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Abstract 

Anthropogenic changes in the atmospheric abundances of tropospheric ozone and 

aerosols make significant contributions to climate change. Tn turn, climate change 

affects the abundances of ozone and aerosols, resulting in complicated feedbacks. To 

move toward understanding interactions and feedbacks among tropospheric chemistry, 

aerosol formation, and climate change, a unified tropospheric chemistry-aerosol model is 

developed within the Goddard Institute for Space Studies general circulation model. The 

model includes a detailed simulation of tropospheric ozone-NOx-hydrocarbon chemistry 

and a thermodynamic representation of sulfate/nitrate/ammonium aerosols. Two-way 

coupling between aerosols and chemistry provides consistent chemical fields for aerosol 

dynamics and aerosol mass for heterogeneous processes and calculations of gas-phase 

photolysis rates. Although the current version of the unified model does not include 

prognostic treatments of black carbon, organic carbon, and mineral dust aerosols, we 

include effects of these particles on photolysis and heterogeneous processes by using three­

dimensional off-line fields. The unified model is applied to examine interactions between 

tropospheric chemistry and aerosols. This dissertation is the first step in the development 

of a fully-coupled climate/chemistry/aerosol model. 
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Introduction 
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Tropospheric ozone and aerosols are of considerable importance in radiative 

forcing of climate [Intergovernmental Panel on Climate Change (IPCC) , 1995]. Ozone 

is a significant greenhouse gas because of its absorption in the infrared, visible, and 

ultraviolet spectral regions. Aerosols can directly influence atmospheric radiation budget 

by scattering or absorbing radiation, and can indirectly affect the radiation budget through 

their modification of cloud albedo and lifetime. The global mean, annually averaged 

radiative forcing by tropospheric 0 3 has been estimated to be 0.33±0.05 W m- 2 [van 

Dorland et aI., 1997; Berntsen et aI., 1997; Roelofs et al., 1997; Haywood et al., 1998; 

Brasseur et aI., 1998; Kiehl et al., 1999]. Radiative forcing by aerosols depends on aerosol 

composition, mixing state, and size distribution, as well as aerosol water uptake. Direct 

radiative forcing by anthropogenic aerosols is estimated to be -0.3 to -1.5 W m-2, while 

the indirect radiative forcing by anthropogenic aerosols is estimated to be 0 to -1.5 W m-2 

[Intergovernmental Panel on Climate Change (IPCC), 1995]. 

Tropospheric 0 3 and aerosols have short atmospheric lifetimes (days to weeks) 

and hence inhomogeneous atmospheric distributions. The abundances of aerosols and 

ozone are controlled by a combination of direct and precursor emissions, chemical 

reactions in the atmosphere, meteorological processes, and interactions among tropospheric 

chemistry, aerosols, and climate change. While concentrations of gas-phase species govern 

many aspects of the formation and growth of aerosols, aerosols play important roles in 

atmospheric chemistry by altering photolysis rates [Demerjian et al., 1980; Ruggaber et 

al., 1994; Jacobson, 1998; Liao et ai., 1999] and by serving as sites for heterogeneous 

conversion of gas-phase species [Dentener and Crutzen 1993; Dentener et ai., 1996]. The 
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abundances of aerosols and ozone can also be significantly affected by climate change 

with resulting feedbacks. For example, changes in the atmospheric water cycle affect 0 3 

photochemistry [Johnson et aI., 1999] as well as the formation, optical properties, cloud 

activating properties, and wet scavenging of aerosols. Changes in tropospheric circulation 

affect the distributions and hence the radiative forcing of 0 3 and aerosols [Hansen et aI., 

1997]. Rising temperatures affect emissions of NO x, hydrocarbons, and ammonia [llenger 

and Levy, 1995; Guenther et al., 1995; Bouwman et al., 1997]. Increasing deep convection 

enhances the lightning source of NOx [Sinha and Tuomi, 1996; Tuomi et al., 1996]. 

Increasing sea surface winds promote emissions of dimethyl sulfide (DMS) and sea salt 

aerosol from the oceans. Better understanding of aerosol-chemistry-climate interactions is 

critically needed for future climate change. 

Despite intense study of the human influence on tropospheric ozone and aerosols, 

estimates of the global mean radiative forcing by ozone and aerosols still have large 

uncertainties. Few global aerosol and ozone simulations have considered the interactions 

among atmospheric dynamic, gas-phase chemistry, aerosol, and climate change. For 

example, concentrations of OH, N03, H02, or 0 3 required in sulfate aerosol simulations 

have been imported from off-line atmospheric chemistry models [Feichter et al., 1996; 

Koch et aI., 1999, Adams et al., 1999; Barth et al., 2000], and off-line aerosol 

concentrations have been used in global chemistry models to simulate heterogeneous 

processes [Brasseur et al., 1998; Wang et al., 1998; Mickley et al., 1999]. Since off­

line gas-phase (aerosol) fields are usually generated without considering interactions with 

aerosols (gas-phase chemistry), it may lead to bias in predicted concentrations. More 
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importantly, off-line fields cannot account for two-way interactions between tropospheric 

chemistry and aerosols, which are desired in simulations when climate changes feed back 

into gas-phase chemistry and aerosols. 

To move toward incorporating interactions and feedbacks among tropospheric 

chemistry, aerosol formation, and climate change in a general circulation model, a unified 

model that simulates atmospheric chemistry and sulfate/nitrate/ammonium aerosols in the 

Goddard Institute for Space Studies (GISS) GCM is developed in this study. 

In Chapter 2, effect of clouds on direct aerosol radiative forcing of climate is 

examined. Chapter 3 studies the sensitivity of mineral dust radiative forcing to its physical 

and optical properties, since dust is of considerable importance in global radiative forcing 

and the magnitude of dust forcing has large uncertainty. Chapter 4 investigates the effect 

of aerosols on atmospheric chemistry through altering photolysis rates. Chapter 5 presents 

a unified simulation of aerosols and tropospheric chemistry within a general circulation 

model. A thorough examination of interactions between gas-phase chemistry and aerosols 

is carried out by using this newly developed model. Chapter 6 presents summary and 

conclusions of this thesis research. 
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Geophysical Research-Atmospheres, 103,3781-3788.] 
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ABSTRACT 

The effect of a cloud layer on top-of-atmosphere (TOA) aerosol radiative forcing 

is examined by means of a one-dimensional vertical column simulation. To span the range 

between nonabsorbing and strongly absorbing particles, (NH4)2S04 and soot aerosols are 

considered individually and in internal and external mixtures. For a cloud layer embedded 

within an aerosol layer it is shown that direct aerosol radiative forcing still occurs. For 

a nonabsorbing aerosol a maximum in (negative) forcing actually occurs for a thin cloud 

layer (100 m thickness for the set of parameters considered). The presence of an embedded 

cloud layer enhances the heating effect of soot aerosol, producing, for thick clouds, forcing 

values as much as a factor of 3 over those under cloud-free conditions. An absorbing 

aerosol layer can lead to an increase of in-cloud solar heating rates by up to 3% for the 

parameter values considered here. A cirrus cloud layer above an aerosol layer leads to only 

modest changes of TOA aerosol forcing from those in the absence of the cloud layer; thus 

aerosol forcing in the presence of typical cirrus clouds cannot be neglected. 
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2.1 Introduction 

Aerosols affect climate through the scattering and absorption of solar radiation 

(the so-called direct effect) and through their influence on cloud properties (the so-called 

indirect effect) [Charlson et al., 1992; National Research Council (NRC), 1996]. There 

exist a number of assessments of the range of direct aerosol radiative forcing effects 

[Intergovernmental Panel on Climate Change (IPCC) , 1995]. These include vertical 

column calculations [Charlson et al., 1991; Haywood et al., 1995; Nemesure et ai., 1995; 

Pilinis et aI., 1995] to three-dimensional global simulations [Kiehl and Briegleb, 1993; 

Boucher and Anderson, 1995; Feichter et al., 1997; Chuang et al., 1997]. Aerosol types 

considered include sulfates [Charlson et al., 1991; Kiehl and Briegleb, 1993; Nemesure 

et al., 1995; Boucher and Anderson, 1995; Feichter et ai., 1997; Chuang et al., 1997], 

organic aerosol from biomass burning [Penner et al., 1992], soot [Penner, 1995], and a 

synthetic global-average mixture of inorganic and organic species [Pilinis et al., 1995]. 

Aside from global-scale simulations that naturally include the presence of clouds, most of 

the assessments of direct aerosol forcing consider a cloud-free atmosphere. 

The goal of the current work is to explore systematically the radiative interactions 

that occur between cloud and aerosol layers. We consider incoming and outgoing solar 

and IR radiation in a one-dimensional vertical column of air extending to the top of the 

atmosphere. To explore the effect of aerosol optical properties, which are of essential 

importance, we assume that the aerosol can consist of pure ammonium sulfate, (NH4)2S04, 

pure elemental carbon (soot), or mixtures of the two species. Moreover, when a mixture is 

present, we specify this mixture to be either an internal mixture, in which every particle 
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contains both speCIes, or an external mixture, in which the aerosol consists of pure 

(NH4)2S04 particles and pure soot particles. The size distributions of the sulfate and soot 

particles are prescribed. 

We seek to understand the role of clouds in modifying clear-sky direct aerosol 

radiative forcing. Interactions of aerosols in cloud formation are extremely complex, and 

indeed this complexity is central to the indirect radiative effect of aerosols on climate. We 

do not address the effect of aerosols on cloud formation and processes in this work. By 

simply specifying a cloud layer to be present or not, we can explore how the presence of 

clouds modifies clear-sky direct aerosol radiative forcing. We separately consider the two 

cases of a stratus cloud and a cirrus cloud, the former lying within the aerosol layer and 

the latter positioned above it. For a water cloud the liquid water content and mean droplet 

size are specified, and the thickness (vertical extent) of the cloud is allowed to vary. One 

aspect of the specification of the aerosol/cloud system is the state of the aerosol inside the 

cloud itself when the cloud exists within the aerosol layer. With sulfate (hygroscopic) and 

soot (nonhygroscopic) particles, one would expect that the hygroscopic particles would 

be incorporated into the cloud droplets and the nonhygroscopic particles would remain as 

interstitial aerosol. Even so, for simplicity, we assume all particles are present as interstitial 

aerosol in the cloud in our calculations, and we will show later that such an assumption does 

not change the qualitative conclusions of this study. 

The essential variables in the cloud/aerosol direct forcing problem are (1) whether 

a cloud is present or not; (2) whether the cloud lies within the aerosol layer (stratus) or 

not (cirrus); and (3) cloud thickness. Variables that will produce an effect that is either 
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secondary or predictable, and are not studied here, include the aerosol size distribution [see 

Pilinis et aI., 1995], cloud liquid water content, and cloud droplet size distribution. 

2.2 Radiative Transfer Model 

The radiative transfer model of Fu and Liou [1993] is used in the present study. The 

model is based on the 6-four-stream approximation [Liou et al., 1988] to solve the radiative 

transfer equation in six solar wavelength bands (0.2-0.7, 0.7-1.3, 1.3-1.9, 1.9-2.5,2.5-3.5, 

and 3.5--4.0 J-lm) and 12 IR bands (2200-1900,1900-1700, 1700-1400, 1400-1250, 1250-

1100, 1100-980,980-800,800-670,670-540,540--400,400-280, and 280-0 cm- 1). The 

model includes molecular Rayleigh scattering, gaseous absorption, and cloud effects; we 

have extended the model to include aerosol scattering and absorption. The model calculates 

total flux as the sum of direct solar and diffuse flux. The heating rate is calculated from 

the divergence of the net flux. To investigate the effect of aerosols and the interaction 

between aerosols and clouds, optical depth, single-scattering albedo, and asymmetry factor 

of the aerosols are calculated and combined with those of gases and cloud droplets in each 

wavelength range. 

To enhance vertical resolution near the cloud layer, we have increased the number 

of vertical layers in the model from 70 to 98, giving a vertical resolution of about 100 m 

near the cloud layer. Pressure, temperature, ozone, and clear-sky water vapor mixing ratios 

are those from U.S. Standard Atmosphere (1976). For cloudy sky the standard atmospheric 

profile is used to obtain the saturation water vapor mixing ratio in cloud. 
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We take the solar constant to be 1376 W m-2 and the IR surface emissivity to 

be 1.0. The solar surface albedo is 0.2 in all calculations except in Section 2.9 where we 

study the effect of surface albedo. Mixing ratios of CO2, CH4, and N20 are assumed to be 

uniform throughout the troposphere at 356, 1.7, and 0.31 ppm, respectively. 

The code ELSIE [Sloane, 1984, 1986; Sloane and Wolff, 1985; Sloane et aI., 1991] 

is used to calculate aerosol optical properties. ELSIE considers particles to be internal 

mixtures and includes nitrate, sulfate, organic carbon, elemental carbon, and residual mass 

(dust). Particle index of refraction is calculated as a volume-weighted average of the indices 

of refraction of its components. For an external mixture of (NH4)2S04 and elemental 

carbon (soot), the single-scattering albedo wand asymmetry factor g in each size range 

are calculated by [d 'Almeida et al., 1991] 

W= (2.1) 

(2.2) 

where ~s and ~c are the total extinction cross sections of sulfate and carbon particles, 

respectively; Ws and We are the single-scattering albedos of sulfate and carbon particles, 

and gs and gc are the corresponding asymmetry factors. 

2.3 Aerosol and Cloud Specification 
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A uniform aerosol layer from the Earth's surface to 5 km is assumed. The two 

possible aerosol constituents are (NH4)2S04 and soot. The dry mass size distributions 

of (NH4hS04 and soot particles are assumed to be lognormal, with median diameter of 

0.5 f.Lm and geometric standard deviation of 2.0 for (NH4hS04 and 0.1 f.Lm and 2.0 for 

soot particles. Refractive indices for (NH4)2S04, soot, and water are from Toon et al. 

[1976], World Climate Program (WCP) [1986], and Hale and Querry [1973], respectively. 

Densities are taken to be l.76 g cm-3 for (NH4)2S04 and l.70 g cm-3 for soot. In a 

humid atmosphere, total aerosol volume is the sum of the dry volumes of the individual 

components plus the volume of water associated with the hygroscopic components. Liquid 

water volume associated with pure (NH4hS04 particles and mixed (NH4hS04 soot 

particles is calculated by using thermodynamic theory [Pilinis and Seinfeld, 1987; Kim 

et al., 1993a,b]. It is assumed that soot is nonhygroscopic. 

A uniform relative humidity of 50% is a reasonable approximation for the lowest 

5 km of the U.S. Standard Atmosphere and is assumed to calculate the optical properties 

of the uniform aerosol layer. Since the relative humidity of deliquescence (RHD) of pure 

(NH4hS04 is 80%, particles initially dry would remain dry at 50% RH. There is evidence, 

however, that atmospheric particles below their RHD frequently exist in the metastable 

state corresponding to the curve obtained by drying out an initially wet particle. In such 

a case, a detailed thermodynamic calculation predicts that the ratio of wet to dry particle 

diameters for pure (NH4)2S04 at 50% RH is l.21 [Pilinis and Seinfeld, 1987; Kim et al., 

1993a,b]. 

A (NH4)2S04 concentration of 2.5 f.Lg m-3 IS representative of continental 
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conditions, as compared with an estimated global-mean sulfate concentration of 0.57 

f-Lg m-3 distributed over the lowest 12 km of the atmosphere [Andreae, 1995]. (If this 

global-mean level is instead distributed over a layer only 5 km thick, it increases to 1.3 

f-Lg m -3.) When a pure soot aerosol only is considered, the mass concentration is assumed to 

be 0.5 f.Lg m-3 . For comparison, Chylek et al. [1996] estimated an upper limit global-mean 

concentration of black carbon of 0.5 f.Lg m-3 uniformly distributed over a 1 km thick layer. 

The total mass concentration of internal and external mixtures is 3.0 f.Lg m-3 , consisting of 

2.5 f.Lg m-3 (NH4hS04 and 0.5 f.Lg m-3 soot. The soot/sulfate mixture considered here is 

roughly representative of northern hemisphere continental conditions. 

When a stratus cloud is present we assume a vertically uniform cloud layer 

centered at 900 m altitude with a thickness that is varied over the range of 100 to 1000 m. 

A liquid water content of 0.2 g m-3 and an effective cloud droplet radius of 10 f.Lm are 

assumed. For cirrus cloud simulations we assume a cloud layer with a thickness of2000 m 

extending from 7000 to 9000 m altitude. At a temperature of about -40°C at this altitude, a 

cloud ice content of 9.177 x 10-3 g m -3 and a mean effective particle size of 64.1 f.Lm are 

assumed [Fu and Liou, 1993]. 

2.4 TOA Aerosol Forcing in Cloud-Free Conditions 

Top-of-atmosphere (TOA) aerosol radiative forcing is defined as -(Fa i-Fa j), 

where Fa i and Fa i are the upward solar fluxes for aerosol-free and aerosol-laden cases, 

respectively. The negative sign implies that if Fa i > Fa i, aerosols produce a cooling effect 
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Table 2.1 Aerosol Radiative Forcing Under Cloud Free Conditons 

Aerosol Conditon Total Dry Massa TOA Forcing, W m 2 

Pure (NH4hS04 2.5(1.1 ) -2.0 
Pure soot 0.5(0.0) +5.5 
Internal mixture 3.0(1.1) +4.6 
External mixture 3.0(1.1) +3.6 

(TOA) incoming solar flux=1376 W m- 2
. Solar zenith angle eo = 0°. F,J=253.8 W m- 2 . Surface albedo = 

0.2. 
aWater mass at 50% RH is given in parentheses. 

and vice versa. Fa i is calculated for clear sky, including Rayleigh scattering and molecular 

absorption; then Fa i is calculated with the addition of the aerosol layer. 

Aerosol radiative forcing for (NH4)2S04, soot, and mixtures at solar zenith angle 

eo = 0° is given in Table 2.1. A 5 km thick layer of pure (NH4)2S04 aerosol at a dry mass 

concentration of 2.5 j.Lg m-3 produces a forcing of -2.0 W m- 2 . At the other extreme a 

comparable layer of pure soot aerosol at a concentration of 0.5 j.Lg m-3 yields a forcing of 

+5.5 W m- 2
, a heating effect. TOA aerosol forcing is sensitive to the aerosol mixing state. 

With every particle exhibiting some absorption, an internally mixed aerosol layer produces 

a larger warming effect than the corresponding external mixture; the TOA forcing of the 

internal mixture is +4.6 W m-2 , whereas that of the external mixture is +3.6 W m-2 . 

2.5 TOA Forcing by Aerosols in the Presence of a Stratus 

Cloud 

TOA radiative forcing of aerosols in the presence of a cloud layer is defined as 

-(Fa+ci -Fct), where Fa+ci and Fei are upward solar fluxes at TOA for cloudy sky with 
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Figure 2.1 Top-of-atmosphere (TOA) radiative forcing, -(Fa+ei -Fer), as a function of 
cloud thickness for different aerosol compositions_ Solar zenith angle=Oo_ 

aerosols and cloudy sky without aerosols, respectively_ The quantity - (Fa+e i-Fe i) is 

shown as a function of cloud thickness in Figure 2.1 for (NH4hS04, soot, and each of the 

mixtures. The TOA forcing effect of a pure (NH4)2S04 layer increases (greater negative 

effect, i.e., cooling) when a thin cloud is present but rapidly reaches a maximum at a cloud 

thickness of 100 m and then slowly decreases with increasing cloud thickness. For a pure 

soot aerosol, TOA forcing, in this case positive, i.e., heating, increases monotonically with 

increasing cloud thickness. The forcing effects of internally and externally mixed aerosols 

exhibit the same overall tendency of increasing forcing with increasing cloud thickness, 

except that when (NH4)2S04 is present the forcing tends in the direction of cooling when 

a thin cloud is present, reaches a minimum, and then increases. The forcing curve for pure 

soot begins above that of the internal mixture at zero cloud thickness, but the two curves 

cross at a cloud thickness of about 350 m; for clouds thicker than this, the internal mixture 

produces greater (positive) forcing than the pure soot aerosol. 
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Consider first the behavior of the pure (NH4)2S04 forcing as cloud thickness 

increases from zero. The maximum in negative forcing can be explained as follows: 

A cloud layer of 100 m thickness transmits about 85% of the downward solar flux and 

scatters the incident radiation from its original path. Since the upscatter fraction for diffuse 

radiation is larger than the up scatter fraction for incident radiation with the Sun at zenith 

[Wiscombe and Grams, 1976], the aerosols located below the cloud layer have larger 

negative forcing than they have in the absence of the thin cloud layer. For clouds thicker 

than this, the percentage of the solar beam transmitted through the cloud is smaller, so the 

contribution of the aerosols below the cloud to TOA forcing is decreased. Even when the 

particles contain a fraction of soot and are producing an overall heating effect, this balance 

between-cloud and below-cloud aerosol scattering still produces a cloud thickness at which 

heating is at a minimum, regardless of whether the particles are internally or externally 

mixed. It is apparent that the cloud thickness at which negative forcing is maximum or 

positive forcing is minimum depends on the solar zenith angle. 

Since most of the soot aerosol resides above the cloud layer in our scenario, as 

cloud thickness increases, the soot aerosol above the cloud absorbs more radiation since 

the cloud is more effective at scattering increasing solar radiation back to space than either 

the aerosol layer alone or the Earth's surface. 

We note from Figure 2.1 that for the case of pure (NH4hS04 aerosol, (1) when 

the cloud layer is thick, Fa+e r -Fer < Far -Far, and (2) the thicker the cloud layer, the 

smaller Fa+e r - Fe r. This result can be understood by using the adding method for multiple 

scattering [Liou, 1980]. When the cloud layer is thick, aerosol below the cloud layer can 
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be neglected. Let Ra and Ta denote the albedo and total (direct plus diffuse) transmission 

function for the aerosol layer above the cloud layer, and let Rc and Tc be the corresponding 

values for the cloud layer. The albedo of the cloud-aerosol combination is [Liou, 1980] 

(2.3) 

Since pure (NH4hS04 can be considered as nonabsorbing in the solar portion of the 

spectrum, Ra + Ta = 1. Thus (2.3) becomes 

(2.4) 

Since 0 < Ra < 1 and 0 < Rc < 1, Ra + Rc < 2. As a result 

(2.5) 

and thus 

(2.6) 

Equation (2.6) indicates that the albedo of the combined aerosol-cloud system 

is less than the sum of the individual values of the aerosol and cloud layers. This is 

a result of the multiple scattering occurring between the cloud and the aerosol layers. 

Stated differently, Ra+c - Rc < Ra; that is, the increase in albedo that occurs when an 

aerosol layer is added to a cloud layer is less than that of the aerosol layer alone. Since 
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solar flux at TOA and T is the transmission of the atmosphere above the aerosol layer, 

Fa+c i-Fe i < Fa i - Fo T· The quantity Fa+c i-Fe T decreases as the cloud layer 

gets thicker. As cloud thickness increases, i.e., Rc -+ 1, it is apparent from (2.3) that 

(Ra+c - Rc) -+ O. At a cloud albedo of unity, all incident radiation is sent back to space 

and the presence of the aerosol layer has no effect. 

An intriguing property of the internally mixed aerosol case is the crossover of 

forcing for the pure soot and internal mixture at a cloud thickness of about 350 m. For both 

cases the mass concentration of soot is 0.5 p,g m-3 . However, the internal mixture aerosol 

contains 2.5 p,g m-3 additional (NH4)2S04. The median dry diameter of (NH4hS04 is 

0.5 p,m, whereas that of the pure soot is 0.1 p,m. The larger particle size and presence of 

nonabsorbing (NH4)2S04 make the scattering effect of the internally mixed aerosol much 

stronger than that of pure soot; the scattering coefficient for the internal mixture is about 

38 times higher than that of pure soot. When the cloud layer is thin, the warming effect of 

pure soot exceeds that of the internal mixture. As the cloud thickness increases, the cooling 

effect from scattering is reduced, while the warming effect from absorption increases. In the 

external mixture the scattering coefficient is about the same as that of the internal mixture, 

but the absorption coefficient is slightly smaller than that of the internal mixture, so the 

overall aerosol does not have sufficient absorption, as cloud thickness increases, for the 

forcing curve to cross that of soot. 

For simplicity we have assumed that particles are present as interstitial aerosol 

in the cloud. Whereas this assumption is likely to be a good one for soot aerosol, in­

cloud (NH4hS04 and the internally mixed aerosols, because of their solubility in water, 
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have probably been scavenged by cloud droplets. The question is what is the effect on 

forcing calculations if the (NH4)2S04 particles and internally mixed aerosol particles are 

retained in the cloud. For a 1000 m thick cloud the following results are obtained from our 

experiments: (1) for the case of pure (NH4)2S04, removing the (NH4)2S04 particles from 

the cloud layer leads to a decrease in the absolute value of forcing of 21 %. At this point 

total net aerosol forcing is, however, very small; (2) for the external mixture, removing 

the (NH4hS04 particles and leaving the soot particles inside the cloud cause an increase 

of only 0.6% in TOA forcing; (3) removing the internally mixed aerosol particles inside 

the cloud decreases the TOA forcing of the internal mixture by 16%. Thus the qualitative 

conclusions of the study do not change depending on whether soluble aerosol is retained in 

cloud or not. 

Another assumption that we made in the calculations is that of a uniform aerosol 

layer, which has constant mass concentration from the surface to 5 krn altitude. We 

can examine the effect of vertical variation of aerosol mass concentrations. For pure 

soot aerosol, which has the same column burden as in the uniform aerosol layer case, 

its mass concentration is now assumed to decrease linearly from its surface value to 

1110 of its surface value at 3 km altitude and then remain constant from 3 krn to 5 krn 

altitude. Compared with the uniform aerosol layer, this more realistic vertical profile 

produces almost identical TOA forcing under clear-sky conditions, but the TOA forcing 

is consistently smaller when a cloud layer is present because less aerosol is above the cloud 

layer. For example, in the presence of a 1000 m thick stratus cloud the TOA forcing of soot 

is 17.9 W m-2 when the aerosol layer is uniform, while it is 13.5 W m-2 with the assumed 
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vertical profile. In this case, about 72% of the total soot mass is above the cloud layer for 

the uniform aerosol layer, while only 40% of the total soot mass is above the cloud layer for 

the case with vertical mass variation. A similar study for pure (NH4hS04 aerosol shows 

that the TOA forcing is not sensitive to vertical mass variation, either under clear-sky or 

under cloudy-sky conditions. Thus vertical variation of aerosol mass concentration affects 

the values of TO A forcing but does not change the essential physics of the problem. 

2.6 TOA Aerosol Forcing in the Presence of a Cirrus 

Cloud 

With a 2000 m thick cirrus cloud lying over the aerosol layer, at eo = 00
, 

TOA forcing, -(Fa+e r -Fe I), of pure (NH4hS04 and soot layers are -3.3 and 

+4.9 W m- 2
, respectively. These are to be compared with clear-sky TOA forcings of 

-2.0 and +5.5 W m-2 (Table 2.1). It is noteworthy that the cirrus cloud enhances the 

negative forcing of (NH4)2S04 but reduces the positive forcing of soot. Because the ice 

water content of the cirrus cloud (9.177 x 10-3 g m -3) is much smaller than the liquid water 

content ofthe stratus cloud (0.2 g m-3), the optical depth of a 2000 m cirrus cloud (0.93 in 

the wavelength band 0.2 to 0.7 /-lm) is much smaller than that of even a 100 m water cloud 

(3.10 in the same wavelength band); transmission of the cirrus cloud is about 90% while 

that of a 100 m stratus cloud is about 85%. The reason that the cirrus cloud slightly reduces 

the positive forcing of a soot aerosol layer lying below it is that absorption is proportional 

to radiation intensity, which is slightly reduced by the cirrus cloud. The explanation of why 

the cirrus cloud enhances negative sulfate forcing is that the cloud scatters the direction 



Figure 2.2 Atmospheric heating rates (solar, infrared, and net) for the aerosol-free and 
cloud-free atmosphere. 

of the incident radiation from its eo = 0° path, causing a forcing increase similar to that 

which occurs with increasing solar zenith angle. It is clear that forcing by an aerosol layer 

underlying a cirrus layer cannot be neglected. 

2.7 Heating Rates 

The climate forcing effects of aerosols can be seen clearly in the vertical profiles 

of the heating rates. Under aerosol- and cloud-free conditions (Figure 2.2), heating caused 

by shortwave radiation is almost uniform in the troposphere. Solar heating is a result of 

gaseous absorption, and IR cooling is mainly a result of water vapor emission. 

In the presence ofa 1000 m thick stratus cloud and absence of aerosols (Figure 2.3), 

shortwave heating rates reach a maximum below the top of the cloud layer, corresponding 

to the point of maximum upward and downward solar fluxes (not shown). At the bottom 
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of the cloud layer, there is slight IR heating because the absorption of IR radiation emitted 

from the Earth's surface and the overlying cloud overweigh IR emission. At the top of the 

cloud layer, on the contrary, there is strong cooling because the IR emission there is much 

larger than the absorption of IR radiation emitted by the underlying cloud. 

Figure 2.4 shows the difference in solar heating rates for four cases: (1) (NH4)2 S04 

layer versus clear sky (no cloud, no aerosol); (2) soot layer versus clear sky (no cloud, no 

aerosol); (3) (NH4)2S04Iayer with cloud versus cloudy sky (no aerosol); and (4) soot layer 

with cloud versus cloudy sky (no aerosol). The cloud layer is 1000 m thick stratus cloud 

in cases (3) and (4). For a layer of pure (NH4)2S04 aerosol the difference in solar heating 

rate versus the cloud-free and aerosol-free atmosphere (Figure 2.2) is negligible, and the 

cooling effect of the aerosol layer is exclusively located at the surface. For a soot layer, 

on the other hand, a difference in solar heating rate of about 0.2 K d- 1 is produced in the 

layer versus the cloud-free and aerosol-free atmosphere (Figure 2.2), about a 10% increase. 

When an (NH4)2S04 aerosol layer is added to a cloud layer, the change in solar heating is 

quite small, a slight cooling effect near cloud top that is negligible when compared to the 

approximately 30 K d- 1 solar heating rate near the top of the cloud (Figure 2.3). The most 

interesting effect is that which occurs when a pure soot aerosol layer is present with a cloud 

layer. A differential solar heating rate of about 0.5 K d- 1 occurs below the top of the cloud 

layer, corresponding to the maximum upward and downward solar fluxes. This 0.5 K d- 1 

is to be compared to the aerosol-free peak cloud heating rate of20 to 30 K d- 1 (Figure 2.3). 

Thus presence of the pure soot aerosol adds about 3% to the in-cloud solar heating rate, a 

small but nonnegligible effect. 
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Figure 2.3 Atmospheric heating rates (solar, infrared, and net) for 1000 m thick cloud 
centered at 900 m altitude. 
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Figure 2.5 Differential solar heating rate for internal and external mixture. Cloud 
thickness lOOO m. 

Figure 2.5 shows the differential solar heating rate again for the internal and 

external mixtures. As expected, the internal mixture produces a larger heating effect than 

the external mixture. Compared with clear-sky forcing, the presence of a 1000 m thick 

stratus cloud produces an increase of about 0.2 K d- 1 in solar heating rate throughout the 

portion of the aerosol layer which is located above the cloud for both internal and external 

mixtures. 

An increase in in-cloud solar heating rate of 3% as a result of the presence of an 

absorbing aerosol can be expected to lead to some alteration of cloud properties. This 

represents a cloud-aerosol feedback mechanism, as noted by Hansen and Ruedy [1997]. 

Since the optical depth of the cirrus cloud is very small, the differential heating 

rates caused by (NH4hS04 or soot in the presence of an overlying cirrus cloud are 
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essentially identical to those caused by (NH4)2S04 or soot under clear-sky conditions, 

respectively. 

2.8 Effect of Solar Zenith Angle 

In examining the effect of solar zenith angle, we consider six cases: (1) pure 

(NH4hS04 aerosol-no cloud; (2) pure (NH4)2S04-stratus cloud; (3) pure soot-no cloud; (4) 

pure soot-stratus cloud; (5) pure (NH4)2S04-cirrus cloud; and (6) pure soot-cirrus cloud. 

Cloud thickness is 1000 m for the stratus cloud and 2000 m for the cirrus cloud. TOA 

aerosol forcing is shown as a function of flo = coseo for the six cases in Figure 2.6. A 

maximum in negative forcing for the clear-sky (NH4)2S04 aerosol occurs at flo = 0.35. 

The existence of such a maximum in forcing was demonstrated by Nemesure et al. [1995] 

and Pilinis et al. [1995]. The form of the (NH4)2S04 clear-sky curve as a function of solar 

zenith angle is consistent with that presented by Russell et al. [1997]. In the presence of the 

cirrus cloud the variation of TO A forcing of(NH4)2S04 versus flo has the same tendency as 

that of (NH4)2S04 under clear-sky conditions, even though the maximum shifts to flo = 0.6 

due to the effect of the cirrus cloud which scatters the incident radiation from its original 

path. When the stratus cloud is present, the magnitude of negative forcing is reduced, and 

negative forcing monotonically increases toward that at overhead Sun. As eo increases, the 

optical path through the cloud increases, producing the same effect as if the cloud layer is 

getting thicker. TOA forcing is positive for soot aerosols both with and without a cloud 

present with a maximum at eo = 00 
(flo = 1.0). 
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Figure 2.6 TOA radiative forcing as a function of J-lo = coseo for pure (NH4)2S04 and soot 
aerosol layers with and without cloud layer present. Stratus cloud thickness 
1000 m and cirrus cloud thickness 2000 m. 

2.9 Effect of Surface Albedo 

The same cases as in Section 2.8 are used to investigate the sensitivity of aerosol 

TOA forcing to surface albedo (Figure 2.7). Cloud thickness is 1000 m for the stratus 

cloud and 2000 m for the cirrus cloud, and solar zenith angle eo = 0°. TOA forcing of 

(NH4hS04 under clear-sky conditions or with the cirrus cloud has positive values when 

surface albedo is larger than about 0.4. This can be explained as follows: On one hand, 

absorption by the surface is increased when the aerosol layer is present and surface albedo 

is high. Some of the radiation that is reflected by the surface is backscattered to the surface 

by the aerosol layer and it is reflected again by the surface, thus the surface absorbs more 

radiation [Haywood et aI., 1997]. On the other hand, the increase in path length of the 

radiation due to scattering by the aerosol and surface leads to extra gaseous absorption. 
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Figure 2.7 TOA radiative forcing as a function of surface albedo for pure (NH4)2S04 
and soot aerosol layers with and without cloud layer present. Stratus cloud 
thickness lOOO m and cirrus cloud thickness 2000 m. 

The TOA forcing of soot under clear-sky conditions or with the cirrus cloud increases 

dramatically with increasing surface albedo, ranging from about 2 W m-2 over sea surface 

(surface albedo:::=O.OS) to about 25 W m-2 over snow surface (surface albedo:::=O.S), because 

the soot particles absorb both incoming radiation and radiation reflected by high-albedo 

surfaces. The TOA forcing of (NH4hS04 or soot in the presence of a stratus cloud layer is 

not very sensitive to surface albedo because of the shielding effect of the cloud. 

2.10 Conclusions 

We have examined the change in TOA radiative forcing of an aerosol layer as 

a result of the presence of a stratus cloud layer for pure (NH4hS04 and soot aerosols 

and internal and external mixtures of the two species. We consider a relatively low-level 
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( rv 1 km altitude) cloud layer embedded within a uniform aerosol layer extending up to 5 

km altitude. The "zeroth-order" approximation that direct radiative aerosol forcing occurs 

only in cloud-free regions is shown to be correct only for nonabsorbing aerosols and only as 

cloud albedo approaches unity. For strongly absorbing particles such as soot the presence 

of a cloud layer embedded within the aerosol layer actually enhances the heating effect 

of such particles. That enhancement continues to increase as cloud thickness increases, 

eventually reaching more or less an asymptotic value that can be as much as 3 times cloud­

free forcing. The presence of a typical cirrus cloud layer above an aerosol layer leads to 

only modest changes of forcing from those in the absence of the cloud layer. Thus aerosol 

forcing in the presence of cirrus clouds cannot be neglected. 

We show that an absorbing aerosol layer in the presence of an embedded cloud 

layer can lead to in-cloud solar heating rates that are, for the particular set of parameters 

considered here, up to 3% of the aerosol-free, in-cloud solar heating rates. 
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Chapter 3 

Radiative Forcing by Mineral Dust Aerosols: 

Sensitivity to Key Variables 

[The text of this chapter appears in Liao H. and Seinfeld lH. (1998) Journal of 

Geophysical Research, 103, 31637-31645] 
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ABSTRACT 

We examine diurnally averaged radiative forcing by mineral dust aerosols in 

shortwave and longwave spectral regions using a one-dimensional column radiation model. 

At the top of the atmosphere (TOA), net (shortwave plus longwave) dust radiative forcing 

can be positive (heating) or negative (cooling) depending on values of key variables. We 

derive an analytical expression for the critical single-scattering albedo at which forcing 

changes sign for an atmosphere containing both cloud and aerosol layers. At the surface, 

net dust forcing can be positive or negative under clear-sky conditions, whereas it is 

always cooling in the presence of a low-level stratus cloud. Longwave radiative forcing 

is essentially zero when clouds are present. We also study the sensitivity of dust diurnally 

averaged forcing to the imaginary part of refractive index (k), height of the dust layer, dust 

particle size, and dust optical depth. These variables play different roles as follows: (1) 

under both clear- and cloudy sky conditions, net TOA forcing is more sensitive to k than 

net surface forcing; (2) clear-sky longwave forcing and cloudy-sky TOA shortwave forcing 

are very sensitive to the altitude of the dust layer; although clear-sky shortwave forcing is 

not sensitive to it; (3) clear-sky shortwave forcing is much more sensitive to particle size 

than cloudy-sky shortwave forcing; longwave forcing is not sensitive to particle size; and 

(4) all forcings are sensitive to optical depth except cloudy-sky longwave forcing. 
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3.1 Introduction 

Among the aerosol constituents of the Earth's atmosphere, those with the most 

poorly characterized and most variable optical properties are the mineral dusts from deserts 

and arid regions. The magnitude of global mean radiative forcing by mineral dust has been 

estimated to be comparable to that of anthropogenic aerosols [Sokolik and Toon, 1996]. 

Early studies of dust radiative effects were performed in the 1980s [Carlson and Benjamin, 

1980] and in the context of nuclear winter scenarios [Ramaswamy and Kiehl, 1985; Cess, 

1985]. Tegen and Lacis [1996] showed that the sign of total (shortwave plus longwave) 

radiative forcing at the tropopause can be either positive (warming) or negative (cooling) 

depending on the particle size and vertical distribution of the dust layer. Furthermore, using 

a general circulation model (GeM), Tegen et al. [1996] calculated the top of atmosphere 

(TOA) radiative forcing of mineral dust aerosol and found that forcing at solar wavelengths 

can be either positive or negative, depending on clear versus cloudy sky conditions and on 

the local surface albedo. Sokolik et al. [1998] have studied the importance of mineral dust 

radiative forcing at infrared wavelengths. 

Because of its importance in global radiative forcing by aerosols and because of 

the considerable uncertainty attending the magnitude of that forcing, we systematically 

examine here, using a one-dimensional radiative transfer model, the sensitivity of dust 

radiative forcing to its physical and optical properties, the vertical distribution of dust in 

the atmosphere, surface albedo, and to the presence or absence of clouds. Our goal is 

both to define regions offorcing behavior (positive or negative forcing) and to establish the 

quantitative sensitivity of forcing to uncertainties in essential variables. 
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3.2 Radiative Transfer Model 

The radiative transfer model of Fu and Liou [1993] calculates shortwave fluxes 

over six solar bands (0.2-0.7, 0.7-1.3, 1.3-1.9, 1.9-2.5, 2.5-3.5, and 3.5-4.0 /-Lm) and 

longwave fluxes over 12 infrared spectral intervals (2200-1900, 1900-1700, 1700-1400, 

1400-1250,1250-1100, 1100-980,980-800, 800-670, 670-540, 540-400, 400-280, and 

280-0 em-I). The model includes molecular Rayleigh scattering, gaseous absorption, and 

cloud effects; we have extended the model to include aerosol absorption and scattering. 

The atmosphere is divided into 98 layers, with a vertical resolution of 100 m near the cloud 

layer and of 1 km at other altitudes. Vertical profiles of pressure, temperature, ozone, and 

H20 vapor mixing ratios are from u.s. Standard Atmosphere (1976). The solar constant is 

Mie theory is used to calculate the optical properties of dust aerosols. For each 

solar band i of the radiative code, single-scattering albedo is calculated by integrating over 

the band as Wi = I W(.\)wd.Aj I W(.\)d.\, where W('\) is the incident solar flux at the 

top of the atmosphere; for each longwave band, Wi = I wd.\/ I d.\. The extinction cross 

section and asymmetry factor are also calculated in the same manner. 

Both diurnally averaged TOA and surface radiative forcing are examined in this 

work. Letting flF(JLo) denote the radiative forcing, where /-Lo is the cosine of the solar 

zenith angle, the diurnally averaged forcing flF is calculated by [Cess, 1985J 

(3.1 ) 
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For surface forcing, b.F is defined as (Fsd - F2) for clear-sky conditions and 

(F~+d - Fn for cloudy-sky conditions, where F2 and Fsd are the net fluxes (downward is 

positive) at the surface for dust-free and dust-laden cases, respectively; F~ and F~+d are 

net fluxes at the surface for cloudy sky without dust and cloudy sky with dust, respectively. 

For TOA forcing, b.F is defined as -(F#OA i -F~OA j) for clear-sky conditions and 

-(F~6~ i -FYOA j) for cloudy sky conditions, where F~OA i and F#OA i are the upward 

fluxes at TOA for dust-free and dust-laden cases, respectively; FYOA i and F~6~ i are 

upward fluxes at TOA for cloudy sky without dust and cloudy sky with dust, respectively. 

The negative sign implies that if F#o Ai> F~o Ai, aerosols produce a cooling effect at TOA 

and vice versa. 

3.3 Basis of the Analysis 

We apply the one-dimensional radiative transfer model to examine the sensitivity 

of mineral dust radiative forcing to variation in key parameters. A uniform dust layer with 

column burden of 100 mg m-2 is assumed. On the basis of the analysis of Dentener et aZ. 

[1996], 100 mg m- 2 is roughly the annual average column dust burden over North Africa 

and Asia. The optical depth of the dust layer depends on particle size; for a column burden 

of 100 mg m-2
, the optical depth is 0.02 (in the wavelength band 0.2 to 0.7 fLm) for a dust 

mass median diameter of 8 fLm and 0.21 (in the same wavelength band) for a mass median 

diameter of 1 fLm. Three different altitudes for the dust layer will be considered: 0-3 km, 

0-1 km, and 3-6 km. The cloud layer, when present, is highly simplified; we assume 

the layer is vertically uniform and is located between 1 and 1.5 km, with a liquid water 
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content of 0.2 g m-3 and an effective cloud drop radius of 10 pm. The optical depth of the 

cloud layer is 15.5 in the wavelength band of 0.2 to 0.7 /Lm. Since we are concerned here 

principally with the radiative interaction between cloud and dust layers, it is sufficient to 

consider such a simplified cloud layer. Dust particles are assumed to be spherical, having 

a mass distribution that is lognonnal with geometric standard deviation of 2.0. The dust 

mass median diameter will be varied over the range of 1.0 to 8.0 pm. Dust density is taken 

to be 2.5 g cm-3
. (Tegen and Fung [1994] assumed 2.5-2.65 g cm-3 for different dust 

particle size classes.) It should be noted that the assumption of particle sphericity may 

not lead to significant errors for a climate forcing calculation since integration over the 

entire hemisphere is perfonned [Mishchenko, 1993; Mishchenko and Travis, 1994; Lacis 

and Mishchenko, 1995]. For satellite data retrieval, on the other hand, properly accounting 

for the nonspherical nature of particles is necessary. 

There is significant variation in the refractive index of dust aerosol from the world's 

desert regions, especially the imaginary component k [Patterson et al., 1977; Sokolik et al., 

1993, 1998]. We select for the base case refractive indices that lie at about the average 

values of a variety of measurements; we use curve 8 in Figure 1 of Sokolik et al. [1993] 

for k in the shortwave wavelength region and curve 5 in Figure la of Sokolik et al. [1998] 

for k in the longwave region. Thus k is 0.006 and 0.25 at the wavelengths of 0.5 /Lm and 

10 /Lm, respectively. Although values of the real part of the refractive index also vary, the 

value of 1.5 chosen here is relatively representative of many dusts and is not varied in our 

study. 

The sensitivity of diurnally averaged forcing to key variables is studied in two 
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ways. First, overall sensitivity is evaluated by examining the dependence of diurnally 

averaged forcing on key variables. Second, the local sensitivity, the derivative of forcing 

with respect to parameters that may vary, is calculated as follows. The local sensitivity 

of diurnally averaged radiative forcing (at TOA or surface) to a parameter x is x&!J.F ax 

(approximated by xD.FIT+A;~~Flx~AX ) [Chylek and Kiehl, 1981], where x represents, in 

the current case, variables such as refractive index, mass median diameter, and dust optical 

depth; the overall quantity is the change in radiative forcing (in W m-2 ) per fractional 

change in x. 

3.4 Dependence of Diurnally Averaged Radiative Forcing 

on Key Variables 

3.4.1 Dependence of Radiative Forcing on Surface Albedo 

Figure 3.1 shows diurnally averaged TOA and surface shortwave forcing in the 

absence and presence of a cloud layer as a function of surface albedo Ts. The dust 

layer is located at 0-3 km and dust mass median diameter is 3.5 p,m. Clear-sky TOA 

shortwave forcing increases from negative (cooling) to positive (heating) as surface albedo 

increases, whereas TOA forcing in the presence ofthe cloud layer is positive for all surface 

reflectances. High-albedo surfaces and/or the presence of a cloud layer lead to enhanced 

absorption of reflected radiation thus producing heating at TOA. Surface shortwave forcing 

of mineral dust aerosol is negative under both clear and cloudy sky conditions. The 

magnitude of cooling under clear-sky conditions decreases as surface albedo increases. 
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Figure 3.1 TOA and surface diurnally averaged shortwave dust forcing as a functin of 
surface albedo Ts under cloud-free and cloud conditions. Dust layer of total 
column burden 100 mg m-2 located over 0-3 kIn altitude. Mass distribution 
of dust log-normally distributed with mass median diameter of 3.5 pm and 
geometric standard deviation of 2.0. 

This behavior can be understood by examining the definition for surface shortwave forcing, 

(Fsd - F~), which can be expressed as (1 - Ts)(Fsd 1 -F~ 1), where Fso and Fsd are the 

downward shortwave fluxes at the surface for dust-free and dust-laden cases, respectively. 

When surface albedo increases, the magnitude of (Fsd 1 - F21) decreases (smaller negative 

value) as a result of multiple scattering between aerosol and surface, and the factor (1 - Ts) 

also decreases; thus under clear-sky conditions, the surface experiences less cooling at 

higher surface albedo. Cloudy sky surface shortwave forcing is defined as (F.~+d - Fn, 
which can be written as (1 - Ts)(Ff+d1 -F.~1), where F.~1 and Ff+dl are downward solar 

fluxes at the surface for cloudy sky without dust and cloudy sky with dust, respectively. As 

surface albedo increases, even though (1 - T s) decreases rapidly, (Ff+d 1 - F.~ 1) increases 

in magnitude at about the same rate (greater negative value), leading to the net effect that 
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surface shortwave cooling under cloudy sky conditions is relatively independent of surface 

albedo for 0.08 < rs < 0.8. It is important to note that over ocean and normal land surfaces 

(rs < 0.4), the magnitude of surface forcing under cloudy sky conditions is considerably 

smaller than that under clear sky conditions; at a surface albedo of 0.20, for example, 

surface forcing of dust is about -4.7 W m- 2 in the absence of the cloud layer and -1.5 

W m- 2 in its presence. 

Longwave radiative forcing is independent of surface albedo and is positive 

(heating) at both TOA and surface. For the conditions assumed here, TOA longwave 

forcing is 0.40 W m-2 , and surface longwave is 1.30 W m-2 for clear-sky conditions, and 

both TOA and surface longwave forcing are 0.10 W m-2 when the cloud layer is present. 

The fact that the cloud layer greatly reduces both TOA and surface longwave forcing will 

be addressed subsequently. 

3.4.2 Dependence of Radiative Forcing on Altitude of the Dust Layer 

Although mineral dust generally resides in the lowest several kilometers of the 

atmosphere, dust particles can be transported to high altitudes. To examine the effect of 

dust layer altitude on radiative forcing, we consider the vertically uniform dust layer of 

fixed column burden 100 mg m-2 occupying each of three altitude ranges: 0-3 km, 0-1 

km, and 3-6 km. Dust mass median diameter is assumed to be 3.5 pm. 

In the absence of clouds, shortwave forcing is not sensitive to the altitude of the 

dust layer; both TOA and surface shortwave forcing are about the same as those with the 

dust layer at 0-3 km (see Figure 3.1). In the presence of a cloud layer, TOA warming is 
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Figure 3.2 Cloudy-sky TOA and surface diurnally averaged shortwave dust forcing as a 
function of surface albede r s for different assumed dust layer altitudes. Cloud 
layer of liquid water content 0.2 g m-3 and effective droplet radius 10 pm 
located between 1 and 1.5 km altitude. Dust layer of total column burden 
100 mg m-2

. Mass distribution of dust lognormally distributed with mass 
median diameter of3.5 pm and geometric standard deviation of2.0. 

strongest when the dust layer lies above the cloud layer (Figure 3.2), since the dust absorbs 

both incoming solar radiation and that reflected by the cloud layer [Crisp, 1997; Haywood 

and Shine, 1997; Hansen et al., 1997]. 

With 50% of total column burden located above cloud, TOA forcing ofa dust layer 

at 0-3 km is about 2 W m-2 larger than that of a dust layer at 0-1 km and about 1.5 

W m-2 lower than that of a dust layer at 3-6 km. The three lines for TOA forcing tend 

to converge when surface albedo is high (rs > 0.6) because the high-albedo surface leads 

to more absorption of radiation by aerosols below the cloud layer. When the dust layer 

lies completely beneath cloud, TOA shortwave forcing changes sign as r s increases, being 

negative over low-albedo surfaces and positive over high-albedo surfaces. 
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Table 3.1 Diurnal-Average Longwave Radiative Forcing Under Cloud-Free and Cloud 
Conditions 

Without Cloud, W m 2 With Cloud, W m 2 
Dust Layer Altitude, km 

TOA Surface TOA Surface 
0-1 0.2 1.4 0.0 O.l 
0-3 0.4 1.3 0.1 0.1 
3-6 l.0 0.9 0.6 0.0 

Surface shortwave forcing under cloudy sky conditions is not so sensitive to the 

altitude of the dust layer as TOA shortwave forcing, especially over low-albedo surfaces 

Vs < 0.3). Surfaces with higher albedo (r s > 0.3) lead to stronger multiple scattering 

among surface, cloud and dust aerosol, as well as more absorption along the optical path. 

When the dust layer is located below the cloud layer (0-1 km), multiple scattering produces 

the strongest cooling for high-albedo surfaces. 

Longwave radiative forcing for the three dust layer altitudes is given in Table 3.1. 

Under clear sky conditions, the higher the dust layer, the larger the TOA forcing but the 

smaller the surface forcing. The temperature of the dust layer is lower the higher its altitude; 

thus emission of longwave radiation is smaller, so less longwave radiation both escapes to 

space and arrives at the surface. In the presence of a cloud layer, both TOA and surface 

longwave forcing are practically negligible in all cases, except for the case when the dust 

layer is completely above cloud (at 3-6 km altitude). When cloud overlays the dust layer, 

it absorbs the IR radiation emitted by the dust layer and emits longwave radiation at its 

top. Since the temperature at the top of the cloud layer is assumed to be the same both 

with and without dust, TOA IR forcing is zero on the basis of our definition of forcing. 

When the dust layer is above cloud at 3--6 km, IR forcing still exists, but the magnitude 
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is smaller compared with that under clear-sky conditions, because the temperature at the 

top of the cloud is lower than that at the surface. Surface longwave forcing in the presence 

of the cloud layer is essentially zero because the effect of dust aerosol above the cloud is 

blocked by the cloud, while the aerosols below cloud cannot exert forcing on the surface as 

the particles have about the same temperature as the cloud bottom. 

3.4.3 Dependence of Radiative Forcing on Dust Mass Median 

Diameter 

To examine the effect of aerosol size on dust radiative forcing, we vary the mass 

median diameter of the dust layer from 1.0 pm to 8.0 pm to span the range from long-lived, 

transported dust to that at source regions. The column burden and altitude of the dust layer 

are fixed at 100 mg m- 2 and 0-3 km, respectively. 

Diurnally averaged shortwave forcing as a function of dust mass median diameter 

and surface albedo is shown for clear and cloudy conditions in Figures 3.3 and 3.4, 

respectively. Under clear-sky conditions, as mass median diameter increases, shortwave 

forcing tends toward warming, which is in agreement with the results obtained by Tegen 

and Lacis [1996]. Negative forcing decreases in magnitude or positive forcing increases 

in magnitude as mass median diameter increases from 1 pm to 5 pm, whereas both TOA 

and surface forcing change more slowly when mass median diameter exceeds 5 pm. The 

fact that shortwave forcing is very sensitive to mass median diameter in the 1.0 to 5.0 p,m 

region indicates that this will be a key variable in global mineral dust forcing simulations, 

since about 90% of global dust mass loading is assumed to lie in this size region [Tegen 
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Figure 3.3 TOA and surface diurnally averaged shortwave dust forcing as a functin of dust 
mass median diameter and surface albedo Ts under cloud-free conditions. Dust 
layer of total column burden 100 mg m-2 located over 0-3 km altitude. Mass 
distribution of dust lognormally distributed with geometric standard deviation 
of2.0. 

and Lacis, 1996]. 

In contrast to the clear-sky case, in the presence of a cloud layer, TOA forcing 

is always positive (heating), with the maximum forcing occurring at a dust mass median 

diameter of about 2.0 pm for Ts ::; 0.4. The reason that the maximum positive TOA 

forcing occurs at a mass median diameter of about 2.0 pm can be explained as follows. 

At solar wavelengths, the single-scattering albedo w decreases with increasing particle size 

[Tegen and Lacis, 1996]. When the dust mass median diameter exceeds about 2 /-lm at a 

fixed mass loading, however, the effect of absorption begins to decrease strongly because 

the total particle number concentration falls off rapidly. For the conditions assumed here, 

for example, dust number concentration is 28 cm-3 at a mass median diameter of 2 /-lm, 

whereas it is 5 cm-3 at a mass median diameter of 3.5 /-lm. 
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Figure 3.4 TOA and surface diurnally averaged shortwave dust forcing as a functin of 
dust mass median diameter and surface albedo Ts in the presence of a cloud 
layer. Cloud layer ofliquid water content 0.2 g m-3 and effective droplet radius 
10 pm located between I and 1.5 km altitude. Dust layer of total column 
burden 100 mg m-2 located over 0-3 km altitude. Mass distribution of dust 
lognormally distributed with geometric standard deviation of 2.0. 

Table 3.2 Diurnal-Average Longwave Radiative Forcing Under Cloud-Free and Cloud 
Conditons 

Without Cloud, W m 2 With Cloud, W m 2 
Mass Median Diameter, flm 

TOA Surface TOA Surface 
1.0 0.2 1.0 0.0 0.1 
2.0 0.4 1.3 0.0 0.1 
3.5 0.4 1.3 0.1 0.1 
5.0 0.5 1.3 0.1 0.1 
8.0 0.4 1.1 0.1 0.1 

Longwave forcing for different mass median diameters is given in Table 3.2. For 

clear-sky conditions, both TOA and surface longwave forcing increases with increasing 

mass median diameter, reaching a maximum at 5 11m and then decreasing with further 

increase in mass median diameter. This behavior is a result of a similar variation in 

extinction coefficient (thus optical depth) in the wavelength region of 4-12 11m. When 
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Figure 3.5 TOA and surface diurnally averaged dust radiative forcing (shortwave (SW) 
and longwave (LW)) as a function of dust optical depth under cloud-free 
conditions. Dust layer of total column burden 100 mg m-2 located over 0-
3 km altitude. Mass distribution of dust lognormally distributed with mass 
median diameter of 3.5 pm and geometric standard deviation of 2.0. 

clouds are present, the dust layer exerts nearly zero forcing at both TOA and surface, 

regardless of particle size distribution. 

3.4.4 Dependence of Radiative Forcing on Dust Optical Depth 

Radiative forcing as a function of dust optical depth is shown under clear and 

cloudy conditions in Figures 3.5 and 3.6, respectively. A mass median diameter of 3.5 pm 

is assumed, and the altitude of the dust layer is fixed at 0-3 km. Under both clear and 

cloudy conditions, radiative forcing (longwave and shortwave) varies more or less linearly 

with optical depth at surface albedos characteristic of both ocean (rs= 0.08) and land (r s= 

0.2) surfaces. 
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Figure 3.6 TOA and surface diurnally averaged dust radiative forcing (shortwave (SW) 
and longwave (LW)) as a function of dust optical depth in the presence of a 
cloud layer. Cloud layer ofliquid water content 0.2 g m-3 and effective droplet 
radius lO /-tm located between 1 and 1.5 km altitude. Dust layer of total column 
burden 100 mg m- 2 located over 0-3 km altitude. Mass distribution of dust 
lognormally distributed with mass median diameter of 3.5 /-tm and geometric 
standard deviation of 2.0. 

3.4.5 Dependence of Longwave Forcing on Atmospheric Conditions 

We have seen that clear-sky longwave forcing depends on dust layer altitude, dust 

mass median diameter, and dust optical depth. Longwave radiative forcing also depends on 

atmospheric conditions, such as temperature profile and water vapor content (Table 3.3). 

Clear-sky longwave forcing is sensitive to changes in the atmospheric temperature profile. 

In cases in which we vary atmospheric temperature profile, the surface temperature is 

changed accordingly, thus the relative temperatures of dust layer, surface, and cloud remain 

the same. If the change in temperature is not uniform throughout the atmosphere, one can 

expect a larger or smaller sensitivity of longwave forcing to the actual temperature profile 

[Ramanathan, 1977]. Water vapor content is also a key parameter that affects longwave 



53 

Table 3.3 Longwave Forcing(W m-2) for Different Assumptions Concerning Atmos­
pheric Conditions 

Surface 
Temperature 

K 

298 

278 

288 

288 

Temperature 
Profile 

Water 
Vapor 
Profile 

Longwave Forcing (W m 2) 
No cloud cloud 

TOA Surface TOA Surface 

Sensitivity to the Atmospheric Temperature Profile 

increase 10K U.S. Standard 
throughout U.S. Atmosphere 
Standard profile 

decrease 10 K U.S. Standard 
throughout U.S. Atmosphere 
Standard profile 

0.5 1.6 

0.3 1.0 

Sensitivity to the Atmospheric Water Vapor Profile 

U.S. Standard dry casea 0.5 1.5 
Atmosphere 

U.S. Standard wet caseb 0.2 0.8 
Atmosphere 

0.1 0.1 

0.0 0.0 

0.1 0.1 

0.1 0.0 

aDry case has the same vertical characteristics as the U.S. Standard atmosphere except the water vapor 
mixing ratio is lower (assumed to be 2.4 g/kg) in the lowest 2.5 km. 
bWet case has the same vertical characteristics as the U.S. Standard atmosphere except the water vapor 
mixing ratio is higher (assumed to be 8.0 g/kg) in the lowest 2.5 km. 

forcing. By setting the water vapor mixing ratio in the lowest 2.5 km of the U. S. Standard 

Atmosphere to be 2.4 g kg- 1 ("dry case") and 8.0 g kg- 1 ("wet case"), under clear sky 

conditions, TOA longwave forcing is 0.5 and 0.2 W m-2 (25% and -50% change with 

respect to the base case), and surface forcing is l.5 and 0.8 W m-2 (15% and -38% change 

with respect to base case) for dry and wet cases, respectively. Thus the drier the atmosphere, 

the stronger the longwave radiative forcing of dust, a conclusion that is consistent with 

results presented by Sokolik et al. [1998]. 
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3.5 Local Sensitivity of Mineral Dust Radiative Forcing 

to Refractive Index, Mass Median Diameter, and 

Optical Depth 

Of the variables considered in this study, the most uncertain are imaginary part of 

the mineral dust refractive index (k), dust mass median diameter (Dpm), and dust optical 

depth (T). To evaluate the relative sensitivity of the diurnally averaged radiative forcing to 

these variables, local sensitivity coefficients, as described in Section 3.3, are computed at 

the base case conditions. 

The base case for the sensitivity study assumes that a dust layer of total column 

burden of 100 mg m-2 is located over 0-3 km altitude, with mass median diameter of3.5 

/-Lm. By varying x (x represents k, Dpm, and T) of the base case by 20% (-10% to +10%), 

we obtain the local sensitivity xa~? over ocean (Ts= 0.08) and land surfaces (T8= 0.20). 

Table 3.4 shows the local sensitivity of diurnally averaged radiative forcing to k. 

We note that TOA shortwave forcing under cloudy sky conditions is more sensitive to k 

than that under clear-sky conditions, as the cloud layer enhances aerosol absorption above 

the cloud, thus accentuating the effect of k. On the contrary, surface shortwave forcing is 

more sensitive to k in the absence of the cloud layer than in its presence. For the conditions 

assumed here, the effect of k on TOA and surface longwave forcing is nonzero only for 

clear-sky conditions. For net (shortwave plus longwave) forcing, no matter whether clouds 

are present or not, TOA forcing is more sensitive to variations in k than surface forcing. 

The local sensitivity of diurnally averaged radiative forcing to Dpm is summarized 
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in Table 3.5. Shortwave forcing at both TOA and surface in the absence of the cloud layer 

is much more sensitive to size than when clouds are present, and longwave forcing is not 

sensitive to particle size at fixed dust column burden. 

Sensitivity of radiative forcing to dust optical depth is summarized in Table 3.6. 

All forcings, except longwave forcing in the presence of clouds, are sensitive to optical 

depth. 

3.6 Critical Single-Scattering Albedo 

A first-order estimate of TOA shortwave radiative forcing can be made by 

calculating the change in planetary albedo resulting from addition of an optically thin 

aerosol layer. The critical single-scattering albedo Wcrit. of an optically thin aerosol layer at 

Table 3.4 Radiative Forcing Sensitivity k(8L':lF 18k) With Respect to the Imaginary Part 
of the Refractive Index k 

Surface Albedo 

0.08 
0.20 

0.08 
0.20 

TOA Sensitivities 
No cloud Cloud 

Shortwave 
0.83 1.81 
1.18 1.97 

Longwave 
0.5 0 

Net (Shortwave + Longwave) 
1.23 1.81 
1.68 1.97 

Surface Sensitivities 
No cloud Cloud 

-1.54 -0.83 
-1.40 -0.86 

1.0 o 

-0.54 -0.83 
-0.40 -0.86 

!J.F is given in W m -2. (Positive values imply that the increase in k produces larger heating or less cooling, 
while negative values mean less heating or larger cooling.) Base value of k is 0.006 and 0.25 at the 
wavelengths of 0.5 J-lm and 10 J-lm, respectively. 
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Table 3.5 Radiative Forcing Sensitivity Dpm(06.F joDpm) With Respect to the Mass 
Median Diameter Dpm 

Surface Albedo 

0.08 
0.20 

TOA 

3.45 
2.35 

0.5 

No Cloud 
Surface 

Shortwave 
4.95 
3.90 

Longwave 
0 

Cloud 
TOA Surface 

-0.50 0.95 
-0.55 0.90 

0 0 

I:!.F is given in W m-2 . (Positive values imply that the increase in Dpm produces larger heating or less 
cooling, while negative values mean less heating or larger cooling.) Base value of Dpm is 3.5 /Lm. 

Table 3.6 Radiative Forcing Sensitivity T( o6.F j aT) With Respect to Optical Depth T 

Surface Albedo 

0.08 
0.20 

No Cloud 
TOA Surface 

Shortwave 
-1.90 -5.22 
-0.75 -4.37 

Longwave 
0.4 1.23 

Cloud 
TOA Surface 

2.01 
2.15 

0.10 

-1.50 
-1.48 

0.03 

I:!.F is given in W m -2. (Positive values imply that the increase in T produces larger heating or less cooling, 
while negative values mean less heating or larger cooling.) Base value of Tis 0.05. 

which the perturbation in planetary albedo changes from one of cooling to one of heating, 

is given by [Chylek and Coakley, 1974; Seinfeld and Pandis, 1998] 

(3.2) 

where (3 is the upscatter fraction of the particles. Values of W > Wcrit lead to cooling; values 

of W < Wcrit to heating. 
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Figure 3.7 Three-layer radiative model of atmosphere. Layers I and 3 are aerosol layers, 
with optical depths, single scattering albedos, and up scatter fractions indicated. 
Layer 2 is the cloud layer, with albedo T2 and transmittance t2 . 

The analysis that leads to equation (3.2) can be extended to the case of interspersed 

aerosol and cloud layers (Figure 3.7). Layers 1 and 3 are aerosol layers, the optical 

properties of which are characterized by optical depths Tl and T3, single-scattering albedo 

w, and upscatter fraction {3. Layer 2 is a cloud layer with albedo T2 and transmittance t 2 . 

The Earth's surface is considered as a Lambertian reflector with albedo Ts. If aerosol exists 

entirely above cloud, then T3 = 0; conversely, for an aerosol layer wholly below cloud, 

Tl = O. We show in the Appendix that the critical single-scattering albedo of the aerosol in 

this general case is 

Generally {31 and {33 should be different because the incident irradiance on the top 

of layer 1 is direct while that on the top of layer 3 is mainly diffuse. The analysis in the 

Appendix considers {31 i- {33; for simplicity we assume {31 = {33 = {3 in equation (3.3). 
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The critical single-scattering albedo obtained by equation (3.3) is shown in 

Figure 3.8 as a function of surface albedo T 8 • As in previous sections, the cloud layer with 

liquid water content of 0.2 g m-3 and effective droplet radius 10 11m is located between 1 

and 1.5 km altitude. Based on our calculations, the albedo T2 and transmission t2 of the 

cloud, which are computed by assuming the surface albedo 7"8 = 0 and integrated over 

all angles of incoming radiation, are 0.61 and 0.32, respectively. The dust layer of total 

column burden 100 mg m- 2 has mass median diameter of 3.5 11m. The optical depth T, 

asymmetry factor g, and single-scattering albedo ware obtained by Mie calculations and 

then averaged over the solar wavelength region by 

A = J A(A)W(A)dA 
J W(A)dA 

(3.4) 

where A represents T, g, or w, and W(A) is TOA incident solar flux. The values of W(A) 

are given by Frohlich and London [1986]. The upscatter fraction (3 is calculated using an 

approximate relation, (3 = HI - If) [Wiscombe and Grams, 1976], which is the global 

mean value. For the dust aerosol parameters assumed, we obtain T = 0.056, (3 = 0.18, and 

w = 0.89. 

In Figure 3.8, three cases are considered: (1) all aerosol above cloud (T3 = 0), 

(2) all aerosol below cloud (Tl = 0), and (3) aerosol located both above and below cloud, 

with Tl = T3 . The critical value of w is sensitive to the location of the aerosol layers for 

either type of cloud. For a surface albedo of 0.15, Wcrit is largest (about 0.98) when all 

aerosol lies above the cloud layer, as in this case even a small amount of aerosol absorption 

leads to heating; Wcrit is smallest when all aerosols are located below cloud (about 0.68 
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Figure 3.8 Critical single-scattering albedo Wcrit as a function of surface albedo and 
location of the dust layer. The 500 m thick cloud layer has liquid water content 
of 0.2 g m-3 and effective droplet radius 10 p.m. T2 = 0.61 and t2 = 0.31. Total 
column burden of the dust layer is 100 mg m- 2 and mass median diameter is 
3.5 pm (the same as in Figure 3.2). 

at Ts = 0.15), because only a fraction of incoming radiation reaches the aerosol layer. 

Consequently, the absorbing component of the particles must be quite substantial to lead 

to heating. When surface albedo exceeds about 0.5, the aerosol always leads to a heating 

effect regardless of the value of w, the reason for which is absorption by surface and cloud. 

When an aerosol layer is present and surface albedo is high, the surface absorbs more 

radiation [Haywood and Shine, 1997]. According to our definition of TO A aerosol forcing, 

even though particles are nonabsorbing (w = 1), -(F~OA i -F~OA i) is positive. Similarly, 

absorption by cloud also leads to positive aerosol forcing. 

Since the parameters of the dust aerosol used for Figure 3.8 are the same as those 

in Figure 3.2, one can explain the TOA cooling and heating effects shown in Figure 3.2 

by comparing wand Wcrit. The spectrally averaged single-scattering albedo of the dust 
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aerosol is w = 0.89. It can be seen that w is always smaller than Wcrit for the case with 

all aerosol above cloud, which explains heating by a dust layer at 3-6 km in Figure 3.2. 

When all aerosol is below cloud, the curve for crosses over W = 0.89 at a surface albedo of 

about 0.25, which is in approximate agreement with the result shown in Figure 3.2; TOA 

forcing of the dust layer at 0-1 km changes from cooling to heating at a surface albedo of 

0.22. We do not compare the case with aerosol both above and below the cloud layer in 

Figure 3.8 with that in Figure 3.2 because dust is assumed to exist within the cloud layer 

in the calculations of Figure 3.2, whereas no aerosol is assumed inside the cloud layer in 

deriving Wcrit, although the difference is expected to be small. 

It should be mentioned that in the above analysis, water vapor and Rayleigh 

scattering have been neglected for simplicity. This treatment should not lead to significant 

error since TOA forcing depends on the difference in planetary albedo instead of on the 

absolute value of planetary albedo. 

3.7 Conclusion 

The present work studies the sensitivity of diurnal average mineral dust forcing 

(TOA and surface) to the imaginary part of dust refractive index, dust particle size, dust 

altitude, dust optical depth, surface albedo, and the presence or absence of clouds. The 

sign of net dust forcing (shortwave plus longwave) at TOA depends on surface albedo, 

particle size, k (imaginary part of refractive index), and the presence or absence of clouds. 

Results show that low surface albedo and small particle size can produce negative forcing 
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(cooling) under clear sky conditions, which is consistent with the results obtained by Tegen 

and Lads [1996] and Tegen et al., [1996]. At the surface, shortwave forcing always leads 

to cooling, and longwave forcing always leads to heating. 

The presence of a low-level stratus cloud greatly alters both shortwave and 

longwave forcing by mineral dust from the values under clear-sky condition. Though 

longwave forcing is important under clear-sky condition [Sokolik et aI., 1998], it becomes 

practically negligible when clouds are present. Surface forcing in the presence of a cloud 

always leads to cooling and is greatly reduced in magnitude compared with clear-sky 

shortwave forcing. The sign of cloudy sky TOA forcing by dust is determined by the 

critical single-scattering albedo derived in this study. 

Sensitivity studies show the following results: 

1. Net TOA forcing is more sensitive to k, the imaginary part of the dust refractive 

index, than net surface forcing, no matter whether a cloud layer is present or not. 

2. Clear-sky shortwave forcing (TOA and surface) is not sensitive to the altitude of the 

dust layer, but clear-sky longwave forcing (TOA and surface) and cloudy sky TOA 

shortwave forcing are quite sensitive to it. 

3. Shortwave forcing (TOA and surface) under clear-sky conditions is more sensitive to 

dust mass median diameter than that under cloudy sky conditions. Longwave forcing 

is not sensitive to particle size. 

4. All forcings are sensitive to dust optical depth except cloudy-sky longwave forcing. 
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Appendix: Derivation of Critical Single-Scattering Albedo for Cloud 

and Aerosol Layers 

Consider the aerosol and cloud layers shown in Figure 3.7. For optically thin 

aerosol layers the reflectance and transmittance are given by [Coakley and Chylek, 1975; 

King and Harshvardhan, 1986] 

fLo 
(AI) 

(A2) 

(A3) 

(A4) 

where fLo is the cosine of solar zenith angle. The spherical reflectances and transmissions 

are obtained by integration of equations (AI )-(A4) over all angles of incoming radiation 

[Chylek and Wong, 1995]. We obtain 

(AS) 

(A6) 

(A7) 

(A8) 
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where 

i = 1,3 

By using the adding method [Liou, 1980], the combined reflectance and transmittance for 

layers 1 and 2 are 

(A9) 

(A10) 

Then regarding layers I and 2 as a single layer, we get the combined reflectance and 

transmittance of layers 1, 2, 3 as 

(All) 

(AI2) 

Similarly, the combined reflectance of layers 1, 2, 3 and the surface is 

(A13) 

Using equations (A5)-(A8) in (A9)-(A13) and neglecting terms involving Tf and Tl T2, one 

obtains 

(A14) 

(A15) 

(AI6) 



64 

(Al8) 

If we let T1 + T3 = T, the total optical depth of the aerosol layer, (31 (3, and 

WI = W3 = W, then 

(AI9) 

In the absence of aerosols the reflectance of the cloud-surface system is 

(A20) 

The change in reflectance as a result of the presence ofthe aerosol layers is 6.Tp = T'123s -

T cs' Setting 6..T p = 0 leads to the desired expression for the critical single-scattering albedo 

of the aerosol, i.e., the value of W at which 6.Tp changes sign, 

2 
W . _ (r2+~)+r;r2t~-r2(1+r;t~)(1-4TIl-rst~(1+rsr2)(1-4T) 

cr2t - 2(1 +r;tD[Tl,6+2r2 (l-,6)Tl +r~Tl,6+T3,6t~J+rst~ (1 +r.,r2) [4(1-,6)T+4,6Tr2J 
(A21) 
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Chapter 4 

Effects of Aerosols on Tropospheric Photolysis 

Rates in Clear and Cloudy Atmospheres 

[The text of this chapter appears in Liao, H., Yung, Y.L., and Seinfeld, J.H. (1999) Journal 

a/Geophysical Research, 104,23697-23707.] 
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ABSTRACT 

The effect of aerosols on 14 tropospheric photolysis reactions is examined under 

noncloudy and cloudy sky conditions by using a detailed one-dimensional radiative transfer 

model. Pure (NH4)2S04, pure soot, and internal and external mixtures of the two aerosols, 

as well as mineral dust aerosol, are considered. Nonabsorbing aerosol generally enhances 

photolysis rates above and in the upper part of the aerosol layer in both noncloudy and 

cloudy atmospheres, with the enhancement effect reduced in the presence of clouds. 

In contrast, soot aerosol reduces photolysis rates under both noncloudy and cloudy sky 

conditions, with the reduction accentuated by a cloud layer. Mixtures of absorbing and 

nonabsorbing aerosols may produce enhancement or reduction in photolysis rates under 

clear sky conditions, whereas they generally reduce rates when a cloud is present. In the 

absence of cloud, sulfate aerosol at urban levels enhances tropospheric average photolysis 

rates from 11 to 18% for the 14 reactions studied; soot aerosol decreases tropospheric 

average rates from 6 to 11 %. In the presence of a 500-m-thick stratus cloud, sulfate aerosol 

enhances each of 14 tropospheric average photolysis rates by about 5%; soot aerosol 

decreases tropospheric average photolysis rates from 9 to 19%. 
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4.1 Introduction 

Solar radiation drives the chemistry of the troposphere through the photodissociation 

of a number of molecules. The local photolysis rate of an atmospheric species i, J( i) (S-l), 

is given by 

(4.1) 

where O"i('\, T) (cm2
) is the wavelength and temperature-dependent absorption cross 

section of species i, cPi('\, T) is the quantum yield, and F('\) (photons cm-2 nm-1 S-l) is 

the solar actinic flux. In the troposphere, the wavelength range of interest is approximately 

Calculation of photolysis rates requires accurate specification of actinic flux, which 

in the troposphere depends on solar zenith angle, surface albedo, molecular absorption, 

Rayleigh scattering, and the presence of clouds and aerosols. The effects of molecular 

absorption and Rayleigh scattering on actinic flux are relatively well known and are 

routinely modeled. Among all the absorbing gases, ozone has the most significant effect 

on tropospheric chemistry by altering photolysis rates [Liu and Trainer, 1988; Thompson 

et al., 1989; Madronich and Granier, 1992; Fuglestvedt et al., 1994; Ma, 1995]. As shown 

by Fuglestvedt et al. [1994], for the period 1970-1990, stratospheric ozone depletion led 

to a reduction of 4.5% in global annually averaged total 0 3 , which increased the global 

annual average surface photodissociation rate of 0 3 to Oe D) by 6.3%. 

Radiative transfer in a cloudy atmosphere and its relation to photochemistry have 

been studied quite extensively [Thompson, 1984; Madronich, 1987a,b; Tsay and Stamnes, 
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1992; van Weele and Duynkerke, 1993; Krol and van Weele, 1997; Matthijsen et al., 1997, 

1998; Crawford et al., 1999]. In comparison to clear sky, an optically thick cloud is 

predicted to increase photolysis rates in the upper part of the cloud and above cloud, while 

reducing those below cloud. 

Aerosols scatter and absorb UV radiation and consequently either enhance or 

reduce actinic flux and/or photolysis rates. Studies of the effects of aerosols on UV 

radiation have been carried out by Liu et al. [1991], Forster [1995], Reuder et al. [1996], 

Ma and Guicherit [1997], Erlick and Frederick [1998], Erlick et al. [1998], Papayannis 

et al. [1998], Repapis et al. [1998], Jacobson [1999], and Reuder and Schwander [1999]. 

Ma and Guicherit [1997] studied the effects of air pollutants on surface UV-B radiation 

by using a multilayer radiative transfer model and found that the increase of tropospheric 

pollution in nonurban regions over that last 50-100 years has reduced the surface UV­

B, offsetting the effect of the increase due to stratospheric ozone depletion. Recently, 

Reuder and Schwander [1999] showed that potential day-to-day variability in nonurban 

atmospheric aerosols produces changes of spectrally integrated actinic flux by 10-50%. 

Jacobson demonstrated that nitrated and aromatic aerosols may be important in reducing 

UV radiation. Measurements in Athens, Greece, showed that urban aerosols can reduce 

clear sky UV-B radiation by as much as 40% [Papayannis et at., 1998; Repapis et al., 1998]. 

Studies of the effects of tropospheric aerosols on photolysis rates have been carried out by 

Demerjian et al. [1980], Ruggaber et al. [1994], Lantz et al. [1996], Castro et al. [1997], 

Dickerson et al. [1997], Landgraf and Crutzen [1998], and Jacobson [1998]. Scattering 

aerosols in the boundary layer accelerate photochemical reactions within and above the 
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aerosol layer [Ruggaber et al., 1994; Dickerson et a!., 1997; Landgraf and Crutzen, 1998; 

Jacobson, 1998], while absorbing aerosols decrease photolysis rates [Ruggaber et al., 1994; 

Dickerson et al., 1997; Jacobson, 1998]. Effects of aerosols on photolysis rates are sensitive 

to the aerosol optical depth, single-scattering albedo, and vertical profile, as well as relative 

humidity and solar zenith angle [Ruggaber et al., 1994]. 

Even though cloud and aerosol effects have been well studied separately, 

aerosol effects on photolysis rates in the presence of clouds have not yet been studied 

systematically. The goal of this work is to evaluate the impact of aerosols on tropospheric 

photolysis rates, with emphasis on the interaction between cloud and aerosol layers. This 

interaction is important because stratus clouds, those that are primarily responsible for the 

reflection of UV and visible radiation, frequently occur near the Earth's surface. Since 

scattering by aerosols below a low-level stratus cloud can be shielded by the cloud and 

aerosol absorption above the cloud can be significantly enhanced by the presence of the 

cloud [Liao and Seinfeld, 1998], we expect, as is shown in this study, that the effects of 

aerosols on photolysis rates in the presence of clouds can be quite different from those 

under clear sky conditions. 

To explore the qualitative effect of aerosol optical properties and to span the range 

from nonabsorbing to strongly absorbing particles, (NH4hS04 and soot aerosols are taken 

as representative of these extremes of tropospheric aerosols, in both internal and external 

mixtures. We consider also the effect of mineral dust aerosol on photolysis rates. 
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4.2 Radiative Transfer Model 

We calculate actinic flux with the one-dimensional discrete ordinate radiative 

transfer (DISORT) model [Stamnes et al., 1988]. DISORT uses the discrete ordinate 

method [Chandrasekhar, 1960] to solve the radiative transfer equation, and it uses the 6-M 

method [Wiscombe, 1977] to compute fluxes efficiently in scattering media with strongly 

asymmetric phase functions. The accuracy of DISORT has been confirmed under both 

clear and cloudy sky conditions. By comparing J(N02 ) calculated with DISORT with that 

measured in the summer of 1995 at Greenbelt, Maryland, Dickerson et al. [1997] showed 

that clear sky predictions and measurements of J(N02) agreed over a broad range of optical 

depths and zenith angles. It was shown by Matthijsen et al. [1998] that in the presence of 

clouds, modeled UV irradiances were close to the measured values; the difference was 

found to be within approximately 5 W m- 2
• 

The vertical resolution, spectral resolution, and number of streams of the code can 

be selected freely. In this study, we use 80 vertical layers from 0 to 70 km, with a vertical 

resolution of 100 m in the lowest 3 km, 200 m between 3 and 4 km, 1 km between 4 and 50 

km, and 5 km between 50 and 70 km. Pressure, temperature, ozone, and number density of 

air are from the U.S. Standard Atmosphere (1976). Actinic flux calculations are performed 

in the wavelength region of 290 - 700 nm, with spectral intervals of 1 nm between 290 and 

330 nm, 2 nm between 330 and 600 nm, and 5 nm between 600 and 700 nm. The highest 

resolution is taken at the shortest wavelengths where ozone absorption changes rapidly and 

where most photodissociation reactions of interest occur. The number of streams is set 

equal to 16. 
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The temperature-dependent ozone absorption cross section data are those reported 

by Malicet et al. [1995] (290-345 nm) at 218 K, 228 K, 243 K, 273 K, and 295 K, and by 

World Meteorological Organization (WMO) [1985] (345 - 700 nm) at 203 K and 273 K. 

Solar irradiance data are taken from Woods et al. [1996] for wavelengths ::;410.5 nm with a 

wavelength resolution of 1 nm and from Neckel and Labs [1984] for wavelengths> 410.5 

nm with a resolution of 1 nm (wavelengths ::;630 nm) and 2 nm (wavelengths >630 nm), 

respectively. The spectral surface albedo follows that of Demerjian et al. [1980] for land 

surface: 290--400 nm (0.05), 400--450 nm (0.06), 450-500 nm (0.08), 500-550 nm (0.10), 

550-600 nm (0.11), 600-640 nm (0.12), 640-660 nm (0.135), and 660-700 nm (0.15). 

4.3 Aerosol and Cloud Specification 

When (NH4)2S04, soot, and mixtures thereof are present, we assume that an 

aerosol layer extends from the Earth's surface to 5 km, with the mass concentration of 

each species decreasing linearly from its value at the surface to 0.1 of its surface value at 

3-km altitude and remaining constant from 3 to 5 km. Column burdens of 12.5 mg m-2 

for (NH4)2S04 and 2.5 mg m-2 for soot are representative of continental conditions [Uao 

and Seinfeld, 1998]. For urban conditions, column burdens of 125 mg m-2 for (NH4hS04 

and 25 mg m-2 for soot are assumed. Whereas an (NH4)2S04 column burden of 125 

mg m-2 is somewhat high for sulfate alone, this value can account for the presence of 

other essentially nonabsorbing components, such as nitrate. When mineral dust aerosol is 

considered, a uniform layer with a column burden of 100 mg m-2 is assumed at 3- to 6-

km altitude. On the basis of the analysis of Den ten er et al. [1996], 100 mg m-2 is roughly 
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the annual average column dust burden over North Africa and Asia. 

Aerosol optical properties are calculated with the code ELSIE [Sloane, 1984, 1986; 

Sloane and Wolff, 1985; Sloane et al., 1991]. The dry mass size distributions of(NH4)2S04, 

soot, and mineral dust particles are assumed to be lognormal, with mean diameter of 0.5 

pm and geometric standard deviation of 2.0 for (NH4hS04, 0.1 pm and 2.0 for soot, and 

2.0 pm and 2.0 for mineral dust particles, respectively. Refractive indices for (NH4)2S04, 

soot, and water are from Toon et al. [1976], World Climate Program [1986] and Hale and 

Querry [1973], respectively. The refractive index of dust from the world's desert regions 

varies significantly [Patterson et al., 1977; Sokolik et al., 1993]. For the mineral dust 

refractive index, we assume a real part of 1.50 and use curve 8 in Figure 1 of Sokolik et al. 

[1993] as the imaginary part, k, in the wavelength region of290 to 700 nm. (Thus k= 0.006 

at 500 nm.) Densities are taken to be 1.76 g cm-3 for (NH4)2S04, 1.70 g cm-3 for soot, 

and 2.5 g cm-3 for mineral dust. In the lowest 5 km of the U.S. Standard Atmosphere, a 

uniform relative humidity of 50% is a reasonable approximation and is used to calculate 

the hygroscopic and optical properties of the aerosol. Liquid water mass associated with 

pure (NH4hS04 particles and mixed (NH4hS04-S00t particles is calculated by using gas­

aerosol thermodynamic theory [Pilinis and Seinfeld, 1987; Kim et al., 1993a,b]. It is 

assumed that soot and mineral dust are nonhygroscopic. 

Particle index of refraction is calculated as a volume-weighted average of the 

indices of refraction of its components. For an external mixture of (NH4hS04 (denoted s) 

and soot (denoted c), the single scattering albedo wand asymmetry factor 9 are calculated 

by [d'Almeida et al., 1991] 
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(4.2) 

g .. wsas + gcwcac 
g=------

wsas + wcac 
(4.3) 

where as and ac are the total extinction cross sections of sulfate and carbon particles, 

respectively. 

When a cloud is present, we assume a stratus cloud layer centered at 950-m altitude 

with a thickness that can vary from 100 to 1000 m. Nominal cloud thickness is taken to 

be 500 m. Liquid water content, lwc, within the cloud is assumed to increase linearly with 

increasing height with a vertically averaged value of 0.2 g m-3 . An effective cloud droplet 

radius r e of 10 pm is assumed, and the cloud optical depth over a layer of thickness dz is 

estimated by [Slingo and Schrecker, 1982] 

3lwc x dz 
(4.4) 

where Pw is the density of water. The asymmetry factor of the cloud layer is assumed to 

be 0.85 [Matthijsen et at., 1998]. Aerosol particles are assumed to be present interstitially 

within the cloud. Since hygroscopic sulfate particles are expected to be scavenged by cloud 

droplets, this assumption leads to a small overestimation of photolysis rates above clouds 

and a slight underestimation of those within and below clouds. 

A summary of total optical depth of the major atmospheric components considered 

in this study is given in Table 4.1. Vertical profiles of optical depth are shown in Figure 4.1 

for Rayleigh scattering, ozone absorption, and urban sulfate aerosol. The optical depth is 
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Figure 4.1 Profiles of optical depth per km for Rayleigh scattering, ozone absorption, and 
urban sulfate scattering at A= 300 nm (a) and 400 nm (b). Profiles are obtained 
by dividing the atmosphere into layers of 1 km. 
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defined as that of a layer of l-km thickness. The optical depth of Rayleigh scattering and 

aerosols is larger at UV wavelengths than it is at visible wavelengths; that of mineral dust 

is more or less constant over these wavelengths (Table 4.1). 

Photolysis rates are computed by equation (4.1). Sources of absorption cross 

section and quantum yield data are listed in Table 4.2 for 14 photolysis reactions of 

importance in tropospheric chemistry. 

4.4 Effects of Aerosols on Tropospheric Photolysis Rates 

We have performed detailed calculations of photolysis as a function of altitude, 

aerosol, and cloud state for all 14 photochemical reactions in Table 4.2; in the interest 

of space, we present here only J(Or-tOe D)), J(N02), and J(HCHO). Tropospherically 

averaged photolysis rates are given in Section 4.4.1 for all 14 reactions. 

4.4.1 Effect of Sulfate Aerosol on Photolysis Rates 

The impact of sulfate aerosol on J(03-----+0e D)), J(N02), and J(HCHO) at 0° 

solar zenith angle is shown in Figure 4.2. The optical depth of continental sulfate aerosol 

is 0.057 at 550-nm wavelength, whereas that of sulfate at urban conditions is 0.57 at the 

same wavelength. 

In the absence of clouds and aerosols, J(03-----+0e D)) exhibits a weak maximum 

at about 5-km altitude, which results from the competing effect of a decrease in actinic 
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is presented for both continental and urban conditions. Cloud layer has a 
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Table 4.1 Total Optical depth for Major Atmospheric Components Considered in This 
Study 

Atmospheric Components 

Rayleigh molecules 
Ozone 
Aerosols 

Pure (NH4hS04 (continental) 
Pure (NH4hS04 (urban) 
Pure soot (continental) 
Pure soot (urban) 
Internal mixture (urban) 
External mixture (urban) 
Mineral dust 

Cloud (500 m thick) 

Total Optical Depth 
),=300 nm ),=400 nm 

1.22 0.36 
3.34 0.00 

0.13 0.09 
1.34 0.92 
0.03 0.02 
0.26 0.18 
1.63 1.12 
1.60 1.10 
0.11 0.12 

15.0 15.0 

flux with decreasing altitude and an increase in temperature (the higher the temperature, 

the higher the 0 3 absorption) with decreasing altitude. When (NH4)2S04 aerosol is added 

to a clear atmosphere, J(03---+0e D» increases everywhere except at the surface, because 

the increased diffuse actinic flux offsets the loss in direct actinic flux at the surface. As 

shown by numerous other studies, the presence of a cloud layer (no aerosol) increases J 

values above and within the upper part of the cloud, while reducing J values below and 

within the lower portion of the cloud. The addition of (NH4hS04 aerosol to the cloudy 

atmosphere mainly increases J(03---+0e D» above and at the top of the cloud layer, but 

the magnitude of the increase is smaller than that resulting from (NH4)2S04 aerosol under 

clear sky conditions, because the cloud layer shields the scattering effect of sulfate aerosol 

located below the cloud layer. J(N02) and J(HCHO) exhibit aerosol and cloud effects 

similar to those for J(03---+0e D». 

To examine the effect of solar zenith angle, we consider urban sulfate only, since 

the effect of sulfate aerosol at continental background levels on J values is small. At a 
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altitude. Note the horizontal scale is different from that used in Figure 4.2. 
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solar zenith angle of 60° (Figure 4.3), J values are significantly reduced compared with 

their values at 0° solar zenith angle (Figure 4.2). There is a crossover of J values for no 

cloud/no aerosol and no cloud/pure sulfate at an altitude of about 1 km, which is a result 

of the fact that at larger solar zenith angles the stronger backscattering by sulfate aerosol 

[Wiscombe and Grams, 1976] reduces the available UV flux near the surface but increases it 

at higher altitudes. Above the cloud layer, urban sulfate aerosol slightly increases J values 

at higher altitudes (about 4 km here), while it reduces the cloudy sky J values between 

the top of the cloud layer and 4-km altitude. There are two reasons for this behavior: 

First, in the scenario considered, about 48% of the total mass of sulfate aerosol is located 

below the cloud layer. As solar zenith angle increases, the optical path through the cloud 

increases, producing the same effect as that of a thicker cloud layer. Backscattering by 

Table 4.2 Absorption Cross Section and Quantum Yield Data Used in Present Work 

Photolysis Absorption Quantum Yield Wavelength 
Reactions Cross Section (¢) Rage, nm 
03->OCSP)+02 Malicet et al. [1995] DeMore et al. [1997] 290-700 

WMO [1985] 
03->Oe D)+02 Malicet et al. [1995] DeMore et al. [1997]a 290-329 

Takahashietal. [1998] 
N02->NO+O DeMore et al. [1997] DeMore et al. [1997] 290-424 
N03->NO+02 Sander [1986] Johnston et al [1996] 400-691 
N03->N02+O Sander [1986] Johnston et al [1996] 400-691 
N20 5->N03+N02 DeMore et al. [1997] ¢=1.0 290-380 
H20 2->OH+OH DeMore et al. [1997] ¢=1.0 290-350 
HONO->OH+NO DeMore et al. [1997] ¢=1.0 310-396 
H02N02->H02+N02 DeMore et al. [1997] ¢=0.67 290-325 
H02N02->OH+NOa DeMore et al. [1997] ¢=0.33 290-325 
HCHO->HCO+H DeMore et al. [1997] DeMore et al. [1997] 301-356 
HCHO->CO+H2 DeMore et al. [1997] DeMore et al. [1997] 301-356 
CH3OOH->CH3O+OH DeMore et al. [1997] ¢=1.0 290-360 
CH3COCH3 ->products Gierczak et al. [1998] Gierczak et al. [1998] 290-349 

UThe values of ¢(Oe D» recommended by DeMore et al. [1997] do not include the generation of Oe D) 
from spin-forbidden channel 03+hv->Oe D)+02(a1 ~g). For this channel a temperature independent 
quantum yield of 0.08 in the wavelength rage 318-329 nm has been determined by Takahashi et al. [1998] 
and is included in the present calculation. 
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sulfate aerosol below the cloud layer is almost completely shielded, and the small change 

in J above the cloud layer is produced solely by sulfate aerosol located above the cloud 

layer. Second, above the cloud layer, sulfate aerosol has the same effect as it does under 

clear sky conditions; that is, it increases J values above and within the upper part of the 

aerosol layer but reduces them within the lower part of the aerosol layer. 

4.4.2 Effect of Soot Aerosol on Photolysis Rates 

The effect of soot aerosol on J(03----+0e D)), J(N02 ), and J(HCHO) at 0° solar 

zenith angle is shown in Figure 4.4 for continental soot conditions (optical depth Tsoot= 

0.012 at a wavelength of 550 nm) and for urban soot conditions (Tsoot= 0.12 at the same 

wavelength). Soot aerosol in the cloud-free atmosphere reduces J values at all altitudes, 

with the maximum reduction occurring near the surface where the soot mass concentration 

is highest. In the cloudy atmosphere, soot aerosol absorbs both incident radiation and 

radiation reflected by the high-albedo cloud layer; hence it significantly reduces J values 

above the cloud layer, with the magnitude of reduction several times higher than that under 

clear sky conditions. 

Under background continental conditions, soot aerosol has a small effect on clear 

sky J values but can noticeably reduce photolysis rates when clouds are present; for the 

conditions considered in Figure 4.4, continental soot aerosol can reduce J values above the 

cloud by about 8%. For a solar zenith angle of 60° (not shown), photolysis rates exhibit the 

same form as those in Figure 4.4 but shift to smaller values. 
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Figure 4.4 Vertical profiles of (a) J(03->Oe D)), (b) J(N02), and (c) J(HCHO) at 0° 
solar zenith angle with and without cloud layer. The effect of soot aerosol 
is presented for both continental and urban conditions. Cloud layer has a 
thickness of 500 m and is centered at 950-m altitude. 
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4.4.3 Effect of Internal and External Aerosol Mixtures on Photolysis 

Rates 

Atmospheric aerosols exist as mixtures. For the two species, (NH4)2S04 and 

soot, in an internal mixture, every particle contains both species, whereas an external 

mixture consists of pure (NH4)2S04 particles and pure soot particles. With every particle 

exhibiting some absorption, an internal mixture has a lower single-scattering albedo than 

the corresponding external mixture does [Haywood and Shine, 1995]. 

J(03-+0eD)) in the absence or presence of the SOO-m cloud layer is shown in 

Figure 4.S for four cases: (1) no aerosol, (2) pure soot, (3) internal mixture, and (4) external 

mixture. The internal and external mixtures contain the same amount of soot as that in the 

pure soot aerosol, but they contain additional sulfate aerosol. Figure 4.5a is for 0° solar 

zenith angle, whereas Figure 4.Sb corresponds to 60° solar zenith angle. The behavior of 

J(N02 ) and J(HCHO) is similar to that of J(03-+0e D)) and is not shown here. 

Consider first the behavior of J(03-+0e D)) at a solar zenith angle of 0°. Under 

cloud-free conditions, an internal mixture causes a slight reduction in J(03-+0e D)) above 

a certain altitude (2 km for the present conditions), while an external mixture causes an 

increase in J(03-+0e D)) there as a result of the higher single-scattering albedo. Since 

aerosol concentration is assumed to increase linearly with decreasing altitude, the reduction 

of J(03-+0e D)) by both internal aerosol mixtures and external aerosol mixtures increases 

rapidly as the altitude decreases. The presence of (NH4)2S04 in the mixtures causes 

the extinction coefficient of the mixtures to be higher than that of pure soot. Thus the 
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Figure 4.5 Vertical profiles of J(03---70e D)) for pure soot, internal (NH4)2S04-soot, and 
external (NH4hS04-soot mixtures with and without cloud layer. Left column 
(a) is for 00 solar zenith angle and the right column (b) is for 600 solar zenith 
angle. Shaded region is the cloud layer that has a thickness of 500 m and is 
centered at 950-m altitude. 

reduction in J(03---70e D)) near the surface in the presence of either an internal mixture 

or an external mixture is greater than that caused by pure soot. When a cloud is present, 

both internal mixtures and external mixtures reduce J(03---70e D)) at all altitudes, with 

the internal mixture always leading to a larger reduction than that of the external mixture. 

Because the absorption coefficient of an internal mixture is larger than that of pure soot, 

but since the internal mixture also contains sulfate, its scattering effect is much stronger 

than that of soot alone. In the presence of a thick cloud, absorption is accentuated; thus 

absorption by the internal mixture becomes stronger that that by pure soot [Liao and 
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Seinfeld, 1998]. 

At a solar zenith angle of 60°, when no cloud is present, because of the increased 

upscattering by sulfate at higher solar zenith angles, the mixtures lead to a reduction in 

J(03~Oe D)) below 5-km altitude, producing a crossover of J(03~Oe D)) for pure soot 

and that for mixtures at about 1.5-km altitude. In the presence of the cloud layer, mixtures 

cause a larger reduction in J(03~Oe D)) between the top of the cloud layer and about 

4-km altitude than pure soot does. 

In summary, aerosol mixtures may either increase or decrease J values under clear 

sky conditions, depending on the mixture single-scattering albedo, solar zenith angle, and 

altitude. Regardless of whether aerosol mixtures enhance or reduce J values in a clear 

atmosphere, they always lead to a reduction in J values in the presence of a cloud. 

4.4.4 Effect of Mineral Dust Aerosol on Photolysis Rates 

Mineral dust aerosol in the lowest several kilometers of the atmosphere exerts the 

same effect on photolysis rates as that of the sulfate-soot mixtures studied does. The effect 

of an elevated layer of mineral dust aerosol on J(03~Oe D)) is shown in Figures 4.6a 

and 4.6b, where a vertically uniform dust layer of column burden 100 mg m-2 is assumed 

to be located at 3--6 km. In a clear atmosphere, at 0° solar zenith angle, the dust layer 

reduces photolysis rates at all altitudes, with maximum reduction occurring within the dust 

layer itself. At 60° solar zenith angle, the upscattering by mineral dust is increased; thus 

maximum reduction in clear sky J shifts to the bottom of or below the dust layer. In the 

presence of the cloud layer, an elevated dust layer reduces J above cloud at all solar zenith 
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Figure 4.6 Vertical profiles of J(03----+0e D)) in the presence of an elevated layer of 
mineral dust aerosol with and without cloud layer. (a) solar zenith angle = 

0° (b) solar zenith angle = 60°. Dust layer is located at 3-6 lan, while the 
SOO-m thick cloud layer is centered at 9S0-m altitude. Note (a) and (b) have 
different horizontal scales. 

angles. The effect of an elevated layer of mineral dust on all other J values is similar to 

that on J(03----+0e D)) and thus is not shown here. 
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4.5 Effect of Cloud Thickness on Photolysis Rates 

To examine the effect of cloud thickness on photolysis rates, we compute 

J(03-----70e D)) (Figure 4.7) at the two altitudes of 5 km (above cloud and at the top of 

the aerosollayer) and 300 m (below cloud) as a function of cloud thickness. Urban sulfate 

and soot are considered here at a solar zenith angle of 0°. The behavior of J(03-----70e D)) 

is representative of that of other photolysis reactions. 

At 5 km, the presence of sulfate aerosol always increases J values at any cloud 

thickness, with the fractional increase becoming smaller as the cloud layer gets thicker. 

This behavior is expected because of the shielding effect of the cloud. In contrast, 

soot aerosol always reduces J, with the fractional reduction increasing as cloud thickness 

increases. The larger the cloud albedo, the greater the amount of radiation reflected back 

to the soot aerosol above the cloud and absorbed. 

At 300-m altitude (below cloud), aerosol effects are maximum under clear sky 

conditions. As the cloud layer becomes thicker, the sulfate effect quickly becomes 

negligible, whereas the relative reduction in J by soot aerosol gets somewhat smaller. 

4.6 Uncertainties in Predicted Effects 

Uncertainties in the absolute values of the modeled photolysis rates are not a result 

of the mathematical methods used to solve the radiative transfer equations. The main 

sources of inaccuracy are incomplete or insufficient input parameters [Weihs and Webb, 
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Figure 4.7 J(03---+0e D)) at altitudes of 5 km and 300 m as a function of cloud thickness 
for three cases: (1) no aerosol; (2) pure sulfate aerosol under urban conditions, 
and (3) pure soot aerosol under urban conditions. Cloud layer of liquid water 
content 0.2 g m-3 and effective droplet radius 10 f-Lm centered at 950-m 
altitude. 

1997; Reuder and Schwander, 1999]. Photolysis rates predicted with models depend on 

parameters that include solar zenith angle, surface albedo, spectral resolution, vertical 

resolution, number of radiative streams, vertical profile of ozone, absorption cross section 

and quantum yield data for specific species, as well as optical properties (optical depth, 

single-scattering albedo, and asymmetry factor) of aerosols and clouds. Sensitivity studies 

have shown that among these parameters, the most important are solar zenith angle, surface 

albedo, column burden of ozone, and optical properties of aerosols and clouds [Demerjian 

et al., 1980; Ruggaber et al., 1994]. Since the effects of solar zenith angle, different aerosol 

types, and cloud thickness have been studied in previous sections, only the effects of surface 

albedo and ozone column burden will be discussed here. 
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We have considered urban and continental aerosols in our study because the effect 

of marine aerosol is expected to be small as a result of its small optical depth. For land 

surfaces, the albedo depends on the type and amount of vegetation, the type and moisture 

content of the soil, snow cover, solar zenith angle, and wavelength. One important land 

surface condition to examine is a surface with fresh snow cover. A wavelength-independent 

surface albedo of 0.8 is assumed, and we consider both urban sulfate conditions and 

urban soot conditions at 0° solar zenith angle. Results are compared with those shown in 

Figures 4.2 and 4.4 to investigate the effect of surface albedo when it is changed from the 

value used by Demerjian et al. [1980] to 0.8. Qualitatively, effects of aerosols on photolysis 

rates at high albedo are the same as those obtained with the previous albedo of Demerjian 

et al. [1980] For the case of urban sulfate, the high albedo leads to a decrease in the 

effect on photolysis rates with increasing height under clear sky conditions, since multiple 

scattering is strongest near the surface. For the case of urban soot, the high albedo causes 

a more significant reduction in both clear sky photolysis rates and cloudy sky photolysis 

rates; while urban soot aerosol reduces photolysis rates by about 10-20% when the surface 

albedo is that used by Demerjian et al. [1980], it can reduce photolysis rates at all altitudes 

by about 30-40% over high-albedo surfaces. 

Ozone column burden may vary by more than 200 Dobson units (DU) within a 

year [Ruggaber et aI., 1994]. This change in ozone column burden can significantly affect 

the photolysis rates of the species that dissociate at wavelengths <325 nm. However, our 

tests have shown that the change of ozone column burden simply shifts the photolysis rate 

of a species to a smaller or larger value; the qualitative results concerning the effects of 
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aerosols on photolysis rates obtained in sections 4.1-4.4 do not change with varying ozone 

column burden. 

4.7 Tropospheric Averaged Photolysis Rates 

Tropospheric averaged photolysis rates for all the reactions in Table 4.2 are 

presented in Table 4.3 at a cloud thickness of 500 m and a solar zenith angle of 0°. Under 

clear sky conditions, sulfate aerosol at the urban level increases all J values by 10-18%, 

while soot aerosol reduces all J values by 6-11 %. When the 500-m cloud layer is present, 

sulfate aerosol increases all J values by about 5%, and soot aerosol reduces J values by 

amounts between 9 and 19%. The tropospheric average photolysis ratios show again that a 

cloud layer reduces the effect of sulfate aerosol but enhances that of soot aerosol. 

The current results show that urban aerosols produce a change in photolysis rates 

of the order of 10-20% when averaged through the troposphere. This value can be larger 

locally. The aerosol effect is significant when we compare it to the general uncertainty in 

measuring photolysis rates in a clear or cloudy atmosphere. Although the absolute accuracy 

of photolysis measurements by a spectroradiometer is estimated to be between ± 15 and 

±20% depending on the quality of the molecular absorption cross section and quantum 

yield data, at least three quarters of the uncertainties are of systematic nature caused by the 

calibration of the detectors [Shetter and Miiller, 1999]. Thus one can expect that the effect 

of urban and regional aerosols on photolysis rates should be detectable under both clear 

sky conditions and cloudy sky conditions and that the effect of absorbing aerosols (in the 
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form of internal or external mixtures) at continental conditions should be detectable in the 

presence of low-level stratus clouds. 

4.8 Conclusions 

A one-dimensional radiative model is applied to study the effects of aerosols on 

tropospheric photolysis rates under both clear sky conditions and cloudy sky conditions. 

Aerosol types considered are pure sulfate, pure soot, and the mixtures of sulfate and soot, 

as well as mineral dust. In the absence of clouds, soot aerosol reduces photolysis rates at 

all altitudes, whereas sulfate aerosol generally increases photolysis rates above and in the 

upper part of the aerosol layer but reduces photolysis rates in the lower part of the aerosol 

layer and at the surface. Aerosol mixtures may reduce or increase photolysis rates from 

those under clear sky conditions, depending on the single-scattering albedo, solar zenith 

angle, and altitude. An elevated layer of mineral dust aerosol mainly reduces photolysis 

rates but may increase J values above the layer at high solar zenith angles. The results 

obtained here for clear sky conditions are consistent with those presented by Dickerson et 

al. [1997] and Jacobson [1998]. 

When a low-level stratus cloud is present, sulfate aerosol may increase photolysis 

rates above the cloud, but the magnitude of increase is smaller than that resulting from 

sulfate aerosol under clear sky conditions. Soot aerosol, aerosol mixtures, and mineral 

dust absorb more radiation and hence reduce photolysis rates above the cloud layer. Even 

though aerosol mixtures and mineral dust may increase photolysis rates under clear sky 
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conditions, they always lead to a reduction in J values in the presence of low-level clouds. 
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ABSTRACT 

A unified tropospheric chemistry-aerosol model has been developed within the Goddard 

Institute for Space Studies general circulation model (GCM). The model includes a detailed 

simulation of tropospheric ozone-NOx-hydrocarbon chemistry and a thermodynamic 

representation of sulfate/nitrate/ammonium aerosols. Two-way coupling between aerosols 

and chemistry provides consistent chemical fields for aerosol dynamics and aerosol mass 

for heterogeneous processes and calculations of gas-phase photolysis rates. Although 

the current version of the unified model does not include prognostic treatments of black 

carbon, organic carbon, and mineral dust aerosols, we include effects of these particles 

on photolysis and heterogeneous processes by using three-dimensional off-line fields. 

Considering both mineral dust uptake of HN03 and wet scavenging of HN03 on ice leads 

to closer agreement between predicted gas-phase HN03 concentrations and measurements 

than in previous global chemical transport model simulations, especially in the middle 

to upper troposphere. The unified model also simulates sulfate and nitrate aerosols that 

are associated with mineral dust. Heterogeneous reactions generally reduce 0 3 and non­

dust SO~- concentrations and may locally increase or reduce non-dust N03 and NHt 

concentrations depending on whether dust is present. As a result of the coupling between 

chemistry and aerosols, global burdens (concentrations) of both gas-phase and aerosol 

species are predicted to respond nonlinearly to changing emissions of NO x, NH3 and sulfur. 

For example, an across-the-board 50% increase in global NOx emissions is predicted 

to increase burdens of gas-phase HN03, 0 3, non-dust SO~-, non-dust N03, NHt, and 

dust-associated N03 by 37%, 13%,4%, 12%, 5%, and 22%, respectively, and to reduce 
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burdens ofNH3 and dust-associated SO~- by 15% and 21 %, respectively. The present work 

represents the first step in the development of a fully-coupled climate/chemistry/aerosol 

model. 

5.1 Introduction 

Tropospheric 0 3 and aerosols are controlled by a combination of direct and 

precursor emissions, chemical reactions in the atmosphere, and meteorological processes, 

each of which has the potential to be affected by climate change with resulting feedbacks. 

Better understanding of chemistry-aerosol-climate interactions is needed for assessments 

of future climate change [National Research Council, 2001]. 

A fully coupled chemistry-aerosol-climate model, a so-called unified model, 

will allow one to address how changes in emissions will affect future abundances of 

tropospheric 0 3, CH4, and aerosols over the next century. Understanding of chemistry­

aerosol-climate interactions is complicated by the many feedbacks from climate change to 

tropospheric chemistry and aerosols. For example, changes in the atmospheric water cycle 

affect 0 3 photochemistry [Johnson et al., 1999] as well as the formation, optical properties, 

cloud activating properties, and wet scavenging of aerosols. Changes in tropospheric 

circulation affect the distributions and hence the radiative forcing of 0 3 and aerosols 

(Hansen et aI., 1997]. Changes in stratospheric circulation affect stratosphere-troposphere 

exchange of 0 3 and also modify the UV actinic flux in the troposphere. Rising temperatures 

affect emissions of NO x, hydrocarbons, and ammonia [Yienger and Levy, 1995; Guenther 
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et al., 1995; Bouwman et al., 1997]. Increasing deep convection enhances the lightning 

source of NOx [Sinha and Tuomi, 1996; Tuomi et a!., 1996]. Increasing sea surface 

winds promote emissions of dimethyl sulfide (DMS) and sea salt aerosol from the oceans 

[Intergovernmental Panel on Climate Change (JPCC), 2001]. 

Over the past two decades, global simulations of 0 3 and aerosols have evolved 

from using archived meteorological fields in chemical transport models (CTMs) to on-line 

simulations within general circulation models (GCMs) that have the potential to account 

for correlations among chemical, aerosol, and meteorological variables. Tropospheric 0 3 

chemistry has been modeled in CTMs by Levy et a!. [1985], Crutzen and Zimmermann 

[1991], Muller and Brasseur [1995], Brasseur et a!. [1998], Wang et al. [1998], and in 

GCMs by Roelofs and Lelieveld [1995], Roelofs et al. [1997], Mickley et al. [1999], and 

Roelofs and Lelieveld [2000]. Global aerosol simulations of sulfate [Erickson et a!., 1991; 

Langner and Rodhe, 1991; Penner et a!., 1994; Pham et a!., 1995; Chin et al., 1996,2000; 

Feichter et al., 1996; Chuang et al., 1997; Lelieveld et al., 1997; Kasibhatla et al., 1997; 

Kjellstrom, 1998; Roelofs et al., 1998; Restad et al., 1998; Koch et al., 1999; Adams et al., 

1999,2001; Barth et al., 2000], biomass burning and/or black carbon [Penner et al., 1993; 

Cooke and Wilson, 1996; Liousse et al., 1996; Cooke et al., 1999; Kanakidous et al., 2000], 

nitrate [Adams et a!., 1999,2001], ammonium [Dentener and Crutzen, 1994; Adams et al., 

1999, 2001], and mineral dust [Tegen and Fung, 1994,1995; Dentener et a!., 1996] have 

been reported. Roelofs et al. [1998] considered coupling between tropospheric chemistry 

and sulfate aerosol but did not systematically examine the interactions between gas-phase 

chemistry and aerosols. 
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While concentrations of gas-phase species govern many aspects of the formation 

and growth of aerosols, particles, in tum, influence gas-phase atmospheric chemistry by 

altering photolysis rates [Demerjian et al., 1980; Ruggaber et al., 1994; Lantz et al., 

1996; Castro et al., 1997; Landgraf and Crutzen, 1997; Dickerson et al., 1997; Jacobson, 

1998; Liao et al., 1999] and by serving as sites for heterogeneous conversion of gas­

phase species [Dentener and Crutzen, 1993; Andreae and Crutzen, 1997]. Previous on-line 

tropospheric chemistry (aerosol) models generally used off-line aerosol (gas-phase species) 

fields. For example, concentrations of OH, N03, H02, or 0 3 required in sulfate aerosol 

simulations have been imported from off-line atmospheric chemistry models [Feichter et 

al., 1996; Koch et al., 1999, Adams et al., 1999; Barth et al., 2000], and off-line aerosol 

concentrations have been used in global chemistry models to simulate heterogeneous 

processes [Brasseur et al., 1998; Wang et al. 1998; Mickley et al. 1999]. Off-line fields can 

not account for two-way interactions between tropospheric chemistry and aerosols, which 

are desired in simulations when climate changes feed back into gas-phase chemistry and 

aerosols. 

To move toward incorporating interactions and feedbacks among tropospheric 

chemistry, aerosol formation, and climate change in a general circulation model, we 

report here the development of a unified model that simulates atmospheric chemistry 

and sulfate/nitrate/ammonium aerosols on-line in the Goddard Institute for Space Studies 

(GISS) GeM version II prime. This work represents the first phase of the development 

of the fully coupled model depicted schematically in Figure 5.1. Full simulation of 

tropospheric chemistry provides consistent chemical fields for aerosol dynamics, including 
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OH, H20 2 , and 0 3 for sulfate formation, HN03 for nitrate formation, and NH3 for 

ammonium aerosol formation; in tum, the model provides consistent aerosol fields for 

simulations of heterogeneous processes and gas-phase photolysis rates. Although the 

version of the unified model presented here does not include prognostic calculations 

of black carbon (BC), organic carbon (OC), and mineral dust aerosols, we include 

effects of these particles on photolysis rates and heterogeneous reactions by using three­

dimensional monthly mean BC, OC, mineral dust concentration fields. Sea salt aerosol is 

not included in the current model. The unified model includes the tropospheric chemical 

mechanism developed by Mickley et al. [1999] and the thermodynamic representation of 

sulfate/nitrate/ammonium aerosols of Adams et al. [1999,2001]. 

We describe the coupled GCM-atmospheric chemistry-aerosol model in Section 

5.2, and discuss the emission inventories in Section 5.3. Section 5.4 presents simulated 

concentrations of aerosols and related gas-phase species. We discuss the important 

processes that affect gas-phase HN03 concentrations in Section 5.5. In Section 5.6, we 

examine the effect of aerosols on gas-phase photolysis, and in Section 5.7 we investigate 

the effects of heterogeneous reactions on predicted concentrations of gas-phase and aerosol 

species. Section 5.8 studies the sensitivity of predicted concentrations to emissions of NO x, 

NH3, and sulfur. In Section 5.9, we examine the sensitivity of sulfate concentrations to 

assumptions used in calculations of cloud pH. 
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5.2 Unified Model 

The unified model consists of four major components: (1) the Goddard 

Institute for Space Studies general circulation model II-prime (GISS GeM II'); (2) 

the Harvard tropospheric 03-NOx-hydrocarbon chemical mechanism [Mickley et al., 

1999, and references therein]; (3) the Fast-J scheme for the calculation of atmospheric 

photolysis rates [Wild et al., 2000]; and (4) the aerosol thermodynamic equilibrium model 

ISORROPIA [Nenes et al., 1998] for computing the local equilibrium of the aerosol 

sulfate/nitrate/ammoniumlwater system. 

5.2.1 GISS GeM II' 

The GISS GeM II', as described by Rind and Lerner [1996] and by Rind et al. 

[1999], has a resolution of 4° latitude by 5° longitude, with 9 vertical layers in a (Y­

coordinate system extending from the surface to 10 mbar. In comparison with the original 

GISS GeM II [Hansen et aI., 1983], this version has improved treatments of the boundary 

layer, convection, land surface, and cloud liquid water budget [Rind and Lerner, 1996]. 

The version ofGISS GeM II' used in this study employs monthly mean ocean temperature 

maps. The dynamical time step is 1 h. The variables passed from GISS GeM II' to the 

tropospheric chemistry and aerosol modules are listed in Table 5.1. 
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Table 5.1 GCM Variables Passed to Tropospheric Chemistry and Aerosol Modules 

GCM variables 

Frequency and amount of precipitation 

Frequency of convective events 

Boudary layer height 

Surface wind velocity 

Surface albedo 

Cloud optical depth 

Temperature 

Relative humidity 

Air pressure 

Cloud volume fraction 

5.2.2 Tropospheric Chemistry 

For computations of 

Soil NOx emissions; wet deposition 

Lightning NOx emissions 

Dry depositon 

Dry deposition; DMS emission 

Dry deposition 

Dry depositon; Isoprene emission flux; 

Photolysis rates 

Reaction rates, Dry deposition; Photolysis 

rates; Aerosol thermodynamic equilibrium 

Reaction rates; Aerosol thermodynamic 

equilibrium 

Reaction rates; Photolysis rates 

In-cloud sulfate formation 

The gas-phase tropospheric chemical mechanism represents tropospheric 0 3-

NOx-hydrocarbon chemistry based on 110 chemical species (24 tracers) and 305 chemical 

reactions. The chemistry subroutines are called every 4 h, and the chemical mechanism 

is integrated with a fast Gear solver [Jacobson and Turco, 1994]. Gas-phase chemical 

reactions added to the Harvard mechanism to account for sulfate and nitrate aerosol 

formation are listed in Table 5.2. In addition to the 24 tracers included in the model of 

Mickley et al. [1999], six are added for aerosols: S02, SO~-, DMS, NH3 , NHt, and N03. 

The suite of tracers transported in the GISS GCM II' is listed in Table 5.3. 
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Table 5.3 GCM Chemical Tracers 

Tracers 

Ox 
NOx 
HN03 

HN04 

N 20 5 

PAN 
H20 2 

CO 
C3H8 

C2H6 
ALK4 
PRPE 
isoprene 
acetone 
CH300H 
CH20 
CH3CHO 
RCHO 
MEK 
methyl vinyl ketone 
methacrolein 
MPAN 
PPN 
R4N2 
S02 
SO~-
DMS 
NH3 
NHt 
N03 

5.2.2.1 Heterogeneous Reactions 

115 

Composition 

03+0+N02+2xN03 
NO + N02 + N03 + HN02 

Peroxyacetyl nitrate 

lumped:::: C4 alkanes 
lumped:::: C3 alkenes 

lumped ::::C3 aldehydes 
lumped ::::C4 ketones 

peroxymethacryloyl nitrate 
lumped peroxyacyl nitrates 
lumped alkyl nitrates 

Hydrolysis of N20 5 on wetted surfaces of SO~-1N03INHt IH20, organic carbon 

(OC), and mineral dust aerosols is included, and the HN03 produced equilibrates between 

the gas and aerosol phases. We also consider irreversible absorption ofN03 , N02, and H02 

on wetted surfaces of SO~-1N03INHt IH20, OC, and mineral dust aerosols. Despite the 

uncertainties associated with the uptake of S02, HN03, and 0 3 by mineral dust [Dentener 
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et aI. , 1996], we include those heterogeneous reactions since studies have shown that these 

reactions are important to gas-phase chemistry [Dentener et al., 1996; Galy-Lacaux and 

Modi, 1998; Tbazaedeh et al., 1998; Song and Carmichael, 2001; Galy-Lacaux et ai., 

2001]. The first-order loss rate of a species on an aerosol surface is represented as shown 

by Schwartz [1986]. 

Global, three-dimensional mass concentrations of SO~-IN03INHt IH20 aerosol 

are simulated by the unified simulation. We use three-dimensional monthly mean OC 

concentration fields (S. Chung, personal communication, 2001) generated in a simulation 

with the same GISS GCM II' meteorology as used here, and mineral dust fields from a 

different GISS GCM simulation [Tegen and Fung, 1994]. Black carbon is assumed not 

to participate in heterogeneous chemistry. Although we consider water associated with 

SO~-IN03INHt aerosol in the calculation of surface area, we do not consider water uptake 

by OC and mineral dust. Sulfate, organic carbon, black carbon, and mineral dust aerosols 

are assumed to be externally mixed. 

For calculations of heterogeneous chemistry, aerosol size information is needed 

to obtain aerosol surface area concentration and surface mean radius. We assume a log­

normal size distribution for dry SO~-IN03INHt particles with a median radius of 0.05 

/-1m and geometric standard deviation of2.0. In each grid cell, the ratio of wet to dry mass 

of SO~-IN03INHt aerosol is computed from thermodynamic equilibrium and is used to 

parameterize the size distribution of wet SO~-IN03INHt IH20 aerosol as described by 

Adams et al. [2001]. We also assume a log-normal size distribution for each of OC and 

mineral dust aerosols, with a median radius ofO.0212/-1m and a standard deviation of2.24 
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for OC [Cooke et al., 1999], and 0.88 ""m and 1.7 for mineral dust [Zhang and Carmichael, 

1999]. Densities are taken to be 1.8 g cm- 3 for OC [Cooke et al., 1999], and 2.6 g cm- 3 for 

mineral dust [Zhang and Carmichael, 1999]. The density of SO~-1N03INHt IH20 aerosol 

depends on its composition and is calculated as described by Tang [1997]. 

The reaction probability 'Y is assumed to be 0.1, 0.001, 0.0001, and 0.2 for N20 5, 

N03, N02 and H02, respectively [Jacob, 2000]. For the uptake of S02, HN03 and 0 3 

by mineral dust aerosol, following Dentener et al. [1996], we use a reaction probability 

'Y(HN03) of 0.1 , and 'Y(S02) of3 x 10- 4 for regions with RH< 50% and 'Y(S02) of 0.1 when 

RH> 50% [Dentener et al., 1996]. 'Y(03) is assumed to be 5 x 10-5 [Dentener et al., 1996]. 

On mineral dust particles, deposited S02 and HN03 exist in the forms of SO~- and N03, 

respectively. Since off-line mineral dust fields are used in this study, dust surface SO~- and 

N03 are predicted as diagnostic variables rather than tracers. 

It will turn out to be useful to separate sulfate that is not associated with mineral 

dust from that formed on mineral dust. Sulfate aerosol, which is emitted directly as 

primary particles, produced by gas-phase reaction of S02 with OH, or produced by in­

cloud oxidation ofS02 by H20 2 and 0 3, will be denoted as SO~- (nondust) . Sulfate aerosol 

formed on mineral dust particles will be denoted as SO~- (dust). Similarly, we denote non­

dust nitrate aerosol as N03 (nondust), and nitrate that forms on mineral dust particles as 

N03 (dust). Dentener et al. [1996] assumed that uptake of S02 and HN03 by mineral 

dust takes place only when the dust alkalinity exceeds the acidity from the dust-associated 

sulfate and nitrate. If alkalinity is contributed by the calcium ion, uptake of S02 and HN03 

occurs when [Ca2+ ]-[SO~- (dust)]-0.5[N03 (dust)] >0. We assume that the Ca2+ content 
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of dust is 5% by weight [Dentener et al., 1996]. 

Off-line simulated global mineral dust concentrations by Tegen and Fung [1994] 

are used as a basis for calculating heterogeneous reactions. In order to calculate the dust 

alkalinity, it is necessary to account for the deposition of dust aerosol that contains sulfate 

and nitrate. Therefore, for each grid cell we assume that the mass of dust deposited is 

simply balanced by an influx of fresh dust, and the fraction of SO~- (dust) and N03 (dust) 

deposited is the same as the fraction of deposited dust. We use monthly total (dry plus 

wet) deposition data (in kg m-2 month-I) from Tegen and Fung [1995] and scale the total 

deposition at the surface to all grid cells above it by assuming that the deposition in a grid 

cell is proportional to the dust mass contained in it. It should be noted that by assuming 

in each grid cell the amount of fresh incoming dust is balanced by that deposited during a 

time step (in order to maintain a fixed global amount of dust), the change of dust alkalinity 

during transport is not accounted for. After emission, fresh dust particles take up S02 and 

HN03 as they are transported; thus, the alkalinity of dust particles in areas far away from 

source regions should be lower than that of freshly emitted dust particles. Our treatment 

of mineral dust has the effect of overestimating the dust-associated alkalinity in areas far 

away from dust sources while underestimating it in dust source regions. Consequently, this 

assumption may lead to an overestimation of the uptake ofS02 and HN03 by dust removed 

from sources and an underestimation of uptake close to dust source regions. This treatment 

will also affect predicted vertical distributions of sulfate and nitrate that are associated 

with dust because of the assumed vertical distribution of dust deposition. More accurate 

simulation of dust uptake of gases requires treating both dust amount and dust alkalinity as 
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Table 5.4 Aqueous Reactions Involved In-Cloud Production of Sulfate 

Reactions k298 
a EjR References 

Aqueous Chemistry 

(1) HS03"+H20 2 ->SO~-+2H++H20 7.45 x 107b 4759 Jacob [1986] 

(2) HS03"+03 ->SO~-+H++02 3.7x 105 5300 Barth et at. [2000] 

(3) SO~-+03 --->SO~-+02 1.5x 109 5280 Barth et al. [2000] 

Equilibria 

(4) H202(g)~H202(aq) 7.4x 104 -6643 Jacob [1986] 

(5) 03(g)~03(aq) 1.15xlO-2 -2560 National Bureau of Standards [1965] 

(6) S02(g)~S02(aq) 1.2 -3155 Jacob [1986] 

(7) H2S03 ~HS03"+H+ l.3xlO-2 -2015 Maahs [1982] 

(8) HS03" ~SO~-+H+ 6.3x lO-s -1505 Maahs [1982] 

a Units for second-order aqueous-phase reactions are M- 1 S-l. Units for solubility constants are M atom-I. 

Units for dissociation constants are M. Reaction rates are of the form k = k29Sexp[ - ~ (~ - 2~8)], unless 

otherwise noted. 

b k = k298exp[-~(~ - 2~8)][H+] 

prognostic tracers. 

Figure 5.2 shows the annual average of the monthly mineral dust fields from Tegen 

and Fung [1994]. Mineral dust concentrations are the sum of both natural (undisturbed) 

and disturbed soils. 

5.2.2.2 Aqueous-phase S02 Oxidation 

Reaction rates and equilibria for aqueous-phase oxidation of S02 by H2 0 2 and 

0 3 are given in Table 5.4. Note that oxidation by 0 3 is very sensitive to pH. To 

compute rates of oxidation, cloud droplet pH is determined based on electroneutrality: 
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[H+]=[HS03]+2[SO~-(nondust)]+[N03(nondust)]-[NHt]. H20 2 and 0 3 fields for each 

grid cell and at each time step are predicted directly from the tropospheric chemistry. 

To account for changes of pH and of H20 2 and S02 aqueous-phase concentrations that 

occur over short time scales, as shown by Barth et al. [2000], aqueous-phase chemistry is 

integrated independently using a 4-min time step. 

It should be noted that mineral dust and associated sulfate and nitrate are 

assumed not to affect cloud pH. This may be an acceptable assumption because the main 

concentrations of clouds are not over dust source regions. A limitation of the pH calculation 

is the lack of inclusion of organic acids. We expect to overestimate cloud pH wherever 

concentrations of organic acids are high. 

5.2.3 Gas-Phase Photolysis 

Rates of 40 photolysis reactions are computed every 4 h usmg the Past-J 

code of Wild et al. [2000], which accounts for absorption by O2 and 0 3 , Rayleigh 

scattering, and Mie scattering by clouds and aerosols, using seven wavelength channels 

of varying widths covering the spectral range from 289 to 800 nm. We account for 

effects of SO~- (nondust)1N03 (nondust)INHt !H20, OC, BC, and mineral dust aerosols on 

photolysis rates. Mass of SO~- (nondust)/N03 (nondust)/NHt /H20 aerosol, cloud optical 

depth, temperature, air pressure, surface albedo, and solar zenith angle are passed from the 

GCM to the Past-J routine. Monthly mean fields ofOC and mineral dust aerosols are those 

used in the heterogeneous calculations (see Section 5.2.2.1). Monthly mean fields of BC 

are also from S. Chung (personal communication, 2001). Climatological 0 3 distributions 
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[McPeters, 1993] is used in Fast-J since most of the ozone column is in the stratosphere. 

Optical properties of clouds and aerosols are calculated by Mie theory [Hansen 

and Travis, 1974]. For temperatures equal to or exceeding 233 K, clouds diagnosed in 

GCM are assumed to be liquid, the scattering phase functions of which are calculated 

by assuming a Gamma distribution with constant 0'=6 and a mode radius of 8.0 Mm 

[Oliver et aI., 2000]. At temperatures less than 233 K, clouds are assumed to consist 

of irregular ice particles, with phase functions calculated following the method of 

Mishchenko et al. [1996]. For calculations of aerosol optical depth and phase functions, 

refractive indices for "water-soluble" aerosol from d 'Almeida et al. [1991] are used for 

SO~- (nondust)IN03 (nondust)INHt /H20 and OC. "Water-soluble" aerosol as described 

in d'Almeida et al. [1991] includes sulfates, nitrates, as well as water-soluble organic 

aerosols. Refractive indices for BC and mineral dust aerosols are from Liao et al. 

[1999]. The size distributions of OC and mineral dust aerosols are those used in 

computing heterogeneous reactions. For BC, a log-normal distribution with a median 

radius of 0.0118 Mm and a geometric standard deviation of 2.0 is assumed, with the 

density assumed to be 1.0 g cm-3 [Haywood and Ramaswamy, 1998]. We assume that 

wet SO~- (nondust)IN03 (nondust)INH! IH20 aerosol has a log-normal distribution with a 

median radius of 0.09 Mm and a geometric standard deviation of 2.0. 

Note that for the Fast-J calculation we use the assumed SIze distribution for 

SO~- (nondust)IN03 (nondust)INHt IH20 aerosol instead of the actual size distribution 

computed from chemical equilibrium at the local RH. This approximation reduces 

significantly the computing time needed for calculating aerosol phase functions. (Lantz 
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et al. [1996] showed that when aerosol optical depth is smaller than 0.8, the prevailing 

situation on the scale of global models, photolysis rates of N02 change only about 4% 

when the aerosol asymmetry factor varies from 0.45 to 0.95. Thus the effect of aerosols 

on photolysis rates is relatively insensitive to the details of aerosol phase functions in this 

case.) 

5.2.4 Aerosol Equilibrium 

Volatile atmospheric species tend to partition themselves between gas and 

aerosol phases in accordance with thermodynamic equilibrium [Seinfeld and Pandis, 

1998]. As used by Adams et al. [1999] (hereinafter referred to as Adams99), the 

thermodynamic equilibrium model ISORROPIA [Nenes et aI., 1998] is employed to 

simulate the partitioning of ammonia, nitric acid, and water between gas and aerosol 

phases. At RH<100%, ISORROPIA computes the equilibrium composition of an 

internally-mixed aerosol consisting of sulfate, nitrate, chloride, ammonium, sodium, 

and water. (Sodium and chloride are not considered in the present study.) For the 

SO~-(nondust)IN03(nondust)INHtIH20 system, the inputs needed by ISORROPIA 

are the total concentrations of NH3+NHt, HN0 3+N03(nondust), and SO~-(nondust), 

together with the ambient relative humidity and temperature. As discussed in Adams99, we 

assume aerosol particles exist in a hydrated, metastable state between their crystallization 

and deliquescence humidities. Since non-dust aerosols and mineral dust are assumed 

not to interact, sulfate and nitrate associated with mineral dust aerosol do not affect the 

thermodynamic equilibrium of SO~- (nondust)IN03 (nondust)INHt IH20. 
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5.2.5 Dry and Wet Deposition 

Calculation of dry deposition follows the procedure described by Wang et al. 

[1998]. Deposition velocities of 0 3, N02, NO, HN03, PAN, H20 2, CH20, S02, and 

NH3 are determined following the resistance-in-series scheme of Wesely [1989]. The dry 

deposition velocity is inversely proportional to the sum of the aerodynamic resistance, 

sub layer resistance, and the surface resistance. Aerodynamic and sub layer resistances are 

calculated using local GCM surface fluxes of momentum and heat. Surface resistances for 

different species and for different surface types are based largely on the canopy model of 

Wesely [1989], with several improvements as described by Wang et al. [1998] to allow 

its extension to the global scale. Particle deposition velocities are calculated by using the 

parameters described for sulfate in Koch et al. [1999]. 

The wet deposition scheme is that reported by Koch et al. [1999]. Wet deposition 

of dissolved tracers is treated separately for large-scale and convective clouds, following the 

GCM cloud schemes described in Del Genio and Yao [1993] and Del Genio et al. [1996]. 

Dissolved gases and aerosols are scavenged within and below precipitating clouds. Sulfate, 

ammonium, and nitrate aerosols are assumed to be fully soluble, and the solubility of gases 

is determined by their effective Henry's law constants. The scavenged species return to the 

air if falling precipitation evaporates. We also consider scavenging of gas-phase HN03 by 

ice clouds. Uptake of HN03 by ice crystals follows Lawrence and Crutzen [1998]. Ice 

crystals can fall out, evaporate, or persist as determined by GCM cloud scheme. 
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5.3 Emissions 

Estimated present-day global annual emissions are listed in Table 5.5. Emissions 

for NOx, CO, and non-methane hydrocarbons follow those in Mickley et al. [1999]. 

Sulfur emissions follow Koch et al. [1999]; anthropogenic emissions include seasonally­

varying fossil fuel combustion and industrial activities compiled by the Global Emissions 

of Inventory Activity (GEIA) [Benkovitz et aI., 1996], which is representative of 1985 

emissions. Three percent of GEIA sulfur emissions are assumed to be sulfate, with the 

remainder S02. Other anthropogenic sources of S02 include biomass burning and aircraft 

emissions. Ammonia emissions are given by Bouwman et al. [1997], which take into 

account the major categories of domesticated animals, fertilizer application, and biomass 

burning. 

5.4 Coupled Chemistry-Aerosol Simulations 

The focus of this work is to explore the implications of coupled interaction between 

gas-phase chemistry and aerosols. Simulations were performed with all components 

coupled on line, as described in Section 5.2. The baseline simulation considers: (1) 

the effects of all aerosol classes (SO~-(nondust)1N03(nondust)INHt IH20, oe, Be, and 

mineral dust) on photolysis rates; (2) in-cloud oxidation of S02 by both H20 2 and 0 3 ; and 

(3) heterogeneous reactions on SO~- (nondust)1N03 (nondust)INHt IH20, oe, and mineral 

dust aerosol surfaces. All simulations were conducted for an I8-month period, with the 

first 6 months ignored for spin-up. One year of coupled simulation of global dynamics, 



Table 5.5 Global Annual Emissions 
Species 

NOx 
Fossil fuel combustion 
Biomass burning 
Soil 
Lightning 
Aircraft 
Stratospherea 

Total 
CO 

Fossil fuel combustion 
Wood fuel combustion 
Biomass burning 
Total 

Isoprene 
Vegetation 

Ethane 
Industrial 
Biomass burning 
Total 

Propanee 

Industrial 
2C4 alkanes 

Industrial 
2C4 alkenes 

Industrial 
Biogenic sources 
Biomass burning 
Total 

Acetone 
Biomass burning 
Biogenic sources 
Total 

S02 
GEIA industrial emissions 
Biomass burning 
Aircraft 
Volcanoes (noneruptive) 
Total 

DMS 
Oceanic source 

NH3 
Domesticated animals 
Fertilizers 
Oceans 
Biomass burning 
Crops 
Humans 
Soils under natural vegetation 
Other 
Total 
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Emission rate 

20 
II 
4.4 
3.5 
0.5 
0.1 
40b 

390 
130 
510 

1030b 

6.2 
2.4 
8.6b 

6.7 

10 
16 
12 

38b 

66.6 
2.3 
0.1 
3.5 

n.5c 

21.6 
9.0 
8.2 
5.9 
3.6 
2.6 
2.4 
0.4 

53.6d 

(Tg C yr- 1) 

(Tg S yr- 1 ) 

(Tg S yr-l) 

a Downward transport of NO x across the tropopause. This transport also supplies 0.38 Tg N yr- 1 ofHN03 

globally. b Mickley et al. [1999]. c Koch et al. [1999]. dBouwman et al. [1997]. cIncluded in the model as a 
direct emission of acetone; the yield of acetone from oxidation of propane is specified as 80% [Singh et at., 
1994]. 
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gas-phase chemistry, and aerosols required about 6 days on one 250-MHz MIPS RlOOOO 

processor of a SGI Origin 2100 system. 

Gas-phase tropospheric chemistry simulations using the current chemical 

mechanism have been compared extensively with observations by Mickley et al. [1999]; 

these need not be repeated here. We do focus, however, on the comparison of predicted 

gas-phase HN03 with measurements, since predicted HN03 concentrations by the unified 

model include scavenging of HN03 by ice clouds and aerosol interactions and are 

significantly different from those of Mickley et al. [1999]. Aerosol simulations in the 

unified model follow the sulfate simulation of Koch et al. [1999], and the N03 and NHt 

simulations of Adams99. Adams99 have presented detailed predictions for SO~-(nondust), 

N03 (nondust), and NHt aerosols; based on off-line concentrations of gas-phase HN03 , 

H02, OH, simulated concentrations were generally within a factor of two of observations. 

By comparing aerosol predictions from the unified model with those of Adams99, we 

can examine the effect of full gas-phase/aerosol coupling and the sensitivity of aerosol 

concentrations to off-line fields. 

5.4.1 Sulfur Dioxide 

Global S02 levels are determined mainly by emissions, dry deposition, dust 

uptake, and conversion to sulfate. Predicted annual, zonal average mixing ratios of S02 are 

shown in Figure 5.3. As expected, S02 exhibits its largest concentrations in the Northern 

Hemisphere, with annual and zonal average mixing ratios exceeding 1 ppbv in the middle 

latitudes near the surface. In the Southern Hemisphere, continental and oceanic emissions 
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Figure 5.3 Predicted annual, zonal average S02 mixing ratios (pptv). 

result in a small peak in the subtropics, and emissions of DMS from the oceans produce 

high latitude, lower tropospheric mixing ratios of about 50 pptv. A comparison of the 

present predictions to those of Koch et al. [1999] shows that in the Northern Hemisphere, 

current predictions are about 50 pptv lower above about 650 mb in the middle latitudes 

and throughout the atmosphere at high latitudes. The difference is a result of the inclusion 

of both in-cloud oxidation of S02 by 0 3 and uptake of S02 by mineral dust aerosol. The 

importance of in-cloud oxidation by 0 3 has been demonstrated by Rasch et al. [2000]. We 

will explore the effect of S02 uptake by mineral dust subsequently. 

Koch et al. [1999] showed that their simulation led to excessive S02 over North 

America and Europe, with larger biases occurring in the northernmost regions during 
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wintertime. Inclusion of in-cloud oxidation of S02 by 0 3 in the unified model improves 

the comparison with observations. In-cloud S02 oxidation by ozone is most important in 

winter when S02 emissions are high and H20 2 is limiting. 

Table 5.6 presents the yearly-integrated sources and sinks for S02. The emissions 

follow thos of Kosh et al. [1999]. Loss of S02 through reaction with OH, 7.3 TG S yc2, 

is less than the 13.1 TG S yc 1 obtained by Koch et al. [1999] because of the inclusion of 

in-cloud S02 oxidation by 0 3 and dust uptake. Oxidation by OH, H20 2, and 0 3 accounts 

for 15%, 65%, and 20% of total S02 loss from oxidation pathways, respectively. The 20% 

loss though oxidation by 0 3 agrees well with the result of Roelofs et al. [1998]. Dust 

uptake explains about 5% of the global sink ofS02. 

Table 5.6 Global Budget for S02 

Sources (Tg S yr- 1) 

Industrial emissions 

Biomass burning 

Volcanoes 

DMS oxidation 

Total sources 

Sinks (Tg S yr-l) 

Oxidaton 

byOH 

by H20 2 

0 3 

Dust uptake 

Dry deposition 

Wet deposition 

Total sinks 

Burden (Tg S) 

Residence time (days) 

64.9 

2.3 

3.4 

12.4 

83.0 

7.3 

31.8 

9.5 

3.9 

27.7 

2.8 

83.0 

0.26 

l.l 
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5.4.2 Sulfate 

Figure 5.4 shows predicted annual average SO~-(nondust) and SO~-(dust) mixing 

ratios near the surface and at 468 mb in the baseline simulation. The largest SO~- (nondust) 

mixing ratios are predicted over the industrialized areas of Europe, North America, central 

and eastern Asia. Comparison ofthe annual averaged SO~-(nondust) mixing ratios to those 

of Adams99 shows that the coupled model predicts a 36% higher global mean mixing 

ratio of SO~-(nondust) near the surface but about 40% lower global mean mixing ratio 

in the middle to upper troposphere. The major factors leading to these differences are 

the inclusion of in-cloud oxidation of S02 by 0 3 and dust uptake of S02. As a result 

of including in-cloud oxidation of S02 by 0 3, predicted boundary layer SO~-(nondust) 

mixing ratios exceed 1 ppbv in a large area extending from Europe to central Asia. 

And, since the oxidation of S02 by 0 3 effectively allows S02 scavenging when H20 2 

is titrated, less S02 is transported to higher layers to be subsequently oxidized to sulfate. 

Our simulation improves the wintertime agreement between predicted SO~-(nondust) and 

observations. Koch et al. [1999] found that that their predicted SO~- (nondust) was 

generally low in Europe during wintertime when in-cloud S02 oxidation by ozone is 

important. Mineral dust takes up S02 near the dust source regions but this process is 

not dominant in determining the global mean mixing ratio ofSO~-(nondust) in the surface 

layer. The global and annual average burden of SO~-(nondust) predicted in the unified 

model is 1.64 Tg, which is 78% of that predicted by Adams99. 

Concentrations of SO~-(dust) depend on the levels of dust aerosol, the alkalinity 

of the dust particles, the availability of S02, and relative humidity (Section 5.2.2.1). The 
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largest SO~-(dust) mixing ratios are predicted over central and northeast Asia. 

Figure S.S(a) shows the predicted percent of annual mean total sulfate occurring 

on mineral dust at the surface layer. In the vicinity of dust source regions, such as central 

Asia, northeast Asia, Australia, and the coast of the northern Indian Ocean, more than SO% 

of total sulfate is predicted to be associated with mineral dust. Over a large portion of the 

Eurasian continent, 30-S0% of total sulfate is predicted to be formed on dust particles. 

The fraction of sulfate on dust found here is in general agreement with that reported by 

Dentener et al. [1996]. Dentener et al. [1996] predicted a maximum located over Western 

Africa, while the current model predicts maxima over Australia and the northern Indian 

Ocean, corresponding to dust maxima in Figure S.2. This difference might be caused either 

by the different meteorological fields or by the fact that Dentener et al. [1996] assumed the 

North African dust source was strongest in the Sahel region, whereas it was assumed to be 

strongest somewhat more northerly over Saudi Arabia/Hom of Africa in the study of Tegen 

and Fung [1994], from which the current mineral dust fields are taken. 

5.4.3 Nitric Acid 

Predicted January and July HN03 mixing ratios near the surface and at 468 mb are 

shown in Figure 5.6. During daytime, nitric acid is produced by the reaction ofN02 and OH 

and at night by hydrolysis of N20 5 on aerosol surfaces. Gas-phase HN03 is removed by 

reaction with OH, photolysis, wet and dry deposition, as well as by conversion to aerosol 

nitrate. Predicted Northern Hemisphere HN03 mixing ratios are higher in January than 

in July, reflecting less ventilation, loss of HN03 by photolysis, reaction with OH, and 
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(a) 

o 10 20 30 40 50 60 70 80 90 100 

(b) 

Figure 5.5 (a) Percent of total sulfate (SO~- (nondust)+SO~- (dust)) predicted to occur 
on mineral dust particles in the surface layer; (b) Percent of total nitrate 
(gas-phase HN03+N03(nondust)+N03(dust)) occurring as nitrate aerosol 
(N03 (nondust)+N03 (dust)) in the surface layer. 
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deposition in winter. Largest predicted HN03 mixing ratios occur in the boundary layer of 

industrialized areas of Europe, North America, central and eastern Asia, and over biomass 

burning regions in the tropics. In these regions calculated mixing ratios generally exceed 1 

ppbv in the boundary layer. HN03 mixing ratios at 468 mb are considerably smaller than 

those near the surface, with a global average mixing ratio in the middle troposphere about 

20% of that in the surface layer. Over northern Africa and southern Asia, predicted HN03 

mixing ratios at 468 mb are less than 30 pptv, considerably lower than those of about 200 

pptv predicted by Wang et al. [1998]. This difference is a result of predicted uptake of 

HN03 by mineral dust aerosol (see Section 5.4.4). 

Figure 5.7 compares predicted gas-phase HN03 profiles with aircraft measurements. 

As compared with Wang et al. [1998] and Mickley et al. [1999], calculated gas-phase 

HN03 profiles for the baseline case exhibit consistently closer agreement with observed 

profiles in almost all regions, especially the middle to upper troposphere. Although baseline 

upper troposphere HN03 mixing ratios are somewhat underestimated in locations such as 

the East China Sea, tropical South Atlantic, and Southern Africa, upper tropospheric 

HN03 is simulated well at all other locations. Previous overestimates of HN03 in the 

remote troposphere are greatly improved, with inclusion of wet deposition of HN03 on 

ice and uptake of HN03 by mineral dust aerosol. We will examine further the important 

processes that affect gas-phase HN03 concentrations in Section 5.5. 
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Figure 5.7 Comparison of observed vertical profiles of gas-phase HN03 with predicted 
profiles from different sensitivity studies. The region named in each panel 
is defined in Wang et ai. [1998]. Open squares and solid lines are median 
observations, with standard deviations represented by solid horizontal bars. 
Model results are monthly mean predictions averaged over the grid cells 
encompassing each region. Lines include gas-phase HN03 predicted in the 
baseline simulation (blue), gas-phase HN03 from a sensitivity run with gas­
aerosol partitioning removed from the baseline run (green), sensitivity run with 
dust uptake of HN03 removed (yellow), and sensitivity run with wet deposition 
of HN03 on ice removed (magenta). Gas-phase HN03 profiles predicted when 
all of the gas-aerosol partitioning, dust uptake of HN03, and wet deposition of 
HN03 on ice are removed from the baseline run are given by red lines. 
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5.4.4 Aerosol Nitrate 

In the absence of mineral dust aerosol, nitrate aerosol occurs mainly as neutralized 

ammonium nitrate, in an amount as determined by thermodynamic equilibrium. The 

presence of sulfate aerosol reduces nitrate formation because ammonia reacts preferentially 

with sulfate. Predicted annual average baseline mixing ratios of NO;(nondust) and 

NO;(dust) are shown in Figure 5.8. Boundary layer NO; (nondust) mixing ratios exceed 

1 ppbv occur in Europe, eastern China, and the eastern United States. Locations and 

magnitudes of peak NO;(nondust) mixing ratios are consistent with those of Adams99. 

Compared with the NO; (nondust) formation in the northern mid-latitudes, NO; (nondust) 

formation in the biomass burning regions is less as a result of NH3 limitation [Adams et 

al., 1999]. NO;(dust) mixing ratios exceeding 1 ppbv are predicted near the surface in 

dust source regions. On a global mean basis, NO;(dust) formation is predicted to exceed 

NO; (nondust) formation; near the surface, the predicted global average mixing ratio is 100 

pptv for NO; (dust) and 75 pptv for NO; (nondust), while at 468 mb altitude, it is 41 pptv 

for NO; (dust) and 18 pptv for NO; (nondust). 

Figure 5.5(b) shows for the surface layer the percent of total nitrate (gas-phase 

HN03+NO;(nondust)+NO;(dust)) predicted to occur as nitrate aerosol (NO;(nondust)+ 

NO; (dust)). On an annual average basis, nitrate formed on mineral dust governs the 

distribution of high ratios of aerosol nitrate to total nitrate. Near dust source regions, more 

than 50% of total nitrate is in the aerosol phase, with values approaching 1 00% over the 

Sahara Desert, central Asia and Australia, where the formation of nitrate is limited by the 

availability of gas-phase HN03. 
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5.4.5 Ammonia and Ammonium 

Predicted annual average mixing ratios of gas-phase ammonia near the surface 

and at 468 mb are shown by the left column of Figure 5.9. Locations and magnitudes of 

peak ammonia levels in India, China, Eastern Europe, and Brazil agree well with those of 

Adams99. Throughout the boundary layer, NH3 concentrations are determined mainly by 

emissions and uptake by sulfate aerosol. The largest mixing ratios are predicted to exceed 

3 ppbv, with continental mixing ratios generally exceeding 100 pptv. Predicted ammonia 

mixing ratios generally decrease rapidly with altitude, with the global mean mixing ratio 

at 468 mb about 12% of the surface value. As a result of the strong emissions of NH3 in 

India, NH3 mixing ratios in this region still exceed 1 ppbv at 468 mb. 

Predicted annual average mixing ratios of particulate ammonium are shown by the 

right column of Figure 5.9. Highest ammonium mixing ratios, over 3 ppbv, are found in 

industrialized areas, such as the eastern United States, Europe, and China. Mixing ratios 

generally exceed 300 pptv over the continents. These results are also in good agreement 

with those of Adams99. 

5.4.6 Ozone 

Predicted monthly mean ozone mixing ratios (ppbv) near the surface and at 468 mb 

in January and July are shown in Figure 5.10 for the baseline simulation. Boundary layer 

ozone concentrations over industrial regions in the Northern Hemisphere and over biomass 

burning regions in the tropics are in the range of 40-70 ppbv, levels that are consistent 
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with those predicted by Mickley et al. [1999]. Predicted 0 3 mixing ratios at 468 mb 

generally exceed those near the surface, as a result of emissions of NO x from lightning and 

biomass burning, deep convection from the continental boundary layer, transport from the 

stratosphere, as well as less dry deposition. 

A global budget of odd oxygen (Ox) is presented in Table 5.7. For the purpose 

and the peroxyacylnitrates; ozone makes up over 99% of Ox globally. Calculated 0 3 in 

situ chemical production and loss rates, 3761 Tg yr- 1 and 3412 Tg yr-l, respectively, are 

lower than the production rate of 4330 Tg yr- 1 the loss rate of 3960 Tg yc1 obtained by 

Mickley et al. [1999] for the present-day atmosphere. The difference arises because the 

unified model considers additional NOxremoval by nitrate, ammonium, OC, and mineral 

dust aerosols as well as aerosol water. Mineral dust is predicted to take up 50 Tg 0 3 per 

year. 

Table 5.7 Global Budget for Tropospheric Ozone 

Sources (T g 0 3 yr- 1 ) 

In situ chemical production 

Transport from stratosphere 

Total sources 

Sinks (T g 0 3 yr- 1 ) 

In situ chemical loss 

Dust uptake 

Dry deposition 

Total sinks 

Burden (Tg 0 3 ) 

Residence time (days) 

3761 

401 

4162 

3412 

50 

700 

4162 

318 

28 

Budgets are for the odd oxygen family defined as the sum of03 ,0,N02 ,2xN03 , HN04 , 

3 XN020 5 , and the peroxyacylnitrates. 
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5.5 Important Processes that Affect Gas-Phase HN03 

Concentrations 

Observed gas-phase HN03 concentrations in the remote troposphere are generally 

lower than those predicted by tropospheric chemical transport models [Hauglustaine et at., 

1998; Wang et al., 1998; Lawrence and Crulzen, 1998]. Phenomena that have not generally 

been included in global CTM simulations but have the potential to lead to lower predicted 

gas-phase HN03 levels include equilibrium gas-aerosol partitioning of HN03, uptake of 

HN03 by mineral dust aerosol, and scavenging of gas-phase HN03 by ice cloud particles 

(which can precipitate or evaporate before reaching the surface). To examine the relative 

importance of each of these three processes, we perform three sensitivity runs with each of 

the processes removed from the baseline simulation. 

Figure 5.l1(a) shows the annual, zonal average mixing ratios (pptv) of gas-phase 

HN03 for the baseline simulation, while the other panels of Figure 5.11 present the ratio 

of the annual, zonal mean gas-phase HN03 mixing ratios obtained in each sensitivity 

run to the baseline values. Without equilibrium gas-aerosol partitioning (Figure 5.11(b )), 

predicted gas-phase HN03 mixing ratios are up to 30% larger near the surface and up 

to 60% larger in the upper troposphere. (Note the absolute concentrations of HN03 

are small in the upper troposphere.) This is expected because particulate ammonium 

nitrate formation occurs mainly over polluted areas near the surface, and in the upper 

troposphere where SO~-(nondusl) concentrations are low and free NH3 over strong NH3 

emissions is available for ammonium nitrate formation. What is not expected in the absence 

of gas-aerosol partitioning is a 10-20% decrease in predicted gas-phase HN03 in the 
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Figure 5.11 (a) Predicted annual, zonal average HN03 mIXIng ratios (pptv) for the 
baseline run; the remaining plots show the ratio of the annual, zonal 
mean mixing ratios of gas-phase HN03 (relative to the baseline simulation) 
considering: (b) gas-aerosol partitioning removed from the baseline 
simulation; (c) dust uptake of HN03 removed from the baseline simulation; 
and (d) wet deposition of HN03 on ice removed from the baseline simulation. 
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middle troposphere over the subtropics of the Southern Hemisphere. When gas-aerosol 

partitioning is ignored, gas-phase HN03 does not survive long distance transport because of 

dry deposition of gas-phase HN03 . However, aerosol nitrate is transported longer distances 

than HN03 since nitrate particles have lower dry deposition velocity, and these particles 

may release gas-phase HN03 when conditions, such as temperature and relative humidity, 

change. As a consequence, the simulation without gas-aerosol partitioning predicts less 

gas-phase HN03 over the oceans and in the remote troposphere, leading to the reduction 

shown in Figure 5.ll(b). The zonal mean reduction occurs only in the middle troposphere 

of the SH. In other latitudes and altitudes, the decrease from transport is too small to offset 

the increase in gas-phase HN03 in polluted areas and in the upper troposphere. 

Without uptake of HN03 by mineral dust (Figure 5.ll(c)), predicted gas-phase 

HN03 mixing ratios increase everywhere in the atmosphere compared with baseline values. 

While absolute increases in HN03 are about 100-150 pptv in the Northern Hemisphere (not 

shown), which are vertically fairly homogeneous, the highest percentage increase, about 

300%, occurs near 300 mb in the middle to high latitudes of the Northern Hemisphere, 

and near 400 mb in the middle latitudes of the Southern Hemisphere. Significant dust 

uptake of HN03 generally occurs in areas with high HN03 and dust concentrations, but 

uptake ofHN03 in the lower troposphere is affected by simultaneous uptake of S02, which 

is also important in determining dust alkalinity. With low S02 concentrations in the upper 

troposphere, uptake ofHN03 can occur as long as the dust particles are alkaline, and HN03 

is not limiting. 

Deposition of HN03 on ice also plays an important role in governing HN03 
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concentrations. Without deposition ofHN03 on ice (Figure 5.11(d)), HNO,'3 concentrations 

in the middle to upper troposphere increase significantly from baseline values. 

Dust uptake of HN03 and scavenging of HN03 by ice are the most important 

factors that lower predicted gas-phase HN03 concentrations from those determined solely 

on the basis of gas-phase chemistry. Equilibrium gas-aerosol partitioning affects mainly 

HN03 concentrations in the polluted boundary layer and in the upper troposphere. These 

conclusions are also supported by Figure 5.7, which compares baseline HN03 levels to 

those from different sensitivity runs for different regions. Over US West Coast, central and 

eastern Canada, dust uptake is found to have dominant effect on gas-phase HN03 mixing 

ratios, since over these regions the HN03 mixing ratios increase significantly when dust 

uptake is removed from the baseline simulation. Over eastern Brazil and equatorial west 

Pacific, deposition on ice has dominant effect. Figure 5.7 also shows gas-phase HN03 

profiles for a simulation with all of the dust uptake, equilibrium gas-aerosol partitioning, 

and wet deposition on ice removed from the baseline simulation. Differences between 

HN03 profiles demonstrate the importance of including all three processes discussed in 

simulations of gas-phase HN03 . 

5.6 Effect of Aerosols on Gas-Phase Chemistry Through 

Photolysis Rates 

Figure 5.12 shows the annual mean baseline aerosol optical depth at 600 run, based 

on SO~- (nondust)IN03" (nondust)INHt IH20, OC, BC, and mineral dust. Highest optical 

depths of 0.4-0.5 are predicted over Europe and eastern Asia. Optical depths of 0.2-0.5 
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o .04 .08 .12 .16 .2 .3 .4 .5 .6 .7 

Figure 5.12 Predicted annual mean aerosol optical depth at 600 nm. Aerosols considered 
are SO~- (nondust)/N03 (nondust)INHtIH20, OC, BC, and mineral dust. 

over Europe, eastern China, and eastern United states are consistent with those observed in 

these areas [Ghan et aI., 2001]. 

To examine the effect of aerosols on gas-phase chemistry by altering photolysis 

rates, we perform a sensitivity run with all aerosols removed from the Fast-J scheme. 

Although urban scattering aerosols can alter photolysis rates by about 10-20% at small 

solar zenith angles [Liao et aI., 1999], the global effect of aerosols on HN03 and 0 3 

through altered photolysis rates is found to be small. At the surface layer, including 

aerosols in photolysis rate calculations leads to a maximum reduction of about 25 pptv 

in HN03 mixing ratios over central Africa, India, central and northeast Asia; this amount 

is to be compared with HN03 mixing ratios exceeding 1 ppbv in those regions. The largest 

reduction of about 1 ppbv in 0 3 mixing ratios is found in regions with maximum HN03 
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reduction, but, as with HN03, the reduction is negligible compared with 0 3 mixing ratios 

of 30-50 ppbv. Changes in HN03 and 0 3 concentrations at 468 mb are even smaller than 

those at the surface. The small effects of aerosols found here agree with results of Fiore 

et al. ["Background ozone over the United States in summer: origin and contribution to 

pollution episodes," submitted to Journal of Geophysical Research, 2001], which show that 

inclusion of aerosols in photolysis rate calculations changes monthly mean 0 3 by less than 

0.2 ppbv anywhere. 

5.7 Effect of Aerosols on Gas-Phase Chemistry and 

Aerosol Formation by Heterogeneous Reactions 

5.7.1 Aerosol Surface Area 

Heterogeneous reactions occur on the surfaces of SO~-(nondust)/N03(nondust)1 

NHt IH20, OC, and mineral dust aerosols. In order to evaluate the role of each class of 

aerosol in heterogeneous chemistry, we calculate first the annual mean aerosol surface area 

concentrations (10-9 cm2 cm -3) for ( a) SO~- (nondust)/N03 (nondust)/NHt IH20, (b) OC, 

and (c) mineral dust (Figure 5.13). Surface area concentrations ofSO~-(nondust)/N03(nondust)1 

NHt IH20 aerosol are much higher than those of OC and mineral dust; on a global mean 

basis, the surface areas of SO~- (nondust)/N03 (nondust)/NHt IH20, OC, and mineral dust 

account for about 83%, 14%, and 3% of total aerosol surface area near the surface. Thus, 

heterogeneous reactions of N20 5 , N03, N02 , and H02 , which occur on wet surfaces of 

aerosols, are largely determined by the SO~- (nondust)/N03 (nondust)/NHt IH20 surface 
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28.78 

o 3 10 30 100 300 1000 3000 10000 30000 

Figure 5.13 Annual mean aerosol surface area concentrations (10- 9 cm2 cm- 3) in 
the GCM surface layer for: SO~- (nondust)IN03" (nondust)/NHt /H20 (top 
panel); OC (middle panel); and mineral dust (bottom panel). Above each 
panel , the average value in that layer is indicated. 
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area. Although the predicted surface area of mineral dust aerosol is only a small fraction 

of total global aerosol surface area, mineral dust plays an important role in gas-phase 

chemistry through uptake of 0 3 , S02 and HN03 . 

5.7.2 Effects on Concentrations of Gas-Phase Species and Aerosols 

To determine the effects of heterogeneous reactions on gas-phase and aerosol 

chemistry, a sensitivity simulation is performed with all heterogeneous reactions (except 

in-cloud S02 oxidation) removed from the baseline simulation. Annual average NOx, 0 3 , 

SO~-(nondusf), N03(nondusf), and NHt concentrations in the absence of heterogeneous 

reactions can be compared with the baseline values. Figure 5.14 shows, for each species, 

the ratio of annual mean baseline mixing ratios (in the presence of aerosols) to those in the 

absence of heterogeneous reactions in the surface layer. 

5.7.2.1 Gas-Phase Species 

The presence of aerosols leads to reduction in NOx concentrations in the middle 

to high latitudes in both Northern and Southern Hemispheres (Figure 5.14(a)), with the 

maximum reduction of about 80% occurring at high latitudes of the NH. With high 

aerosol concentrations and low OH abundance at high latitudes of the NH, NOx loss 

depends mainly on heterogeneous reactions. Since predicted aerosol concentrations in 

the SH are much smaller than those in the NH, the reduction of NOx by heterogeneous 

reactions is found to be only about 10-30% in the middle to high latitudes of the SH. 

NOx concentrations are not sensitive to heterogeneous reactions in the tropics, where the 
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(a) NOx (d) NO; (nondust) 

.2 .4 .5 .6 .7 .8 .9 1 1.05 2.5 

.5 .6 .7 .8 .85 .9 .95 1 1.1 1.2 1.3 

(c) SO~- (nondust) 

Figure 5.14 Ratio of annual mean mixing ratios calculated in the baseline run to those 
obtained in the absence of all heterogeneous reactions. For (a) NOx, (b) 0 3 , 

(c) SO~- (nondust), (d) N03(nondust), and (e) NHt in the GeM surface layer. 
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daytime reaction ofN02 with OH is the most important NOx removal mechanism. These 

effects of heterogeneous reactions on NOx are similar to those found by Dentener and 

Crutzen [1993] in the SH and tropics. In the high latitudes of the NH, the simulation of 

Dentener and Crutzen [1993], which considered heterogeneous reactions ofN03 and N20 5 

on non-dust sulfate particles, predicted NOx reductions of 80% from October to April and 

of 10-20% in summer. Present work predicts annual mean NOx reductions of about 80% 

in the high latitudes of the NH, reflecting the effects of N03 (nondust), ammonium, OC, 

and mineral dust aerosols. 

As a result of NO x removal by aerosols and dust uptake of 0 3, predicted baseline 

ozone concentrations are lower than those in the absence of heterogeneous reactions (Figure 

5. 14(b)). Ozone concentrations at NH high latitudes are predicted to be reduced by about 

30% near the surface. Reactions on aerosols generally reduce 0 3 concentrations by 10 to 

15% in the SH. Of the two factors that cause 0 3 reduction, dust uptake of 0 3 and NOx 

removal by SO~-(nondust)1N03(nondust)INHtIH20, OC, and mineral dust, the latter is 

slightly more influential; the predicted global annual average 0 3 burden would increase by 

7% in the absence of dust uptake and by 16% in the absence of both dust uptake and NOx 

removal. 

Since the unified model considers 0 3 reduction from both dust uptake of 0 3 and 

NOx removal on SO~- (nondust)1N03 (nondust)INHt IH20, OC, and mineral dust aerosols, 

ozone reductions obtained here cannot be compared directly with those predicted by 

Dentener and Crutzen [1993] or Dentener et al. [1996]. Dentener and Crutzen [1993] 

considered only 0 3 reduction from heterogeneous reactions of N03 and N20 5 on non-
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dust sulfate particles, while Dentener et al. [1996] considered only 0 3 reduction from dust 

uptake. However, in the high latitudes of the NH and SH, where dust concentrations are not 

high, 0 3 reductions predicted in this work are in close agreement with those of Dentener 

and Crutzen [1993]. We obtain about 5-10% higher 0 3 reductions in the high latitudes 

of the NH as a result of higher predicted NOx removal there. Over Saudi Arabia/Hom of 

Africa, where the dust mass is the largest (Figure 5.2), 0 3 reduction predicted in this work 

is about 15-20%, which is higher than the reduction of about 8% in same area obtained by 

Dentener et al. [1996]. This difference may result from the higher NOx reduction predicted 

in the unified model and the different dust concentrations in different models. 

5.7.2.2 Aerosols 

Heterogeneous reactions affect not only concentrations of gas-phase species but 

also those of aerosols. SO~-(nondust) concentrations are reduced by dust uptake (Figure 

5.14(c)). Near the surface, reductions of SO~-(nondust) exceeding 20% occur near dust 

sources such as the Sahara Desert, central and eastern Asia, Australia, and southern South 

Africa. 

Changes in NO;;(nondust) mlxmg ratios near the surface (Figure 5.14(d)) 

reflect the changes in gas-phase HN03 mixing ratios. The baseline run predicts higher 

concentrations over almost all continental areas except those near the dust sources. 

The changes in NHt (Figure 5. 14(e)) depend on the changes in SO~-(nondust) and 

NO;; (nondust). In the surface layer, NHt mixing ratios are reduced by dust uptake of S02 

and HN03 near the dust source regions such as the Sahara Desert, the Arabian Peninsula, 
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central Asia, southern South America, and Australia. Heterogeneous reactions increase 

surface NHt mixing ratios in the industrialized areas in Europe, South America, Africa, 

and eastern Asia, corresponding to the increase of SO~- (nondust) and N03 (nondust) there. 

In these regions, NHt concentrations are increased by 10-20%. 

5.7.3 Effects on Global and Annual Average Burdens 

To see the overall effects of heterogeneous reactions, we list in Table 5.8 global and 

annual average burdens for the baseline run (with all the heterogeneous reactions) and in the 

absence of heterogeneous reactions. Without heterogeneous reactions (dust uptake of S02), 

the burdens of S02 and SO~- (nondust) are about 10% higher than those simulated with dust 

uptake, which has important implications for radiative forcing of sulfate. Compared with 

the baseline run, the predicted HN03 burden is 40% higher, and the 0 3 burden increases 

by 16% in the absence of heterogeneous reactions. When compared with the baseline 

run, a higher NHt burden but lower NH3 and N03(nondust) burdens in the absence of 

heterogeneous reactions indicate that the changes in the concentrations of these species are 

mainly affected by additional SO~-(nondust) formation. 

Since direct radiative forcing depends roughly linearly on burdens, we can give 

an approximate estimate of the effect of heterogeneous reactions on radiative forcing of 

0 3 or non-dust sulfate aerosol. Mickley et al. [1999] estimated that the global mean 

radiative forcing of 0 3 is 0.44 W m-2 for a predicted global 0 3 burden of 360 Tg. 

Since the baseline simulation in this work predicts a global ozone burden of 318 Tg, the 

radiative forcing by ozone is roughly 0.44x318/360= 0.38 W m-2. Thus in the absence 
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of heterogeneous reactions, a 16% increase in 0 3 burden can approximately lead to an 

increase in global mean ozone radiative forcing by 0.38 W m-2 xO.16 ;::::::: 0.06 W m-2 . 

Similarly, since Adams99 predicted a non-dust sulfate burden of 2.09 Tg, and Adams et al. 

[2001] calculated a corresponding global mean forcing of -0.95 W m- 2
, the 13% increase 

in SO~-(nondust) burden in the absence of heterogeneous reactions roughly increases 

SO~-(nondust) forcing by -0.95x 1.64xO.13/2.09 ;::::::: -0.1 W m-2 , where 1.64 Tg is the 

SO~-(nondust) burden from the baseline simulation. 

It should be noted that sulfate and nitrate aerosols associated with dust effectively 

will not change the radiative properties of dust particles. On each dust particle, masses of 

sulfate and nitrate account for only small fractions of dust mass. 

5.7.4 Summary for Heterogeneous Reactions 

The presence of heterogeneous reactions generally reduces 0 3 and SO~-(nondust) 

concentrations, but they may locally increase or reduce N03 (nondust) and NHt 

concentrations depending on whether dust is present. Dust uptake of S02 and HN03 

leads to reduced concentrations of SO~-(nondust), N03(nondust), and NHt near dust 

source regions, which can reduce radiative cooling by SO~-(nondust), N03(nondust), and 

NHt. Some climate models have considered the effect of heterogeneous reactions on 0 3 

concentrations, but the effects of heterogeneous reactions on aerosol concentrations are 

generally not included in estimates of aerosol radiative forcing. This issue requires more 

detailed study. 
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Table 5.8 Global and Annual Average Burdens (Tg) for the Baseline Case and Sensitivity 
Cases 

NOx NH3 Sulfur No 
Baseline 

Species emissions emissions emissions heterogenous 
case 

(+50%) (+50%) (+50%) reactions 

S02 0.52 0.52 (0%) 0.50 (-4%) 0.89 (+71%) 0.56 (+8%) 

SO~- (nondust) 1.64 1.70 (+4%) 1.66 (+1%) 2.38 (+45%) 1.85 (+13%) 

HN03 1.44 1.97 (+37%) 1.37 (-5%) 1.48 (+3%) 2.02 (+40%) 

0 3 318 360 (+13%) 314 (-1%) 319 (0%) 369 (+16%) 

H20 2 3.70 3.66 (-1%) 3.73 (+1%) 3.66 (-1%) 3.88 (-9%) 

NH3 0.20 0.17 (-15%) 0.39 (+95%) 0.14 (-30%) 0.16 (-20%) 

NHt 0.42 0.44 (+5%) 0.54 (+29%) 0.48 (+14%) 0.45 (+7%) 

NO; (nondust) 0.17 0.19 (+12%) 0.32 (+88%) 0.10 (-41%) 0.15 (-12%) 

SO~-(dust) 0.19 0.15 (-21%) 0.20 (+5%) 0.29 (+53%) 

N03"(dust) 0.50 0.61 (+22%) 0.47 (-6%) 0.48 (-4%) 

Numbers in parentheses are percentage changes compared with the baseline case. 

5.8 Sensitivity of Gas-Phase Chemistry and Aerosols to 

NOx, NH3, and Sulfur Emissions 

In a set of three sensitivity runs, total global emissions of each of NOx, NH3, and 

sulfur are increased by 50%. Table 5.8 shows the predicted baseline annual average global 

burden of the various gas-phase and aerosol species together with the burdens from the 

three sensitivity simulations. Burdens of gas-phase and aerosol phase species generally 

change nonlinearly with changes in emissions. 

5.8.1 Sensitivity to NOx Emissions 

Compared with the baseline run, a 50% increase in NOx emissions increases 

0 3, HN03 , NO:; (nondust), and NO:;(dust) burdens by 13%, 37%, 12%, and 22%, 
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respectively. As expected, more NH4N03 formation occurs when more HN03 is 

available, resulting in a 12% increase in the NO:;(nondust) burden, a 5% increase in 

the NHt burden, and a 15% reduction in the NH3 burden. More available gas-phase 

HN03 also leads to 22% more nitrate formation on dust particles. Dust particles with 

[Ca2+]>[SO~-(dust)]+0.5[NO:;(dust)] can take up more HN03 when more HN03 is 

available, but, as a result, they take up less S02 once [Ca2+]>[SO~-(dust)]+0.5[NO:;(dust)] 

is satisfied; SO~- (dust) burden is reduced by 21 % in this sensitivity run. 

An increase in NOx emissions may influence in-cloud sulfate formation by 

aqueous oxidation of S02 by 0 3 in several ways. The increase (or reduction) in 0 3 

concentrations can increase (or reduce) SO~-(nondust), and the changed NO:;(nondust) 

and NHt can affect cloud pH. In this sensitivity run, reduction in S02 or the increase in 

SO~-(nondust) occurs in areas with increased ozone, indicating that the changes in 0 3 

concentrations are more dominant in in-cloud sulfate formation than the changes in cloud 

pH. Near dust sources, since increased NOx emissions lead to less SO~-(dust) formation, 

more S02 is available for SO~-(nondust) formation, and SO~-(nondust) is predicted to 

increase by 30-100 pptv in these areas. 

5.8.2 Sensitivity to NH3 Emissions 

Compared with the baseline simulation, a 50% increase in NH3 emissions increases 

the predicted burdens of NH3, NHt, and NO:; (nondust) by 95%, 29%, and 88%, 

respectively. With added NH3 in the atmosphere, ammonium nitrate formation is limited 

by HN03; thus a 50% increase in NH3 emissions is predicted to result in an increase in 
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NHt burden by only 29%, leading to a significant increase in the burden ofNH3. 

Increasing NH3 emission can also affect in-cloud sulfate formation through its 

effect on cloud pH. The burden of S02 is reduced by 4%. Some fraction of S02 reduction 

is caused by more conversion of S02 to SO~-(nondust) in cloud droplets resulted from 

increased NHt. And, because more HN03 exists as NH4N03 when NH3 emissions are 

increased, less gas-phase HN03 is available for dust uptake, and more S02 can be taken 

up by dust particles. The latter process also explains the 5% increase in SO~-(dust) burden 

and the 6% reduction in N03(dust) burden. 

5.8.3 Sensitivity to Sulfur Emissions 

With a 50% increase in sulfur emissions, burdens of S02 and SO~-(nondust) are 

71 % and 45% higher than those in the baseline case, respectively. Higher sulfate burdens 

also lead to more ammonium sulfate formation; hence, the burden of NHt increases by 

14%, whereas that ofNH3 decreases by 30%. As a consequence of increased ammonium 

sulfate, the formation ofNH4N03 is reduced, and the burden of N03(nondust) decreases 

by 41 % as compared with the baseline simulation. Increasing sulfur emissions also affects 

the formation of sulfate and nitrate on dust particles. With more S02, dust particles are 

expected to take up less HN03 because of competition for alkalinity. Compared with 

the baseline run, the burden of SO~-(dust) increases by 53%, while that of NO;3(dust) 

decreases by only 4%. The small amount of NO;3(dust) reduction can be explained as 

follows. As shown in Table 5.8, less ammonium nitrate formation leaves 3% more HN03 

in the gas-phase available for dust uptake. And, in dust source regions, where relative 
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humidity tends to be low, because of the assumed reaction probability dependence on RH, 

dust particles will take up HN03 preferentially. When these particles are transported to 

regions with RH exceeding 50%, some of the dust particles neutralized by nitrate are not 

available to uptake S02. Under such situations, the availability of more S02 affects the 

N03(dust) burden only marginally. 

5.9 Sensitivity of Sulfate Concentrations to Assumptions 

Used for Calculating pH of Cloud Droplets 

In-cloud oxidation of S02 by 0 3 is very sensitive to cloud pH. Simulation of cloud 

pH has inherent uncertainties as a result oftheir multiphase nature, inherent instability, and 

variability in chemical compositions. Since it is difficult to alter the cloud properties in the 

climate model without altering other thermodynamic variables that could also affect the 

sulfur chemistry, we focus on the sensitivity of SO~-(nondust) concentrations to assumed 

NHt and N03 (nondust) concentrations as used in previous global simulations. 

Figure 5.15 shows the December-January-February (DJF) and June-July-August 

(JJA) averaged cloud pH at 787 mb. We chose this model layer because clouds occur the 

most frequently around 2 km altitude [Liou, 1992]. It should be noted that cloud fraction 

at each grid cell is usually smaller than 1.0, but cloud pH can only be shown for the whole 

cell. In the industrialized areas in the Northern Hemisphere, where in-cloud oxidation of 

S02 by 0 3 is the most important, predicted cloud pH generally ranges from 2.5 to 3.5 in 

winter and 3.0 to 4.0 in summer. Higher cloud pH in summer can be explained by the 

stronger NH3 emissions in summer than in winter. These predicted pH values compare 
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Figure 5.15 December-January-February (DJF) and June-July-August (JJA) averaged 
cloud pH at 787 mb (about 2 km altitude). pH values smaller than 1.0 indicate 
that no cloud is present during the 3-month period. 
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well with the measurements of Kim et al. [1992] and Oberholzer et al. [1992]. Kim et al. 

[1992] reported that from May to October, observed cloud water pH in the eastern United 

States was in the range of 2.4 to 4.9. Oberholzer et al. [1992] found that winter cloud pH 

in polluted central Switzerland ranged from 3.14 to 3.35. 

Previous global calculations of cloud pH [Roelofs et al., 1998; Barth et aI., 2000] 

generally assumed the molar ratio ofNHt to SO~-(nondust) in cloud drops to be 1.0 and 

did not take into account the effect ofN03 (nondust) on pH. To test the sensitivity of sulfate 

concentrations to those assumptions, a simulation is performed by setting in-cloud molar 

concentration ofNHt be the same as that of SO~-(nondust), and by setting the in-cloud 

N03 (nondust) concentration to zero. The ratio of DJF averaged SO~- (nondust) column 

burdens of this simulation to those obtained in the baseline simulation (with prognostic 

in-cloud ammonium and nitrate) is shown in Figure 5.16(a). During DJF, when aqueous 

oxidation of S02 by 0 3 is important, the simulation with assumed ammonium and nitrate 

generally over-predicts SO~-(nondust) column burdens at middle to high latitudes in both 

Northern and Southern Hemispheres, but tends to underestimate SO~-(nondust) in the 

tropics and subtropics. An overestimate ofSO~-(nondust) of 5-10% is found over southern 

Canada and northeastern United States, an overestimate of 5-15% is found over the area 

that extends from the Northern Eurasian continent to the Arctic, and a underestimate of 

up to 15% is found over eastern Asia. The overestimate implies that the simulation with 

assumed ammonium and without nitrate predicts higher cloud pH (i.e., less acidity) and 

vise versa. 

The results shown in Figure 5.16(a) can be explained by examining the ambient 
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molar ratio ofNHt to SO~~ (nondust) (Figure S.16(b )), which is obtained from the baseline 

simulation and averaged over DJF. Although the ratio shown here is not the ratio in cloud 

drops, the in-cloud molar ratio of sulfate to ammonium should have similar behavior as 

a result of mass exchange between cloud and ambient air through cloud scavenging and 

evaporation of rain and cloud water. At the surface layer, the predicted molar ratio of 

NHt to SO~~(nondust) is generally lower than 1.0 from middle to high latitudes in both 

hemispheres. Assuming the molar ratio of NHt to SO~~(nondust) to be 1.0 in those 

regions and ignoring nitrate leads to overestimation of cloud pH and overestimation of 

sulfate concentration in areas with high S02 emissions, as shown in Figure S.16(a). The 

molar ratio of NHt to SO~~(nondust) can be as high as 2 to 4 in many areas in the 

tropics and subtropics, but in most of these regions, H20 2 concentrations are relatively 

high compared to those in middle and high latitudes, and less S02 is available to form 

sulfate; hence, aqueous oxidation of S02 by 0 3 is less important. In eastern Asia, since the 

molar ratio of NHt to SO~~ (nondust) is in the range of 2 to 4 and S02 emission is high, 

the simulation with assumed ammonium and in the absence of nitrate underpredicts pH and 

hence underestimates sulfate column burdens. 

5.10 Summary and Conclusions 

We have developed a unified model for the study of chemistry-aerosol-climate 

interactions by incorporating a coupled tropospheric chemistry-aerosol simulation in the 

GISS GeM II'. The model includes a detailed simulation of tropospheric ozone-NOx-

hydrocarbon chemistry and a thermodynamic representation of sulfate/nitrate/ammonium 
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Figure 5.16 (a) Ratio of December-January-February (DJF) averaged SO~- (nondust) 
column burdens calculated assuming the in-cloud NHt /So~- (nondust) molar 
ratio = 1 and no N0'3 (nondust) to those from the baseline run (with prognostic 
in-cloud NHt and N0'3 (nondust»; (b) December-January-February (DJF) 
averaged molar ratio of NHt to SO~- (nondust) in the surface layer for the 
baseline simulation. 
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aerosols. The model takes into account the effects of all aerosol classes (SO~-(nondust)/ 

N03 (nondust)INHtIH20, OC, BC, and mineral dust) on photolysis rates, heterogeneous 

reactions of N20 5, N03 , N02, and H02 on wetted aerosol surfaces, and uptake of S02, 

HN03 and 0 3 by mineral dust. Although the current version of the unified model does not 

include prognostic treatments of black carbon, organic carbon, and mineral dust aerosols, 

we include effects of these particles on photolysis and heterogeneous processes by using 

three-dimensional off-line fields. 

We have compared our coupled simulation with the tropospheric chemistry 

simulation of Mickley et al. [1999], the SO~-(nondust) simulation of Koch et al. 

[1999], and the SO~-(nondust)1N03(nondust)INHt simulation of Adams99, which are 

the elements ofthe simulation that we unified. Since we include in-cloud oxidation of S02 

by 0 3 and uptake of S02 by mineral dust, predicted upper tropospheric S02 concentrations 

are lower than those of Koch et al. [1999] in the middle and high latitudes of the Northern 

Hemisphere. For the same reason, predicted annual and global mean SO~-(nondust) 

concentration is 36% higher near the surface but 40% lower in the middle troposphere 

compared with the values obtained by Adams99. Compared with previous studies, 

predicted gas-phase HN03 concentrations show closer agreement with measurements as 

a result of dust uptake ofHN03 and scavenging ofHN03 by ice. 

The unified model also simulates sulfate and nitrate aerosols that form on mineral 

dust particles. In the vicinity of dust source regions, more than 50% of total sulfate 

near the surface is predicted to be associated with mineral dust, which agrees with the 

results of Dentener et al. [1996]. On a global mean basis, based on currently available 
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chemical understanding, nitrate aerosol formation on dust particles is predicted to exceed 

that resulting from ammonium nitrate aerosol formation. 

We have applied the unified model to investigate interactions between gas-phase 

chemistry and aerosols. The global effect of aerosols on gas-phase chemistry through 

altered photolysis rates is found to be small. Heterogeneous processes are shown to be 

important for both gas-phase species and aerosols. Although the surface area of mineral 

dust is predicted to be only a small fraction of total global aerosol surface area, based on 

current understanding mineral dust aerosol is predicted to playa significant role through 

uptake of 0 3, S02, and HN03. 

Interactions between gas-phase chemistry and aerosols are shown to be important 

in other aspects. For example, in-cloud sulfate formation is affected when 0 3 concentration 

varies or when cloud droplet pH is influenced by aerosol formation. Sulfate and nitrate 

aerosol formation associated with mineral dust depends on the alkalinity of dust particles 

and availability of gas-phase HN03 and S02. Such processes interact with each other 

and lead to nonlinear changes in burdens of gas-phase species and aerosols when NOx, 

ammonia, and sulfur emissions change. For example, an assumed across-the-board 

50% increase in global NOx emissions leads to predicted changes in burdens of HN03, 

0 3 , SO~-(nondust), NH3, NHt, N03(nondust), SO~-(dust), and N03(dust) by +37%, 

+13%, +4%, -15%, +5%, +12%, -21% and +22%, respectively. An increase in NH3 

emissions mainly influences burdens ofNH3, NHt, and NO;;- (nondust). A 50% increase in 

sulfur emissions significantly impacts SO~-(nondust), SO~-(dust), and ammonium nitrate 

formation, while it has small impact on HN03, 0 3, and N03(dust) burdens. 
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Sensitivity studies highlight the importance of using prognostic fields for aerosol 

simulation. Assuming the in-cloud molar ratio of NHt /SO~- (nondust) to be fixed at 1.0 

and neglecting nitrate aerosol leads to an overestimate of winter SO~-(nondust) burden by 

5-15% over the North America and Eurasian continents, whereas it leads to a underestimate 

of the SO~-(nondust) burden by 15% over eastern Asia. 

The model presented here is the first step in the development of a unified 

climate/chemistry/aerosol model. In future work, sea salt, organic and black carbon, as 

well as mineral dust aerosols, will be integrated into the on-line GCM, including radiative 

forcing and climate response studies. 
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Chapter 6 

Summary and Conclusions 
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This thesis is a composite of works that examine effects of aerosols on atmospheric 

chemistry and climate. Chapter 2 examines effect of clouds on aerosol direct radiative 

forcing. The presence of an embedded cloud layer enhances the heating effect of absorbing 

aerosols located above the cloud layer, but shields the radiative effects of aerosols below 

cloud. Chapter 3 studies the sensitivity of diurnal average mineral dust forcing to dust 

physical and optical properties. The sign of top-of-atmosphere radiative forcing depends 

on surface albedo, particle size, imaginary part of refractive index, and the presence or 

absence of clouds. At the surface, shortwave forcing always leads to cooling and longwave 

radiative forcing always leads to heating. Chapter 4 investigates effects of aerosols on 

photolysis rates in clear and cloudy atmospheres. Nonabsorbing aerosol generally enhances 

photolysis rates above and in the upper part of the aerosol layer in both noncloudy and 

cloudy atmospheres, with the enhancement effect reduced in the presence of clouds. In 

contrast, absorbing aerosol reduces photolysis rates under both noncloudy and cloudy sky 

conditions, with the reduction accentuated by a cloud layer. 

Chapter 5 presents a unified model that simulates both tropospheric chemistry and 

sulfate/nitrate/ammonium aerosols within the Goddard Institute for Space Studies general 

circulation model. We have applied the unified model to investigate interactions between 

gas-phase chemistry and aerosols. The global effect of aerosols on gas-phase chemistry 

through altered photolysis rates is found to be small. Heterogeneous processes are shown 

to be important for both gas-phase species and aerosols. Based on current understanding, 

mineral dust aerosol is predicted to playa significant role in both gas-phase chemistry and 

aerosol formation through uptake of 0 3 , S02, and HN03 . 
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The unified model represents the first step in the development of a fully coupled 

climate/chemistry/aerosol model. Several aspects of the unified model can be improved 

in future research. Current version of the model uses off-line three-dimensional fields of 

organic carbon, black carbon, and mineral dust aerosols for the simulation of heterogeneous 

and photolysis processes. In future work, these aerosols, as well as sea salt aerosol, will 

be integrated into the on-line GCM. Both primary organic carbon aerosol, which is emitted 

directly into the atmosphere as products of fossil fuel combustion or biomass burning, and 

secondary organic aerosol, which is formed by the condensation of semi-volatile organic 

compounds on pre-existing aerosols, will be taken into account. Black carbon (elementary 

carbon) will also be treated as a tracer in the unified model. Sea salt aerosol uptakes 

S02 and HN03 [Tabazadeh et at., 1998] and serves as CCN in the marine boundary layer 

[Ghan et al., 1998], which is expected to play significant roles in gas-phase chemistry and 

global climate. Radiative forcing by ozone and climate response will also be simulated in 

subsequent work. 

The unified model with above features will be used to improve understanding of 

aerosol-chemistry-climate interactions in the context of expected changes in emissions and 

climate during the next century. We will focus on the following questions: 

1. How will changes in emissions and climate affect the abundances of tropospheric 0 3 

and aerosols over the next century? 

2. What will be the radiative and climate consequences of these changes? 

3. How will aerosol-chemistry-climate feedbacks affect the ultimate climate response 

from changes in tropospheric 0 3 and aerosols? 
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4. How will future climate change affect 0 3 and aerosol air pollution in populated 

regions of the world? 
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