field of 

the surface of observation would not be large enough to be detected by 

the DIC method. 

Another feature apparent in Figure 3.8.1 is that, after a certain load level, the DIC 

method does not converge. This is merely indicative of the fact that even before this load 

level was achieved, the surface ply had already cracked, and delamination had started 

which was visually identifiable (Figure 3.8.2). 

Figure 3.8.2 A photograph of the region around the crack tip (to the right, in the center) 
corresponding to the strain field and x-ray of damage at 5,412.7 Ib in Figure 3.8.1. Notice the 
crack has extended in the surface layer. The surface displays the white paint splatter pattern 
employed for the DIC 
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Having examined the surface and damage response of the Perpendicular panels, 

we tum to the behavior of the Parallel ones. In the latter specimens the external layers are 

damaged earlier than in their Perpendicular counterparts, as can be seen in Figure 3.8.3 , 

which depicts results for one of the Small Parallel panels. The region of nonconvergence 

is larger because of the delamination of the outer 90° plies. 

Thus, the DIe method has proved to be useful up to the initiation of the damage 

propagation. However, once the first cracks form, it can reveal their existence only if they 

are located close to the surface on which the digital photographs are recorded. The cracks 

farther from the surface cannot be identified by Ole. Therefore, in thick laminates, Ole 

would not be of much use but could be in thinner ones. Also, the "depth of perception" of 

this method could be increased if the DIe analysis was performed on both surfaces 

instead of only on one. Further experiments should be performed to quantify that "depth" 

and thus to better bound the limits of applicability of this technique. 
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Figure 3.8.3 Plots of the strain field of the surface ply superposed on the x-ray images of 
internal damage of a Small Parallel panel. The calculations of the DIe method encounter 
more difficulty in converging because of more extensive and earlier delamination of the 
surface ply. 
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CHAPTER 

FOUR 

CONCLUSIONS AND RECOMMENDATIONS 

A broad study of the failure process of laminated composite flat panels in the 

presence of a crack or stress concentrator was conducted, including experiments and 

numerical analyses. In the linear domain, for the load-displacement behavior, good 

con"elation was found between them. A survey of the failure criteria currently available 

was presented and some of their problems and limitations were discussed. Most of these 

criteria are strength based, which render them more complicated to use from an 

engineering perspective because a precise prediction of the state of stress at every point 

of the laminate has to be provided. Besides, the great majority of these criteria have been 

developed for unidirectional composites, hardly encountered in real world applications. 

Therefore, for laminates, one is left with some recursive procedures like that illustrated in 

Section 1-5 that can only be as good as the ply failure criterion employed as a basis. 

Another problem adhering to many of these criteria is that they lack a solid physical 

grounding and are basically "curve fitting" procedures of, sometimes, totally unrelated 

failure mechanisms like fiber cracking under tension and ply delamination. 

For these reasons we attempted to explore a failure initiation criterion based on 

ultimate lamina strains rather than strengths because, up to point of failure initiation, the 

panel can be well analyzed by using classical lamination theory, as long as the strains 

and deformations are uniform throughout the thickness of the plate. With the thin plate 
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approximation one can determine the strains and use them as input to a strain-based 

failure criterion. Two "popular" criteria were examined and compared with the 

experimental results, namely the maximum strain and the Tsai-Hill criteria. These two 

criteria have been incorporated in a number of finite element analysis commercial 

programs and are used in industry for design with composites. 

The analysis of the initiation of damage in the panels showed the inadequacy of 

both criteria. The problem with the maximum strain criterion is that it does not take into 

account the interaction of the different strain components. The experiments showed that 

the failure starts with the formation of new cracks in various laminae along the fiber 

directions, so that the tensile or compressive strains along the fiber direction for each ply 

did not playa (significant) role (contrary to what the Tsai-Hill criterion implies) and 

neither do the out-of-plane" strains. But there is definitely an interaction of the shear and 

the fiber-transverse strains. We discovered that the first damage appears roughly around 

50% of the peak load achieved in the test. 

The influence of the layup in the shape of the fracture propagation was observed, 

noticing that for Perpendicular panels ply-cracks appeared with a star shape in all the 

possible orientation of the layers of the laminate whereas for the Parallel panels no cracks 

were formed in the ± 135° layers. The strain analysis showed that in this particular layup 

the transverse strain component was compressive along those rays while in all the other 

cases it was tensile coupled with shear. More work is needed to determine whether there 

is a simple relation between the two strain components that can be used as a failure 

criterion for fracture initiation. Another area for further research is to determine whether 

these first cracks develop in the matrix or in the interface fiber-matrix. Some SEM 
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photographs obtained from a delaminated panel seem to indicate that the delamination 

occurs at the interfaces. Some tests, in which the panels are destroyed, as soon as the first 

damage appears, to examine the nature of those cracks would solve this question. 

The convenience of the utilization of complementary experimental techniques to 

study a complex phenomenon like the failure of a composite material was attempted 

through coupling the surface measurement technique of digital image correlation with the 

nondestructive Evaluation method of enhanced x-radiography. The applicability and ease 

of use of the digital image correlation method for the measurement of the laminate strains 

up to fracture initiation was demonstrated. Loss of linearity was coupled with the onset of 

surface delamination and thus no surface measurement technique-by definition-will be 

applicable. It was once more corroborated that internal damage can very well exist in a 

composite material that appears completely healthy to the unaided eye. 

The DIe method can also be used to identify internal damage in a laminate but 

only under specific conditions and with some limitations that still need to be explored 

further. These conditions are basically that the damage has to occur in a layer close to the 

surface of measurement (if DIe is performed on both surfaces, this problem is slightly 

mitigated) and thus the applicability of this method would be constrained to thin 

laminates. Again, the DIe method can only be used as a damage initiation identifier and 

not to study the strains in the structure once the failure propagates-with some limited 

exceptions-because, in general, convergence is not achieved once the outer layer 

delaminates. In particular, it was observed that the panels with the outer layer 

perpendicular to the crack tip suffered "runaway" delaminations of the complete exterior 

layer (i.e., the delamination reached the edge of the paneL no matter how big the 
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specimen was), a phenomenon that was not present in the other (orthogonal) layup. This 

result is significant and should be taken into account if the structure is to be reinforced 

with "ribs" or stiffeners. On the other hand, more experiments are needed to determine 

whether this delamination is due to buckling of the layer because it is not constrained on 

the free surface. If this is the case, then the integrity of the stiffener would not be as 

compromised. 

It was shown that the time dependence inherent to viscoelastic materials (and the 

matrix is one) is not an issue for tests in at room temperatures and for a range of test 

times on the order of one hour. More research has to be conducted to assess this effect for 

structures that will be in service for years or decades. The loading rate showed no 

significant influence on the effective elastic properties (Young's moduli and Poisson's 

ratio), at least in the range of rates from 0.002 in/s to 0.2 inls; the values measured were 

essentially the same. 

The experiments showed that the fracture process can be scaled with the size of 

the specimens, i.e. , the load-displacement curves could be reduced to a single set using as 

a scaling factor the square root of the quotient of the two linear sizes of the two panels. 

This factor has to be applied to both the displacement and the load. This result is 

important because it says that the results obtained from small coupons can be applied to 

component size elements'. 

The x-ray inspection of the panels, in all cases, showed that although the damage 

appeared initially as distinct lamina-cracks in all the ply orientations (not in the ± 1350 

• It was also learned that the wedge angle used to open the crack has an influence in the load
displacement curves because a wider wedge produces more compression on the panel , effectively making it 
a stiffer structure . 
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rays for the Parallel panels), it appeared to grow in a region bound by the ± 45° plies. 

While such damage is expected to be symmetrical , the observations did not usually show 

this and the damage grew faster on one side of the global crack thus creating an effective 

"damage" or "process" area that has the shape of a triangle formed by the line of the 

global crack and the 45° line on that side of it and with its vertex at the original crack tip 

location. A mathematical relation of the size of the "process" region as a function of the 

displacement of the loading pins (and thus of the opening load) was deduced. It can be 

coupled with a constitutive law for the damaged material (with some degraded properties 

from the original) to be used in engineering design. In this wayan approach analogous to 

Irwin' s correction for the plastic zone may be feasible for design purposes. 

Finally, damage initiation and "crack" propagation criteria based on the damage 

area measurements and in the numerical calculation of equivalent values of the J integral, 

which can be considered analogous to the critical stress intensity factor. 
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Hankinson Criterion 

The study of strength theory in composite materials started in the beginning of the 

twentieth century. In 1921, Hankinson proposed the first well-known one-dimensional 

empirical formula for the off-axis uniaxial compressive strength of wood. Hankinson's 

formula expresses the compressive strength of wood in a direction inclined at an angle 0 

to the grain as 

X'Y' 
X' - ----~------~~ 

¢ - X'sin2 ¢ + Y'cos 2 ¢ ' 
CA.1) 

where X' and Y' have been defined in Equation CA.!). He noted that this formula applies 

both to the fiber stress at elastic limit in compression, and also to the ultimate strength in 

compression. Investigators have shown that this formula is quite accurate for several 

different species of wood. 

Malmeister Criterion 

Malmeister C 1966) suggested a general form of strength criterion in the following: 

P aO'a + P afJO'aO'fJ + P afJyO"aO'fJO'y + ... = 1. CA.2) 

where P a, P afJ and P afJy are strength tensors of the second, fourth and sixth rank, 

respectively. In strain space, Equation CA.2) becomes 

e aCa + e afJcacfJ + e afJyCacfJCy + ... = 1, CA.3) 

where all the terms with e are tensors of the ultimate strain surface. 



109 

Gol'denblat-Kopnov Criterion 

Gol'denblat and Kopnov (1966) assumed that the strength of fiber-reinforced composites 

can be predicted by the following equation: 

(AA) 

where G ik, Gpqlll l1 and Grspqlll l1 are strength tensors of the second, fourth and sixth order, 

respectively. The strength tensors in Equation (AA) satisfy the following symmetry 

conditions: 

Gpqlll l1 = Qqp ml1 QpQlll11 = Gpql1l11 QpQlll11 = QlIIl1pq (A.S) 

As the simplest criterion of this type they choose a = 1, j3 = 112 and y= - 00 such that 

(A.6) 

Ashkenazi Criterion 

Ashkenazi (1966) has proposed a senes of methods for the strength prediction of 

orthotropic materials. In one of his later works, he proposed the following criterion: 

(A.7) 

where 0'./ , 0'5 and 0'6 denote T2], T31, and T/2, respectively. In the case of a plane stress state 

Equation (A.9) can be written as 

(A.8) 

where X, Y and S are the tensile strength of a 0° laminate, the tensile strength of a 90° 

laminate and the shear strength of a 0° laminate, respectively. Note that Equation (A.8) 
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only contains quadratic terms. The tensile strengths are assumed the same as the 

compressive strengths if this equation is used to predict the strength envelope of the four 

stress quadrants in a single step. 

Hoffman Criterion 

Hoffman (1967) realized the difference in tensile and compressIve strengths for 

orthotropic composites. He modified Hill's criterion, Equation (1.5.4), by adding linear 

terms as shown in the following: 

(A.9) 

where C, through C9 are strength parameters that have to be determined experimentally. 

Under plane stress condition, CJ'4 = CJ'5 = CJ'6 = 0, this criterion simplifies to 

(A. I 0) 

where the strength parameters are summarized in the following: 

x = longitudinal tensile strength of a unidirectional laminate 

X' = longitudinal compressive strength of a unidirectional laminate 

Y = transverse tensile strength of a unidirectional laminate 

Y' = transverse compressive strength of a unidirectional laminate 

S = shear strength of a unidirectional laminate 

Tsai-Wu Criterion 

Tsai and Wu (1967) assumed that the strength criterion of fiber-reinforced composites 

takes the form: 



111 

(A. 1 1) 

where Fi and Fij are strength parameters that can be determined by simple uniaxial tests, 

except the interaction term Fij, i oF j. More discussions are given in the following under . 

plane stress state. Applying (Jt and -(J/ individually, and substituting into the above 

equation we obtain 

F. =_1 __ 
I X X' F;I = XX' 

(A.12) 

Similarly, from applying (J2 and -(J2 we obtain 

1 
F) = ---

- Y Y' 
F =_1_ 

21 YY' 
(A.13) 

The shear strength in principal material axes is independent of shear stress sign, thus 

1 
F 66 =-) s-

(A.14) 

The stress interaction term has to be solved using a specimen that fails under combined 

stress state. This term is nomlalized and given below: 

(A.lS) 

There are many methods that can solve this interaction term. Tsai and Wu suggested six 

methods. In order to assure that the strength surface be closed in an ellipsoidal shape, the 

following relation for the stress interaction terms must be imposed 

FF _ F 2 >0 
/I}} IJ - , (A.16) 

where repeated indices are not summations and i, j = l , ... ,6. This equation has been 

found to be a realistic condition for many composite materials. Tsai and Halm (1980) 

further showed graphically that the strength envelopes for most composite materials can 

be bounded by 
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(A.17) 

It can be shown that when F1 2 * = -0.5 this criterion reduces to Mises yield criterion. In 

strain space Equation (A. I I ) can be written as 

(A.18) 

where 

Gi = Qij~ 

G ij = QikQjsF ks (A.l9) 

and Q ij is plane stress modulus. 

This criterion can be improved to fit data better by adding a cubic term to Equation 

(A. I I), i.e. , 

F iat + F ij atOj + F ijkatOjO"k = 1, (A.20) 

where F ijk represents sixth-order strength parameters. Wu (1974) and Tennyson et al. 

(1978) showed that Equation (A.20) brings in four additional constants: FI/2. F22 I• FI 66 

and F266. These four additional constants are certainly not easy to measure. Therefore, 

although adding a cubic term to the quadratic failure criterion is a sound mathematical 

approach, it probably will not be widely used by most engineers. 

Hashin Criterion 

Hashin (1980) developed a failure criterion from the consideration of stress invariants. 

The criterion is in a quadratic form. He emphasized that the choice of quadratics is based 

on curve fitting considerations rather than physical reasoning. 

Tensile Matrix Mode /0"/ > OJ 
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(A.21) 

Compressive Fiber Mode I at < OJ 

at = -X' (A.22) 

Tensile Matrix Mode [( a2 + aJ) > OJ 

(A.23) 

Compressive Matrix Mode [( a2 + aJ) < OJ 

[ 
0 ] 1 Y' - 1 0 - (-J -1 (ao + a , ) + - ) (ao + a , )-Y' 2S

4 
_ . 4S

4 
- - . 

(A.24) 

where the indices are 1 == 11 , 2 == 22, 3 == 33, 4 == 23 , 5 == 31 and 6 == 12, as before. The 

parameters S-I and S6 (= S5) are shear strengths that have to be determined experimentally. 

For plane stress condition, all the terms with indices 3, 4, and 5 vanish. Hashin's criterion 

assumes that there is no stress interaction between at and a2 stress components, as well 

as at and aJ terms. Therefore, it reduces to the maximum stress criterion in the 

a t - a2space. The interaction coefficients for a2 and aJ stress components are different 

for tensile matrix mode and compressive matrix mode. However, they are given as basic 

strength parameters (on-axis), and thus no additional tests are needed to determine these 

interaction coefficients. 

The most general form among all the classical failure criteria is given by Equation (A.4). 

The Tsai-Wu criterion [Equation (A.ll)] also represents a general form in which all the 
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power coefficients are set equal to unity. This criterion has a very sound mathematical 

foundation. Consequently, it has been used and further studied by many engineers and 

researchers. The main concern about this criterion is the evaluation of the stress 

interaction terms. In fact, this problem is the same for all the classical failure criteria

that the stress interaction terms have to be determined by experiment. Many investigators 

in advanced composites have reported that the stress interaction terms are very sensitive 

to the test methods used. In off-axis tension tests, this interaction term also varies 

considerably for different fiber orientations. For paperboards, Rowland et al. (1984) 

found that large variations in F, ] have relatively little effect on strength prediction in 

quadrants 2, 3, and 4. On the other hand, a little variation in F, ] produces relatively large 

changes in predicted strength in quadrant 1. For wood materials, Liu (1984) suggested 

that F, ] of the Tsai Wu criterion may be determined from Hankinson's formula. What he 

did is to express the Tsai-Wu criterion in the off-axis direction and compare it to the 

Hankinson's formula. In so doing, Liu obtained 

(A.25) 

Hill's types of failure criteria have the advantage that they only require basic strength 

parameters as input data. The stress interaction terms are expressed as a function of the 

basic strength parameters. The major drawback occurs at high shear stress levels. When 

the in-plane shear stress approaches or exceeds the pure shear strength, the strength 

envelope shrinks toward the origin of the stress axes. The prediction deviates 

significantly from the experimental data. 

When a failure criterion contains a linear and a quadratic term (such as Tsai-Wu and 

Hoffman criteria), the entire strength envelope can be predicted using a single equation. 
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If it only contains a quadratic term [such as Ashkenazi, Tsai-Hill and Chamis (1969) 

criteria] , then this strength equation with different values of strength parameters has to be 

used for each quadrant. Otherwise, the compressive strengths would have to be the same 

as the tensile strengths. The four-step procedures may result in a strength envelope that is 

not smooth. 

The accuracy of a strength criterion can be improved by at least two methods. The first is 

to use higher-order terms such as the addition of cubic tem1S for the Tsai Wu criterion. 

However, much added work is needed to solve the additional coefficients. The second 

method is to use a different value of stress interaction term for each quadrant. This 

approach has been taken by several investigators including Chamis (op. cit.) and 

Rowland et al. (op. cit.). It is a simple yet efficient method, although it may be difficult 

to prove or disprove its physical meaning. 

Tan-Cheng Criterion 

Although Hankinson's formula is a one-dimensional criterion, the fact that it has been 

widely used in the wood industry has aroused interest among researchers who attempted 

to derive that formula from a general strength theory. Recently, Tan and Cheng (1993) 

assumed that the off-axis strength of composites can be predicted using the following 

. . 
cosme senes: 

(A.26) 

where superscript 1 IS either blank (tension) or ' (compression). The number of 

coefficients (en) used for the series depends on the number of uniaxial characterization 

tests performed. For instance, if rjJ = 0°, 90° and 45° off-axis laminates are characterized 
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under compression load for the basic strength parameters, we obtain the followin g 

solution by substituting the data into Equation (A.23): 

X = + - - - (1 - cos 4¢) , I [X'sin
2

¢+Y'cOS
2

¢ 1(1 X'+Y') ]-1 
¢t X ' Y' 2 V' 2X' Y' 

(A.27) 

where V' denotes the compressive strength of a 45 ° off-axis laminate. Note that the first 

term inside the bracket is the Hankinson's formula. The Hankinson's formula can be 

obtained by using the first two terms of the series in Equation (A.26). Tan and Cheng'S 

criterion in a two-dimensional space is given in the following scalar invariant form: 

(;:]2 + (~:]2 _ [ = I all cos n~¢I- 45)l(;: ](~;] = 1 , 
¢t ¢t 11 0,2,4,... J ¢t ¢t 

(A.28) 

where Y; can be related to X~ by 

i = blank or' (A.29) 

In a three-dimensional space, this criterion becomes 

( O'x]2 + (~J2 + (0'0]2 _ [ '" '" a cos n'" cos mB ]( O'x ](~J 
X' Y ' Z ' !--? L.. 11111 'f'1 2 X ' Y ' ¢t () fJ 111 , 11 - 0 ,_ ,4 ,... ¢t () 

-[ ~?I bl/III cos n¢1 cos mfJ3](;: ](;;] 
111 , 11 - 0,_ ,4 ,... ¢t fJ 

(A.30) 

-[ ~?I CI/III cos nB2 cos mfJ3 ](i; J(;~ ] = 1, 
111 ,11-0,_,4, ... () fJ 

where Band fJ denote the off-axis angles with respect to the y- and z-axes, respectively. 

The parameters Y; and Z~ are uniaxial strengths in the y- and z-axes, respectively. 

This criterion has much operational flexibility. It has good fit to data and does not need 

shear strength properties. Good correlation between theory and experimental data for 

bones were obtained and given in Reference (Tan and Cheng, 1993) 
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Tan Criterion 

Based on the objective that a failure criterion can be applied easily to any composite 

materials with good fit , Tan (1990) developed another failure criterion. He assumed a 

general strength function, 

(A.31) 

where An, n = 0, 1, . . . , m, are strength coefficients to be determined with experimental 

data. Any uniaxial tests with on-axis or off-axis laminates can be treated as basic strength 

data. With the development of Sun-Berreth's off-axis specimen (1988), off-axis strength 

of unidirectional composites can be characterized easily and accurately. The 

unidirectional strength dara, input to this strength function, can be treated as strength 

boundary conditions. The parameters X; X', Y, and Y' are regarded as the fundamental 

strength parameters. If we only use the first two coefficients in Equation (A.31) and set 

An = 0 for n ~ 2, we will obtain the Hankinson's formula. If one additional strength data 

of ¢ = 30° laminate, U is considered, the coefficients can be obtained in 

Ao = 
X ' 

(A.32a) 

1 1 
A =---

I X ' Y ' 
(A.32b) 

(A.32c) 

where superscript i is either blank (tension) or ' (compression). Equation (A.31) with Ai 

given in Equation (A.32) can be rewritten as 
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X ' = [X ' sin
2 

¢ + Y ' cos
2 

¢ _ ~ (2 + ~ _~) sin 2 2¢]-1 
¢ x ' Y' 3 X ' Y' U ' 

(A.33) 

If four strength parameters are utilized, for instance U and W (strengths of a 0 = 30° and . 

a ¢ = 60° laminates, respectively), in addition to X and Y, the following results are 

obtained 

(A.34a) 

AI - ~(_1 ___ 1 + _1 __ 1_) 
3 X ' Y ' U ' W ' 

(A.34b) 

(A.34c) 

(A.34d) 

If N strength data are used, N coefficients can be solved from N equations. A general 

strength theory is now developed using the x-y-z system. This criterion assumes that a 

strength surface must be closed in an ellipsoidal space. If any stress vector is equal to or 

greater than the strength surface envelope, the material would fail. Mathematically, the 

failure surface is described by the following quadratic equation: 

F ;Oi + F ij OiO) = 1 i = x,y,Z. (A.35) 

which can be written more explicitly as 

(A.36) 



119 

where the strength coefficients, Fi and Fij can be expressed as functions of the uniaxial 

strength parameters. The accuracy of this general theory depends on the number of 

strength parameters used to characterize the fundamental strength function, Equation 

CA.31). If a uniaxial tensile stress, O:¥, is applied to a ¢-degree laminate, and the failure 

strength is XC/J then Equation CA.36) can be solved by substituting o:¥ = XC/J: 

CA.37) 

If compressive stress is applied for the same laminate, then Equation CA.34) can be 

solved by substituting o:¥ = -XC/J ' 

Solving Equations CA.37) and CA.38) yields 

1 

X' I/J 

CA.38) 

F rx = X X' 
I/J I/J 

CA.39) 

Note that the coefficients F¥ and Fxx of a laminate with any fiber orientation can be 

calculated using X q) and XC/J I given by Equation CA.3]). The coefficients Fy, F;)" F=, and 

F== can be solved following the same procedure and the results are 

F, 
1 

F,:l' 
] 

CAAO) = --- ---

YI/J Y' YI/J Y' I/J I/J 

and 

F 
1 F __ CAAl) = --- = 

Z I/J Z' Z I/J Z' I/J I/J 

where Y; and Z~ , i = blank or " are the respective uniaxial strengths in the y- and 

z-directions. Since fibers are on the x-y plane, Y; can be related to X~ by: 

CAA2) 
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Substituting Equation (A.42) into Equation (A.31) yields 

(A.43) 

The strengths in the z-axis can be expressed in a foml similar to Equation (A.31): 

(A.44) 

where the strength coefficients can be solved from the following conditions: 

z' - Y ' at A. = 0° ¢ - If' 

(A.45) 

and Y' has been defined before and Z (i = blank or ') denote the tens'ile and compressive 

strengths transverse to the fibers direction with fibers going out-of-plane. 

The stress interaction terms, F).), Fe and Fp in Equation (A.36) are assumed, 111 a 

general form, as 

(A.46a) 

(A.46b) 

(A.46c) 

From the consideration of biaxial strength symmetry (x -y plane) with respect to rjJ = 45 °, 

the ternl inside the bracket, I rjJ I - 45 , is assumed. The coefficients (en , Dn. En , n = 

0, 1,2, ... ) can be determined by substituting biaxial strength data into Equation (A.36) . 
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For instance, the coefficients of F,J' are obtained by substituting ¢X and rA, into Equation 

(A.36), 

11/ 

Co - L CII sin
2 n~¢I- 45) = 

11 = 1,2,3 , ... 

(A.47) 

The coefficients of Fx:., and Fy:: can be determined by substituting respective biaxial 

strengths, O'x with O'z and O'y with O'z, into Equation (A.36). For highly orthotropic 

materials, more than one set of biaxial strength data may be needed to solve the 

coefficients Cn, Dn, and En. However, it is expected that only the first terms, Co, Do, and 

Eo are needed for most materials. When Co, Do, and Eo are equal to 0.5 and Cn = Dn = EI1 

= 0 for n ?:. 1, Equation (A.36) is a generalization of the Mises yield criterion. 

In the case that shear stresses exist, the tensor transformation rule can be applied to rotate 

the laminate stresses into principal stresses. When the fibers of a laminate do not lie on 

any plane of the principal stress axes, the fibers are defined as three-dimensional oriented 

fibers with respect to the principal stress axes. The fundamental strength function given 

in the x-direction, Equation (A.36), can be converted to y- and z-direction if the angles 

between the fibers and the y- and z-axis are known. A complete derivation for this 

problem is given by Tan (1990). 

Plane Stress Problem 

Plane stress problem is of particular practical importance. Two-dimensional strength 

criterion can be obtained from Equation (A.36) as 

(A.48) 
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Assuming that O"x and OJ. are applied in a ratio of a to b, then they can be written as 

0;. = a 0" OJ.,=bO" (A.49) 

By substituting Equation (A.48) into Equation (A.49) and solving for 0", we obtain 

- B +.J B 2 + 4A 

2A 
(A.50) 0" = --------------

where 

a 2 b 2 

A = + -- + 2F\Tab 
X X' YY' --

if if if if 

B = a[_1 - _1 J + b[_1 - _1 J 
X X' Y Y' if if if if 

(A.51) 

The term Fxy has been given in Equation (A.5Ia) ; X~ and Y; U = blank or ') have been 

given in Equations (A.31) and (A.43), respectively. Substitution of Equation (A.50) into 

Equation (A.49) gives the allowable stresses O"x and OJ -. 

Other Criteria 

Christensen (1988) developed a three-dimensional failure criterion from the consideration 

of tensor transformation. Most recently, Feng (1991) also developed a three-dimensional 

failure criterion in tem1S of strain invariants. These are interesting theoretical works. 

However, the agreement of these theories with experimental data cannot be judged 

without sufficient comparisons. 

Failure Criteria in the Presence of Stress Gradient 

Many models have been developed to predict the notched strength of laminated 

composites. Most of these models are developed for tensile loading. A laminated 
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composite containing a cutout normally goes through a very complicated damage process 

before it reaches the ultimate failure. Therefore, all the failure models contain a number 

of approximations and assumptions to make the problem solvable. If we trace these 

models to their original principles, some failure criteria could be identified. These may be 

classified as the failure criteria in the presence of stress gradient. A brief description is 

given in the following for those criteria which are widely accepted. 

Fracture Mechanics Criterion 

Wu (1968) found that under certain conditions the techniques of isotropic fracture 

mechanics can be directly applied to composite materials. These conditions are: 

1) The orientation of the flaw with respect to the principal axis of symmetry 

must be fixed. 

2) The stress intensity factors defined for the anisotropic cases must be 

consistent with the isotropic case in stress distribution and III crack 

displacement modes. 

3) The critical orientation coincides with one of the principal directions of elastic 

symmetry. 

It has been shown that unidirectional materials satisfy these restrictive 

conditions. However, advanced composites in use today are at least 

bidirectional. This suggests that fracture mechanics are not suitable for use in 

multidirectional laminates since they do not satisfy the restrictive conditions 

stated above. In addition, unlike isotropic materials, the failure mechanisms of 

multidirectional laminates are very complicated . They involve many 
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microcracks around the cutout, with different crack densities at different 

locations. This mechanism also varies from ply to ply. Furthermore, 

delamination could occur between two adjacent plies. Strictly speaking, 

fracture mechanics may only be applicable to unidirectional laminates. 

Waddoups-Eisenmann-Kaminski Criterion 

Waddoups et al. (1971) considered a laminate containing either a hole or a crack. In the 

first case, they used the relationship between the energy release rate G, and the stress 

intensity factor K, developed by Irwin (1948): 

(A.52) 

based on a plane strain Mode I crack. They assume that regions of intense energy of 

length, a, are developed at the edges of the hole in a direction transverse to the loading 

direction. From our viewpoint, regions of intense energy do exist because of the stress 

concentrations. They further assume that the characteristic length, a, is small. For 

isotropic and homogeneous material, the problem of symmetrical cracks emanating from 

a circular hole of radius R has been solved by Bowie (1956). Also from the work of Paris 

and Sih (1965) 

(A.53) 

where CJ and R denote the respective remote applied stress and the hole radius. 

Combining equations (A.52) and (A.53) and assuming that changes in a are negligibly 

small compared to changes in r orj(a/R), we obtain 
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a 1 - v 2 

(~J
- I 

..JG: 1[ E = 0"{a I R) ::; const (A.54) 

At failure, the notched strength of the composite can be obtained by substituting the . 

applied stress ?Y by (Y~ in equation (A.53) and the result is 

J;;f{a l R) 
(A.SS) 

The strength of a specimen with no hole can be obtained from equation (A.55) by letting 

R approach 0, 

(A.56) 

Combining Equations (A.SS) and (A.S6) yields the following notched strength ratio: 

1 = ---;-~ 
f{a I R) 

(A.57) 

This approach has also been applied to composites containing a straight crack. The stress 

intensity factor of an isotropic material containing a crack of length 2c is given by 

Griffith (1920): 

(A.58) 

Again, intense energy regions are assumed to exist at the crack tips. This approach is 

similar to Irwin's (op. cil.) plastic zone correction in metals. At failure, the critical stress 

intensity factor is 

(A.59) 
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where a and (c + a) are the crack tip damage zone and the effective crack length, 

respectively. For unnotched specimens, the unnotched strengths can be obtained from 

Equation (A.59): 

(A.60) 

One can see from this equation that a can be regarded as the half crack length of an 

inherent/law. Combining Equations (A. 59) and (A.60) results in 

(A.61) 

This criterion involves two unknowns: the unnotched strength and the length of the 

intense energy region (or characteristic length). These unknowns have to be determined 

empirically using experimental data. The criterion is valid for unidirectional laminates. 

Mar-Lin Approach 

Mar and Lin (op. cit.) assume that the notched strength of an orthotropic plate has a form 

similar to Equation (A.58). However, they replace the K,c by Hc (composite fracture 

toughness) and the power term 112 by n. They noted that the exponent n is "the order of 

the singularity of a crack with its tip at the interface of two different materials." The two 

different materials refer to fiber and matrix. The coefficients of Hc and n are determined 

by plotting the data on a log-log scale. Good correlation was obtained between the 

experimental data and the prediction. 
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Stress Failure Criteria 

Whitney and Nuismer (1974) developed a point stress and an average stress criterion for 

the notched strength prediction of laminated composites under uniaxial tension. These 

two stress criteria use the stress field to predict the notched strength without resorting to 

the classical concepts of linear elastic fracture mechanics. The development of these 

stress failure criteria is based on the observation of the stress fields around a hole with 

two different sizes. The stress distribution of an isotropic plate containing a circular hole 

(1979) is given in the following 

(A.62) 

where 0' is the applied stress parallel to the y-axis at infinity and R denotes the hole 

radius. If the normalized stress is plotted as a function of the distance ahead of the hole (x 

- R), the stress concentration is much more localized for the smaller size hole. From these 

stress distributions Whitney and Nuismer proposed the following stress failure criteria. 

Point Stress Criterion 

Point stress failure criterion assumes that failure occurs when the stress, 0)" over some 

distance, do, away from the opening is equal to or greater than the strength of the 

unnotched laminate: 

(A.63) 

Because the stress concentration factors at the point (do, 0) are different for different hole 

sizes, this approach apparently can predict the hole size effect on the notched strength. 

For infinite orthotropic plates containing a circular hole, the approximate solution of 
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stress distribution (Konish and Whitney, 1975) along the aXIs perpendicular to the 

loading direction is: 

x > R, (A.64) 

where 

1 + (A.65) 

and K; denotes the stress concentration factor at the edge of the hole; Aij, i, j = 1,2,6, are 

the components of the in-plane stiffness matrix with 1 and 2 parallel and transverse to the 

loading directions, respectively. Equation (A.65) can be written in tem1S of engineering 

constants as 

[ffl' ] E , 1 + 2 - ' - v
n

' + - ' , 
E r ' Gn 

(A.66) 

where Ey and Ex are the laminate stiffnesses in the respective y- (loading) and x-direction; 

the variables V.D' and G.D , are the Poisson's ratio and shear modulus, respectively. In the 

case of orthotropic plates containing a hole, Nuismer and Whitney (1975) obtained their 

point stress criterion by substituting Equation (A.64) into Equation (A.63) and the result 

IS 

(A.67) 



where 

R 
~I = --

R + do 
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(A68) 

In the case of infinite orthotropic plate containing a straight crack, an exact elasticity 

solution is given by Lekhnitskii (1968): 

(A.69) 

where c is the half length of the crack. Substituting Equation (A.69) into Equation (A63) 

yields 

'" CJ N = ~1 - ~; , (A.70) 
CJo 

where 

~3 
c 

(A71) = 
c + do 

Average Stress Criterion 

A larger volume of material is subjected to high stress in the case of the plate containing 

the larger hole. Therefore, instead of considering the stress at a point, this criterion 

considers the average stress over a characteristic length. In other words, this criterion 

assumes that failure occurs when the average stress, OJ., over some distance, ao, away 

from the opening is equal to or greater than the strength of the unnotched laminate: 

1 11
+

0

" ( ) - CJ r x,O dx = CJo a 1 . 
o 

(A 72) 

In the case of orthotropic plates containing a hole, the solution is obtained by substituting 

Equation (A64) into Equation (A.72): 
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(A.73) 

where 

R (A. 74) 
R + ao 

For orthotropic plates containing a crack, the solution IS obtained by substituting 

Equation (A.69) into Equation (A.72) and is given in the following 

where 

(J~ 0-"Z 
(Jo = ~~ 

C 
~4 = --

C + ao 

(A.75) 

(A.76) 

The point stress criterion and the average stress criterion both contain two unknowns, i.e. , 

the unnotched strength, (Jo, and the characteristic length, do or ao. These unknowns have 

to be determined experimentally. The procedure is to first obtain a set of unnotched and 

notched strengths from experiment. Then we substitute these data into either Equation 

(A.67) or Equation (A. 73) in the case of a circular hole and solve for do or ao. Assuming 

do (or ao) is a constant, the notched strength for a plate with a hole (or crack) with any 

other size can be predicted. 

The use of the characteristic length can be explained as the inelastic, nonlinear material 

behavior and the imperfection of the hole so that the theoretical value of the maximum 

stress concentration may not be reached just before the laminate fails. These two criteria 

have drawn significant attention and have been widely used. They are very useful for 

structural designs under simple loading conditions. 
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However, many engIneers use these criteria to predict the notched strength of 

multidirectional laminates. Under this circumstance, all the microdamage around the 

cutout IS not taken into account. Although the effects of the microdamage may be 

absorbed in the characteristic length, the details of the failure mechanisms cannot be 

analyzed with this simplified approach. For this application, they should be regarded as 

point stress model and average stress model rather than failure criteria. 

Point Strain and Average Strain Criteria 

The failure criteria can also be predicted in terms of strains. The point strain failure 

criterion assumes that failure occurs when the strain, 'S" over some distance, do, away 

from the opening is equal to or greater than the strength of the unnotched laminate: 

C . (x ,O~ = Co 
.' ~ x= R+ do 

(A. 77) 

The average strain failure criterion assumes that failure is not due to the strain at a point. 

Instead, failure is caused by the strain over a volume of materials. In other words, average 

strain criterion assumes that failure occurs when the average strain, c)" over some 

distance, ao, away from the opening is equal to or greater than the strength of the 

unnotched laminate: 

(A. 78) 
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Some Additional Considerations 

In the cases where stress gradients exist, very few failure criteria have been developed for 

composite materials. Strictly speaking, the criterion of Waddoups Eisenmann-Kaminski, 

the Whitney-Nuismer's point stress, and the average stress criteria as well as the point 

strain and the average strain criteria are only valid for unidirectional composites. These 

criteria have been widely used to predict the notched strength of laminated composites 

with very good results. They should be considered as models rather than failure criteria 

because they do not take into account the details of the complex failure mechanisms. 
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APPENDIX 

B 

STRAIN DISTRIBUTIONS AT DAMAGE INITIATION 
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LARGE PANEL (18" x 18") 

Perpendicular (Load = 5,094 Ib) 

I I 
\\ 

0.015 -I 

I 

-

0.01 - -
F- . _._._._._._._ ._._._._._._ ._._._._._._._._ ._._ .-._._ ._. 

:'~ 

o 005 f- . \:: .' 
..... "'-, :-- -

Of-

-0.005 I-

-0.01 f-

-0015 f-

I 

o 05 

.. ....,.:: .. 7"" -

I 

1 
r (In) 

-

... -7:- ... . _ .. .. ...::: ... ...::: .. . 7-= 

--- 0° 
450 

1350 

900 
_ . _ ._._ . ultimate 

1.5 

-

-

\ I I I 

0.015 Ji-·_·_·_·_·_· _ · _ · _ · _·_ · _ · _·_·_ · _ · _ · _ · _ · _ · _ · _·_ · _·_·_·- .~ 

~ 
:, 

0.0 1 \ -
\ 

0.005 f- \ .. 
....... ~. 

-

'--=:-
~ o~r~-----------~-~-·-~----·--~-~-~-~·~~-~-~·~~~-~~··~:~-~.~~~~ 
w 

-0.005 -

-0.01 -

-0.01 5 -

I 

o 05 1 
r Qn) 

--- 00 

450 

1350 

_ .. _ . . 900 

_ ._ ._._. ultimate 

15 

-

0.25" 



140 

APPENDIX 

c 

X-RAY INSPECTION OF THE INTERNAL 

DAMAGE PROGRESSION 
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APPENDIX 

D 

SURFACE STRAIN FIELDS ON X-RAY IMAGES OF 

INTERNAL DAMAGE 
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