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Chapter 6

Extending the Bandwidth of SFLs

Frequency-swept optical waveforms with large frequency chirp range (optical band-

width) have applications in high resolution optical imaging, LIDAR and infrared

and Terahertz spectroscopy. The spatial resolution of an imaging system using a

chirped laser source is inversely proportional to the chirp bandwidth as per equa-

tion (5.16), and the unambiguous range of the distance measurement is governed

by the coherence length of the laser. Optical ranging applications therefore benefit

from rapidly tunable, wide-bandwidth, and narrow-linewidth swept-frequency optical

sources. Rapidly swept laser sources with wide tuning ranges of ∼10–20 THz also

find applications in swept-source optical coherence tomography (SS-OCT) [50]. We

have demonstrated in chapter 5 the generation of precisely controllable optical fre-

quency sweeps using an SCL in an optoelectronic PLL; however, the chirp bandwidth

was limited to about 500 GHz by the tuning range of the single-mode SCLs used.

In this chapter, we demonstrate two approaches to increase the chirp bandwidth for

high-resolution imaging: (i) chirp multiplication by four-wave mixing (FWM) and

(ii) multiple source- (MS-) FMCW reflectometry where measurements using distinct

optical chirps are algorithmically stitched to produce a high-resolution image.

6.1 Chirp Multiplication by Four-Wave Mixing

In this section, we propose and demonstrate the doubling of the bandwidth of a

chirped optical waveform by the process of FWM in a nonlinear optical medium. It
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is a well-known observation [121] that the dithering of the pump signal to suppress

Stimulated Brillouin Scattering (SBS) in a FWM experiment produces a broadening of

the idler signal; this broadening is generally regarded as an undesirable side effect. We

theoretically and experimentally demonstrate that the frequency chirp characteristics

of the pump signal are faithfully reproduced in the idler, which implies that the

chirp-doubled signal can be used for higher-resolution optical imaging. The effect

of chromatic dispersion on the maximum achievable output bandwidth is analyzed,

and a dispersion compensation technique to reduce the required input power levels

is described. We show that this approach can be cascaded to achieve a geometrical

increase in the output chirp bandwidth, and that the chirp bandwidth can be tripled

using two chirped input fields. Finally, we present the design of a cyclical FWM

“engine” to achieve large output chirp bandwidths using a single nonlinear waveguide.

6.1.1 Theory

6.1.1.1 Bandwidth-Doubling by FWM

Consider the experiment shown in figure 6.1. A chirped optical wave and a “reference”

monochromatic wave are coupled together, amplified, and fed into a nonlinear optical

waveguide with a large third-order nonlinear susceptibility χ(3), and a relatively low

group velocity dispersion (GVD) parameter Dc. Highly nonlinear fibers (HNLF),

photonic crystal fibers, higher-order mode (HOM) optical fibers [122], semiconductor

optical amplifiers (SOAs) [123] and integrated silicon waveguides [124] can be used

to provide the necessary nonlinear susceptibility and control over the GVD. In this

work, we will assume that the nonlinear medium is a highly nonlinear optical fiber.

An optical filter, typically based on a diffraction grating, is used at the output to

select the waveform of interest.

Let the electric fields of the chirped and the reference waves be given by

Ech(z, t) =
1

2
Ach(z) exp (j(ω0t + φ(t)− βchz)) + c.c.,

ER(z, t) =
1

2
AR(z) exp (j(ωRt− βRz)) + c.c., (6.1)
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Figure 6.1. (a) Schematic diagram of the four-wave mixing (FWM) experiment for
chirp bandwidth-doubling. (b) Spectral components of the input and FWM-generated
fields. The chirp-doubled component is optically filtered to obtain the output wave-
form.
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where φ(t) represents the optical chirp. The fields are assumed to be linearly polarized

along the same axis, and z is the direction of propagation. The propagation vectors β

are determined by the waveguide. The instantaneous frequency of the chirped wave

is given by

ωch(t) = ω0 +
dφ

dt
. (6.2)

For the particular case of a linearly chirped wave, φ(t) = ξt2/2, and ωch(t) = ω0 + ξt.

Typical optical frequency chirps of interest for imaging exceed bandwidths of 100 GHz

in a time less than 1 ms, and SBS effects can be neglected in this analysis. The rate of

the optical chirp is several orders of magnitude slower than the optical frequency, and

the chirped wave can therefore be regarded as a monochromatic wave of frequency

ωch(t). The chirped and reference waves interact in the nonlinear fiber through the

FWM process to give rise to a nonlinear polarization [88]

PNL = 4χ(3)...EEE, (6.3)

where E is the vector sum of the electric fields in equation (6.1). Among the various

frequency terms which are present in the triple product in equation (6.3) is the term

PNL(z, t) ∝ A2
chA

∗

R exp (j ((2ω0 − ωR)t+ 2φ(t))) , (6.4)

which radiates a wave of frequency

ωout(t) = 2ω0 − ωR + 2
dφ

dt
= 2ωch(t)− ωR. (6.5)

This process can be described quantum mechanically by the annihilation of two pho-

tons of the chirped field to create a photon of the reference field and a photon of the

output field. Comparing equations (6.5) and (6.2), we see that the output chirp is

twice the input chirp. By the proper selection of the input frequencies ω0 and ωR,

the output waveform can be separated out by an optical filter, as shown in figure

6.1(b). If the bandwidth of the input chirp is B (radians), the necessary condition
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for filtering the output waveform is

∆ω(t)
.
= ωch(t)− ωR ≥ B. (6.6)

Note that the output optical wavelength is in the same region as the input, and the

output can therefore be amplified and reused in a cascaded scheme as discussed in

section 6.1.3.

The expression for the output optical power can be obtained following a straight-

forward derivation [125] as outlined below. We restrict ourselves to the output electric

field of the form

Eout(z, t) =
1

2
Aout(z) exp (j(ωoutt− βoutz)) + c.c., (6.7)

which is generated by plugging the nonlinear polarization in equation (6.3) into the

nonlinear wave equation

∂2E

∂z2
=

n2

c2
∂2E

∂t2
+

αn

c

∂E

∂t
+ µ0

∂2PNL

∂t2
, (6.8)

where n is the refractive index in the fiber and α represents the loss per unit length.

The input chirped and reference fields are assumed to be undepleted, i.e.,

Ach,R(z) = Ach,R(0) exp(−αz/2), (6.9)

and Aout(z) is assumed to be slowly growing along the waveguide, i.e., ∂2Aout/∂z
2 ≪

βout ∂Aout/∂z. The differential equation for the output field is then given by

dAout

dz
= −

α

2
Aout −

jncǫ0γAeff

2
A2

ch(0)A
∗

R(0)e
−3αz/2e−j∆βz, (6.10)

where Aeff is the effective area of the mode in the fiber, γ is the nonlinear coefficient

of the fiber, given by

γ =
3ωµ0χ

(3)

n2ǫ0Aeff

, (6.11)
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and ∆β is the phase mismatch defined as

∆β
.
= 2βch − βR − βout. (6.12)

The phase mismatch is a function of the frequency difference between the chirped

wave and the reference wave. Ignoring the effect of self phase modulation of the

chirped beam (which is valid when the input power is low), equation (6.12) can be

written as

∆β = −2

∞
∑

m=1

β2m

(2m)!
(∆ω)2m, (6.13)

where ∆ω is defined in (6.6) and βm is the mth derivative of β(ω), evaluated at

ω = ωch. The coefficient β2 is related to the GVD parameterDc by β2 = −λ2Dc/(2πc).

6.1.1.2 Bandwidth Limitations due to Dispersion

The power carried by the optical wave is related to its amplitude A(z) by

P (z) =
ncǫ0Aeff

2
|A(z)|2 . (6.14)

Integrating equation (6.10), we derive the output power after propagation through a

distance L [125]:

Pout(L) = γ2P 2
chPR e−αL

(

1− e−αL

α

)2
α2

α2 +∆β2

(

1 +
4e−αL sin2 ∆βL

2

(1− e−αL)2

)

. (6.15)

From equations (6.13) and (6.15), the maximum value of the input frequency separa-

tion, and hence the output chirp bandwidth, will ultimately be limited by the phase

mismatch in the fiber. Consider as an example, a commercially available dispersion-

flattened HNLF with a nonlinear coefficient γ = 11.3 km−1W−1, loss α = 1 dB/km,

and dispersion parameter Dc = 0.5 ps/nm.km. For this dispersion-flattened fiber,

higher-order dispersion terms (β4 and above in equation (6.13)) can be neglected.

Let us assume that the chirp and reference powers are equal, i.e., Pch = PR. The

output power as a function of the input frequency separation (ωch − ωR), for various
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Figure 6.2. Output power as a function of the input frequency difference, for different
values of fiber length and input power (Pch = PR = P ). The dispersion, loss and
nonlinear coefficient of the fiber are described in the text.

values of input power Pch and fiber length L, is calculated using equations (6.13) and

(6.15) and plotted in figure 6.2. The FWM bandwidth BFWM can be defined as the

maximum input frequency separation over which useful output power is generated,

which is here taken to be the −3 dB point. It is important to note that the filtering

condition in equation (6.6) implies that BFWM is equal to the maximum possible

output bandwidth. The maximum fiber lengths and the input power requirements

for different values of output bandwidth and output power are summarized in table

6.1.

It is clear from figure 6.2 and table 6.1 that the maximum output bandwidth is

determined by the length of fiber used in the experiment. For a given value of the

dispersion parameter, BFWM reduces as L is increased. To obtain larger bandwidths,

a fiber with lower dispersion must be used. For a given length of fiber, the output

power level depends only on the input power. For example, for a desired output

bandwidth of 10 THz and an output power of 0 dBm, the maximum (dispersion-

limited) fiber length is 1.1 m, and the input power required is Pch = PR = 1.9 W.

This power level can be achieved with high power fiber amplifiers, but is desirable
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Table 6.1. Length of HNLF and input power requirements for different output band-
widths and power levels

Output
bandwidth
(THz)

Maximum
fiber length
(m)

Input power required

Pch = PR (dBm)

Pout = 0 dBm Pout = −10 dBm

1 105 19.5 16.2

5 4.3 29.0 25.4

10 1.1 32.8 29.5

15 0.45 35.2 32.0

that commercially available telecom-grade erbium doped fiber amplifiers (EDFAs)

with output powers of approximately +20 dBm be used to reduce the system cost. In

the following section, we describe a quasi-phase-matching technique using dispersion

compensation to achieve this target.

6.1.1.3 Quasi-Phase-Matching Using Alternating Dispersions

It is desirable to increase the length of the nonlinear fiber used in the experiment,

so as to increase the interaction length for the FWM process, thereby reducing input

power requirements. However, the length cannot be increased arbitrarily, since the

phase mismatch causes a reduction in the overall output power. This limitation can be

overcome by using a multisegment HNLF where the sign of the dispersion parameter of

a segment is alternatively chosen to be positive or negative, as shown in figure 6.3(a).

The dispersion parameter Dc is changed by engineering the waveguide dispersion

differently in the alternating segments. We again make the assumption of a dispersion-

flattened fiber where β4 can be neglected. Dispersion-flattened HNLFs with dispersion

parameters in the range of -1.0 to +1.5 ps/nm.km at 1550 nm are readily available.

An exact expression for the output field is easily obtained by integrating equation

(6.10) over the entire structure (see appendix B), but we present below an intuitive

explanation of the power buildup in the fiber. For a low loss fiber, we can set α = 0
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Figure 6.3. (a) Multisegment alternating dispersion waveguide for quasi-phase-
matching. The evolutions of the output field Aout(z) along the waveguide for one
and two segments are shown in (b) and (c) respectively. The dashed lines represent
the field at (b) z = L and (c) z = 2L.
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in equation (6.10) to obtain the simple differential equation

dAout

dz
= −

jncǫ0γAeff

2
A2

ch(0)A
∗

R(0)e
−j∆βz. (6.16)

The solution to this equation is a phasor that traces out a circle in the complex plane

as the distance z is increased, as shown in figure 6.3(b). The maximum value of the

field occurs when zmax∆β = π . As z is increased beyond this value, the magnitude

of the field phasor decreases, and the power output decreases. When the sign of

the dispersion parameter is reversed, the sign of ∆β is also reversed according to

equation (6.13), and the field phasor now traces out a circle of the opposite sense,

as depicted in figure 6.3(c). By symmetry considerations, the total output field at

the end of the second segment is equal to twice the value of the field at the end of

the first segment, for any arbitrary value of ∆β. For a structure with N alternating

segments, the output field scales as N , and the output power scales as N2. The

variation of Pout along a structure with three alternating segments of HNLF for an

input frequency difference of 10 THz, calculated using equation (B.10), is plotted in

figure 6.4, clearly showing the quadratic scaling of the output power with number of

segments. Conversely, for a given desired output power, the input power requirement

is reduced. For the HNLF example considered in section 6.1.1.2, an output bandwidth

of 10 THz and output power of 0 dBm can be achieved using a structure with 30

segments of length L = 1.1 m and alternating dispersions of ±0.5 ps/nm.km, with an

input power of only 200 mW, as opposed to an input power requirement of 1.9 W if

a single segment were used.

The number of segments that can be used in this technique is limited by the

insertion loss due to the fiber splices. Let the ratio of the transmitted to the incident

field amplitudes at a fiber splice be given by t, and let F (k) denote the amplitude of the

FWM field generated in the kth segment. The fields generated in all the segments

add in phase. The chirped and reference fields in the kth segment are given by

A
(k)
ch,R = tk−1A

(1)
ch,R, and the FWM field generated in the kth segment is consequently
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Figure 6.4. Comparison of the generated FWM field in a structure with 3 segments
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3L and dispersion +Dc. The values used in the calculations were L = 1.1 m and
Dc = 0.5 ps/nm.km.

given by F (k) = t3k−3F (1). The output field after the kth stage is therefore given by

A
(k)
out = tA

(k−1)
out + t3k−3F (1), (6.17)

which can be solved to yield

P
(k)
out =

(

tk−1(1− t2k)

1− t2

)2

P
(1)
out. (6.18)

Under the assumption that (1− t) ≪ 1, equation (6.18) reduces to

P
(k)
out

P
(1)
out

≈ k2t2(k−1). (6.19)

It is therefore crucial to minimize the splice losses in order to increase the FWM

interaction length. In the absence of splice losses, the number of segments is limited

by material loss in the waveguide, and the total achievable bandwidth is ultimately

limited by the gain bandwidth of the amplifiers used in the experiment.
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It should be noted that quasi-phase matched FWM using a similar concept has

been demonstrated theoretically and experimentally [126,127], where the phase mis-

match accumulated during the FWM process is periodically compensated for using

a dispersion-compensating fiber (DCF) or a single-mode fiber (SMF). In the process

described in this section, the quasi-phase-matching is achieved using nonlinear fiber.

This is an important distinction since the use of SMF or DCF will require two fiber

splices per segment of HNLF, which then leads to a lower achievable gain from equa-

tion (6.19). Further, the loss per splice is also expected to be higher, since dissimilar

fibers have to be spliced together.

We have again neglected the effect of higher-order dispersion terms in the preced-

ing analysis. In the presence of nonnegligible higher-order dispersion terms, perfect

quasi-phase-matching can only be achieved by reversing the signs of all the terms β2m

in equation (6.13), for m = 1, 2, . . .. However, a degree of quasi-phase-matching can

still be achieved by reversing the sign of the dispersion parameter Dc. The modifica-

tion to the output power due to the effect of higher-order terms can be determined

exactly by integrating equation (6.10). A general expression for the power generated

due to four-wave mixing in a multisegment nonlinear waveguide is derived in appendix

B.

6.1.2 Experiment

6.1.2.1 Chirp Bandwidth-Doubling

A schematic diagram of the proof-of-principle experimental setup is shown in figure

6.5. The input chirped wave was a perfectly linearly chirped waveform that sweeps

100 GHz in 1 ms, generated using a DFB SCL in an optoelectronic feedback loop

as described in chapter 5. A tunable laser (Agilent Technologies) was used as the

monochromatic reference wave. The two optical waves were coupled using a polar-

ization maintaining coupler, amplified using an EDFA and fed into a commercial

dispersion-flattened HNLF. The HNLF had a gain γ = 11.3 km−1W−1, loss α =

1 dB/km, length L = 100 m, and dispersion parameter Dc = +1.2 ps/nm.km. The
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Figure 6.5. Schematic diagram of the experimental setup for the demonstration of
chirp bandwidth-doubling by four-wave mixing. EDFA: Erbium doped fiber amplifier,
MZI: Mach-Zehnder interferometer, PD: Photodetector. The differential delay in the
MZI is approximately 2.7 ns.
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Figure 6.6. Experimental demonstration of bandwidth-doubling by four-wave mix-
ing. The reference wave was monochromatic (resolution limited) and the input chirp
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The theoretical FWM power was calculated using equations (6.13) and (6.15) using
the measured input powers.
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output of the HNLF was measured on an optical spectrum analyzer, and is shown in

figure 6.6. The figure clearly shows the generation of a frequency doubled FWM out-

put that sweeps over an optical bandwidth of 200 GHz. A second FWM component

sweeping over 100 GHz in the reverse direction was generated on the low frequency

side, corresponding to the FWM process involving two photons of the reference wave

and one photon of the chirped wave. The experimentally measured values of the

output fields are in excellent agreement with the theoretical calculation based on the

measured input powers and equations (6.13) and (6.15).

The ability of the experiment to reproduce the dynamic characteristics of the

input optical frequency chirp at the output was also verified. The output waveform

was filtered out using the monochromator output of the optical spectrum analyzer,

and amplified using a telecom EDFA. The input and output frequency chirps were

characterized by passing them through an MZI with time delay τMZI = 2.7 ns, as

shown in figure 6.5. The frequency of the detected photocurrent is related to the

slope ξ of the optical chirp by ω = ξτMZI . The spectrograms of the photocurrents are

calculated and plotted in figure 6.7. The results clearly show that the optical chirp

rate is doubled by the FWM process from 1014 to 2× 1014 Hz/s, and the transform-

limited linearity of the input chirp is maintained at the output, making the output

frequency chirped waveform suitable for three-dimensional imaging applications. The

FWM technique can also be used to increase the chirp rate of swept frequency optical

waveforms.

6.1.2.2 Dispersion Compensation

We also demonstrated improved bandwidth in the FWM process using the disper-

sion technique for quasi-phase-matching described in figure 6.3. Two segments of

dispersion-flattened HNLF with lengths 100 m each, and dispersion coefficients +0.38 ps/nm.km

and −0.59 ps/nm.km were spliced together to obtain the dispersion-compensated

waveguide. The other parameters of the HNLFs were identical to the one used in the

previous section. Single-mode fiber pigtails were used at the input and output ends.

The results of bandwidth-doubling experiments using the individual fibers and the
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(a)

(b)

Figure 6.7. Measured slopes of the (a) input and (b) output optical chirps demon-
strating the doubling of the optical chirp slope by FWM.
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Figure 6.8. Improvement in the power generated by FWM using a two-segment
HNLF. The length of each segment was 100 m and the values of the the dispersion
parameter in the two segments were +0.38 ps/nm.km (+D) and −0.59 ps/nm.km
(-D). The FWM power generated in experiments using the individual 100m HNLF
segments is also shown.

dispersion compensated fiber with an input chirp of 100 GHz in 0.1 ms are shown in

figure 6.8. An improvement in the conversion efficiency, owing to a longer interaction

length for the FWM process, is clearly seen from the figure. If the chirped and refer-

ence powers are equal, the theoretical improvement in conversion efficiency is 6 dB;

however, the observed improvement is only ∼4 dB, which is due to the slightly lower

powers of the chirped and reference waves used.

The output FWM power in this two-segment fiber as a function of the input

frequency separation is calculated using equation (B.10) and plotted in figure 6.9.

The result is compared to the (hypothetical) case of 200 m of each individual fiber,

which results in the same conversion efficiency. The input chirped and reference

powers are assumed to be Pch = PR = 100 mW. We note that the bandwidth of the

process is improved using the dispersion compensation technique.

As seen from figure 6.9, the low values of the dispersion parameters of the HNLF
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used in the experiment imply that an input frequency separation of the order of

0.5–1 THz is necessary to see a dip in the converted output power. Current imple-

mentations of optoelectronic SFLs in our laboratory are limited to bandwidths of

≤0.5 THz, and we therefore use a tunable laser (Agilent) as the chirped laser source

in the experimental demonstration. The wavelength of the tunable laser is varied

over a range of 2.5 THz, and a VCSEL (RayCan) acts as a monochromatic reference

wave. The FWM experiment is then performed using a setup similar to figure 6.5.

The nominal powers of the “chirped” wave and the reference wave, after amplification

at the input stage, are 100 mW and 28 mW respectively. The actual power deviates

from the nominal value due to the nonuniform gain spectrum of the EDFA. The ex-

perimentally measured output power as a function of the input frequency difference is

plotted in figure 6.10, and compared with the theoretical calculation using equation

(B.10). We see that there is good agreement between theory and experiment, and the

discrepancies are probably due to the fact that we have assumed average and constant

values for the dispersion parameters in each fiber segment, and ignored variations in

the powers of the chirped and reference waves.

The effect of dispersion compensation can also be understood by comparing the

shape of the roll-off of the power generated by FWM, as a function of the input fre-

quency difference, for the individual fiber segments and the two-segment fiber. As

seen in figure 6.11, the shape of the roll-off is almost identical for these fibers, corre-

sponding to a dispersion-limited bandwidth of 100 m of fiber. The power generated

is, however, larger by a factor of four in the dispersion-compensated fiber, as seen

from figure 6.8.1

We have demonstrated the improvement in the bandwidth of the FWM process

using a two-segment nonlinear fiber. Preliminary results from experiments with a

four-segment fiber confirm the expected improvement in bandwidth; these results

will be reported elsewhere.

1Note that power of the generated FWM wave is normalized in figure 6.11, for low values of
ωch − ωR.
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two individual segments of 100 m each with opposite signs of the dispersion parameter,
and the dispersion-compensated two-segment fiber.

6.1.3 Bandwidth Extension

The FWM process demonstrated in this chapter generates a chirp-doubled optical

wave in the same wavelength range as the input signal. The frequency spacing between

the output chirp and the input chirp is only limited by the sharpness of the optical

filter used to filter out the output. Using diffraction grating based filters, this gap can

be as small as a few GHz. It has been demonstrated by Ishida and Shibata [128] that

the FWM process can be cascaded to geometrically increase the frequency separation

between the two input signals. This principle can be extended to chirped signals to

achieve geometric increases in the chirp bandwidth. The output chirped signal from

the FWM experiment can be filtered, amplified again using an EDFA and mixed

with the same reference signal in an HNLF to further double the chirp bandwidth. A

cascade of n such stages leads to the geometric scaling of the output bandwidth by

a factor 2n, as shown in figure 6.12. For example, starting with a 200 GHz chirped

semiconductor laser at the input, an output bandwidth of 12.8 THz is obtained after
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Figure 6.12. Cascaded FWM stages for geometric scaling of the chirp bandwidth.
Each stage consists of a coupler, amplifier, HNLF and filter as shown in figure 6.1(a).

n = 6 stages. Note that the same reference monochromatic signal can be used for

each stage, since the filtering condition (equation (6.6)) is always satisfied if it is

satisfied for the first FWM stage. If the dispersion compensation technique for quasi-

phase-matching described in section 6.1.1.3 is used, the total output bandwidth is

only limited by the gain bandwidth of the amplifiers used in the experiment, and by

additional noise introduced by the amplification stages.

The FWM process fundamentally involves the interaction of three input fields to

produce the output field. An optimum use of the process for bandwidth multiplication

can therefore result in bandwidth tripling, and not just doubling, as described below.

Let the monochromatic reference wave of figure 6.1 be replaced by a chirped wave

that sweeps in the direction opposite to the original chirp. We now have two input

chirped waves which are mirror images of each other, with frequencies given by

ωin,1 = ω0 − B0 −
dφ

dt
,

ωin,2 = ω0 +B0 +
dφ

dt
, (6.20)

where ω0 and B0 are constants. The two output fields generated by two distinct

FWM processes have frequencies

ωout,1 = 2ωin,1 − ωin,2 = ω0 − 3B0 − 3
dφ

dt
,

ωout,2 = 2ωin,2 − ωin,1 = ω0 + 3B0 + 3
dφ

dt
. (6.21)

The output waveforms have bandwidths that are thrice the bandwidth of the in-

dividual input chirps, as shown in figure 6.13. Further, the two output waveforms
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Figure 6.13. Spectral components in a bandwidth tripling FWM experiment using
two chirped optical inputs.

can be amplified and used in a cascaded process similar to the one described for

the bandwidth-doubling approach, to achieve a geometrical bandwidth scaling of 3n.

Starting with two frequency sweeps of 200 GHz each, a chirp bandwidth of 16.2 THz

can now be achieved using n = 4 stages.

The geometric enhancement of the chirp bandwidth using a cascade of n stages

has the drawback that it requires n amplifiers and n nonlinear waveguides, thereby

increasing the overall system cost. This can be overcome by folding back the cascaded

process using a FWM “engine” as shown in figure 6.14(a). The input chirped wave

sweeps over a bandwidth B during a time T , and is then turned off. A monochromatic

reference wave is also coupled into the nonlinear medium. The FWM output of

bandwidth 2B is selected by the optical filter, delayed by a time T , amplified and fed

back into the nonlinear fiber as the chirped input. From time T to 2T , the optical

filter is configured to select the new FWM output of bandwidth 4B. The combination

of optical filter configuration and the delay T therefore ensures that only two optical

waves are input into the nonlinear fiber at a given instant of time. The slope of

the frequency chirp at the output port then increases geometrically with time, as

depicted in figure 6.14(b). The amount of practically achievable delay T imposes a

lower bound on the input optical chirp rate, for a given chirp bandwidth. A fiber

delay of 20 km provides a delay of 100 µs, which is quite sufficient for sweeping typical

semiconductor lasers, and switching the optical filters. This approach can be easily

modified to include two chirped inputs.
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(b) Output frequency vs. time.
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6.2 Multiple Source FMCW Reflectometry

The FWM technique described in section 6.1 relies on a single input chirp and non-

linear optics to achieve bandwidth multiplication. This imposes a rather large power

requirement, and the achievable bandwidth can be limited by dispersion in the non-

linear medium. In this section, we present a new approach, multiple source FMCW

(MS-FMCW) reflectometry, which combines multiple lasers so that the total chirp

bandwidth to the sum of chirp bandwidths of the individual lasers. This leads to a

corresponding decrease in the smallest resolvable feature separation (equation (5.16))

while keeping the ranging depth and scan speed unchanged. The key to this technique

is sweeping the sources over distinct but adjacent regions of the optical spectrum, so

as to approximate a single sweep of greater bandwidth. A related method for improv-

ing the range resolution has recently been reported [129], where the chirped sidebands

of the discrete frequencies radiated by a mode-locked laser are combined using feed-

back to create a phase-coherent continuous-frequency wideband chirp. In contrast,

our work focuses on an analytical method that can tolerate the presence of disconti-

nuities in the frequency sweep, enabling a much simpler (and cheaper) combination

of multiple sources for resolution improvement.

6.2.1 MS-FMCW Analysis

Let us briefly revisit the FMCW experiment with a linearly swept source of bandwidth

B (rad/s), as shown in figure 6.15. The target is assumed to consist of multiple

reflections with time delays τi. The electric field of the source is given by

e(t) = cos

(

φ0 + ω0t+
ξt2

2

)

, (6.22)
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Figure 6.15. (a) Schematic diagram of an FMCW ranging experiment with a linearly
chirped optical source. (b) Variation of the optical frequency with time.
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where φ0 denotes the initial optical phase. For a target with a time delay τ , the

detected photocurrent is given by

i(t) =
〈

|e(t) +Re(t− τ)|2
〉

= R cos

[

(ξτ)t+ ω0τ −
ξτ 2

2

]

, (6.23)

where R is the target reflectivity, and the DC terms are neglected. The averaging is

done over a time interval that is much longer than an optical cycle, yet much shorter

than the period of the cosine in equation (6.23). The term ξτ 2/2 is typically much

smaller than unity, and will be neglected in the rest of this analysis for the sake of

simplicity.2

We note that time is only a dummy variable in equation (6.23), and can be replaced

by the optical frequency, so that the photocurrent is a function only of the optical

frequency:

i(ω) = R rect

(

ω − ω1

B

)

cos(ωτ), (6.24)

where the rect(.) function denotes that the measurement is done over the optical

frequency interval of length B centered around ω1. This is a consequence of the fact

that equation (6.23) is valid only for the time interval [0, T ]. The delay τ is then

calculated by measuring the “frequency” of oscillations of the function cos(ωτ), i.e.,

we define the conjugate Fourier variable, ζ , of the optical frequency ω and calculate

the Fourier transform of equation (6.24):3

I(ζ) =

[

R

2
δ(ζ − τ)

]

∗

[

Bsinc

(

Bζ

2

)

e−jζω1

]

, (6.25)

where ∗ is the convolution operator, and we ignore negative “frequencies” ζ , since

the photocurrent is real. The value of τ is calculated by measuring the location

of the peak of the sinc function. Note that one definition of the resolution of the

measurement is given by the location of the first null of the sinc function at ∆ζ =

2The inclusion of the ξτ2/2 term does not change the results of the analysis significantly, as
shown in [71].

3The Fourier transform of x(ω) is defined by X(ζ) =
∫

∞

−∞
x(ω)e−jωζ dω. ζ has units of time.
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2π/B, which corresponds to a range resolution ∆d = πc/B, as given by equation

(5.16).4 Alternatively, the resolution may be defined by the FWHM of the sinc

function.

We now show that the resolution of the measurement can be improved by simply

adding measurements performed using several distinct optical windows. Let the N

optical windows be centered at ωk, and have width B each.5 We further assume

that there is a gap between adjacent windows, so that ωk+1 − ωk = B + δk. For

multiple targets, labeled i, imaged using multiple optical windows, the general version

of equation (6.25) can be written as

I(ζ) =

[

∑

i

Ri

2
δ(ζ − τi)

]

∗

[

N
∑

k=1

Bsinc

(

Bζ

2

)

e−jζωk

]

.
=

[

∑

i

Ri

2
δ(ζ − τi)

]

∗ AN (ζ). (6.26)

AN(ζ) can be simplified to yield

AN(ζ) = (ωN − ω1 +B)sinc

(

ωN − ω1 +B

2
ζ

)

e−jζ
ω1+ωN

2

−
N−1
∑

k=1

δksinc

(

δkζ

2

)

e
−jζ

(

ωk+
B+δk

2

)

.

(6.27)

Let us first consider the case δk = 0 for all k. This is the case where there are no gaps

between the optical windows, and we find that equation (6.27) is identical to equation

(6.25) with effective bandwidth B̃
.
= ωN − ω1 +B = NB. A resolution improvement

by a factor of N can therefore be improved by simply adding measurements taken over

N distinct optical windows.

In the presence of gaps δk, the synthesized spectrum in equation (6.27) can be

interpreted as the spectrum due to one large window of bandwidth given by the total

frequency extent B̃ = ωN − ω1 + B, minus the transform of the gaps. In this work,

4Note that the range resolution is ∆d = c∆ζ/2 owing to the specular reflection geometry used in
the experiment.

5In general, it is not necessary that the bandwidths Bk be equal.
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we will always assume that the gaps are small, i.e., δk ≪ B. The resolution of the

synthesized spectrum can then be exactly calculated numerically as described in [71],

but it is easy to show that the FWHM of the transform is virtually unaffected by

the presence of small gaps. This is due to the fact that the magnitude of the sum in

equation (6.27) is bounded above by
∑

k |δk|, and this is, by assumption, much smaller

than the total bandwidth B̃ which determines the maximum value of the spectrum.

It can also be shown [71] that an upper bound on the smallest resolvable separation

is given by

∆dMS−FMCW ≤
πc

NB
. (6.28)

To illustrate the effect of the gaps on the synthesized spectrum, we plot in figure

6.16 the transform of a single window of width 5.19 units, compared to the addition

of five windows of 1 unit each with interwindow gaps of 0.06, 0.045, 0.03 and 0.055

units respectively. It is clear that the resolution of the synthesized measurement is

approximately equal to that using a single frequency sweep of 5 units, and the gaps

do not have a significant impact on the resolution of the measurement.

6.2.2 Stitching

We now consider the problem of stitching, i.e., how do we put together multiple mea-

surements using different parts of the optical spectrum to obtain one high-resolution

measurement? In the previous section, we have mapped photocurrents from the time

domain to the optical frequency domain. Since the optical frequency is linear in time,

this mapping involves first scaling the time axis by the chirp slope, and then translat-

ing the data to the correct initial frequency. Whereas the rate of each chirp is precisely

controlled (chapter 5), the starting sweep frequencies are, in general, not known with

sufficient accuracy. To reflect this uncertainty, we omit the translation step—in other

words, we translate the ideal measurement back to the origin. In the Fourier domain,

this implies that the measured spectrum using the kth optical window is related to

the ideal value by

Ik,meas(ζ) = ejωkζIk(ζ). (6.29)
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Figure 6.16. Illustration of the MS-FMCW concept. A measurement using five indi-
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Figure 6.17. Schematic of a multiple source FMCW ranging experiment. A reference
target is imaged along with the target of interest, so that the intersweep gaps may
be recovered. BS: Beamsplitter. PD: Photodetector.

Using equation (6.25), the measured spectrum is given by

Ik,meas(ζ) = ejωkζ

[

∑

i

Ri

2
δ(ζ − τi)

]

∗

[

Bsinc

(

Bζ

2

)

e−jζωk

]

=
B

2

∑

i

Ri sinc

(

B(ζ − τi)

2

)

exp(jτiωk). (6.30)

The problem of stitching is therefore to determine the phase factors exp(−jζωk) in

order to reconstruct the Fourier transform of equation (6.27) according to

Istitch(ζ) =

N
∑

k=1

e−jωkζIk,meas(ζ). (6.31)

The uncertainty in the starting frequencies manifests itself as an uncertainty in

the intersweep gaps. To recover the gaps, we use a known reference target along with

the target of interest, as shown in figure 6.17. By analyzing the data collected from

the reference target, we extract the parameters δk, and stitch together the target of

interest measurement, according to equation (6.31). Let us examine a system with

two optical sweeps of chirp bandwidth B each, separated by a gap δ. Three and more
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sweeps can be stitched by considering sweeps in a pairwise manner to calculate the

values of the gaps. Suppose the known reference target consists of a single reflector

with reflectivity Ra and delay τa. We obtain two measurements I1,meas and I2,meas

according to equation (6.30). The ratio of these measurements can then be used to

obtain the value of the gap δ (note that ω2 − ω1 = B + δ) according to

δ =
1

τa
arg

[

I2,meas(τa)

I1,meas(τa)
exp(−jBτa)

]

. (6.32)

The phase of a complex number can only be extracted modulo 2π, so that equation

(6.32) can only be used to recover δ with an ambiguity of 2π/τa. Therefore, the

nominal gap needs to be known to within 2π/τa before equation (6.32) may be applied.

For example, if the nominal gap is only known to an accuracy of 10 GHz, we need

1/τa > 10 GHz. However, the use of a very small τa is undesirable since it makes

the calculation very sensitive to inaccuracies in the measurement of the phase on the

right-hand side.

To overcome this issue, we use two known reference reflectors, and express the

gap size as a function of the reflector separation. If the two delays are given by τa

and τb, we use equation (6.32) to derive

δ =
1

τa − τb
arg

[

I2,meas(τa)I1,meas(τb)

I1,meas(τa)I2,meas(τb)
exp (−jB(τa − τb))

]

. (6.33)

τa and τb are chosen so that 1/|τa − τb| > 10 GHz, and the value of δ is calculated

using equation (6.33). The error in this calculation is proportional to 1/|τa− τb|. The

accuracy of the calculation of the gap can now be improved by using equation (6.32),

which yields a new value of δ with a lower error proportional to 1/τa. Depending

on system noise levels, more stages of evaluation of δ using more than two reference

reflectors may be utilized to achieve better accuracy in the calculations.

A potential system architecture employing the stitching technique for high resolu-

tion MS-FMCW is shown in figure 6.18. The optical sources are multiplexed and used

to image a target and a reference, as discussed above. The reflected optical signal is
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Figure 6.18. Architecture of a potential MS-FMCW imaging system. BS: Beam
splitter. PD: Photodetector.

demultiplexed and measured using a set of photodetectors to generate the photocur-

rents of equation (6.30). The reference data is processed and used to stitch a target

measurement of improved resolution. The multiplexing may be performed in time or

optical frequency, or a combination of the two. The real power of the MS-FMCW

technique then lies in its scalability. We can envision a system that combines cheap

off-the-shelf SCLs to generate a swept-frequency ranging measurement that features

an excellent combination of range resolution, scan speed, and imaging depth.

6.2.3 Experimental Results

We demonstrated the MS-FMCW technique using a highly linear DFB SCL-based

optoelectronic swept-frequency source that chirps 100 GHz around a nominal central

wavelength of 1539 nm in a 1 ms long scan (chapter 5). It should be noted that that

a specialized source is not necessary for this technique, and chirp nonlinearity may be

compensated for by sampling the photocurrent uniformly in optical frequency [51].

We used the configuration of figure 6.17 with a 1.0 mm microscope slide target,

and a two reflector reference characterized by 1/|τa− τb| ∼ 10 GHz (∼3 cm free space

separation). This reference was chosen to accommodate the accuracy with which

the gaps are initially known (∼1 GHz). We tuned the SCL temperature through
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Figure 6.19. Experimental MS-FMCW results using a DFB SCL. The red and blue
curves correspond to single-sweep and stitched three-sweep measurements respec-
tively. (a) Single reflector spectrum. (b) Glass slide spectrum. The peaks correspond
to reflections from the two air-glass interfaces. The nominal thickness of the glass
slide is 1 mm.

three set points to generate three 100 GHz sweeps with different starting frequencies.

These sweeps were sequentially launched into the experiment, and the corresponding

photocurrents were recorded. Using the two-step procedure described in section 6.2.2,

the gaps between the sweeps were calculated to be 1.89 and 0.72 GHz.

These values of the gaps were used in equation (6.31) to stitch the three measured

photocurrents, and the results are plotted in figure 6.19. Figure 6.19(a) shows the

single sweep and stitched multiple sweep spectra for one of the reference reflectors.

The FWHMs are 12.17 and 4.05 ps for the single and multiple source cases respec-

tively. The threefold range resolution enhancement is consistent with equation (6.28).

Fig 6.19(b) shows the measurements of the target microscope slide. The two peaks in

the single-scan spectrum, corresponding to reflections from the two microscope slide

facets, are barely resolved. This is consistent with the theoretical range resolution in

glass of 1 mm for a 100 GHz sweep. The stitched curve shows two prominent peaks,

demonstrating our improved ability to resolve two closely spaced targets. The mea-

sured peak separation of 10 ps is the round-trip delay between the two slide facets,
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and indeed corresponds to a thickness of 1 mm in glass.

The stitching experiment was also performed using a VCSEL-based optoelectronic

SFL with a chirp bandwidth of 500 GHz, corresponding to a range resolution of

200 µm in glass. Two such sweeps were generated by biasing the laser at different

temperatures, and the resulting measurements were stitched together to obtain an

effective chirp bandwidth of 1 THz and a resolution of 100 µm in glass. The results

of imaging measurements of two-reflector targets with different separations is shown

in figure 6.20. The results show that a microscope cover-slip of nominal thickness

150 µm, which could not be resolved by a single sweep, is well resolved by the stitched

measurement.

6.2.4 Summary

We have analyzed and demonstrated a novel variant of the FMCW optical imaging

technique. This method combines multiple lasers that sweep over distinct but adja-

cent regions of the optical spectrum in order to record a measurement with increased

effective optical bandwidth and a corresponding improvement in the range resolution.

The MS-FMCW technique is scalable and is a promising approach to realize a wide-

bandwidth swept-frequency imaging system that inherits the speed and coherence of

the SCL. While we have demonstrated the stitching of three 100 GHz sweeps using

DFB SCLs and two 500 GHz sweeps using VCSELs in our proof-of-concept experi-

ments, MS-FMCW reflectometry is not tied to any particular laser type and may be

used to combine wideband swept sources to push range resolutions beyond the state

of the art.
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Figure 6.20. Experimental MS-FMCW results using a VCSEL. The green and blue
curves correspond to single-sweep and stitched two-sweep measurements respectively.


